WO2015118714A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015118714A1
WO2015118714A1 PCT/JP2014/073676 JP2014073676W WO2015118714A1 WO 2015118714 A1 WO2015118714 A1 WO 2015118714A1 JP 2014073676 W JP2014073676 W JP 2014073676W WO 2015118714 A1 WO2015118714 A1 WO 2015118714A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
diode
igbt
type
sense
Prior art date
Application number
PCT/JP2014/073676
Other languages
English (en)
French (fr)
Inventor
圭佑 木村
亀山 悟
Original Assignee
トヨタ自動車株式会社
圭佑 木村
亀山 悟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 圭佑 木村, 亀山 悟 filed Critical トヨタ自動車株式会社
Priority to US15/104,073 priority Critical patent/US9972707B2/en
Priority to CN201480075282.XA priority patent/CN106030797B/zh
Priority to EP14882078.0A priority patent/EP3107123B1/en
Publication of WO2015118714A1 publication Critical patent/WO2015118714A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Definitions

  • the technology disclosed in this specification relates to a semiconductor device.
  • a first semiconductor device disclosed in this specification includes a main IGBT region in which an IGBT is formed, a main diode region in which a diode is formed, a sense IGBT region in which an IGBT is formed, and a diode.
  • a semiconductor substrate having a sense diode region The area of the sense IGBT region is smaller than that of the main IGBT region. The area of the sense diode region is smaller than that of the main diode region.
  • An n-type region is formed across the sense IGBT region and the sense diode region.
  • a p-type anode region exposed on the surface of the semiconductor substrate and an n-type region in contact with the anode region and exposed on the back surface of the semiconductor substrate are formed. Yes.
  • the body region is separated from the anode region by the n-type region. An interval between the body region and the anode region is longer than a product of electron mobility and electron lifetime in the n-type region between the body region and the anode region.
  • the anode region is separated from the collector region by the n-type region. An interval between the anode region and the collector region is longer than a product of electron mobility and electron lifetime in the n-type region between the anode region and the collector region.
  • the distance between the end of the collector region on the sense diode region side and the body region is greater than the product of electron mobility and electron lifetime in the n-type region between the end and the body region. long.
  • area means an area when the semiconductor substrate is viewed along its thickness direction.
  • the interval between the body region and the anode region is longer than the product of the electron mobility and the electron lifetime in the n-type region between them. For this reason, carriers are suppressed from moving between the body region and the anode region.
  • the distance between the anode region and the collector region is longer than the product of the electron mobility and the electron lifetime in the n-type region therebetween. For this reason, carriers are suppressed from moving between the anode region and the collector region.
  • the interval between the end of the collector region on the sense diode region side and the body region is the product of the electron mobility and the electron lifetime in the n-type region between the end and the body region. Longer than.
  • the n-type region is exposed on the back surface of the semiconductor substrate.
  • This exposed n-type region functions as a so-called cathode of the diode. That is, the distance between the end and the body region corresponds to the distance between the cathode of the diode and the body region. Since this interval is longer than the product of the electron mobility and the electron lifetime in the n-type region, carriers are suppressed from moving between the cathode and the body region.
  • carriers are suppressed from moving between the sense IGBT region and the sense diode region. That is, current interference between the sense IGBT and the sense diode is suppressed. Therefore, the currents in the sense IGBT region and the sense diode region can be accurately detected.
  • the semiconductor device described above may further include an external p-type region exposed on the back surface of the semiconductor substrate in a region located on the opposite side of the sense IGBT region across the sense diode region. Further, the anode region is separated from the external p-type region by the n-type region, and an interval between the anode region and the external p-type region is set between the anode region and the external p-type region. It may be longer than the product of electron mobility and electron lifetime in the n region.
  • carriers can be prevented from moving between the anode region and the external p-type region.
  • the second semiconductor device disclosed in this specification includes a main IGBT region in which an IGBT is formed, a main diode region in which a diode is formed, a sense IGBT region in which an IGBT is formed, and a diode.
  • a gate electrode facing the body region is formed.
  • the p-type anode region exposed on the surface of the semiconductor substrate, the diode drift region in contact with the anode region, and the diode drift region are separated from the anode region in the sense diode region, and the semiconductor substrate And an n-type cathode region having an n-type impurity concentration higher than that of the diode drift region.
  • the body region is separated from the anode region by the IGBT drift region and the diode drift region.
  • a high-concentration n-type region having an n-type impurity concentration higher than that of the IGBT drift region and the diode drift region is formed between the IGBT drift region and the diode drift region.
  • the high-concentration n-type region where the n-type impurity concentration is high, carriers are scattered by n-type impurities and defects.
  • the high-concentration n-type region is formed between the IGBT drift region and the diode drift region, carriers are suppressed from moving between the sense IGBT region and the sense diode region. Therefore, the currents in the sense IGBT region and the sense diode region can be accurately detected.
  • the high-concentration n-type region may extend from the upper surface of the semiconductor substrate to a position deeper than a central portion in the thickness direction of the IGBT drift region and the diode drift region.
  • a third semiconductor device disclosed in this specification includes a main IGBT region in which an IGBT is formed, a main diode region in which a diode is formed, a sense IGBT region in which an IGBT is formed, and a diode.
  • a semiconductor substrate having a sense diode region The area of the sense IGBT region is smaller than that of the main IGBT region. The area of the sense diode region is smaller than that of the main diode region.
  • a gate electrode facing the body region is formed.
  • the p-type anode region exposed on the surface of the semiconductor substrate, the diode drift region in contact with the anode region, and the diode drift region are separated from the anode region in the sense diode region, and the semiconductor substrate And an n-type cathode region having an n-type impurity concentration higher than that of the diode drift region.
  • the body region is separated from the anode region by the IGBT drift region and the diode drift region.
  • An insulating layer is formed between the IGBT drift region and the diode drift region.
  • the insulating layer may extend from the upper surface of the semiconductor substrate to a position deeper than a central portion in the thickness direction of the IGBT drift region and the diode drift region.
  • FIG. 2 is a plan view of the semiconductor device 10.
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
  • FIG. 3 is a longitudinal sectional view taken along line III-III in FIG. 1.
  • FIG. 3 is a longitudinal sectional view corresponding to FIG. 2 of a semiconductor device of Example 2.
  • FIG. 6 is a longitudinal sectional view corresponding to FIG. 2 of the semiconductor device of Example 3.
  • the semiconductor device 10 of the embodiment shown in FIG. 1 has a semiconductor substrate 12 on which a main IGBT region 20, a main diode region 40, a sense IGBT region 60, and a sense diode region 80 are formed.
  • the main IGBT region 20 and the main diode region 40 may be collectively referred to as a main region.
  • the sense IGBT region 60 and the sense diode region 80 may be collectively referred to as a sense region.
  • the main region is formed at a substantially central portion of the semiconductor substrate 12. In the main region, a plurality of main IGBT regions 20 and a plurality of main diode regions 40 are alternately and repeatedly formed.
  • the sense region is formed outside the main region. As shown in FIG.
  • the area of the sense IGBT region 60 is smaller than the area of the main IGBT region 20.
  • a current corresponding to the area ratio with respect to the main IGBT region 20 flows through the sense IGBT region 60. Therefore, by detecting the current flowing through the sense IGBT region 60, the current flowing through the main IGBT region 20 at that time can be detected.
  • the area of the sense diode region 80 is smaller than the area of the main diode region 40.
  • FIG. 2 shows a cross-sectional structure of the sense region.
  • a surface electrode 15 is formed on the surface of the semiconductor substrate 12, and a back electrode 16 is formed on the back surface of the semiconductor substrate 12.
  • an emitter region 62 In the semiconductor substrate 12 in the sense IGBT region 60, an emitter region 62, a body region 64, a drift region 66, a buffer region 67, and a collector region 68 are formed.
  • the emitter region 62 is an n-type region and is formed in a range exposed on the upper surface of the semiconductor substrate 12.
