WO2015119114A1 - 積層体、積層デバイス及びそれらの製造方法 - Google Patents
積層体、積層デバイス及びそれらの製造方法 Download PDFInfo
- Publication number
- WO2015119114A1 WO2015119114A1 PCT/JP2015/052985 JP2015052985W WO2015119114A1 WO 2015119114 A1 WO2015119114 A1 WO 2015119114A1 JP 2015052985 W JP2015052985 W JP 2015052985W WO 2015119114 A1 WO2015119114 A1 WO 2015119114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- particle
- mass
- firing
- grain boundary
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 181
- 239000000463 material Substances 0.000 claims abstract description 124
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 229910052788 barium Inorganic materials 0.000 claims abstract description 41
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 34
- 150000001875 compounds Chemical class 0.000 claims abstract description 19
- 239000002994 raw material Substances 0.000 claims description 109
- 238000010304 firing Methods 0.000 claims description 103
- 239000000843 powder Substances 0.000 claims description 94
- 239000011521 glass Substances 0.000 claims description 61
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 23
- 238000000465 moulding Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 15
- 239000011812 mixed powder Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 11
- 239000010937 tungsten Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 7
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 5
- 239000007772 electrode material Substances 0.000 claims description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 5
- 229910021608 Silver(I) fluoride Inorganic materials 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 96
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 24
- 229910052797 bismuth Inorganic materials 0.000 description 17
- 239000003985 ceramic capacitor Substances 0.000 description 14
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 11
- 229910052779 Neodymium Inorganic materials 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910018516 Al—O Inorganic materials 0.000 description 4
- 229910014142 Na—O Inorganic materials 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 229940100890 silver compound Drugs 0.000 description 4
- 150000003379 silver compounds Chemical class 0.000 description 4
- -1 silver halide Chemical class 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910002367 SrTiO Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910001923 silver oxide Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/16—Capacitors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3263—Mn3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
- C04B2235/365—Borosilicate glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/346—Titania or titanates
Definitions
- the present invention relates to a laminated body, a laminated device, and a manufacturing method thereof.
- Patent Documents 1 to 3 Conventionally, various laminates have been proposed (see Patent Documents 1 to 3).
- Patent Document 1 the arrangement of two types of low dielectric constant green sheets and high dielectric constant green sheets is controlled, and the firing shrinkage start temperature is controlled within a specific range to suppress warpage due to simultaneous firing.
- a multilayer wiring board has been proposed.
- Patent Document 2 proposes a ceramic structure that is flat and has no distortion by laminating and low-temperature co-fired layers of a high dielectric constant core tape, a self-binding tape, and a main tape.
- Patent Document 3 an interlayer between layers of a dielectric ceramic powder composition containing a main component containing barium titanate and the like and a trace component made of a ternary mixture composed of barium oxide, silicon dioxide, and calcium titanate.
- a multilayer ceramic capacitor has been proposed in which a laminate in which an internal electrode is inserted is fired to suppress a change in capacitance due to a temperature change.
- an oxide such as silver oxide to this capacitor to change the temperature coefficient of the capacitance at 125 ° C. without significantly reducing the insulating properties of the dielectric.
- JP 2004-63812 A JP 2006-210924 A Japanese Patent Laid-Open No. 9-14026
- Patent Document 1 two types of low dielectric constant green sheets are necessary, and in Patent Document 2, a self-binding tape for suppressing shrinkage is necessary, and it has been desired to omit such a configuration. Further, in Patent Document 3, warping may occur in the case of simultaneous firing with dielectrics having different dielectric constants. For this reason, the novel laminated body which can suppress curvature is desired.
- the present inventors have found that a barium titanate-based material, a glass containing ZnO, a molded body containing Ag 2 O or Ag, and Ba 4 (Nd, Bi). It has been found that when a molded body containing a material such as 9.3 Ti 18 O 54 and glass is laminated and fired, warping can be suppressed, and the present invention has been completed.
- the laminate of the present invention is Ba in a part of BaTiO 3, a first particle section is at least one of the compounds and BaTiO 3 containing a metal element other than Ti, the first grain boundary including the presence and ZnO between the particles of the first particle section And a first material layer having a first dielectric constant, and an Ag particle part, A second material layer having a second dielectric constant lower than the first dielectric constant, including a second particle part and a second grain boundary part existing between the particles of the second particle part; It is equipped with.
- the laminated device of the present invention is The laminate described above; An electrode that is integrated with the laminate and is Ag or an Ag alloy; It is equipped with.
- the method for producing the laminate of the present invention comprises: A first preparation comprising a first particle raw material which is at least one of BaTiO 3, a compound containing a metal element other than Ba and Ti in a part of BaTiO 3, a first grain boundary raw material containing ZnO, and an Ag particle raw material.
- a laminate firing step of firing the laminated laminate body Is included.
- the manufacturing method of the laminated device of the present invention is as follows: A first preparation comprising a first particle raw material which is at least one of BaTiO 3, a compound containing a metal element other than Ba and Ti in a part of BaTiO 3, a first grain boundary raw material containing ZnO, and an Ag particle raw material. A first molded body obtained by molding a powder, and a second molded body obtained by molding a second prepared powder obtained by mixing a second particle raw material having a relative dielectric constant smaller than that of the first particle raw material and a second grain boundary raw material, A laminated firing step of firing a laminated molded body with an electrode obtained by laminating an electrode material containing Ag or an Ag alloy; Is included.
- the laminated body, laminated device, and manufacturing method thereof of the present invention can provide a novel laminated body and laminated device that can suppress warpage.
- the reason why such an effect can be obtained is assumed as follows. For example, by firing a molded body containing an Ag particle raw material to form a first material layer containing an Ag particle portion, the firing shrinkage behavior of the first material can be controlled, and a firing shrinkage curve similar to that of the second material can be obtained. Thus, it is considered that the occurrence of warpage due to the deviation of the firing shrinkage behavior can be suppressed.
- FIG. 2 is a schematic cross-sectional view of a laminated body 10.
- 1 is a schematic cross-sectional view of a multilayer ceramic capacitor 50.
- FIG. The firing shrinkage curves of the first and second molded bodies in Experimental Examples 7 and 24. The SEM image and EDX result of the 1st material layer in example 7 of an experiment.
- FIG. 1 is a schematic cross-sectional view of the laminate 10.
- the stacked body 10 includes a first material layer 20 having a first dielectric constant, and a second material layer 30 having a second dielectric constant lower than the first dielectric constant.
- the first material layer 20, Ba in a part of BaTiO 3, a first particle 22 is at least one of a compound and BaTiO 3 containing a metal element other than Ti, exist between particles of the first particle 22 And a first grain boundary part 24 containing ZnO and an Ag grain part 26.
- the first particle 22 is configured in a part of BaTiO 3 Ba, at least one of the particles of the compounds and BaTiO 3 containing a metal element other than Ti (also referred to as particles of barium titanate), particles They may be bonded to each other.
- the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are greater than 0 and less than 1) (It is a numerical value).
- a part of BaTiO 3 contains a metal element other than Ba or Ti means that, for example, a metal element other than Ba or Ti or a compound (oxide or the like) containing a metal element other than Ba or Ti is solidified in BaTiO 3. It may be melted.
- metal elements other than Ba and Ti include alkaline earth metal elements, rare earth elements, Sb, Ni, Cu, Cr, Fe, Co, Mn, Ta, Nb, W, Mo, Zn, Bi, Zr, Ag, and Sn.
- the metal element other than Ba and Ti may be one or more selected from the group consisting of Zr, Sn and Nb. Metal elements other than Ba and Ti may be included as oxides such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , and Nb 2 O 5 . Zr may be inevitably included in the manufacturing process.
- the first particle portion 22 may be composed of one type of barium titanate-based particle, or may be composed of two or more types of barium titanate-based particles. Further, the first particle part 22 may be composed of single-phase particles having constant characteristics in the particles, or composed of multi-phase particles having a plurality of phases having different compositions and properties in the particles. May be. Examples of multiphase particles include a core-shell structure in which the composition and properties differ between the part that becomes the core of the particle and the part that becomes the shell formed so as to cover the core, and the center part of the particle And a structure in which the composition and characteristics change continuously or intermittently from the outer periphery to the outer periphery.
