WO2019182013A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2019182013A1
WO2019182013A1 PCT/JP2019/011711 JP2019011711W WO2019182013A1 WO 2019182013 A1 WO2019182013 A1 WO 2019182013A1 JP 2019011711 W JP2019011711 W JP 2019011711W WO 2019182013 A1 WO2019182013 A1 WO 2019182013A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
negative electrode
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2019/011711
Other languages
English (en)
French (fr)
Inventor
井上 和彦
志村 健一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201980020765.2A priority Critical patent/CN111886740A/zh
Priority to US16/980,479 priority patent/US20210028485A1/en
Priority to JP2020507872A priority patent/JP6973621B2/ja
Publication of WO2019182013A1 publication Critical patent/WO2019182013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, a manufacturing method thereof, and a vehicle equipped with the lithium ion secondary battery.
  • Patent Document 1 describes a lithium ion secondary battery using a microporous film made of PET and a carbonate-based solvent.
  • the separator containing PET is easily deteriorated when a carbonate-based solvent is used as the electrolytic solution, and the discoloration and disappearance of the separator have been confirmed after charging and discharging.
  • a carbonate-based solvent used as the electrolytic solution
  • the discoloration and disappearance of the separator have been confirmed after charging and discharging.
  • the deterioration there was a tendency for the deterioration to proceed particularly in the portion in contact with the negative electrode. From this, it is considered that decomposition products of carbonate solvents such as alkoxy ions generated in the negative electrode react with PET to cause deterioration.
  • an additive for forming a film on the electrode is mixed with the electrolytic solution.
  • an object of one embodiment of the present invention is to provide a lithium ion secondary battery in which a separator containing PET is hardly deteriorated even when an electrolytic solution containing a carbonate-based solvent is used.
  • a first lithium ion secondary battery of the present invention is a lithium ion secondary battery including an electrode laminate including a positive electrode, a negative electrode, and a separator, and an electrolyte solution, wherein the negative electrode includes a solution-type binder,
  • the separator includes polyethylene terephthalate, and the electrolytic solution includes a solvent including a compound having a carbonate group.
  • the present invention it is possible to provide a lithium ion secondary battery in which a separator containing PET is hardly deteriorated even when an electrolytic solution containing a carbonate-based solvent is used.
  • FIG. 1 It is a disassembled perspective view which shows the basic structure of a film-clad battery. It is sectional drawing which shows the cross section of the battery of FIG. 1 typically. It is sectional drawing of an electrode laminated body. It is sectional drawing of the electrode laminated body whose outermost layer is a separator.
  • the lithium ion secondary battery of this embodiment has a separator containing PET.
  • a separator containing PET is also referred to as a PET separator.
  • PET has a high melting point of 280 ° C. and excellent heat resistance. For this reason, if a PET separator is used, safety can be ensured even for a battery having a high energy density that can be hot inside.
  • the PET separator may have a single layer structure or a laminated structure. In the case of a laminated structure, the PET separator includes a PET layer including PET.
  • the PET separator may contain additives such as inorganic particles.
  • the content of PET in the PET separator or PET layer is preferably 50% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.
  • the material used for the layers other than the PET layer is not particularly limited.
  • polyesters other than PET such as polybutylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, poly Aromatic polyamides (aramid) such as metaphenylene isophthalamide, polyparaphenylene terephthalamide and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide, polyimide, polyamideimide, cellulose and the like.
  • the PET separator may have an insulating layer.
  • the PET separator can adopt any form such as a fiber aggregate such as a woven fabric or a non-woven fabric and a microporous membrane.
  • the woven fabric or the nonwoven fabric may include a plurality of fibers that differ in material, fiber diameter, and the like.
  • the woven fabric and the nonwoven fabric may include a composite fiber including a plurality of materials.
  • the porosity of the microporous membrane used for the PET separator and the porosity (porosity) of the nonwoven fabric may be appropriately set according to the characteristics of the lithium ion secondary battery.
  • the porosity of the PET separator is preferably 35% or more, and more preferably 40% or more.
  • the porosity of the PET separator is preferably 80% or less, and more preferably 70% or less.
  • Other measurement methods include a direct observation method using an electron microscope and a press-fitting method using a mercury porosimeter.
  • the PET separator in this embodiment preferably has a high air permeability.
  • the Gurley value of the PET separator is preferably 100 seconds / 100 cc or less, more preferably 50 seconds / 100 cc or less, and even more preferably 20 seconds / 100 cc or less.
  • the PET separator is preferably thin.
  • the thickness of the PET separator is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 8 ⁇ m or more.
  • the thickness of the PET separator is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 25 ⁇ m or less.
  • the rate of deterioration of the PET separator varies depending on the battery configuration.
  • the arrangement and size of the electrode and the PET separator greatly affect the progress rate of deterioration of the PET separator.
  • the present invention can suppress the deterioration of the PET separator and obtain a higher effect even if the battery has a configuration in which the PET separator easily deteriorates.
  • the separator is classified into an intermediate layer separator and an outermost layer separator according to the installation position.
  • a positive electrode and a negative electrode are laminated via a separator to form an electrode laminate.
  • negative electrodes a and positive electrodes c are alternately stacked with the separator b interposed therebetween.
  • Such a separator between the positive electrode and the negative electrode is called an intermediate layer separator.
  • an intermediate layer separator As shown in FIG. 3, in the electrode laminate in which all separators are intermediate layer separators, electrodes are arranged at the lowermost part and the uppermost part (outermost layer).
  • the separator may be arranged at the uppermost part and / or the lowermost part of the electrode laminated body because it is advantageous in terms of manufacturing.
  • FIG. 4 An example of such an electrode laminate is shown in FIG. In FIG. 4, a separator b-1 is provided at the top and a separator b-2 is provided at the bottom.
  • one separator is made into a 99-fold shape, and an electrode is inserted between them, so that the uppermost part and the lowermost part of the electrode stack are separators.
  • wrapping the electrode laminate with the separator may prevent the electrode laminate from being displaced.
  • the separator is positioned at the uppermost part and the lowermost part of the electrode laminate.
  • Such a separator at the uppermost part or the lowermost part of the electrode laminate is referred to as an outermost layer separator.
  • the outermost layer separator does not prevent the contact between the positive electrode and the negative electrode, it is the same as the intermediate layer separator, and is therefore a separator in this specification.
  • the progress rate of deterioration of PET differs between the intermediate layer separator and the outermost layer separator. In the following, an embodiment in which the effect of the present invention becomes more prominent will be described.
  • the PET separator has a portion that is not in contact with the positive electrode.
  • the separator is usually designed larger than the negative electrode and the positive electrode. In this case, even if the separator is an intermediate layer separator or an outermost layer separator, at least the outside does not contact the positive electrode. Such a portion not in contact with the positive electrode tends to deteriorate the PET separator. However, according to the present invention, deterioration of this portion can be suppressed, and a safer battery can be provided.
  • a PET separator is larger than the positive electrode in contact with the PET separator, and the difference in length between them is preferably 1 mm or more, more preferably It is 2 mm or more, more preferably 3 mm or more.
  • the upper limit of the difference in length is not particularly limited. However, in the case of a stacked battery, if the separator is made too large, the volume as the battery increases, and the energy density decreases. For this reason, the difference in length between the separator and the electrode is usually 10 mm or less. In the case of a wound battery, the same lower limit as described above is preferable, but the upper limit is not particularly limited because it has little influence on the energy density.
  • the ratio of the area of the PET separator, particularly the PET separator used as the intermediate separator, which is not in contact with the positive electrode is preferably 3% or more, more preferably 5% or more. More preferably, it is 10% or more. Although the upper limit of a ratio is not specifically limited, For example, it is 20% or less.
  • the PET separator having such a portion not in contact with the positive electrode may be all PET separators or some PET separators.
  • the PET separator has a portion that is in contact with the negative electrode on one surface and is not in contact with the negative electrode and the positive electrode on the other surface (hereinafter also referred to as a portion that is in contact with only the negative electrode).
  • the outermost separator laminated on the negative electrode is in contact with the negative electrode on one surface, and is not in contact with the negative electrode or the positive electrode on the other surface. Therefore, the outermost layer separator laminated on the negative electrode has a portion in contact with only the negative electrode. Further, even the intermediate layer separator may have a portion in contact with only the negative electrode.
  • the negative electrode is designed larger than the positive electrode for the purpose of suppressing the generation of dendrite.
  • the separator is usually designed to be larger than the negative electrode in order to increase the safety against displacement of the electrode stack.
  • the intermediate layer separator has a portion in contact with only the negative electrode.
  • the separator has a portion in contact with only the negative electrode.
  • the outermost peripheral portion is often an uncoated current collector portion at the end of the electrode or a separator.
  • the outermost peripheral separator contacts only the negative electrode.
  • the PET separator is particularly susceptible to deterioration at such a portion that contacts only the negative electrode.
  • deterioration of this portion can be suppressed, and various forms of lithium ion secondary batteries can be provided.
  • the ratio of the total area of the portion in contact with only the negative electrode to the total area of the PET separator is preferably 1% or more, more preferably 4% or more, still more preferably 7% or more, and particularly preferably Is 10% or more.
  • the upper limit of a ratio is not specifically limited, For example, it is 70% or less.
  • the total area of the separator is the total value of the areas of all the separators included in the battery, and the total area of the portion that contacts only the negative electrode is in contact with only the negative electrode present in all the separators included in the battery. It is the total value of the areas of the parts.
  • the area of the portion in contact with only the negative electrode in the intermediate layer separator is equal to the difference between the area of the negative electrode and the area of the positive electrode.
  • the area of the portion in contact with only the negative electrode in the outermost separator is equal to the area of the negative electrode.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer including a negative electrode active material and a negative electrode binder.
  • a solution type binder is used as the negative electrode binder.
  • a binder used for an electrode of a lithium ion secondary battery is generally mixed with an active material and a solvent in an electrode manufacturing process, and these are classified into a dispersion type binder and a solution type binder.
  • the dispersion type binder is used as an emulsion by dispersing binder particles in a solvent.
  • the dispersed binder particles bind the active material particles through an application process to the current collector and a solvent drying process.
  • the solution type binder is used after being dissolved in a solvent.
  • a coating of the binder is formed on the surface of the active material particles, and this coating binds the active material particles through the application process to the current collector and the drying process of the solvent.
  • a side reaction between the negative electrode active material and the electrolytic solution can be suppressed. Thereby, the production
  • solution type binder examples include polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polybutadiene, and polyacrylic. Acid, polyacrylic acid ester, polystyrene, polyacrylonitrile, polyimide, polyamideimide, polyamide and the like can be used. A solution type binder may use 1 type, or may use 2 or more types together.
  • the solvent for dissolving the solution-type binder is not particularly limited, and may be appropriately determined according to the binder. Examples of the solvent include water and organic solvents such as N-methylpyrrolidone.
  • the amount of the solution-type binder to be used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. More preferably, it is 0.5 to 20 parts by mass.
  • the negative electrode active material is not particularly limited as long as it is a material capable of reversibly receiving and releasing lithium ions with charge and discharge. Specific examples include metals, metal oxides, and carbon materials.
  • the metal examples include Li, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. . Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may also contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as the negative electrode active material of the metal oxide, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • silicon oxide one represented by a composition formula SiO x (where 0 ⁇ x ⁇ 2) is preferable.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
  • the surface of the metal or metal oxide may be coated with carbon.
  • the coating of carbon can improve cycle characteristics.
  • the carbon film can be formed by, for example, a sputtering method or a vapor deposition method using a carbon source.
  • Examples of the carbon material include graphite, amorphous carbon, graphene, diamond-like carbon, carbon nanotube, or a composite thereof.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the negative electrode may contain a conductive auxiliary agent such as carbonaceous fine particles such as graphite, carbon black, and acetylene black from the viewpoint of improving conductivity.
  • a conductive auxiliary agent such as carbonaceous fine particles such as graphite, carbon black, and acetylene black from the viewpoint of improving conductivity.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof can be used because of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the negative electrode according to the present embodiment can be produced, for example, by preparing a negative electrode slurry containing a negative electrode active material, a negative electrode binder, and a solvent, and applying the slurry onto a negative electrode current collector to form a negative electrode mixture layer.
  • the method for forming the negative electrode mixture layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed as a negative electrode current collector by a method such as vapor deposition or sputtering to produce a negative electrode.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer including a positive electrode active material and a positive electrode binder.
  • the positive electrode active material can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element.
  • the layered structure represented by the following formula (1) Lithium nickel composite oxide is preferred.
  • Li y Ni (1-x) M x O 2 (1) (However, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
  • the Ni content is high, that is, in the formula (1), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (1), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • the material with high Ni content (x is 0.4 or less) and the material with Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the layered lithium nickel composite oxide may be further substituted with other metal elements.
  • a layered lithium nickel composite oxide represented by the following formula (2) can also be preferably used.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , xLi 2 MnO 3 — (1-x) LiMO 2 (x is 0 .1 ⁇ x ⁇ 0.8, M is, Mn, Fe, Co, Ni , Ti, is one or more elements selected from the group consisting of Al and Mg), Li x Mn 1.5 Ni 0.
  • a material in which these metal oxides are partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Can also be used. Any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the positive electrode binder is not particularly limited, but polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polybutadiene Polyacrylic acid, polyacrylic acid ester, polystyrene, polyacrylonitrile, polyimide, polyamideimide and the like can be used.
  • the positive electrode binder may be a mixture of a plurality of resins, a copolymer, and a crosslinked product thereof, such as styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • the amount of the positive electrode binder is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less as the upper limit, with respect to 100 parts by mass of the positive electrode active material. is there.
  • a conductive auxiliary agent may be added to the positive electrode mixture layer for the purpose of reducing impedance.
  • the conductive auxiliary agent include scale-like, rod-like, and fibrous carbonaceous fine particles, such as graphite, carbon black, acetylene black, and vapor grown carbon fiber.
  • the positive electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • a current collector using aluminum, an aluminum alloy, or an iron / nickel / chromium / molybdenum-based stainless steel is preferable.
  • the positive electrode according to the present embodiment can be produced, for example, by preparing a positive electrode slurry containing a positive electrode active material, a positive electrode binder, and a solvent, and applying the slurry onto a positive electrode current collector to form a positive electrode mixture layer.
  • Examples of the method for forming the positive electrode mixture layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a positive electrode may be produced by forming a thin film of aluminum, nickel, or an alloy thereof as a positive electrode current collector by a method such as vapor deposition or sputtering.
  • the electrolytic solution includes a solvent and a supporting salt.
  • the solvent includes a carbonate-based solvent, that is, a compound containing a carbonate group (—OC ( ⁇ O) O—).
  • the compound containing a carbonate group is not particularly limited, and may be a cyclic carbonate or a chain carbonate.
  • the cyclic carbonate is not particularly limited, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Further, a fluorinated cyclic carbonate may be used. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), or butylene carbonate (BC) are substituted with fluorine atoms.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • 4-fluoro-1,3-dioxolan-2-one (monofluoroethylene carbonate), (cis or trans) 4,5-difluoro-1,3-dioxolan-2-one, 4 , 4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, and the like can be used.
  • a cyclic carbonate can be used individually by 1 type or in combination of 2 or more types.
  • the chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC).
  • the chain carbonate includes a fluorinated chain carbonate.
  • a fluorinated chain carbonate for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • fluorinated chain carbonate More specific examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropylmethyl carbonate, 3,3,3-trifluoropropylmethyl carbonate, and the like.
  • a chain carbonate can be used individually by 1 type or in combination of 2 or more types.
  • the volume ratio of the compound containing a carbonate group in the solvent is preferably 10% by volume or more, more preferably 50% by volume or more, and may be 100% by volume.
  • a compound containing a carbonate group may be used in combination with another solvent.
  • solvents include sulfone compounds, carboxylic acid esters, ethers, and phosphoric acid esters.
  • the sulfone compound may be linear or cyclic.
  • chain sulfone compounds include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, butyl methyl sulfone, dibutyl sulfone, methyl isopropyl sulfone, diisopropyl sulfone, methyl tert-butyl sulfone, butyl ethyl sulfone, butyl propyl sulfone, and butyl isopropyl sulfone.
  • Di-tert-butylsulfone diisobutylsulfone, ethylisopropylsulfone, ethylisobutylsulfone, tert-butylethylsulfone, propylethylsulfone, isobutylisopropylsulfone, butylisobutylsulfone, isopropyl (1-methylpropyl) sulfone, and the like.
  • cyclic sulfone compound examples include sulfolane (tetramethylene sulfone), methyl sulfolane such as 3-methylsulfolane, 3,4-dimethylsulfolane, 2,4-dimethylsulfolane, trimethylene sulfone (thietane 1,1-dioxide), Examples thereof include 1-methyltrimethylene sulfone, pentamethylene sulfone, hexamethylene sulfone, and ethylene sulfone.
  • the carboxylic acid ester is not particularly limited, and examples thereof include chain carboxylic acid esters such as ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, methyl formate, and the like.
  • chain carboxylic acid esters such as ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, methyl formate, and the like.
  • Examples include ⁇ -lactones such as ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, and 3-methyl- ⁇ -butyrolactone, and cyclic carboxylic acid esters such as ⁇ -propiolactone and ⁇ -valerolactone. Fluorinated products of these carboxylic acid esters may be used.
  • ether examples include dimethyl ether, diethyl ether, ethyl methyl ether, dimethoxyethane and the like.
  • Fluorine-containing ether may also be used.
  • the fluorine-containing ether include 2,2,3,3,3-pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,2 -Trifluoroethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,2,3,3,3-hexafluoropropyl-2,2-difluoroethyl ether, isopropyl 1,1 , 2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H-per
  • phosphate esters examples include trimethyl phosphate, triethyl phosphate, and tributyl phosphate.
  • Fluorine-containing phosphate esters may also be used.
  • the fluorine-containing phosphate ester include 2,2,2-trifluoroethyldimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethylethyl phosphate, tris (trifluoromethyl) phosphate, phosphorus Pentafluoropropyldimethyl phosphate, heptafluorobutyldimethyl phosphate, trifluoroethyl methyl ethyl phosphate, pentafluoropropyl methyl ethyl phosphate, heptafluorobutyl methyl ethyl phosphate, trifluoroethyl methyl phosphate phosphate, pentafluoropropyl phosphate Methylpropyl, heptafluorobutylmethylpropyl phosphate, trifluoroethylmethylbut
  • the electrolytic solution preferably further contains an additive.
  • the additive forms a film on the negative electrode, and decomposition of a solvent such as a compound containing a carbonate group can be suppressed. For this reason, deterioration of the PET separator can be further suppressed by the additive.
  • the additive include fluoroethylene carbonate, vinylene carbonate, cyclic disulfonic acid ester, propane sultone, and unsaturated acid anhydride.
  • Fluoroethylene carbonate is obtained by substituting at least a part of hydrogen of ethylene carbonate with fluorine.
  • the fluorine substitution rate and the fluorine substitution position are not particularly limited, but 4-fluoro-1,3-dioxolan-2-one is particularly preferred.
  • Fluoroethylene carbonate can also be used as a solvent. When fluoroethylene carbonate is used as the solvent, it is not necessary to use an additive, and other compounds may be used as the additive. In one embodiment, fluoroethylene carbonate is preferably used as an additive rather than a solvent.
  • the cyclic disulfonic acid ester is represented, for example, by the following formula (3).
  • Q represents an oxygen atom, a methylene group or a single bond
  • A represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, a carbonyl group, a sulfinyl group, a substituted or unsubstituted carbon atom having 1 to 6 carbon atoms.
  • B is a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, substituted or Represents an unsubstituted fluoroalkylene group having 1 to 6 carbon atoms or an oxygen atom.
  • Q is an oxygen atom, a methylene group or a single bond, and is preferably an oxygen atom.
  • A is a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, a carbonyl group, a sulfinyl group, a substituted or unsubstituted fluoroalkylene group having 1 to 6 carbon atoms, or an ether bond.
  • A when A is an alkylene group, it may be linear or branched, and is preferably linear.
  • the alkylene group - (CH 2) n - ( n is an integer of 1-6) is represented by, - (CH 2) n - ( n is 1 or 2) methylene group is Or it is more preferable that it is an ethylene group, and it is still more preferable that it is a methylene group.
  • At least one hydrogen atom of an alkylene group represented by — (CH 2 ) n — (n is an integer of 1 to 5) is substituted with an alkyl group, for example, —C (CH 3 ) 2 —, —C (CH 3 ) (CH 2 CH 3 ) —, —C (CH 2 CH 3 ) 2 —, —CH (C m H 2m + 1 ) — (m is an integer of 1 to 4), —CH 2 —C (CH 3 ) 2 —, —CH 2 —CH (CH 3 ) —, —CH (CH 3 ) —CH (CH 3 ) CH 2 CH 2 — or —CH (CH 3 ) CH 2 CH 2 CH 2 — and the like.
  • an alkyl group for example, —C (CH 3 ) 2 —, —C (CH 3 ) (CH 2 CH 3 ) —, —C (CH 2 CH 3 ) 2 —, —CH (C m H
  • the fluoroalkylene group means that at least one of the hydrogen atoms of the alkylene group is substituted with a fluorine atom, and all the hydrogen atoms may be substituted with a fluorine atom, and the fluorine substitution position and the number of substitutions. Is optional.
  • the fluoroalkylene group may be linear or branched, and is preferably linear. In a linear fluoroalkylene group, when all the hydrogen atoms are substituted with fluorine atoms, A is represented by — (CF 2 ) n — (n is an integer of 1 to 6).
  • fluoroalkylene group examples include a monofluoromethylene group, a difluoromethylene group, a monofluoroethylene group, a difluoroethylene group, a trifluoroethylene group, and a tetrafluoroethylene group.
  • a divalent group having 2 to 6 carbon atoms in which an alkylene unit or a fluoroalkylene unit is bonded via an ether bond for example, —R 4 —O—R 5 — (R 4 and R 5 are Each independently represents an alkylene group or a fluoroalkylene group, and the total number of carbon atoms of R 4 and R 5 is 2 to 6), or —R 6 —O—R 7 —O—R 8 — (R 6 , R 7 and R 8 each independently represents an alkylene group or a fluoroalkylene group, and the total number of carbon atoms of R 6 , R 7 and R 8 is 3 to 6.
  • R 4 and R 5 may both be an alkylene group, or both may be a fluoroalkylene group, or one may be an alkylene group and the other may be a fluoroalkylene group.
  • R 6 , R 7 and R 8 may each independently be an alkylene group or a fluoroalkylene group.
  • —CH 2 —O—CH 2 —, —CH 2 —O—C 2 H 4 —, —C 2 H 4 —O—C 2 H 4 —, —CH 2 —O—CH 2 —O—CH 2 —, —CH 2 —O—CHF—, —CH 2 —O—CF 2 —, —CF 2 —O—CF 2 —, —C 2 F 4 —O—C 2 F 4 —, —CF 2 — O—CF 2 —O—CF 2 —, —CH 2 —O—CF 2 —O—CH 2 — and the like can be mentioned.
  • B represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 1 to 6 carbon atoms, or an oxygen atom.
  • B may be linear or branched.
  • alkylene group and the fluoroalkylene group include the groups listed in A above.
  • B is preferably a methylene group (—CH 2 —) or —CH (C m H 2m + 1 ) — (m is an integer of 1 to 4), and is preferably a methylene group or an ethylidene group [—CH ( CH 3 ) —] or —CH (C 2 H 5 ) — is more preferable, and —CH (CH 3 ) — or a methylene group is further preferable.
  • the cyclic disulfonic acid ester is preferably a 6-membered ring or a 7-membered ring.
  • MMDS methylenemethane disulfonate
  • a and B are methylene groups and Q is an oxygen atom, respectively.
  • A is an ethylene group
  • B is a methylene group
  • Q is an oxygen atom
  • EMDS ethylene methane disulfonate
  • A is a methylene group
  • B is an ethylidene group [—CH (CH 3 ) —]
  • Q is an oxygen atom
  • a specific example is 3-methyl-1,5,2,4-dioxadithian-2,2,4,4-tetraoxide (3MDT).
  • the cyclic disulfonic acid ester may be used alone or in combination of two or more.
  • the unsaturated acid anhydride examples include carboxylic acid anhydride, sulfonic acid anhydride, and anhydrides of carboxylic acid and sulfonic acid.
  • the unsaturated acid anhydride is preferably a carboxylic acid anhydride having a structure represented by [— (C ⁇ O) —O— (C ⁇ O) —] in the molecule.
  • Preferred examples of the unsaturated acid anhydride include maleic anhydride, 2,3-dimethylmaleic anhydride, itaconic anhydride, citraconic anhydride and the like. These fluorides may be used.
  • the content of the additive in the electrolytic solution is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.4%, in order to form a film that suppresses the decomposition of the PET separator. It is at least mass%.
  • the content of the additive in the electrolytic solution is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1.5% by mass or less. If the amount of the additive is large, the film becomes thick and capacity deterioration may occur. Therefore, it is preferable that the amount of the additive is small. In this embodiment, since the solution type binder which coat
  • the supporting salt is not particularly limited except that it contains Li.
  • the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2). ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 and the like.
  • Other examples of the supporting salt include lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like.
  • the supporting salt can be used singly or in combination of two or more.
  • the concentration of the supporting salt in the electrolytic solution is preferably 0.5 to 1.5 mol / L. By setting the concentration of the supporting salt within this range, it becomes easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
  • An insulating layer may be formed on the surface of any of the positive electrode, the negative electrode, and the separator.
  • Examples of the method for forming the insulating layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • the insulating layer can be formed simultaneously with the formation of the positive electrode mixture layer, the negative electrode mixture layer, or the separator.
  • Examples of the material forming the insulating layer include a mixture of an insulating filler such as aluminum oxide or barium titanate and a binder such as styrene butadiene rubber or polyvinylidene fluoride.
  • the lithium ion secondary battery according to the present embodiment has a structure as shown in FIGS. 1 and 2, for example.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately stacking a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41. Note that the present invention is not limited to a stacked battery, and can also be applied to a wound battery or the like.
  • the lithium ion secondary battery according to the present embodiment may have a configuration in which the electrode tab is drawn out on one side of the exterior body as shown in FIGS. 1 and 2, but the electrode tab is drawn out on both sides of the exterior body. May be.
  • each of the positive and negative metal foils has an extension on a part of the outer periphery.
  • the extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 2).
  • the portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions” or the like.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 1 and 2 show examples in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2.
  • a configuration (not shown) in which a cup portion is formed on both films, a configuration in which neither cup portion is formed (not shown), or the like can be adopted.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method.
  • An example of a method for manufacturing a secondary battery will be described by taking a laminated laminate type secondary battery as an example. First, in a dry air or an inert atmosphere, a positive electrode and a negative electrode are arranged to face each other via a separator to form an electrode laminate. Next, this electrode laminated body is accommodated in an exterior body (container), an electrolytic solution is injected, and the electrode is impregnated with the electrolytic solution. Then, the opening part of an exterior body is sealed and a secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to this embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • the vehicle according to the present embodiment is not limited to an automobile, and can be used as various power sources for other vehicles such as trains, ships, submarines, and satellites.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used for a power storage device.
  • a power storage device for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with a large time fluctuation due to renewable energy.
  • Example 1 (Preparation of positive electrode) Positive electrode active material (layered lithium nickel composite oxide: LiNi 0.80 Co 0.15 Al 0.05 O 2 ), carbon black (trade name: “# 3030B”, manufactured by Mitsubishi Chemical Corporation), polyfluoride Vinylidene (trade name: “W # 7200”, manufactured by Kureha Co., Ltd.) was weighed at a mass ratio of 93: 2: 5, respectively. These and N-methylpyrrolidone (NMP) were mixed to form a positive electrode slurry. The mass ratio of NMP to solid content was 50:50. This positive electrode slurry was applied to an aluminum foil having a thickness of 15 ⁇ m using a doctor blade. The aluminum foil coated with this positive electrode slurry was heated at 120 ° C. for 5 minutes to dry the NMP, thereby producing a positive electrode.
  • NMP N-methylpyrrolidone
  • the electrode laminate on which the outermost separator was installed was covered with a laminate film, and an electrolyte solution was injected into the laminate film. Thereafter, the laminate film was heat-sealed and sealed while reducing the pressure inside the laminate film. As a result, a plurality of flat-type secondary batteries before the first charge were produced.
  • a polypropylene film on which aluminum was deposited was used.
  • the electrolytic solution a solution containing 1.0 mol / l LiPF 6 as a supporting salt and a mixed solvent of ethylene carbonate and diethyl carbonate (7: 3 (volume ratio)) as a solvent was used.
  • Example 2 A battery was prepared and evaluated in the same manner as in Example 1 except that the negative electrode was changed.
  • the negative electrode was produced as follows. Copolymer polyacrylic acid containing monomer units derived from sodium acrylate was used as the negative electrode binder. A composite in which the SiO x surface with an average particle diameter D50% of 8 ⁇ m was coated with carbon (the amount of carbon in the composite was 7 mass%) and polyacrylic acid were weighed at a mass ratio of 90:10. These and pure water were mixed to prepare a negative electrode slurry. This was applied to both sides of a 10 ⁇ m thick copper foil serving as a current collector, dried at 80 ° C. for 5 minutes, and a negative electrode was produced through a pressing step.
  • Example 3 A battery was prepared and evaluated in the same manner as in Example 2 except that the additive fluoroethylene carbonate (FEC) (1.5% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Example 4 A battery was prepared and evaluated in the same manner as in Example 2 except that the additive vinylene carbonate (VC) (1.5% by mass) was added to the electrolytic solution.
  • VC vinylene carbonate
  • Example 5 A battery was prepared and evaluated in the same manner as in Example 2 except that the additive methylenemethane disulfonate (MMDS) (1.5% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Example 6 A battery was prepared and evaluated in the same manner as in Example 1 except that the additive fluoroethylene carbonate (FEC) (1.5% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Example 7 A battery was prepared and evaluated in the same manner as in Example 1 except that the additive vinylene carbonate (VC) (1.5% by mass) was added to the electrolytic solution.
  • VC vinylene carbonate
  • Example 8 A battery was prepared and evaluated in the same manner as in Example 1 except that the additive methylenemethane disulfonate (MMDS) (1.5% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Example 9 A battery was prepared and evaluated in the same manner as in Example 2 except that the negative electrode was changed.
  • the negative electrode was produced as follows. Natural graphite was used as the negative electrode active material. Natural graphite as a negative electrode active material, acetylene black as a conductive auxiliary agent, and copolymerized polyacrylic acid containing monomer units derived from sodium acrylate as a negative electrode binder were weighed in a mass ratio of 90: 1: 10. . These and pure water were mixed to prepare a negative electrode slurry. This was applied to both sides of a 10 ⁇ m thick copper foil serving as a current collector, dried at 80 ° C. for 5 minutes, and a negative electrode was produced through a pressing step.
  • Example 10 A battery was prepared and evaluated in the same manner as in Example 9 except that the additive fluoroethylene carbonate (FEC) (1.5% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Example 11 A battery was prepared and evaluated in the same manner as in Example 9 except that the additive vinylene carbonate (VC) (1.5% by mass) was added to the electrolytic solution.
  • VC vinylene carbonate
  • Example 12 A battery was produced and evaluated in the same manner as in Example 9 except that the additive methylenemethane disulfonate (MMDS) (1.5% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Example 13 A battery was prepared and evaluated in the same manner as in Example 2 except that the positive electrode active material was changed to layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 ).
  • Example 14 A battery was prepared and evaluated in the same manner as in Example 3 except that the positive electrode active material was changed to layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 ).
  • Example 15 A battery was prepared and evaluated in the same manner as in Example 4 except that the positive electrode active material was a layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 ).
  • Example 16 A battery was prepared and evaluated in the same manner as in Example 5 except that the positive electrode active material was a layered lithium nickel composite oxide (LiNi 0.80 Mn 0.15 Co 0.05 O 2 ).
  • Example 17 A battery was prepared and evaluated in the same manner as in Example 14 except that the additive fluoroethylene carbonate (FEC) (0.5% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Example 18 A battery was prepared and evaluated in the same manner as in Example 15 except that the additive vinylene carbonate (VC) (0.5% by mass) was added to the electrolytic solution.
  • VC vinylene carbonate
  • Example 19 A battery was prepared and evaluated in the same manner as in Example 16 except that the additive methylenemethane disulfonate (MMDS) (0.5% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Example 20 A battery was prepared and evaluated in the same manner as in Example 14 except that the additive fluoroethylene carbonate (FEC) (0.3% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Example 21 A battery was prepared and evaluated in the same manner as in Example 15 except that the additive vinylene carbonate (VC) (0.3% by mass) was added to the electrolytic solution.
  • VC vinylene carbonate
  • Example 22 A battery was prepared and evaluated in the same manner as in Example 16 except that the additive methylenemethane disulfonate (MMDS) (0.3% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Example 1 A battery was prepared and evaluated in the same manner as in Example 1 except that the negative electrode was changed.
  • the negative electrode was produced as follows. A 1% by mass aqueous solution of artificial graphite and carboxymethyl cellulose (CMC) was kneaded using a rotating / revolving mixer (Shinky Corporation Awatori Rentaro ARE-500), and then styrene butadiene rubber (SBR) was added to the negative electrode. A slurry was prepared. The mass ratio of artificial graphite, CMC, and SBR was 97: 1: 2. This was applied to both sides of a 10 ⁇ m thick copper foil serving as a current collector, dried at 80 ° C. for 5 minutes, and a negative electrode was produced through a pressing step.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • Comparative Example 2 A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the additive fluoroethylene carbonate (FEC) (1.5% by mass) was added to the electrolytic solution.
  • FEC fluoroethylene carbonate
  • Comparative Example 4 A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the additive methylenemethane disulfonate (MMDS) (1.5% by mass) was added to the electrolytic solution.
  • MMDS methylenemethane disulfonate
  • Comparative Example 5 A battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the separator was changed to polypropylene (PP).
  • NCA LiNi 0.80 Co 0.15 Al 0.05 O 2
  • NMC LiNi 0.80 Mn 0.15 Co 0.05 O 2
  • PET Polyethylene terephthalate
  • PP Polypropylene PVdF: Polyvinylidene fluoride
  • C Graphite (natural graphite or artificial graphite)
  • PAA polyacrylic acid
  • SBR styrene butadiene rubber
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • MMDS methylenemethane disulfonate
  • Example 9 uses polyacrylic acid as a solution-type binder for the negative electrode binder.
  • Comparative Example 1 uses SBR which is a dispersion type binder for the negative electrode binder. Compared to Comparative Example 1, it can be seen that in Example 9, molecular weight reduction of the PET separator is suppressed. It is considered that the solution type binder covered the surface of the negative electrode active material, so that it was difficult to generate alkoxy ions that were the cause of deterioration. In addition, in Examples 10 to 12 in which an additive was added to the electrolytic solution, it was revealed that the decrease in the molecular weight of the separator was further suppressed.
  • Example 13 the amount of additive was changed. In Example 13 in which no additive was used, deterioration of the intermediate layer separator could be suppressed. However, as shown in Examples 14 to 22, the intermediate layer separator and the outermost layer were added by adding 0.5% by mass or more of the additive. Degradation of both separators could be suppressed.
  • a lithium ion secondary battery including an electrode laminate including a positive electrode, a negative electrode, and a separator, and an electrolyte solution
  • the negative electrode includes a solution-type binder
  • the separator comprises polyethylene terephthalate;
  • the electrolyte includes a solvent containing a compound having a carbonate group, Lithium ion secondary battery.
  • Appendix 2 The lithium ion secondary battery according to appendix 1, wherein the solution-type binder is selected from the group consisting of polyacrylic acid, polyimide, and polyamide.
  • (Appendix 3) The lithium ion secondary battery according to appendix 1 or 2, wherein the electrolytic solution includes an additive selected from the group consisting of fluoroethylene carbonate, vinylene carbonate, cyclic disulfonic acid ester, propane sultone, and unsaturated acid anhydride. .
  • (Appendix 4) The lithium ion secondary battery according to supplementary note 3, wherein a content of the additive in the electrolytic solution is 0.05% by mass or more and 3% by mass or less.
  • (Appendix 5) The lithium ion secondary battery according to any one of appendices 1 to 4, wherein the separator has a portion that is in contact with the negative electrode on one surface and is not in contact with the positive electrode or the negative electrode on the other surface.
  • Appendix 10 A vehicle equipped with the lithium ion secondary battery according to any one of appendices 1 to 9.
  • Appendix 11 Laminating a positive electrode and a negative electrode via a separator to produce an electrode laminate, Encapsulating the electrode laminate and the electrolyte in an exterior body; Including The negative electrode includes a solution-type binder, The separator comprises polyethylene terephthalate; The method for producing a lithium ion secondary battery, wherein the electrolytic solution contains a solvent containing a compound having a carbonate group.
  • the lithium ion secondary battery according to the present invention can be used in, for example, all industrial fields that require a power source and industrial fields related to transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric vehicles, trains, satellites, submarines, etc .
  • It can be used for backup power sources such as UPS; power storage facilities for storing power generated by solar power generation, wind power generation, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一実施形態の目的は、カーボネート系の溶媒を含む電解液を使用しても、ポリエチレンテレフタレートを含むセパレータの劣化が抑制され安全性の高いリチウムイオン二次電池を提供することにある。本発明の第1のリチウムイオン二次電池は、正極と負極とセパレータとを含む電極積層体と、電解液とを含むリチウムイオン二次電池であって、前記負極が溶液型バインダを含み、前記セパレータがポリエチレンテレフタレートを含み、前記電解液がカーボネート基を有する化合物を含む溶媒を含むことを特徴とする。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池、その製造方法およびリチウムイオン二次電池を搭載した車両に関する。
 リチウムイオン二次電池の安全性を向上させるために、比較的高い融点を有するポリエチレンテレフタレート(PET)がセパレータに用いられている。また、リチウムイオン二次電池の電解液には、カーボネート系の溶媒が一般的に用いられている。例えば、特許文献1には、PETから成る微多孔膜およびカーボネート系の溶媒を使用したリチウムイオン二次電池が記載されている。
特開2003-187867号公報
 しかしながら、PETを含むセパレータは、電解液にカーボネート系の溶媒を使用する場合に劣化し易く、充放電後にセパレータの変色や消失が確認されていた。このようなセパレータの劣化を調査した結果、負極に接する部分において劣化が特に進行する傾向にあった。このことから、負極において生成するアルコキシイオン等のカーボネート系の溶媒の分解物がPETと反応して劣化を引き起こしていると考えられる。このような溶媒の分解を抑制するために、電極に被膜を形成する添加剤を電解液に混合することが知られている。例えば、上述した特許文献1に記載の電池においても、負極での電解液の分解を抑制するためにビニレンカーボネートが添加剤として使用されている。しかしがなら、PETを含むセパレータの劣化は添加剤の使用だけでは十分に抑制できていなかった。本発明の一実施形態の目的は、上述した課題を鑑み、カーボネート系の溶媒を含む電解液を使用してもPETを含むセパレータが劣化しにくいリチウムイオン二次電池を提供することにある。
 本発明の第1のリチウムイオン二次電池は、正極と負極とセパレータとを含む電極積層体と、電解液とを含むリチウムイオン二次電池であって、前記負極が溶液型バインダを含み、前記セパレータがポリエチレンテレフタレートを含み、前記電解液がカーボネート基を有する化合物を含む溶媒を含むことを特徴とする。
 本発明によれば、カーボネート系の溶媒を含む電解液を使用してもPETを含むセパレータが劣化しにくいリチウムイオン二次電池を提供できる。
フィルム外装電池の基本的構造を示す分解斜視図である。 図1の電池の断面を模式的に示す断面図である。 電極積層体の断面図である。 最外層がセパレータである電極積層体の断面図である。
 以下、本実施形態に係るリチウムイオン二次電池の一例を、構成要素ごとに説明する。
 [セパレータ]
 本実施形態のリチウムイオン二次電池はPETを含むセパレータを有する。以降、本明細書において、PETを含むセパレータをPETセパレータとも記載する。PETは融点が280℃と高く、耐熱性に優れている。このため、PETセパレータを使用すれば、内部が高温になり得るエネルギー密度の高い電池であっても、安全性を確保できる。PETセパレータは、単層構造であっても積層構造であってもよい。積層構造の場合、PETセパレータはPETを含むPET層を含む。PETセパレータは、無機粒子等添加剤を含んでもよい。PETセパレータまたはPET層におけるPETの含有量は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、100質量%であってもよい。
 PETセパレータが積層構造である場合、PET層以外の層に用いられる素材としては、特に限定されないが、例えば、ポリブチレンテレフタレートやポリエチレンナフタレート等のPET以外のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドおよびコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド等の芳香族ポリアミド(アラミド)、ポリイミド、ポリアミドイミド、セルロース等が挙げられる。後述するが、PETセパレータが絶縁層を有してもよい。
 PETセパレータは、例えば、織布や不織布といった繊維集合体および微多孔膜等、任意の形態を採用することができる。織布や不織布は、素材や繊維径等において異なる複数の繊維を含んでもよい。また、織布や不織布は、複数の素材を含む複合繊維を含んでもよい。
 PETセパレータに使用する微多孔膜の空孔率および不織布の空孔率(空隙率)はリチウムイオン二次電池の特性に応じて適宜設定してよい。電池の良好なレート特性を得るために、PETセパレータの空孔率は、35%以上であることが好ましく、40%以上であることがより好ましい。また、セパレータの強度を高めるため、PETセパレータの空孔率は、80%以下であることが好ましく、70%以下であることがより好ましい。
 なお、セパレータの空孔率は、JIS P 8118に準じて嵩密度を測定し、下式により計算することができる:
空孔率(%)=[1-(嵩密度ρ(g/cm)/材料の理論密度ρ(g/cm))]×100
 その他の測定方法としては、電子顕微鏡による直接観察法、水銀ポロシメータによる圧入法等も挙げられる。
 本実施形態におけるPETセパレータは、通気度が高いものであることが好ましい。PETセパレータのガーレー値は100秒/100cc以下が好ましく、50秒/100cc以下がより好ましく、20秒/100cc以下がさらに好ましい。また、PETセパレータのガーレー値の下限としては、一例で0.01秒/100cc以上であることが好ましい。
 PETセパレータの厚みは大きい方が、絶縁性や強度を維持する点において好ましい。一方で電池のエネルギー密度を高めるためには、PETセパレータは薄い方がよい。本実施形態において短絡防止や耐熱性を与えるために、PETセパレータの厚みは、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは8μm以上である。通常要求されるエネルギー密度等電池の仕様に対応するため、PETセパレータの厚みは、好ましくは40μm以下、より好ましくは30μm以下、さらに好ましくは25μm以下である。
 電池の構成により、PETセパレータの劣化の進行速度は異なる。特に電極とPETセパレータの配置および大きさがPETセパレータの劣化の進行速度に大きく影響する。本発明は、PETセパレータが劣化し易い構成を有する電池であっても、PETセパレータの劣化を抑制でき、より高い効果を得ることができる。本明細書では、設置位置により、セパレータを中間層セパレータと最外層セパレータとに分類する。一般的には正極と負極とをセパレータを介して積層し、電極積層体を形成する。例えば、図3では負極aおよび正極cが、セパレータbを挟みつつ交互に積層されている。このような正極と負極の間にあるセパレータを中間層セパレータと呼ぶ。図3に示されるように、全てのセパレータが中間層セパレータである電極積層体では、最下部および最上部(最外層)には電極が配置される。一方で、積層型の電池(特には九十九折型の電池)では、製造面で有利となることからセパレータを電極積層体の最上部および/または最下部に配置することがある。このような電極積層体の一例を図4に示す。図4では、最上部にセパレータb-1が、最下部にはセパレータb-2がそれぞれ設けられている。また、九十九折型の電池では、1枚のセパレータを九十九折状にし、その間に電極を挿入するため、電極積層体の最上部および最下部はセパレータである。この他にも、電極積層体をセパレータで包み込むことで、電極積層体のズレを防止することがあり、この場合も電極積層体の最上部および最下部にセパレータが位置することになる。このような電極積層体の最上部または最下部にあるセパレータを最外層セパレータと呼ぶ。なお、最外層セパレータは正極と負極の接触を防止するものではないが、中間層セパレータと同様のものであることから本明細書ではセパレータとする。中間層セパレータと最外層セパレータとでもPETの劣化の進行速度は異なる。以下では本発明の効果がより顕著となる実施形態について説明する。
 一実施形態において、PETセパレータが、正極と接していない部分を有することが好ましい。電極積層体のズレに対する安全性を高めるためにセパレータは、通常、負極および正極よりも大きく設計される。この場合、セパレータが中間層セパレータであっても最外層セパレータであっても、少なくとも外側は正極と接しない。このような正極と接していない部分はPETセパレータが劣化し易い。しかしながら、本発明によればこの部分の劣化を抑制でき、より安全性の高い電池を提供できる。本発明の一実施形態においては、PETセパレータ、特には中間層セパレータとして用いられるPETセパレータは当該PETセパレータと接触する正極よりも大きく、これらの長さの差は、好ましくは1mm以上、より好ましくは2mm以上、さらに好ましくは3mm以上である。長さの差の上限は特に限定されないが、積層型の電池の場合セパレータを大きくしすぎると電池としての体積が大きくなるため、エネルギー密度が低下することになる。このためセパレータと電極との長さの差は、通常10mm以下である。捲回型の電池の場合も、上述と同じ下限が好ましいが、上限はエネルギー密度への影響が少ないことから特に限定されない。長さについては、部材が円形の場合、直径の長さを使用し、部材が四角形の場合、長辺の長さを使用する。また、本発明の一実施形態において、PETセパレータ、特には中間層セパレータとして用いられるPETセパレータの面積における正極と接していない部分の面積の比率は、好ましくは3%以上、より好ましくは5%以上、さらに好ましくは10%以上である。比率の上限は特に限定されないが、例えば、20%以下である。電池が複数のPETセパレータを含む場合、このような正極と接していない部分を有するPETセパレータは、全てのPETセパレータであっても一部のPETセパレータであってもよい。
 一実施形態においては、PETセパレータが、一方の面で負極と接し、他方の面で負極とも正極とも接していない部分(以降では負極のみと接する部分とも呼ぶ)を有することが特に好ましい。例えば、負極上に積層された最外層セパレータは、一方の面で負極と接し、他方の面では負極とも正極とも接しない。従って、負極上に積層された最外層セパレータは負極のみと接する部分を有する。また、中間層セパレータであっても、負極のみと接する部分を有する場合がある。デンドライトの発生を抑制する目的等で、正極よりも負極を大きく設計する場合がある。上述した通り、電極積層体のズレに対する安全性を高めるために、通常、セパレータは負極よりもさらに大きく設計する。この場合、中間層セパレータは、負極のみと接する部分を有する。捲回型の電池でも、通常はデンドライトの発生を抑制する目的等で正極よりも負極の方が大きいため、セパレータは負極のみと接する部分を有する。また、活物質の脱落を防止し組み立てを容易にする目的で、最外周部分は電極端部の未塗工集電体部分やセパレータとする場合が多い。負極を正極に対して外側に配置して捲回する場合、最外周部分のセパレータは負極のみと接する。このような負極のみと接する部分はPETセパレータが特に劣化し易い。しかしながら、本発明によればこの部分の劣化を抑制でき、様々な形態のリチウムイオン二次電池を提供できる。
 本発明の一実施形態においては、PETセパレータの総面積に対する、負極のみと接する部分の総面積の比率は、好ましくは1%以上、より好ましくは4%以上、さらに好ましくは7%以上、特に好ましくは10%以上である。比率の上限は特に限定されないが、例えば、70%以下である。ここで、セパレータの総面積は、電池内に含まれる全てのセパレータの面積の合計値であり、負極のみと接する部分の総面積は、電池内に含まれる全てのセパレータに存在する負極のみと接する部分の面積の合計値である。通常、中間層セパレータにおける負極のみと接する部分の面積は負極の面積と正極の面積との差に等しい。通常、最外層セパレータにおける負極のみと接する部分の面積は負極の面積に等しい。
 [負極]
 負極は、負極集電体と、負極活物質および負極バインダを含む負極合剤層とを備える。
 本実施形態において、負極バインダには溶液型バインダを用いる。リチウムイオン二次電池の電極に用いられるバインダは、一般的に電極の製造工程で活物質および溶媒と混合され、これらは分散型バインダと溶液型バインダとに分類される。分散型バインダは、例えばバインダ粒子を溶媒に分散させてエマルジョンとして使用する。集電体への塗布工程や溶媒の乾燥工程を経て、分散したバインダ粒子が活物質粒子を結着する。溶液型バインダは、溶媒に溶解させて使用する。溶解することにより活物質粒子表面にバインダの被膜が形成され、同じく集電体への塗布工程や溶媒の乾燥工程を経て、この被膜が活物質粒子を結着する。溶液型バインダが負極活物質粒子を被覆することにより、負極活物質と電解液との副反応を抑制できる。これによりPETを分解する物質の生成が抑制され、PETセパレータの劣化を抑制できる。
 溶液型バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリブタジエン、ポリアクリル酸、ポリアクリル酸エステル、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、ポリアミド等を用いることができる。溶液型バインダは1種を用いても2種以上を併用してもよい。溶液型バインダを溶解する溶媒は特に限定されず、バインダに応じて適宜決定してよい。溶媒としては、例えば、水やN-メチルピロリドン等の有機溶媒等が挙げられる。
 使用する溶液型バインダの量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~20質量部である。
 負極活物質としては、充放電に伴いリチウムイオンを可逆的に受容、放出可能な材料であれば特に限定されない。具体的には、金属、金属酸化物、炭素材料等を挙げることができる。
 金属としては、例えば、Li、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属または合金は2種以上混合して用いてもよい。また、これらの金属または合金は1種以上の非金属元素を含んでもよい。
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、金属酸化物の負極活物質として酸化スズもしくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンが、比較的安定で他の化合物との反応を引き起こしにくいからである。酸化シリコンとしては、組成式SiO(ただし、0<x≦2)で表されるものが好ましい。また、金属酸化物に、窒素、ホウ素および硫黄の中から選ばれる1種または2種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。
 金属や金属酸化物の表面には、炭素を被覆してもよい。炭素の被覆によりサイクル特性を改善できる場合がある。炭素被膜の形成方法は、例えば、炭素源を用いたスパッタリング法または蒸着法等により行うことができる。
 炭素材料としては、例えば、黒鉛、非晶質炭素、グラフェン、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅等の金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 負極は、導電性を向上させる観点から、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子等の導電補助剤を含んでよい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金を使用できる。その形状としては、箔、平板状、メッシュ状が挙げられる。
 本実施形態に係る負極は、例えば、負極活物質、負極バインダおよび溶媒を含む負極スラリーを調製し、これを負極集電体上に塗布し、負極合剤層を形成することにより作製できる。負極合剤層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め負極合剤層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を負極集電体として形成して、負極を作製してもよい。
 [正極]
 正極は、正極集電体と、正極活物質および正極バインダを含む正極合剤層とを備える。
 正極活物質は、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(1)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (1)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、TiおよびBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(1)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)等が挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(1)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)等(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(1)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(1)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 層状リチウムニッケル複合酸化物はその他の金属元素でさらに置換されてもよい。例えば、下式(2)で表される層状リチウムニッケル複合酸化物も好ましく使用され得る。
 LiNiCoM1M2   (2)
(0.8≦a≦1.2、0.5≦b<1.0、0.005≦c≦0.4、0.005≦d≦0.4、0≦e<0.1、1.8≦f≦2.3、b+c+d+e=1、M1はMnまたはAlであり、M2はB、Na、Mg、Al、S、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Zr、Nb、Mo、Sn、Pb、Wから成る群より選択される1種以上の金属である。)
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、xLiMnO-(1-x)LiMO(xは、0.1<x<0.8、Mは、Mn、Fe、Co、Ni、Ti、AlおよびMgから成る群より選択される1種以上の元素である)、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;およびLiFePO等のオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極バインダとしては、特に制限されるものではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリブタジエン、ポリアクリル酸、ポリアクリル酸エステル、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等を用いることができる。また、正極バインダは、前記の複数の樹脂の混合物、共重合体およびその架橋体、例えばスチレンブタジエンゴム(SBR)等であってもよい。さらに、SBR系エマルジョンのような水系のバインダを用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。正極バインダの量は、正極活物質100質量部に対して、下限として好ましくは1質量部以上、より好ましくは2質量部以上、上限として好ましくは30質量部以下、より好ましくは25質量部以下である。
 正極合剤層には、インピーダンスを低下させる目的で、導電補助剤を添加してもよい。導電補助剤としては、鱗片状、煤状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維等が挙げられる。
 正極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。特に、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。
 本実施形態に係る正極は、例えば、正極活物質、正極バインダおよび溶媒を含む正極スラリーを調製し、これを正極集電体上に塗布し、正極合剤層を形成することにより作製できる。正極合剤層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め正極合剤層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を正極集電体として形成して、正極を作製してもよい。
 [電解液]
 電解液は溶媒と支持塩を含む。本実施形態において、溶媒はカーボネート系の溶媒、即ち、カーボネート基(-OC(=O)O-)を含む化合物を含む。本実施形態において、カーボネート基を含む化合物は特に制限されず、環状カーボネートであっても鎖状カーボネートであってもよい。
 環状カーボネートとしては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)等を挙げることができる。また、フッ素化環状カーボネートを使用してもよい。フッ素化環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、またはブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。より具体的には、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(モノフルオロエチレンカーボネート)、(cisまたはtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等を用いることができる。環状カーボネートは、1種を単独でまたは2種以上を併用して用いることができる。
 鎖状カーボネートとしては、特に制限されるものではないが、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等を挙げることができる。また、鎖状カーボネートは、フッ素化鎖状カーボネートを含む。フッ素化鎖状カーボネートとしては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。フッ素化鎖状カーボネートとしては、より具体的には、例えば、ビス(フルオロエチル)カーボネート、3-フルオロプロピルメチルカーボネート、3,3,3-トリフルオロプロピルメチルカーボネート等が挙げられる。鎖状カーボネートは、1種を単独でまたは2種以上を併用して用いることができる。
 カーボネート基を含む化合物は誘電率が高いことから、カーボネート基を含む化合物を含む電解液はイオン解離性が向上し、また粘度が下がる。被膜形成効果に加えて、イオン移動度を向上することができる。このため、溶媒中のカーボネート基を含む化合物の体積比率は、好ましくは10体積%以上、より好ましくは50体積%以上であり、100体積%であってもよい。
 カーボネート基を含む化合物をその他の溶媒と組み合わせて使用してもよい。その他の溶媒としては、スルホン化合物、カルボン酸エステル、エーテル、リン酸エステル等が挙げられる。
 スルホン化合物は鎖状であっても、環状であってもよい。鎖状スルホン化合物としては、例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、ブチルメチルスルホン、ジブチルスルホン、メチルイソプロピルスルホン、ジイソプロピルスルホン、メチルtert‐ブチルスルホン、ブチルエチルスルホン、ブチルプロピルスルホン、ブチルイソプロピルスルホン、ジ‐tert‐ブチルスルホン、ジイソブチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン、tert‐ブチルエチルスルホン、プロピルエチルスルホン、イソブチルイソプロピルスルホン、ブチルイソブチルスルホン、イソプロピル(1‐メチルプロピル)スルホン等が挙げられる。環状スルホン化合物としては、例えば、スルホラン(テトラメチレンスルホン)、3-メチルスルホラン等のメチルスルホラン、3,4-ジメチルスルホラン、2,4-ジメチルスルホラン、トリメチレンスルホン(チエタン1,1-ジオキシド)、1-メチルトリメチレンスルホン、ペンタメチレンスルホン、ヘキサメチレンスルホン、エチレンスルホン等が挙げられる。
 カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等の鎖状カルボン酸エステルおよびγ-ブチロラクトン、α-メチル-γ-ブチロラクトン、3-メチル-γ-ブチロラクトン等のγ-ラクトン類、β-プロピオラクトン、δ-バレロラクトン等の環状カルボン酸エステルが挙げられる。これらのカルボン酸エステルのフッ素化物を使用してもよい。
 エーテルとしては、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、ジメトキシエタン等が挙げられる。
 また、フッ素含有エーテルを使用してもよい。フッ素含有エーテルとしては、例えば、2,2,3,3,3-ペンタフルオロプロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、イソプロピル1,1,2,2-テトラフルオロエチルエーテル、プロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル1,1,3,3,3-ペンタフルオロ-2-(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル2,2,2-トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,5H-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2‐テトラフルオロエチルエーテル、メチルノナフルオロブチルエーテル、1,1-ジフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、ビス(2,2,3,3-テトラフルオロプロピル)エーテル、1,1-ジフルオロエチル-2,2,3,3,3-ペンタフルオロプロピルエーテル、1,1-ジフルオロエチル-1H,1H-ヘプタフルオロブチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチル-ジフルオロメチルエーテル、ビス(2,2,3,3,3-ペンタフルオロプロピル)エーテル、ノナフルオロブチルメチルエーテル、ビス(1H,1H-ヘプタフルオロブチル)エーテル、1,1,2,3,3,3-ヘキサフルオロプロピル-1H,1H-ヘプタフルオロブチルエーテル、1H,1H-ヘプタフルオロブチル-トリフルオロメチルエーテル、2,2-ジフルオロエチル-1,1,2,2-テトラフルオロエチルエーテル、ビス(トリフルオロエチル)エーテル、ビス(2,2-ジフルオロエチル)エーテル、ビス(1,1,2-トリフルオロエチル)エーテル、1,1,2-トリフルオロエチル-2,2,2-トリフルオロエチルエーテル等が挙げられる。
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル等が挙げられる。
 また、フッ素含有リン酸エステルを使用してもよい。フッ素含有リン酸エステルとしては、例えば、リン酸2,2,2-トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビストリフルオロエチルエチル、リン酸トリス(トリフルオロメチル)、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1H,1H-ヘプタフルオロブチル)、リン酸トリス(1H,1H,5H-オクタフルオロペンチル)等が挙げられる。
 本実施形態において電解液は添加剤をさらに含むことが好ましい。充放電時に添加剤が負極に被膜を形成し、カーボネート基を含む化合物等の溶媒の分解を抑制できる。このため、添加剤によりPETセパレータの劣化をさらに抑制できる。添加剤としては、例えば、フルオロエチレンカーボネート、ビニレンカーボネート、環状ジスルホン酸エステル、プロパンスルトン、および不飽和酸無水物等が挙げられる。
 フルオロエチレンカーボネートはエチレンカーボネートの少なくとも一部の水素をフッ素で置換して得られる。フッ素の置換率およびフッ素の置換位置は特に限定されないが、4-フルオロ-1,3-ジオキソラン-2-オンが特に好ましい。フルオロエチレンカーボネートは、溶媒に用いることもできる。溶媒にフルオロエチレンカーボネートを用いる場合、添加剤を使用しなくてもよく、添加剤にその他の化合物を用いてもよい。一実施形態において、フルオロエチレンカーボネートは、溶媒ではなく添加剤に用いることが好ましい。
 環状ジスルホン酸エステルは、例えば以下式(3)で表される。
Figure JPOXMLDOC01-appb-C000001
(式中、Qは酸素原子、メチレン基または単結合を表し、Aは、置換もしくは無置換の炭素数1~6のアルキレン基、カルボニル基、スルフィニル基、置換もしくは無置換の炭素数1~6のフルオロアルキレン基、または、エーテル結合を介してアルキレン単位もしくはフルオロアルキレン単位が結合した炭素数2~6の基を表し、Bは、置換もしくは無置換の炭素数1~6のアルキレン基、置換もしくは無置換の炭素数1~6のフルオロアルキレン基、または酸素原子を表す。)
 式(3)において、Qは酸素原子、メチレン基または単結合であり、酸素原子であることが好ましい。
 式(3)において、Aは、置換もしくは無置換の炭素数1~6のアルキレン基、カルボニル基、スルフィニル基、置換もしくは無置換の炭素数1~6のフルオロアルキレン基、またはエーテル結合を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の基を表す。式(3)において、Aがアルキレン基のとき、直鎖であっても分岐鎖を有していてもよく、直鎖であることが好ましい。直鎖アルキレン基の場合、アルキレン基は-(CH-(nは、1~6の整数)で表され、-(CH-(nは、1または2)であるメチレン基またはエチレン基であることがより好ましく、メチレン基であることがさらに好ましい。分岐アルキレン基は、-(CH-(nは1~5の整数)で表されるアルキレン基の少なくともひとつの水素原子がアルキル基で置換されており、例えば、-C(CH-、-C(CH)(CHCH)-、-C(CHCH-、-CH(C2m+1)-(mは1~4の整数)、-CH-C(CH-、-CH-CH(CH)-、-CH(CH)-CH(CH)-、-CH(CH)CHCH-または-CH(CH)CHCHCH-等が挙げられる。フルオロアルキレン基は、上記アルキレン基が有する水素原子の少なくとも一つがフッ素原子で置換されていることを意味し、全ての水素原子がフッ素原子で置換されていてもよく、フッ素の置換位置および置換数は任意である。フルオロアルキレン基は直鎖であっても分岐鎖を有していてもよく、直鎖であることが好ましい。直鎖のフルオロアルキレン基で、水素原子がすべてフッ素原子で置換されている場合、Aは-(CF-(nは1~6の整数)で表される。フルオロアルキレン基として、具体的にはモノフルオロメチレン基、ジフルオロメチレン基、モノフルオロエチレン基、ジフルオロエチレン基、トリフルオロエチレン基またはテトラフルオロエチレン基が挙げられる。
 また、Aにおける「エーテル結合を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基」として、例えば、-R-O-R-(RおよびRは、それぞれ独立に、アルキレン基またはフルオロアルキレン基を表し、RおよびRの炭素数の合計が2~6である)、または-R-O-R-O-R-(R、RおよびRは、それぞれ独立に、アルキレン基またはフルオロアルキレン基を表し、R、RおよびRの炭素数の合計が3~6である)が挙げられる。RおよびRは、いずれもアルキレン基であってもよいし、いずれもフルオロアルキレン基であってもよいし、一方がアルキレン基でもう一方がフルオロアルキレン基であってもよい。R、RおよびRは、それぞれ独立に、アルキレン基であってもフルオロアルキレン基であってもよい。例えば、-CH-O-CH-、-CH-O-C-、-C-O-C-、-CH-O-CH-O-CH-、-CH-O-CHF-、-CH-O-CF-、-CF-O-CF-、-C-O-C-、-CF-O-CF-O-CF-、-CH-O-CF-O-CH-等が挙げられる。
 式(3)中、Bは、置換もしくは無置換の炭素数1~6のアルキレン基、置換もしくは無置換の炭素数1~6のフルオロアルキレン基、または酸素原子を表す。Bは直鎖であっても分岐鎖を有していてもよい。アルキレン基およびフルオロアルキレン基としては、上記Aで挙げた基を例示することができる。これらのうち、Bとしては、メチレン基(-CH-)または-CH(C2m+1)-(mは1~4の整数)であることが好ましく、メチレン基、エチリデン基〔-CH(CH)-〕、または-CH(C)-であることがより好ましく、-CH(CH)-またはメチレン基であることがさらに好ましい。
 環状ジスルホン酸エステルとしては、六員環または七員環であることが好ましく、例えば、式(3)中、AおよびBがそれぞれメチレン基、Qが酸素原子であるメチレンメタンジスルホン酸エステル(MMDS)、Aがエチレン基、Bがメチレン基、Qが酸素原子であるエチレンメタンジスルホン酸エステル(EMDS)、Aがメチレン基、Bがエチリデン基〔-CH(CH)-〕、Qが酸素原子である3-メチル-1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド(3MDT)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 環状ジスルホン酸エステルは、1種を単独で使用しても2種以上を併用してもよい。
 不飽和酸無水物としては、例えば、カルボン酸無水物、スルホン酸無水物、及び、カルボン酸とスルホン酸の無水物等が挙げられる。中でも、不飽和酸無水物は、分子内に[-(C=O)-O-(C=O)-]で表される構造を有するカルボン酸無水物であることが好ましい。不飽和酸無水物の好ましい化合物例としては、無水マレイン酸、2,3-ジメチル無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらのフッ素化物を用いてもよい。
 電解液中の添加剤の含有量は、PETセパレータの分解を抑制する被膜を形成するために、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.4質量%以上である。電解液中の添加剤の含有量は、好ましくは3質量%以下、より好ましくは2質量%以下、さらに好ましくは1.5質量%以下である。添加剤の量が多いと被膜が厚くなり、容量劣化が生じる場合がある。従って、添加剤の量は少ない方が好ましい。本実施形態において、活物質を被覆する溶液型バインダを負極で使用しているので、添加剤の量が少なくても十分な被膜形成効果が得られる。
 支持塩は、Liを含有すること以外は特に限定されない。支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiB10Cl10等が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、1種を単独で、または2種以上を組み合わせて使用することができる。
 支持塩の電解液中の濃度は、0.5~1.5mol/Lであることが好ましい。支持塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易くなる。
 [絶縁層]
 正極、負極、セパレータのいずれかの表面に絶縁層を形成してもよい。絶縁層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。正極合剤層、負極合剤層、またはセパレータの形成と同時に絶縁層を形成することもできる。絶縁層を形成する物質としては、酸化アルミニウムやチタン酸バリウム等の絶縁性フィラーとスチレンブタジエンゴムやポリフッ化ビニリデン等のバインダとの混合物が挙げられる。
 [二次電池の構造]
 本実施形態に係るリチウムイオン二次電池は、例えば、図1および図2のような構造を有する。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図2に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。なお、本発明は、必ずしも積層型の電池に限らず捲回型等の電池にも適用しうる。
 本実施形態に係るリチウムイオン二次電池は図1および図2のように電極タブが外装体の片側に引き出された構成であってもよいが、電極タブが外装体の両側に引き出されたものであってもいい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図2参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」等とも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図1では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図1、図2では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)等も採用しうる。
 [二次電池の製造方法]
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型の二次電池を例に、二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極を、セパレータを介して対向配置して、電極積層体を形成する。次に、この電極積層体を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止して二次電池を完成する。
 [組電池]
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列またはその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
 [車両]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車、船舶、潜水艦、衛星等の移動体の各種電源として用いることもできる。
 [蓄電装置]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、蓄電装置に用いることができる。本実施形態に係る蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電力として使用されるものや、太陽光発電等の、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 (正極の作製)
 正極活物質(層状リチウムニッケル複合酸化物:LiNi0.80Co0.15Al0.05)と、カーボンブラック(商品名:「#3030B」、三菱化学(株)製)と、ポリフッ化ビニリデン(商品名:「W#7200」、(株)クレハ製)とを、それぞれ93:2:5の質量比で計量した。これらと、N-メチルピロリドン(NMP)とを混合し、正極スラリーとした。NMPと固形分との質量比は50:50とした。この正極スラリーを厚さ15μmのアルミニウム箔にドクターブレードを用いて塗布した。この正極スラリーが塗布されたアルミニウム箔を120℃で5分間加熱してNMPを乾燥させ、正極を作製した。
 (負極の作製)
 平均粒子径D50%が8μmであるSiO表面を炭素で被覆した複合体(複合体における炭素の量が7質量%)と、ポリアミック酸溶液(商品名:「U-ワニスA」、宇部興産(株)製、ポリアミック酸20質量%)とを、それぞれ50:50の質量比で計量した。これらと、NMPとを混練し、負極スラリーとした。負極スラリーを、厚さ10μmの銅箔上にドクターブレードを用いて塗布した。その後、300℃で5分間加熱し、NMPを乾燥させた。その後、空気中常圧下にて150℃で1時間加熱し負極を作製した。
 (セパレータ)
 PETの不織布(厚み:15μm、空隙率:56%、ガーレー値:0.2秒/100cc)を用いた。
 (二次電池の組み立て)
 作製した正極および負極のそれぞれに、アルミニウム端子、ニッケル端子を溶接した。これらを、セパレータを介して重ね合わせて電極積層体を作製した。この電極間に挟まれているセパレータを中間層セパレータとよぶ。これとは別に、得られた電極積層体の上と下にさらにセパレータを配置し、負極のみと接するセパレータを設けた。これらを最外層セパレータとよぶ。負極は正極よりも大きく(各辺2mm)、また、セパレータは負極よりも大きかった(各辺2mm)。このことから、中間層セパレータの周辺部に幅4mmの正極と対向していない部分があった。この部分はセパレータの面積の3.5%であった。負極のみと接する部分の総面積はセパレータの総面積の7.0%であった。
 最外層セパレータを設置した電極積層体をラミネートフィルムで外装し、ラミネートフィルム内部に電解液を注入した。その後、ラミネートフィルム内部を減圧しながらラミネートフィルムを熱融着して封止した。これにより平板型の初回充電前の二次電池を複数個、作製した。ラミネートフィルムにはアルミニウムを蒸着したポリプロピレンフィルムを用いた。電解液には、支持塩として1.0mol/lのLiPFと、溶媒としてエチレンカーボネートとジエチルカーボネートの混合溶媒(7:3(体積比))を含む溶液を用いた。
 (二次電池の保存試験)
 作製した二次電池を4.2Vに充電し、45℃に保った恒温槽内に20日間放置し、保存試験を行った。充電はCCCV方式で行い、4.2Vに達した後は電圧を一定に一時間保った。放電後に解体した電池から取り出したセパレータの分子量を測定することで、セパレータの劣化の指標とした。中間層セパレータの周辺部の正極と対向していない部分および最外層セパレータの中心部の分子量を測定した。セパレータの重量平均分子量が未使用のものに比べて10%以上低下したものを×、10%未満の低下にとどまったものを○、全く変化しなかったものを◎とした。結果を表1に示す。
 (分子量測定)
 PETの分子量は、GPCにより以下の通り測定した。試料を1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)にて溶解後、メンブランフィルターでろ過したものを測定溶液とした。溶離液はDMF(10mM、LiBr)を用い、RI検出器で測定した。使用前のPETの分子量は、Mn=2.1万であった。
 (安全性試験)
 安全性試験として高温保管試験を行った。作製した二次電池を、4.2Vまで充電後、160℃の恒温槽内に30分間放置し、電池の状態を評価した。電池の破裂や発煙が無い場合を○とし、発火する場合を×とした。結果を表1に示す。
 [実施例2]
 負極を変更した以外は実施例1と同様に電池を作製し、評価した。負極は以下の通り作製した。負極バインダとしてアクリル酸ナトリウム塩に由来する単量体単位を含む共重合ポリアクリル酸を使用した。平均粒子径D50%が8μmであるSiO表面を炭素で被覆した複合体(複合体における炭素の量が7質量%)と、ポリアクリル酸とを90:10の質量比で計量した。これらと純水を混合し、負極スラリーを調製した。これを集電体となる厚さ10μmの銅箔の両面に塗布し、80℃で5分間の乾燥を行い、プレス工程を経て負極を作製した。
 [実施例3]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(1.5質量%)を配合した以外は、実施例2と同様に電池を作製し、評価した。
 [実施例4]
 電解液に添加剤ビニレンカーボネート(VC)(1.5質量%)を配合した以外は、実施例2と同様に電池を作製し、評価した。
 [実施例5]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(1.5質量%)を配合した以外は、実施例2と同様に電池を作製し、評価した。
 [実施例6]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(1.5質量%)を配合した以外は、実施例1と同様に電池を作製し、評価した。
 [実施例7]
 電解液に添加剤ビニレンカーボネート(VC)(1.5質量%)を配合した以外は、実施例1と同様に電池を作製し、評価した。
 [実施例8]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(1.5質量%)を配合した以外は、実施例1と同様に電池を作製し、評価した。
 [実施例9]
 負極を変更した以外は実施例2と同様に電池を作製し、評価した。負極は以下の通り作製した。負極活物質として、天然黒鉛を使用した。負極活物質として天然黒鉛と、導電補助剤としてアセチレンブラックと、負極バインダとしてアクリル酸ナトリウム塩に由来する単量体単位を含む共重合ポリアクリル酸とを90:1:10の質量比で計量した。これらと純水を混合し負極スラリーを調製した。これを集電体となる厚さ10μmの銅箔の両面に塗布し、80℃で5分間の乾燥を行い、プレス工程を経て負極を作製した。
 [実施例10]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(1.5質量%)を配合した以外は、実施例9と同様に電池を作製し、評価した。
 [実施例11]
 電解液に添加剤ビニレンカーボネート(VC)(1.5質量%)を配合した以外は、実施例9と同様に電池を作製し、評価した。
 [実施例12]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(1.5質量%)を配合した以外は、実施例9と同様に電池を作製し、評価した。
 [実施例13]
 正極活物質を層状リチウムニッケル複合酸化物(LiNi0.80Mn0.15Co0.05)とした以外は実施例2と同様に電池を作製し、評価した。
 [実施例14]
 正極活物質を層状リチウムニッケル複合酸化物(LiNi0.80Mn0.15Co0.05)とした以外は実施例3と同様に電池を作製し、評価した。
 [実施例15]
 正極活物質を層状リチウムニッケル複合酸化物(LiNi0.80Mn0.15Co0.05)とした以外は実施例4と同様に電池を作製し、評価した。
 [実施例16]
 正極活物質を層状リチウムニッケル複合酸化物(LiNi0.80Mn0.15Co0.05)とした以外は実施例5と同様に電池を作製し、評価した。
 [実施例17]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(0.5質量%)を配合した以外は、実施例14と同様に電池を作製し、評価した。
 [実施例18]
 電解液に添加剤ビニレンカーボネート(VC)(0.5質量%)を配合した以外は、実施例15と同様に電池を作製し、評価した。
 [実施例19]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(0.5質量%)を配合した以外は、実施例16と同様に電池を作製し、評価した。
 [実施例20]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(0.3質量%)を配合した以外は、実施例14と同様に電池を作製し、評価した。
 [実施例21]
 電解液に添加剤ビニレンカーボネート(VC)(0.3質量%)を配合した以外は、実施例15と同様に電池を作製し、評価した。
 [実施例22]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(0.3質量%)を配合した以外は、実施例16と同様に電池を作製し、評価した。
 [比較例1]
 負極を変更した以外は実施例1と同様に電池を作製し、評価した。負極は以下の通り作製した。人造黒鉛とカルボキメチルセルロース(CMC)の1質量%の水溶液を、自転・公転ミキサー(株式会社 シンキー製 あわとり錬太郎 ARE-500)を用いて混練し、その後スチレンブタジエンゴム(SBR)を加え、負極スラリーを調製した。人造黒鉛とCMCとSBRとの質量比は97:1:2とした。これを集電体となる厚さ10μmの銅箔の両面に塗布し、80℃で5分間の乾燥を行い、プレス工程を経て負極を作製した。
 [比較例2]
 電解液に添加剤フルオロエチレンカーボネート(FEC)(1.5質量%)を配合した以外は、比較例1と同様に電池を作製し、評価した。
 [比較例3]
 電解液に添加剤ビニレンカーボネート(VC)(1.5質量%)を配合した以外は、比較例1と同様に電池を作製し、評価した。
 [比較例4]
 電解液に添加剤メチレンメタンジスルホン酸エステル(MMDS)(1.5質量%)を配合した以外は、比較例1と同様に電池を作製し、評価した。
 [比較例5]
 セパレータをポリプロピレン(PP)に変更した以外は、比較例1と同様に電池を作製し、評価した。ポリプロピレンの分子量は、GPCにより以下の通り測定した。試料をo-ジクロロベンゼンにて溶解後、メンブランフィルターでろ過したものを測定溶液とした。溶離液はo-ジクロロベンゼンを用い、RI検出器で測定した。使用前のポリプロピレンの分子量は、Mw=60万であった。
 [比較例6]
 セパレータをポリプロピレンに変更した以外は、実施例1と同様に電池を作製し、評価した。
 [比較例7]
 セパレータをポリプロピレンに変更した以外は、実施例2と同様に電池を作製し、評価した。
 [比較例8]
 セパレータをポリプロピレンに変更した以外は、実施例9と同様に電池を作製し、評価した。
Figure JPOXMLDOC01-appb-T000003
 
 表1中略語の意味は以下の通りである。
NCA:LiNi0.80Co0.15Al0.05
NMC:LiNi0.80Mn0.15Co0.05
PET:ポリエチレンテレフタレート
PP:ポリプロピレン
PVdF:ポリフッ化ビニリデン
C:黒鉛(天然黒鉛または人造黒鉛)
PI:ポリイミド
PAA:ポリアクリル酸
SBR:スチレンブタジエンゴム
FEC:フルオロエチレンカーボネート
VC:ビニレンカーボネート
MMDS:メチレンメタンジスルホン酸エステル
 PETに比べ融点の低いポリプロピレンをセパレータに用いた比較例5~8では、高温保管試験で安全性が劣る結果となった。これは、セパレータが収縮し短絡が生じ、発火したと推察される。
 負極バインダとして分散型バインダであるSBRを用いた比較例1~4では、中間層セパレータの周辺部や最外層セパレータの中心部にPETの分子量低下が認められ、特に最外層セパレータでは、著しい分子量低下が生じていた。正極との距離が離れているこれらの部分では、劣化の原因物質であるアルコキシイオンが酸化されにくく、PETの分解反応が激しく起こったものと推察する。また、この傾向は電解液に添加剤を用いなかった比較例1において特に顕著であった。このことは、負極活物質の表面を添加剤により生成される被膜が覆うことで、劣化の原因物質であるアルコキシイオンが生成しにくくなることを示している。
 実施例9は、負極バインダに溶液型バインダであるポリアクリル酸を使用している。一方で、比較例1は、負極バインダに分散型バインダであるSBRを使用している。比較例1と比較して、実施例9では、PETセパレータの分子量低下が抑制されていることが分かる。溶液型バインダが負極活物質の表面を覆うことで、劣化の原因物質であるアルコキシイオンが生成されにくくなったと考えられる。また、電解液に添加剤を加えた実施例10~12では、さらにセパレータの分子量低下が抑制されることが明らかとなった。
 実施例13~22では添加剤の量を変化させた。添加剤を用いない実施例13においても、中間層セパレータの劣化を抑制できたが、実施例14~22に示される通り、添加剤を0.5質量%以上加えることで中間層セパレータと最外層セパレータの両方の劣化を抑制できた。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、本出願の開示事項は以下の付記に限定されない。
(付記1)
 正極と負極とセパレータとを含む電極積層体と、電解液とを含むリチウムイオン二次電池であって、
 前記負極が溶液型バインダを含み、
 前記セパレータがポリエチレンテレフタレートを含み、
 前記電解液がカーボネート基を有する化合物を含む溶媒を含む、
リチウムイオン二次電池。
(付記2)
 前記溶液型バインダが、ポリアクリル酸、ポリイミド、およびポリアミドから成る群より選択される、付記1に記載のリチウムイオン二次電池。
(付記3)
 前記電解液が、フルオロエチレンカーボネート、ビニレンカーボネート、環状ジスルホン酸エステル、プロパンスルトン、および不飽和酸無水物から成る群より選択される添加剤を含む、付記1または2に記載のリチウムイオン二次電池。
(付記4)
 前記添加剤の前記電解液中の含有量が、0.05質量%以上3質量%以下である、付記3に記載のリチウムイオン二次電池。
(付記5)
 前記セパレータが、一方の面で前記負極と接し、他方の面で前記正極とも前記負極とも接していない部分を有する、付記1~4のいずれか1項に記載のリチウムイオン二次電池。
(付記6)
 前記セパレータの総面積に対する、前記部分の総面積の比率が1%以上である、付記5に記載のリチウムイオン二次電池。
(付記7)
 前記セパレータを複数含み、一部の前記セパレータが、一方の面で前記負極と接し、他方の面では前記正極とも前記負極とも接していない、付記1~6のいずれか1項に記載のリチウムイオン二次電池。
(付記8)
 前記電極積層体の少なくとも一方の最外層は、前記負極上に積層された前記セパレータである、付記1~6のいずれか1項に記載のリチウムイオン二次電池。
(付記9)
 積層型である、付記1~8のいずれか1項に記載のリチウムイオン二次電池。
(付記10)
 付記1~9のいずれか1項に記載のリチウムイオン二次電池を搭載した車両。
(付記11)
 正極と負極とをセパレータを介して積層して電極積層体を製造する工程と、
 前記電極積層体と電解液とを外装体に封入する工程と、
を含み、
 前記負極が溶液型バインダを含み、
 前記セパレータがポリエチレンテレフタレートを含み、
 前記電解液がカーボネート基を有する化合物を含む溶媒を含むことを特徴とする、リチウムイオン二次電池の製造方法。
 この出願は、2018年3月22日に出願された日本出願特願2018-054602を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明によるリチウムイオン二次電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車等を含む電動車両、電車、衛星、潜水艦等の移動・輸送用媒体の電源;UPS等のバックアップ電源;太陽光発電、風力発電等で発電した電力を貯める蓄電設備;等に、利用することができる。
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極
a 負極
b セパレータ
b-1 セパレータ
b-2 セパレータ
c 正極
d 負極集電体
e 正極集電体
f 正極端子
g 負極端子

Claims (10)

  1.  正極と負極とセパレータとを含む電極積層体と、電解液とを含むリチウムイオン二次電池であって、
     前記負極が溶液型バインダを含み、
     前記セパレータがポリエチレンテレフタレートを含み、
     前記電解液がカーボネート基を有する化合物を含む溶媒を含む、
    リチウムイオン二次電池。
  2.  前記溶液型バインダが、ポリアクリル酸、ポリイミド、およびポリアミドから成る群より選択される、請求項1に記載のリチウムイオン二次電池。
  3.  前記電解液が、フルオロエチレンカーボネート、ビニレンカーボネート、環状ジスルホン酸エステル、プロパンスルトン、および不飽和酸無水物から成る群より選択される添加剤を含む、請求項1または2に記載のリチウムイオン二次電池。
  4.  前記添加剤の前記電解液中の含有量が、0.05質量%以上3質量%以下である、請求項3に記載のリチウムイオン二次電池。
  5.  前記セパレータが、一方の面で前記負極と接し、他方の面で前記正極とも前記負極とも接していない部分を有する、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  前記セパレータの総面積に対する、前記部分の総面積の比率が1%以上である、請求項5に記載のリチウムイオン二次電池。
  7.  前記電極積層体の少なくとも一方の最外層は、前記負極上に積層された前記セパレータである、請求項1~6のいずれか1項に記載のリチウムイオン二次電池。
  8.  積層型である、請求項1~7のいずれか1項に記載のリチウムイオン二次電池。
  9.  請求項1~8のいずれか1項に記載のリチウムイオン二次電池を搭載した車両。
  10.  正極と負極とをセパレータを介して積層して電極積層体を製造する工程と、
     前記電極積層体と電解液とを外装体に封入する工程と、
    を含み、
     前記負極が溶液型バインダを含み、
     前記セパレータがポリエチレンテレフタレートを含み、
     前記電解液がカーボネート基を有する化合物を含む溶媒を含むことを特徴とする、リチウムイオン二次電池の製造方法。
PCT/JP2019/011711 2018-03-22 2019-03-20 リチウムイオン二次電池 WO2019182013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980020765.2A CN111886740A (zh) 2018-03-22 2019-03-20 锂离子二次电池
US16/980,479 US20210028485A1 (en) 2018-03-22 2019-03-20 Lithium ion secondary battery
JP2020507872A JP6973621B2 (ja) 2018-03-22 2019-03-20 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054602 2018-03-22
JP2018-054602 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182013A1 true WO2019182013A1 (ja) 2019-09-26

Family

ID=67987271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011711 WO2019182013A1 (ja) 2018-03-22 2019-03-20 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20210028485A1 (ja)
JP (1) JP6973621B2 (ja)
CN (1) CN111886740A (ja)
WO (1) WO2019182013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187417A1 (ja) * 2020-03-17 2021-09-23 国立大学法人 東京大学 電極活物質、電極及び二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080563A (ja) * 2011-09-30 2013-05-02 Sanyo Electric Co Ltd 積層型二次電池
JP2013149483A (ja) * 2012-01-19 2013-08-01 Sanyo Electric Co Ltd リチウム二次電池の負極の製造方法、リチウム二次電池の負極、リチウム二次電池、及びリチウム二次電池の負極用の導電性金属粉末
JP2014060122A (ja) * 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池
WO2016038682A1 (ja) * 2014-09-09 2016-03-17 株式会社 東芝 非水電解質電池及び電池パック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757148B2 (ja) * 2011-01-20 2015-07-29 株式会社豊田自動織機 リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
US10811658B2 (en) * 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
JP2015090845A (ja) * 2013-11-07 2015-05-11 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101898359B1 (ko) * 2014-02-04 2018-09-12 미쓰이 가가쿠 가부시키가이샤 리튬이온 이차 전지용 음극, 리튬이온 이차 전지, 리튬이온 이차 전지용 음극용 합재 페이스트 및 리튬이온 이차 전지용 음극의 제조 방법
JP2016219181A (ja) * 2015-05-18 2016-12-22 オートモーティブエナジーサプライ株式会社 非水電解質二次電池
WO2019044491A1 (ja) * 2017-08-31 2019-03-07 日本電気株式会社 蓄電デバイス用電極及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080563A (ja) * 2011-09-30 2013-05-02 Sanyo Electric Co Ltd 積層型二次電池
JP2013149483A (ja) * 2012-01-19 2013-08-01 Sanyo Electric Co Ltd リチウム二次電池の負極の製造方法、リチウム二次電池の負極、リチウム二次電池、及びリチウム二次電池の負極用の導電性金属粉末
JP2014060122A (ja) * 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池
WO2016038682A1 (ja) * 2014-09-09 2016-03-17 株式会社 東芝 非水電解質電池及び電池パック

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187417A1 (ja) * 2020-03-17 2021-09-23 国立大学法人 東京大学 電極活物質、電極及び二次電池

Also Published As

Publication number Publication date
US20210028485A1 (en) 2021-01-28
JPWO2019182013A1 (ja) 2021-02-04
JP6973621B2 (ja) 2021-12-01
CN111886740A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN108292779B (zh) 锂离子二次电池
WO2018221346A1 (ja) リチウムイオン二次電池
JP7120005B2 (ja) リチウムイオン二次電池
WO2016152876A1 (ja) リチウムイオン二次電池、およびその製造方法
WO2018101391A1 (ja) リチウムイオン二次電池
WO2016140342A1 (ja) 二次電池
WO2018212276A1 (ja) リチウムイオン二次電池
WO2016152860A1 (ja) リチウムイオン二次電池、およびその製造方法
US10833364B2 (en) Lithium-ion secondary battery
US20150004493A1 (en) Electrode assembly and lithium secondary battery including the same
JP2019537210A (ja) 電力機器を始動するためのバッテリーモジュール
JP7136092B2 (ja) リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
JP2018092785A (ja) リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP6809449B2 (ja) リチウムイオン二次電池
CN110546806B (zh) 锂离子二次电池
JP2017112010A (ja) リチウムイオン二次電池
JP6973621B2 (ja) リチウムイオン二次電池
US11824192B2 (en) Lithium ion secondary battery
WO2017094719A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772378

Country of ref document: EP

Kind code of ref document: A1