  • the emitter region 62 is ohmically connected to the surface electrode 15.
  • the body region 64 is a p-type region and is formed in a range exposed on the upper surface of the semiconductor substrate 12.
  • the body region 64 extends from the side of the emitter region 62 to the lower side of the emitter region 62.
  • the body region 64 is ohmically connected to the surface electrode 15.
  • the drift region 66 is an n-type region and is formed below the body region 64. Drift region 66 is separated from emitter region 62 by body region 64.
  • the n-type impurity concentration of drift region 66 is preferably less than 14 ⁇ 10 14 atoms / cm 3.
  • the buffer region 67 is an n-type region and is formed below the drift region 66.
  • the buffer region 67 has an n-type impurity concentration higher than that of the drift region 66 and the cathode region 84.
  • the collector region 68 is a p-type region and is formed below the buffer region 67.
  • the collector region 68 is formed in a range exposed on the lower surface of the semiconductor substrate 12.
  • the collector region 68 is ohmically connected to the back electrode 16.
  • Collector region 68 is separated from body region 64 by drift region 66.
  • a plurality of trenches are formed on the upper surface of the semiconductor substrate 12 in the sense IGBT region 60. Each trench is formed at a position adjacent to the emitter region 62. Each trench extends to a depth reaching the drift region 66.
  • each trench in the sense IGBT region 60 is covered with a gate insulating film 72.
  • a gate electrode 74 is disposed in each trench.
  • Each gate electrode 74 is insulated from the semiconductor substrate 12 by a gate insulating film 72.
  • Each gate electrode 74 faces the emitter region 62, the body region 64, and the drift region 66 with the gate insulating film 72 interposed therebetween.
  • An insulating film 76 is formed on each gate electrode 74.
  • Each gate electrode 74 is insulated from the surface electrode 15 by the insulating film 76.
  • an anode region 82 In the semiconductor substrate 12 in the sense diode region 80, an anode region 82, a drift region 66, a buffer region 67, and a cathode region 84 are formed.
  • the anode region 82 is formed in a range exposed on the upper surface of the semiconductor substrate 12.
  • the anode region 82 is ohmically connected to the surface electrode 15.
  • the drift region 66 described above is formed below the anode region 82.
  • the buffer region 67 described above is formed below the drift region 66.
  • the cathode region 84 is an n-type region and is formed below the buffer region 67 in the sense diode region 80.
  • the cathode region 84 is formed in a range exposed on the lower surface of the semiconductor substrate 12.
  • the cathode region 84 has a higher n-type impurity concentration than the drift region 66.
  • the n-type impurity concentration in the cathode region 84 is preferably 1 ⁇ 10 18 atoms / cm 3 or more.
  • the cathode region 84 is ohmically connected to the back electrode 16.
  • the above-described drift region 66 and buffer region 67 are formed in the isolation region 90 between the sense IGBT region 60 and the sense diode region 80.
  • the drift region 66 and the buffer region 67 continuously extend from the sense IGBT region 60 to the sense diode region 80. That is, the n-type region including the drift region 66, the buffer region 67, and the cathode region 84 extends from the sense IGBT region 60 to the sense diode region 80.
  • the body region 64 is separated from the anode region 82 by the drift region 66 in the separation region 90. Further, the body region 64 is separated from the cathode region 84 by the drift region 66 in the separation region 90.
  • the anode region 82 is separated from the collector region 68 by the drift region 66 in the separation region 90.
  • the collector region 68 extends into the separation region 90, and the cathode region 84 extends into the separation region 90.
  • a boundary 78 between the collector region 68 and the cathode region 84 is formed in the separation region 90.
  • An external p-type region 92 is formed in a region exposed on the back surface of the semiconductor substrate 12 and located on the opposite side of the collector region 68 across the cathode region 84. That is, the cathode region 84 is located between the external p-type region 92 and the collector region 68. External p-type region 92 is separated from anode region 82 by drift region 66.
  • the distance A (shortest distance) between the body region 64 and the anode region 82 is longer than the product of the electron mobility in the drift region 66 and the electron lifetime in the drift region 66. This prevents electrons from flowing between the body region 64 and the anode region 82. Moreover, since the mobility of holes in the drift region 66 is smaller than that of electrons, it is possible to prevent holes from flowing between the body region 64 and the anode region 82. Therefore, current is prevented from flowing between body region 64 and anode region 82.
  • the distance B (shortest distance) between the anode region 82 and the collector region 68 is longer than the product of the mobility of electrons in the drift region 66 and the lifetime of electrons in the drift region 66.
  • the thickness of the buffer region 67 is so thin that it can be ignored with respect to the thickness of the drift region 66. For this reason, by setting the distance B as described above, electrons are prevented from flowing between the anode region 82 and the collector region 68.
  • the mobility of holes in the drift region 66 is smaller than that of electrons, it is possible to prevent holes from flowing between the anode region 82 and the collector region 68. Therefore, current is prevented from flowing between the anode region 82 and the collector region 68.
  • the distance C (shortest distance) between the body region 64 and the cathode region 84 is longer than the product of the mobility of electrons in the drift region 66 and the lifetime of electrons in the drift region 66.
  • the thickness of the buffer region 67 is so thin that it can be ignored with respect to the thickness of the drift region 66. For this reason, by setting the distance C as described above, electrons are prevented from flowing between the body region 64 and the cathode region 84.
  • the mobility of holes in the drift region 66 is smaller than that of electrons, it is possible to prevent holes from flowing between the body region 64 and the cathode region 84. Therefore, current is prevented from flowing between body region 64 and cathode region 84.
  • the above-described distance C can also be said to be a distance between the body region 64 and the end face 78 of the collector region 68.
  • the distance G (shortest distance) between the anode region 82 and the external p-type region 92 is longer than the product of the mobility of electrons in the drift region 66 and the lifetime of electrons in the drift region 66.
  • the thickness of the buffer region 67 is so thin that it can be ignored with respect to the thickness of the drift region 66. For this reason, by setting the distance G as described above, electrons are prevented from flowing between the anode region 82 and the external p-type region 92.
  • the mobility of holes in the drift region 66 is smaller than that of electrons, it is possible to prevent holes from flowing between the anode region 82 and the external p-type region 92. Therefore, current is prevented from flowing between anode region 82 and external p-type region 92.
  • FIG. 3 shows a cross-sectional structure of the main region (the main IGBT region 20 and the main diode region 40).
  • a surface electrode 14 is formed on the surface of the semiconductor substrate 12 in the main region.
  • the surface electrode 14 is separated from the surface electrode 15 described above.
  • a back electrode 16 common to the sense region is formed on the back surface of the semiconductor substrate 12 in the main region.
  • the above-described drift region 66 and buffer region 67 are also formed in the main region. That is, the drift region 66 and the buffer region 67 extend from the main region to the sense region.
  • the structure of the main IGBT region 20 is substantially the same as that of the sense IGBT region 60.
  • the emitter region 22, the body region 24, the collector region 44, the gate electrode 34, the gate insulating film 32, and the insulating film 36 in the main IGBT region 20 have substantially the same configuration as the sense IGBT region 60.
  • the structure of the main diode region 40 is substantially the same as that of the sense diode region 80. That is, the anode region 42 and the cathode region 30 in the main diode region 40 have substantially the same configuration as the sense diode region 80.
  • the gate electrode 34 and the gate insulating film 32 described above are also formed in the main diode region 40. However, in other embodiments, the gate electrode 34 and the gate insulating film 32 may not be formed in the main diode region 40.
  • the operation of the IGBT in the sense area will be described.
  • the back electrode 16 is at a high potential with respect to the front electrode 15 and a potential higher than the threshold is applied to the gate electrode 74, the IGBT in the sense IGBT region 60 is turned on. That is, a channel is formed in the body region 64 in the vicinity of the gate insulating film 72, and electrons are transferred from the surface electrode 15 via the emitter region 62, the channel, the drift region 66, the buffer region 67 and the collector region 68 to the back electrode. 16 flows. Further, holes flow from the back surface electrode 16 to the front surface electrode 15 via the collector region 68, the buffer region 67, the drift region 66, and the body region 64.