- the multiphase particles only need to have a barium titanate phase, and some of the phases may not be a barium titanate phase.
- the first particle portion 22 has two or more kinds having different compositions and characteristics (particularly, temperature characteristics of dielectric constant). If two or more phases having different dielectric constant temperature characteristics are mixed, it is considered that the temperature characteristics of the dielectric constant of the first material layer 20 can be stabilized.
- the first particle 22 is provided with two or more phases, for example, a BaTiO 3 phase consisting of BaTiO 3, the BaTiO 3, Ba, oxides of metal elements other than Ti, for example, Bi 2 O 3, Even if one or more selected from the group consisting of ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5, and Ag 2 O contains a solid solution / substitution phase in which it is solid solution and / or substituted.
- a solid solution / substitution phase having a different solid solution / substitution amount such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , Ag 2 O or the like is further replaced with BaTiO 3. May be included.
- This solid solution / substitution layer may contain Bi 2 O 3 , ZnO and Mn 3 O 4 , or may contain Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 .
- the solid solution / substitution layer may include one or more selected from the group consisting of ZrO 2 , SnO 2 and Nb 2 O 5 .
- the solid solution / substitution layer does not contain CuO, and even when it contains CuO, it is preferable that it is a trace amount. Note that the phase characteristics can be changed by adjusting the phase composition, production conditions, and the like.
- the first grain boundary part 24 contains ZnO.
- the first grain boundary 24 preferably contains 35% by mass or more of ZnO.
- the first grain boundary 24 is preferably mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO.
- the ZnO and B 2 O 3 as the main shows that among the components of the first grain boundary portion 24, the highest total mass ratio of ZnO and B 2 O 3.
- “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the first grain boundary portion 24.
- the first grain boundary part 24 may be based on a glass containing ZnO, and more specifically, the glass containing ZnO may be crystallized.
- the glass containing ZnO examples include Zn—B—O glass.
- the Zn—B—O-based glass is glass containing Zn, B, and O.
- a glass containing ZnO and B 2 O 3 may be used.
- the Zn—B—O-based glass may contain other elements as a secondary element, for example, Zn—B—Si—O-based glass.
- the Zn—B—Si—O-based glass may be glass containing Zn, B, Si, and O.
- the Zn—B—O-based glass preferably contains, for example, ZnO in a range of 35% by mass to 80% by mass, and more preferably in a range of 50% by mass to 70% by mass.
- B preferably contains 2 O 3 to a range of less than 50 wt% to 10 wt%, more preferably contains from 20 wt% to 40 wt% or less.
- SiO 2 in the range of 5 wt% to 15 wt% or less, more preferably contains in the range of 7 wt% to 13 wt% or less.
- the first grain boundary 24 preferably does not contain Bi, Mg, or the like.
- the proportion of the first grain boundary portion 24 containing ZnO is not limited as long as the cross-sectional area of the first material layer 20 is larger than 0% when the cross-section of the first material layer 20 is observed.
- the above is preferable, and 2% or more is more preferable.
- the Ag particle portion 26 is composed of metal silver (Ag) particles, and may be formed by thermally decomposing a silver compound such as silver oxide, silver halide, or a salt of silver and an acid. More specifically, any one or more of Ag 2 O, AgF, and AgCl may be generated by thermal decomposition.
- a silver compound such as silver oxide, silver halide, or a salt of silver and an acid. More specifically, any one or more of Ag 2 O, AgF, and AgCl may be generated by thermal decomposition.
- the first material layer 20 may further include oxide particles in addition to the first particle part 22, the first grain boundary part 24, and the Ag particle part 26.
- oxide particles include oxides of metal elements other than Ba and Ti described above.
- the oxide particles may include, for example, one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5, and Ag 2 O.
- the oxide particles may include Bi 2 O 3 , ZnO and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 .
- the oxide particles may include one or more selected from the group consisting of ZrO 2 , SnO 2 and Nb 2 O 5 .
- the first material layer 20 may contain SrTiO 3 or the like.
- the first material layer 20 may include BaTiO 3 (which may be the sum of BaO and TiO 2 ) in the range of 70% by mass to 97% by mass, and in the range of 85% by mass to 95% by mass. It may be included. It is also as containing Bi 2 O 3 in the range of 3.0 wt% to 10 wt%. Moreover, it is good also as a thing containing ZnO in 0.5 mass% or more and 5.0 mass% or less. Further, the Mn 3 O 4 may alternatively include a range of less than 1.0 wt% 0.01 wt%. The present invention may be those containing ZrO 2 in a range of 3.0 wt% to 0.5 wt%.
- SnO 2 may be contained in a range of 2.0 mass% or less. Further, the Nb 2 O 5 or as including a range of 1.0 mass% or less. Further, the SiO 2 may alternatively include a range of less than 0.3 wt% 0.01 wt%. Moreover, it is good also as containing Ag in 0.2 mass% or more and 8.0 mass% or less.
- the first material layer 20 has a high relative dielectric constant of, for example, 1000 or more, and a low dielectric loss tangent tan ⁇ , such as 0.05 or less, so that simultaneous firing with an Ag-based electrode can be performed well. In addition, there is little decrease in insulation resistance due to use, and the life can be extended.
- each metal component may exist with forms other than the oxide mentioned above.
- the Ag component the content of only Ag was shown without converting to an oxide, but the Ag component may be contained as a single Ag, or as an Ag compound such as Ag 2 O, AgF, and AgCl. It may be.
- the first material layer 20 may have a relative dielectric constant of 1000 or more and 3000 or less. In such a case, the first material layer 20 can have a relative dielectric constant required for a BaTiO 3 -based dielectric.
- the first material layer 20 may have a dielectric loss tangent tan ⁇ of 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less. In such a case, the first material layer 20 can have a small dielectric loss.
- the second material layer 30 includes a second particle part 32 and a second grain boundary part 34 existing between the particles of the second particle part 32.
- the second particle part 32 is preferably composed of particles having a relative dielectric constant lower than that of the first particle part 22.
- the particles constituting the second particle portion 32 may be bonded to each other.
- the second particle portion 32 may be composed of composite oxide particles having a tungsten bronze structure including at least one of Ba and Ti, and preferably includes both Ba and Ti.
- the second material layer 30 has a low relative dielectric constant and a Q value (reciprocal of tan ⁇ ). Can be big.
- the composite oxide having a tungsten bronze structure is selected from the group consisting of alkaline earth metal elements, rare earth elements, Si, Sc, Y, Zn, Nb, Ta, Pb, and Bi in addition to Ba and Ti.
- the above may be included.
- the composite oxide having a tungsten bronze structure is, for example, a general formula A x BO 3 (where A is an alkaline earth metal element, rare earth element, Si, Sc, Y, Zn, Pb, Bi). 1 or more selected from the group, and B is 1 or more selected from the group consisting of Ti, Zr, Nb, Hf, and Ta.
- X satisfies 0 ⁇ x ⁇ 1. Also good.
- the structure of this complex oxide is a structure in which unit blocks of oxygen octahedron (BO 6 ) are connected together sharing a vertex and a ridge, and the B element is partially due to the presence of the A element and / or the effect of the ridge sharing. It is a non-stoichiometric oxide structure reduced to.
- the composite oxide having a tungsten bronze structure preferably contains Ba, Nd, Bi, and Ti, and specifically includes Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 and the like. In Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 , Nd and Bi may be included in any ratio, and only one of Nd and Bi may be included.
- the ratio of Nd to Bi is preferably in the range of 95: 5 to 70:30, and more preferably in the range of 90:10 to 80:20.
- the second particle part 32 may start shrinkage earlier than the first particle part 22 during firing.
- the 2nd grain boundary part 34 is not specifically limited, For example, it may be based on glass, and it is good also as at least one of what crystallized glass and glass more specifically.
