WO2015119113A1 - 積層体、積層デバイス及びそれらの製造方法 - Google Patents

積層体、積層デバイス及びそれらの製造方法 Download PDF

Info

Publication number
WO2015119113A1
WO2015119113A1 PCT/JP2015/052984 JP2015052984W WO2015119113A1 WO 2015119113 A1 WO2015119113 A1 WO 2015119113A1 JP 2015052984 W JP2015052984 W JP 2015052984W WO 2015119113 A1 WO2015119113 A1 WO 2015119113A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
mass
grain boundary
particle
laminated
Prior art date
Application number
PCT/JP2015/052984
Other languages
English (en)
French (fr)
Inventor
渡辺 篤
援 八木
義政 小林
川崎 真司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015560986A priority Critical patent/JP5951910B2/ja
Priority to CN201580004697.2A priority patent/CN105934420B/zh
Priority to KR1020167020629A priority patent/KR101884104B1/ko
Publication of WO2015119113A1 publication Critical patent/WO2015119113A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a laminated body, a laminated device, and a manufacturing method thereof.
  • Patent Documents 1 to 3 various laminates have been proposed (see Patent Documents 1 to 3).
  • Patent Document 2 a laminate including a dielectric material containing BaTiO 3 as a main component, CuBi 2 O 4 and ZnO—B 2 O 3 —SiO 2 glass as a minor component, and fired at 600 ° C. to 950 ° C. or the like.
  • a ceramic capacitor built-in type low temperature co-fired ceramic substrate has been proposed.
  • Patent Document 3 a perovskite-based high dielectric constant layer containing lead oxide and a low dielectric constant layer having a dielectric constant of 15 or less are integrally co-fired at a low temperature of 800 to 1100 ° C.
  • Patent Documents 1 and 2 auxiliary components such as CuO of the high dielectric constant layer may diffuse during co-firing, which may deteriorate the characteristics of each layer. Moreover, in patent document 3, the dielectric constant of a high dielectric constant layer may fall because lead oxide and glass reacted. For this reason, the novel laminated body and laminated
  • a first grain raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary part containing ZnO.
  • a first molded body obtained by molding a first prepared powder containing a raw material, a second prepared powder containing a second particle raw material having a relative dielectric constant smaller than that of the first particle raw material, and a second grain boundary raw material. It has been found that when a laminated molded body obtained by laminating two molded bodies is sintered, a new laminated body and a laminated device can be obtained, and the present invention has been completed.
  • the laminate of the present invention is A first particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and a first grain boundary part which is present between the particles of the first particle part and contains ZnO.
  • the laminated device of the present invention is The laminate described above; An electrode that is integrated with the laminate and is Ag or an Ag alloy; It is equipped with.
  • the method for producing the laminate of the present invention includes: A first molded body obtained by molding a first prepared powder containing a first particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary raw material containing ZnO; Laminated sintering which sinters a laminated molded body obtained by laminating a second molded body obtained by molding a second prepared powder containing a second particle raw material having a relative dielectric constant smaller than that of one particle raw material and a second grain boundary raw material. Process, Is included.
  • the manufacturing method of the laminated device of the present invention includes: A first molded body obtained by molding a first prepared powder containing a first particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary raw material containing ZnO; A second molded body obtained by molding a second prepared powder containing a second particle raw material having a relative dielectric constant smaller than that of one particle raw material and a second grain boundary raw material, and an electrode material containing Ag or an Ag alloy were laminated. Laminated sintering process for sintering laminated molded body with electrodes, Is included.
  • a novel laminate and laminated device can be provided.
  • a metal element (auxiliary component) other than Ba and Ti is included in a part of BaTiO 3 as the first particle raw material, the remaining auxiliary component is reduced, and an element between different materials, etc. It is thought that diffusion can be suppressed.
  • a first particle material moistened with auxiliary components BaTiO 3, for use with nobler first grain boundary portion material and BaTiO 3, a, BaTiO 3 and auxiliaries component and a first grain boundary part material It is thought that this reaction can be suppressed.
  • FIG. 2 is a schematic cross-sectional view of a laminated body 10.
  • 1 is a schematic cross-sectional view of a multilayer ceramic capacitor 50.
  • FIG. 4 is an SEM photograph of the high dielectric material of Experimental Example 3.
  • 4 is an SEM photograph of the high dielectric material of Experimental Example 42.
  • the laminate of the present invention includes a first material layer having a first dielectric constant and a second material layer having a second dielectric constant lower than the first dielectric constant.
  • the first material layer includes a first particle part which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3, a first grain boundary part which exists between the particles of the first particle part and contains ZnO, including.
  • the first particle part is composed of particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 , and the particles may be bonded to each other.
  • the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are greater than 0 and less than 1) (It is a numerical value).
  • a part of BaTiO 3 contains a metal element other than Ba and Ti means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved.
  • metal elements other than Ba and Ti include alkaline earth metal elements, rare earth elements, Sb, Ni, Cu, Cr, Fe, Co, Mn, Ta, Nb, W, Mo, Zn, Bi, Zr, Ag, and Sn. Or one or more elements selected from the group consisting of Sr. Among these, one or more elements selected from the group consisting of Bi, Zn, Mn, Zr, Nb, Sn, and Sr may be used.
  • Bi, Zn, and Mn may be used, and Bi, Zn, Mn, and Zr may be used. It is good. Metal elements other than Ba and Ti are contained as oxides such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. Also good. Zr may be inevitably included in the manufacturing process.
  • the first particle part may have one kind of compound particle containing a metal element other than Ba or Ti in a part of BaTiO 3 , or may have two or more kinds. Further, particles of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 may be single-phase particles having a constant composition and characteristics within the particles, or a plurality of particles having different compositions and characteristics within the particles. Multiphase particles having phases may be used.
  • Examples of multiphase particles include a core-shell structure in which the composition and properties differ between the part that becomes the core of the particle and the part that becomes the shell formed so as to cover the core, and the center part of the particle And a structure in which the composition and characteristics change continuously or intermittently from the outer periphery to the outer periphery.
  • a part of the phase may not be a phase containing a metal element other than Ba and Ti in a part of BaTiO 3 .
  • the first particle portion has two or more kinds of different compositions and characteristics (especially temperature characteristics of dielectric constant).
  • the phase comprises two or more phases, for example, a BaTiO 3 phase consisting of BaTiO 3, Ba in BaTiO 3, oxides of metal elements other than Ti, for example, Bi 2 O 3, ZnO, Including one or more selected from the group consisting of Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 in solid solution and / or substituted phase (solid solution / substituted phase).
  • a BaTiO 3 phase consisting of BaTiO 3, Ba in BaTiO 3, oxides of metal elements other than Ti, for example, Bi 2 O 3, ZnO, Including one or more selected from the group consisting of Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 in solid solution and / or substituted phase (solid solution / substituted phase).
  • a solid solution / substitution phase having a different solid solution / substitution amount such as Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, SrTiO 3 , or the BaTiO 3 phase It may replace and may be included.
  • This solid solution / substitution phase may include Bi 2 O 3 , ZnO and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 .
  • This solid solution / substitution phase may contain, for example, one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , SnO 2 .
  • the solid solution / substitution phase does not contain CuO, and even when it contains CuO, it is preferable that it is a trace amount. Note that the phase characteristics can be changed by adjusting the phase composition, production conditions, and the like.
  • the first grain boundary part contains ZnO.
  • the first grain boundary part preferably contains 35% by mass or more of ZnO.
  • the first grain boundary part is preferably mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO.
  • the ZnO and B 2 O 3 as the main shows that among the components of the first grain boundary part, most often the total mass ratio of ZnO and B 2 O 3.
  • “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the first grain boundary part.
  • the first grain boundary part may be based on a glass containing ZnO, and more specifically, the glass containing ZnO may be crystallized.
  • the glass containing ZnO examples include Zn—B—O glass.
  • the Zn—B—O-based glass is glass containing Zn, B, and O.
  • a glass containing ZnO and B 2 O 3 may be used.
  • the Zn—B—O-based glass may contain other elements as a secondary element, for example, Zn—B—Si—O-based glass.
  • the Zn—B—Si—O-based glass may be glass containing Zn, B, Si, and O.
  • the Zn—B—O-based glass may contain, for example, ZnO in a range of 35 mass% to 80 mass%. Further, B 2 O 3 may be used as to include in the range of 50 to 10 mass%.
  • the present invention may be those containing SiO 2 in a range of 5 mass% to 15 mass%.
  • the first grain boundary part preferably does not contain Bi, Mg, or the like. If Bi or Mg is not included in the first grain boundary part, it is possible to further suppress the decrease in the insulation resistance of the first material layer.
  • the ratio of the first grain boundary portion containing ZnO should be greater than 0% with respect to the entire first material layer, but is preferably 1% or more, and preferably 2% or more. More preferred. Moreover, although it should just be less than 100%, 20% or less is preferable and 13% or less is more preferable.
  • the first material layer may further include oxide particles in addition to the first particle part and the first grain boundary part.
  • oxide particles include oxides of metal elements other than Ba and Ti described above.
  • the oxide particles may include, for example, one or more selected from the group consisting of Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3. 2 O 3 , ZnO and Mn 3 O 4 may be included, or Bi 2 O 3 , ZnO, Mn 3 O 4 and ZrO 2 may be included.
  • the oxide particles may contain one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 .
  • the first material layer has Bi 2 O 3 of 3.5 mass% to 11 mass%, ZnO of 0.6 mass% to 5.0 mass%, and Mn 3 O 4 of 0.01 mass% to 1. It is preferable that the CuO content is within a range of 0% by mass or less, and the CuO content is within a range of 0.4% by mass or less. In such a case, the first material layer has a high relative dielectric constant of, for example, 1000 or more and a low dielectric loss tangent tan ⁇ of 0.05 or less, and the X7R characteristic (EIA standard: capacitance change in the range of ⁇ 55 ° C. to 125 ° C.
  • EIA standard capacitance change in the range of ⁇ 55 ° C. to 125 ° C.
  • the rate is within ⁇ 15% with respect to a capacity of 25 ° C.), and simultaneous firing with an Ag-based electrode can be performed satisfactorily. In addition, there is little decrease in insulation resistance due to use, and the life can be extended.
  • the first material layer may include BaTiO 3 (which may be the sum of BaO and TiO 2 ) in the range of 70% by mass to 97% by mass, and in the range of 80% by mass to 95% by mass. It may be a thing.
  • the first material layer includes one or more selected from the group consisting of SnO 2 , ZrO 2 , Nb 2 O 5 and SrO, the SnO 2 content is 1.0 mass% or less, and the ZrO 2 content is 2.5 wt% or less, the content of Nb 2 O 5 is 1.0% by mass or less, the content of SrO may be as 10 mass% or less. If it contains at least one element selected from the group consisting of SnO 2, ZrO 2, Nb 2 O 5, SrO, its content, each of which may be more than 0.01 mass%.
  • the first material layer may contain SiO 2 in the range of 0.01% by mass to 0.5% by mass.
  • each metal component may exist with forms other than the oxide mentioned above.
  • the first material layer may have a relative dielectric constant of 1000 or more and 3000 or less. In such a case, the first material layer can have a dielectric constant required for a BaTiO 3 -based dielectric.
  • the first material layer may have a dielectric loss tangent tan ⁇ of 0.05 or less, preferably 0.04 or less, and more preferably 0.03 or less. In such a case, the first material layer can have a small dielectric loss.
  • the second material layer includes a second particle part and a second grain boundary part existing between the particles of the second particle part.
  • the second particle part is preferably composed of particles having a relative dielectric constant lower than that of the first particle part.
  • the particles constituting the second particle part may be bonded to each other.
  • the second particle portion may be composed of particles of a complex oxide having a tungsten bronze structure including at least one of Ba and Ti, and preferably includes both Ba and Ti.
  • the second material layer has a low relative dielectric constant and a large Q value (reciprocal of tan ⁇ ). It can be.
  • the composite oxide having a tungsten bronze structure is selected from the group consisting of alkaline earth metal elements, rare earth elements, Si, Sc, Y, Zn, Nb, Ta, Pb, and Bi in addition to Ba and Ti.
  • the above may be included.
  • the composite oxide having a tungsten bronze structure is, for example, a general formula A x BO 3 (where A is an alkaline earth metal element, rare earth element, Si, Sc, Y, Zn, Pb, Bi). 1 or more selected from the group, and B is 1 or more selected from the group consisting of Ti, Zr, Nb, Hf, and Ta.
  • X satisfies 0 ⁇ x ⁇ 1. Also good.
  • the structure of this complex oxide is a structure in which unit blocks of oxygen octahedron (BO 6 ) are connected together sharing a vertex and a ridge, and the B element is partially due to the presence of the A element and / or the effect of the ridge sharing. It is a non-stoichiometric oxide structure reduced to.