  • a current flows from the back electrode 16 toward the front electrode 15 in the sense IGBT region 60.
  • the diode is off. That is, no current flows through the sense diode region 80.
  • the above-described distances A, B, and C are set to such a distance that current does not flow, current is prevented from flowing between the sense IGBT region 60 and the sense diode region 80. That is, current interference between the sense IGBT region 60 and the sense diode region 80 is prevented.
  • the IGBT and the diode in the main region operate in the same manner as the IGBT and the diode in the sense region. Therefore, when a current flows through the IGBT in the sense region, a current also flows through the IGBT in the main region.
  • the ratio of the current flowing in the sense IGBT region 60 and the current flowing in the main IGBT region 20 is the ratio between the area of the sense IGBT region 60 and the area of the main IGBT region 20. It gets closer to the ratio. Therefore, the current flowing through the main IGBT region 20 can be accurately detected by detecting the current flowing through the sense IGBT region 60 (that is, the current flowing through the surface electrode 15 of the sense region).
  • the diode in the sense diode region 80 is turned on. That is, electrons flow from the back electrode 16 to the front electrode 15 via the cathode region 84, the buffer region 67, the drift region 66, and the anode region 82. Further, holes flow from the front electrode 15 to the back electrode 16 via the anode region 82, the drift region 66, the buffer region 67 and the cathode region 84. For this reason, a current flows from the front surface electrode 15 toward the back surface electrode 16 in the sense diode region 80.
  • the IGBT is turned off. That is, no current flows through the sense IGBT region 60.
  • the above-described distances A, B, and C are set to such a distance that current does not flow, current is prevented from flowing between the sense IGBT region 60 and the sense diode region 80.
  • the above-described distance G is set to a distance at which no current flows, it is possible to prevent a current from flowing between the anode region 82 and the external p-type region 92. That is, current interference between the sense diode region 80 and the surrounding region (that is, the sense IGBT region 60 and the external p-type region 92) is prevented.
  • the IGBT and the diode in the main region operate in the same manner as the IGBT and the diode in the sense region. Therefore, when a current flows through the diode in the sense region, a current also flows through the diode in the main region.
  • the ratio between the current flowing in the sense diode region 80 and the current flowing in the main diode region 40 is the difference between the area of the sense diode region 80 and the area of the main diode region 40. It gets closer to the ratio. Therefore, the current flowing through the main diode region 40 can be accurately detected by detecting the current flowing through the sense diode region 80 (that is, the current flowing through the surface electrode 15 in the sense region).
  • the distances A, B, and C are set based on the temperature during operation of the semiconductor device 10.
  • the semiconductor substrate 12 is silicon
  • the thickness of the semiconductor substrate 12 is 165 ⁇ m
  • the operating temperature is 150 ° C.
  • the n-type impurity concentration of the drift region 66 is 1 ⁇ 10 15 to 10 17 atoms / cm 3
  • the distance D is a distance between the body region 64 and the boundary 78 (a direction parallel to the back surface of the semiconductor substrate 12), and the distance E is a distance between the anode region 82 and the boundary 78 in the lateral direction.
  • the distance F is the lateral distance between the anode region 82 and the external p-type region 92.
  • Example 2 The configuration of the semiconductor device of the second embodiment is the same as that of the semiconductor device 10 of the first embodiment except for the high-concentration n-type regions 100 and 102.
  • a high concentration n-type region 100 is formed in the semiconductor substrate 12 in the isolation region 90.
  • High-concentration n-type region 100 has an n-type impurity concentration higher than that of drift region 66.
  • the n-type impurity concentration of the high-concentration n-type region 100 is preferably 1 ⁇ 10 16 atoms / cm 3 or more.
  • the high concentration n-type region 100 extends from the surface of the semiconductor substrate 12 to the boundary 78 between the collector region 68 and the cathode region 84.
  • the drift region 66 is separated into the IGBT drift region 66a and the diode drift region 66b.
  • a high concentration n-type region 102 substantially the same as the high concentration n-type region 100 is also formed on the boundary between the external p-type region 92 and the cathode region 84.
  • the distances A to G described above may be set in any manner.
  • the high-concentration n-type regions 100 and 102 described above have high-concentration n-type impurities. N-type impurities scatter carriers. Since the high concentration n-type region 100 is formed between the sense IGBT region 60 and the sense diode region 80, current interference between the sense IGBT region 60 and the sense diode region 80 is prevented by the high concentration n-type region 100. . Further, since the high-concentration n-type region 102 is formed between the sense diode region 80 and the external p-type region 92, the high-concentration n-type region 100 causes current interference between the sense diode region 80 and the external p-type region 92. Is prevented. Therefore, the current in the main IGBT region 20 can be accurately detected by detecting the current in the sense IGBT region 60. Further, by detecting the current in the sense diode region 80, the current in the main diode region 40 can be accurately detected.
  • the high-concentration n-type regions 100 and 102 extend from the front surface of the semiconductor substrate 12 to the region on the back surface side (that is, the collector region 68, the cathode region 84, and the external p-type region 92).
  • the n-type region 100 may be formed only in a shallower region. That is, the high concentration n-type region is formed from the surface of the semiconductor substrate 12 to a predetermined depth, and the drift region 66 may be formed below the high concentration n-type region (that is, the IGBT drift region 66a). And the diode drift region 66b may not be completely separated).
  • the high-concentration n-type regions 100 and 102 preferably extend from the surface of the semiconductor substrate 12 to a position deeper than the center of the drift region 66 in the thickness direction.
  • the high-concentration n-type regions 100 and 102 are formed so as to be exposed on the surface of the semiconductor substrate 12, but the upper end of the high-concentration n-type region is located inside the semiconductor substrate 12. Good.
  • another semiconductor layer for example, drift region 66
  • drift region 66 exists between the upper end of the high concentration n-type region and the surface of the semiconductor substrate 12. Even with such a configuration, if the distance between the upper end of the high-concentration n-type region and the surface of the semiconductor substrate 12 is extremely short, current interference can be sufficiently suppressed.
  • Example 3 The configuration of the semiconductor device of Example 3 is the same as that of the semiconductor device 10 of Example 1 except for the insulating layers 110 and 112.
  • a trench may be formed on the surface of the semiconductor substrate 12 in the isolation region 90, and an insulating layer 110 may be formed in the trench.
  • the insulating layer 110 extends from the surface of the semiconductor substrate 12 into the drift region 66.
  • a drift region 66 exists below the lower end of the insulating layer 110. That is, in Example 3, the IGBT drift region 66a and the diode drift region 66b are not completely separated.
  • An insulating layer 112 similar to the insulating layer 110 is also formed on the boundary between the external p-type region 92 and the cathode region 84.
  • the distances A to G described above may be set in any manner.
  • the insulating layer 110 is formed between the sense IGBT region 60 and the sense diode region 80, current interference between the sense IGBT region 60 and the sense diode region 80 is prevented by the insulating layer 110.
  • insulating layer 112 is formed between sense diode region 80 and external p-type region 92, current interference between sense diode region 80 and external p-type region 92 is prevented by insulating layer 112. Therefore, the current in the main IGBT region 20 can be accurately detected by detecting the current in the sense IGBT region 60. Further, by detecting the current in the sense diode region 80, the current in the main diode region 40 can be accurately detected.
