WO2015118849A1 - リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法 - Google Patents

リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2015118849A1
WO2015118849A1 PCT/JP2015/000445 JP2015000445W WO2015118849A1 WO 2015118849 A1 WO2015118849 A1 WO 2015118849A1 JP 2015000445 W JP2015000445 W JP 2015000445W WO 2015118849 A1 WO2015118849 A1 WO 2015118849A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
lithium ion
secondary battery
carbon
Prior art date
Application number
PCT/JP2015/000445
Other languages
English (en)
French (fr)
Inventor
克典 西浦
雅亮 猿山
佳広 坂田
仁志 大西
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2015561215A priority Critical patent/JP6396343B2/ja
Priority to KR1020167021180A priority patent/KR101898359B1/ko
Priority to CN201580006956.5A priority patent/CN105960724B/zh
Priority to US15/116,123 priority patent/US10297817B2/en
Priority to EP15746829.9A priority patent/EP3104434B1/en
Publication of WO2015118849A1 publication Critical patent/WO2015118849A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, a composite paste for a negative electrode for a lithium ion secondary battery, and a method for producing a negative electrode for a lithium ion secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for various portable devices because of their high energy density, high voltage, and high capacity. Furthermore, in recent years, it has begun to be used for power tools such as electric tools, medium-sized and large-sized devices such as electric vehicles and electric bicycles.
  • Silicon oxide (SiO x ) is attracting attention as such a material, but since this compound has a large volume expansion / contraction associated with the charge / discharge reaction, particles are pulverized little by little during each charge / discharge cycle of the battery. It has also been known that Si deposited on the surface reacts with the non-aqueous electrolyte to increase the irreversible capacity, and the battery swells due to charge / discharge. As a result, there is a case in which a so-called cycle characteristic lowering phenomenon that the capacity decreases due to repeated charging and discharging is exhibited. Various studies have been made to suppress this deterioration in cycle characteristics.
  • Patent Document 3 For example, a method using a composite material of SiO x and a carbon material as a negative electrode active material (Patent Document 3), a method using graphite particles satisfying specific requirements as a carbon material (Patent Document 4), and the like have been proposed.
  • Battery capacity Ah
  • discharge capacity characteristics cycle characteristics
  • the electrode active material is required to be a material having high conductivity.
  • the present invention has been made in view of the above technical background, and has an object to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery having high capacity and excellent cycle characteristics and load characteristics. To do.
  • the gist of the present invention is as follows.
  • a negative electrode for a lithium ion secondary battery including a laminate of an active material layer and a current collector The total pore volume and average pore diameter measured by the nitrogen gas adsorption method of the carbon particles (B) are 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 1 cm 3 / g, and 20
  • a negative electrode for a lithium ion secondary battery characterized by having a thickness of ⁇ 50 nm.
  • the ratio of the carbon coating (C) is 3 to 20% by mass.
  • the average particle diameter D 50 (B) of the carbon particles (B) is 2.0 to 8.0 times the average particle diameter D 50 (A) of the alloy-based material (A) [1]
  • the content of the alloy-based material (A) in the negative electrode active material layer is 10 to 60% by mass when the total of the alloy-based material (A) and the carbon particles (B) is 100% by mass. % Of the negative electrode for a lithium ion secondary battery according to any one of [1] to [4].
  • the binder (D) is polyimide or polyamideimide.
  • the carbon fiber has a fiber diameter of 2 to 1000 nm.
  • a lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to any one of [1] to [11].
  • the total pore volume and average pore diameter measured by the nitrogen gas adsorption method of the carbon particles (B) are 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 1 cm 3 / g, and 20
  • a negative electrode mixture paste for lithium ion secondary batteries characterized by satisfying a range of ⁇ 50 nm.
  • the binder material (D ′) is at least one selected from the group consisting of polyimide, a polyimide precursor, and polyamideimide, and the solvent (E) is N-methyl-2-pyrrolidone or N
  • a method for producing a negative electrode for a lithium ion secondary battery comprising a step of applying and drying a negative electrode mixture paste for a lithium ion secondary battery on a current collector,
  • the negative electrode mixture paste for a lithium ion secondary battery includes an alloy material (A) containing silicon or tin as a constituent element, a carbon coating (C) covering the surface of the alloy material (A), carbon particles ( B), containing the binder material (D ′) and the solvent (E), the total pore volume and the average pore diameter of the carbon particles (B) measured by the nitrogen gas adsorption method are each 1.0.
  • the lithium ion secondary battery using the negative electrode of the lithium ion secondary battery of the present invention has a high capacity and exhibits good cycle characteristics and load characteristics.
  • the negative electrode for a lithium ion secondary battery of the present invention comprises an alloy-based material (A) containing silicon or tin as a constituent element, a carbon coating (C) covering the surface of the alloy-based material (A), carbon particles (B), and A negative electrode for a lithium ion secondary battery comprising a laminate of a negative electrode active material layer containing a binder (D) and a current collector.
  • This negative electrode active material layer comprises an alloy material (A) containing silicon or tin as a constituent element, a carbon coating (C) covering the surface of the alloy material (A), carbon particles (B), a binder material ( It is obtained by applying and drying a negative electrode mixture paste containing D ′) and a solvent (E) on a current collector.
  • a negative electrode for a lithium ion secondary battery of the present invention will be described in the order of a negative electrode mixture paste and a negative electrode (negative electrode sheet), and finally a lithium ion secondary battery using the negative electrode will be described.
  • high capacity means the time taken to discharge to 2.3 V at a discharge rate of 0.05 C after charging to 4.2 V at a charge rate of 0.05 C, and the negative electrode active material It means that the initial discharge capacity (unit: mAh / g) calculated from the mass is larger than 340 mAh / g which is the average of the initial discharge capacity of the existing carbon-based negative electrode.
  • the charge rate and discharge rate (C rate) are values obtained by dividing the current value (A) by the capacity (Ah).
  • the charge rate and the discharge rate are also referred to as a charge / discharge rate.
  • a charge / discharge rate when a battery having a capacity of 1 Ah is charged or discharged at 0.05 A is expressed as 0.05 C.
  • the negative electrode mixture paste according to the present invention includes an alloy material (A) containing silicon or tin as a constituent element, a carbon coating (C) that covers the surface of the alloy material (A), carbon particles (B), It comprises a binder material (D ′) and a solvent (E).
  • A alloy material
  • C carbon coating
  • B carbon particles
  • E solvent
  • Alloy-based material containing silicon or tin as a constituent element (A) (Material containing silicon as a constituent element)
  • alloy materials containing silicon as a negative electrode active material of the present invention include (i) silicon fine particles, (ii) tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium , Germanium, bismuth, antimony or chromium and an alloy of silicon, (iii) a compound of boron, nitrogen, oxygen or carbon and silicon, and (iv) a compound of boron, nitrogen, oxygen or carbon and silicon (ii) And those having a metal exemplified in (1).
  • alloys or compounds containing silicon as a constituent element include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2, MnSi 2, NbSi 2 , TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO x (0.2 ⁇ x ⁇ 1.5) and LiSiO etc. Is included.
  • alloy materials containing tin as a constituent element as a negative electrode active material of the present invention include (i) silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony Or an alloy of chromium and tin, (ii) a compound of oxygen or carbon and tin, and (iii) a compound of oxygen or carbon and tin and the metal exemplified in (i).
  • the alloy or compound containing tin as a constituent element include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
  • the alloy-based material containing at least one of silicon and tin as a constituent element may be a simple substance, an alloy or a compound of silicon or tin, or two or more of them, or one or more phases thereof. May be at least partially included.
  • the simple substance is a simple substance in a general sense (may contain a small amount of impurities), and does not necessarily mean 100% purity.
  • the surface of these active materials may be coat
  • the alloy material (A) containing silicon or tin as a constituent element is preferably a silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.5).
  • SiO x (0.5 ⁇ x ⁇ 1.5) is a general term for amorphous silicon oxides usually obtained from silicon dioxide (SiO 2 ) and metal silicon (Si) as raw materials. It is the general formula to represent.
  • SiO x (0.5 ⁇ x ⁇ 1.5) if x is less than 0.5, the proportion of the Si phase increases, so that the volume change during charging / discharging becomes too large, and the lithium ion secondary The cycle characteristics of the battery deteriorate.
  • x exceeds 1.5 the ratio of the Si phase decreases and the energy density decreases.
  • a more preferable range of x is 0.7 ⁇ x ⁇ 1.2.
  • the compounding amount of the alloy-based material (A) in the negative electrode mixture paste according to the present invention is 100% by mass when the total of the alloy-based material (A) as the negative electrode active material and the carbon particles (B) described later is 100% by mass.
  • the blending ratio of the alloy material (A) is 10% by mass to 60% by mass, preferably 25% by mass to 50% by mass, and more preferably 31% by mass to 50% by mass.
  • the lithium ion secondary battery using the negative electrode active material of this blending ratio has a negative electrode capacity deterioration due to the volume change of the active material. Since it can suppress, the cycle life of a lithium ion secondary battery can be extended.
  • Carbon coating (C) covering the surface of the alloy-based material (A) is characterized by including a carbon coating (C) that covers the surface of an alloy-based material (A) containing silicon or tin as a constituent element.
  • a carbon coating (C) that covers the surface of an alloy-based material (A) containing silicon or tin as a constituent element.
  • the conductive network in the negative mix layer containing a negative electrode active material can be formed favorably, and the load characteristic of a battery can be improved.
  • Examples of the method for coating the surface of the alloy material (A) with the carbon coating (C) include a method of performing thermal CVD treatment at a temperature of 800 ° C. or higher and 1300 ° C. or lower in an atmosphere of organic gas and / or steam.
  • the amount of the carbon coating (C) is usually 3 to 20% by mass, preferably 3 to 15% by mass, more preferably 4 to 10% by mass with respect to the alloy-based material (A).
  • a carbon coating (C) can be formed on the substrate.
  • the carbon coating amount By setting the carbon coating amount to 20% by mass or less, the alloy-based material (A) in the negative electrode mixture paste becomes relatively high, so that a high capacity can be maintained.
  • the carbon coating amount By setting the carbon coating amount to 3% by mass or more, the electron conductivity of the alloy-based material (A) can be made sufficient, and the battery capacity can be made sufficient.
  • the time of this thermal CVD process is suitably set in relation to the amount of coating carbon. In the case where silicon oxide is contained in the alloy material (A) which is a coating target substance, the silicon oxide is changed (disproportionated) to a silicon-silicon oxide composite by the action of heat by this treatment.
  • the carbon coating treatment is performed by heating at a temperature of preferably 700 ° C. or higher, more preferably 800 ° C. or higher, particularly preferably 900 ° C. to 1200 ° C.
  • the higher the treatment temperature the fewer impurities remain, and the carbon coating (C) containing carbon having high conductivity can be formed.
  • hydrocarbon-based gas a gas that can be thermally decomposed at the above heat treatment temperature to generate carbon (graphite) is selected particularly in a non-oxidizing atmosphere.
  • hydrocarbon gases include hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, cyclohexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, and naphthalene.
  • aromatic hydrocarbons such as phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene and phenanthrene.
  • Carbon particles (B) which are one of the constituent materials of the negative electrode material mixture paste according to the present invention contain a graphite material.
  • the carbon particles (B) may be graphite particles themselves, particles composed of graphite particles and a carbonaceous layer existing on the surface thereof (that is, carbon-coated graphite particles), or carbon-coated graphite.
  • the particles may be particles or particles obtained by attaching carbon fibers to graphite particles, but graphite particles are preferably used.
  • the total pore volume and average pore diameter measured by the nitrogen gas adsorption method of the carbon particles (B) are usually 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 1 cm 3 / g and 20 respectively. It is characterized by simultaneously satisfying the range of ⁇ 50 nm, preferably satisfying the range of 1.5 ⁇ 10 ⁇ 2 to 9.0 ⁇ 10 ⁇ 2 cm 3 / g and 25 to 40 nm, more preferably 2.0 The ranges of ⁇ 10 ⁇ 2 to 7.0 ⁇ 10 ⁇ 2 cm 3 / g and 25 to 35 nm are simultaneously satisfied.
  • the carbon particles (B) are preferably secondary aggregates formed by aggregating or bonding the primary particles containing the graphite material.
  • the shape of the primary particles of the carbon particles (B) is preferably flat.
  • carbon particles having such a shape are used, good conductivity is maintained even after the charge / discharge cycle, so that an increase in electrode resistance is suppressed and the cycle life of the lithium ion secondary battery can be extended.
  • Examples of the carbon particles (B) made of flat primary particles include MAG (registered trademark).
  • the average particle diameter D 50 (B) By setting the average particle diameter D 50 (B) to 2.0 or more of the average particle diameter D 50 (A) of the alloy-based material (A), the volume change of the active material accompanying the charge / discharge cycle is reduced, It is difficult for the capacity to decrease due to a part of the electrode having poor conduction.
  • the average particle diameter D 50 (B) by making the average particle diameter D 50 (B) not more than 8.0 times the average particle diameter D 50 (A) of the alloy-based material (A), the specific surface area of the active material does not become too large, The capacity is less likely to decrease due to the decomposition reaction of the electrolytic solution.
  • the negative electrode mixture paste according to the present invention may include a conductive material as a conductive auxiliary agent (C ′).
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the non-aqueous secondary battery.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black
  • carbon fiber carbon fiber
  • metal powder copper, nickel, aluminum, silver, etc.
  • metal fiber polyphenylene derivative, and the like, among which carbon fiber is preferred.
  • the conductive additive (C ′) preferably comprises carbon fibers having an aspect ratio of 10 to 1000, preferably 10 to 500.
  • the volume expansion of the alloy-based material (A) is absorbed by the elastic deformation of the carbon particles (B) inside to suppress the swelling of the electrode.
  • the pores of the carbon particles (B) are reduced in volume due to elastic deformation, and therefore, it is expected that the electrolyte solution retention is reduced. If the electrolyte solution retention is reduced, the ionic conductivity is lowered, which not only causes a reduction in capacity and load characteristics, but also the utilization rate of the active material is not uniform, resulting in a local increase in utilization rate. The active material deteriorates.
  • the contact between the conductive auxiliary agents (C ′) decreases due to repeated volume changes of the alloy-based material (A).
  • the electrode resistance increases as the cycle increases.
  • the amount of effective active material decreases due to conduction interruption.
  • an increase in electrode resistance and a decrease in the amount of effective active material can be suppressed by using an active material that can suppress electrode swelling, such as the carbon particles (B) in the above form.
  • the method for producing carbon fibers used as the conductive additive (C ′) in the present invention is not particularly limited. Examples thereof include a method in which a polymer is formed into a fiber by a spinning method and heat-treated in an inert atmosphere, and a vapor phase growth method in which an organic compound is reacted at a high temperature in the presence of a catalyst. Carbon fibers obtained by vapor phase growth, so-called vapor phase growth carbon fibers, have a crystal growth direction substantially parallel to the fiber axis, so that the crystallinity in the fiber length direction of the graphite structure tends to be high, and relatively short fibers. A carbon fiber having a diameter, high conductivity, and high strength is obtained.
  • the content of the conductive additive (C ′) is usually 0.5 to 10% by mass, preferably based on the total mass of the alloy-based material (A) and the carbon particles (B) as the negative electrode active material. Is 1 to 8% by mass, more preferably 2 to 5% by mass. In the electrode, the range of 0.05 to 20% by mass is preferable with respect to the total mass of the electrode, preferably 0.1 to 15% by mass, and more preferably 0.5 to 10% by mass.
  • the active material ratio in the electrode can be made sufficient, and the capacity of the lithium ion battery can be made sufficient.
  • the said electrolyte solution permeable effect with respect to an electrode can fully be expressed by content being 0.5 mass% or more.
  • the content of the conductive auxiliary agent (C ′) can be adjusted to the above range by adding each component so as to be the ratio at the time of preparing the composite paste.
  • the above aspect ratio can be calculated by dividing the fiber length by the fiber diameter obtained by SEM image analysis, for example.
  • the preferred fiber diameter range varies depending on the type of carbon fiber used and the fiber diameter, but it is 2 to 1000 nm, more preferably 2 to 500 nm.
  • Examples of the conductive aid (C ′) having a preferable range of the fiber diameter include vapor grown carbon fiber (VGCF) and carbon nanotube (CNT). You may use the said conductive support agent (C ') individually or in combination of 2 or more types.
  • a conductive auxiliary agent (C′) in the present invention a conductive auxiliary agent (C′-1) satisfying the above aspect ratio and a conductive auxiliary agent (C′-2) not satisfying the above aspect ratio may be used in combination.
  • a typical example of the conductive auxiliary agent (C′-2) that does not satisfy the aspect ratio is a carbon material.
  • the conductive auxiliary agent (C′-2) is preferably a conductive carbon material.
  • the type of the conductive carbon material is not particularly limited, but may be graphite (graphite) such as artificial graphite or natural graphite, or an organic pyrolysis product under various pyrolysis conditions.
  • Binder material (D ′) and solvent (E) The binder material (D ′) is used as a binder for fixing the negative electrode active material and the conductive additive (C ′) made of the alloy material (A) and the carbon particles (B) to the current collector.
  • the used amount of the binder material (D ′) is 0.5 to 0.5 based on the total amount of the alloy-based material (A), the carbon particles (B), the conductive auxiliary agent (C ′) and the binder material (D ′). 50% by mass is preferable.
  • the amount of the binder material (D ′) used is 0.5% by mass or more, so that the moldability of the electrode is further increased. Can be.
  • the binder material (D ′) includes fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), polyimide, polyimide precursor, polyamide Examples thereof include imide-based polymers such as imides and alkoxysilyl group-containing resins. Of these, polyimides having excellent binding properties, polyimide precursors and polyamideimides are preferred.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • imide-based polymers such as imides and alkoxysilyl group-containing resins.
  • polyimides having excellent binding properties polyimide precursors and polyamideimides are preferred.
  • the solvent (E) at the time of preparing the composite paste is not particularly limited as long as it can uniformly dissolve or disperse the binder material (D '), the active material, and other substances optionally contained.
  • the solvent (E) is preferably an aprotic polar solvent, such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3. Examples include -dimethyl-2-imidazolidinone. These solvents may be used alone or in combination of two or more.
  • polyimide a polyimide precursor or polyamideimide is used as the binder material (D ')
  • N-methyl-2-pyrrolidone or N, N-dimethylacetamide is used as the solvent (E).
  • the amount of the solvent is appropriately set in consideration of the viscosity of the composite paste. It is preferable to blend 50 to 900 parts by mass, and more preferably 65 to 500 parts by mass with respect to 100 parts by mass of the solid content contained in the composite paste.
  • a negative electrode paste for a lithium ion secondary battery includes a material for electrode binder (D ') for a lithium ion secondary battery or a varnish containing the material and a negative electrode active material component Alloy-based material (A), carbon particles (B), carbon coating (C), conductive additive (C ′), solvent (E), and various additions as necessary It can be manufactured by mixing and stirring or kneading agents. Examples of the mixing method of the raw materials include the following two methods, but are not limited thereto. i) A conductive additive (C ′) is added to a varnish containing an electrode binder material (D ′) for a lithium ion secondary battery and kneaded.
  • An active material and a solvent are added to the obtained kneaded material to obtain a negative electrode mixture paste.
  • a conductive additive (C ′) is added to a varnish containing an electrode binder material (D ′) for a lithium ion secondary battery, and an active material is further added and kneaded.
  • a solvent is added to the kneaded material obtained and stirred to obtain a negative electrode mixture paste.
  • the stirring may be normal stirring using a stirring blade or the like, or stirring using a rotation / revolution mixer or the like. For the kneading operation, a kneader or the like can be used.
  • the negative electrode for a lithium ion secondary battery of the present invention is a laminate of a current collector and a negative electrode active material layer.
  • the negative electrode for a lithium ion secondary battery may be a sheet electrode.
  • Negative electrode active material layer is a cured product of the above-described negative electrode mixture paste for lithium ion secondary batteries. That is, it contains an alloy-based material (A) that is a negative electrode active material, carbon particles (B), and a binder (D) that binds the carbon particles (B), and further contains other components (such as a conductive auxiliary agent (C ′)). Optionally included.
  • the binder (D) is obtained by curing the binder material (D ′) contained in the negative electrode mixture paste by drying.
  • the binder (D) is preferably a polyimide or polyamideimide obtained by heating a binder material (D ′) selected from polyimide, a precursor of polyimide and polyamideimide.
  • the thickness of the negative electrode active material layer is not particularly limited and is preferably, for example, 5 ⁇ m or more, more preferably 10 ⁇ m or more. Moreover, it is preferable to set it as 200 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 75 micrometers or less. If the negative electrode active material layer is too thin, the practicality as an electrode is lacking due to the balance with the particle size of the active material. On the other hand, if the thickness is too thick, it may be difficult to obtain a sufficient Li occlusion / release function for charge / discharge at a high charge / discharge rate.
  • the applied negative electrode mixture paste can be dried, for example, by heat curing.
  • Heat curing can usually be performed under atmospheric pressure, but may be performed under pressure or under vacuum.
  • the atmosphere at the time of heating and drying is not particularly limited, but is usually preferably performed in an atmosphere of air, nitrogen, helium, neon, argon, or the like, and more preferably in an atmosphere of nitrogen or argon as an inert gas.
  • the heating temperature in the heat curing of the negative electrode mixture paste is usually 150 ° C. to 500 ° C. for 1 minute to 24 hours.
  • the temperature is preferably 200 ° C. to 350 ° C. for 1 minute to 20 hours in order to obtain a reliable negative electrode.
  • the positive electrode current collector is a thin film
  • its thickness is arbitrary, but it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. Moreover, it is 100 mm or less normally, Preferably it is 1 mm or less, More preferably, it is 50 micrometers or less. If the thickness is less than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.
  • the conductive material is not particularly limited as long as it can be mixed with an appropriate amount in the active material to impart conductivity, but is usually carbon powder such as acetylene black, carbon black, and graphite, various metal fibers, powder, and foil. Etc.
  • the thickness of the positive electrode active material layer is usually about 10 to 200 ⁇ m.
  • the density of the positive electrode active material layer (calculated from the mass and thickness of the positive electrode mixture layer per unit area laminated on the current collector) is preferably 3.0 to 4.5 g / cm 3.
  • a separator is usually disposed between the separator positive electrode and the negative electrode. Thereby, a short circuit between the electrodes is prevented.
  • the separator is usually a porous body such as a porous film or a nonwoven fabric.
  • the porosity of the separator is appropriately set according to the permeability of electrons and ions, the material of the separator, and the like, but generally it is preferably 30 to 80%.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the solvent is, for example, one or more of nonaqueous solvents (organic solvents) described below.
  • nonaqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, and tetrahydrofuran.
  • At least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, a relative dielectric constant ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ⁇ 1 mPa ⁇ s) is more preferable.
  • the solvent may be a cyclic carbonate having one or more unsaturated carbon bonds (unsaturated carbon bond cyclic carbonate).
  • unsaturated carbon-bonded cyclic ester carbonate examples include vinylene carbonate and vinyl ethylene carbonate.
  • content of unsaturated carbon bond cyclic carbonate in a nonaqueous solvent is 0.01 mass% or more and 10 mass% or less, for example. This is because the decomposition reaction of the electrolytic solution is suppressed without excessively reducing the battery capacity.
  • the solvent may be sultone (cyclic sulfonate ester). This is because the chemical stability of the electrolytic solution is improved.
  • the sultone is, for example, propane sultone or propene sultone.
  • content of sultone in a nonaqueous solvent is 0.5 mass% or more and 5 mass% or less, for example. This is because the decomposition reaction of the electrolytic solution is suppressed without excessively reducing the battery capacity.
  • the solvent may be an acid anhydride.
  • the acid anhydride include dicarboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • the dicarboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • the electrolyte salt is, for example, any one or more of lithium salts described below.
  • the electrolyte salt may be a salt other than the lithium salt (for example, a light metal salt other than the lithium salt).
  • lithium salt examples include the following compounds. Lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), or lithium hexafluoroarsenate (LiAsF 6 ). Lithium tetraphenylborate (LiB (C 6 H 5) 4), lithium methanesulfonate (LiCH 3 SO 3), is lithium trifluoromethane sulfonate (LiCF 3 SO 3) or lithium tetrachloroaluminate (LiAlCl 4) . It is dilithium hexafluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl) or lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • LiPF 6 Lithium hexafluorophosphate
  • LiBF 4 lithium perchlor
  • the form of the lithium ion secondary battery of the present invention is not particularly limited.
  • Examples of the form of the lithium ion secondary battery include a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are stacked, and the like. It is done. Moreover, it is good also as arbitrary shapes, such as a coin type
  • the procedure for assembling the lithium ion secondary battery is not particularly limited, and may be assembled by an appropriate procedure according to the structure of the battery.
  • a negative electrode is placed on an outer case, an electrolyte and a separator are provided on the outer case, and a positive electrode is placed so as to face the negative electrode.
  • the battery is then caulked together with a gasket and a sealing plate.
  • the average particle size (D 50 ) was calculated by measuring the particle size distribution by a laser diffraction method and calculating the particle size corresponding to an integrated value of the volume distribution of 50%.
  • the average fiber diameter was determined by SEM image analysis.
  • the aspect ratio was calculated from the fiber length by the fiber diameter determined by SEM image analysis.
  • Electrode binder resin composition [Example 1] ⁇ Preparation of electrode binder resin composition> A container equipped with a stirrer and a nitrogen introduction tube was charged with 32.44 g (0.3 mol) of p-PD, 36.84 g of m-BP (0.1 mol), and 532.7 g of NMP as a solvent. The solution was heated to 50 ° C. and stirred until p-PD and m-BP were dissolved. After the temperature of the solution was lowered to room temperature, 115.33 g (0.392 mol) of BPDA was added over about 30 minutes, 228.3 g of NMP was further added, and the mixture was stirred for 20 hours, followed by electrode binder resin composition A Got. The obtained electrode binder resin composition had a solid content concentration of 18% by mass and a logarithmic viscosity of 0.89 dl / g.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • the battery was charged to 0.05V at 0.05C. Thereafter, the battery was discharged to 0.05 V at 0.05 C, and the load characteristics were calculated by the following formula 2.
  • Example 2 An electrode binder resin composition A containing 10 parts by weight of polyimide and 3 parts by weight of a conductive additive (made by Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primics Co., Ltd., TK Hibismix Model 2P). -03). The total amount of silicon oxide coated with a carbon coating (manufactured by Shin-Etsu Chemical Co., KSC-1064, average particle size 5 ⁇ m) and carbon particles (manufactured by Hitachi Chemical Co., Ltd., SMG-N-HP1-10) was added to the obtained paste. 87 parts by mass was added and further kneaded to prepare a negative electrode mixture paste. The mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • Example 3 The cell produced in Example 1 was allowed to stand at 25 ° C. for 12 hours, and then the battery was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 An electrode binder resin composition A containing 10 parts by weight of polyimide and 3 parts by weight of a conductive additive (manufactured by Denki Kagaku, Denka Black) were added to a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model 2P- 03). A total of 87 parts by mass of silicon oxide coated with a carbon coating (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064, average particle size 5 ⁇ m) and carbon particles (manufactured by Hitachi Chemical Co., Ltd., MAGD-20) are added to the obtained paste. Further, kneading was performed to prepare an electrode paste. The mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • a conductive additive manufactured by Denki Kagaku, Denka Black
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode. Using the obtained negative electrode, a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • Example 5 An electrode binder resin composition A containing 10 parts by weight of polyimide and 3 parts by weight of a conductive additive (manufactured by Lion, Ketjen Black) were mixed with a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model 2P- 03). A total of 87 parts by mass of silicon oxide coated with a carbon coating (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064, average particle size 5 ⁇ m) and carbon particles (manufactured by Hitachi Chemical Co., Ltd., MAGD-20) are added to the obtained paste. Further, kneading was performed to prepare an electrode paste. The mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode. Using the obtained negative electrode, a coin cell was prepared in the same manner as in the example, and the battery was evaluated. The results are shown in Table 1.
  • Example 6 Silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064, average particle size 5 ⁇ m), carbon particles (manufactured by Hitachi Chemical Co., Ltd., MAGD) coated with a carbon coating on electrode binder resin composition A containing 10 parts by mass of polyimide A total of 87 parts by mass of -20) was added and kneaded to prepare an electrode paste.
  • the mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • Example 8 An electrode binder resin composition A containing 10 parts by weight of polyimide and 3 parts by weight of a conductive additive (manufactured by Electrochemical Co., Ltd., Denka Black) were mixed with a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model 2P- 03). The total amount of silicon oxide coated with a carbon coating (manufactured by Shin-Etsu Chemical Co., KSC-1064, average particle size 5 ⁇ m) and carbon particles (manufactured by Hitachi Chemical Co., Ltd., SMG-N-HP1-10) was added to the obtained paste. 87 parts by mass was added and further kneaded to prepare a negative electrode mixture paste. The mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • a conductive additive manufactured by Electrochemical Co., Ltd., Denka Black
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • the mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in the example, and the battery was evaluated. The results are shown in Table 1.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • This electrode paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and cured by heat treatment at 350 ° C. for 10 minutes in a nitrogen atmosphere. To produce a negative electrode.
  • the negative electrode composite material mass after drying was 4.4 mg / cm 2 per unit area.
  • a coin cell was prepared in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 1.
  • Examples 1 to 8 were all high-capacity lithium ion secondary batteries.
  • An alloy-based material (A) coated with a carbon coating (C), a total pore volume and an average pore diameter of 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 1 cm 3 / g, and Examples 1 to 8 using carbon particles (B) of 20 to 50 nm were compared with Comparative Examples 1 and 2 not using the carbon particles (B) described above, and the discharge capacity retention rate and load characteristics at 100 cycles. It turned out to be excellent.
  • Examples 1 and 2 were superior in load characteristics as compared with Comparative Example 3 in which the alloy-based material (A) not coated with the carbon film (C) was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)およびバインダー(D)を含有する負極活物質層と集電体との積層体を含むリチウムイオン二次電池用負極であって、該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの範囲を満たすことを特徴とするリチウムイオン二次電池用負極、およびこのようなリチウムイオン二次電池用負極を用いたリチウムイオン二次電池は、高容量であり、かつサイクル特性に優れている。

Description

リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
 本発明は、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法に関する。
 リチウムイオン二次電池をはじめとする非水二次電池は、高エネルギー密度・高電圧・高容量であることから、各種携帯機器の電源として広く採用されている。さらに近年では電動工具等のパワーツールや、電気自動車・電動式自転車等、中型・大型サイズの機器類での用途にも広がりを見せ始めている。
 特に、小型化および多機能化が進んでいる携帯電話やノート型パソコン等の電子機器の普及、電気自動車の実用化に伴い、これらの用途に用いられる二次電池には、更なる高容量化が求められており、その手段として、高い充放電容量を示す電極活物質の研究・開発が進んでいる。なかでも、負極の活物質材料としては、従来の非水二次電池に採用されている黒鉛等の炭素材料に代えて、初期容量の大きなケイ素やケイ素酸化物等の、より多くのリチウム(イオン)を吸蔵・放出可能な材料が注目されている。(特許文献1、2参照)。
 このような材料としてケイ素酸化物(SiO)が注目を集めているが、この化合物は充放電反応に伴う体積の膨張・収縮が大きいため、電池の充放電サイクル毎に粒子が少しずつ粉砕され、表面に析出したSiが非水電解液と反応して不可逆な容量が増大したり、充放電によって電池が膨れたりする等の問題が生じることも知られていた。この結果、繰り返しの充放電によりその容量が低下するという、いわゆるサイクル特性低下現象を呈する場合があった。このサイクル特性低下を抑制するため様々な検討が行われている。例えば、負極活物質として、SiOと炭素材料を複合化した材料を用いる方法(特許文献3)や、炭素材料として特定要件を満たす黒鉛粒子を用いる方法(特許文献4)なども提案されているが、電池容量(Ah)および充放電の繰り返しによる放電容量特性(サイクル特性)の更なる改良が産業界から要望されている。
 また、電極活物質には、充放電レートが高いときにも同等の容量を有する(高い負荷特性を有する)ことに対する要望もある。高い負荷特性を達成するために、電極活物質は高い導電性を有する材料であることが求められている。
特開2004-047404号公報 特開2005-259697号公報 特開2010-212228号公報 特開2004-362789号公報
 本発明は、上記した技術背景に鑑みてなされたものであり、高容量で、かつサイクル特性および負荷特性に優れたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討し本発明に到達した。すなわち、本発明の要旨は以下の通りである。
 [1]ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)およびバインダー(D)を含有する負極活物質層と、集電体と、の積層体を含むリチウムイオン二次電池用負極であって、
 該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmであることを特徴とするリチウムイオン二次電池用負極。
 [2]前記負極活物質層における、前記合金系材料(A)と前記炭素被膜(C)の合計を100質量%としたときの、前記炭素被膜(C)の割合が、3~20質量%である[1]に記載のリチウムイオン二次電池用負極。
 [3]前記合金系材料(A)がSiO(0.5≦x≦1.5)で表されるケイ素酸化物である[1]または[2]に記載のリチウムイオン二次電池用負極。
 [4]前記炭素粒子(B)の平均粒子径D50(B)が、前記合金系材料(A)の平均粒子径D50(A)の2.0~8.0倍である[1]~[3]のいずれかに記載のリチウムイオン二次電池用負極。
 [5]前記負極活物質層における、前記合金系材料(A)と前記炭素粒子(B)の合計を100質量%としたときの、合金系材料(A)の含有率が、10~60質量%である[1]~[4]のいずれかに記載のリチウムイオン二次電池用負極。
 [6]前記炭素粒子(B)が、扁平状の黒鉛材料が集合または結合してなる[1]~[5]のいずれかに記載のリチウムイオン二次電池用負極。
 [7]前記バインダー(D)が、ポリイミドまたはポリアミドイミドである[1]~[6]のいずれかに記載のリチウムイオン二次電池用負極。
 [8]さらに、導電助剤(C’)を含む[1]~[7]のいずれかに記載のリチウムイオン二次電池用負極。
 [9]前記導電助剤(C’)が、アスペクト比が10~1000である炭素繊維を含む[8]に記載のリチウムイオン二次電池用負極。
 [10]前記炭素繊維の繊維径が2~1000nmである[9]に記載のリチウムイオン二次電池用負極。
 [11]前記炭素繊維が、気相法炭素繊維である[9]または[10]に記載のリチウムイオン二次電池用負極。
 [12][1]~[11]のいずれか1項に記載のリチウムイオン二次電池用負極を含むリチウムイオン二次電池。
 [13]ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含有するリチウムイオン二次電池用負極用合材ペーストであって、
 該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの範囲を満たすことを特徴とするリチウムイオン二次電池用負極用合材ペースト。
 [14]前記バインダー用材料(D’)が、ポリイミド、ポリイミドの前駆体およびポリアミドイミドからなる群から選ばれる少なくとも1つであり、前記溶媒(E)が、N-メチル―2-ピロリドンまたはN,N-ジメチルアセトアミドである[13]に記載のリチウムイオン二次電池用負極用合材ペースト。
 [15]リチウムイオン二次電池用負極用合材ペーストを集電体上に塗布・乾燥する工程を含むリチウムイオン二次電池用負極の製造方法であって、
 前記リチウムイオン二次電池用負極用合材ペーストは、ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含有し、該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの範囲を満たすことを特徴とする、方法。
 本発明のリチウムイオン二次電池負極を用いたリチウムイオン二次電池は高容量であり、且つ良好なサイクル特性および負荷特性を示す。
 本発明リチウムイオン二次電池用負極は、ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)およびバインダー(D)を含有する負極活物質層と集電体との積層体を含むリチウムイオン二次電池用負極である。この負極活物質層は、ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含有する負極用合材ペーストを集電体上に塗布・乾燥することで得られる。以下、本発明のリチウムイオン二次電池用負極の一実施形態を、負極用合材ペーストと負極(負極シート)の順に説明し、最後に該負極を用いたリチウムイオン二次電池について説明する。
 本発明によれば、高容量のリチウムイオン二次電池用負極が提供される。本発明において、高容量であるとは、充電レート0.05Cで4.2Vになるまで充電した後、放電レート0.05Cで2.3Vまで放電するのにかかった時間と、負極活物質の質量とから算出される、初回放電容量(単位:mAh/g)が、既存の炭素系負極の初回放電容量の平均である340mAh/gよりも大きいことを意味する。上記充電レートおよび放電レート(Cレート)は、電流値(A)を容量(Ah)で割った値である。なお、以降、充電レートおよび放電レートをあわせて充放電レートともいう。容量1Ahの電池を0.05Aで充電または放電した場合の充放電レートを、0.05Cと表記する。
 <負極用合材ペースト>
 本発明に関わる負極用合材ペーストは、ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含んでなる。以下、各成分について詳説する。
 [1] ケイ素またはスズを構成元素として含む合金系材料(A)
 (ケイ素を構成元素として含む材料)
 本発明の負極活物質としてのケイ素を構成元素として含む合金系材料の例には、(i)シリコン微粒子、(ii)スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、ケイ素との合金、(iii)ホウ素、窒素、酸素または炭素とケイ素との化合物、および(iv)ホウ素、窒素、酸素または炭素とケイ素との化合物と(ii)に例示した金属とを有するものなどが含まれる。ケイ素を構成元素として含む合金または化合物の例には、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0.2≦x≦1.5)およびLiSiOなどが含まれる。
 (スズを構成元素として含む材料)
 本発明の負極活物質としてのスズを構成元素として含む合金系材料の例には、(i)ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、スズとの合金、(ii)酸素または炭素とスズとの化合物、および(iii)酸素または炭素とスズとの化合物と(i)に例示した金属とを有するものなどが挙げられる。スズを構成元素として含む合金または化合物の例には、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどが含まれる。
 ケイ素およびスズのうちの少なくとも一方を構成元素として含む合金系材料は、ケイ素またはスズの単体、合金または化合物でもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有するものでもよい。なお、単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。また、これらの活物質の表面は、CVD法などにより炭素材料で被覆されていてもよい。
 前記ケイ素またはスズを構成元素として含む合金系材料(A)がSiO(0.5≦x≦1.5)で表されるケイ素酸化物であることが好ましい。本発明において、SiO(0.5≦x≦1.5)とは、通常、二酸化ケイ素(SiO)と金属ケイ素(Si)とを原料として得られる非晶質のケイ素酸化物の総称を表す一般式である。SiOx(0.5≦x≦1.5)において、xが0.5未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎて、リチウムイオン二次電池のサイクル特性が低下する。またxが1.5を超えると、Si相の比率が低下してエネルギー密度が低下するようになる。さらに好ましいxの範囲は、0.7≦x≦1.2である。
 SiOの粒径D50は一般に小さい方が好ましいが、あまりにも小さくなると負極形成時に凝集して粗大化する場合がある。D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。通常、SiOのD50は1μm~15μm、より好ましくは2μm~8μmの範囲にある。後述するように、本願発明においては、SiOのD50は、負極用合材ペースト調製時に、同時に使用する特定の炭素粒子(B)のD50との間で特定の関係を満たすことが好ましい。なお、SiO(0.5≦x≦1.5)は、所望のD50を有する市販のSiOを用いることも可能である。
 本発明に係る負極用合材ペースト中の合金系材料(A)の配合量は、負極活物質である合金系材料(A)及び後述する炭素粒子(B)の合計を100質量%としたときの合金系材料(A)の配合割合が10質量%~60質量%、好ましくは25質量%~50質量%、より好ましくは31質量%~50質量%である。この配合割合の負極活物質を用いたリチウムイオン二次電池は、ケイ素酸化物のみを負極活物質として用いたリチウムイオン二次電池に比べて、活物質の体積変化に起因する負極の容量劣化を抑制することができるため、リチウムイオン二次電池のサイクル寿命を延ばすことが出来る。
 [2]合金系材料(A)の表面を被覆する炭素被膜(C)
 本発明に関わる負極用合材ペーストは、ケイ素またはスズを構成元素として含む合金系材料(A)の表面を被覆する炭素被膜(C)を含むことを特徴としている。このように炭素被膜(C)で被覆することによって、負極活物質を含む負極合材層中の導電ネットワークを良好に形成し、電池の負荷特性を向上することができる。合金系材料(A)の表面に炭素被膜(C)を被覆する方法としては、有機物ガス及び/又は蒸気の雰囲気下、温度800℃以上1300℃以下での熱CVD処理する方法が挙げられる。熱CVD法による場合、炭素被膜(C)の量が、合金系材料(A)に対して通常3~20質量%、好ましくは3~15質量%、より好ましくは4~10質量%となるように炭素被膜(C)を形成することができる。炭素被膜量を20質量%以下とすることで、負極用合材ペースト中の合金系材料(A)が相対的に高くなるため、高容量を維持することができる。炭素被膜量を3質量%以上とすることで、合金系材料(A)の電子伝導性を十分にして、電池容量を十分にすることができる。なお、この熱CVD処理の時間は、被覆炭素量との関係で適宜設定される。被覆対象物質である合金系材料(A)の中に酸化珪素が含まれる場合は、この処理による熱の作用で酸化珪素がケイ素-ケイ素酸化物系複合体に変化(不均化)する。
 より具体的に説明する。粉末状の合金系材料(A)に対して、不活性ガス気流下で800℃~1300℃で加熱した反応装置を用いて、炭化水素系ガスを含む雰囲気下で、600℃以上1300℃以下、好ましくは700℃以上、より好ましくは800℃以上、特に好ましくは900℃~1200℃の温度で加熱することで炭素被覆処理を行う。一般的に、処理温度が高い方が不純物の残存が少なく、且つ導電性の高い炭素を含む炭素被膜(C)を形成できる。
 本発明において、炭化水素系ガスとしては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが好適に選択される。このような炭化水素系ガスとしては、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の芳香族炭化水素が挙げられる。
 この熱CVD処理を行う装置は、非酸化性雰囲気において非処理物を加熱するための機構を有する反応装置を用いればよく、特に限定されない。例えば、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じて適宜選択することができる。
 [3] 炭素粒子(B)
 本発明に係る負極材合材ペーストの構成物質の一つである炭素粒子(B)は、黒鉛材料を含有するものである。炭素粒子(B)は、黒鉛粒子そのものであってもよいし、黒鉛粒子とその表面に存在する炭素質層とからなる粒子(すなわち、炭素被覆黒鉛粒子)であってもよいし、炭素被覆黒鉛粒子または黒鉛粒子に炭素繊維を付着させてなる粒子であってもよいが、好ましくは黒鉛粒子が用いられる。
 炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積と平均細孔直径は、各々、通常1.0×10-2~1.0×10-1 cm/gおよび20~50 nmの範囲を同時に満たし、好ましくは1.5×10-2~9.0×10-2 cm/gおよび25~40nmの範囲を同時に満たすことを特徴とし、より好ましくは2.0×10-2~7.0×10-2 cm/gおよび25~35nmの範囲を同時に満たす。炭素粒子(B)の全細孔容積(v)と平均細孔直径(d)が、該範囲を満たすことによって、電解液が活物質中に浸透しやすくなるため、良好なイオン導電性を保持する。これにより、電極抵抗が抑制され、電池の充放電容量並びに負荷特性が向上する。さらに、細孔を有していることで、充電時に合金系材料(A)が体積膨張した際、合金系材料(A)の体積膨張分を炭素粒子(B)が内部で弾性変形することによって吸収し、電極の膨れを抑制する。このため、合金系材料(A)の体積変化による、活物質/バインダー(D)間の剥離による抵抗増大が抑制され、良好なサイクル特性を示す。
 炭素粒子(B)は、前記黒鉛材料を含む一次粒子が集合または結合してなる二次凝集体であることが好ましい。このときの、炭素粒子(B)の一次粒子の形状としては扁平状が望ましい。このような形状を有する炭素粒子を使用すると、充放電サイクル後も良好な導電性を保持するため、電極抵抗の増大が抑制され、リチウムイオン二次電池のサイクル寿命を延ばすことが出来る。扁平状の一次粒子からなる炭素粒子(B)としては、MAG(登録商標)等が挙げられる。
 本発明においては、ケイ素またはスズを構成元素として含む合金系材料(A)とともに炭素粒子(B)を所定配合量で混入し、両物質の大きさの比を特定することにより、負極全体の体積変化を小さくすることができる。すなわち、本発明においては、炭素粒子(B)の平均粒子径D50(B)が、前記合金系材料(A)の平均粒子径D50(A)の2.0~8.0倍であることが好ましく、2.2~6.5倍であるとより好ましく、2.5倍を超えて6.0倍未満であることがとりわけ好ましい。
 平均粒子径D50(B)を、前記合金系材料(A)の平均粒子径D50(A)の2.0以上とすることで、充放電サイクルに伴う活物質の体積変化が小さくなり、電極の一部が導通不良となることによる容量の低下が生じにくくなる。一方、平均粒子径D50(B)を、前記合金系材料(A)の平均粒子径D50(A)の8.0倍以下とすることで、活物質の比表面積が大きくなりすぎず、電解液の分解反応による容量低下が生じにくくなる。
 本発明に係る負極用合材ペースト中の炭素粒子(B)の配合量は、負極活物質であるSiO及び炭素粒子(B)の合計を100質量%としたときに炭素粒子(B)の配合割合が40質量%~90質量%、好ましくは50質量%~75質量%、より好ましくは50質量%~69質量%とすることができる。この配合割合の負極活物質を用いたリチウムイオン二次電池は、SiO(0.5≦x≦1.5)のみを負極活物質として用いたリチウムイオン二次電池に比べて、負極合材層の体積変化を小さくすることができるため、活物質/バインダー(D)間の剥離による抵抗増大が抑制され、良好なサイクル特性を有するリチウムイオン二次電池とすることが出来る。
 [4] 導電助剤(C’)
 本発明に関わる負極用合材ペーストは、導電助剤(C’)としての導電性材料を含んでもよい。このような導電性材料としては、非水二次電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラック等)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀等の粉末)、金属繊維、ポリフェニレン誘導体等の材料を用いることができ、これらの中では炭素繊維が好ましい。
 導電助剤(C’)は、好ましくは、アスペクト比が10~1000、好ましくは10~500を満たす炭素繊維を含んでなる。
 炭素粒子(B)と上記好ましいアスペクト比を有する繊維状の導電助剤(C’)を組み合わせることによってリチウムイオン電池の特性(容量およびサイクル寿命)を相乗的に向上させることができる理由として本発明者らは以下のように考えている。上記好ましいアスペクト比を有する繊維状の導電助剤(C’)は圧力変形に強く、プレス等により、電極の物理的な密度が上昇した場合においても、良好な電解液保液性を示すことが知られている。一方で、本発明に使用する炭素粒子(B)は、前述のとおり、全細孔容積が大きく、電解液が活物質中に浸透しやすくなるため、良好なイオン導電性を保持する。ここで、充電時に合金系材料(A)が体積膨張すると、合金系材料(A)の体積膨張分を炭素粒子(B)が内部で弾性変形することによって吸収し、電極の膨れを抑制する。この際炭素粒子(B)が持つ細孔は、弾性変形により容積が小さくなるため、電解液保液性が低下することが予想される。電解液保液性が低下すると、イオン導電性が低下するため、容量低下、負荷特性の低下を招くばかりではなく、活物質の利用率が均一でなくなるため、局所的に利用率が上昇して活物質が劣化する。上記形態の導電助剤(C’)を負極中に混ぜることによって、充電時、電極の物理的な密度が上昇しても比較的良好な電解液保持性を有するので充放電時も良好なイオン導電性を維持し電池内抵抗の増大を抑制できる。
 上記形態の導電助剤(C’)は、合金系材料(A)の体積変化の繰り返しによって、導電助剤(C’)同士の接触が低下し、この結果サイクルが増えるにつれて電極抵抗が増大したり、導通遮断により有効活物質量が低下することが知られている。しかし、上記形態の炭素粒子(B)のように電極膨れを抑制できる活物質を併用することにより、電極抵抗の増大と、有効活物質量の低下を抑制することができる。
 まとめると、上記形態の炭素粒子(B)と、導電助剤(C’)を組み合わせることで、充電時の電解液保持性低下に起因する抵抗増大と、充電時の合金系材料(A)の体積膨張に起因する導通不良との両方を低減することができるため、リチウムイオン電池を高容量且つサイクル寿命を長くすることができると考えられる。
 本発明で導電助剤(C’)として用いる炭素繊維の製造方法は特に限定されない。例えば紡糸法等で高分子を繊維状にし、不活性雰囲気中で熱処理する方法や、触媒存在下、高温で有機化合物を反応させる気相成長法などが挙げられる。気相成長法で得られる炭素繊維、いわゆる気相法炭素繊維は、結晶成長方向が繊維軸にほぼ平行であるため、黒鉛構造の繊維長方向の結晶性が高くなりやすく、比較的、短繊維径、高導電性、高強度の炭素繊維が得られる。
 本発明において、導電助剤(C’)の含有量は、負極活物質である合金系材料(A)及び炭素粒子(B)の合計質量に対して、通常0.5~10質量%、好ましくは1~8質量%、より好ましくは2~5質量%である。電極中では、電極の全質量に対して、0.05~20質量%の範囲がよく、好ましくは0.1~15質量%、より好ましくは0.5~10質量%である。導電助剤(C’)の含有量を10質量%以下とすることで、電極中の活物質比率を十分なものとして、リチウムイオン電池の容量を十分にすることができる。また含有量を0.5質量%以上とすることで、電極に対する上記電解液浸透性の効果を十分に発現させることができる。導電助剤(C’)の含有量は、合材ペースト調製時において該比率となるように各成分を添加することにより、上記範囲に調整することができる。
 なお、上記アスペクト比は、例えばSEM画像解析で求めた繊維径で繊維長を除算して算出することができる。好ましい繊維径の範囲は、用いる炭素繊維の種類や繊維径によっても異なるが、2~1000nmであり、2~500nmのものがさらに好ましい。この繊維径の好ましい範囲をこのような導電助剤(C’)としては、気相法炭素繊維(VGCF)、カーボンナノチューブ(CNT)が挙げられる。上記導電助剤(C’)は、単独または二種以上組み合わせて使用してもよい。
 本発明における導電助剤(C’)として、上記アスペクト比を満たす導電助剤(C’-1)と上記アスペクト比を満たさない導電助剤(C’-2)とを組み合わせて使用してもよい。上記アスペクト比を満たさない導電助剤(C’-2)の代表例は炭素材料であり、本発明においては導電助剤(C’-2)が導電性炭素材料であることが好ましい。導電性炭素材料の種類は特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物などでありうる。
 導電助剤(C’-2)として用いることができる、有機物の熱分解物としては、石炭系コークス;石油系コークス;石炭系ピッチの炭化物;石油系ピッチの炭化物;或いはこれらピッチを酸化処理した後の炭化物;ニードルコークス;ピッチコークス;フェノール樹脂、結晶セルロース等の炭化物;及びこれらを一部黒鉛化した炭素材;ファーネスブラック;アセチレンブラック;ピッチ系炭素繊維;等が挙げられる。なかでも黒鉛が好ましく、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛に種々の表面処理を施したものが好ましい。
 導電助剤(C’-2)を併用する場合、その量は、通常導電助剤(C’-1)の100質量%未満、好ましくは50質量%未満である。
  [5] バインダー用材料(D’)および溶媒(E)
 バインダー用材料(D’)は、合金系材料(A)および炭素粒子(B)からなる負極活物質及び導電助剤(C’)を集電体に固定するための結着剤として用いられる。バインダー用材料(D’)の使用量は、合金系材料(A)、炭素粒子(B)、導電助剤(C’)およびバインダー用材料(D’)の合計量に対して0.5~50質量%が好ましい、バインダー用材料(D’)の使用量を0.5質量%以上とすることで電極の成形性をより高くし、50質量%以下とすることで電極のエネルギー密度を十分にすることができる。なお、バインダー用材料(D’)としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド、ポリイミドの前駆体、ポリアミドイミド等のイミド系ポリマー、アルコキシシリル基含有樹脂などを例示することができる。また、これらの中でも結着性に優れたポリイミド、ポリイミドの前駆体およびポリアミドイミドが好ましい。
 本発明において合材ペースト調製時の溶媒(E)は、バインダー用材料(D’)、活物質および任意に含有するその他の物質を均一に溶解もしくは分散可能なものであれば特に制限されない。溶媒(E)としては、非プロトン性極性溶媒が好ましく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、および1,3-ジメチル-2-イミダゾリジノンなどを例示することができる。これらの溶媒は、単独で用いてもよいし、二種類以上組み合わせてもよい。特に、バインダー用材料(D’)としてポリイミド、ポリイミドの前駆体またはポリアミドイミドを使用した時には溶媒(E)としてN-メチル-2-ピロリドンまたはN,N-ジメチルアセトアミドを使用することが好ましい。溶媒量は、合材ペーストの粘度等を考慮して適宜設定される。合材ペーストに含まれる固形分100質量部に対して、50~900質量部配合することが好ましく、より好ましくは65~500質量部である。