  • the composite oxide having a tungsten bronze structure preferably contains Ba, Nd, Bi, and Ti, and specifically includes Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 and the like. In Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 , Nd and Bi may be included in any ratio, and only one of Nd and Bi may be included. Of these, the ratio of Nd to Bi (Nd: Bi) is preferably in the range of 95: 5 to 70:30, and more preferably in the range of 90:10 to 80:20.
  • the second grain boundary part is not particularly limited, but may be based on glass, for example, and more specifically, the glass may be crystallized.
  • the glass Zn—B—O glass (Zn—B—Si—O glass, etc.), B—Si—Ba—Al—O glass, Si—B—Na—O glass, etc. Glass or the like can be suitably used. Since these glasses hardly react with BaTiO 3 , the characteristics of the first material layer can be further maintained. Further, since the difference in thermal shrinkage at the time of firing and the temperature shrinkage at the time of temperature drop is small with respect to the glass used for the first grain boundary part, for example, a Zn—B—O-based glass, warpage and peeling are less likely to occur.
  • the B—Si—Ba—Al—O-based glass is glass containing B, Si, Ba, Al, and O.
  • it may be a glass containing a B 2 O 3 and SiO 2 and BaO and Al 2 O 3.
  • This glass may contain, for example, B 2 O 3 in a range of 20% by mass to 45% by mass.
  • the present invention may be those containing SiO 2 in the range of not less than 45% by weight to 20% by weight.
  • the Si—B—Na—O glass is a glass containing Si, B, Na, and O.
  • the glass may be glass including a SiO 2, B 2 O 3 and Na 2 O.
  • This glass may contain, for example, SiO 2 in a range of 60% by mass to 90% by mass.
  • B 2 O 3 may be used as to include in the range of 30 to 10 mass%.
  • the present invention may be those containing Na 2 O in the range of 10 wt% or more 0 mass%. Note that the description of the Zn—B—O-based and Zn—B—Si—O-based glasses is omitted because they are the same as those described in the first grain boundary portion.
  • the second grain boundary part is preferably based on the same kind as the first grain boundary part, for example, Zn—B—O-based glass. In such a case, the firing shrinkage at the time of firing between the first material layer and the second material layer and the thermal shrinkage difference at the time of temperature drop are smaller, and the warpage and peeling associated therewith are less likely to occur.
  • the second grain boundary part preferably does not contain Bi or Mg. Since these easily react with BaTiO 3 , if they are not included in the second grain boundary part, it is possible to further suppress the deterioration of the dielectric properties of the first material layer.
  • the ratio of the second grain boundary part may be greater than 0% with respect to the entire second material layer, but is preferably 0.5% or more, and 1.5% or more. Is more preferable. Moreover, although it should just be less than 100%, 15% or less is preferable and 11% or less is more preferable.
  • the difference between the ratio of the first grain boundary part in the first material layer and the ratio of the second grain boundary part in the second material layer may be within ⁇ 5%. By doing so, the ratio of the grain boundary portion included in the first material layer and the second material layer can be made relatively close, so the difference in thermal expansion (shrinkage) between the first material layer and the second material layer is small. , Warpage and peeling are less likely to occur.
  • the second material layer may have a relative dielectric constant of 5 or more and 200 or less. In such a case, the second material layer can have a required dielectric constant.
  • the laminated body of the present invention is formed, for example, by forming a first prepared powder containing a first particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary raw material containing ZnO.
  • a product obtained by sintering a laminated molded body obtained by laminating the first molded body and the second molded body obtained by molding the second prepared powder containing the second particle raw material and the second grain boundary raw material.
  • Such a laminated body is good also as what is obtained by the manufacturing method of the laminated body mentioned later.
  • the dielectric constant of the second material layer only needs to be lower than the dielectric constant of the first material layer even if the relative dielectric constant of the second particle raw material is not smaller than the relative dielectric constant of the first particle raw material. .
  • the laminate of the present invention may be included in a low temperature co-fired ceramic (LTCC) multilayer substrate.
  • LTCC low temperature co-fired ceramic
  • FIG. 1 is a schematic cross-sectional view of the laminate 10.
  • the stacked body 10 includes a first material layer 20 having a first dielectric constant, and a second material layer 30 having a second dielectric constant lower than the first dielectric constant.
  • the first material layer 20 includes a first particle part 22 and a first grain boundary part 24.
  • the second material layer 30 includes a second particle part 32 and a second grain boundary part 34.
  • the first particle 22, a compound containing Ba, a metal element other than Ti on a part of BaTiO 3 can be applied to various aspects of the first particle section described above.
  • the 1st grain boundary part 24 exists between the particle
  • the 2nd particle part 32 the various aspects of the 2nd particle part mentioned above are applicable.
  • the 2nd grain boundary part 34 exists between the particle
  • the laminated device of the present invention includes the laminated body described above and an electrode that is integrated with the laminated body and is Ag or an Ag alloy.
  • the Ag alloy preferably contains 50% by mass or more of Ag, and may contain 80% by mass or more of Ag. Examples of the metal constituting the alloy with Ag include Pd.
  • the first material layer does not contain CuO or has a low CuO composition.
  • the CuO content is preferably in the range of 0.4% by mass or less. By doing so, it is possible to manufacture a ceramic capacitor having different material layers while suppressing element diffusion between different materials and without damaging the Ag-based electrode.
  • the multilayer device of the present invention may be, for example, a multilayer ceramic capacitor 50 shown in FIG. FIG. 2 is a schematic cross-sectional view of the multilayer ceramic capacitor 50.
  • the multilayer ceramic capacitor 50 includes the above-described multilayer body 10 including the first material layer 20 and the second material layer 30, and electrodes (internal electrodes) 52 and 56 that are integrated with the multilayer body 10 and are Ag or an Ag alloy.
  • the external electrodes 54 and 58 are provided. In the laminated device of the present invention, the external electrodes 54 and 58 may be omitted.
  • the method for producing a laminate of the present invention comprises a first prepared powder containing a first particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary raw material containing ZnO.
  • a laminate in which a molded first molded body and a second molded body formed by molding a second prepared powder containing a second particle raw material having a relative dielectric constant smaller than that of the first particle raw material and a second grain boundary raw material are stacked.
  • This laminated sintering process may include, for example, (A) a first preparation powder manufacturing process, (B) a second preparation powder manufacturing process, (C) a laminated molded body manufacturing process, and (D) a sintering process. Good. Below, each process is demonstrated.
  • the first preparation powder is manufactured by mixing the first particle raw material and the first grain boundary raw material.
  • the first particle raw material is a powder (particle) of a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 .
  • the general formula (Ba 1-x M1 x ) (Ti 1-y M2 y ) O 3 (wherein M1 and M2 are metal elements other than Ba and Ti, and x and y are numerical values from 0 to 1) It is good also as what is represented by this.
  • a part of BaTiO 3 contains a metal element other than Ba and Ti means, for example, a compound containing BaTiO 3 , a metal element other than Ba and Ti, or a metal element other than Ba and Ti (such as an oxide). It is good also as what is dissolved.
  • metal elements other than Ba and Ti include those exemplified in the description of the first particle part.
  • the first particle raw material may have one kind of compound powder containing a metal element other than Ba and Ti in a part of BaTiO 3 , or two or more kinds.
  • the first particle raw material may be a single-phase powder having a constant composition and characteristics within the particles, or may be multiphase particles having different compositions and characteristics within the particles, as in the first particle part.
  • the multiphase particles for example, the core-shell structure described above, or those having a structure in which the composition and characteristics change continuously or intermittently from the center to the outer periphery of the particles can be suitably used.
  • the first particle raw material has two or more kinds having different compositions and characteristics (particularly, temperature characteristics of dielectric constant). In the case where the phase is provided, two or more phases having different dielectric constant temperature characteristics are mixed. Therefore, it is considered that the temperature characteristics of the dielectric constant of the first material layer can be stabilized in the obtained laminate. .
  • the first particle raw material was obtained, for example, through a first synthetic powder production step of producing a first synthetic powder by firing a first mixed powder containing a BaTiO 3 raw material and a metal element other than Ba and Ti. It is good also as a thing (1st synthetic powder).
  • an auxiliary agent for example, Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SnO 2 , Nb
  • a glass component and metal elements other than Ba and Ti at the time of production is used.
  • the BaTiO 3 raw material may be BaTiO 3 itself, or BaTiO 3 obtained by firing, for example, a mixture of BaCO 3 and TiO 2 , or both of them. It may be included. Metal elements other than Ba and Ti may be included in any form, but are preferably included as oxides.
  • the first mixed powder includes Bi 2 O 3 , ZnO, Mn 3 O 4 , ZrO 2 , SrO, SrTiO 3 , as a metal element other than Ba and Ti, in addition to the BaTiO 3 raw material.
  • the first mixed powder may include Bi 2 O 3 , ZnO, and Mn 3 O 4 , or may include Bi 2 O 3 , ZnO, Mn 3 O 4 , and ZrO 2 .
  • the first mixed powder may include one or more selected from the group consisting of ZrO 2 , SrO, SrTiO 3 , Nb 2 O 5 , and SnO 2 .
  • the first mixed powder has Bi 2 O 3 of 3.5% by mass to 11% by mass, ZnO of 0.6% by mass to 5.0% by mass, and Mn 3 O 4 of 0.01% by mass to 1. It is preferable that the content of CuO is in the range of 0% by mass or less, and the content of CuO is in the range of 0.4% by mass or less.
  • the first mixed powder may contain the BaTiO 3 raw material in a range of 70% by mass to 97% by mass in terms of BaTiO 3 , or may contain 80% by mass or more and 95% by mass or less.
  • the first mixed powder includes one or more selected from the group consisting of ZrO 2 , SnO 2 , Nb 2 O 5 , SrO, and SrTiO 3 , the ZrO 2 content is 25% by mass or less, and the SnO 2 content May be 15% by mass or less, Nb 2 O 5 content may be 1.0% by mass or less, SrO content may be 10% by mass or less, and SrTiO 3 content may be 18% by mass or less. If it contains at least one element selected from the group consisting of SnO 2, ZrO 2, Nb 2 O 5, SrO, its content, each of which may be more than 0.01 mass%.
  • ZrO 2 may be supplied from, for example, ZrO 2 boulders used for pulverization when the first mixed powder is prepared by pulverization and mixing.
  • the firing conditions are not particularly limited, and heat treatment is performed at a firing temperature of 700 ° C. or higher and 1200 ° C. or lower for 1 hour to 24 hours in an oxidizing atmosphere such as air or oxygen atmosphere. It is good also as what to do.
  • one type of synthetic powder may be produced, or two or more types of synthetic powders having different dielectric constant temperature characteristics produced under different compositions and production conditions may be produced.
  • the first grain boundary part raw material contains ZnO.
  • the first grain boundary part raw material preferably contains 35% by mass or more of ZnO.
  • the first grain boundary part raw material is preferably mainly composed of ZnO and B 2 O 3 , and may be composed mainly of ZnO.
  • the ZnO and B 2 O 3 as the main shows that among the components of the first grain boundary part material, most often the total mass ratio of ZnO and B 2 O 3.
  • “mainly composed of ZnO” means that the mass ratio of ZnO is the largest among the constituent components of the first grain boundary raw material.
  • the first grain boundary raw material may be any material that can be melted in the subsequent sintering step to fill the space between the particles of the first particle raw material, but is preferably glass (first glass), and Zn—B— O-based (for example, Zn—B—Si—O based) glass is preferable. Since the Zn—B—O-based glass does not easily react with BaTiO 3 , the characteristics of the first material layer can be further maintained. Note that since the Zn—B—O and Zn—B—Si—O based glasses are the same as those described in the first grain boundary portion, description thereof is omitted here.
  • the first preparation powder preferably contains the first grain boundary raw material in a range of 0.5 volume% or more and 15 volume% or less, and more preferably contains 1.5 volume% or more and 11 volume% or less.
  • the first preparation powder may include oxide particles different from these in addition to the first particle raw material and the first grain boundary raw material.
  • the oxide particles may have a relative dielectric constant in the range of 500 to 100,000, for example, and may be a double oxide such as SrTiO 3 or BaTiO 3 without additives.
  • the temperature characteristic of the dielectric constant can be improved in a wider temperature range, for example, the absolute value of the capacitance change rate can be reduced in a wider temperature range in the fired body.
  • a double oxide it is preferably included in the range of 1% by volume to 60% by volume, and more preferably in the range of 1% by volume to 50% by volume.
  • the second particle raw material is not particularly limited as long as it has a relative dielectric constant smaller than that of the first particle raw material, but may include a composite oxide having a tungsten bronze structure including at least one of Ba and Ti. , Ba and Ti are preferably included.
  • the composite oxide having a tungsten bronze structure is selected from the group consisting of alkaline earth metal elements, rare earth elements, Si, Sc, Y, Zn, Nb, Ta, Pb, and Bi in addition to Ba and Ti. The above may be included. Examples of the composite oxide having a tungsten bronze structure include those exemplified in the second particle part.
  • the composite oxide having a tungsten bronze structure preferably contains Ba, Nd, Bi, and Ti, and specifically includes Ba 4 (Nd, Bi) 9.3 Ti 18 O 54 and the like.
  • the second particle raw material contains a composite oxide of Ba, Nd, Bi, and Ti, a laminate including the second material layer 30 having a low relative dielectric constant and a large Q value (reciprocal of tan ⁇ ) can be easily obtained. Obtainable.
  • the second grain boundary raw material may be any material that can be melted in the subsequent sintering step to fill the space between the particles of the second particle raw material, but is preferably glass (second glass), and Zn—B— O-based glass (which may be Zn-B-Si-O-based glass, etc.), B-Si-Ba-Al-O-based glass, and Si-B-Na-O-based glass are more preferable. Since these glasses hardly react with BaTiO 3 , the characteristics of the first particle raw material can be further maintained. In addition, since the difference between the thermal shrinkage during firing and the temperature decrease during firing is small with respect to the first grain boundary raw material, for example, Zn—B—O-based glass, warping and peeling are not likely to occur.
  • the second grain boundary part raw material is the same kind as the first grain boundary part raw material, for example, a Zn—B—O-based glass, the first molded body and the second molded body at the time of firing.
  • the difference in thermal shrinkage during firing shrinkage and temperature drop is small, and warping and peeling associated therewith are less likely to occur.
  • the Zn—BO—glass, B—Si—Ba—Al—O glass, and Si—B—Na—O glass are described in the first grain boundary part and the second grain boundary part. Since it is the same as what was done, description is abbreviate
  • the second prepared powder preferably contains the second grain boundary raw material in the range of 0.5% by volume to 15% by volume, and more preferably in the range of 1.5% by volume to 11% by volume. By doing so, it is possible to easily obtain a laminate including the second material layer having a low relative dielectric constant and a large Q value.
  • the difference between the ratio of the first grain boundary part raw material contained in the first preparation powder and the ratio of the second grain boundary part raw material contained in the second preparation powder may be within ⁇ 5% by volume. By doing so, since the ratio of the grain boundary portion raw materials included in the first molded body and the second molded body can be made relatively close, the difference in thermal expansion (shrinkage) between the first molded body and the second molded body is small. , Warpage and peeling are less likely to occur.
  • (C) Laminated molded body manufacturing step In this step, a laminated molded body in which a first molded body obtained by molding the first prepared powder and a second molded body obtained by molding the second prepared powder is produced.
  • the method of forming the first preparation powder and the second preparation powder is not particularly limited. For example, by press molding, die molding, extrusion molding, printing, doctor blade, etc. You may shape
  • the first prepared powder and the second prepared powder may be used alone, or by adding an organic solvent such as toluene or isopropyl alcohol (IPA), an organic binder, a plasticizer, a dispersant, etc. It may be used in the form of a paste, paste, slurry or the like.
  • the method for forming the first prepared powder and the method for forming the second prepared powder may be the same or different.
  • the laminated body mentioned above is baked (sintered) and a laminated body is manufactured.
  • the sintering may be performed at a sintering temperature of 800 ° C. or higher and 1000 ° C. or lower. This is because BaTiO 3 -based materials are desired to be sintered at 1000 ° C. or lower. If the sintering is performed at 1000 ° C. or less, for example, simultaneous lamination firing with a low dielectric material sintered using an Ag-based electrode or glass having a low specific resistivity can be made possible.
  • the first particle raw material is the first particle part
  • the first grain boundary raw material is the first grain boundary part
  • the second particle raw material is the second particle part
  • the second grain boundary raw material is the second.
  • the first grain part, the first grain boundary part, the second grain part, and the second grain boundary part take in components other than each raw material, or a part of each raw material. Or may be obtained.
  • the method for manufacturing a laminated device of the present invention includes a first prepared powder containing a first particle raw material which is a compound containing a metal element other than Ba and Ti in a part of BaTiO 3 and a first grain boundary raw material containing ZnO.
  • This laminated sintering process includes, for example, (A) a first preparation powder manufacturing process, (B) a second preparation powder manufacturing process, (C ′) a laminated molded body manufacturing process with electrodes, and (D) a sintering process. It may be a thing.
  • processes other than the (C ') electrode laminated laminate manufacturing process are the same as the method for manufacturing the laminate, the (C') electrode laminated laminate manufacturing process will be described below, and other processes. Description of is omitted.
  • (C ′) Process for producing laminated molded body with electrode In this step, a first molded body obtained by molding the first prepared powder, a second molded body obtained by shaping the second prepared powder, and an electrode material containing Ag or an Ag alloy, , Are produced. What is necessary is just to shape
  • the Ag alloy include those exemplified in the description of the laminated molded body.
  • the electrode material may be formed by, for example, adding Ag or an Ag alloy powder to a paste or slurry by adding an organic solvent or the like and applying it to at least one of the first molded body and the second molded body.
  • a novel laminated body and laminated device can be provided.
  • the first particle raw material in which an auxiliary component is dissolved in BaTiO 3 the remaining auxiliary component can be reduced and element diffusion between different materials can be suppressed.
  • the first and the particle material was a solid solution of auxiliary components BaTiO 3, for use with nobler first grain boundary portion material and BaTiO 3, a, BaTiO 3 and auxiliaries component and the first grain boundary part material It is thought that the reaction with can be suppressed.
  • the insulation deterioration of a 1st material layer can be suppressed when the 1st grain boundary part containing ZnO exists between the particle
  • the electrode is divided by the diffusion of the CuO component and the electrode is effective. It can suppress that an area becomes small.
  • the laminated body needs to be fired at a low temperature such as 1000 ° C. or lower. Therefore, it can be manufactured relatively easily.
  • Experimental examples 1 to 37, 46, 47, and 50 to 62 correspond to examples of the present invention, and experimental examples 38 to 45, 48, and 49 correspond to comparative examples.
  • the present invention is not limited to the following examples.
  • IPA isopropyl alcohol
  • zirconia cobblestone was used for wet pulverization and mixing for 48 hours in a ball mill, and the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve.
  • the mixed powder was pre-synthesized in the air at a predetermined temperature shown in Table 1 for 2 hours to obtain a high dielectric material pre-synthesized powder (6.15 g / cm 3 ).
  • the specific surface area was measured by the N 2 -BET method (Table 1).
  • glasses having the respective compositions shown in Table 2 were prepared.
  • the above-described high dielectric material pre-synthetic powder (first particle raw material), glass (first grain boundary raw material), and SrTiO 3 in Experimental Examples 50 and 51 are added in predetermined amounts as shown in Tables 3 and 4. Further, IPA was added, and zirconia boulder was used for wet grinding and mixing in a ball mill for 24 hours, and then the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve to obtain a high dielectric material preparation powder. .
  • SrTiO 3 a commercial product having a purity of 99%, an average particle diameter of 1 ⁇ m, and a specific surface area of 11.7 m 2 / g was used.
  • the glass (second grain boundary raw material) shown in Table 2 is added in a predetermined amount shown in Tables 3 and 4, and IPA is further added, and zirconia cobblestone is added. Then, after wet-grinding and mixing for 24 hours in a ball mill, the slurry passed through a 200 mesh sieve was dried and sized with a 100 mesh sieve to obtain a low dielectric material powder.
  • FIG. 2 shows a schematic cross-sectional view of such a multilayer ceramic capacitor (however, it has 16 high dielectric layers and 1 low dielectric layer (the number of each layer is sandwiched between electrodes)).
  • the multilayer ceramic capacitor 50 includes a first material layer 20 as a high dielectric layer 20a and a high dielectric dummy layer 20b, an internal electrode 52, an external electrode 54 including a via conductor 54a, a low dielectric layer 30a, and a low dielectric layer 30a.
  • a second material layer 30 as a dielectric dummy layer 30b, an internal electrode 56, and an external electrode 58 including a via conductor 58a are provided.
  • low dielectric ceramic capacitors Three layers of low dielectric green sheets (low dielectric layer (parts sandwiched between electrodes): 1 layer, dummy layer: 2 layers) are stacked and thermocompression bonded to obtain a pressed body. It was manufactured by the same manufacturing method as the capacitor. The thickness of the single layer of the low dielectric was 15 ⁇ m, and the thickness of the Ag electrode was 2.5 ⁇ m.
  • the above-mentioned high dielectric material powder is uniaxial press-molded at 100 kg / cm 2 at ⁇ 30, and cold at a pressure at which the molding density of each sample is in the range of 51-56%, which is almost the same as the green sheet molding density.
  • An isotropic pressurization method was performed. This molded body was sintered at a temperature shown in Tables 3 and 2 for 2 hours to obtain a sample of a sintered body for density measurement and chemical analysis.
  • grain boundary phase derived from glass (first grain boundary part) ratio For the grain boundary phase having a contrast different from that of the first particle part in the 10,000 times image of the scanning electron microscope (SEM) of the first material layer, the area of the part is calculated by image analysis, and the ratio to the total area was calculated. For each experimental example, the average value of the three visual fields was defined as the ratio of the grain boundary phase area occupied by the grain boundary phase. Grain boundary phases having different contrasts were confirmed to have element distribution by FE-EPMA, and were derived from glass and contained ZnO.
  • composition of fired body of high dielectric material Each fired body for chemical analysis was pulverized, dissolved in an acid solution, and each component was quantified by ICP emission spectroscopy. Incidentally, ZrO 2 detected at a level of ZrO 2 is not added, is presumed to be due to zirconia boulder. B 2 O 3 was expressed as 0 wt% because it was below the detection limit.
  • FIG. 3 shows an SEM photograph of the high dielectric material of Experimental Example 3 as an example of the embodiment of the present invention.
  • FIG. 4 shows an SEM photograph of the high dielectric material of Experimental Example 42 as an example of the comparative example of the present invention.
  • a high-dielectric material pre-synthetic powder obtained by firing a mixed powder containing BaTiO 3 , Bi 2 O 3 , ZnO, and Mn 3 O 4 in advance and a Zn—B—Si—O-based glass were mixed. It was found that in the case where the first prepared powder was molded and sintered, the first particle part and the first grain boundary part could be distinguished.
  • FIG. 3 shows an SEM photograph of the high dielectric material of Experimental Example 3 as an example of the embodiment of the present invention.
  • FIG. 4 shows an SEM photograph of the high dielectric material of Experimental Example 42 as an example of the comparative example of the present invention.
  • a high-dielectric material pre-synthetic powder obtained by firing a mixed powder containing
  • the relative dielectric constant and Q value of the low dielectric material (second material layer), the density of the high dielectric material (first material layer), the relative dielectric constant, tan ⁇ , X7R characteristics, and the maximum capacitance change Tables 7 and 8 show the rate, life time, grain boundary phase ratio, Ag electrode observation results, presence / absence of element diffusion and warpage of the multilayer ceramic capacitor (laminated body, multilayer device).
  • Tables 5 to 8 a high dielectric material preparation powder in which a pre-synthetic powder obtained by firing a mixed powder containing BaTiO 3 , Bi 2 O 3 , ZnO, and Mn 3 O 4 and glass is mixed is molded.
  • the difference in baking shrinkage can be suppressed and curvature can be suppressed by making the difference in the glass amount between different materials small.
  • the laminated body and the laminated device can be reduced, the number of parts can be reduced, and the number of man-hours can be reduced. It was found that it can be reduced and the working time can be shortened.
  • low dielectric materials can achieve the same characteristics as when fired using only low dielectric materials. It was found that the X7R characteristic can be satisfied at 1000 or more, and a laminated body in which different materials with little warpage can be laminated.
  • the present invention can be used in the field of electronic equipment.
  • 10 laminates 20 first material layer, 20a high dielectric layer, 20b high dielectric dummy layer, 22 first particle part, 24 first grain boundary part, 30 second material layer, 30a low dielectric layer, 30b low Dielectric dummy layer, 32 second particle part, 34 second grain boundary part, 50 multilayer ceramic capacitor, 52 internal electrode, 54 external electrode, 54a via conductor, 56 internal electrode, 58 external electrode, 58a via conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 積層体10は、第1の誘電率を有する第1材料層20と、第1の誘電率よりも低い第2の誘電率を有する第2材料層30とを備えている。第1材料層20は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子部22と、第1粒子部22の粒子間に存在しZnOを含む第1粒界部24と、を含む。第2材料層30は、第2粒子部32と、第2粒子部32の粒子間に存在する第2粒界部34と、を含む。

Description

積層体、積層デバイス及びそれらの製造方法
 本発明は、積層体、積層デバイス及びそれらの製造方法に関する。
 従来、種々の積層体が提案されている(特許文献1~3参照)。例えば、特許文献1では、酸化ホウ素含有ガラス成分を含んだxBaO-yTiO-zZnOからなる低誘電率層(x+y+z=1;0.09≦x≦0.20;0.49≦y≦0.61;0.19≦z≦0.42)と、CuOとBi23が添加されたチタン酸バリウム系誘電体である高誘電率層を共焼成によって積層したセラミック多層基板が提案されている。また、特許文献2では、BaTiO3を主成分とし、CuBi24及びZnO-B23-SiO2系ガラスを副成分とし、600℃から950℃などで焼成された誘電材料を含む積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板が提案されている。また、特許文献3では、酸化鉛を含むペロブスカイト系の誘電率が15を超える高誘電率層と誘電率15以下の低誘電率層を含み一体的に800~1100℃で低温同時焼成される基板において、高誘電率層に低誘電率層と同一のガラスを0.1~1wt%添加した積層回路セラミック基板が提案されている。
特開2009-88089号公報 特開2009-132606号公報 特開平2-178994号公報
 しかしながら、特許文献1,2では、共焼成時に高誘電率層のCuO等の助剤成分が拡散するなどして、各層の特性が悪化することがあった。また、特許文献3では、酸化鉛とガラスとが反応するなどして、高誘電率層の誘電率が低下してしまうことがあった。このため、焼成時における拡散や反応を抑制し、所望の特性が得られる、新規な積層体及び積層デバイスが望まれていた。
 上述した課題を解決するために鋭意研究したところ、本発明者らは、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結すると、新規な積層体及び積層デバイスが得られることを見いだし、本発明を完成するに至った。
 すなわち、本発明の積層体は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子部と、前記第1粒子部の粒子間に存在しZnOを含む第1粒界部と、を含み、第1の誘電率を有する第1材料層と、
 第2粒子部と、前記第2粒子部の粒子間に存在する第2粒界部と、を含み、前記第1の誘電率よりも低い第2の誘電率を有する第2材料層と、
 を備えたものである。
 また、本発明の積層デバイスは、
 上述した積層体と、
 前記積層体と一体化されAg又はAg合金である電極と、
 を備えたものである。
 また、本発明の積層体の製造方法は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結する積層焼結工程、
 を含むものである。
 また、本発明の積層デバイスの製造方法は、
 BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼結する積層焼結工程、
 を含むものである。
 本発明では、新規な積層体及び積層デバイスを提供することができる。例えば、第1粒子原料としてBaTiO3の一部にBa、Ti以外の金属元素(助剤成分)を含ませた化合物を用いることで、残留する助剤成分を低減し、異種材間などにおける元素拡散を抑制できると考えられる。また、BaTiO3に助剤成分を含ませた第1粒子原料と、BaTiO3と反応しにくい第1粒界部原料と、を用いるため、BaTiO3や助剤成分と第1粒界部原料との反応を抑制することができると考えられる。
積層体10の概略の断面図。 積層セラミックコンデンサ50の概略の断面図。 実験例3の高誘電材料のSEM写真。 実験例42の高誘電材料のSEM写真。
(積層体)
 本発明の積層体は、第1の誘電率を有する第1材料層と、第1の誘電率よりも低い第2の誘電率を有する第2材料層とを備えている。
 第1材料層は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子部と、第1粒子部の粒子間に存在しZnOを含む第1粒界部と、を含む。
 第1粒子部は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粒子で構成されており、粒子同士が結合していてもよい。BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3のうち、BaやTiの一部が、Ba、Ti以外の金属元素で置換されているものとしてもよく、例えば、一般式(Ba1-xM1x)(Ti1-yM2y)O3(式中、M1及びM2はBa、Ti以外の金属元素であり、x及びyは0より大きく1未満の数値である)で表されるものとしてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3に、Ba、Ti以外の金属元素や、Ba、Ti以外の金属元素を含む化合物(酸化物など)が固溶しているものとしてもよい。Ba、Ti以外の金属元素としては、アルカリ土類金属元素、希土類元素、Sb、Ni、Cu、Cr、Fe、Co、Mn、Ta、Nb、W、Mo、Zn、Bi、Zr、Ag、Sn、Srからなる群より選ばれる1種以上の元素としてもよい。このうち、Bi、Zn、Mn、Zr、Nb、Sn、Srからなる群より選ばれる1種以上の元素としてもよく、例えば、Bi、Zn及びMnとしてもよいし、Bi、Zn、Mn及びZrとしてもよい。Ba、Ti以外の金属元素は、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3などのように、酸化物として含まれていてもよい。なお、Zrは、製造工程などで不可避的に含まれるものとしてもよい。
 第1粒子部は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物粒子を1種有していてもよいし、2種以上有していてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粒子は、粒子内で組成や特性の一定な単相の粒子としてもよいし、粒子内で組成や特性の異なる複数の相を有する多相の粒子としてもよい。多相の粒子としては、例えば、粒子の核(コア)となる部分と、核を覆うように形成された殻(シェル)となる部分とで組成や特性の異なるコアシェル構造や、粒子の中心部から外周に向けて組成や特性が連続的又は断続的に変化する構造などが挙げられる。多相の粒子においては、一部の相がBaTiO3の一部にBa、Ti以外の金属元素を含む相でなくてもよい。2種以上の粒子を有している場合や、多相の粒子を有している場合等のように、第1粒子部が組成や特性(特に誘電率の温度特性)の異なる2種以上の相を備えている場合、誘電率の温度特性が異なる2種以上の相が混在するため、第1粒子部の誘電率の温度特性を安定化させることができると考えられる。第1粒子部が2種以上の相を備えている場合、例えば、BaTiO3からなるBaTiO3相と、BaTiO3にBa、Ti以外の金属元素の酸化物、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上などが固溶及び/又は置換した相(固溶/置換相)とを含んでいてもよく、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3などの固溶/置換量が異なる固溶/置換相をさらに又はBaTiO3相に代えて含んでいてもよい。この固溶/置換相は、Bi23、ZnO及びMn34を含むものとしてもよいし、Bi23、ZnO、Mn34及びZrO2を含むものとしてもよい。この固溶/置換相は、例えば、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含んでいてもよい。また、固溶/置換相は、CuOを含んでいないことが好ましく、CuOを含んでいる場合でも微量であることが好ましい。なお、相の特性は、相の組成や作製条件などを調製することによって、変化させることができる。
 第1粒界部は、ZnOを含むものである。第1粒界部は、ZnOを35質量%以上含むことが好ましい。また、第1粒界部は、ZnO及びB23を主とするものであることが好ましく、ZnOを主とするものとしてもよい。ZnO及びB23を主とするとは、第1粒界部の構成成分のうちで、ZnOとB23との合計の質量割合が最も多いことを示す。また、ZnOを主とするとは、第1粒界部の構成成分のうちで、ZnOの質量割合が最も多いことを示す。第1粒界部は、ZnOを含むガラスを元とするものとしてもよく、より詳しくは、ZnOを含むガラスが結晶化したものとしてもよい。ZnOを含むガラスが結晶化した成分が第1粒子部の間に存在することによって、絶縁抵抗劣化を抑制することができると考えられる。ZnOを含むガラスとしては、Zn-B-O系のガラスなどが挙げられる。ここで、Zn-B-O系のガラスは、Zn、B、Oを含むガラスである。例えば、ZnOとB23とを含むガラスとしてもよい。また、Zn-B-O系のガラスはZn、B、Oに加えて、他の元素を副次的に含んでもよく、例えば、Zn-B-Si-O系ガラスとしてもよい。ここで、Zn-B-Si-O系ガラスとは、Zn、B、Si、Oを含むガラスとしてもよい。例えば、ZnOとB23とSiO2を含むガラスとしてもよい。Zn-B-O系のガラスは、例えば、ZnOを35質量%以上80質量%以下の範囲で含むものとしてもよい。また、B23を10質量%以上50質量%以下の範囲で含むものとしてもよい。また、SiO2を5質量%以上15質量%以下の範囲で含むものとしてもよい。第1粒界部は、BiやMgなどを含んでいないことが好ましい。BiやMgが第1粒界部に含まれないものとすれば、第1材料層の絶縁抵抗の低下をより抑制することができる。ZnOを含む第1粒界部の割合は、第1材料層の断面を観察したときに、第1材料層全体に対して0%より多ければよいが、1%以上が好ましく、2%以上がより好ましい。また、100%より少なければよいが、20%以下が好ましく、13%以下がより好ましい。
 第1材料層は、第1粒子部及び第1粒界部の他に、さらに酸化物粒子を含むものとしてもよい。酸化物粒子としては、例えば、上述したBa、Ti以外の金属元素の酸化物などが挙げられる。酸化物粒子は、例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含むものとしてもよく、Bi23、ZnO及びMn34を含むものとしてもよいし、Bi23、ZnO、Mn34及びZrO2を含むものとしてもよい。また、酸化物粒子は、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含むものとしてもよい。
 第1材料層は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下の範囲内にあることが好ましい。こうしたものでは、第1材料層について、比誘電率が例えば1000以上などと高く、誘電正接tanδが0.05以下などと低く、X7R特性(EIA規格:-55℃~125℃の範囲における容量変化率が25℃の容量に対して±15%以内)を満たし、Ag系の電極との同時焼成を良好に行うことができる。また、使用による絶縁抵抗の低下が少なく、寿命を長いものとすることができる。第1材料層は、BaTiO3(BaOとTiO2との合計としてもよい)を70質量%以上97質量%以下の範囲で含むものとしてもよく、80質量%以上95質量%以下の範囲で含むものとしてもよい。また、第1材料層は、SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含み、SnO2の含有量は1.0質量%以下、ZrO2の含有量は2.5質量%以下、Nb25の含有量は1.0質量%以下、SrOの含有量は10質量%以下であるものとしてもよい。SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含む場合、その含有量は、それぞれ0.01質量%以上としてもよい。また、第1材料層は、SiO2を0.01質量%以上0.5質量%以下の範囲で含むものとしてもよい。なお、ここでは、各金属成分を酸化物換算した含有量を示したが、各金属成分は、上述した酸化物以外の形態で存在していてもよい。
 第1材料層は、比誘電率が1000以上3000以下であるものとしてもよい。こうしたものでは、第1材料層について、BaTiO3系の誘電体に求められる比誘電率を有するものとすることができる。また、第1材料層は、誘電正接tanδが0.05以下であるものとしてもよく、0.04以下が好ましく、0.03以下がより好ましい。こうしたものでは、第1材料層について、誘電損失の小さいものとすることができる。
 第2材料層は、第2粒子部と、第2粒子部の粒子間に存在する第2粒界部と、を含む。
 第2粒子部は、第1粒子部よりも比誘電率が低い粒子で構成されていることが好ましい。第2粒子部を構成する粒子は、粒子同士が結合していてもよい。第2粒子部は、例えば、Ba及びTiのうちの少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物の粒子で構成されているものとしてもよく、Ba及びTiの両方を含むことが好ましい。第2粒子部がBa及びTiのうちの少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含むものでは、第2材料層について、比誘電率が低く、Q値(tanδの逆数)の大きいものとすることができる。タングステンブロンズ構造を持つ複合酸化物は、BaやTiの他に、元素としてアルカリ土類金属元素、希土類元素、Si、Sc、Y、Zn、Nb、Ta、Pb、Biからなる群より選ばれる1以上を含んでいてもよい。ここで、タングステンブロンズ構造を持つ複合酸化物は、例えば、一般式AxBO3(式中、Aは、アルカリ土類金属元素、希土類元素、Si、Sc、Y、Zn、Pb、Biからなる群より選ばれる1以上であり、Bは、Ti、Zr、Nb、Hf、Taからなる群より選ばれる1以上である。xは、0<x<1を満たす。)で表されるものとしてもよい。この複合酸化物の構造は、酸素八面体(BO6)の単位ブロックが頂点、稜を共有して連なった構造であり、A元素の存在及び/または稜共有の効果により、B元素が部分的に還元された不定比酸化物構造である。タングステンブロンズ構造を持つ複合酸化物は、BaとNdとBiとTiとを含むことが好ましく、具体的には、Ba4(Nd,Bi)9.3Ti1854などが挙げられる。なお、Ba4(Nd,Bi)9.3Ti1854において、NdとBiとは任意の比率で含まれていればよく、Nd及びBiの一方のみでもよい。このうち、NdとBiとの比率(Nd:Bi)は、95:5~70:30の範囲内であることが好ましく、90:10~80:20の範囲内であることがより好ましい。
 第2粒界部は、特に限定されるものではないが、たとえば、ガラスを元とするものとしてもよく、より詳しくは、ガラスが結晶化したものとしてもよい。ガラスとしては、Zn-B-O系のガラス(Zn-B-Si-O系のガラスなどでもよい)、B-Si-Ba-Al-O系のガラス、Si-B-Na-O系のガラスなどを好適に用いることができる。これらのガラスは、BaTiO3と反応しにくいため、第1材料層の特性をより維持できる。また、第1粒界部に用いるガラス、例えばZn-B-O系のガラスとの、焼成時の焼成収縮や降温時の熱収縮差が小さいため、それに伴う反りや剥離などが生じにくい。ここで、B-Si-Ba-Al-O系のガラスは、B、Si、Ba、Al、Oを含むガラスである。例えば、B23とSiO2とBaOとAl23とを含むガラスとしてもよい。このガラスは、例えば、B23を20質量%以上45質量%以下の範囲で含むものとしてもよい。また、SiO2を20質量%以上45質量%以下の範囲で含むものとしてもよい。また、BaOを10質量%以上40質量%以下の範囲で含むものとしてもよい。また、Al23を5質量%以上15質量%以下の範囲で含むものとしてもよい。Si-B-Na-O系のガラスは、Si、B、Na、Oを含むガラスである。例えば、SiO2とB23とNa2Oとを含むガラスとしてもよい。このガラスは、例えば、SiO2を60質量%以上90質量%以下の範囲で含むものとしてもよい。また、B23を10質量%以上30質量%以下の範囲で含むものとしてもよい。また、Na2Oを0質量%以上10質量%以下の範囲で含むものとしてもよい。なお、Zn-B-O系やZn-B-Si-O系のガラスについては、第1粒界部において説明したものと同様のため、説明を省略する。
 第2粒界部は、第1粒界部と同種のもの、例えば、Zn-B-O系のガラスを元とすることが好ましい。こうしたものでは、第1材料層と第2材料層との焼成時の焼成収縮や降温時の熱収縮差がより小さく、それに伴う反りや剥離などがより生じにくい。第2粒界部は、BiやMgなどを含んでいないことが好ましい。これらは、BaTiO3と反応しやすいため、第2粒界部中に含まれないものとすれば、第1材料層の誘電特性の低下をより抑制することができる。第2粒界部の割合は、第2材料層の断面を観察したときに、第2材料層全体に対して0%より多ければよいが、0.5%以上が好ましく、1.5%以上がより好ましい。また、100%より少なければよいが、15%以下が好ましく、11%以下がより好ましい。なお、第1材料層中の第1粒界部の割合と、第2材料層中の第2粒界部の割合との差は、±5%以内であるものとしてもよい。こうすれば、第1材料層と第2材料層とが含む粒界部の割合を比較的近くすることができるため、第1材料層と第2材料層との熱膨張(収縮)差が小さく、それに伴う反りや剥離などが生じにくい。
 第2材料層は、比誘電率が5以上200以下であるものとしてもよい。こうしたものでは、第2材料層について、求められる比誘電率を有するものとすることができる。
 本発明の積層体は、例えば、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結して得られたものとしてもよい。こうした積層体は、後述する積層体の製造方法によって得られるものとしてもよい。なお、この場合、第2粒子原料の比誘電率が第1粒子原料の比誘電率よりも小さくなくても、第2材料層の誘電率が第1材料層の誘電率よりも低くなればよい。
 本発明の積層体は、低温同時焼成セラミックス(LTCC)多層基板内に含まれるものとしてもよい。
 本発明の積層体は、例えば、図1に示す積層体10としてもよい。図1は、積層体10の概略の断面図である。積層体10は、第1の誘電率を有する第1材料層20と、第1の誘電率よりも低い第2の誘電率を有する第2材料層30とを備えている。第1材料層20は、第1粒子部22と第1粒界部24とを備えている。第2材料層30は、第2粒子部32と第2粒界部34とを備えている。ここで、第1粒子部22は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物であり、上述した第1粒子部の種々の態様を適用することができる。また、第1粒界部24は、第1粒子部22の粒子間に存在しZnOを含むものであり、上述した第1粒界部の種々の態様を適用することができる。また、第2粒子部32としては、上述した第2粒子部の種々の態様を適用することができる。また、第2粒界部34は、第2粒子部32の粒子間に存在するものであり、上述した第2粒界部の種々の態様を適用することができる。
(積層デバイス)
 本発明の積層デバイスは、上述した積層体と、積層体と一体化されAg又はAg合金である電極とを備えている。Ag合金は、Agを50質量%以上含むものであることが好ましく、Agを80質量%以上含むものとしてもよい。Agと合金を構成する金属としては、例えば、Pdなどが挙げられる。この積層デバイスでは、第1材料層は、CuOを含まないか、CuOが少ない組成とすることが好ましい。例えば、CuOの含有量は、0.4質量%以下の範囲であることが好ましい。こうすれば、異種材間などにおける元素拡散を抑制しつつ、さらにAg系電極を損なうこと無く、異種材積層のセラミックスコンデンサを作製できる。
 本発明の積層デバイスは、例えば、図2に示す積層セラミックコンデンサ50としてもよい。図2は、積層セラミックコンデンサ50の概略の断面図である。積層セラミックコンデンサ50は、第1材料層20と第2材料層30とを備えた上述の積層体10と、積層体10と一体化されAg又はAg合金である電極(内部電極)52,56と、外部電極54,58とを備えている。なお、本発明の積層デバイスでは、外部電極54,58を省略してもよい。
(積層体の製造方法)
 本発明の積層体の製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結する積層焼結工程、を含む。
 この積層焼結工程は、例えば、(A)第1調製粉製造工程、(B)第2調製粉製造工程、(C)積層成形体製造工程、(D)焼結工程、を含むものとしてもよい。以下では、各工程について説明する。
(A)第1調製粉製造工程 
 この工程では、第1粒子原料と第1粒界部原料とを混合して第1調製粉を製造する。
 第1粒子原料は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末(粒子)である。BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3のうち、BaやTiの一部が、Ba、Ti以外の金属元素で置換されているものとしてもよく、例えば、一般式(Ba1-xM1x)(Ti1-yM2y)O3(式中、M1及びM2はBa、Ti以外の金属元素であり、x及びyは0以上1以下の数値である)で表されるものとしてもよい。また、BaTiO3の一部にBa、Ti以外の金属元素を含むとは、例えば、BaTiO3に、Ba、Ti以外の金属元素や、Ba、Ti以外の金属元素を含む化合物(酸化物など)が固溶しているものとしてもよい。Ba、Ti以外の金属元素としては、第1粒子部の説明で例示したものなどが挙げられる。
 第1粒子原料は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末を1種有していてもよいし、2種以上有していてもよい。また、第1粒子原料は、第1粒子部と同様、粒子内で組成や特性の一定な単相の粉末としてもよいし、粒子内で組成や特性の異なる多相の粒子としてもよい。多相の粒子としては、例えば、上述したコアシェル構造や、粒子の中心部から外周に向けて組成や特性が連続的又は断続的に変化する構造を有するものなどを好適に用いることができる。2種以上の粒子を有している場合や、多相の粒子を有している場合等のように、第1粒子原料が組成や特性(特に誘電率の温度特性)の異なる2種以上の相を備えている場合、誘電率の温度特性が異なる2種以上の相が混在するため、得られる積層体において、第1材料層の誘電率の温度特性を安定化させることができると考えられる。
 第1粒子原料は、例えば、BaTiO3原料と、Ba、Ti以外の金属元素とを含む第1混合粉を焼成して第1合成粉を製造する、第1合成粉製造工程を経て得られたもの(第1合成粉)としてもよい。予め合成した第1合成粉を用いると、製造時におけるガラス成分とBa、Ti以外の金属元素を含む助剤(例えば、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrO、SrTiO3等)との副反応が生じにくく、さらに、焼成時の第1成形体と第2成形体との間での反応拡散を抑制でき、誘電特性などの特性が良好な積層体を製造できる。なお、第1合成粉製造工程以外の製造方法で得られたものであっても、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物の粉末であれば、同様の効果が期待できる。
 第1合成粉製造工程において、BaTiO3原料としては、BaTiO3そのものとしてもよいし、焼成によってBaTiO3が得られるもの、例えばBaCO3とTiO2との混合物などとしてもよいし、これらの両方を含むものとしてもよい。Ba、Ti以外の金属元素は、どのような形態で含まれていてもよいが、酸化物として含まれることが好ましい。
 第1合成粉製造工程において、第1混合粉は、BaTiO3原料のほかに、Ba、Ti以外の金属元素として、Bi23、ZnO、Mn34、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含むものとしてもよい。このうち、第1混合粉は、Bi23、ZnO、Mn34を含むものとしてもよいし、Bi23、ZnO、Mn34、ZrO2を含むものとしてもよい。また、第1混合粉は、ZrO2、SrO、SrTiO3、Nb25、SnO2からなる群より選ばれる1以上を含むものとしてもよい。第1混合粉は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下、の範囲で含み、CuOの含有量が0.4質量%以下の範囲内にあることが好ましい。こうすれば、比誘電率が高く、誘電正接tanδが低く、X7R特性を満たし、使用による絶縁抵抗の低下が少なく、寿命の長い第1材料層を備えた積層体を容易に得ることができる。また、焼結工程において、Ag系の電極との同時焼成を良好に行うことができる。第1混合粉は、BaTiO3原料をBaTiO3換算で70質量%以上97質量%以下の範囲で含むものとしてもよく、80質量%以上95質量%以下の範囲で含むものとしてもよい。また、第1混合粉は、ZrO2、SnO2、Nb25、SrO、SrTiO3からなる群より選ばれる1以上を含み、ZrO2の含有量は25質量%以下、SnO2の含有量は15質量%以下、Nb25の含有量は1.0質量%以下、SrOの含有量は10質量%以下、SrTiO3の含有量は18質量%以下であるものとしてもよい。SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含む場合、その含有量は、それぞれ0.01質量%以上としてもよい。なお、ZrO2は、例えば、粉砕混合などにより第1混合粉を作製する場合、粉砕に用いるZrO2玉石などから供給されてもよい。
 第1合成粉製造工程では、焼成条件は、特に限定されないが、大気や酸素雰囲気などの酸化性雰囲気下で、700℃以上1200℃以下の焼成温度で、1時間以上24時間以下の時間、熱処理するものとしてもよい。
 第1合成粉製造工程では、1種の合成粉を製造してもよいし、異なる組成や作製条件で作製した誘電率の温度特性が異なる2種以上の合成粉を製造してもよい。
 第1粒界部原料は、ZnOを含むものである。第1粒界部原料は、ZnOを35質量%以上含むことが好ましい。また、第1粒界部原料は、ZnO及びB23を主とするものであることが好ましく、ZnOを主とするものとしてもよい。ZnO及びB23を主とするとは、第1粒界部原料の構成成分のうちで、ZnOとB23との合計の質量割合が最も多いことを示す。また、ZnOを主とするとは、第1粒界部原料の構成成分のうちで、ZnOの質量割合が最も多いことを示す。第1粒界部原料は、後の焼結工程において溶融して第1粒子原料の粒子間を埋め得るものであればよいが、ガラス(第1ガラス)であることが好ましく、Zn-B-O系(例えばZn-B-Si-O系)のガラスであることが好ましい。Zn-B-O系のガラスは、BaTiO3と反応しにくいため、第1材料層の特性をより維持できる。なお、Zn-B-O系やZn-B-Si-O系のガラスについては、第1粒界部において説明したものと同様のため、ここでは説明を省略する。第1調製粉は、第1粒界部原料を0.5体積%以上15体積%以下の範囲で含むことが好ましく、1.5体積%以上11体積%以下の範囲で含むことがより好ましい。こうすれば、比誘電率が高く、誘電正接tanδが低く、X7R特性を満たし、使用による絶縁抵抗の低下が少なく、寿命の長い第1材料層を備えた積層体を容易に得ることができる。また、焼結工程において、比抵抗率が低いAg系の電極との同時焼成などを良好に行うことができる。
 第1調製粉は、第1粒子原料と第1粒界部原料のほかに、これらとは異なる酸化物粒子を含むものとしてもよい。酸化物粒子は、例えば、比誘電率が500以上100000以下の範囲内にあるものとしてもよく、SrTiO3や添加物のないBaTiO3などのような複酸化物としてもよい。こうした酸化物粒子を含む場合、焼成体において、静電容量の変化率の絶対値をより広い温度範囲で小さくできるなど、誘電率の温度特性をより広い温度範囲で良好なものとすることができる。複酸化物を含む場合、1体積%以上60体積%以下の範囲で含むことが好ましく、1体積%以上50体積%以下の範囲で含むことがより好ましい。
(B)第2調製粉製造工程
 この工程では、第1粒子原料よりも比誘電率が小さい第2粒子原料と、第2粒界部原料と、を混合して第2調製粉を製造する。
 第2粒子原料は、第1粒子原料よりも比誘電率が小さいものであれば特に限定されないが、Ba及びTiのうちの少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含むものとしてもよく、Ba及びTiの両方を含むことが好ましい。タングステンブロンズ構造を持つ複合酸化物は、BaやTiの他に、元素としてアルカリ土類金属元素、希土類元素、Si、Sc、Y、Zn、Nb、Ta、Pb、Biからなる群より選ばれる1以上を含むものとしてもよい。タングステンブロンズ構造を持つ複合酸化物としては、第2粒子部で例示したものなどが挙げられる。タングステンブロンズ構造を持つ複合酸化物は、BaとNdとBiとTiとを含むことが好ましく、具体的には、Ba4(Nd,Bi)9.3Ti1854などが挙げられる。第2粒子原料がBaとNdとBiとTiとの複合酸化物を含むものでは、比誘電率が低く、Q値(tanδの逆数)の大きい第2材料層30を備えた積層体を容易に得ることができる。
 第2粒界部原料は、後の焼結工程において溶融して第2粒子原料の粒子間を埋め得るものであればよいが、ガラス(第2ガラス)であることが好ましく、Zn-B-O系のガラス(Zn-B-Si-O系のガラスなどでもよい)、B-Si-Ba-Al-O系のガラス、Si-B-Na-O系のガラスがより好ましい。これらのガラスは、BaTiO3と反応しにくいため、第1粒子原料の特性をより維持できる。また、第1粒界部原料、例えばZn-B-O系のガラスとの、焼成時の焼成収縮や降温時の熱収縮差が小さいため、それに伴う反りや剥離などが生じにくい。特に、第2粒界部原料を、第1粒界部原料と同種のもの、例えば、Zn-B-O系のガラスとすれば、第1成形体と第2成形体との、焼成時の焼成収縮や降温時の熱収縮差が小さく、それに伴う反りや剥離などが生じにくい。なお、Zn-B-O系のガラス、B-Si-Ba-Al-O系のガラス、Si-B-Na-O系のガラスについては、第1粒界部及び第2粒界部において説明したものと同様のため、説明を省略する。
 第2調製粉は、第2粒界部原料を0.5体積%以上15体積%以下の範囲で含むことが好ましく、1.5体積%以上11体積%以下の範囲で含むことがより好ましい。こうすれば、比誘電率が低く、Q値が大きい第2材料層を備えた積層体を容易に得ることができる。なお、第1調製粉に含まれる第1粒界部原料の割合と第2調製粉に含まれる第2粒界部原料の割合との差は、±5体積%以内であるものとしてもよい。こうすれば、第1成形体と第2成形体とが含む粒界部原料の割合を比較的近くすることができるため、第1成形体と第2成形体の熱膨張(収縮)差が小さく、それに伴う反りや剥離などが生じにくい。
(C)積層成形体製造工程
 この工程では、第1調製粉を成形した第1成形体と、第2調製粉を成形した第2成形体と、を積層した積層成形体を製造する。
 積層成形体製造工程において、第1調製粉や第2調製粉を成形する方法は、特に限定されるものではないが、例えば、プレス成形や、金型成形、押出成形、印刷、ドクターブレードなどによって成形してもよい。第1調製粉や第2調製粉は、単独で用いてもよいし、トルエンやイソプロピルアルコール(IPA)などの有機溶剤や、有機バインダー、可塑剤、分散剤などを加えて、グリーンシートや坏土状、ペースト状、スラリー状等にして用いてもよい。なお、第1調製粉を成形する方法と第2調製粉を成形する方法は、同じでも異なっていてもよい。
(D)焼結工程
 この工程では、上述した積層成形体を焼成(焼結)して積層体を製造する。焼結工程では、800℃以上1000℃以下の焼結温度で焼結するものとしてもよい。BaTiO3系の材料は、1000℃以下で焼結することが望まれているからである。1000℃以下での焼結であれば、例えば、比抵抗率の低いAg系電極やガラスを用いて焼結される低誘電材料と同時積層焼成を可能とすることができる。また、800℃以上で焼結すれば、密度が高く、誘電特性に優れた積層体が得られるからである。焼成時間は、例えば、1時間以上24時間以下の範囲内とすることができる。なお、この焼結工程では、第1粒子原料が第1粒子部、第1粒界部原料が第1粒界部、第2粒子原料が第2粒子部、第2粒界部原料が第2粒界部、となると考えられるが、この際、第1粒子部、第1粒界部、第2粒子部、第2粒界部は、各原料以外の成分を取り込んだり、各原料の一部を放出したりして、得られるものとしてもよい。
(積層デバイスの製造方法)
 本発明の積層デバイスの製造方法は、BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼結する積層焼結工程を含む。
 この積層焼結工程は、例えば、(A)第1調製粉製造工程、(B)第2調製粉製造工程、(C’)電極付き積層成形体製造工程、(D)焼結工程、を含むものとしてもよい。なお、(C’)電極付き積層成形体製造工程以外の工程は、積層体の製造方法と同様であるため、以下では、(C’)電極付き積層成形体製造工程について説明し、その他の工程については説明を省略する。
(C’)電極付き積層成形体製造工程
 この工程では、第1調製粉を成形した第1成形体と、第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した積層成形体を製造する。第1成形体や第2成形体については、上述した積層成形体製造工程と同様に成形すればよい。Ag合金としては、積層成形体の説明で例示したものが挙げられる。電極材料は、例えば、AgやAg合金の粉末を有機溶剤などを加えてペースト状やスラリー状とし、第1成形体及び第2成形体の少なくとも一方に塗布して成形してもよい。
 以上説明した、本発明の積層体、積層デバイス及びそれらの製造方法では、新規な積層体及び積層デバイスを提供できる。例えば、BaTiO3に助剤成分を固溶させた第1粒子原料を用いることで、残留する助剤成分を低減し、異種材間などにおける元素拡散を抑制できると考えられる。また、BaTiO3に助剤成分を固溶させた第1粒子原料と、BaTiO3と反応しにくい第1粒界部原料と、を用いるため、BaTiO3や助剤成分と第1粒界部原料との反応を抑制することができると考えられる。また、第1粒子部の粒子間にZnOを含む第1粒界部が存在することによって、第1材料層の絶縁劣化を抑制することができると考えられる。また、例えば、CuOなどを添加しなくても1000℃以下などの低温で焼結できるため、Ag系の電極と同時焼成を行った場合などでも、CuO成分の拡散によって電極が分断され電極の有効面積が小さくなってしまうことなどを抑制できる。また、一般に、積層体とAg系の電極とを同時焼成して積層デバイスを製造する場合、例えば1000℃以下などの低温で焼成する必要があるが、この積層体は、そうした低温で焼成可能なため、比較的容易に製造できる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 以下には、積層体を具体的に作製した例について、実験例として説明する。なお、実験例1~37,46,47,50~62が本発明の実施例に相当し、実験例38~45,48,49が比較例に相当する。なお、本発明は、以下の実施例に限定されるものではない。
[実験例1~62]
(高誘電材料調製粉(第1調製粉)の作製)
 表1に示す各組成となるように、BaTiO3、Bi23、ZnO、Mn34、CuO、BaCO3、TiO2、Nb25、SnO2、ZrO2の各原料粉末を秤量した。なお、チタン酸バリウムについては、純度99.9%、平均粒径0.5μmの市販品を使用した。他の原料粉末についても、純度99.9%以上の市販品を用いた(平均粒径は、Bi23:5μm、ZnO:5μm、Mn34:5μm、CuO:5μm、BaCO3:1μm、TiO2:1μm、Nb25:5μm、SnO2:5μm、ZrO2:0.5μm)。さらに、イソプロピロアルコール(IPA)を適量加え、ジルコニア玉石を用いて、ボールミルにて48時間湿式粉砕混合し、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒した。その混合粉を、大気中で表1に示す所定の温度で2時間事前合成し、高誘電材料事前合成粉(6.15g/cm3)を得た。事前合成前の混合粉については、N2-BET法により比表面積の測定を行った(表1)。
Figure JPOXMLDOC01-appb-T000001
 
 また、表2に示す各組成のガラス(平均粒径10μm)を用意した。
Figure JPOXMLDOC01-appb-T000002
 
 上述した高誘電材料事前合成粉(第1粒子原料)と、ガラス(第1粒界部原料)と、実験例50,51においてはさらにSrTiO3と、を表3,4に示す所定量添加し、さらにIPAを加え、ジルコニア玉石を用いて、ボールミルにて24時間湿式粉砕混合後、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒し、高誘電材料調製粉を得た。SrTiO3については、純度99%、平均粒径1μm、比表面積11.7m2/gの市販品を使用した。なお、実験例38~42では、事前合成粉ではなく、事前合成前の混合粉をそのまま用いた。また、実験例42~45では、ガラスを添加しなかった。さらに、実験例48,49では、Zn-B-Si-O系以外のガラスを添加した。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
(低融点材料調製粉(第2調製粉)の作成)
 BaOが18質量%、Nd23が34質量%、Bi23が10質量%、TiO2が39質量%となるように、BaO、Nd23、Bi23、TiO2の各原料粉末を秤量した。なお、各原料は純度99.9%以上の市販品を用いた。さらに、イソプロピルアルコール(IPA)を適量加え、ジルコニア玉石を用いて、ボールミルにて48時間湿式粉砕混合し、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒した。その混合粉を、大気中で1100℃で2時間事前合成し、低誘電材料事前合成粉(5.5g/cm3)を得た。
 この低誘電材料事前合成粉(第2粒子原料)に対して、表2に示すガラス(第2粒界部原料)を表3,4に示す所定量添加し、さらにIPAを加え、ジルコニア玉石を用いて、ボールミルにて24時間湿式粉砕混合後、200メッシュふるいを通したスラリーを乾燥し、100メッシュふるいにて整粒し、低誘電材料調製粉を得た。
(グリーンシートの作製)
 前述の高誘電材料調製粉及び低誘電材料調製粉に、ポリビニルブチラール等の有機バインダーや可塑剤、トルエン,IPAなどの有機溶剤を適量加えて、ボールミルで12時間湿式混合した後、ドクターブレード法によって、厚み20μmのグリーンシートを得た。このグリーンシートに内部電極パターンとして、表3,4に示すAg/Pd(質量比85wt%/15wt%)、もしくはAgのペーストを用いて、厚み4μmとなるように印刷した。
(積層セラミックコンデンサの作製)
 高誘電体のグリーンシートを17層(高誘電体層(電極に挟まれた部分):16層、高誘電体ダミー層:1層)積み重ね、さらに低誘電体のグリーンシートを3層(低誘電体層(電極に挟まれた部分):1層、低誘電体ダミー層:2層)積み重ねて、熱圧着し、圧着体(電極付き積層成形体)を得た。その圧着体にビア孔を形成し、そのビア孔に高誘電体側の内部電極および低誘電体側の内部電極とそれぞれ独立に導通を取れるようにビア導体を形成した。さらにそれぞれのビア導体と接続するように、圧着体の表面にそれぞれ外部電極を形成した。この圧着体から長さ6mm,幅2mmの成形体を切り出し、大気中、表3,4に示す温度で2時間焼結を行い、焼成体(積層デバイス)を得た。焼成後の各積層セラミックコンデンサのサイズは約4.8mm×1.6mmであり、高誘電体、および低誘電体の一層の厚みは15μmであり、Ag電極の厚みは2.5μmであった。図2に、こうした積層セラミッコンデンサ(但し、高誘電体層16層、低誘電体層1層のもの(各層数は電極に挟まれた層数))の概略の断面図を示す。積層セラミックコンデンサ50は、高誘電体層20a及び高誘電体ダミー層20bとしての第1材料層20と、内部電極52と、ビア導体54aを備えた外部電極54と、低誘電体層30a及び低誘電体ダミー層30bとしての第2材料層30と、内部電極56と、ビア導体58aを備えた外部電極58と、を備えている。
(低誘電体セラミックコンデンサの作製)
 低誘電体のグリーンシートを3層(低誘電体層(電極に挟まれた部分):1層、ダミー層:2層)積み重ねて、熱圧着し、圧着体を得て、それ以外は積層セラミックコンデンサと同様の作製方法で作製した。低誘電体の一層の厚みは15μmであり、Ag電極の厚みは2.5μmであった。
(高誘電材料の密度測定・化学分析用の焼成体作製)
 前述の高誘電材料調製粉をφ30で100kg/cm2にて一軸プレス成形し、さらに各サンプルの成形密度がグリーンシートの成形密度とほぼ同等な51-56%の範囲内になる圧力で冷間等方加圧法を行った。この成形体を表3,4に示す温度で2時間焼結を行い、密度測定、および化学分析用焼成体のサンプルを得た。
(高誘電材料の比誘電率・tanδ測定)
 各積層セラミックコンデンサのサンプルを恒温層に入れ、25℃で保持した後に、LCRメーターにて1kHz、1Vrmsにおける静電容量、およびtanδを測定した。容量、電極寸法、および誘電層の厚みから比誘電率を算出した。また、同様に、測定温度を-55℃~125℃の範囲で、静電容量を測定し、25℃での静電容量を基準として、-55℃~125℃の間における静電容量変化率の絶対値が最大である値を求め(容量最大変化率)、X7R特性(EIA規格:-55℃~125℃の範囲における容量変化率が25℃の容量に対して±15%以内)を満たすか評価した。X7R特性を満たす場合は「A」、X7R特性を満たさない場合は「B」とした。
(低誘電材料の比誘電率・Q値測定)
 各積層セラミックコンデンサ及び各低誘電体セラミックコンデンサのサンプルを恒温層に入れ、25℃で保持した後に、LCRメーターにて1kHz、1Vrmsにおける静電容量、およびQ値(tanδの逆数)を測定した。容量、電極寸法、および誘電層の厚みから比誘電率を算出した。
(高誘電材料の信頼性試験(高温加速寿命))
 各積層セラミックコンデンサのサンプルを、170℃にて、8V/μmの電界下で加速試験を行い、絶縁抵抗が1MΩ以下になるまでの時間を寿命時間とした。なお、絶縁抵抗にまったく劣化がみられず、1MΩ以上を1000時間以上維持した場合、寿命時間を1000h以上とした。また、加速試験開始直後に1MΩ以下となった場合、寿命時間を0hとした。
(ガラス由来の粒界相(第1粒界部)割合)
 第1材料層の走査型電子顕微鏡(SEM)の10000倍の像における、第1粒子部とはコントラストの異なる粒界相について、画像解析によりその部分の面積を算出し、全体の面積に占める割合を算出した。各実験例について、3視野の平均値を粒界相の占める粒界相面積の割合とした。コントラストの異なる粒界相は、FE-EPMAで元素分布を確認し、ガラス由来であり、ZnOを含むものであると判断した。
(高誘電体側のAg電極及び焼成体の観察)
 研磨により、積層セラミックコンデンサの断面を出し、走査型電子顕微鏡(SEM)にて、Ag電極及び焼成体の観察を行った。Ag電極の観察では、電極部位の電極成分以外の異物や空孔の観察を行った。電極層中のAgの占める面積が95%以上の場合は「A」、90%以上95%未満の場合は「B」、90%未満の場合は「C」とした。
(元素拡散・元素ムラ)
 研磨により、積層セラミックコンデンサの断面を出し、EPMAにて元素分布を観察した。低誘電体側でBaの元素ムラ、およびCuO等の低誘電体に含まれない元素が観察されない場合は「A」、観察された場合は「B」として評価した。
(反りの評価)
 反りの評価は、4.8mm×1.6mmの異種積層サンプルの反りが50μm以下の場合は「A」、50μmより大きく100μm以下の場合は「B」、100μmより大きい場合は「C」として評価した。
(高誘電材料の密度測定)
 密度測定用の焼成体を用意し、アルキメデス法により密度を測定した。
(高誘電材料の焼成体の組成)
 化学分析用の各焼成体を粉砕し、酸溶液で溶解させ、ICP発光分光分析法により、各成分を定量した。なお、ZrO2未添加の水準で検出されたZrO2は、ジルコニア玉石に起因するものと推察される。B23については、検出限界以下のため、0wt%と表記した。
(実験結果)
 図3に、本発明の実施例の一例として実験例3の高誘電材料のSEM写真を示す。また、図4に、本発明の比較例の一例として実験例42の高誘電材料のSEM写真を示す。図3より、BaTiO3、Bi23、ZnO、Mn34を含む混合粉を事前に焼成した高誘電材料事前合成粉と、Zn-B-Si-O系のガラスと、を混合した第1調製粉を成形して焼結したものでは、第1粒子部と第1粒界部とが区別できることがわかった。これに対して、図4より、高誘電材料事前合成粉やZn-B-Si-O系のガラスを用いない場合には、第1粒子部と第1粒界部との区別がなく、互いに反応してしまうことがわかった。実験例1~62について、高誘電体材料(第1材料層)の化学組成を表5,6に示した。また、実験例1~62について、低誘電材料(第2材料層)の比誘電率及びQ値、高誘電材料(第1材料層)の密度、比誘電率、tanδ、X7R特性、容量最大変化率、寿命時間、粒界相割合、Ag電極の観察結果、積層セラミックコンデンサ(積層体、積層デバイス)の元素拡散の有無及び反りの有無を表7,8に示した。表5~8に示すように、BaTiO3、Bi23、ZnO、Mn34を含む混合粉を事前に焼成した事前合成粉とガラスと、を混合した高誘電材料調製粉を成形して焼結した実験例1~37,46,47,50~62のものでは、新規な積層体が得られた。表5~8より、CuOを含まないか、CuOが少ない組成とすることで、異種材間の元素拡散を抑制しつつ、さらにAg電極を損なうこと無く、異種材積層のセラミックスコンデンサを作製できることがわかった。また、BaTiO3に助剤成分を事前に反応固溶させることで、残留する助剤成分を低減し、異種材間の元素拡散を抑制でき、異種材の同時焼成が可能となることがわかった。また、CuOが含まれないと1000℃以下などの低温での焼結が困難であるが、BaTiO3と反応固溶しにくい元素からなるガラスを用いることで、1000℃以下の焼結が可能となることがわかった。また、BaTiO3と助剤成分とを事前合成することで、ガラスを添加した場合でも、良好な誘電率の温度特性(静電容量の温度変化率)が得られることがわかった。なお、事前合成しないとガラスと助剤成分が先に反応して安定な物質となってしまうことにより、助剤が固溶していないBaTiO3が多量に残留し、良好な温度特性が得られないことがあった。また、異種材間のガラス量の差異を小さくすることで、焼成収縮の違いを抑制し、反りを抑制できることがわかった。また、こうした積層体、積層デバイス及びそれらの製造方法では、異種材料を一体焼成により一体化できるため、積層体や積層デバイスを小さくすることができるし、部品点数を減らすことができるし、工数を削減することができるし、作業時間を短縮することができることがわかった。また、高誘電材料および低誘電材料の異種材同士を低温同時積層焼成しても、低誘電材については、低誘電材のみで焼成したときと同等の特性が得られ、高誘電材は誘電率1000以上でX7R特性を満たすものとすることができ、反りの少ない異種材料を積層した積層体とすることができることがわかった。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
 この出願は、2014年2月4日に出願された米国仮出願第61/935,422号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、電子機器の分野に利用可能である。
 10 積層体、20 第1材料層、20a 高誘電体層、20b 高誘電体ダミー層、22 第1粒子部、24 第1粒界部、30 第2材料層、30a 低誘電体層、30b 低誘電体ダミー層、32 第2粒子部、34 第2粒界部、50 積層セラミックコンデンサ、52 内部電極、54 外部電極、54a ビア導体、56 内部電極、58 外部電極、58a ビア導体。

Claims (27)

  1.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子部と、前記第1粒子部の粒子間に存在しZnOを含む第1粒界部と、を含み、第1の誘電率を有する第1材料層と、
     第2粒子部と、前記第2粒子部の粒子間に存在する第2粒界部と、を含み、前記第1の誘電率よりも低い第2の誘電率を有する第2材料層と、
     を備えた、積層体。
  2.  前記第1材料層は、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrOからなる群より選ばれる1以上を含む、請求項1に記載の積層体。
  3.  前記第1材料層は、Bi23、ZnO及びMn34を含む、請求項1又は2に記載の積層体。
  4.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結して得られた、請求項1~3のいずれか1項に記載の積層体。
  5.  前記第1粒界部原料は、Zn-B-O系のガラスであり、前記第2粒界部原料は、Zn-B-O系のガラス、B-Si-Ba-Al-O系のガラス、Si-B-Na-O系のガラス、からなる群より選ばれる1以上である、請求項4に記載の積層体。
  6.  前記第1材料層は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下である、請求項1~5のいずれか1項に記載の積層体。
  7.  前記第1材料層は、SnO2、ZrO2、Nb25、SrOからなる群より選ばれる1以上を含み、前記SnO2の含有量は1.0質量%以下、前記ZrO2の含有量は2.5質量%以下、前記Nb25の含有量は1.0質量%以下、前記SrOの含有量は10質量%以下である、請求項1~6のいずれか1項に記載の積層体。
  8.  前記第1材料層は、比誘電率が1000以上3000以下である、請求項1~7のいずれか1項に記載の積層体。
  9.  前記第1材料層は、誘電正接tanδが0.05以下である、請求項1~8のいずれか1項に記載の積層体。
  10.  前記第2粒子部は、Ba及びTiのうち少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含む、請求項1~9のいずれか1項に記載の積層体。
  11.  前記第2材料層は、比誘電率が5以上200以下である、請求項1~10のいずれか1項に記載の積層体。
  12.  請求項1~11のいずれか1項に記載の積層体と、
     前記積層体と一体化されAg又はAg合金である電極と、
     を備えた積層デバイス。
  13.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、を積層した積層成形体を焼結する積層焼結工程、
     を含む、積層体の製造方法。
  14.  前記第1粒子原料は、BaTiO3原料と、Ba、Ti以外の金属元素とを含む第1混合粉を焼成したものである、請求項13に記載の積層体の製造方法。
  15.  前記第1混合粉は、Bi23、ZnO、Mn34、ZrO2、SnO2、Nb25、SrTiO3からなる群より選ばれる1以上を含む、請求項14に記載の積層体の製造方法。
  16.  前記第1混合粉は、Bi23、ZnO及びMn34を含む、請求項14又は15に記載の積層体の製造方法。
  17.  前記第1混合粉は、Bi23を3.5質量%以上11質量%以下、ZnOを0.6質量%以上5.0質量%以下、Mn34を0.01質量%以上1.0質量%以下の範囲で含み、CuOの含有量が0.4質量%以下である、請求項14~16のいずれか1項に記載の積層体の製造方法。
  18.  前記第1混合粉は、SnO2、ZrO2、Nb25からなる群より選ばれる1以上を含み、前記SnO2の含有量は15質量%以下、前記ZrO2の含有量は25質量%以下、前記Nb25の含有量は1.0質量%以下である、請求項14~17のいずれか1項に記載の積層体の製造方法。
  19.  前記第1調製粉は、前記第1粒界部原料を0.5体積%以上15体積%以下の範囲で含む、請求項13~18のいずれか1項に記載の積層体の製造方法。
  20.  前記第2調製粉は、前記第2粒界部原料を0.5体積%以上15体積%以下の範囲で含む、請求項13~19のいずれか1項に記載の積層体の製造方法。
  21.  前記第1調製粉は、前記第1粒子原料として、組成の異なる2種以上の粒子を含む、請求項13~20のいずれか1項に記載の積層体の製造方法。
  22.  前記第1調製粉は、さらに、SrTiO3を含む、請求項13~21のいずれか1項に記載の積層体の製造方法。
  23.  前記積層焼結工程では、前記積層成形体を800℃以上1000℃以下の焼結温度で焼結する、請求項13~22のいずれか1項に記載の積層体の製造方法。
  24.  前記第2粒子原料は、Ba及びTiのうち少なくとも一方を含むタングステンブロンズ構造を持つ複合酸化物を含む、請求項13~23のいずれか1項に記載の積層体の製造方法。
  25.  前記第1粒界部原料は、Zn-B-O系のガラスであり、前記第2粒界部原料は、Zn-B-O系のガラス、B-Si-Ba-Al-O系のガラス、Si-B-Na-O系のガラス、からなる群より選ばれる1以上である、請求項13~24のいずれか1項に記載の積層体の製造方法。
  26.  前記第1調製粉に含まれる前記第1粒界部原料の割合(体積%)と前記第2調製粉に含まれる前記第2粒界部原料の割合(体積%)との差が±5体積%以内である、請求項13~25のいずれか1項に記載の積層体の製造方法。
  27.  BaTiO3の一部にBa、Ti以外の金属元素を含む化合物である第1粒子原料とZnOを含む第1粒界部原料とを含む第1調製粉を成形した第1成形体と、前記第1粒子原料よりも比誘電率が小さい第2粒子原料と第2粒界部原料とを含む第2調製粉を成形した第2成形体と、Ag又はAg合金を含む電極材料と、を積層した電極付き積層成形体を焼結する積層焼結工程、
     を含む、積層デバイスの製造方法。
PCT/JP2015/052984 2014-02-04 2015-02-03 積層体、積層デバイス及びそれらの製造方法 WO2015119113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560986A JP5951910B2 (ja) 2014-02-04 2015-02-03 積層体、積層デバイス及びそれらの製造方法
CN201580004697.2A CN105934420B (zh) 2014-02-04 2015-02-03 层叠体、层叠器件及它们的制造方法
KR1020167020629A KR101884104B1 (ko) 2014-02-04 2015-02-03 적층체, 적층 디바이스 및 이들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461935422P 2014-02-04 2014-02-04
US61/935422 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119113A1 true WO2015119113A1 (ja) 2015-08-13

Family

ID=53777918

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/052984 WO2015119113A1 (ja) 2014-02-04 2015-02-03 積層体、積層デバイス及びそれらの製造方法
PCT/JP2015/052985 WO2015119114A1 (ja) 2014-02-04 2015-02-03 積層体、積層デバイス及びそれらの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052985 WO2015119114A1 (ja) 2014-02-04 2015-02-03 積層体、積層デバイス及びそれらの製造方法

Country Status (4)

Country Link
JP (2) JP5951911B2 (ja)
KR (2) KR101948997B1 (ja)
CN (2) CN105934420B (ja)
WO (2) WO2015119113A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505516B (zh) * 2017-07-13 2020-09-29 苏州浪潮智能科技有限公司 一种模拟测试cpu散热功率装置
WO2019040864A1 (en) * 2017-08-25 2019-02-28 Sabic Global Technologies B.V. SUBSTRATE COMPRISING POLYMER AND COLD FRITTED CERAMIC MATERIAL
CN115321954B (zh) * 2022-08-09 2023-07-07 广东环波新材料有限责任公司 陶瓷基板的制备方法以及低温共烧陶瓷基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212119A (ja) * 1982-06-03 1983-12-09 松下電器産業株式会社 複合誘電体
JPH0335515A (ja) * 1989-07-02 1991-02-15 Tdk Corp 複合コンデンサの構造
JPH11278926A (ja) * 1998-03-30 1999-10-12 Kyocera Corp 誘電体磁器
JP2009132606A (ja) * 2007-11-29 2009-06-18 Samsung Electro Mech Co Ltd 誘電体組成物及びこれを用いた積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板
JP2010235327A (ja) * 2009-03-30 2010-10-21 Tdk Corp 誘電体磁器組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3367039D1 (en) * 1982-05-28 1986-11-20 Matsushita Electric Ind Co Ltd Thin film electric field light-emitting device
JP2652229B2 (ja) 1988-12-29 1997-09-10 株式会社住友金属エレクトロデバイス 積層回路セラミック基板
JPH09142026A (ja) 1995-09-21 1997-06-03 Ricoh Co Ltd 感熱記録材料
CN1212443A (zh) * 1997-09-19 1999-03-31 广东肇庆风华电子工程开发有限公司 高介高性能中温烧结片式多层瓷介电容器瓷料
DE19841487C2 (de) * 1998-09-10 2002-03-14 Epcos Ag Reduktionsstabile Keramikmasse und ihre Verwendung
JP2004063812A (ja) 2002-07-29 2004-02-26 Kyocera Corp 多層配線基板の製法
US20060163768A1 (en) 2005-01-26 2006-07-27 Needes Christopher R Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof
JP4840935B2 (ja) * 2007-09-28 2011-12-21 双信電機株式会社 セラミック多層基板
WO2009061627A1 (en) * 2007-11-06 2009-05-14 Ferro Corporation Lead and cadmium free, low temperature fired x7r dielectric ceramic composition and method of making
CN101613200B (zh) * 2009-07-21 2013-03-13 西安交通大学 一种低温烧结微波介质陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212119A (ja) * 1982-06-03 1983-12-09 松下電器産業株式会社 複合誘電体
JPH0335515A (ja) * 1989-07-02 1991-02-15 Tdk Corp 複合コンデンサの構造
JPH11278926A (ja) * 1998-03-30 1999-10-12 Kyocera Corp 誘電体磁器
JP2009132606A (ja) * 2007-11-29 2009-06-18 Samsung Electro Mech Co Ltd 誘電体組成物及びこれを用いた積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板
JP2010235327A (ja) * 2009-03-30 2010-10-21 Tdk Corp 誘電体磁器組成物

Also Published As

Publication number Publication date
CN105934420A (zh) 2016-09-07
KR101884104B1 (ko) 2018-07-31
KR20160105468A (ko) 2016-09-06
CN105916682A (zh) 2016-08-31
JPWO2015119114A1 (ja) 2017-03-23
WO2015119114A1 (ja) 2015-08-13
KR101948997B1 (ko) 2019-02-15
JP5951910B2 (ja) 2016-07-13
JPWO2015119113A1 (ja) 2017-03-23
KR20160103113A (ko) 2016-08-31
JP5951911B2 (ja) 2016-07-13
CN105916682B (zh) 2018-06-22
CN105934420B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
JP4591448B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
TWI501273B (zh) Laminated ceramic capacitors
KR101575614B1 (ko) 유전체 세라믹 및 적층 세라믹 콘덴서
US8445396B2 (en) Dielectric ceramic and laminated ceramic capacitor
JP2004224653A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP7131955B2 (ja) 積層セラミックコンデンサおよびその製造方法
US20090046410A1 (en) Dielectric ceramics and multi-layer ceramic capacitor using same
JP2004262717A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
TWI466845B (zh) Laminated ceramic capacitors
TWI480904B (zh) 積層陶瓷電容器
JP5478672B2 (ja) 積層セラミックコンデンサ
JP2012169620A (ja) 積層セラミック電子部品及びその製造方法
JP2004155649A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP2006232629A (ja) 誘電体セラミック及び誘電体セラミックの製造方法、並びに積層セラミックコンデンサ
JP5951910B2 (ja) 積層体、積層デバイス及びそれらの製造方法
JP4775583B2 (ja) 誘電体粒子集合体、それを用いた低温焼結誘電体磁器組成物及びそれを用いて製造される低温焼結誘電体磁器
CN101970373A (zh) 介电陶瓷及层叠陶瓷电容器
JP6539589B2 (ja) 誘電体磁器組成物、誘電体デバイス及びそれらの製造方法
JP2006111468A (ja) 誘電体磁器組成物の製造方法、電子部品及び積層セラミックコンデンサ
JP5354185B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
JP5322723B2 (ja) 積層セラミックコンデンサ
JP2005123252A (ja) 積層型セラミックコンデンサ及びその製造方法
JP2010199268A (ja) 積層セラミックコンデンサ
JP2006169050A (ja) 誘電体磁器組成物及び磁器コンデンサ並びにこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560986

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167020629

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745784

Country of ref document: EP

Kind code of ref document: A1