- the glass Zn—BO—glass, B—Si—Ba—Al—O glass, Si—B—Na—O glass, or the like can be preferably used. Since these glasses do not easily react with BaTiO 3 , the characteristics of the first material layer 20 can be further maintained. Further, since the difference in thermal shrinkage at the time of firing and the temperature shrinkage at the time of temperature drop is small with respect to the glass used for the first grain boundary part, for example, a Zn—B—O-based glass, warpage and peeling are less likely to occur.
- the B—Si—Ba—Al—O-based glass is glass containing B, Si, Ba, Al, and O.
- it may be a glass containing a B 2 O 3 and SiO 2 and BaO and Al 2 O 3.
- This glass may contain, for example, B 2 O 3 in a range of 20% by mass to 45% by mass.
- the present invention may be those containing SiO 2 in the range of not less than 45% by weight to 20% by weight.
- the Si—B—Na—O glass is a glass containing Si, B, Na, and O.
- it may be glass including a SiO 2, B 2 O 3 and Na 2 O.
- This glass may contain, for example, SiO 2 in a range of 60% by mass to 90% by mass.
- B 2 O 3 may be used as to include in the range of 30 to 10 mass%. It may also be possible including the Na 2 O in the range of 10 wt% or more 0 mass%.
- the description of the Zn—B—O-based glass is omitted because it is the same as that described for the first grain boundary 24.
- the second grain boundary part 34 preferably contains the same kind as that of the first grain boundary part 24, for example, one based on Zn—B—O-based glass. In such a case, the difference in firing shrinkage during firing between the first material layer 20 and the second material layer 30 and the difference in thermal shrinkage during temperature reduction are less likely to cause warpage and peeling.
- the second grain boundary part 34 preferably does not contain Bi, Mg, or the like. If these are not included in the second grain boundary portion 34, it is possible to further suppress a decrease in the insulation resistance of the first material layer 20.
- the ratio of the second grain boundary portion 34 should be greater than 0% with respect to the entire second material layer 30, but is preferably 1% or more.
- the difference between the ratio of the first grain boundary part 24 in the first material layer 20 and the ratio of the second grain boundary part 34 in the second material layer 30 may be within ⁇ 5%. By doing so, the ratio of the grain boundary portion included in the first material layer 20 and the second material layer 30 can be made relatively close, so that the thermal expansion (contraction) of the first material layer 20 and the second material layer 30 is achieved. ) The difference is small, and warping and peeling are not likely to occur.
- the second material layer 30 may have a relative dielectric constant of 5 or more and 200 or less. In such a case, the second material layer 30 can have a required dielectric constant.
- the first material layer 20 when the first material layer 20 does not include the Ag particle portion 26, it is preferable that the first material layer 20 is a fired body whose contraction start during firing is slower than that of the second material layer 30.
- the slow start of shrinkage means that the shrinkage rate from 500 ° C. during firing reaches 3%, the 3% shrinkage temperature X (° C.) is high, and the shrinkage rate from 500 ° C. during firing reaches 10%. It is good also as what shows one or more of the temperature Y (degreeC) being high.
- the 3% shrinkage temperature when the first material layer 20 does not include the Ag particle portion 26 is XN (° C.) and the 3% shrinkage temperature of the second material layer 30 is X2 (° C.)
- XN-X2> 10 is preferable.
- the 10% shrinkage temperature when the first material layer 20 does not include the Ag particle portion 26 is YN (° C.) and the 10% shrinkage temperature of the second material layer 30 is Y2 (° C.)
- YN ⁇ Y2> 10 is preferably satisfied.
- the first material layer 20 does not include the Ag particle portion 26, and the first material layer 20 is a fired body whose contraction start during firing is slower than that of the second material layer 30, the first material layer 20 has the Ag particle portion.
- warping during firing tends to be large, and the significance of application of the present invention is high.
- the first material layer 20 is preferably a fired body that has a firing shrinkage behavior close to that of the second material layer 30 during firing.
- firing shrinkage behavior is close means that one or more of the difference in 3% shrinkage temperature X (° C.) during firing is small and the difference in 10% shrinkage temperature Y (° C.) during firing is small. Good.
- the absolute value of X1-X2 is
- the 10% shrinkage temperature during firing of the first material layer 20 is Y1 (° C.) and the 10% shrinkage temperature during firing of the second material layer 30 is Y2 (° C.)
- the absolute value of Y1-Y2 is
- Laminate 10, Ba part of BaTiO 3, a first grain boundaries raw material and the Ag particles feedstock comprising first particles raw material and ZnO is at least one of the compounds and BaTiO 3 containing a metal element other than Ti
- Such a laminated body 10 is good also as what is obtained by the manufacturing method of the laminated body mentioned later.
- the relative dielectric constant of the second material layer 30 is higher than the relative dielectric constant of the first material layer 20 even if the relative dielectric constant of the second particle raw material is not smaller than the relative dielectric constant of the first particle raw material. It only has to be lower.
- the laminate 10 may be included in a low temperature co-fired ceramic (LTCC) multilayer substrate.
- LTCC low temperature co-fired ceramic
- the multilayer device of the present invention may be, for example, a multilayer ceramic capacitor 50 shown in FIG.
- the multilayer ceramic capacitor 50 includes a laminate 10 including the first material layer 20 and the second material layer 30 described above, electrodes (internal electrodes) 52 and 56 that are integrated with the laminate 10 and are Ag or an Ag alloy, External electrodes 54 and 58 are provided.
- the Ag alloy preferably contains 50% by mass or more of Ag, and may contain 80% by mass or more of Ag. Examples of the metal constituting the alloy with Ag include Pd.
- the first material layer 20 does not contain CuO or has a composition with less CuO.
- the CuO content is preferably in the range of 0% by mass to 0.4% by mass. By doing so, it is possible to produce a ceramic capacitor having different material layers while suppressing element diffusion between different materials and further without damaging the Ag-based electrode.
- the multilayer device of the present invention is not limited to the multilayer ceramic capacitor 50 as long as it includes the above-described multilayer body and an electrode that is integrated with the multilayer body and is Ag or an Ag alloy.
- the laminated device may not include the external electrodes 54 and 58.
- the first grain boundary part material comprising first particles raw material and ZnO is at least one of the compounds and BaTiO 3 containing Ba, a metal element other than Ti on a part of BaTiO 3
- a second prepared powder comprising a first molded body formed from a first prepared powder containing Ag particle raw material, a second particle raw material having a relative dielectric constant smaller than that of the first particle raw material, and a second grain boundary raw material.
- This lamination baking process may include, for example, (A) a first preparation powder manufacturing process, (B) a second preparation powder manufacturing process, (C) a laminated molded body manufacturing process, and (D) a baking process. Below, each process is demonstrated.
- the first prepared powder is manufactured by mixing the first particle raw material, the first grain boundary raw material, and the Ag particle raw material.
- First particle material is at least one of the particles of the compounds and BaTiO 3 containing Ba, a metal element other than Ti on a part of BaTiO 3 (also referred to as particles of barium titanate).
- the phrase “a part of BaTiO 3 contains a metal element other than Ba or Ti” means that, for example, a metal element other than Ba or Ti or a compound (oxide or the like) containing a metal element other than Ba or Ti is solidified in BaTiO 3. It may be melted.
- metal elements other than Ba and Ti include those exemplified in the description of the first particle portion 22.
- the first particle raw material may be one kind of barium titanate particle or two or more kinds of barium titanate particles.
- the first particle raw material may be single-phase particles having constant characteristics within the particles, or may be multiphase particles having different characteristics within the particles, like the first particle portion 22.
- the multiphase particles for example, those having the above-described core-shell structure, a structure in which characteristics change continuously or intermittently from the center of the particle toward the outer periphery, and the like can be suitably used.
- the first particle raw material was obtained, for example, through a first synthetic powder production step of producing a first synthetic powder by firing a first mixed powder containing a BaTiO 3 raw material and a metal element other than Ba and Ti. It is good also as a thing (1st synthetic powder).
- an auxiliary agent containing elements other than Ba and Ti at the time of production for example, Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2).
- O 5 and Ag 2 O are less likely to cause side reactions, and furthermore, reaction diffusion between the first molded body and the second molded body during firing can be suppressed, and a laminate having good characteristics such as dielectric properties is manufactured. it can.