  • the insulating layers 110 and 112 extend from the surface of the semiconductor substrate 12 to a position deeper than the center of the drift region 66 in the thickness direction. By forming the insulating layer to such a depth, current interference can be effectively suppressed. Further, the insulating layers 110 and 112 may penetrate the drift layer 66. In FIG. 5, the insulating layers 110 and 112 are formed so as to be exposed on the surface of the semiconductor substrate 12, but the upper end of the insulating layer may be positioned inside the semiconductor substrate 12. That is, the insulating layer may be embedded in the semiconductor substrate 12. In this case, another semiconductor layer (for example, drift region 66) exists between the upper end of the insulating layer and the surface of the semiconductor substrate 12. Even with such a configuration, if the distance between the upper end of the insulating layer and the surface of the semiconductor substrate 12 is extremely short, current interference can be sufficiently suppressed.
  • drift region 66 drift region 66
  • the semiconductor device having a trench type gate electrode has been described.
  • the technology disclosed in this specification may be applied to a semiconductor device having a planar type gate electrode.
  • the buffer area 67 may not be formed.
  • the collector region 68, the cathode region 84, and the external p-type region 92 are in contact with the drift region 67.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 半導体装置であって、IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する。ボディ領域とアノード領域の間の間隔が、その間のn型領域の移動度とライフタイムの積よりも長い。アノード領域とコレクタ領域の間の間隔が、その間のn型領域の移動度とライフタイムの積よりも長い。コレクタ領域の端部とボディ領域の間の間隔が、その間のn型領域の移動度とライフタイムの積よりも長い。

Description

半導体装置
(関連出願の相互参照)
 本出願は、2014年2月10日に出願された日本特許出願特願2014-023867の関連出願であり、この日本特許出願に基づく優先権を主張するものであり、この日本特許出願に記載された全ての内容を、本明細書を構成するものとして援用する。
 本明細書が開示する技術は、半導体装置に関する。
 国際公開第2011/138832号公報には、IGBTとダイオードが同一の半導体基板に形成された半導体装置が開示されている。また、この半導体基板には、主電流が流れるメインIGBTとは別に、より小さい電流が流れるセンスIGBTが形成されている。センスIGBTに流れる電流を検出することで、メインIGBTに流れる電流を検出することができる。また、この半導体基板には、主電流が流れるメインダイオードとは別に、より小さい電流が流れるセンスダイオードが形成されている。また、センスダイオードに流れる電流を検出することで、メインダイオードに流れる電流を検出することができる。
 上述した半導体装置において、センスIGBT及びセンスダイオードの検出精度をより向上させることが望まれる。
 本明細書が開示する第1の半導体装置は、IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する。前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さい。前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さい。前記センスIGBT領域と前記センスダイオード領域に跨って、n型領域が形成されている。前記センスIGBT領域内に、前記半導体基板の表面に露出するn型のエミッタ領域と、前記エミッタ領域に接するp型のボディ領域と、前記ボディ領域によって前記エミッタ領域から分離されている前記n型領域と、前記半導体基板の裏面に露出しており、前記n型領域によって前記ボディ領域から分離されているp型のコレクタ領域と、前記ボディ領域に接するゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極が形成されている。前記センスダイオード領域内に、前記半導体基板の前記表面に露出するp型のアノード領域と、前記アノード領域に接しており、前記半導体基板の前記裏面に露出している前記n型領域が形成されている。前記n型領域によって前記ボディ領域が前記アノード領域から分離されている。前記ボディ領域と前記アノード領域の間の間隔が、前記ボディ領域と前記アノード領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長い。前記n型領域によって前記アノード領域が前記コレクタ領域から分離されている。前記アノード領域と前記コレクタ領域の間の間隔が、前記アノード領域と前記コレクタ領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長い。前記コレクタ領域の前記センスダイオード領域側の端部と前記ボディ領域の間の間隔が、前記端部と前記ボディ領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長い。
 なお、本明細書において、「面積」とは、半導体基板をその厚み方向に沿って見たときにおける面積を意味する。
 この半導体装置では、ボディ領域とアノード領域の間の間隔が、それらの間のn型領域における電子の移動度と電子のライフタイムの積よりも長い。このため、ボディ領域とアノード領域の間でキャリアが移動することが抑制される。また、この半導体装置では、アノード領域とコレクタ領域の間の間隔が、それらの間のn型領域における電子の移動度と電子のライフタイムの積よりも長い。このため、アノード領域とコレクタ領域の間でキャリアが移動することが抑制される。また、この半導体装置では、コレクタ領域のセンスダイオード領域側の端部とボディ領域の間の間隔が、前記端部とボディ領域の間のn型領域における電子の移動度と電子のライフタイムの積よりも長い。コレクタ領域のセンスダイオード領域側では、n型領域が半導体基板の裏面に露出している。この露出しているn型領域は、ダイオードのいわゆるカソードとして機能する。すなわち、前記端部とボディ領域の間の間隔は、ダイオードのカソードとボディ領域の間の間隔に相当する。この間隔が、n型領域における電子の移動度と電子のライフタイムの積よりも長いので、カソードとボディ領域の間でキャリアが移動することが抑制される。このように、この半導体装置では、センスIGBT領域とセンスダイオード領域の間でキャリアが移動することが抑制される。すなわち、センスIGBTとセンスダイオードの間での電流干渉が抑制される。したがって、センスIGBT領域及びセンスダイオード領域の電流を正確に検出できる。
 上述した半導体装置は、前記センスダイオード領域を挟んで前記センスIGBT領域の反対側に位置する領域において前記半導体基板の前記裏面に露出している外部p型領域をさらに有していてもよい。また、前記n型領域によって前記アノード領域が前記外部p型領域から分離されており、前記アノード領域と前記外部p型領域の間の間隔が、前記アノード領域と前記外部p型領域の間の前記n領域における電子の移動度と電子のライフタイムの積よりも長くてもよい。
 このような構成によれば、アノード領域と外部p型領域の間でキャリアが移動することを抑制することができる。
 本明細書が開示する第2の半導体装置は、IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する。前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さい。前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さい。前記センスIGBT領域内に、前記半導体基板の表面に露出するn型のエミッタ領域と、前記エミッタ領域に接するp型のボディ領域と、前記ボディ領域によって前記エミッタ領域から分離されているIGBTドリフト領域と、前記半導体基板の裏面に露出しており、前記IGBTドリフト領域によって前記ボディ領域から分離されているp型のコレクタ領域と、前記ボディ領域に接するゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極が形成されている。前記センスダイオード領域内に、前記半導体基板の前記表面に露出するp型のアノード領域と、前記アノード領域に接するダイオードドリフト領域と、前記ダイオードドリフト領域によって前記アノード領域から分離されており、前記半導体基板の前記裏面に露出しており、前記ダイオードドリフト領域よりもn型不純物濃度が高いn型のカソード領域が形成されている。前記IGBTドリフト領域及び前記ダイオードドリフト領域によって前記ボディ領域が前記アノード領域から分離されている。前記IGBTドリフト領域と前記ダイオードドリフト領域の間に、前記IGBTドリフト領域及び前記ダイオードドリフト領域よりもn型不純物濃度が高い高濃度n型領域が形成されている。
 n型不純物濃度が高い高濃度n型領域ではn型不純物や欠陥によってキャリアが散乱される。この半導体装置では、IGBTドリフト領域とダイオードドリフト領域の間に高濃度n型領域が形成されているので、センスIGBT領域とセンスダイオード領域の間でキャリアが移動することが抑制される。したがって、センスIGBT領域及びセンスダイオード領域の電流を正確に検出できる。
 前記半導体装置においては、前記高濃度n型領域が、半導体基板の上面から、前記IGBTドリフト領域及び前記ダイオードドリフト領域の厚み方向の中央部よりも深い位置まで伸びていてもよい。
 本明細書が開示する第3の半導体装置は、IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する。前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さい。前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さい。前記センスIGBT領域内に、前記半導体基板の表面に露出するn型のエミッタ領域と、前記エミッタ領域に接するp型のボディ領域と、前記ボディ領域によって前記エミッタ領域から分離されているIGBTドリフト領域と、前記半導体基板の裏面に露出しており、前記IGBTドリフト領域によって前記ボディ領域から分離されているp型のコレクタ領域と、前記ボディ領域に接するゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極が形成されている。前記センスダイオード領域内に、前記半導体基板の前記表面に露出するp型のアノード領域と、前記アノード領域に接するダイオードドリフト領域と、前記ダイオードドリフト領域によって前記アノード領域から分離されており、前記半導体基板の前記裏面に露出しており、前記ダイオードドリフト領域よりもn型不純物濃度が高いn型のカソード領域が形成されている。前記IGBTドリフト領域及び前記ダイオードドリフト領域によって前記ボディ領域が前記アノード領域から分離されている。前記IGBTドリフト領域と前記ダイオードドリフト領域の間に、絶縁層が形成されている。
 この半導体装置では、IGBTドリフト領域とダイオードドリフト領域の間に絶縁層が形成されているので、センスIGBT領域とセンスダイオード領域の間でキャリアが移動することが抑制される。したがって、センスIGBT領域及びセンスダイオード領域の電流を正確に検出できる。
 上述した半導体装置においては、前記絶縁層が、半導体基板の上面から、前記IGBTドリフト領域及び前記ダイオードドリフト領域の厚み方向の中央部よりも深い位置まで伸びていてもよい。
半導体装置10の平面図。 図1のII-II線における縦断面図。 図1のIII-III線における縦断面図。 実施例2の半導体装置の図2に対応する縦断面図。 実施例3の半導体装置の図2に対応する縦断面図。
(実施例1)
 図1に示す実施例の半導体装置10は、メインIGBT領域20と、メインダイオード領域40と、センスIGBT領域60と、センスダイオード領域80が形成された半導体基板12を有している。以下では、メインIGBT領域20とメインダイオード領域40をまとめて、メイン領域という場合がある。また、以下では、センスIGBT領域60とセンスダイオード領域80をまとめて、センス領域という場合がある。メイン領域は、半導体基板12の略中央部に形成されている。メイン領域内には、複数のメインIGBT領域20と複数のメインダイオード領域40が交互に繰り返し形成されている。センス領域は、メイン領域の外側に形成されている。図1に示すように、半導体基板12の表面を平面視した際に、センスIGBT領域60の面積はメインIGBT領域20の面積よりも小さい。各IGBTがオンした場合には、センスIGBT領域60には、メインIGBT領域20に対する面積比率に応じた電流が流れる。したがって、センスIGBT領域60に流れる電流を検出することで、その時にメインIGBT領域20に流れる電流を検出することができる。また、図1に示すように、半導体基板12の表面を平面視した際に、センスダイオード領域80の面積はメインダイオード領域40の面積よりも小さい。したがって、各ダイオードがオンした場合には、センスダイオード領域80には、メインダイオード領域40に対する面積比率に応じた電流が流れる。したがって、センスダイオード領域80に流れる電流を検出することで、メインダイオード領域40に流れる電流を検出することができる。
 図2は、センス領域の断面構造を示している。センス領域内においては、半導体基板12の表面に表面電極15が形成されており、半導体基板12の裏面に裏面電極16が形成されている。
 センスIGBT領域60内の半導体基板12内には、エミッタ領域62、ボディ領域64、ドリフト領域66、バッファ領域67、コレクタ領域68が形成されている。
 エミッタ領域62は、n型領域であり、半導体基板12の上面に露出する範囲に形成されている。エミッタ領域62は、表面電極15に対してオーミック接続されている。
 ボディ領域64は、p型領域であり、半導体基板12の上面に露出する範囲に形成されている。ボディ領域64は、エミッタ領域62の側方からエミッタ領域62の下側まで伸びている。ボディ領域64は、表面電極15に対してオーミック接続されている。
 ドリフト領域66は、n型領域であり、ボディ領域64の下側に形成されている。ドリフト領域66は、ボディ領域64によってエミッタ領域62から分離されている。ドリフト領域66のn型不純物濃度は、14×1014atoms/cm3未満であることが好ましい。
 バッファ領域67は、n型領域であり、ドリフト領域66の下側に形成されている。バッファ領域67のn型不純物濃度は、ドリフト領域66及びカソード領域84よりも高い。
 コレクタ領域68は、p型領域であり、バッファ領域67の下側に形成されている。コレクタ領域68は、半導体基板12の下面に露出する範囲に形成されている。コレクタ領域68は、裏面電極16に対してオーミック接続されている。コレクタ領域68は、ドリフト領域66によって、ボディ領域64から分離されている。
 センスIGBT領域60内の半導体基板12の上面には、複数のトレンチが形成されている。各トレンチは、エミッタ領域62に隣接する位置に形成されている。各トレンチは、ドリフト領域66に達する深さまで伸びている。
 センスIGBT領域60内の各トレンチの内面は、ゲート絶縁膜72によって覆われている。また、各トレンチ内には、ゲート電極74が配置されている。各ゲート電極74は、ゲート絶縁膜72によって半導体基板12から絶縁されている。各ゲート電極74は、ゲート絶縁膜72を介して、エミッタ領域62、ボディ領域64及びドリフト領域66に対向している。各ゲート電極74の上部には、絶縁膜76が形成されている。各ゲート電極74は、絶縁膜76によって表面電極15から絶縁されている。
 センスダイオード領域80内の半導体基板12内には、アノード領域82、ドリフト領域66、バッファ領域67及びカソード領域84が形成されている。
 アノード領域82は、半導体基板12の上面に露出する範囲に形成されている。アノード領域82は、表面電極15に対してオーミック接続されている。
 アノード領域82の下側には、上述したドリフト領域66が形成されている。ドリフト領域66の下側には、上述したバッファ領域67が形成されている。
 カソード領域84は、n型領域であり、センスダイオード領域80内のバッファ領域67の下側に形成されている。カソード領域84は、半導体基板12の下面に露出する範囲に形成されている。カソード領域84は、ドリフト領域66よりも高いn型不純物濃度を有している。カソード領域84のn型不純物濃度は、1×1018atoms/cm3以上であることが好ましい。カソード領域84は、裏面電極16に対してオーミック接続されている。
 センスIGBT領域60とセンスダイオード領域80の間の分離領域90には、上述したドリフト領域66及びバッファ領域67が形成されている。すなわち、ドリフト領域66及びバッファ領域67は、センスIGBT領域60内からセンスダイオード領域80内まで連続して伸びている。すなわち、ドリフト領域66とバッファ領域67とカソード領域84からなるn型領域は、センスIGBT領域60からセンスダイオード領域80に跨って延びている。分離領域90内のドリフト領域66によって、ボディ領域64がアノード領域82から分離されている。また、分離領域90内のドリフト領域66によって、ボディ領域64がカソード領域84から分離されている。また、分離領域90内のドリフト領域66によって、アノード領域82がコレクタ領域68から分離されている。また、コレクタ領域68は分離領域90内まで伸びており、カソード領域84は分離領域90内まで伸びている。分離領域90内には、コレクタ領域68とカソード領域84の境界78が形成されている。
 また、半導体基板12の裏面に露出する範囲であって、カソード領域84を挟んでコレクタ領域68の反対側に位置する領域には、外部p型領域92が形成されている。すなわち、カソード領域84は、外部p型領域92とコレクタ領域68の間に位置している。外部p型領域92は、ドリフト領域66によってアノード領域82から分離されている。
 ボディ領域64とアノード領域82の間の距離A(最短距離)は、ドリフト領域66の電子の移動度とドリフト領域66の電子のライフタイムの積よりも長い。このため、ボディ領域64とアノード領域82の間で電子が流れることが防止される。また、ドリフト領域66におけるホールの移動度は電子よりも小さいので、ボディ領域64とアノード領域82の間でホールが流れることも防止される。したがって、ボディ領域64とアノード領域82の間で電流が流れることが防止される。
 アノード領域82とコレクタ領域68の間の距離B(最短距離)は、ドリフト領域66の電子の移動度とドリフト領域66の電子のライフタイムの積よりも長い。なお、本実施例において、バッファ領域67の厚みは、ドリフト領域66の厚みに対して無視できる程度に薄い。このため、上記のように距離Bが設定されていることで、アノード領域82とコレクタ領域68の間で電子が流れることが防止される。また、ドリフト領域66におけるホールの移動度は電子よりも小さいので、アノード領域82とコレクタ領域68の間でホールが流れることも防止される。したがって、アノード領域82とコレクタ領域68の間で電流が流れることが防止される。
 ボディ領域64とカソード領域84の間の距離C(最短距離)は、ドリフト領域66の電子の移動度とドリフト領域66の電子のライフタイムの積よりも長い。なお、本実施例において、バッファ領域67の厚みは、ドリフト領域66の厚みに対して無視できる程度に薄い。このため、上記のように距離Cが設定されていることで、ボディ領域64とカソード領域84の間で電子が流れることが防止される。また、ドリフト領域66におけるホールの移動度は電子よりも小さいので、ボディ領域64とカソード領域84の間でホールが流れることも防止される。したがって、ボディ領域64とカソード領域84の間で電流が流れることが防止される。なお、ドリフト領域66とカソード領域84を共通のn型領域として見た場合には、上述した距離Cは、ボディ領域64とコレクタ領域68の端面78との間の距離とも言える。
 アノード領域82と外部p型領域92の間の距離G(最短距離)は、ドリフト領域66の電子の移動度とドリフト領域66の電子のライフタイムの積よりも長い。なお、本実施例において、バッファ領域67の厚みは、ドリフト領域66の厚みに対して無視できる程度に薄い。このため、上記のように距離Gが設定されていることで、アノード領域82と外部p型領域92の間で電子が流れることが防止される。また、ドリフト領域66におけるホールの移動度は電子よりも小さいので、アノード領域82と外部p型領域92の間でホールが流れることも防止される。したがって、アノード領域82と外部p型領域92の間で電流が流れることが防止される。
 図3は、メイン領域(メインIGBT領域20とメインダイオード領域40)の断面構造を示している。メイン領域内の半導体基板12の表面には、表面電極14が形成されている。半導体基板12上においては、表面電極14は、上述した表面電極15から分離されている。メイン領域内の半導体基板12の裏面には、センス領域と共通の裏面電極16が形成されている。また、メイン領域内にも、上述したドリフト領域66とバッファ領域67が形成されている。すなわち、ドリフト領域66とバッファ領域67は、メイン領域からセンス領域に跨って伸びている。メインIGBT領域20の構造は、センスIGBT領域60と略等しい。すなわち、メインIGBT領域20内のエミッタ領域22、ボディ領域24、コレクタ領域44、ゲート電極34、ゲート絶縁膜32及び絶縁膜36は、センスIGBT領域60と略同様の構成を備えている。また、メインダイオード領域40の構造は、センスダイオード領域80と略等しい。すなわち、メインダイオード領域40内のアノード領域42及びカソード領域30は、センスダイオード領域80と略同様の構成を備えている。なお、メインダイオード領域40内にも、上述したゲート電極34及びゲート絶縁膜32が形成されている。但し、他の実施例においては、メインダイオード領域40内にゲート電極34及びゲート絶縁膜32が形成されていなくてもよい。
 次に、センス領域のIGBTの動作について説明する。裏面電極16が表面電極15に対して高電位であり、ゲート電極74に閾値以上の電位が印加されると、センスIGBT領域60内のIGBTがオンする。すなわち、ゲート絶縁膜72の近傍のボディ領域64にチャネルが形成され、電子が、表面電極15から、エミッタ領域62、チャネル、ドリフト領域66、バッファ領域67及びコレクタ領域68を経由して、裏面電極16に流れる。また、ホールが、裏面電極16から、コレクタ領域68、バッファ領域67、ドリフト領域66及びボディ領域64を経由して、表面電極15に流れる。このため、センスIGBT領域60内では、裏面電極16から表面電極15に向かって電流が流れる。このとき、センスダイオード領域80内のダイオードには逆電圧が印加されるので、ダイオードはオフしている。すなわち、センスダイオード領域80には電流が流れない。ここで、上述した距離A、B、Cが、電流が流れない距離に設定されているので、センスIGBT領域60とセンスダイオード領域80の間で電流が流れることが防止される。すなわち、センスIGBT領域60とセンスダイオード領域80の間での電流の干渉が防止される。
 このとき、メイン領域内のIGBT及びダイオードは、センス領域内のIGBT及びダイオードと同様に動作する。したがって、センス領域内のIGBTに電流が流れる際には、メイン領域内のIGBTにも電流が流れる。上記の通り、センス領域における電流干渉が防止されるので、センスIGBT領域60に流れる電流とメインIGBT領域20に流れる電流との比率は、センスIGBT領域60の面積とメインIGBT領域20の面積との比率により近くなる。したがって、センスIGBT領域60に流れる電流(すなわち、センス領域の表面電極15に流れる電流)を検出することで、メインIGBT領域20に流れる電流を正確に検出することができる。
 次に、センス領域のダイオードの動作について説明する。表面電極15が裏面電極16に対して高電位になると、センスダイオード領域80内のダイオードがオンする。すなわち、電子が、裏面電極16から、カソード領域84、バッファ領域67、ドリフト領域66及びアノード領域82を経由して表面電極15に流れる。また、ホールが、表面電極15から、アノード領域82、ドリフト領域66、バッファ領域67及びカソード領域84を経由して裏面電極16に流れる。このため、センスダイオード領域80内では、表面電極15から裏面電極16に向かって電流が流れる。このとき、センスIGBT領域60内のIGBTには逆電圧が印加されるので、IGBTはオフしている。すなわち、センスIGBT領域60には電流が流れない。ここで、上述した距離A、B、Cが、電流が流れない距離に設定されているので、センスIGBT領域60とセンスダイオード領域80の間で電流が流れることが防止される。また、上述した距離Gが、電流が流れない距離に設定されているので、アノード領域82と外部p型領域92の間電流が流れることが防止される。すなわち、センスダイオード領域80とその周囲の領域(すなわち、センスIGBT領域60及び外部p型領域92)の間での電流の干渉が防止される。
 このとき、メイン領域内のIGBT及びダイオードは、センス領域内のIGBT及びダイオードと同様に動作する。したがって、センス領域内のダイオードに電流が流れる際には、メイン領域内のダオイードにも電流が流れる。上記の通り、センス領域における電流干渉が防止されるので、センスダイオード領域80に流れる電流とメインダイオード領域40に流れる電流との比率は、センスダイオード領域80の面積とメインダイオード領域40の面積との比率により近くなる。したがって、センスダイオード領域80に流れる電流(すなわち、センス領域の表面電極15に流れる電流)を検出することで、メインダイオード領域40に流れる電流を正確に検出することができる。
 なお、電子の移動度は温度によって変化する。したがって、半導体装置10の動作時の温度に基づいて前記距離A、B、Cを設定することが好ましい。例えば、半導体基板12がシリコンであり、半導体基板12の厚さが165μmであり、動作温度が150℃であり、ドリフト領域66のn型不純物濃度が1×1015~1017atoms/cm3である場合には、図2に示す距離D、E、Fをそれぞれ580μm以上とすることで、上述した距離A、B、C、Gを電流干渉が生じない距離とすることができる。なお、距離Dは、ボディ領域64と境界78の間の横方向(半導体基板12の裏面に平行な方向)の距離であり、距離Eはアノード領域82と境界78の間の横方向の距離であり、距離Fはアノード領域82と外部p型領域92の間の横方向の距離である。
(実施例2)
 実施例2の半導体装置の構成は、高濃度n型領域100、102を除いて、実施例1の半導体装置10と等しい。実施例2の半導体装置では、図4に示すように、分離領域90内の半導体基板12内に、高濃度n型領域100が形成されている。高濃度n型領域100は、ドリフト領域66よりも高いn型不純物濃度を有している。高濃度n型領域100のn型不純物濃度は、1×1016atoms/cm3以上であることが好ましい。高濃度n型領域100は、半導体基板12の表面からコレクタ領域68とカソード領域84の境界78まで伸びている。このため、ドリフト領域66が、IGBTドリフト領域66aとダイオードドリフト領域66bに分離されている。また、高濃度n型領域100と略同様の高濃度n型領域102が、外部p型領域92とカソード領域84の境界上にも形成されている。なお、実施例2の半導体装置では、上述した距離A~Gは、どのように設定されていてもかまわない。
 上述した高濃度n型領域100、102は、高濃度のn型不純物を有している。n型不純物は、キャリアを散乱する。高濃度n型領域100はセンスIGBT領域60とセンスダイオード領域80の間に形成されているので、高濃度n型領域100によってセンスIGBT領域60とセンスダイオード領域80の間の電流干渉が防止される。また、高濃度n型領域102はセンスダイオード領域80と外部p型領域92の間に形成されているので、高濃度n型領域100によってセンスダイオード領域80と外部p型領域92の間の電流干渉が防止される。したがって、センスIGBT領域60の電流を検出することで、メインIGBT領域20の電流を正確に検出することができる。また、センスダイオード領域80の電流を検出することで、メインダイオード領域40の電流を正確に検出することができる。
 なお、図4では、高濃度n型領域100、102が半導体基板12の表面から裏面側の領域(すなわち、コレクタ領域68、カソード領域84及び外部p型領域92)まで伸びているが、高濃度n型領域100がより浅い領域にのみ形成されていてもよい。すなわち、半導体基板12の表面から所定の深さまで高濃度n型領域が形成されており、その高濃度n型領域の下側にドリフト領域66が形成されていてもよい(すなわち、IGBTドリフト領域66aとダイオードドリフト領域66bが完全に分離されていなくてもよい)。但し、この場合には、高濃度n型領域100、102は、半導体基板12の表面から、ドリフト領域66の厚み方向の中央よりも深い位置まで伸びていることが好ましい。この程度の深さまで高濃度n型領域を形成しておくことで、効果的に電流干渉を抑制することができる。また、図4では、高濃度n型領域100、102が半導体基板12の表面に露出するように形成されていたが、高濃度n型領域の上端が半導体基板12の内部に位置していてもよい。この場合、高濃度n型領域の上端と半導体基板12の表面の間に他の半導体層(例えば、ドリフト領域66)が存在することになる。このような構成でも、高濃度n型領域の上端と半導体基板12の表面の間の間隔が極めて短ければ、電流干渉を十分に抑制することができる。
(実施例3)
 実施例3の半導体装置の構成は、絶縁層110、112を除いて、実施例1の半導体装置10と等しい。実施例3の半導体装置では、図5に示すように、分離領域90内の半導体基板12の表面にトレンチが形成されており、そのトレンチ内に絶縁層110が形成されていてもよい。絶縁層110は、半導体基板12の表面からドリフト領域66内に伸びている。絶縁層110の下端の下側には、ドリフト領域66が存在している。すなわち、実施例3では、IGBTドリフト領域66aとダイオードドリフト領域66bは完全には分離されていない。また、絶縁層110と同様の絶縁層112が、外部p型領域92とカソード領域84の境界上にも形成されている。なお、実施例3の半導体装置では、上述した距離A~Gは、どのように設定されていてもかまわない。
 絶縁層110はセンスIGBT領域60とセンスダイオード領域80の間に形成されているので、絶縁層110によってセンスIGBT領域60とセンスダイオード領域80の間の電流干渉が防止される。また、絶縁層112はセンスダイオード領域80と外部p型領域92の間に形成されているので、絶縁層112によってセンスダイオード領域80と外部p型領域92の間の電流干渉が防止される。したがって、センスIGBT領域60の電流を検出することで、メインIGBT領域20の電流を正確に検出することができる。また、センスダイオード領域80の電流を検出することで、メインダイオード領域40の電流を正確に検出することができる。
 なお、実施例3では、絶縁層110、112は、半導体基板12の表面から、ドリフト領域66の厚み方向の中央よりも深い位置まで伸びていることが好ましい。この程度の深さまで絶縁層を形成しておくことで、効果的に電流干渉を抑制することができる。また、絶縁層110、112がドリフト層66を貫通していてもよい。また、図5では、絶縁層110、112が半導体基板12の表面に露出するように形成されていたが、絶縁層の上端が半導体基板12の内部に位置していてもよい。すなわち、絶縁層が半導体基板12内に埋め込まれていてもよい。この場合、絶縁層の上端と半導体基板12の表面の間に他の半導体層(例えば、ドリフト領域66)が存在することになる。このような構成でも、絶縁層の上端と半導体基板12の表面の間の間隔が極めて短ければ、電流干渉を十分に抑制することができる。
 なお、上述した実施例1~3では、トレンチ型のゲート電極を有する半導体装置について説明したが、プレーナ型のゲート電極を有する半導体装置に本明細書に開示の技術を適用してもよい。
 また、別の実施例では、バッファ領域67が形成されていなくてもよい。この場合、ドリフト領域67に対して、コレクタ領域68、カソード領域84及び外部p型領域92が接する。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (6)

  1.  IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する半導体装置であって、
     前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さく、
     前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さく、
     前記センスIGBT領域と前記センスダイオード領域に跨って、n型領域が形成されており、
     前記センスIGBT領域内に、
     前記半導体基板の表面に露出するn型のエミッタ領域と、
     前記エミッタ領域に接するp型のボディ領域と、
     前記ボディ領域によって前記エミッタ領域から分離されている前記n型領域と、
     前記半導体基板の裏面に露出しており、前記n型領域によって前記ボディ領域から分離されているp型のコレクタ領域と、
     前記ボディ領域に接するゲート絶縁膜と、
     前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極、
     が形成されており、
     前記センスダイオード領域内に、
     前記半導体基板の前記表面に露出するp型のアノード領域と、
     前記アノード領域に接しており、前記半導体基板の前記裏面に露出している前記n型領域、
     が形成されており、
     前記n型領域によって前記ボディ領域が前記アノード領域から分離されており、
     前記ボディ領域と前記アノード領域の間の間隔が、前記ボディ領域と前記アノード領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長く、
     前記n型領域によって前記アノード領域が前記コレクタ領域から分離されており、
     前記アノード領域と前記コレクタ領域の間の間隔が、前記アノード領域と前記コレクタ領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長く、
     前記コレクタ領域の前記センスダイオード領域側の端部と前記ボディ領域の間の間隔が、前記端部と前記ボディ領域の間の前記n型領域における電子の移動度と電子のライフタイムの積よりも長い、
     半導体装置。
  2.  前記センスダイオード領域を挟んで前記センスIGBT領域の反対側に位置する領域において前記半導体基板の前記裏面に露出している外部p型領域をさらに有し、
     前記n型領域によって前記アノード領域が前記外部p型領域から分離されており、
     前記アノード領域と前記外部p型領域の間の間隔が、前記アノード領域と前記外部p型領域の間の前記n領域における電子の移動度と電子のライフタイムの積よりも長い、
     請求項1の半導体装置。
  3.  IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する半導体装置であって、
     前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さく、
     前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さく、
     前記センスIGBT領域内に、
     前記半導体基板の表面に露出するn型のエミッタ領域と、
     前記エミッタ領域に接するp型のボディ領域と、
     前記ボディ領域によって前記エミッタ領域から分離されているIGBTドリフト領域と、
     前記半導体基板の裏面に露出しており、前記IGBTドリフト領域によって前記ボディ領域から分離されているp型のコレクタ領域と、
     前記ボディ領域に接するゲート絶縁膜と、
     前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極、
     が形成されており、
     前記センスダイオード領域内に、
     前記半導体基板の前記表面に露出するp型のアノード領域と、
     前記アノード領域に接するダイオードドリフト領域と、
     前記ダイオードドリフト領域によって前記アノード領域から分離されており、前記半導体基板の前記裏面に露出しており、前記ダイオードドリフト領域よりもn型不純物濃度が高いn型のカソード領域、
     が形成されており、
     前記IGBTドリフト領域及び前記ダイオードドリフト領域によって前記ボディ領域が前記アノード領域から分離されており、
     前記IGBTドリフト領域と前記ダイオードドリフト領域の間に、前記IGBTドリフト領域及び前記ダイオードドリフト領域よりもn型不純物濃度が高い高濃度n型領域が形成されている、
     半導体装置。
  4.  前記高濃度n型領域が、半導体基板の上面から、前記IGBTドリフト領域及び前記ダイオードドリフト領域の厚み方向の中央部よりも深い位置まで伸びている請求項3の半導体装置。
  5.  IGBTが形成されているメインIGBT領域と、ダイオードが形成されているメインダイオード領域と、IGBTが形成されているセンスIGBT領域と、ダイオードが形成されているセンスダイオード領域を有する半導体基板を有する半導体装置であって、
     前記センスIGBT領域の面積は、前記メインIGBT領域よりも小さく、
     前記センスダイオード領域の面積は、前記メインダイオード領域よりも小さく、
     前記センスIGBT領域内に、
     前記半導体基板の表面に露出するn型のエミッタ領域と、
     前記エミッタ領域に接するp型のボディ領域と、
     前記ボディ領域によって前記エミッタ領域から分離されているIGBTドリフト領域と、
     前記半導体基板の裏面に露出しており、前記IGBTドリフト領域によって前記ボディ領域から分離されているp型のコレクタ領域と、
     前記ボディ領域に接するゲート絶縁膜と、
     前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極、
     が形成されており、
     前記センスダイオード領域内に、
     前記半導体基板の前記表面に露出するp型のアノード領域と、
     前記アノード領域に接するダイオードドリフト領域と、
     前記ダイオードドリフト領域によって前記アノード領域から分離されており、前記半導体基板の前記裏面に露出しており、前記ダイオードドリフト領域よりもn型不純物濃度が高いn型のカソード領域、
     が形成されており、
     前記IGBTドリフト領域及び前記ダイオードドリフト領域によって前記ボディ領域が前記アノード領域から分離されており、
     前記IGBTドリフト領域と前記ダイオードドリフト領域の間に、絶縁層が形成されている、
     半導体装置。
  6.  前記絶縁層が、半導体基板の上面から、前記IGBTドリフト領域及び前記ダイオードドリフト領域の厚み方向の中央部よりも深い位置まで伸びている請求項5の半導体装置。
PCT/JP2014/073676 2014-02-10 2014-09-08 半導体装置 WO2015118714A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/104,073 US9972707B2 (en) 2014-02-10 2014-09-08 Semiconductor device
CN201480075282.XA CN106030797B (zh) 2014-02-10 2014-09-08 半导体装置
EP14882078.0A EP3107123B1 (en) 2014-02-10 2014-09-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014023867A JP6142813B2 (ja) 2014-02-10 2014-02-10 半導体装置
JP2014-023867 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015118714A1 true WO2015118714A1 (ja) 2015-08-13

Family

ID=53777534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073676 WO2015118714A1 (ja) 2014-02-10 2014-09-08 半導体装置

Country Status (5)

Country Link
US (1) US9972707B2 (ja)
EP (1) EP3107123B1 (ja)
JP (1) JP6142813B2 (ja)
CN (1) CN106030797B (ja)
WO (1) WO2015118714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518972A (ja) * 2019-03-22 2022-03-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 導通損失の少ない逆導通絶縁ゲートパワー半導体デバイス
WO2022230014A1 (ja) * 2021-04-26 2022-11-03 三菱電機株式会社 半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795032B2 (ja) * 2016-06-03 2020-12-02 富士電機株式会社 半導体装置
JP2018129358A (ja) 2017-02-07 2018-08-16 ルネサスエレクトロニクス株式会社 電流検出装置、負荷駆動システム、及び、電流検出装置の製造方法
JP6804379B2 (ja) 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
JP7151084B2 (ja) * 2018-01-11 2022-10-12 株式会社デンソー 半導体装置
JP7224247B2 (ja) * 2019-07-02 2023-02-17 三菱電機株式会社 半導体装置
JP7332543B2 (ja) * 2020-07-07 2023-08-23 三菱電機株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314082A (ja) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp 半導体装置
JP2009099690A (ja) * 2007-10-15 2009-05-07 Denso Corp 半導体装置
JP2011082220A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp 半導体装置
JP2013201237A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241210A (en) * 1987-02-26 1993-08-31 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device
JPH10261704A (ja) * 1997-03-18 1998-09-29 Toyota Motor Corp 半導体装置及びその製造方法
JP3739376B2 (ja) * 2003-12-08 2006-01-25 株式会社ルネサステクノロジ 半導体装置
EP2003694B1 (en) * 2007-06-14 2011-11-23 Denso Corporation Semiconductor device
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
JP4877337B2 (ja) 2009-02-17 2012-02-15 トヨタ自動車株式会社 半導体装置
JP5499692B2 (ja) * 2009-12-24 2014-05-21 トヨタ自動車株式会社 半導体装置及びその製造方法
KR101276407B1 (ko) * 2010-05-07 2013-06-19 도요타지도샤가부시키가이샤 반도체 장치
JP5668499B2 (ja) 2011-01-27 2015-02-12 株式会社デンソー 半導体装置
DE102011076610A1 (de) 2010-06-04 2011-12-08 Denso Corporation Stromsensor, inverterschaltung und diese aufweisende halbleitervorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314082A (ja) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp 半導体装置
JP2009099690A (ja) * 2007-10-15 2009-05-07 Denso Corp 半導体装置
JP2011082220A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp 半導体装置
JP2013201237A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518972A (ja) * 2019-03-22 2022-03-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 導通損失の少ない逆導通絶縁ゲートパワー半導体デバイス
JP7084558B2 (ja) 2019-03-22 2022-06-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 導通損失の少ない逆導通絶縁ゲートパワー半導体デバイス
WO2022230014A1 (ja) * 2021-04-26 2022-11-03 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP6142813B2 (ja) 2017-06-07
CN106030797A (zh) 2016-10-12
US9972707B2 (en) 2018-05-15
EP3107123B1 (en) 2018-11-28
CN106030797B (zh) 2019-03-12
JP2015153785A (ja) 2015-08-24
EP3107123A1 (en) 2016-12-21
EP3107123A4 (en) 2017-02-22
US20160372584A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6142813B2 (ja) 半導体装置
US10818782B2 (en) Insulated-gate bipolar transistor (IGBT) including a branched gate trench
JP6197773B2 (ja) 半導体装置
JP6117602B2 (ja) 半導体装置
JP6281548B2 (ja) 半導体装置
JP5924420B2 (ja) 半導体装置
JP5900698B2 (ja) 半導体装置
CN106463542B (zh) 半导体装置
WO2013030943A1 (ja) 半導体装置
US9166040B2 (en) Semiconductor device
JP2016054181A (ja) 絶縁ゲート型スイッチング素子
JP2014216572A (ja) 半導体装置
JP2013161918A (ja) 半導体装置
WO2014125584A1 (ja) 半導体装置
JP2017174863A (ja) 半導体装置
JP5989689B2 (ja) 半導体装置
JP2014103352A (ja) 半導体装置
JP6299658B2 (ja) 絶縁ゲート型スイッチング素子
JP6179468B2 (ja) 半導体装置
JP5156238B2 (ja) 半導体装置
JP6411929B2 (ja) Mosfet
JP5884772B2 (ja) 半導体装置
JP6280629B2 (ja) 半導体装置
JP6269588B2 (ja) 半導体装置
JP2019057645A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104073

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014882078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882078

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE