JP2016219181A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2016219181A
JP2016219181A JP2015101011A JP2015101011A JP2016219181A JP 2016219181 A JP2016219181 A JP 2016219181A JP 2015101011 A JP2015101011 A JP 2015101011A JP 2015101011 A JP2015101011 A JP 2015101011A JP 2016219181 A JP2016219181 A JP 2016219181A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
positive electrode
electrode active
lmo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015101011A
Other languages
English (en)
Inventor
嵩 中川
Takashi Nakagawa
嵩 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Energy Supply Corp
Original Assignee
Automotive Energy Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Energy Supply Corp filed Critical Automotive Energy Supply Corp
Priority to JP2015101011A priority Critical patent/JP2016219181A/ja
Priority to EP16166689.6A priority patent/EP3096378A1/en
Priority to CN201610268393.3A priority patent/CN106169604A/zh
Priority to US15/142,244 priority patent/US20160344028A1/en
Priority to KR1020160057912A priority patent/KR20160135657A/ko
Publication of JP2016219181A publication Critical patent/JP2016219181A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】エージング容量効率に優れた非水電解質二次電池を提供する。【解決手段】充放電効率が93.5%以上の非晶質炭素被覆黒鉛を負極活物質として含む負極と、リチウムマンガン系酸化物(LMO)とリチウムニッケル系酸化物(LNO)との質量比(LMO:LNO)が20:80〜90:10の混合物からなる正極活物質を含む正極とを備えた非水電解質二次電池。【選択図】図3

Description

本発明は、非水電解質二次電池に関するものである。
近年、電気自動車やハイブリッド電気自動車等の電気エネルギーを利用した車両が実用化され、その高性能化のための開発に伴い、駆動用電源として二次電池の開発が進められている。特に、高出力、高容量(高エネルギー密度)、長寿命の特性を得る点で、リチウムイオン二次電池等の非水電解質二次電池が期待されている。
非水電解質二次電池の開発の中で、負極の充放電効率を改善する試みが成されている。特許文献1は、黒鉛系炭素材料の表面を熱分解炭素で被覆した後、被覆処理時の温度よりも高い温度で熱処理する場合には、炭素材料の比表面積を減少させて、副反応を抑制するとともに、90%以上の充放電効率を達成し得ることが開示されている。
特開2001−143691号公報
しかしながら、非水電解質二次電池全体の充放電効率は、負極単体の充放電効率のみで決定されるものではない。非水電解質二次電池は、負極と正極をセパレータを介して対向させ、外装体内に非水電解質と共に封入してセルを形成する。セル形成後に初期充電を行った後、必要に応じて数回の放充電を繰り返したり、高い充電状態(State of charge:SOCという)を室温乃至は高温下で数十時間〜数十日間放置(以降、「エージング」という)したりしてから出荷されるのが通例である。このような工程を経ると、初期容量からある率(以降、「エージング容量効率」という)だけ減少した容量(以降、「出荷容量」という)になってしまう。
このように、電池の設計には、負極単体の充放電効率のみではなく、電池全体の充放電効率と共に、顧客要求に合わせた設計容量が重要となる。その設計容量は出荷容量を基準とするため、エージング容量効率を考慮した活物質使用量、即ち、エージングで低下する容量を見越して多めに活物質を使用する設計にせざるを得ない。活物質使用量の増加はそのまま電池コストに跳ね返るため、エージング容量効率を良化することは極めて重要である。
そこで、本発明はエージング容量効率に優れた非水電解質二次電池を提供することを目的とする。
本発明の一態様によれば、充放電効率が93.5%以上の非晶質炭素被覆黒鉛を負極活物質として含む負極と、リチウムマンガン系酸化物(LMO)とリチウムニッケル系酸化物(LNO)との質量比(LMO:LNO)が20:80〜90:10の混合物からなる正極活物質を含む正極とを備えた非水電解質二次電池が提供される。
本発明の一実施形態によれば、エージング容量効率を最大化した非水電解質二次電池を提供することができる。
本発明の一実施形態による非水電解質二次電池の構成を示す斜視図である。 本発明の一実施形態による非水電解質二次電池の構成を示す断面図(図1のA−A線断面図)である。 負極充放電効率別の正極混合活物質中のLMO比率とセルエージング容量効率との結果を示すグラフである。
以下、本発明の好適な実施形態について説明する。
まず、本発明の実施形態による非水電解質二次電池の構造について図面を用いて説明する。ここではリチウムイオン二次電池の例で説明する。図1は、電池1の斜視図であり、図2は、図1のA−A断面図である。
図1に示すように、電池1は、扁平な直方体状の外観形状を有しており、長手方向の一方の端縁から一対の端子2,3が突出している。
図2に示すように、電池1は、正極板41と負極板42とをセパレータ43を介して積層した発電要素4と電解液が外装体5からなる外装容器の内部に収容されている。具体的に説明すると、この電池は、3枚の負極板42と、2枚の正極板41と、各負極板42と正極板41との間に介装される4枚のセパレータ43と、を有する。つまり、この例では、発電要素4の両面に負極板42が位置している。ただし、発電要素4の最外層に正極板41が位置する構成も可能である。なお、図1,2における各部の寸法は、説明のために誇張したものとなっている。
正極板41は、矩形の正極集電体41aの両面に正極活物質層41b,41cを形成したものである。正極集電体41aは、例えば、アルミニウム箔、アルミニウム合金、銅箔、または、ニッケル箔等の電気化学的に安定した金属箔から構成される。
負極板42は、矩形の負極集電体42aの両面に負極活物質層42b,42cを形成したものである。負極集電体42aは、例えば、ニッケル箔、銅箔、ステンレス箔、または、鉄箔等の電気化学的に安定した金属箔から構成される。
負極集電体42aの長手方向の端縁の一部は、負極活物質層を具備しない延長部が延在しており、延長部の端部が負極端子3と接合される。また、図2には図示されていないが、同様に、正極集電体41aの長手方向の端縁の一部が、正極活物質層を具備しない延長部として延在しており、延長部の端部が正極端子2に接合される。
正極集電体および負極集電体の厚みは、それぞれ、通常1〜100μmの範囲に設定される。
セパレータ43は、正極板41と負極板42との間の短絡を防止し、電解液を保持する。セパレータ43は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜を用いることができる。なお、セパレータ43としては、ポリオレフィン等の単層膜に限定されるものではなく、ポリエチレン膜間にポリプロピレン膜を挟持した三層構造のものや、ポリオレフィン微多孔性膜と無機微粒子多孔質膜を積層したものも用いることができる。セパレータの厚みは、例えば4〜60μmの範囲内に設定することができる。
外装体5は、発電要素4を電解液とともに収容する。外装体5は、例えば、図2中に拡大図として示すように金属層52(例えば、アルミニウム層等)の一方の面(外装体5の発電要素4を収容する側の面)を、熱融着可能な絶縁性の熱融着層51で被覆し、他方の面(外装体5の外側の面)を、保護層53で被覆した構成を有するラミネートフィルムにより形成される。熱融着層51は、例えば、ポリプロピレン等の熱融着が可能な合成樹脂で形成される。また、保護層53は、例えば、ポリエチレンテレフタレート(PET)等の耐久性に優れた合成樹脂で形成される。ラミネートフィルムの構成は、金属層52の表面に合成樹脂層51,53を形成した構成に限定されるものではなく、例えば、外装体5の発電要素4を収容する側の面のみに合成樹脂層を備えた構成であってもよい。
外装体5は、例えば、図2の発電要素4の一方の主面に配置されるラミネートフィルムと他方の主面に配置されるラミネートフィルムとにより形成される。これら2枚のラミネートフィルムの周囲の4辺を重ね合わせ、且つ互いに熱融着して外装体5からなる外装容器が形成される。なお、外装体容器は、1枚のラミネートフィルムを二つ折りとした状態で、内側に発電要素4を配置し、ラミネートフィルムの周囲の3辺を重ね合わせ、かつ互いに熱融着して形成してもよい。
図1に示すように、電池1の短辺側に位置する一対の端子2,3は、外装体5を熱融着する際に、外装体5の接合面を通して外部へ引き出される。なお、図1では、同じ一方の端縁に一対の端子2,3が並んで配置されているが、一方の端縁に正極端子2を配置し、他方の端縁に負極端子3を配置する形態であってもよい。
以下、二次電池の各構成部材についてさらに説明する。
(正極活物質層)
正極活物質層は、正極活物質および結着剤(バインダー)を含み、さらに導電助剤やその他の添加剤を含むことができる。
正極活物質としては、リチウムマンガン系酸化物(以下「LMO」という)と、リチウムニッケル系酸化物(以下「LNO」という)とを含む。LMOとLNOの質量混合比(LMO:LNO)は、20:80〜90:10の範囲にあることが必要である。LMO:LNOは30:70〜85:15の範囲にあることがより好ましい。LMOとLNOの質量合計に対してLMOが20%〜90%の範囲であれば、充放電効率93.5%以上の被覆黒鉛と組み合わせてエージング容量効率を85%以上とすることができる。
LMOは、スピネル構造を有するリチウムマンガン複合酸化物(Mnサイトの一部をMn以外の少なくとも一種の金属元素及び/又はLiで置換されたものも含む)である。その金属元素としては、Mg、Al、Fe、Co、Ni、Cuからなる群から選択される少なくとも1種を用いることができる。例えば、下記の組成式(1):
Li1+aMn2−xMe1 ・・・ (1)
(式中、Me1は、Li、Mg、Al、Fe、Co、Ni、Cuからなる群から選択される少なくとも一種の元素であり、aは、0≦a<0.2、xは、0≦x<2を満たす)
で表されるものを用いることができる。xは、0≦x<0.8を満たすことが好ましい。
LNOは、層状結晶構造を有するリチウムニッケル複合酸化物(ニッケルサイトの一部をNi以外の少なくとも一種の金属元素で置換されたものも含む)である。その金属元素としては、Co、Mn、Mg、Al、Fe、Cr、Ti、Inからなる群から選択される少なくとも1種を用いることができる。例えば、下記の組成式(2):
Li1+b(Ni1−yMe2)O ・・・ (2)
(式中、Me2は、Co、Mn、Mg、Al、Fe、Cr、Ti、Inからなる群から選択される少なくとも一種の金属元素であり、bは、−0.5≦b≦0.2を満たし、yは、0≦y<1を満たす)
で表されるものを用いることができる。Me2としては、少なくとも1種を用いることができる。yは、0≦y≦0.6を満たすことが好ましい。
通常、二次電池形成直後は無充電状態であり、充電を行うと正極活物質中のLiは負極に移行し、負極活物質内に蓄積される。放電時は、負極活物質からLiが放出され、再び正極活物質に吸蔵される。つまり、放電状態において正極活物質中のLi吸蔵率は初期のLi量近くまで回復することとなる。活物質中のLi量を横軸に取り、縦軸に活物質の電位を取ってプロットしたものが充放電曲線である。
LMOとLNOの充放電曲線に着目すると、LMOの放電状態に近い領域の曲線が、LNOの放電状態に近い領域の曲線よりも高い位置にあることが好ましい。具体的に言い換えると次のようになる。LMOに含まれるLiの量が上記式(1)に示される初期量であるとき、また、LNOに含まれるLiの量が上記式(2)に示される初期量であるとき、それぞれをLi吸蔵率1として、横軸に充放電に伴うLi吸蔵率の変化(ただし左端を1、右端を0とする)を取り、縦軸に活物質の電位を取ってLMO,LNOそれぞれの充放電曲線をプロットすると、放電状態に近い領域(具体的には例えばLi吸蔵率が0.90〜0.99の範囲)で、LMOのほうがLNOより高電位側、あるいは電位が同じであれば高Li吸蔵率側を通るような充放電曲線となるようにそれぞれの組成を調整することが好ましい。
正極活物質の平均粒径は、電解液との反応性やレート特性等の観点から、例えば0.1〜50μmが好ましく、1〜30μmがより好ましく、2〜25μmがさらに好ましい。LMO及びLNOの平均粒径についても、それぞれ、0.1〜50μmが好ましく、1〜30μmがより好ましく、2〜25μmがさらに好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
正極用の結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の一般に正極用結着剤として用いられるものを用いることができる。
正極活物質層中の結着剤の含有量は、1〜10質量%が好ましく、1〜5質量%がより好ましく、2〜4質量%がさらに好ましい。結着剤を十分に含有させることにより、自動車等の車両用などの耐振動性が要求される用途において、活物質層の劣化を起きにくくできる。結着剤が多すぎると、エネルギー密度の低下や抵抗増大、正極活物質層中のLiイオンの移動が困難になる場合がある。
正極活物質層用の導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料などの一般に導電助剤として使用されている導電性材料を用いることができる。正極活物質層中の導電助剤の量は、例えば1〜10質量%の範囲に設定することができる。
正極活物質層用のその他の添加剤として、ポリエチレンオキシド系ポリマーやポリプロピレンオキシド系ポリマー等の導電性ポリマー等のイオン導電性を高めるための化合物が挙げられる。
正極活物質層の膜厚は、集電体の片面側に形成された層の厚みとして、30〜100μmの範囲が好ましく、50〜90μmがより好ましい。膜厚が大きいと容量の点で有利であるが、膜厚が大きすぎると入出力特性の点で不利になる傾向がある。
正極活物質層の膜密度は、2.8〜3.1g/cmの範囲に設定することが好ましく、2.8〜3.0g/cmあるいは2.9〜3.1g/cmの範囲に設定することがより好ましく、2.9〜3.0g/cmがさらに好ましい。膜密度が大きいと容量の点で有利であるが、膜密度が大きすぎると入出力特性の点で不利になる傾向がある。正極活物質層の空孔率は、20〜30%が好ましい。空孔率を大きくすると入出力特性の点で有利であるが、空孔率が大きすぎると容量が小さくなる。
正極活物質層は、例えば、次のようにして形成することができる。まず、正極活物質、バインダー及び溶媒(さらに必要により導電助剤)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、必要に応じてプレスすることにより形成することができる。正極作製時に用いるスラリー溶媒としては、N−メチル−2−ピロリドン(NMP)を用いることができる。
(負極活物質層)
負極活物質層は、充放電効率が93.5%以上の非晶質炭素被覆黒鉛(以下、被覆黒鉛という)を負極活物質として含み、結着剤(バインダー)や導電助剤やその他の添加剤を含むことができる。
黒鉛材料として、天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維などが例示される。このような黒鉛材料を非晶質炭素(アモルファスカーボン)や低晶性の非黒鉛炭素質材料で被覆することで充放電効率に優れた負極活物質が得られるが、本発明では特に充放電効率が93.5%以上の被覆黒鉛を使用する。
このような充放電効率に優れた被覆黒鉛は、背景技術で説明した特許文献1に記載の方法など、公知の方法で形成することができる。例えば、黒鉛粒子の表面に非晶質又は低晶性の非黒鉛炭素質材料を付着させることで黒鉛粒子が非黒鉛炭素質層で被覆された被覆黒鉛を得ることができる。例えば、黒鉛粒子の表面を溶融ピッチで被覆し、500〜2000℃で焼成してピッチを炭素化し、解砕、分級する。
非黒鉛炭素質層のその他の形成方法としては、湿式混合法、化学蒸着法、メカノケミカル法が挙げられる。化学蒸着法に用いられる炭素源としては、メタン、エタン、プロパン、ベンゼン、トルエン、キシレン、スチレン、ナフタレン又はこれらの誘導体等の炭化水素(脂肪族、芳香族、脂環族)が挙げられる。湿式混合法およびメカノケミカル法に用いられる炭素源としては、高分子化合物(フェノール樹脂、スチレン樹脂等)、ピッチ等の炭化可能な材料を固形物または溶解物として用いることができる。処理温度は、化学蒸着法では800〜1200℃、湿式混合法およびメカノケミカル法では700〜2000℃に設定することができる。
負極活物質の平均粒径は、副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
この黒鉛粒子としては、容量密度、負極活物質層の作製時のスラリーの調製のしやすさ等の点から球状化黒鉛が好ましく、さらに材料コストの点から球状化天然黒鉛がより好ましい。
球状化黒鉛の円形度は0.8以上が好ましく、0.85以上がより好ましく、0.9以上がさらに好ましい。粒子像をSEM(Scanning Electron Microscope)で観察し、得られた画像を解析することにより、円形度を得ることができる。画像解析は、黒鉛粒子の平面上への投影像と同じ面積を持つ円(相当円)の直径(円相当径)から算出される周囲長(円相当周)をL、実際の周囲長をlとし、L/lを円形度と規定する。
被覆黒鉛の被覆量は、被覆黒鉛を用いた二次電池の初回充放電効率が93.5%以上となるような被覆量である。被覆量が多すぎると初回充放電効率が小さくなる。初回充放電効率93.5%未満の場合、正極活物質のLMO:LNO比を調整しても85%以上の高いエージング容量効率を達成することができない。一方、被覆量が少なすぎると、初回充放電効率が大きくなるが入出力特性が悪くなる場合がある。
初回の充放電は、所定条件で、作製した電池に電圧を印加し少なくとも初回充電を含む充放電を行うことで実施できる。その際、電解液中の含有成分を負極活物質粒子の表面で還元分解させてSEI(Solid-Electrolyte-Interface)を形成させることができる。
被覆量の決定は、例えば、炭素源の残存率を熱重量分析などで予め決定しておき、この残存率と作製時の炭素源使用量との積を被覆量とすることができる。
負極活物質層を形成する際に使用する結着剤は、正極活物質層と同様の結着剤を使用することができるが、水を溶媒もしくは分散媒として用いることができる水系結着剤であることが好ましい。水系結着剤としては、例えば、熱可塑性樹脂、ゴム弾性を有する高分子化合物(ゴム状重合体)、水溶性高分子が挙げられる。これらの2種以上を混合して用いることもできる。水を分散媒として用いることができる結着剤とは、ラテックス、エマルジョンを含み、水に乳化された高分子化合物、水に懸濁された高分子化合物を含む。
水系結着剤は、負極活物質層の形成時に用いる水自体が安価であり且つ取り扱いが容易であり、また製造設備の低コスト化、環境負荷の低減の点でも利点がある。
水系結着剤の具体例としては、以下の化合物が挙げられる。
スチレン系高分子化合物/ゴム質重合体(ポリスチレン、スチレン−ブタジエンゴム、スチレン−酢酸ビニル共重合体、スチレン−アクリル共重合体等)、
ブタジエン系高分子化合物/ゴム質重合体(アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、スチレン−ブタジエンゴム、ポリブタジエン等)、
(メタ)アクリル系高分子化合物/ゴム質重合体(ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、
エチレン又は/及びプロピレン系重合体(ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体)、
ブチルゴム、フッ素ゴム、
ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、
エチレン−プロピレン−ジエン共重合体(EPR)、ポリビニルピリジン、クロロスルホン化ポリエチレン、
ポリエステル樹脂、フェノール樹脂、エポキシ樹脂。
水溶性高分子としては以下の化合物が挙げられる:
ポリビニルアルコール(平均重合度:好ましくは200〜4000、より好ましくは1000〜3000、ケン化度80モル%以上が好ましく、90モル%以上がより好ましい)及びその変性体(エチレン/酢酸ビニル=2/98〜30/70モル比の共重合体の酢酸ビニル単位のうちの1〜80モル%ケン化物、ポリビニルアルコールの1〜50モル%部分アセタール化物等)、
デンプン及びその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、
セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、それらの塩等)、
ポリビニルピロリドン、ポリアクリル酸(又はその塩)、ポリエチレングリコール。
その他の水溶性高分子としては以下の化合物が挙げられる:
(メタ)アクリルアミド及び/又は(メタ)アクリル酸塩の共重合体((メタ)アクリルアミド重合体、(メタ)アクリルアミド−(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1〜4)−メタアクリル酸塩共重合体など)、
スチレン−マレイン酸共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂など)、ポリアミドポリアミン、ジアルキルアミン−エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、マンナンガラクタン誘導体。
水系結着剤は、結着性の観点から、ゴム質重合体を含むことが好ましい。ゴム質重合体としては、ブタジエン系ゴム質重合体、(メタ)アクリル系ゴム質重合体が好ましく、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、メタクリル酸メチル−ブタジエンゴム、メタクリル酸メチルゴムがより好ましく、特にスチレン−ブタジエンゴムが好ましい。
水系結着剤として、ゴム質重合体を含む場合は、塗工性の向上の観点から、水溶性高分子を併用して含むことが好ましい。水溶性高分子としては、ポリビニルアルコール又はその変性体、デンプン又はその変性体、セルロース誘導体、ポリビニルピロリドン、ポリアクリル酸又はその塩、ポリエチレングリコールが挙げられる。これらの中でも、セルロース誘導体が好ましく、カルボキシメチルセルロースがより好ましい。
水溶性高分子とゴム質重合体を併用する場合、それらの質量混合比(ゴム質重合体/水溶性高分子)は、0.3/1〜3/1の範囲にあることが好ましく、1/1〜3/1の範囲がより好ましく、1.1/1〜2.5/1の範囲がより好ましい。
負極活物質中の結着剤の含有量(水溶性高分子とゴム質重合体を併用する場合はそれらの合計量)は、負極活物質層全体の質量に対して、1〜10質量%が好ましく、1〜5質量%がより好ましく、2〜5質量%がさらに好ましく、2.5〜3.5質量%が特に好ましい。結着剤をこのように多めに含有させることにより、自動車等の車両用などの耐振動性が要求される用途において、活物質層の劣化を起きにくくできる。ただし結着剤が多すぎると、Liイオンの移動困難性が増大して所望の低温特性が得られにくくなる。
負極活物質層用の導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料などの一般に導電助剤として使用されている導電性材料を用いることができる。負極活物質層中の導電助剤の量は、例えば1〜10質量%の範囲に設定することができる。
負極活物質層用のその他の添加剤として、ポリエチレンオキシド系ポリマーやポリプロピレンオキシド系ポリマー等の導電性ポリマー等のイオン導電性を高めるための化合物が挙げられる。
負極活物質層の膜厚は、集電体の片面側に形成された層の厚みとして、40〜80μmの範囲が好ましく、50〜70μmの範囲がより好ましい。膜厚が大きいと容量の点で有利であるが、膜厚が上記の範囲を超えて大きすぎると入出力特性の点で不利である。
負極活物質層の膜密度は、1.2〜1.7g/cmの範囲に設定することが好ましく、1.3〜1.6g/cmあるいは1.2〜1.5g/cmの範囲に設定することがより好ましく、1.3〜1.5g/cmの範囲がさらに好ましい。膜密度が大きいと容量の点で有利であるが、膜密度が上記の範囲を超えて大きすぎると入出力特性の点で不利ある。負極活物質層の空孔率は、25〜37%が好ましい。空孔率が小さすぎると、Liイオンの移動困難性が増大して所望の低温特性が得られにくくなり、空孔率が大きすぎると容量が小さくなる。
負極活物質層は、例えば次のようにして形成することができる。まず、負極活物質、水系結着剤及び水を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥し、必要に応じてプレスすることで負極を得ることができる。また、予め負極活物質層を形成した後に、蒸着法、CVD法、スパッタリング法などの方法により集電体となる薄膜を形成して負極を得ることができる。
(電解液)
本発明の実施形態による二次電池に好適な電解液としては、例えば、有機溶媒にリチウム塩が溶解した非水電解液を用いることができる。
有機溶媒としては、環状カーボネートと鎖状カーボネートを組み合わせたものが好ましく用いられる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、などが挙げられる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられる。環状カーボネートと鎖状カーボネートの混合比(環状カーボネート/鎖状カーボネート)は、体積比で、1/9〜4/6が好ましく、1/9〜3/7がより好ましく、2/8〜4/6がさらに好ましく、2/8〜3/7が特に好ましい。このような範囲内に混合比を設定することにより、後述の実施例の評価結果が示すように、低温特性の改善に有利に寄与することができる。
非水電解液は、環状カーボネート及び鎖状カーボネート以外の有機溶媒(例えば、カルボン酸エステル類、エーテル類、その他の非プロトン性有機溶媒)を含んでいてもよいが、環状カーボネートと鎖状カーボネートの合計量が、有機溶媒全体に対して80体積%以上(80〜100体積%)であることが好ましく、90体積%以上(90〜100体積%)であることがより好ましい。
リチウム塩としては、例えば、LiPF、LiBF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO等が挙げられる。この中では、イオン導電率の高さからLiPF、LiBFが好ましいが、これらは酸を発生しうるリチウム塩として知られており、LMOのマンガンを溶出させる課題が指摘されている。しかしながら、後述するように本発明においては酸を発生しうるリチウム塩を用いた場合でも効果を得ることができる。本発明においてリチウム塩の濃度は、0.8〜1.2mol/Lの範囲に設定することができ、好ましくは0.9〜1.1mol/Lの範囲である。リチウム塩の濃度を十分に高くすると低温特性の改善に有利である。リチウム塩の濃度を上記の範囲を超えて高くしすぎると、電解液の粘度が上昇する傾向があり、正極および負極の細孔への含浸性を確保する点から、上記濃度範囲に設定することが好ましい。
電解液には添加剤を添加してもよい。この添加剤としては、負極活物質表面に添加剤由来皮膜を形成できるものが好ましい。例えばビニレンカーボネート(VC)、4−メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4−エチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4−プロピルビニレンカーボネート、4,5−ジプロピルビニレンカーボネート、4−フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネートなどの不飽和結合を有するカーボネートや、エチレンカーボネートやプロピレンカーボネートなどの水素原子の一部がフッ素原子で置換されたハロゲン化カーボネートなどのカーボネート系の添加剤が挙げられる。また例えば、プロパンスルトンなどのスルトン、鎖状あるいは環状のスルホン酸エステル、鎖状あるいは環状のジスルホン酸エステルなどの硫黄系添加剤が挙げられる。これらの中でも、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、スルトン、環状スルホン酸エステル、環状ジスルホン酸エステル、フルオロエチレンカーボネートが好ましい。これらの添加剤は1種を単独でまたは2種以上を組み合わせて使用できるが、少なくとも硫黄系添加剤を必須成分とすることが好ましい。電解液中の添加剤濃度としては、0.1質量%〜5質量%が好ましく、0.5〜2.5質量%がより好ましい。これらの添加剤は、サイクル特性の向上に寄与できるが、多すぎると直流抵抗を大きくさせる虞がある。
(実施例1)
正極を以下のように作製した。正極活物質におけるLMOとしてスピネル構造を有するリチウムマンガン複合酸化物(Li1.1Mn1.9のMnサイトを微量のMgとAlで置換)の粉末(D50=10μm)と、LNOとして層状結晶構造を有するリチウムニッケル複合酸化物(LiNi0.8Co0.1Mn0.1)の粉末(D50=12μm)とを、質量比(LMO/LNO)=85/15となるように調合した。この正極活物質に、結着剤としてポリフッ化ビニリデンと、導電助剤としてカーボンブラック粉末とを所定の割合で添加した。この混合物を、溶媒であるN−メチル−2−ピロリドン(NMP)中に均一に分散させてスラリーを作製した。得られたスラリーを、正極集電体となる厚み20μmのアルミニウム箔上に塗布した後NMPを蒸発させることにより正極集電体の片面上に正極活物質層を形成した。正極活物質層(集電体片面に形成された層)中の結着剤の含有量は4質量%であった。同様に正極集電体の他方の面にも正極活物質層を形成した。その後、正極活物質層をプレスすることによって、目的の正極板を得た。プレス後の正極活物質層の膜厚は81μm(片面側の厚み)、膜密度は2.96(g/cm)、空孔率は24%であった。
負極を以下のように作製した。負極活物質として非晶質炭素で被覆された球状天然黒鉛粉末(初回充放電効率95%、平均粒径D50=18μm)と、カーボンブラック系導電助剤と、結着剤としてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)を用意した。これらをCMCの水溶液に所定の割合で均一に分散させてスラリーを作製した。得られたスラリーを、負極集電体となる厚み10μmの銅箔上に塗布した後水を蒸発させることにより負極集電体の片面上に負極活物質層を形成した。同様に負極集電体の他方の面にも負極活物質層を形成した。その後、負極活物質層をプレスすることによって、目的の負極板を得た。プレス後の負極活物質層の厚みは66μm(片面側の厚み)であった。負極活物質層中のSBR及びCMCの含有量はそれぞれ2質量%及び1質量%であった。
上記の正極板および負極板を、活物質が塗布されていない集電体延長部を残しつつ、裁断して所定寸法の正極板、負極板を得た。
次にポリエチレン及びポリプロピレンからなるセパレータを介して正極活物質層と負極活物質層が対向し且つ重なるように、正極板(17枚)と負極板(18枚)とセパレータを交互に積層して発電要素を得た。
次に負極板の負極集電体の延長部に対し負極端子の内側端(一端部)を接合した。同様に、正極板の正極集電体の延長部に対し正極端子の内側端(一端部)を接合した。この発電要素を外装体となるラミネートフィルムで覆いながら、比較的小さな充填口を残して周囲の4辺を熱融着し、発電要素を含む外装容器を形成した。その後、充填口から下記に述べる電解液を注液し、外装容器内部を減圧し、その後、充填口を熱融着して外装容器を密閉状態とした。外装容器の4辺のうち1辺において、正極端子および負極端子を引き出した状態でラミネートフィルムの熱融着を行った。熱融着部と発電要素の間の距離は、端子引き出し辺においては15mm、それ以外の辺においては5mmとした。
電解液は、電解質塩として1mol/LのLiPFと、溶媒としてエチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比30:70、環状カーボネート/鎖状カーボネート=30/70)、添加剤として1質量%のビニレンカーボネートと1質量%の環状ジスルホン酸エステルを含有するものを用いた。
(実施例2〜11、比較例1〜11)
表1に示すように、正極LMO比率、使用する負極活物質(初回充放電効率)を変更した以外は実施例1と同様にセルを作製した。
次に、作製したセルのエージング容量効率を以下のように評価した。
まず初充電工程として、0.2Cの電流レートで4.15Vまで定電流充電(CC)し、その後、定電圧(CV)でトータル6.5時間充電した。このとき流した電流積分値を初回充電容量として記録した。次にエージング工程として、セルを45℃環境下に2週間放置した。その後、放電容量測定ステップとして、2.5Vまで0.2Cの電流レートで定電流放電し、流した電流積分量で放電容量を測定した。この放電容量を、初回充電容量で割り算することでエージング容量効率とした。
図3に、45℃、2週間放置後のエージング容量効率を調べた結果を示す。なお、室温エージングであっても傾向は変わらない。今回調べた試料の中では、負極の初回充放電効率が93.5%および95%となる負極材料を使った場合において、正極LMO比が30%から85%の範囲の電池試料が、エージング容量効率が高めの値を示した。これは、詳細は不明であるが、例えば以下のように考えられる。エージング後の放電容量測定ステップで、電池電圧、言い換えると正極と負極の電位差が所定電圧となったときに放電終了となるが、初回充放電効率の高い負極を使うことで、放電終了間際において、従来利用されていなかったLMOのLi吸蔵率領域まで利用できるようになったために、放電容量が増加して高いエージング容量効率を示したことが考えられる。図3において、高くなったエージング容量効率が、正極LMO比が80%を超えるあたりで、右下がりの傾向が出るのは、エージング工程において、LNOが少ないために、電解液によるLMOの劣化が起きやすくなるためと考えられる。その理由は以下のように考えられる。電解液にはLiPF6が含まれており、これは酸を発生しうるリチウム塩であり、LNOがある程度以上含まれていれば酸がこれにトラップされるが、LNOが好ましい範囲よりも少なすぎると、酸のトラップが十分に行われず、酸がLMOに作用してマンガンを溶出させる反応が起きやすくなるからと考えられる。図3に示すように、85%以上のエージング容量効率は太枠で囲った負極の初回充放電効率93.5%以上の時に正極LMO比が20%から90%の範囲で達成できるといえる。
Figure 2016219181
1 電池
2 正極端子
3 負極端子
4 発電要素
5 外装体
41 正極板
41a 正極集電体
41b,41c 正極活物質層
42 負極板
42a 負極集電体
42b,42c 負極活物質層
43 セパレータ
51 熱融着層
52 金属層
53 保護層

Claims (3)

  1. 充放電効率が93.5%以上の非晶質炭素被覆黒鉛を負極活物質として含む負極と、リチウムマンガン系酸化物(LMO)とリチウムニッケル系酸化物(LNO)との質量比(LMO:LNO)が20:80〜90:10の混合物からなる正極活物質を含む正極とを備えた非水電解質二次電池。
  2. 正極活物質の質量比(LMO:LNO)が30:70〜85:15の範囲にある請求項1に記載の非水電解質二次電池。
  3. 前記LMOが下記組成式(1)で表されるスピネル型のリチウムマンガン複合酸化物であり、前記LNOが下記組成式(2)で表される層状結晶構造を有するリチウムニッケル複合酸化物である請求項1又は2に記載の非水電解質二次電池。
    Li1+aMn2−xMe1 ・・・ (1)
    (式中、Me1は、Li、Mg、Al、Fe、Co、Ni、Cuからなる群から選択される少なくとも一種の元素であり、aは、0≦a<0.2、xは、0≦x<2を満たす)
    Li1+b(Ni1−yMe2)O ・・・ (2)
    (式中、Me2は、Co、Mn、Mg、Al、Fe、Cr、Ti、Inからなる群から選択される少なくとも一種の金属元素であり、bは−0.5≦b≦0.2を満たし、yは0≦y<1を満たす)
JP2015101011A 2015-05-18 2015-05-18 非水電解質二次電池 Withdrawn JP2016219181A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015101011A JP2016219181A (ja) 2015-05-18 2015-05-18 非水電解質二次電池
EP16166689.6A EP3096378A1 (en) 2015-05-18 2016-04-22 Nonaqueous electrolyte secondary battery
CN201610268393.3A CN106169604A (zh) 2015-05-18 2016-04-27 非水电解质二次电池
US15/142,244 US20160344028A1 (en) 2015-05-18 2016-04-29 Nonaqueous electrolyte secondary battery
KR1020160057912A KR20160135657A (ko) 2015-05-18 2016-05-12 비수전해질 2차 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101011A JP2016219181A (ja) 2015-05-18 2015-05-18 非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2016219181A true JP2016219181A (ja) 2016-12-22

Family

ID=55806259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101011A Withdrawn JP2016219181A (ja) 2015-05-18 2015-05-18 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20160344028A1 (ja)
EP (1) EP3096378A1 (ja)
JP (1) JP2016219181A (ja)
KR (1) KR20160135657A (ja)
CN (1) CN106169604A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057426A (ja) * 2017-09-21 2019-04-11 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
WO2019208928A1 (ko) * 2018-04-26 2019-10-31 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2020241956A1 (ko) * 2019-05-31 2020-12-03 (주)포스코케미칼 이차전지 양극활물질용 리튬-니켈 복합 산화물의 제조방법
WO2021091168A1 (ko) * 2019-11-07 2021-05-14 주식회사 엘지화학 Lno 함량이 상이한 이중층 구조의 합제층을 포함하는 양극 및 이를 포함하는 이차전지

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103019A1 (ja) * 2017-11-22 2019-05-31 株式会社Gsユアサ 蓄電素子及び蓄電装置
CN111886740A (zh) * 2018-03-22 2020-11-03 日本电气株式会社 锂离子二次电池
JP7463930B2 (ja) * 2020-09-30 2024-04-09 トヨタ自動車株式会社 電池
CN113363418A (zh) * 2021-06-08 2021-09-07 江西安驰新能源科技有限公司 一种高倍率锂离子电池负极片及其制备方法,锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143691A (ja) 1999-11-12 2001-05-25 Osaka Gas Co Ltd 黒鉛系炭素材料、その製造方法、リチウム二次電池用負極材料およびリチウム二次電池
JP4014816B2 (ja) * 2001-04-13 2007-11-28 シャープ株式会社 リチウムポリマー二次電池
JP5430920B2 (ja) * 2008-03-17 2014-03-05 三洋電機株式会社 非水電解質二次電池
JP5936406B2 (ja) * 2012-03-26 2016-06-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP2015072875A (ja) * 2013-10-04 2015-04-16 日本電気株式会社 正極の評価方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057426A (ja) * 2017-09-21 2019-04-11 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
WO2019208928A1 (ko) * 2018-04-26 2019-10-31 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same
WO2020241956A1 (ko) * 2019-05-31 2020-12-03 (주)포스코케미칼 이차전지 양극활물질용 리튬-니켈 복합 산화물의 제조방법
WO2021091168A1 (ko) * 2019-11-07 2021-05-14 주식회사 엘지화학 Lno 함량이 상이한 이중층 구조의 합제층을 포함하는 양극 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
US20160344028A1 (en) 2016-11-24
KR20160135657A (ko) 2016-11-28
EP3096378A1 (en) 2016-11-23
CN106169604A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
JP2016219181A (ja) 非水電解質二次電池
JP6156939B2 (ja) リチウムイオン二次電池
JP5216936B1 (ja) リチウムイオン二次電池用電極、その製造方法およびリチウムイオン二次電池
JP2016184521A (ja) 非水電解質二次電池
WO2010131401A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR101753023B1 (ko) 비수전해질 이차 전지
WO2013005329A1 (ja) 二次電池
KR20150135450A (ko) 비수전해질 이차 전지
JP7021690B2 (ja) リチウムイオン二次電池、組電池、蓄電装置及び自動車
JP2010108732A (ja) リチウム二次電池
JPWO2019009177A1 (ja) リチウムイオン二次電池およびその製造方法
JP6394987B2 (ja) 非水電解液二次電池
JP5812336B2 (ja) 二次電池
JP2014170752A (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
JP6619562B2 (ja) 非水電解質二次電池
WO2020075597A1 (ja) 非水電解質二次電池用負極およびこれを用いた非水電解質二次電池
JP2014022245A (ja) リチウムイオン二次電池およびその製造方法
JP6709991B2 (ja) リチウムイオン二次電池
JP2017195158A (ja) 蓄電素子
US20210020918A1 (en) Negative electrode for electrochemical element and a lithium ion secondary battery
US20170149055A1 (en) Lithium-ion secondary battery
JP2023549963A (ja) 負極活物質及びその製造方法、それを備えた二次電池
KR20240005895A (ko) 음극 시트 및 이의 제조 방법, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
JP2016184528A (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
CN117616595A (zh) 二次电池用负极及二次电池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180615