- the same effect can be expected if it is a compound powder containing a metal element other than Ba and Ti in a part of BaTiO 3 .
- the BaTiO 3 raw material may be BaTiO 3 itself, or BaTiO 3 obtained by firing, for example, a mixture of BaCO 3 and TiO 2 , or both of them. It may be included. Metal elements other than Ba and Ti may be included in any form, but are preferably included as oxides.
- the first mixed powder includes Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 and Nb 2 O as metal elements other than Ba and Ti in addition to the BaTiO 3 raw material.
- the first mixed powder may include Bi 2 O 3 , ZnO, and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 , and ZrO 2 .
- ZrO 2 may be supplied from, for example, ZrO 2 boulders used for pulverization when the first mixed powder is prepared by pulverization and mixing.
- the first mixed powder may include one or more selected from the group consisting of ZrO 2 , SnO 2 and Nb 2 O 5 .
- the first mixed powder may contain a BaTiO 3 raw material in a range of 80 mol% to 97 mol%, or may contain 85 mol% to 95 mol%.
- Bi 2 O 3 may be contained in the range of 1.5 mol% or more and 5 mol% or less.
- Mn 3 O 4 in the range of 0.1 mol% or more 1 mol% or less. It is also to include a range of ZrO 2 below 3 mol%.
- SnO 2 may be contained in a range of 3 mol% or less. Further, the Nb 2 O 5 or as containing a range below 3 mol%. In this way, it is possible to easily obtain the laminate 10 including the first material layer 20 having a high relative permittivity, a low dielectric loss tangent tan ⁇ , satisfying X7R characteristics, little decrease in insulation resistance due to use, and a long lifetime. it can. In the firing step, simultaneous firing with an Ag-based electrode can be performed satisfactorily.
- the firing conditions are not particularly limited, and heat treatment is performed at a firing temperature of 700 ° C. or higher and 1200 ° C. or lower for 1 hour to 24 hours in an oxidizing atmosphere such as air or oxygen atmosphere. It is good also as what to do.
- one type of synthetic powder may be produced, or two or more types of synthetic powders having different dielectric constant temperature characteristics produced under different compositions and production conditions may be produced.
- the first grain boundary part raw material may be any material that contains ZnO and can be melted in the subsequent firing step to fill the space between the particles of the first particle part 22, but is preferably glass (first glass).
- first glass A Zn—BO glass is preferable. Since the Zn—B—O-based glass hardly reacts with BaTiO 3 , the characteristics of the first material layer 20 can be further maintained. Note that since the Zn—B—O-based glass has been described above, the description thereof is omitted here.
- the first preparation powder preferably contains the first grain boundary raw material in the range of 0.5 mass% to 6.0 mass%, and in the range of 1.0 mass% to 5.0 mass%. Is more preferable.
- the Ag particle raw material only needs to contain an Ag component, and may be metallic silver, or may be a silver compound such as silver oxide, silver halide, or a salt of silver and an acid. Among these, silver compounds such as Ag 2 O, AgF, and AgCl or Ag are preferable. In particular, since the silver compound is easy to be finely pulverized compared to metallic silver, the Ag particle portion 26 can be made relatively small.
- the first preparation powder preferably contains the Ag particle raw material in a range of 0.2% by mass or more and 8.0% by mass or less, and more preferably in a range of 0.25% by mass or more and 5.0% by mass or less. .
- the first prepared powder may contain oxide particles different from these in addition to the first particle raw material, the first grain boundary raw material, and the Ag particle raw material.
- Bi 2 O 3 , ZnO, Mn 3 One or more selected from the group consisting of O 4 , ZrO 2 , SnO 2 and Nb 2 O 5 may be included.
- the first prepared powder may include Bi 2 O 3 , ZnO, Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 .
- ZrO 2 may be supplied from, for example, ZrO 2 boulders used for pulverization when the first prepared powder is prepared by pulverization and mixing.
- the first prepared powder may include one or more selected from the group consisting of ZrO 2 , SnO 2 and Nb 2 O 5 .
- the first prepared powder may contain a double oxide such as SrTiO 3 as oxide particles.
- SrTiO 3 or the like is included, the dielectric properties can be improved in a wider range, for example, the absolute value of the rate of change in capacitance can be reduced in a wider temperature range in the fired body.
- the first preparation powder includes such oxide particles, the oxide particles are partly or entirely incorporated into the first particle raw material and constitute a part of the first particle portion 22 in the subsequent firing step. It may be a thing.
- a second preparation powder is manufactured by mixing a second particle material having a relative dielectric constant smaller than that of the first particle material and a second grain boundary material.
- the second particle raw material is not particularly limited as long as it has a relative dielectric constant smaller than that of the first particle raw material, but may include a composite oxide having a tungsten bronze structure including at least one of Ba and Ti. , Ba and Ti are preferably included.
- the composite oxide having a tungsten bronze structure is selected from the group consisting of alkaline earth metal elements, rare earth elements, Si, Sc, Y, Zn, Nb, Ta, Pb, and Bi in addition to Ba and Ti. The above may be included. Examples of the composite oxide having a tungsten bronze structure include those exemplified for the second particle portion 32.
- the composite oxide having a tungsten bronze structure preferably contains Ba, Nd, Bi, and Ti, and specifically includes Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 and the like.
- the second particle raw material contains a composite oxide of Ba, Nd, Bi, and Ti, a laminate including the second material layer 30 having a low relative dielectric constant and a large Q value (reciprocal of tan ⁇ ) can be easily obtained. Obtainable.
- the second grain boundary raw material may be any material that can be melted in the subsequent firing step to fill the space between the particles of the second particle portion 32, but is preferably glass (second glass), and Zn—B— O-based glasses, B—Si—Ba—Al—O based glasses, and Si—B—Na—O based glasses are more preferable. Since these glasses hardly react with BaTiO 3 , the characteristics of the first particle raw material can be further maintained. In addition, since the difference between the thermal shrinkage during firing and the temperature decrease during firing is small with respect to the first grain boundary raw material, for example, Zn—B—O-based glass, warping and peeling are not likely to occur.
- the second grain boundary part raw material is the same kind as the first grain boundary part raw material, for example, a Zn—B—O-based glass
- the first molded body and the second molded body at the time of firing.
- the shrinkage due to firing and the difference in thermal shrinkage at high temperatures are small, and warping and peeling are less likely to occur.
- the Zn—BO—glass, B—Si—Ba—Al—O glass, and Si—B—Na—O glass the first grain boundary part 24 and the second grain boundary part 34 are used. Since it is the same as that described in FIG.
- the second prepared powder preferably contains the second grain boundary raw material in a range of 0.5 mass% to 6.0 mass%. By so doing, it is possible to easily obtain a laminate including the second material layer 30 having a low relative dielectric constant and a large Q value.
- the difference between the ratio of the first grain boundary part raw material contained in the first preparation powder and the ratio of the second grain boundary part raw material contained in the second preparation powder is ⁇ 2. It is good also as what is less than 5 mass%. By doing so, since the ratio of the grain boundary portion raw materials included in the first molded body and the second molded body can be made relatively close, the difference in thermal expansion (shrinkage) between the first molded body and the second molded body is small. In addition, since the firing shrinkage behavior is close, warping and peeling are not likely to occur.
- (C) Laminated molded body manufacturing step In this step, a laminated molded body in which a first molded body obtained by molding the first prepared powder and a second molded body obtained by molding the second prepared powder is produced.
- the method for forming the first preparation powder and the second preparation powder is not particularly limited.
- press forming, mold forming, extrusion forming, printing, doctor blade method, etc. May be formed.
- the first prepared powder and the second prepared powder may be used alone, or by adding an organic solvent such as toluene or isopropyl alcohol (IPA), an organic binder, a plasticizer, a dispersant, It may be used in the form of clay, paste, slurry or the like.
- the method for forming the first prepared powder and the method for forming the second prepared powder may be the same or different.
- the shrinkage rate from 500 ° C. during firing reaches 3%
- the 3% shrinkage temperature X (° C.) is high
- the shrinkage rate from 500 ° C. during firing reaches 10%. It is good also as what shows one or more of the temperature Y (degreeC) being high.
- the first compact does not contain Ag particle raw material and the 3% shrinkage temperature is XN (° C.) and the second compact 3% shrinkage temperature is X2 (° C.)
- XN-X2> 10 is satisfied.
- the 10% shrinkage temperature when the first molded body does not contain an Ag particle raw material is YN (° C.) and the 10% shrinkage temperature of the second molded body is Y2 (° C.)
- YN ⁇ Y2> 0 is satisfied. It is preferable that YN ⁇ Y2> 10 is satisfied.
- the shrinkage at the time of firing is slower than that of the second molded body, and when the first molded body does not include the Ag particle raw material, The warp tends to be large, and the significance of application of the present invention is high.
- (D) Firing step In this step, the laminated body is fired (sintered) to produce a laminated body.
- firing may be performed at a firing temperature of 800 ° C. or higher and 1000 ° C. or lower. This is because BaTiO 3 based materials are desired to be fired at 1000 ° C. or lower. If firing at 1000 ° C. or lower, for example, simultaneous lamination firing with a low dielectric material fired using an Ag-based electrode or glass having a low specific resistivity can be made possible. Moreover, if it is fired at 800 ° C. or higher, a laminate having a high density and excellent dielectric properties can be obtained.
- the firing time can be, for example, in the range of 1 hour to 24 hours.
- the first particle raw material is the first particle part 22, the first grain boundary raw material is the first grain boundary part 24, the Ag particle raw material is the Ag particle part 26, and the second particle raw material is the second particle part. 32. It is considered that the second grain boundary part raw material becomes the second grain boundary part 34.
- the first particle part 22, the first grain boundary part 24, the Ag particle part 26, the second particle part 32, and the second grain boundary part 34 take in components other than each raw material, It may be obtained by discharging a part.
- the first grain boundary part material comprising first particles raw material and ZnO is at least one of the compounds and BaTiO 3 containing Ba, a metal element other than Ti on a part of BaTiO 3
- a second prepared powder obtained by mixing a first molded body obtained by molding a first prepared powder containing Ag particle raw material and a second particle raw material having a relative dielectric constant smaller than that of the first particle raw material.
- This laminated baking process includes, for example, (A) a first preparation powder manufacturing process, (B) a second preparation powder manufacturing process, (C ′) a laminated molded body manufacturing process with electrodes, and (D) a baking process. Also good.
- processes other than the (C ′) electrode laminate manufacturing process are the same as the method for manufacturing the laminate, the (C ′) electrode laminate manufacturing process will be described below, and the other processes will be described. Description is omitted.
- Electrode laminate manufacturing process In this step, a first molded body obtained by molding the first prepared powder, a second molded body obtained by molding the second prepared powder, and an electrode material containing Ag or an Ag alloy, A laminated molded body in which is laminated is manufactured. What is necessary is just to shape
- the Ag alloy include those described above.
- the electrode material may be formed by applying powder of Ag or Ag alloy to a paste or slurry by adding an organic solvent or the like, and applying and molding the powder.
- the laminated body, laminated device, and manufacturing method thereof according to this embodiment can provide a novel laminated body and laminated device that can suppress warpage.
- the shrinkage timing of the first material layer 20 and the second material layer 30 in the firing process approaches, and the firing shrinkage behavior. It is considered that the occurrence of warpage due to the deviation of the distance can be suppressed.
- the difference in thermal expansion (shrinkage) is small, and the occurrence of warpage and peeling associated therewith can be further suppressed. It is done.
- the insulation degradation of the first material layer 20 can be suppressed by the presence of the first grain boundary portion 24 containing ZnO between the first particle portions 22.
- the laminated body 10 when a laminated body device is manufactured by simultaneously firing a laminated body and an Ag-based electrode, the laminated body 10 needs to be fired at a low temperature such as 1000 ° C. or lower. Since it is possible, it can be manufactured relatively easily. Further, for example, since the laminate 10 can be fired at a low temperature without adding CuO or the like, even when cofired with an Ag-based electrode or the like, the electrode is divided by CuO or the effective area of the electrode is reduced. It won't get smaller.
- the shrinkage temperature difference between the first molded body and the second molded body in the firing process is reduced by using the first molded body containing the Ag particle raw material, and warpage is reduced. It is thought that generation can be suppressed.
- the 1st molded object and the 2nd molded object contain the same kind of grain boundary part raw material, the thermal contraction at the time of baking shrinkage at the time of baking and the temperature fall is small, and the curvature and peeling accompanying it are hard to produce. .
- the electrode is divided by the CuO component and the effective area of the electrode is reduced. Can be suppressed.
- Experimental examples 1 to 20, 22, 23, 25, and 26 correspond to examples of the present invention, and experimental examples 21, 24, 27, and 28 correspond to comparative examples.
- IPA isopropyl alcohol
- zirconia cobblestone was used for wet pulverization and mixing for 48 hours in a ball mill, and the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve.
- the mixed powder was pre-synthesized in the atmosphere at 920 ° C. for 2 hours to obtain a first synthetic powder.
- This second synthetic powder and the same Zn—B—O-based glass added to the first synthetic powder are mixed at a mass ratio of 97.5: 2.5, IPA is further added, and zirconia cobblestone is used. Then, after wet pulverization and mixing in a ball mill for 24 hours, the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve to obtain a second prepared powder.
- FIG. 2 shows a schematic cross-sectional view of such a multilayer ceramic capacitor.
- the multilayer ceramic capacitor 50 includes a first material layer 20, a second material layer 30, an internal electrode 52 and an external electrode 54 on the first material layer side, and an internal electrode 56 and an external electrode 58 on the second material layer side. ing.
- the internal electrodes 52 and 54 correspond to electrodes in the laminated device and the manufacturing method thereof according to the present invention.
- a fired body for chemical analysis was separately prepared.
- the above-mentioned first prepared powder is uniaxial press-molded at 100 kg / cm 2 at ⁇ 30 mm, and further cooled at a pressure such that the molding density of each sample is in the range of 51 to 56%, which is almost the same as the green sheet molding density. Isostatic pressing was performed.
- This molded body was fired in the atmosphere at 920 ° C. for 2 hours to obtain a sample of a fired body for chemical analysis.
- Each fired body for chemical analysis was pulverized, dissolved in an acid solution, and each component was quantified by ICP emission spectroscopy.
- the analysis results are shown in Table 3.
- the Ag component was converted not as an oxide but as metal Ag. Further, all the fired bodies contained about 1 wt% of ZrO 2 , which was considered to be caused by ZrO 2 boulders. B 2 O 3 was expressed as 0 wt% because it was below the detection limit.
- the amount of Ag 2 O in the first prepared powder is preferably 0.4 to 8.0% by mass.
- the effect of lowering the shrinkage temperature is saturated at about 5.0% by mass.
- the present invention can be used in the field of electronic equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子部と、前記第1粒子部の粒子間に存在しZnOを含む第1粒界部と、Ag粒子部と、を含み、第1の誘電率を有する第1材料層と、
第2粒子部と、前記第2粒子部の粒子間に存在する第2粒界部と、を含み、前記第1の誘電率よりも低い第2の誘電率を有する第2材料層と、
を備えたものである。
上述した積層体と、
前記積層体と一体化されAg又はAg合金である電極と、
を備えたものである。
BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼成する、積層焼成工程、
を含むものである。
BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを混合した第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼成する、積層焼成工程、
を含むものである。
以下では、本発明の積層体の一例について、図面を用いて説明する。図1は、積層体10の概略の断面図である。積層体10は、第1の誘電率を有する第1材料層20と、第1の誘電率よりも低い第2の誘電率を有する第2材料層30とを備えている。
次に、本発明の積層デバイスの一例について説明する。本発明の積層デバイスは、例えば、図2に示す積層セラミックスコンデンサ50としてもよい。積層セラミックスコンデンサ50は、上述した第1材料層20及び第2材料層30を備えた積層体10と、積層体10と一体化されAg又はAg合金である電極(内部電極)52,56と、外部電極54,58とを備えている。Ag合金は、Agを50質量%以上含むものであることが好ましく、Agを80質量%以上含むものとしてもよい。Agと合金を構成する金属としては、例えば、Pdなどが挙げられる。
次に、本発明の積層体の製造方法の一例について説明する。本発明の積層体の製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼成する、積層焼成工程、を含む。
この工程では、第1粒子原料と第1粒界部原料とAg粒子原料とを混合して第1調製粉を製造する。
この工程では、第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを混合して第2調製粉を製造する。
この工程では、第1調製粉を成形した第1成形体と、第2調製粉を成形した第2成形体と、を積層した積層成形体を製造する。
この工程では、上述した積層成形体を焼成(焼結)して積層体を製造する。焼成工程では、800℃以上1000℃以下の焼成温度で焼成するものとしてもよい。BaTiO3系の材料は、1000℃以下で焼成することが望まれているからである。1000℃以下での焼成であれば、例えば、比抵抗率の低いAg系電極やガラスを用いて焼成される低誘電材料と同時積層焼成を可能とすることができる。また、800℃以上で焼成すれば、密度が高く、誘電特性に優れた積層体が得られるからである。焼成時間は、例えば、1時間以上24時間以下の範囲内とすることができる。なお、この焼成工程では、第1粒子原料が第1粒子部22、第1粒界部原料が第1粒界部24、Ag粒子原料がAg粒子部26、第2粒子原料が第2粒子部32、第2粒界部原料が第2粒界部34、となると考えられる。この際、例えば、第1粒子部22、第1粒界部24、Ag粒子部26、第2粒子部32、第2粒界部34は、各原料以外の成分を取り込んだり、各原料の一部を放出したりして得られるものとしてもよい。
次に、本発明の積層デバイスの製造方法の一例について説明する。本発明の積層デバイスの製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを混合した第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼成する、積層焼成工程、を含む。
この工程では、第1調製粉を成形した第1成形体と、第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した積層成形体を製造する。第1成形体や第2成形体については、上述した積層成形体製造工程と同様に成形すればよい。Ag合金としては、上述したものが挙げられる。電極材料は、例えば、AgやAg合金の粉末を有機溶剤などを加えてペースト状やスラリー状とし、塗布して成形してもよい。
(第1調製粉の作製)
表1に示す各組成となるように、BaTiO3、Bi2O3、ZnO、Mn3O4、ZrO2、SnO2、Nb2O5の各原料粉末を秤量した。なお、チタン酸バリウムについては、純度99.9%、平均粒径0.5μmの市販品を使用した。他の原料粉末についても、純度99.9%以上の市販品を用いた。さらに、イソプロピロアルコール(IPA)を適量加え、ジルコニア玉石を用いて、ボールミルにて48時間湿式粉砕混合し、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒した。その混合粉を、大気中で920℃で2時間事前合成し、第1合成粉を得た。
Ba4(Nd,Bi)9.3Ti18O54の組成となるように(BaOが18質量%、Nd2O3が34質量%、Bi2O3が10質量%、TiO2が39質量%となるように)、BaO、Nd2O3、Bi2O3、TiO2の各原料粉末を秤量した。なお、各原料は純度99.9%以上の市販品を用いた。さらに、IPAを適量加え、ジルコニア玉石を用いて、ボールミルにて48時間湿式粉砕混合し、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒した。その混合粉を、大気中で1100℃で2時間事前合成し、第2合成粉を得た。
前述の第1調製粉及び第2調製粉に、有機バインダーや可塑剤、分散剤、トルエン,IPAなどの有機溶剤を適量加えて、ボールミルで12時間湿式混合した後、ドクターブレード法によって、厚み14μmのグリーンシートを得た。このグリーンシートに内部電極パターンとして、Ag又はAg/Pd(85wt%/15wt%)のペーストを用いて、厚み4μmとなるように印刷した。
第1調製粉のグリーンシート(第1成形体)とAg電極層とを交互に13層積み重ね、さらに第2調製粉のグリーンシート(第2成形体)とAg電極層とを交互に3層積み重ねて、熱圧着し、圧着体を得た。その圧着体にビア孔を形成し、そのビア孔に第1材料側の内部電極および第2材料側の内部電極とそれぞれ独立に導通を取れるように外部接続電極を形成した。この圧着体から約5mm角の成形体を切り出し、大気中、920℃で2時間焼成を行い、焼結体(積層焼成体)を得た。焼成後の各積層セラミックコンデンサのサイズは約4mm角、厚み0.4mmであり、第1材料及び第2材料の一層の厚みは12μmであり、Ag電極の厚みは2.5μmであった。図2に、こうした積層セラミッコンデンサの概略の断面図を示す。積層セラミックコンデンサ50は、第1材料層20と、第2材料層30と、第1材料層側の内部電極52及び外部電極54と、第2材料層側の内部電極56及び外部電極58を備えている。なお、内部電極52,54が本発明の積層デバイス及びその製造方法における電極に相当する。
焼成した積層コンデンサのセラミック部のみの化学組成を定量するのは困難であるため、化学分析用の焼成体を別途作製した。前述の第1調製粉をφ30mmで100kg/cm2にて一軸プレス成形し、さらに各サンプルの成形密度がグリーンシートの成形密度とほぼ同等な51~56%の範囲内になるような圧力で冷間等方加圧を行った。この成形体を大気中、920℃、2時間で焼成を行い、化学分析用焼成体のサンプルを得た。化学分析用の各焼成体を粉砕し、酸溶液で溶解させ、ICP発光分光分析法により、各成分を定量した。分析結果を表3に示す。Ag成分は、酸化物でなく、金属Agとして換算した。また、すべての焼成体に約1wt%のZrO2を含むが、これはZrO2玉石に起因するものと考えられた。B2O3については、検出限界以下のため、0wt%と表記した。
第1調製粉を用いたグリーンシート(第1成形体)と、第2調製粉を用いたグリーンシートと(第2成形体)を、それぞれ、10mm×100mmで切り出し、これを巻き取ることで、幅1~2mm、長さ10mmの筒状サンプルを得た。これを長さ8mmに切り、大気中、室温~920℃まで5℃/分の昇温速度で、98mN荷重の条件でTMA法(RIGAKU製、Thermo plus TMA8310にて測定)にて焼成収縮曲線(サンプル長さvs温度)を測定した。図3に、実験例7(Ag粒子原料を含む)及び実験例24(Ag粒子原料を含まない)における、第1成形体及び第2成形体の焼成収縮曲線を示す。得られた焼成収縮曲線について、500℃到達時点でのサンプル長さを基準として、収縮率(%)を計算し、収縮率が3%に達した3%収縮温度と、収縮温度2を収縮率が10%に達した10%収縮温度を求め、第2材料のそれらとの比較を行った。結果を表4に示す。
反りの評価は、5mm角、厚み0.5mmに切り出した圧着体を、大気下、920℃、2時間で焼成し、焼成後の4mm角、厚み0.4mmの積層焼成体の凸部を上方向にして水平面に置き、真横から観察した際に「サンプル上部の凸頂点が水平面から離れている距離」から、「サンプル厚み」を引いた長さを「反り量」として、反り量が50μm以下の場合は「A」、50μmより大きく100μm以下の場合は「B」、100μmより大きい場合は「F」とした。結果を表4に示した。
各積層セラミックコンデンサのサンプルを恒温層に入れ、25℃で保持した後に、LCRメーターにて1kHz、1Vrmsにおける静電容量、およびtanδを測定した。容量、電極寸法、および誘電層の厚みから比誘電率を算出した。また、500V直流電源を用いて、比抵抗を測定した。tanδは、0.02以下を「A」、0.02より大きいものを「B」とした。比抵抗は、1013Ω・cm以上を「A」、1011Ω・cm以上1013Ω・cm未満を「B」、1011Ω・cm未満を「C」とした。結果を表4に示す。
焼成後のコンデンサを樹脂埋め後、研磨にて観察面を削りだし、走査型電子顕微鏡(SEM)によって微構造を観察した。また、EDX分析により、組成分析を行った。実験例7のSEM写真及びマッピングの結果を図4に示す。
各積層セラミックコンデンサのサンプルを恒温層に入れ、25℃で保持した後に、LCRメーターにて1kHz、1Vrmsにおける静電容量、およびQ値(tanδの逆数)を測定した。容量、電極寸法、および誘電層の厚みから比誘電率を算出した。
第1混合粉の組成が同じ実験例1~5,21~23では、第1調製粉がAg2Oを含む実験例1~5,22,23が、Ag2Oを含まない実験例21に比べ収縮温度が20~25℃低下し、第2材料との収縮温度差が10℃以内となり、積層体の反りが100μm以下となり、反りをより抑制できることがわかった。このうち、第1調製粉中のAg2O量が10質量%以上の実験例22,23では、比抵抗値が低下し、tanδが悪化した。これは、焼成体内にAg粒子部が多量に生成したためと推察された。このことから、第1調製粉中のAg2Oの量は、0.4~8.0質量%が好ましいと考えられた。なお、収縮温度の低温化の効果は5.0質量%程度で飽和することが確認された。第1混合粉のBaTiO3、Bi2O3、ZnO組成を変化させた実験例6~9,24~26においても、上記と同様の傾向となった。
Claims (27)
- BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子部と、前記第1粒子部の粒子間に存在しZnOを含む第1粒界部と、Ag粒子部と、を含み、第1の誘電率を有する第1材料層と、
第2粒子部と、前記第2粒子部の粒子間に存在する第2粒界部と、を含み、前記第1の誘電率よりも低い第2の誘電率を有する第2材料層と、
を備えた、積層体。 - 前記第1材料層は、焼成時における500℃からの収縮率が3%に達する3%収縮温度がX1(℃)、焼成時における500℃からの収縮率が10%に達する10%収縮温度がY1(℃)、の焼成体であり、前記第2材料層は、焼成時における500℃からの収縮率が3%に達する3%収縮温度がX2(℃)、焼成時における500℃からの収縮率が10%に達する10%収縮温度がY2(℃)、の焼成体であり、|X1-X2|<10、|Y1-Y2|<10のうちの1以上を満たす、請求項1に記載の積層体。
- 前記第1材料層は、前記Ag粒子部を含まない場合に、焼成時における収縮の開始が前記第2材料層よりも遅い焼成体である、請求項1又は2に記載の積層体。
- 前記Ag粒子部は、Ag2O、AgF、AgClのいずれか一種以上が熱分解されて生成したものである、請求項1~3のいずれか1項に記載の積層体。
- 前記第1材料層は、Bi2O3、ZnO、Mn3O4、ZrO2、SnO2、Nb2O5及びAg2Oからなる群より選ばれる1以上の酸化物粒子をさらに含む、請求項1~4のいずれか1項に記載の積層体。
- BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼成して得られた、請求項1~5のいずれか1項に記載の積層体。
- 前記第1材料層は、BaTiO3を70質量%以上97質量%以下、Bi2O3を3.0質量%以上10質量%以下、ZnOを0.5質量%以上5.0質量%以下、Mn3O4を0.01質量%以上1.0質量%以下、ZrO2を0.5質量%以上3.0質量%以下、Agを0.2質量%以上8.0質量%以下の範囲で含む、請求項1~6のいずれか1項に記載の積層体。
- 前記第1材料層は、比誘電率が1000以上3000以下である、請求項1~7のいずれか1項に記載の積層体。
- 前記第1材料層は、誘電正接tanδが0.05以下である、請求項1~8のいずれか1項に記載の積層体。
- 前記第2粒子部は、Ba及びTiのうちの少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含む、請求項1~9のいずれか1項に記載の積層体。
- 前記第2材料層は、比誘電率が5以上200以下である、請求項1~10のいずれか1項に記載の積層体。
- 請求項1~11のいずれか1項に記載の積層体と、
前記積層体と一体化されAg又はAg合金である電極と、
を備えた積層デバイス。 - BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼成する、積層焼成工程、
を含む、積層体の製造方法。 - 前記第1成形体の、焼成時における500℃からの収縮率が3%に達する3%収縮温度をX1(℃)、焼成時における500℃からの収縮率が10%に達する10%収縮温度をY1(℃)、前記第2成形体の、焼成時における500℃からの収縮率が3%に達する3%収縮温度をX2(℃)、焼成時における500℃からの収縮率が10%に達する10%収縮温度をY2(℃)、とすると、|X1-X2|<10、|Y1-Y2|<10のうちの1以上を満たす前記積層成形体を焼成する、請求項13に記載の積層体の製造方法。
- 前記第1成形体は、前記Ag粒子原料を含まない場合に、焼成時における収縮の開始が前記第2成形体よりも遅い、請求項13又は14に記載の積層体の製造方法。
- 前記第1粒子原料は、BaTiO3原料と、Ba、Ti以外の金属元素とを含む第1混合粉を焼成したものである、請求項13~15のいずれか1項に記載の積層体の製造方法。
- 前記第1混合粉は、Bi2O3、ZnO、Mn3O4、ZrO2、SnO2及びNb2O5からなる群より選ばれる1以上を含む、請求項16に記載の積層体の製造方法。
- 前記第1混合粉は、BaTiO3を80mol%以上97mol%以下、Bi2O3を1.5mol%以上5mol%以下、ZnOを1.5mol%以上5mol%以下、Mn3O4を0.1mol%以上1.0mol%以下の範囲で含む、請求項16又は17に記載の積層体の製造方法。
- 前記第1調製粉は、前記第1粒界部原料を0.5質量%以上6.0質量%以下の範囲で含み、前記Ag粒子原料を0.2質量%以上8.0質量%以下の範囲で含む、請求項13~18のいずれか1項に記載の積層体の製造方法。
- 前記第2調製粉は、前記第2粒界部原料を0.5質量%以上6.0質量%以下の範囲で含む、請求項13~19のいずれか1項に記載の積層体の製造方法。
- 前記第2粒子原料は、Ba及びTiのうちの少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含む、請求項13~20のいずれか1項に記載の積層体の製造方法。
- 前記第1粒界部原料は、Zn-B-O系のガラスである、請求項13~21のいずれか1項に記載の積層体の製造方法。
- 前記第2粒界部原料は、ガラスである、請求項13~22のいずれか1項に記載の積層体の製造方法。
- 前記Ag粒子原料は、Ag2O、Ag、AgF、AgClのいずれか一種以上である、請求項13~23のいずれか1項に記載の積層体の製造方法。
- 前記第1調製粉に含まれる前記第1粒界部原料の割合と前記第2調製粉に含まれる前記第2粒界部原料の割合との差が±2.5質量%以内である、請求項13~24のいずれか1項に記載の積層体の製造方法。
- 前記積層焼成工程では、前記積層成形体を800℃以上1000℃以下の焼成温度で焼成する、請求項13~25のいずれか1項に記載の積層体の製造方法。
- BaTiO3の一部にBa、Ti以外の金属元素を含む化合物及びBaTiO3のうちの少なくとも一方である第1粒子原料とZnOを含む第1粒界部原料とAg粒子原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを混合した第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼成する、積層焼成工程、
を含む、積層デバイスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015560987A JP5951911B2 (ja) | 2014-02-04 | 2015-02-03 | 積層体、積層デバイス及びそれらの製造方法 |
CN201580004696.8A CN105916682B (zh) | 2014-02-04 | 2015-02-03 | 层叠体、层叠器件及它们的制造方法 |
KR1020167020734A KR101948997B1 (ko) | 2014-02-04 | 2015-02-03 | 적층체, 적층 디바이스 및 이들의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461935422P | 2014-02-04 | 2014-02-04 | |
US61/935422 | 2014-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015119114A1 true WO2015119114A1 (ja) | 2015-08-13 |
Family
ID=53777918
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052984 WO2015119113A1 (ja) | 2014-02-04 | 2015-02-03 | 積層体、積層デバイス及びそれらの製造方法 |
PCT/JP2015/052985 WO2015119114A1 (ja) | 2014-02-04 | 2015-02-03 | 積層体、積層デバイス及びそれらの製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052984 WO2015119113A1 (ja) | 2014-02-04 | 2015-02-03 | 積層体、積層デバイス及びそれらの製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP5951911B2 (ja) |
KR (2) | KR101948997B1 (ja) |
CN (2) | CN105916682B (ja) |
WO (2) | WO2015119113A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020532144A (ja) * | 2017-08-25 | 2020-11-05 | サビック グローバル テクノロジーズ ビー.ブイ. | ポリマーおよびセラミックの冷間焼結材料を含む基板 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107505516B (zh) * | 2017-07-13 | 2020-09-29 | 苏州浪潮智能科技有限公司 | 一种模拟测试cpu散热功率装置 |
CN115321954B (zh) * | 2022-08-09 | 2023-07-07 | 广东环波新材料有限责任公司 | 陶瓷基板的制备方法以及低温共烧陶瓷基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212119A (ja) * | 1982-06-03 | 1983-12-09 | 松下電器産業株式会社 | 複合誘電体 |
JPH0335515A (ja) * | 1989-07-02 | 1991-02-15 | Tdk Corp | 複合コンデンサの構造 |
JPH11278926A (ja) * | 1998-03-30 | 1999-10-12 | Kyocera Corp | 誘電体磁器 |
JP2009132606A (ja) * | 2007-11-29 | 2009-06-18 | Samsung Electro Mech Co Ltd | 誘電体組成物及びこれを用いた積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板 |
JP2010235327A (ja) * | 2009-03-30 | 2010-10-21 | Tdk Corp | 誘電体磁器組成物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983004339A1 (en) * | 1982-05-28 | 1983-12-08 | Matsushita Electric Industrial Co., Ltd. | Thin film electric field light-emitting device |
JP2652229B2 (ja) | 1988-12-29 | 1997-09-10 | 株式会社住友金属エレクトロデバイス | 積層回路セラミック基板 |
JPH09142026A (ja) | 1995-09-21 | 1997-06-03 | Ricoh Co Ltd | 感熱記録材料 |
CN1212443A (zh) * | 1997-09-19 | 1999-03-31 | 广东肇庆风华电子工程开发有限公司 | 高介高性能中温烧结片式多层瓷介电容器瓷料 |
DE19841487C2 (de) * | 1998-09-10 | 2002-03-14 | Epcos Ag | Reduktionsstabile Keramikmasse und ihre Verwendung |
JP2004063812A (ja) | 2002-07-29 | 2004-02-26 | Kyocera Corp | 多層配線基板の製法 |
US20060163768A1 (en) | 2005-01-26 | 2006-07-27 | Needes Christopher R | Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof |
JP4840935B2 (ja) * | 2007-09-28 | 2011-12-21 | 双信電機株式会社 | セラミック多層基板 |
WO2009061627A1 (en) * | 2007-11-06 | 2009-05-14 | Ferro Corporation | Lead and cadmium free, low temperature fired x7r dielectric ceramic composition and method of making |
CN101613200B (zh) * | 2009-07-21 | 2013-03-13 | 西安交通大学 | 一种低温烧结微波介质陶瓷材料及其制备方法 |
-
2015
- 2015-02-03 CN CN201580004696.8A patent/CN105916682B/zh active Active
- 2015-02-03 WO PCT/JP2015/052984 patent/WO2015119113A1/ja active Application Filing
- 2015-02-03 CN CN201580004697.2A patent/CN105934420B/zh active Active
- 2015-02-03 WO PCT/JP2015/052985 patent/WO2015119114A1/ja active Application Filing
- 2015-02-03 JP JP2015560987A patent/JP5951911B2/ja active Active
- 2015-02-03 KR KR1020167020734A patent/KR101948997B1/ko active IP Right Grant
- 2015-02-03 KR KR1020167020629A patent/KR101884104B1/ko active IP Right Grant
- 2015-02-03 JP JP2015560986A patent/JP5951910B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212119A (ja) * | 1982-06-03 | 1983-12-09 | 松下電器産業株式会社 | 複合誘電体 |
JPH0335515A (ja) * | 1989-07-02 | 1991-02-15 | Tdk Corp | 複合コンデンサの構造 |
JPH11278926A (ja) * | 1998-03-30 | 1999-10-12 | Kyocera Corp | 誘電体磁器 |
JP2009132606A (ja) * | 2007-11-29 | 2009-06-18 | Samsung Electro Mech Co Ltd | 誘電体組成物及びこれを用いた積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板 |
JP2010235327A (ja) * | 2009-03-30 | 2010-10-21 | Tdk Corp | 誘電体磁器組成物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020532144A (ja) * | 2017-08-25 | 2020-11-05 | サビック グローバル テクノロジーズ ビー.ブイ. | ポリマーおよびセラミックの冷間焼結材料を含む基板 |
Also Published As
Publication number | Publication date |
---|---|
WO2015119113A1 (ja) | 2015-08-13 |
KR20160105468A (ko) | 2016-09-06 |
JP5951910B2 (ja) | 2016-07-13 |
CN105934420A (zh) | 2016-09-07 |
JPWO2015119113A1 (ja) | 2017-03-23 |
KR101948997B1 (ko) | 2019-02-15 |
CN105916682B (zh) | 2018-06-22 |
JP5951911B2 (ja) | 2016-07-13 |
KR20160103113A (ko) | 2016-08-31 |
KR101884104B1 (ko) | 2018-07-31 |
CN105916682A (zh) | 2016-08-31 |
JPWO2015119114A1 (ja) | 2017-03-23 |
CN105934420B (zh) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI501273B (zh) | Laminated ceramic capacitors | |
JP5294441B2 (ja) | 電子部品 | |
JP5078307B2 (ja) | 誘電体磁器およびその製法、ならびにコンデンサ | |
US20060116273A1 (en) | Dielectric ceramic composition and electronic device | |
JP2007031273A (ja) | 低温焼成用の誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ | |
KR101469128B1 (ko) | 유전체 자기 조성물 및 온도 보상용 적층 콘덴서 | |
TWI466845B (zh) | Laminated ceramic capacitors | |
JP5548924B2 (ja) | 誘電体磁器組成物および電子部品 | |
KR20130122781A (ko) | 유전체 세라믹 및 적층 세라믹 콘덴서 | |
US8404607B2 (en) | Dielectric ceramic and laminated ceramic capacitor | |
JP2017114751A (ja) | 誘電体磁器組成物およびそれを含むセラミック電子部品 | |
JP7357732B2 (ja) | セラミックコンデンサ | |
WO2012043208A1 (ja) | 誘電体セラミック、積層セラミック電子部品、およびこれらの製造方法 | |
JP5951911B2 (ja) | 積層体、積層デバイス及びそれらの製造方法 | |
US8395882B2 (en) | Dielectric ceramic and multilayer ceramic capacitor | |
JP4775583B2 (ja) | 誘電体粒子集合体、それを用いた低温焼結誘電体磁器組成物及びそれを用いて製造される低温焼結誘電体磁器 | |
JP2010208905A (ja) | 誘電体セラミックの製造方法と誘電体セラミック、及び積層セラミックコンデンサの製造方法と積層セラミックコンデンサ | |
JP2007250728A (ja) | セラミック積層デバイスおよびその製造方法 | |
JP4792759B2 (ja) | 耐還元性誘電体磁器組成物、電子部品および積層セラミックコンデンサ | |
JP2009096671A (ja) | 誘電体セラミックス及び積層セラミックコンデンサ | |
JP6539589B2 (ja) | 誘電体磁器組成物、誘電体デバイス及びそれらの製造方法 | |
JP5164687B2 (ja) | 誘電体磁器およびそれを用いた積層セラミックコンデンサ | |
JP2021141131A (ja) | セラミック電子部品の製造方法、および金属導電ペースト | |
JP2006111468A (ja) | 誘電体磁器組成物の製造方法、電子部品及び積層セラミックコンデンサ | |
JP2016035982A (ja) | 積層セラミックコンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746347 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015560987 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167020734 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15746347 Country of ref document: EP Kind code of ref document: A1 |