 [6] 負極用合材ペーストの調製方法
 リチウムイオン二次電池用負極用合材ペーストは、リチウムイオン二次電池用電極バインダー用材料(D’)もしくはこれを含むワニスと、負極活物質構成成分である合金系材料(A)と、炭素粒子(B)と、必要に応じて炭素被膜(C)、導電助剤(C’)、溶剤(E)、および必要に応じて添加される各種添加剤等を混合し、撹拌ないし混錬して製造し得る。各原料の混合方法としては、以下の2つの方法が挙げられるが、これに限定されない。
 i)リチウムイオン二次電池用電極バインダー用材料(D’)を含むワニスに、導電助剤(C’)を添加して混練する。得られた混練物に、活物質および溶媒を加えて負極用合材ペーストとする。
 ii)リチウムイオン二次電池用電極バインダー用材料(D’)を含むワニスに、導電助剤(C’)を添加し、さらに、活物質を添加して混練する。得られた混練物に溶媒を加えて撹拌して負極用合材ペーストとする。
 上記攪拌は、攪拌羽根等を用いた通常撹拌や、自転・公転ミキサー等を用いた撹拌であればよい。混練操作は、混練機などを用いることができる。
 <負極(負極シート)>
 本発明のリチウムイオン二次電池用負極は、集電体と負極活物質層との積層体である。リチウムイオン二次電池用負極は、シート状電極であってもよい。
 [1] 負極活物質層
 負極活物質層は、前述のリチウムイオン二次電池用負極用合材ペーストの硬化物である。つまり、負極活物質である合金系材料(A)と、炭素粒子(B)と、それを結着するバインダー(D)とを含み、さらにその他の成分(導電助剤(C’)など)を任意に含む。なお、バインダー(D)は、負極用合材ペーストに含まれるバインダー用材料(D’)を乾燥により硬化させてなる。バインダー(D)は、好ましくは、ポリイミド、ポリイミドの前駆体およびポリアミドイミドから選択されるバインダー用材料(D’)の加熱によって得られるポリイミドまたはポリアミドイミドである。なお、負極活物質層における合金系材料(A)、炭素被膜(C)、炭素粒子(B)およびその他の成分(導電助剤(C’)など)の量比は、上記負極用合材ペーストにおける各成分の量比とほぼ同一となる。
 負極活物質層の厚みは特に制限なく、例えば5μm以上であることが好ましく、より好ましくは10μm以上である。また200μm以下とすることが好ましく、より好ましくは100μm以下、更に好ましくは75μm以下である。負極活物質層が薄すぎると、活物質の粒径との兼ね合いから電極としての実用性に欠ける。一方厚みが厚すぎると、高い充放電レートでの充放電に対し十分なLiの吸蔵・放出の機能が得られにくい場合がある。
 負極活物質層の密度は、1.1g/cm~1.6g/cmであることが好ましく、1.2g/cm~1.5g/cmであることがより好ましく、1.2g/cm~1.4g/cmであることがさらに好ましい。負極活物質層の密度が、1.1g/cm未満の場合、電池の体積エネルギー密度が低下し、1.6g/cmより高い場合、サイクル特性が低下する。
 [2] 集電体
 負極の集電体の材質は、ケイ素及び/又はケイ素合金、スズおよびその合金、ケイ素-銅合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料などでありうる。
 負極の集電体の形状は、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等でありうる。集電体の厚みは、特に制限はないが、例えば通常5μm~30μmであり、好ましくは6~20μmである。さらに、集電体表面は、化学処理もしくは物理処理によって、表面を粗化してあってもよいし、表面にカーボンブラック、アセチレンブラックなどの導電材を塗布したものであってもよい。
 [3] リチウムイオン二次電池用負極(シート)の製造
 負極(シート)は、前述の負極用合材ペーストを集電体に塗布し、それを乾燥させて負極活物質層とすることで得られる。塗布した負極用合材ペーストを乾燥させると、溶媒(E)が除去され、バインダー用材料(D’)が集電体と接着しつつ硬化して、負極活物質層と集電体との積層体を形成することができる。負極用合材ペーストの塗布は、例えばスクリーン印刷、ロールコート、スリットコート等の方法で行い得る。負極用合材ペーストをパターン状に塗布することで、メッシュ状の活物質層が形成されうる。
 塗布した負極用合材ペーストの乾燥は、たとえば加熱硬化によって行うことができる。加熱硬化は、通常、大気圧下で行うことが可能であるが、加圧下、ないしは真空下で行ってもよい。また加熱乾燥時の雰囲気は、特に制限されないが、通常、空気、窒素、ヘリウム、ネオンまたはアルゴン等の雰囲気下で行うことが好ましく、より好ましくは不活性気体である窒素またはアルゴン雰囲気下で行う。また、負極用合材ペーストの加熱硬化における加熱温度は、通常150℃~500℃で1分間~24時間熱処理する。バインダー用材料(D’)としてポリイミド、ポリイミドの前駆体またはポリアミドイミドを用いる場合は、信頼性のある負極を得るために、好ましくは200℃~350℃で1分間~20時間である。
 <リチウムイオン二次電池>
 本発明のリチウムイオン二次電池の基本構成は、従来公知のリチウムイオン二次電池と同様である。通常のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能な一対の電極(負極と正極)、セパレータ、および電解質を備える。
 [1] 負極
 本発明のリチウムイオン二次電池における負極は、前述の負極である。
 [2] 正極
 正極は、集電体と、正極活物質層とが積層された積層体とし得る。正極の集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
 正極集電体が薄膜である場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下である。上記範囲よりも薄いと、集電体として必要な強度が不足する虞がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる恐れがある。
 正極活物質は特にリチウムの吸蔵放出が可能な材料であれば限定されず、リチウムイオン二次電池に通常用いられる正極活物質を利用することができる。具体的には、リチウム-マンガン複合酸化物(LiMnなど)、リチウム-ニッケル複合酸化物(LiNiOなど)、リチウム-コバルト複合酸化物(LiCoOなど)、リチウム-鉄複合酸化物(LiFeOなど)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5など)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2など)、リチウム-ニッケル-コバルト-マンガン複合酸化物、リチウム-遷移金属リン酸化合物(LiFePOなど)、およびリチウム-遷移金属硫酸化合物(LiFe(SO)などが挙げられる。これらの正極活物質の中でも、リチウム-ニッケル-コバルト-マンガン複合酸化物を用いると本発明の効果を発現しやすいので好ましい。
 これらの正極活物質は、単独で用いても複数を混合して用いてもよい。正極活物質層中の正極活物質の含有割合は、通常10質量%以上、好ましくは30質量%以上、更に好ましくは50質量%以上である。また、通常99.9質量%以下、好ましくは99質量%以下である。正極活物質を結着するバインダーとしては、上記の負極用のバインダーであってもいが、その他の公知のバインダー樹脂を任意に選択して用いてもよい。正極活物質層には、電極の導電性を向上させるために、導電材を含有させてもよい。導電材としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。正極活物質層の厚さは、通常10~200μm程度である。
 正極活物質層の密度(集電体に積層した単位面積あたりの正極合材層の質量と、厚みから算出される)は、3.0~4.5g/cmであることが好ましい
 [3] セパレータ
 正極と負極との間に、通常、セパレータを配置する。それにより、電極間の短絡を防止する。セパレータは、通常、多孔膜や不織布などの多孔性体である。セパレータの空孔率は、電子やイオンの透過性、セパレータの素材などに応じて適宜設定されるが、一般的に30~80%であることが望ましい。
 セパレータには、例えば、優れたイオン透過性を有する微多孔性フィルム、ガラス繊維シート、不織布、織布などが用いられる。また、耐有機溶剤性と疎水性の観点から、セパレータの材料としては、ポリプロピレン、ポリエチレン、ポリフェニレンスルフイド、ポリエチレンテレフタレート、ポリエチレナフタレート、ポリメチルペンテン、ポリアミド、ポリイミドなどが用いられる。これらを単独で用いてもよく、2種以上組み合わせて用いてもよい。セパレータの厚みは、例えば10~300μmである。
 [4] 電解液
 電解液は、溶媒と、それに溶解された電解質塩とを含んでいる。溶媒は、例えば、以下で説明する非水溶媒(有機溶媒)のいずれか1種類または2種類以上である。前記非水溶媒として、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエル、炭酸エチルメチル、炭酸メチルプロピル、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタンまたはテトラヒドロフランが挙げられる。前記非水溶媒の他の例として、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサンまたは1,4-ジオキサンが挙げられる。前記非水溶媒の他の例として、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルまたはトリメチル酢酸エチルが挙げられる。前記非水溶媒の他の例として、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノンまたはN-メチルオキサゾリジノンが挙げられる。前記非水溶媒の他の例として、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルまたはジメチルスルホキシドが挙げられる。
 これらの中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。
 特に、溶媒は、1または2以上の不飽和炭素結合を有する環状炭酸エステル(不飽和炭素結合環状炭酸エステル)でもよい。充放電時において負極表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。不飽和炭素結合環状炭酸エステルは、例えば、炭酸ビニレンまたは炭酸ビニルエチレンなどである。なお、非水溶媒中における不飽和炭素結合環状炭酸エステルの含有量は、例えば、0.01質量%以上10質量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
 また、溶媒は、1または2以上のハロゲン基を有する鎖状炭酸エステル(ハロゲン化鎖状炭酸エステル)、および1または2以上のハロゲン基を有する環状炭酸エステル(ハロゲン化環状炭酸エステル)のうちの少なくとも1種でもよい。充放電時において負極表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。ハロゲン基の種類は、特に限定されないが、中でも、フッ素基、塩素基または臭素基が好ましく、フッ素基がより好ましい。電解液の分解反応がより抑制されるからである。ただし、ハロゲン基の数は、1つよりも2つが好ましく、さらに3つ以上でもよい。より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチルなどである。ハロゲン化環状炭酸エステルは、4-フルオロ-1,3-ジオキソラン-2-オンまたは4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。なお、非水溶媒中におけるハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルの含有量は、例えば、0.01質量%以上50質量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
 また、溶媒は、スルトン(環状スルホン酸エステル)でもよい。電解液の化学的安定性が向上するからである。スルトンは、例えば、プロパンスルトンまたはプロペンスルトンなどである。なお、非水溶媒中におけるスルトンの含有量は、例えば、0.5質量%以上5質量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
 さらに、溶媒は、酸無水物でもよい。電解液の化学的安定性がより向上するからである。酸無水物は、例えば、例えば、ジカルボン酸無水物、ジスルホン酸無水物またはカルボン酸スルホン酸無水物などである。ジカルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。なお、非水溶媒中における酸無水物の含有量は、例えば、0.5質量%以上5質量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
 (電解質塩)
 電解質塩は、例えば、以下で説明するリチウム塩のいずれか1種類または2種類以上である。ただし、電解質塩は、リチウム塩以外の他の塩(例えばリチウム塩以外の軽金属塩)でもよい。
 リチウム塩は、例えば、以下の化合物などである。六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)または六フッ化ヒ酸リチウム(LiAsF)である。テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)またはテトラクロロアルミン酸リチウム(LiAlCl)である。六フッ化ケイ酸二リチウム(LiSiF6)、塩化リチウム(LiCl)または臭化リチウム(LiBr)である。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 これらの中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちの少なくとも1種が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。電解質塩の含有量は、溶媒に対して0.3mol/kg以上、3.0mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
 [5] リチウムイオン二次電池の形態
 本発明のリチウムイオン二次電池の形態は特に制限されない。リチウムイオン二次電池の形態の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型、パウチ型等の任意の形状としてもよい。
 リチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよい。一例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
 [6] リチウムイオン二次電池の好ましい使用形態
 本発明のリチウムイオン二次電池は、電池作製後20時間以上、好ましくは24時間以上48時間以下でエージングした後、初回充電を開始するとよい。
 エージングとは、組み立てた電池を所定温度、所定時間で放置することを意味する。
 エージング時間は、20時間以上、好ましくは24時間以上48時間以下である。本時間でエージングを行うことで、電池のサイクル寿命が向上する。エージング時間が20時間未満または、48時間より長くなると、電池のサイクル寿命が向上しない。
 エージング温度は、20度以上、50度以下、好ましくは20度以上、40度以下である。エージング温度が20度未満の場合、サイクル寿命が向上しない。一方、50度より高くなると、電極の劣化が進行し、逆にサイクル寿命が下がる場合がある。また本発明では、前記エージング時、負極の電位が0.5V以下であることを特徴とする。負極の電位が0.5Vより高い場合、エージング中に負極、特に集電体が劣化し、電池のサイクル寿命が低下する場合がある。負極電位は、電池組立後、負極電位が0.5V以下になるまで充電することで調整できる。
 以下、本発明を実施例により詳細に説明するが、本発明の範囲は、これらの実施例によって限定されない。本実施例および比較例で用いた化合物の略称を示す。
  NMP:N-メチル-2-ピロリドン
  p-PD:p-フェニレンジアミン
  m-BP:4,4’-ビス(3-アミノフェノキシ)ビフェニル
  BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 また、本実施例においては以下の方法で各種の物性を測定した。
 (全細孔容積と平均細孔直径)
 炭素粒子の全細孔容積と平均細孔直径の算出は、液体温度下(77K)での窒素ガス吸着法を用いて、吸着等温線を測定することにより行った。測定には、日本ベル株式会社製のBELSORP-maxを使用し、測定前の前処理には、日本ベル株式会社製のBELPREP-vacIIにて、真空加熱脱気を行った。
 なお、全細孔容積は得られた吸着等温線の相対圧0.99での吸着量から算出した。また、平均細孔径は、全細孔容積と、同じく吸着等温線から求めたBET比表面積により算出した。
 (平均粒径(D50))
 平均粒径(D50)の算出は、レーザー回析法により粒度分布を測定し、体積分布の積算値が50%に相当する粒子径を算出することにより行った。
 (平均繊維径とアスペクト比)
 平均繊維径は、SEM画像解析より求めた。
 アスペクト比は、SEM画像解析で求めた繊維径で繊維長より算出した。
 〔実施例1〕
 <電極バインダー樹脂組成物の調製>
 撹拌機および窒素導入管を備えた容器に、32.44g(0.3mol)のp-PDと、36.84gのm-BP(0.1mol)と、溶媒として532.7gのNMPとを装入し、溶液の温度を50℃に昇温してp-PDおよびm-BPが溶解するまで撹拌した。溶液の温度を室温まで下げた後、115.33g(0.392mol)のBPDAを約30分かけて投入し、228.3gのNMPをさらに加えて、20時間攪拌して電極バインダー樹脂組成物Aを得た。得られた電極バインダー樹脂組成物は、固形分濃度が18質量%であり、対数粘度は0.89dl/gであった。
 <負極の作製>
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、NMPを加えてさらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。
 <正極の作製>
 93質量部のLiCo1/3Ni1/3Mn1/3に、3質量部のポリフッ化ビニリデンをN-メチル-2-ピロリドンに溶解させた溶液と4質量部の導電助剤(電気化学製、デンカブラック)を加えて混合し、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練し正極合材ペーストを得た。このペーストを厚み20μmのアルミニウム箔上に、乾燥後の正極合材質量が単位面積当たり19mg/cmとなるように均一に塗布し、乾燥して正極合材層を形成した後、ローラープレス機により常温プレスして正極を得た。
 <電池の作製>
 上記負極を含む電池の電池特性評価を行うためコインセルを作製した。電極には、直径14.5mmΦの負極と、直径13mmΦの正極を用いた。電解液には、エチレンカーボネート(炭酸エチレン)とメチルエチルカーボネート(炭酸メチルエチル)の混合溶媒(体積比3:7混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレータに直径16mmΦ、膜厚25μmのポリプロピレン多孔質膜を使用した。
 <電池の評価>
 上記セルを25℃にて24時間放置後、測定温度25℃、0.05Cで4.2Vになるまで充電した。その後、0.05Cで2.3Vまで放電するのにかかった時間と、負極活物質の質量から、初回放電容量(単位:mAh/g)を算出した。2サイクル目以降、1Cで4.2Vになるまで充電し、さらに4.2V定電圧で、0.05Cになるまで充電した。その後、1Cで2.3Vまで放電するのにかかった時間と、負極活物質の質量から、2サイクル目以降の放電容量を算出した。上記条件で充放電を繰り返し行い、以下の(式1)にて、100サイクル時の放電容量維持率を算出した。
Figure JPOXMLDOC01-appb-M000001
 101サイクル目では、0.05Cで4.2Vになるまで充電した。その後、0.05Cで2.3Vまで放電し、以下の式2にて、負荷特性を算出した。
Figure JPOXMLDOC01-appb-M000002
 これらの結果を表1に示した。
 〔実施例2〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、SMG-N-HP1-10)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔実施例3〕
 実施例1で作製したセルを、25℃にて12時間放置後、実施例1と同様の方法で電池評価を行った。結果を表1に示した。
 〔実施例4〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(電気化学製、デンカブラック)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、さらに混練を行い電極ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔実施例5〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(ライオン製、ケッチェンブラック)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、さらに混練を行い電極ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。得られた負極を用いて、実施例と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔実施例6〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、混練を行い電極ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔実施例7〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1059、平均粒径5μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔実施例8〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(電気化学製、デンカブラック)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(日立化成株式会社製、SMG-N-HP1-10)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔比較例1〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(China Steel Chemical社製、SMGP)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔比較例2〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されたケイ素酸化物(信越化学工業製、KSC-1064、平均粒径5μm)、炭素粒子(住友ベークライト製、ハードカーボン)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
 〔比較例3〕
 10質量部のポリイミドを含む電極バインダー樹脂組成物Aと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、炭素被膜で被覆されていないケイ素酸化物(アルドリッチ製、一酸化ケイ素、平均粒径10μm)、炭素粒子(日立化成株式会社製、MAGD-20)を合計87質量部添加し、さらに混練を行い負極用合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極を作製した。乾燥後の負極合材質量は単位面積当たり4.4mg/cmであった。得られた負極を用いて、実施例1と同様の方法でコインセルを作成し、電池評価を行った。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~8は、いずれも高容量のリチウムイオン二次電池であった。炭素皮膜(C)で被覆された合金系材料(A)と、全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの炭素粒子(B)を用いた実施例1~8は、前記記載の炭素粒子(B)を用いていない比較例1、2に比べ100サイクル時における放電容量維持率および負荷特性に優れることが分かった。また実施例1、2は、炭素皮膜(C)で被覆されていない合金系材料(A)を用いた比較例3に比べ負荷特性に優れていた。
 本出願は、2014年2月4日に出願された日本国出願番号2014-019093および2014年2月4日に出願された日本国出願番号2014-019094の優先権を主張する出願であり、上記出願の内容は本出願に援用される。

Claims (15)

  1.  ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)およびバインダー(D)を含有する負極活物質層と、集電体と、の積層体を含むリチウムイオン二次電池用負極であって、
     該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmであることを特徴とするリチウムイオン二次電池用負極。
  2.  前記負極活物質層における、前記合金系材料(A)と前記炭素被膜(C)の合計を100質量%としたときの、前記炭素被膜(C)の割合が、3~20質量%である請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記合金系材料(A)がSiO(0.5≦x≦1.5)で表されるケイ素酸化物である請求項1または2に記載のリチウムイオン二次電池用負極。
  4.  前記炭素粒子(B)の平均粒子径D50(B)が、前記合金系材料(A)の平均粒子径D50(A)の2.0~8.0倍である請求項1~3のいずれか1項に記載のリチウムイオン二次電池用負極。
  5.  前記負極活物質層における、前記合金系材料(A)と前記炭素粒子(B)の合計を100質量%としたときの、合金系材料(A)の含有率が、10~60質量%である請求項1~4のいずれか1項に記載のリチウムイオン二次電池用負極。
  6.  前記炭素粒子(B)が、扁平状の黒鉛材料が集合または結合してなる請求項1~5のいずれか1項に記載のリチウムイオン二次電池用負極。
  7.  前記バインダー(D)が、ポリイミドまたはポリアミドイミドである請求項1~6のいずれか1項に記載のリチウムイオン二次電池用負極。
  8.  さらに、導電助剤(C’)を含む請求項1~7のいずれか1項に記載のリチウムイオン二次電池用負極。
  9.  前記導電助剤(C’)が、アスペクト比が10~1000である炭素繊維を含む請求項8に記載のリチウムイオン二次電池用負極。
  10.  前記炭素繊維の繊維径が2~1000nmである請求項9に記載のリチウムイオン二次電池用負極。
  11.  前記炭素繊維が、気相法炭素繊維である請求項9または10に記載のリチウムイオン二次電池用負極。
  12.  請求項1~11のいずれか1項に記載のリチウムイオン二次電池用負極を含むリチウムイオン二次電池。
  13.  ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含有するリチウムイオン二次電池用負極用合材ペーストであって、
     該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの範囲を満たすことを特徴とするリチウムイオン二次電池用負極用合材ペースト。
  14.  前記バインダー用材料(D’)が、ポリイミド、ポリイミドの前駆体およびポリアミドイミドからなる群から選ばれる少なくとも1つであり、前記溶媒(E)が、N-メチル―2-ピロリドンまたはN,N-ジメチルアセトアミドである請求項13に記載のリチウムイオン二次電池用負極用合材ペースト。
  15.  リチウムイオン二次電池用負極用合材ペーストを集電体上に塗布・乾燥する工程を含むリチウムイオン二次電池用負極の製造方法であって、
     前記リチウムイオン二次電池用負極用合材ペーストは、ケイ素またはスズを構成元素として含む合金系材料(A)、該合金系材料(A)の表面を被覆する炭素被膜(C)、炭素粒子(B)、バインダー用材料(D’)および溶媒(E)を含有し、該炭素粒子(B)の、窒素ガス吸着法で測定された全細孔容積および平均細孔直径が、各々1.0×10-2~1.0×10-1 cm/g、および20~50 nmの範囲を満たすことを特徴とする、方法。
PCT/JP2015/000445 2014-02-04 2015-02-02 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法 WO2015118849A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015561215A JP6396343B2 (ja) 2014-02-04 2015-02-02 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
KR1020167021180A KR101898359B1 (ko) 2014-02-04 2015-02-02 리튬이온 이차 전지용 음극, 리튬이온 이차 전지, 리튬이온 이차 전지용 음극용 합재 페이스트 및 리튬이온 이차 전지용 음극의 제조 방법
CN201580006956.5A CN105960724B (zh) 2014-02-04 2015-02-02 锂离子二次电池用负极及其制造方法
US15/116,123 US10297817B2 (en) 2014-02-04 2015-02-02 Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
EP15746829.9A EP3104434B1 (en) 2014-02-04 2015-02-02 Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-019094 2014-02-04
JP2014-019093 2014-02-04
JP2014019093 2014-02-04
JP2014019094 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015118849A1 true WO2015118849A1 (ja) 2015-08-13

Family

ID=53777664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000445 WO2015118849A1 (ja) 2014-02-04 2015-02-02 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法

Country Status (7)

Country Link
US (1) US10297817B2 (ja)
EP (1) EP3104434B1 (ja)
JP (1) JP6396343B2 (ja)
KR (1) KR101898359B1 (ja)
CN (1) CN105960724B (ja)
TW (1) TWI647874B (ja)
WO (1) WO2015118849A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031769A (ko) * 2015-09-03 2018-03-28 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차 전지
CN108701809A (zh) * 2016-02-17 2018-10-23 瓦克化学股份公司 制备Si/C复合颗粒的方法
CN110506350A (zh) * 2017-04-06 2019-11-26 株式会社Lg化学 二次电池用负极及其制造方法
CN110521031A (zh) * 2017-04-06 2019-11-29 株式会社Lg化学 二次电池用负极及其制造方法
CN113991059A (zh) * 2021-11-09 2022-01-28 河南电池研究院有限公司 一种锂离子电池负极极片及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109997256A (zh) * 2017-04-28 2019-07-09 积水化学工业株式会社 锂离子电池用负极活性物质
CN111095617B (zh) * 2017-08-24 2024-05-17 日本电气株式会社 锂离子二次电池用负极和包含所述负极的锂离子二次电池
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials
JP7004969B2 (ja) 2017-11-10 2022-01-21 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池用電極
KR102265741B1 (ko) * 2018-03-21 2021-06-16 (주)엘지에너지솔루션 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
WO2019182013A1 (ja) * 2018-03-22 2019-09-26 日本電気株式会社 リチウムイオン二次電池
US10826066B2 (en) * 2018-03-23 2020-11-03 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
WO2020149404A1 (ja) * 2019-01-17 2020-07-23 日本製鉄株式会社 負極活物質材料、負極及び電池
WO2020184157A1 (ja) * 2019-03-11 2020-09-17 日本ケミコン株式会社 電極及び電極の製造方法
CN110474023B (zh) * 2019-07-23 2022-03-18 复旦大学 一种纤维状镍铋电池及其制备方法
CN114467197A (zh) * 2019-09-26 2022-05-10 积水化学工业株式会社 二次电池用负极材料、二次电池用负极以及二次电池
CN110993944B (zh) * 2019-11-08 2023-07-25 宁波锋成先进能源材料研究院 一种水系离子电池及其应用
WO2021095719A1 (ja) * 2019-11-11 2021-05-20 昭和電工株式会社 複合材料、その製造方法及びリチウムイオン二次電池用負極材など
US20220416225A1 (en) * 2019-11-29 2022-12-29 Sanyo Electric Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11532818B2 (en) 2020-05-29 2022-12-20 Uchicago Argonne, Llc Solvents and slurries comprising a poly(carboxylic acid) binder for silicon electrode manufacture
CN112054164B (zh) * 2020-09-15 2022-02-25 天津市捷威动力工业有限公司 一种锂离子电池用粘结剂添加方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139712A (ja) * 1991-11-19 1993-06-08 Koa Oil Co Ltd 導電性多孔質炭素材の製造方法
JP2001278607A (ja) * 2000-03-29 2001-10-10 Natl Inst Of Advanced Industrial Science & Technology Meti フッ素系樹脂を原料とする多孔質炭素材料の製造方法
JP2007165108A (ja) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd 非水電解液二次電池
JP2008273816A (ja) * 2007-04-04 2008-11-13 Sony Corp 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2014002984A (ja) * 2012-06-21 2014-01-09 Hitachi Maxell Ltd 非水二次電池

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2262613C (en) 1996-08-08 2006-11-28 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary cell using them as negative electrode
JP2002343341A (ja) * 1996-12-26 2002-11-29 Hitachi Chem Co Ltd リチウム二次電池用負極
JP2001210323A (ja) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP4416070B2 (ja) * 2002-12-25 2010-02-17 昭和電工株式会社 負極材料、その製造方法及び用途
US20040124402A1 (en) * 2002-12-25 2004-07-01 Showa Denko K.K. Negative electrode material, and production method and use thereof
JP2004220910A (ja) 2003-01-15 2004-08-05 Mitsubishi Materials Corp 負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池
JP4623940B2 (ja) 2003-06-02 2011-02-02 日本電気株式会社 負極材料及びそれを用いた二次電池
CN100547830C (zh) 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
JP4809617B2 (ja) 2004-03-22 2011-11-09 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
EP1876663B1 (en) * 2005-04-26 2017-04-05 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP4856079B2 (ja) * 2005-09-02 2012-01-18 京セラ株式会社 光電変換装置及びその製造方法並びに光発電装置
WO2009063966A1 (ja) * 2007-11-16 2009-05-22 Asahi Kasei Kabushiki Kaisha 非水系リチウム型蓄電素子
JP4844764B2 (ja) 2008-03-17 2011-12-28 信越化学工業株式会社 非水電解質二次電池負極及びそれを用いた非水電解質二次電池
KR101406013B1 (ko) * 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 비수 전해질 2차 전지용 부극재 및 그것의 제조 방법, 및 비수 전해질 2차 전지용 부극 및 비수 전해질 2차 전지
JP2009231234A (ja) 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd 負極用炭素材料、蓄電デバイス、及び蓄電デバイス搭載品
JP5320854B2 (ja) 2008-06-25 2013-10-23 日産自動車株式会社 非水電解質二次電池の製造方法
WO2010059749A1 (en) * 2008-11-18 2010-05-27 Cornell University Carbon coated anode materials
JP4954270B2 (ja) 2009-02-13 2012-06-13 日立マクセルエナジー株式会社 非水二次電池
JP5593665B2 (ja) * 2009-09-29 2014-09-24 住友ベークライト株式会社 リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
KR102106151B1 (ko) * 2010-08-03 2020-04-29 맥셀 홀딩스 가부시키가이샤 비수 이차 전지용 부극 및 비수 이차 전지
CN103238241B (zh) 2010-11-30 2015-04-01 东丽株式会社 锂离子电池电极用粘合剂、锂离子电池负极用糊剂及锂离子电池负极的制备方法
US9005823B2 (en) * 2011-05-04 2015-04-14 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101201807B1 (ko) * 2011-08-31 2012-11-15 삼성에스디아이 주식회사 리튬 이차 전지
WO2013054500A1 (ja) 2011-10-14 2013-04-18 株式会社豊田自動織機 蓄電装置用負極材料、蓄電装置用負極、蓄電装置ならびに車両
TWI430945B (zh) * 2011-10-21 2014-03-21 昭和電工股份有限公司 Graphite materials, battery electrodes with carbon materials and batteries
WO2013142287A1 (en) * 2012-03-21 2013-09-26 University Of Southern California Nanoporous silicon and lithium ion battery anodes formed therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139712A (ja) * 1991-11-19 1993-06-08 Koa Oil Co Ltd 導電性多孔質炭素材の製造方法
JP2001278607A (ja) * 2000-03-29 2001-10-10 Natl Inst Of Advanced Industrial Science & Technology Meti フッ素系樹脂を原料とする多孔質炭素材料の製造方法
JP2007165108A (ja) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd 非水電解液二次電池
JP2008273816A (ja) * 2007-04-04 2008-11-13 Sony Corp 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2014002984A (ja) * 2012-06-21 2014-01-09 Hitachi Maxell Ltd 非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104434A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180031769A (ko) * 2015-09-03 2018-03-28 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차 전지
KR102075280B1 (ko) * 2015-09-03 2020-02-07 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차 전지
CN108701809A (zh) * 2016-02-17 2018-10-23 瓦克化学股份公司 制备Si/C复合颗粒的方法
CN110506350A (zh) * 2017-04-06 2019-11-26 株式会社Lg化学 二次电池用负极及其制造方法
CN110521031A (zh) * 2017-04-06 2019-11-29 株式会社Lg化学 二次电池用负极及其制造方法
US11495785B2 (en) 2017-04-06 2022-11-08 Lg Energy Solution, Ltd. Negative electrode for secondary battery and method for producing same
CN110506350B (zh) * 2017-04-06 2023-02-21 株式会社Lg新能源 二次电池用负极及其制造方法
US11735713B2 (en) 2017-04-06 2023-08-22 Lg Energy Solution, Ltd. Negative electrode for secondary battery, and method for producing same
CN113991059A (zh) * 2021-11-09 2022-01-28 河南电池研究院有限公司 一种锂离子电池负极极片及其制备方法

Also Published As

Publication number Publication date
US10297817B2 (en) 2019-05-21
JP6396343B2 (ja) 2018-09-26
EP3104434B1 (en) 2019-04-17
KR20160104718A (ko) 2016-09-05
EP3104434A1 (en) 2016-12-14
TWI647874B (zh) 2019-01-11
CN105960724B (zh) 2019-02-15
TW201535845A (zh) 2015-09-16
EP3104434A4 (en) 2017-08-16
US20170077501A1 (en) 2017-03-16
KR101898359B1 (ko) 2018-09-12
CN105960724A (zh) 2016-09-21
JPWO2015118849A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6396343B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
TWI637550B (zh) 非水電解質蓄電池用負極材料及負極活性物質粒子之製造方法
US10720645B2 (en) Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
JP5390336B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
TWI692902B (zh) 鋰離子二次電池之負極用之混合材糊膏、鋰離子二次電池用之負極、鋰離子二次電池用之負極之製造方法及鋰離子二次電池
WO2015107581A1 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
Guo et al. Optimum synthesis of Li2Fe1− xMnxSiO4/C cathode for lithium ion batteries
CN108718535B (zh) 负极活性物质、负极活性物质的制造方法、及包含负极活性物质的材料和锂离子二次电池
WO2017085911A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
WO2018051667A1 (ja) リチウムイオン二次電池
TWI705605B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法
WO2018110263A1 (ja) 複合黒鉛粒子、その製造方法及びその用途
JP2013145669A (ja) 非水電解液二次電池
TW201801379A (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池、負極活性物質的製造方法及非水電解質二次電池的製造方法
JP5482858B2 (ja) リチウムイオン二次電池
EP4216307A1 (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
WO2017213083A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2015173048A (ja) リチウムイオン二次電池電極用電極およびリチウムイオン二次電池
CN109935780B (zh) 粘结剂及其制备方法、负极材料组合物、电池负极及其制备方法以及锂离子电池
JP2015138695A (ja) リチウムイオン二次電池
EP4037028A1 (en) Negative electrode material for secondary batteries, negative electrode for secondary batteries, and secondary battery
JP6634398B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
EP4362133A1 (en) Negative electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2024166478A1 (ja) リチウムイオン電池用負極および負極材の製造方法、判別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561215

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021180

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116123

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015746829

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746829

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE