WO2015115156A1 - 冷間圧延設備および冷間圧延方法 - Google Patents

冷間圧延設備および冷間圧延方法 Download PDF

Info

Publication number
WO2015115156A1
WO2015115156A1 PCT/JP2015/050533 JP2015050533W WO2015115156A1 WO 2015115156 A1 WO2015115156 A1 WO 2015115156A1 JP 2015050533 W JP2015050533 W JP 2015050533W WO 2015115156 A1 WO2015115156 A1 WO 2015115156A1
Authority
WO
WIPO (PCT)
Prior art keywords
meandering
steel strip
steel
heating
cold rolling
Prior art date
Application number
PCT/JP2015/050533
Other languages
English (en)
French (fr)
Inventor
植野 雅康
悦充 原田
英優 児玉
達人 福島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/114,540 priority Critical patent/US10259027B2/en
Priority to KR1020167019943A priority patent/KR101780618B1/ko
Priority to CN201580006264.0A priority patent/CN105934286B/zh
Priority to EP15743926.6A priority patent/EP3100793B1/en
Publication of WO2015115156A1 publication Critical patent/WO2015115156A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/72Rear end control; Front end control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/14Front end or leading end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/02Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
    • B21B39/08Braking or tensioning arrangements
    • B21B39/082Bridle devices

Definitions

  • the present invention relates to a cold rolling facility and a cold rolling method for cold rolling a steel sheet.
  • an ear crack may occur at an end portion in the width direction (hereinafter referred to as an edge portion) of the steel plate during cold rolling.
  • hard-rolled materials such as silicon steel plates, stainless steel plates, and high-carbon steel plates containing 1% or more of silicon become brittle materials compared to general steel plates, when cold-rolling hard-rolled materials at room temperature level , Ear cracks occur remarkably.
  • the degree of ear cracking is large, the steel sheet may break during cold rolling starting from the ear cracking.
  • Patent Document 1 discloses that when a silicon steel sheet is cold-rolled, a silicon steel sheet whose edge is heated to a temperature of 60 ° C. (ductility-brittle transition temperature) or higher is used as a material to be rolled.
  • a cold rolling method of a silicon steel sheet supplied to a rolling mill is disclosed.
  • Patent Document 2 discloses a pair of induction heating devices using C-type inductors (inductors) as means for raising the temperature of an edge portion of a steel plate by induction heating.
  • both edge portions in the width direction of a steel plate (hereinafter referred to as “plate width direction”) are sandwiched in a slit of a C-type inductor from above and below in a non-contact manner.
  • a high-frequency current is supplied from the power supply device to give a magnetic flux in the thickness direction of the steel sheet (hereinafter referred to as the “thickness direction”) to both edge portions of the steel plate to generate induced currents at both edge portions. Both of these edge portions are heated by Joule heat generated by.
  • the overlapping length of the edge portion of the steel plate and the C-type inductor sandwiching the edge portion from the top and bottom in the thickness direction (hereinafter referred to as lap) It is necessary to set the position of the carriage that supports the C-type inductor according to the plate width of the steel plate so that the length) is a preset value.
  • the wrap length changes. If the wrap length is reduced, the generation of eddy currents that block the flow of magnetic flux is reduced.
  • the power factor deteriorates, the reactive current increases, and the high-frequency current flowing through the coil of the C-type inductor increases to the rated value.
  • a predetermined output cannot be obtained, and as a result, insufficient heating of the edge portion may occur. Or the situation (local abnormal heating) which heats a part of edge part excessively may be reached.
  • the edge part will be cracked during cold rolling of the steel sheet.
  • the ear cracks cause breakage of the steel sheet during cold rolling.
  • an ear wave is generated at the edge portion of the steel sheet due to deformation due to thermal stress.
  • the degree of the ear wave is large, there is a possibility that drawing breakage occurs in the steel sheet during cold rolling, which makes it difficult to stably cold-roll the steel sheet. From the above, it is extremely important to control the lap length to an optimum value when the temperature of the edge portion of the cold-rolled steel plate is raised to a predetermined temperature by induction heating.
  • a heating coil for heating an edge portion of a steel plate to be conveyed for example, a heating coil for heating an edge portion of a steel plate to be conveyed, a coil base body mounted with the heating coil, and the coil base body as a traveling direction of the steel plate
  • an induction heating device that includes a moving mechanism that moves in a right-angle direction and a guide roller that is attached to the coil base body and contacts an edge portion of a steel plate (see Patent Document 3).
  • the moving mechanism is operated so that the guide roller contacts the edge of the steel plate during induction heating of the steel plate, and the relative positional relationship between the steel plate and the heating coil is always constant. I try to keep it.
  • a cart that moves back and forth in the direction perpendicular to the steel plate traveling direction is arranged at the left and right positions of the line through which the left and right edge portions of the steel plate pass, and an inductor that sandwiches the edge portion of the steel plate from above and below is installed on each of these left and right carts,
  • an induction heating control method in which the edge portion of a steel sheet is heated by controlling the wrap length between the edge portion of the steel sheet and the inductor by an automatic position controller of the carriage (see Patent Document 4).
  • the left and right cart correction positions added and subtracted as described above are output to the automatic position controllers of the left and right carts, thereby allowing the automatic position controller to correct the positions of the left and right carts,
  • the wrap length between the left and right edge portions of the steel sheet and the left and right inductors is controlled.
  • the wrap length between the edge portion of the steel plate and the inductor of the induction heating device is corrected according to the position change of the edge portion due to the meandering of the steel plate.
  • feedback control for correcting the wrap length in accordance with the position change of the edge portion has been conventionally performed.
  • the meandering speed of the steel plate is higher than the moving speed of the carriage on which the inductor is mounted, the above-described conventional technology sufficiently follows the feedback control of the lap length to the position change of the edge portion caused by the meandering of the steel plate. Is difficult.
  • the present invention has been made in view of the above circumstances, and it is possible to suppress the occurrence of steel sheet breakage as much as possible, and to realize a cold rolling facility and a cold which can realize stable cold rolling of a steel sheet
  • An object is to provide a rolling method.
  • the cold rolling facility heats steel plates that are sequentially conveyed by a heating device, and arranges the heated steel plates in the conveying direction of the steel plates.
  • a meandering amount measuring unit that measures a meandering amount of the steel plate before heating by the heating device, and a meandering of the steel plate before heating
  • a meander correcting device for correcting a shape measuring unit for measuring the shape of the steel sheet after cold rolling by the most upstream rolling mill in the tandem rolling mill, and the steel sheet after cold rolling by the most upstream rolling mill
  • a shape control unit for controlling the shape, and controlling the operation of the meandering correction device based on the measured value of the meandering amount of the steel plate by the meandering amount measuring unit, controlling the meandering of the steel plate before heating, and Shape measurement
  • a control unit that controls the operation of the shape control unit based on
  • the meandering correction device is disposed upstream of the heating device in the conveying direction of the steel sheet, and the meandering amount measuring unit is the meandering correction. It arrange
  • the heating device includes a C-type inductor that sandwiches both edge portions in the width direction of the steel plate in a non-contact manner from both sides in the thickness direction of the steel plate. And the both edge portions of the steel plate are heated by an induction heating method.
  • the steel plates sequentially conveyed are heated by a heating device, and the heated steel plates are sequentially cooled by a tandem rolling mill having a plurality of rolling mills arranged in the conveying direction of the steel plates.
  • a measuring step for measuring the meandering amount of the steel sheet before heating by the heating device and the shape of the steel sheet after cold rolling by the most upstream rolling mill in the tandem rolling mill;
  • Meander control for controlling meandering of the steel sheet before heating based on the measured value of the meandering amount of the steel sheet, and controlling meandering due to cold rolling of the steel sheet based on the measured value of the shape of the steel sheet
  • a step for measuring the meandering amount of the steel sheet before heating by the heating device and the shape of the steel sheet after cold rolling by the most upstream rolling mill in the tandem rolling mill.
  • the measuring step is arranged to be upstream of the heating device in the conveying direction of the steel plate and corrects the meander of the steel plate before heating.
  • the meandering amount of the steel plate before heating is measured by a meandering amount measuring unit disposed between the correction device and the heating device.
  • the heating apparatus including a C-type inductor that sandwiches both edge portions in the width direction of the steel sheet from both sides in the thickness direction of the steel sheet in a non-contact manner. And a heating step of heating both edge portions in the width direction of the steel sheet whose meandering is controlled by the meandering control step by an induction heating method.
  • FIG. 1 is a diagram illustrating a configuration example of a cold rolling facility according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a state in which the bridle roll of the meandering correction device according to the present embodiment is tilted.
  • FIG. 3 is a diagram illustrating a configuration example of a heating apparatus for cold rolling equipment in the present embodiment.
  • FIG. 4 is a flowchart showing an example of the cold rolling method according to the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration example of a cold rolling facility according to an embodiment of the present invention.
  • a cold rolling facility 1 according to the present embodiment includes a rewinder 2 at an entrance end of a conveyance path for a material to be rolled, and a tension reel 12 at an exit end.
  • the cold rolling facility 1 includes a welding machine 3, a looper 4, a meandering correction device 5, a sheet width meter, along a conveying path of the material to be rolled, between the unwinding machine 2 and the tension reel 12.
  • the cold rolling facility 1 includes a control unit 13 that controls the meandering correction device 5 and the shape control actuator 9.
  • the unwinding machine 2 unwinds the steel plate 15 from a coil wound with a steel material such as a hot-rolled steel plate, and sequentially delivers the steel plate 15 to the material to be rolled in the cold rolling facility 1.
  • the steel plate 15 paid out from the unwinding machine 2 is sequentially conveyed to the welding machine 3 located downstream of the unwinding machine 2 in the conveying direction of the steel plate 15 via a pinch roll or the like.
  • the welding machine 3 is realized by using a laser welding machine or the like, and is disposed in the vicinity of the conveyance path of the material to be rolled between the unwinding machine 2 and the looper 4 as shown in FIG.
  • the welding machine 3 sequentially receives a plurality of steel plates 15 paid out from the rewinding machine 2, and a tail end portion of a steel plate (hereinafter referred to as a preceding material) that precedes the conveying direction of the plurality of steel plates 15; A tip of a steel plate (hereinafter referred to as a subsequent material) following the preceding material is welded.
  • the welding machine 3 sequentially performs the above-described welding process between the tail end portion of the preceding material and the tip end portion of the following material on the plurality of steel plates 15 from the rewinding machine 2, thereby the plurality of steel plates 15.
  • a steel strip 16 is formed by joining the leading ends of the two. After the steel strip 16 is unloaded from the welding machine 3, the steel strip 16 is sequentially transported to the looper 4 located downstream of the welding machine 3 in the transport direction of the steel strip 16.
  • the looper 4 is an apparatus for appropriately accumulating or paying out the steel strip 16 subjected to continuous processing such as cold rolling.
  • the looper 4 includes a plurality of fixed rolls 4a, 4c, 4e, 4g and a direction approaching or separating from the fixed rolls 4a, 4c, 4e, 4g (hereinafter referred to as contact).
  • a plurality of movable rolls 4b, 4d, and 4f that are movable in a separating direction).
  • the fixed roll 4a, the movable roll 4b, the fixed roll 4c, the movable roll 4d, the fixed roll 4e, the movable roll 4f, and the fixed roll 4g are made of the steel strip 16 in this order. Arranged along the transport path.
  • Each of the fixed rolls 4a, 4c, 4e, and 4g is a transport roll whose installation position is fixed, and is arranged to line up in a direction from the welding machine 3 to the meandering correction device 5, for example, as shown in FIG. .
  • Each fixed roll 4a, 4c, 4e, 4g rotates around its own roll center axis by the action of a drive unit (not shown) while contacting the steel strip 16 by being wound around the steel strip 16 or the like. Thereby, each fixed roll 4a, 4c, 4e, 4g conveys the steel strip 16 along the conveyance path
  • each of the movable rolls 4b, 4d, and 4f is a transport roll that can move in the contact / separation direction by the action of a moving mechanism (not shown) such as a loop car.
  • the movable rolls 4b, 4d, and 4f rotate around the roll central axis while contacting the steel strip 16 by being wound around the steel strip 16 or the like.
  • the movable rolls 4b, 4d, and 4f stretch the steel strip 16 between the fixed rolls 4a, 4c, 4e, and 4g, and send the steel strip 16 in the conveyance direction.
  • the looper 4 having the above-described configuration is disposed upstream of the tandem rolling machine 8 in the conveying direction of the steel strip 16, specifically between the welding machine 3 and the meandering correction device 5.
  • the steel strip 16 is accumulated or dispensed. Thereby, the residence time of the steel strip 16 in the looper 4 is adjusted.
  • the accumulation or discharge of the steel strip 16 by the looper 4 is performed in order to absorb the transportation stop time of the steel strip 16 that occurs during the steel plate welding by the welding machine 3.
  • the looper 4 receives the steel strip 16 from the welding machine 3 while the welder 3 is not welding the steel strip 16, and moves the movable rolls 4 b, 4 d, 4 f to the fixed roll 4 a. , 4c, 4e, 4g. Thereby, the looper 4 continuously conveys the steel strip 16 toward the tandem rolling mill 8 side while accumulating the steel strip 16 from the welding machine 3. On the other hand, the conveyance of the steel strip 16 from the welding machine 3 to the looper 4 is stopped while the welding machine 3 is welding the leading ends of the steel plates 15. In this case, the looper 4 brings the movable rolls 4b, 4d, and 4f closer to the fixed rolls 4a, 4c, 4e, and 4g.
  • the looper 4 pays out the steel strip 16 accumulated as described above to the tandem rolling mill 8 side, and maintains the continuous conveyance of the steel strip 16 from the welding machine 3 side to the tandem rolling mill 8 side.
  • the looper 4 separates the movable rolls 4b, 4d, 4f from the fixed rolls 4a, 4c, 4e, 4g again after the welding of the steel strip 16 by the welding machine 3 is completed.
  • the looper 4 continuously conveys the steel strip 16 to the tandem rolling mill 8 side while accumulating the steel strip 16 received from the welding machine 3 in this state. In this manner, the looper 4 maintains continuous conveyance of the steel strip 16 from the welding machine 3 side to the tandem rolling mill 8 side.
  • the steel strip 16 paid out from the looper 4 is sequentially transported to the meandering correction device 5 located downstream of the looper 4 in the transport direction of the steel strip 16.
  • the meander correcting device 5 is arranged upstream of the heating device 7 in the conveying direction of the steel strip 16 and corrects the meandering of the steel strip 16 before heating by the heating device 7.
  • the meandering correction device 5 includes four bridle rolls 5a to 5d and a roll tilting portion 5e that tilts the bridle rolls 5a to 5d.
  • the bridle rolls 5 a to 5 d have a function as a roll body for conveying the steel strip 16 and a function as a roll body for controlling the tension of the steel strip 16.
  • the bridle rolls 5a to 5d are arranged along the conveyance path of the steel strip 16 so that the winding angle of the steel strip 16 is not less than a predetermined value (for example, 90 degrees or more).
  • the winding angle is the central angle of the bridle rolls 5a to 5d corresponding to the outer peripheral surface portion of the bridle rolls 5a to 5d with which the steel strip 16 contacts.
  • the bridle rolls 5a to 5d arranged in this way rotate around the roll central axis by the action of a drive unit (not shown) while contacting the steel strip 16 by being wound around the steel strip 16. .
  • the bridle rolls 5a to 5d convey the steel strip 16 from the looper 4 side to the heating device 7 side while applying tension to the steel strip 16 by the frictional force between the outer peripheral surface of the bridle rolls 5a to 5d.
  • the bridle roll 5a stretches the steel strip 16 in cooperation with the bridle roll 5b, and conveys the steel strip 16 from the looper 4 side to the bridle roll 5b side.
  • the bridle roll 5b stretches the steel strip 16 in cooperation with the bridle rolls 5a and 5c, and conveys the steel strip 16 from the bridle roll 5a side to the bridle roll 5c side.
  • the bridle roll 5c stretches the steel strip 16 in cooperation with the bridle rolls 5b and 5d, and conveys the steel strip 16 from the bridle roll 5b side to the bridle roll 5d side.
  • the bridle roll 5d stretches the steel strip 16 in cooperation with the bridle roll 5c, and conveys the steel strip 16 from the bridle roll 5c side to the heating device 7 side.
  • the tension applied to the steel strip 16 by the bridle rolls 5a to 5d is controlled by adjusting the rotational speeds of the bridle rolls 5a to 5d.
  • the bridle rolls 5a to 5d have a steering function capable of correcting the meandering of the steel strip 16.
  • the bridle rolls 5a to 5d are supported by the roll tilting portion 5e so as to be rotatable about the roll center axis of the bridle rolls 5a to 5d.
  • the roll tilting part 5e tilts the bridle rolls 5a to 5d so that the roll center axis of the bridle rolls 5a to 5d is tilted with respect to the horizontal direction.
  • FIG. 2 is a diagram illustrating a state in which the bridle roll of the meandering correction device according to the present embodiment is tilted.
  • the roll tilting part 5 e is configured so that the roll center axes C1 and C2 of the bridle rolls 5 a and 5 b that stretch the steel strip 16 are in the horizontal direction.
  • the bridle rolls 5a and 5b are tilted so as to tilt.
  • the roll tilting part 5e tilts also with respect to the bridle rolls 5c and 5d in the same manner as the bridle rolls 5a and 5b.
  • the bridle rolls 5a to 5d are inclined by the roll tilting portion 5e, that is, by the steering function, so as to form a slope that goes down in the direction opposite to the meandering direction of the steel strip 16, and thereby the steel before heating by the heating device 7 is formed. The meandering of the belt 16 is corrected.
  • the steel strip 16 carried out from the meandering correction device 5 described above passes through the plate width meter 6 disposed on the exit side of the meandering correction device 5 and is further downstream than the meandering correction device 5 in the conveying direction of the steel strip 16. It is sequentially conveyed to the arranged heating device 7.
  • the board width meter 6 is a device having a function as a meandering amount measuring unit for measuring the meandering amount of the steel strip 16 before being heated by the heating device 7. As shown in FIG. 1, the meandering correction device 5 and the heating device 7 are provided. Between. The plate width meter 6 detects both edge portions of the steel strip 16 on the exit side of the meandering correction device 5 and calculates each position of the detected both edge portions. Next, the sheet width meter 6 calculates the center position in the sheet width direction of the steel strip 16 based on the calculated positions of both edge portions, and calculates the difference between this center position and the transport path center of the steel strip 16. The meandering amount of the steel strip 16 is calculated.
  • the plate width meter 6 calculates the plate width of the steel strip 16 based on the obtained positions of both edge portions.
  • the plate width meter 6 performs the calculation of the meandering amount and the plate width of the steel strip 16 on the exit side of the meandering correction device 5 continuously or intermittently every predetermined time.
  • the plate width meter 6 transmits the calculated meandering amount of the steel strip 16 to the control unit 13 as a measured value of the meandering amount of the steel strip 16 on the exit side of the meandering correction device 5.
  • the plate width meter 6 transmits the calculated plate width of the steel strip 16 to the heating device 7 as a measured value of the plate width of the steel strip 16 on the exit side of the meandering correction device 5.
  • the heating device 7 heats the steel strip 16 that is sequentially conveyed before cold rolling.
  • the heating device 7 is located upstream of the tandem rolling mill 8 in the conveying direction of the steel strip 16, specifically the plate width meter 6 and the most upstream of the tandem rolling mill 8. It arrange
  • FIG. 3 is a diagram illustrating a configuration example of a heating apparatus for cold rolling equipment in the present embodiment. As shown in FIG.
  • the heating device 7 includes a pair of C-shaped members that sandwich both edge portions 16 a and 16 b in the plate width direction of the steel strip 16 from both sides (for example, up and down) in the plate thickness direction of the steel strip 16 in a non-contact manner.
  • Inductors 71a and 71b are provided.
  • a heating coil 74a is provided on the legs 72a and 73a of the inductor 71a.
  • the heating coil 74a applies a magnetic flux in the plate thickness direction to the edge portion 16a, thereby inductively heating the edge portion 16a.
  • a leg 72b, 73b of the inductor 71b is provided with a heating coil 74b.
  • the heating coil 74b applies a magnetic flux in the thickness direction to the edge portion 16b, and induction heats the edge portion 16b. To do.
  • the heating device 7 includes a matching panel 77, a high frequency power supply 78, and a calculation unit 79.
  • the high frequency power supply 78 is connected to the heating coils 74 a and 74 b through the matching panel 77.
  • a calculation unit 79 is connected to the high frequency power supply 78.
  • the calculation unit 79 sets the heating condition of the steel strip 16 based on the plate thickness of the steel strip 16, the conveyance speed, and the steel type, and outputs the high-frequency current output to the heating coils 74a and 74b according to the set heating condition. Instruct the power supply 78.
  • the high frequency power supply 78 sends a high frequency current to the heating coils 74a and 74b via the matching panel 77 based on the output instruction from the calculation unit 79, whereby a magnetic flux (high frequency magnetic flux) in the plate thickness direction flows through the heating coils 74a and 74b. ). Due to this high-frequency magnetic flux, an induced current is generated in both edge portions 16a and 16b of the steel strip 16, and Joule heat is generated in both edge portions 16a and 16b due to the induced current. Both edge portions 16a and 16b are induction-heated by the generated Joule heat, and as a result, the temperature rises to a temperature equal to or higher than the ductile-brittle transition temperature.
  • the heating device 7 includes carriages 75 a and 75 b that move the inductors 71 a and 71 b in the plate width direction of the steel strip 16, and position controllers 76 a and 76 b that control the positions of the inductors 71 a and 71 b. 76b.
  • the inductor 71a is installed on the carriage 75a
  • the inductor 71b is installed on the carriage 75b.
  • the carriages 75 a and 75 b move the inductors 71 a and 71 b in the plate width direction of the steel strip 16 by moving in the plate width direction of the steel strip 16.
  • a calculation unit 79 is connected to the position controllers 76a and 76b.
  • the calculation unit 79 receives the measured value of the plate width of the steel strip 16 from the plate width meter 6 described above, and each of the inductors 71a and 71b in the plate width direction of the steel strip 16 according to the received measured value of the plate width.
  • a target position (specifically, each target position of the heating coils 74a and 74b) is calculated.
  • the calculation unit 79 transmits the calculated target positions of the inductors 71a and 71b to the position controllers 76a and 76b, respectively.
  • the position controllers 76a and 76b drive and control the carriages 75a and 75b based on the target positions of the inductors 71a and 71b received from the calculation unit 79, and the position of the inductors 71a and 71b through the drive control of the carriages 75a and 75b. To control.
  • the position control unit 76a controls the movement of the carriage 75a in the plate width direction of the steel strip 16 so that the position of the inductor 71a and the target position corresponding to the plate width of the steel strip 16 coincide with each other.
  • the position control unit 76b controls the movement of the carriage 75b in the plate width direction of the steel strip 16 so that the position of the inductor 71b and the target position corresponding to the plate width of the steel strip 16 coincide with each other.
  • the position of the inductor 71b is controlled to the target position.
  • the wrap lengths La and Lb see FIG.
  • edge portions 16a and 16b of the steel strip 16 and the inductors 71a and 71b are constantly controlled regardless of changes in the plate width of the steel strip 16.
  • the wrap lengths La and Lb controlled in such a steady state are optimum values for raising the temperature of both edge portions 16a and 16b of the steel strip 16 to a temperature equal to or higher than the ductile-brittle transition temperature.
  • the wrap length La between the edge portion 16a of the steel strip 16 and the inductor 71a is sandwiched by the leg portions 72a and 73a of the inductor 71a from above and below in the thickness direction. This is the length over which the edge portion 16a and the inductor 71a (specifically, the leg portions 72a and 73a) overlap.
  • the wrap length Lb between the edge portion 16b of the steel strip 16 and the inductor 71b is determined so that the edge portion 16b and the inductor 71b (specifically, the leg portion 72b) sandwiched between the legs 72b and 73b of the inductor 71b in a non-contact manner in the plate thickness direction. , 73b).
  • the tandem rolling mill 8 is a tandem type rolling mill that continuously cold-rolls steel strips 16 that are sequentially transported, and includes a plurality of rolling mills (four in this embodiment) arranged in the transport direction of the steel strip 16. Rolling mills 8a to 8d). As shown in FIG. 1, the tandem rolling mill 8 is disposed downstream of the heating device 7 in the conveying direction of the steel strip 16, specifically, between the heating device 7 and the running shear 11, and is heated by the heating device 7. The steel strip 16 after heating is sequentially cold-rolled.
  • the four rolling mills 8a to 8d constituting the tandem rolling mill 8 are arranged in parallel in the conveying direction of the steel strip 16 in this order. That is, in the tandem rolling mill 8, the rolling mill 8 a is located at the most upstream side in the conveying direction of the steel strip 16, and the rolling mill 8 d is located at the most downstream side in the conveying direction of the steel strip 16.
  • a rolling mill 8b is disposed downstream of the most upstream rolling mill 8a (downstream in the conveying direction of the steel strip 16).
  • a rolling mill 8c is arranged between the rolling mill 8b and the most downstream rolling mill 8d.
  • the steel strip 16 after being heated by the heating device 7 is conveyed from the exit side of the heating device 7 toward the entry side of the tandem rolling mill 8 (the most upstream rolling mill 8a).
  • the tandem rolling mill 8 receives the heated steel strip 16 by the most upstream rolling mill 8a, and then continuously cold-rolls the received steel strip 16 by the rolling mills 8a to 8d. Thereby, the tandem rolling mill 8 sets the thickness of the steel strip 16 to a predetermined target thickness.
  • the steel strip 16 after the cold rolling by the tandem rolling mill 8 is carried out to the outlet side of the most downstream rolling mill 8d, and then sequentially conveyed to the running shear 11 via a pinch roll or the like.
  • the most upstream rolling mill 8a in the tandem rolling mill 8 is provided with a shape control actuator 9.
  • the shape control actuator 9 has a function as a shape control unit for controlling the shape of the steel strip 16 after cold rolling by the most upstream rolling mill 8a in the tandem rolling mill 8.
  • the shape control actuator 9 imparts bending or inclination to the work roll 8aa of the most upstream rolling mill 8a via a backup roll or the like, and thereby the shape of the steel strip 16 after cold rolling by the most upstream rolling mill 8a.
  • the shape control actuator 9 corrects, for example, an asymmetric shape in the plate width direction of the steel strip 16 after the cold rolling to a symmetric shape.
  • the shape control actuator 9 controls the shape of the steel strip 16 after the cold rolling by the most upstream rolling mill 8a, so that the steel strip 16 caused by the cold rolling of the steel strip 16 by the tandem rolling mill 8 is controlled. Correct meandering.
  • the shape measuring unit 10 measures the shape of the steel strip 16 after cold rolling by the most upstream rolling mill 8a in the tandem rolling mill 8.
  • the shape measuring unit 10 is configured using a roll body or the like provided with a plurality of sensors provided on the outer peripheral surface for detecting the stress of the steel strip 16 for each predetermined region in the plate width direction, and is shown in FIG. Thus, it arrange
  • the shape measuring unit 10 measures the tension distribution in the sheet width direction of the steel strip 16 on the exit side of the most upstream rolling mill 8a every time it makes one rotation about its own roll center axis, and also obtains the obtained tension distribution.
  • the shape of the steel strip 16 on the exit side of the most upstream rolling mill 8a (hereinafter referred to as a steel strip shape as appropriate) is measured.
  • the shape measuring unit 10 transmits the measured value of the obtained steel strip shape to the control unit 13 every time the steel strip shape is measured in this way.
  • the running shear 11 is disposed between the exit side of the tandem rolling mill 8 and the tension reel 12, and the steel strip 16 after cold rolling by the tandem rolling mill 8 has a predetermined length. Disconnect.
  • the tension reel 12 winds the steel strip 16 cut by the running shear 11 into a coil shape.
  • the control unit 13 is meandering that occurs in the steel strip 16 on the entrance side of the heating device 7 due to the shape of the steel plate 15 that is the base material of the steel strip 16 (hereinafter referred to as meandering due to the base plate shape),
  • the meandering generated in the steel strip 16 on the outlet side of the heating device 7 due to the cold rolling of the steel strip 16 by the tandem rolling mill 8 (hereinafter referred to as rolling meandering as appropriate) is controlled separately.
  • the control unit 13 controls the operation of the roll tilting unit 5e of the meandering correction device 5 based on the measured value of the meandering amount of the steel strip 16 by the plate width meter 6, and controls the roll tilting unit 5e.
  • the control part 13 controls the meander of the steel strip 16 before the heating by the heating device 7 (meander due to the mother board shape). And the control part 13 controls operation
  • the meandering of the steel strip 16 due to cold rolling (meandering due to rolling) is controlled.
  • the control unit 13 controls the rotational speeds of the bridle rolls 5a to 5d of the meandering correction device 5, thereby controlling the tension of the steel strip 16 by the bridle rolls 5a to 5d.
  • FIG. 4 is a flowchart showing an example of the cold rolling method according to the embodiment of the present invention.
  • the cold rolling equipment 1 shown in FIG. 1 is shown in FIG. 4 for each steel strip 16 that is sequentially conveyed from the exit side of the looper 4 toward the tension reel 12.
  • Each processing step of steps S101 to S105 is performed, and the steel strip 16 as the material to be rolled is heated and cold-rolled.
  • the cold rolling facility 1 firstly performs cold rolling by the meandering amount of the steel strip 16 before heating by the heating device 7 and the most upstream rolling mill 8 a in the tandem rolling mill 8.
  • the shape of the subsequent steel strip 16 is measured (step S101).
  • the cold rolling facility 1 measures the meandering amount of the steel strip 16 before heating with the plate width meter 6 arranged between the meandering correction device 5 and the heating device 7 as shown in FIG. To do.
  • the meandering correction device 5 is disposed upstream of the heating device 7 in the conveying direction of the steel strip 16, and corrects the meandering of the steel strip 16 before heating.
  • the board width meter 6 measures the amount of meandering of the steel strip 16 conveyed from the exit side of the meandering correction device 5 toward the entrance side of the heating device 7, and the obtained meandering amount is measured before heating by the heating device 7.
  • the amount of meandering of the steel strip 16 is transmitted to the control unit 13.
  • the cold rolling equipment 1 is cold rolled by the most upstream rolling mill 8a by means of the shape measuring unit 10 arranged on the outlet side of the most upstream rolling mill 8a as shown in FIG.
  • the shape of the subsequent steel strip 16 is measured.
  • the shape measuring unit 10 measures the tension distribution in the plate width direction of the steel strip 16 conveyed to the outlet side of the most upstream rolling mill 8a in the tandem rolling mill 8, and based on the obtained tension distribution.
  • the shape of the steel strip 16 is measured.
  • the shape measuring unit 10 transmits the measured value of the steel strip shape based on such a tension distribution to the control unit 13.
  • the cold rolling equipment 1 controls the meandering of the steel strip 16 before heating by the heating device 7 based on the measured value of the meandering amount of the steel strip 16 at step S101, and according to step S101. Based on the measured value of the steel strip shape, meandering due to the cold rolling of the steel strip 16 is controlled (step S102).
  • step S102 the control unit 13 controls the operation of the roll tilting unit 5e of the meandering correction device 5 based on the measured value of the meandering amount of the steel strip 16 obtained from the plate width meter 6.
  • the control unit 13 performs the steering function of the bridle rolls 5a to 5d of the meander correcting device 5 so as to correct the meandering of the steel strip 16 before heating, that is, meandering due to the base plate shape of the steel strip 16.
  • Control controls meandering due to the base plate shape of the steel strip 16 on the entry side of the heating device 7 through the control of the steering function.
  • the meandering due to the base plate shape of the steel strip 16 is feedback controlled based on the meandering amount of the steel strip 16 before heating.
  • step S102 the control unit 13 controls the meandering of the steel strip 16 caused by cold rolling by the tandem rolling mill 8, that is, meandering caused by the rolling of the steel strip 16, to the meandering caused by the above-described base plate shape. Control in parallel. Specifically, the control unit 13 controls the shape control actuator 9 of the most upstream rolling mill 8 a in the tandem rolling mill 8 based on the measured value of the steel strip shape acquired from the shape measuring unit 10. At this time, the control unit 13 grasps the tension distribution in the sheet width direction of the steel strip 16 on the exit side of the most upstream rolling mill 8a based on the measured value of the steel strip shape from the shape measuring unit 10.
  • the control unit 13 operates the shape control actuator 9 so that the tension distribution is linearly symmetric in the longitudinal direction of the steel strip 16 (hereinafter referred to as left-right symmetry), and preferably uniform in the plate width direction.
  • the shape control actuator 9 reduces the rolling amount (hereinafter referred to as “the roll width”) of both ends of the rolling mill 8 a in the center direction of the work roll so that the tension distribution in the plate width direction of the steel strip 16 becomes symmetrical. , Called right and left reduction amount).
  • the shape control actuator 9 corrects the meandering due to rolling of the steel strip 16 while correcting the steel strip shape on the exit side of the most upstream rolling mill 8a.
  • the control unit 13 controls meandering due to rolling of the steel strip 16 on the exit side of the heating device 7 through the control of the shape control actuator 9. In this way, meandering due to rolling of the steel strip 16 is feedback controlled based on the shape of the steel strip 16 after cold rolling by the most upstream rolling mill 8a.
  • the cold rolling equipment 1 uses the heating device 7 located on the upstream side in the conveying direction of the steel strip 16 relative to the tandem rolling mill 8, and heats the steel strip 16 whose meandering is controlled in step S102.
  • the heating device 7 is provided with C-type inductors 71 a and 71 b that sandwich both edge portions 16 a and 16 b in the plate width direction of the steel strip 16 from both sides in the plate thickness direction in a non-contact manner. This is a heating type heating device.
  • the heating device 7 heats both edge portions 16a and 16b of the steel strip 16 in a state in which the meandering caused by the base plate shape and the meandering caused by rolling are controlled as described above.
  • the amount of meandering of the steel strip 16 when heated by the heating device 7 is reduced to a value within an allowable range in the heating device 7 by the above-described step S102.
  • the permissible range of the meandering amount is that of the steel strip 16 that can steadily control the wrap lengths La and Lb between the inductors 71a and 71b of the heating device 7 shown in FIG. 3 and both edge portions 16a and 16b of the steel strip 16.
  • a range of quantities for example a zero value or a value approximating zero value.
  • the heating device 7 induction-heats both the edge portions 16a and 16b of the steel strip 16 in such a state that the meandering amount is reduced within the allowable range, thereby setting the temperatures of the both edge portions 16a and 16b to be ductile-brittle.
  • the temperature can be raised stably to a temperature equal to or higher than the transition temperature.
  • step S104 the cold rolling equipment 1 cold-rolls the steel strip 16 heated in step S103 with the tandem rolling mill 8 (step S104).
  • step S104 the tandem rolling mill 8 continuously cold-rolls the heated steel strip 16 in this order using the rolling mills 8a, 8b, 8c, and 8d.
  • the steel strip 16 after the cold rolling in step S104 is cut by the running shear 11 shown in FIG. 1 and then wound in a coil shape by the tension reel 12.
  • step S104 the cold rolling facility 1 ends the present process if the cold rolling is completed over the entire length of the steel strip 16 that is the material to be rolled (step S105, Yes). On the other hand, if the cold rolling of the steel strip 16 is not completed (No at Step S105), the cold rolling facility 1 returns to Step S101 described above and repeats the processing steps after Step S101 as appropriate.
  • the steel strip 16 is a strip-shaped steel plate formed by joining the tail end portion of the preceding material and the tip end portion of the succeeding material among the plurality of steel plates 15 that are sequentially conveyed. It is an example of the steel plate as a to-be-rolled material in a form.
  • hard-rolling materials such as a silicon steel plate containing 1% or more of silicon, a stainless steel plate, a high carbon steel plate, are used, for example.
  • Such a steel strip 16 to be cold-rolled generally includes a shape defect such as belly stretch or single stretch formed during hot rolling of a hot-rolled coil (hot-rolled steel plate) serving as a base material.
  • a shape defect such as belly stretch or single stretch formed during hot rolling of a hot-rolled coil (hot-rolled steel plate) serving as a base material.
  • the cold rolling facility 1 includes a meandering correction device 5 in the preceding stage of the heating device 7, and the meander plate of the steel strip 16 is provided by the meandering correction device 5.
  • the meandering caused by the shape is always corrected.
  • the meandering caused by the base plate shape of the steel strip 16 on the entry side of the heating device 7 is eliminated, so that the above-described problems such as the steel plate breakage can be solved.
  • the thickness profile in the plate width direction of the hot-rolled steel plate that is the base material of the steel strip 16 has a deviation in plate thickness (the plate thickness on one end side in the plate width direction is thicker than the other end side).
  • the roll position of the work roll with respect to the steel strip 16 of the tandem rolling mill 8 is parallel, the amount of reduction in the thick plate portion in the steel strip 16 becomes large, resulting in cold rolling. Meandering occurs in the steel strip 16.
  • meandering due to rolling of the steel strip 16 is a series of steel strip portions continuous to the steel strip 16 during cold rolling, that is, the steel strip 16 before cold rolling located on the entry side of the tandem rolling mill 8.
  • meandering due to rolling of the steel strip 16 causes meandering of the steel strip 16 heated by the heating device 7 located in the preceding stage of the tandem rolling mill 8.
  • the wrap lengths La and Lb (see FIG. 3) between the inductors 71 a and 71 b of the heating device 7 and both edge portions 16 a and 16 b of the steel strip 16 change due to meandering caused by rolling of the steel strip 16.
  • insufficient heating or localized abnormal heating of the edge portions 16a and 16b of the steel strip 16 occurs, which eventually leads to breakage of the steel strip 16 during cold rolling.
  • the meandering correction device 5 described above corrects the meandering of the steel strip 16 by the steering function of the bridle rolls 5a to 5d.
  • Such meandering of the steel strip 16 corrected by the meandering correction device 5 is meandering due to the shape of the base material, and the cause of occurrence differs from the meandering due to rolling of the steel strip 16 generated in the tandem rolling mill 8. Therefore, the meander due to the base metal shape of the steel strip 16 being conveyed toward the heating device 7 and the meander due to rolling of the steel strip 16 on the exit side of the heating device 7 are simultaneously and stably corrected by the meander correcting device 5. It is difficult.
  • meandering due to rolling of the steel strip 16 is generally measured by measuring the rolling load acting on the left and right rolling cylinders when the steel strip 16 is cold-rolled, and in proportion to the difference between the measured left and right rolling loads. It is controlled by adjusting the amount of reduction.
  • the deformation resistance of the steel strip 16 changes in the plate width direction. 3 may change the temperature of both edge portions 16a and 16b of the steel strip 16 due to changes in the wrap lengths La and Lb shown in FIG.
  • the cold rolling equipment 1 includes a shape control actuator 9 in the most upstream rolling mill 8a in the tandem rolling mill 8, as shown in FIG. It is used to control the meandering due to rolling of the steel strip 16.
  • the cold rolling equipment 1 directly measures the steel strip shape on the outlet side of the most upstream rolling mill 8a, and based on the measured value of the steel strip shape, the rolling reduction amounts on the left and right of the rolling mill 8a are measured.
  • the shape control actuator 9 is controlled so as to adjust the meandering, thereby correcting the meandering due to rolling of the steel strip 16 on the exit side of the heating device 7.
  • the cold rolling facility 1 shown in FIG. 1 joins the leading ends of each steel plate 15 having a silicon content of 3.0% or more with a welding machine 3 to form a steel strip 16.
  • Both the edge portions 16 a and 16 b of the steel strip 16 were heated by the heating device 7, and the heated steel strip 16 was continuously cold-rolled by the tandem rolling mill 8.
  • the heating conditions of the steel strip 16 by the heating apparatus 7 were set so that both the edge parts 16a and 16b of the steel strip 16 just before biting by the tandem rolling mill 8 ensure the temperature of 60 degreeC or more.
  • the cold rolling facility 1 corrects the meandering caused by the base plate shape of the steel strip 16 by the steering function of the meandering correction device 5, and measures it on the outlet side of the most upstream rolling mill 8 a in the tandem rolling mill 8.
  • the shape control actuator 9 was controlled based on the steel strip shape, and the meandering due to rolling of the steel strip 16 was corrected.
  • the cold rolling equipment 1 heated both edge portions 16a and 16b of the steel strip 16 with the heating device 7 while maintaining the meandering correction state.
  • the cold rolling facility 1 cold-rolled the steel strip 16 by changing the setting conditions of the meandering correction device 5, the heating device 7, and the shape control actuator 9.
  • the cold rolling equipment 1 enables the meander correction function of the steel strip 16 by the meander correction device 5 described above, but the steel strip shape on the outlet side of the most upstream rolling mill 8a.
  • the control of the shape control actuator 9 based on the measured value is invalidated, the meandering due to rolling of the steel strip 16 is not controlled, and while maintaining this state, both the edge portions 16a, 16b was heated.
  • the cold rolling facility 1 has both the meandering correction function of the steel strip 16 by the meandering correction device 5 and the shape correction function (meandering correction function) of the steel strip 16 by the shape control actuator 9.
  • the both edges 16a and 16b of the steel strip 16 were heated by the heating device 7 while maintaining this state invalid.
  • the other conditions in Comparative Examples 1 and 2 were the same as in this example.
  • the fracture occurrence rate of the steel strip 16 in this example is one of Comparative Example 2 in which the meandering correction function of the steel strip 16 by the meandering correction device 5 and the meandering correction function of the steel strip 16 by the shape control actuator 9 are invalidated. It was found to reduce to / 7.
  • the amount of meandering of the steel strip on the entry side of the heating device arranged in the front stage of the tandem rolling mill that cold-rolls the steel strip that is sequentially conveyed is measured, Based on the measured value of the meandering amount, the meandering of the steel strip before heating by this heating device is controlled, and the shape of the steel strip after cold rolling by the most upstream rolling mill in this tandem rolling mill The meandering due to rolling of the steel strip is controlled based on the measured value of the obtained steel strip shape.
  • the meandering amount of the steel strip on the entrance side of the heating device can be corrected to a value within the allowable range allowed for the heating device, and the influence of meandering due to rolling of the steel strip on the steel strip in the heating device can be reduced. It can be lost.
  • the lap length between the heating device and the steel strip can be constantly controlled to an optimum value for cold rolling of the steel strip, so that the ductile-brittle transition at both edges of the steel strip
  • the temperature can be stably raised to a temperature higher than the temperature. This realizes stable cold rolling of the steel strip by suppressing the occurrence of steel sheet breakage due to insufficient heating (ear cracks) or local abnormal heating (ear waves) at both edges of the steel strip as much as possible. can do.
  • a meandering of the material to be rolled due to a sudden change in the shape of the material to be rolled or a crown change, and a meandering of the material to be rolled due to cold rolling can be suppressed together.
  • the wrap length of the material to be rolled in the heating device can be constantly controlled to an optimum value, thereby Both edge portions can be stably heated to the target temperature.
  • a situation in which the material to be rolled during the cold rolling breaks due to an ear crack due to insufficient heating of the edge portion and a state of the cold rolling during the cold rolling due to an ear wave due to local abnormal heating of the edge portion Since it is possible to avoid both the occurrence of drawing breakage in the material, it is possible to improve the cold rolling operation efficiency and production efficiency.
  • the cold rolling equipment of the complete continuous cold tandem mill mode in which the steel sheet paid out from the coil is continuously cold rolled and wound into a coil shape is exemplified, but the present invention is It is not limited to this.
  • the cold rolling equipment according to the present invention may be of a mode other than a completely continuous cold tandem mill, for example, a continuous tandem mill following the pickling line.
  • tandem rolling mill in which four rolling mills are arranged in parallel in the steel strip conveying direction is provided, but the present invention is not limited to this. That is, in the present invention, the number of rolling mills installed in the cold rolling equipment (the number of stands) and the number of roll stages are not particularly limited.
  • the steel strip is shown as an example of the material to be rolled, but the present invention is not limited to this.
  • the cold rolling equipment and the cold rolling method according to the present invention can be applied to any of general steel plates, strip-shaped steel plates (steel strips) formed by joining a plurality of steel plates, and difficult-to-roll materials such as silicon steel plates. is there. That is, in the present invention, the steel type, joined state, and shape of the steel sheet as the material to be rolled are not particularly limited.
  • the meandering correction device having four bridle rolls is illustrated, but the present invention is not limited to this.
  • the meandering correction device for cold rolling equipment according to the present invention may be any device that can correct the meandering of the material to be rolled by the steering function of the roll body.
  • the roll body of the meandering correction device is not limited to the bridle roll, but may be a steering roll.
  • the number of roll bodies arranged in the meandering correction device is not limited to four, and may be any number.
  • the shape control actuator is provided in the most upstream rolling mill among the plurality of rolling mills constituting the tandem rolling mill, but the present invention is not limited to this.
  • the remaining rolling mills for example, the rolling mills 8b to 8d shown in FIG.
  • a shape control actuator similar to that of the upstream rolling mill may be provided.
  • the shape control actuator of each rolling mill may be controlled based on the measured value of the steel strip shape on the exit side of each rolling mill.
  • the present invention is not limited to the above-described embodiments and examples, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined.
  • all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are included in the present invention.
  • the cold rolling equipment and the cold rolling method according to the present invention are useful for cold rolling of a steel sheet, and in particular, the occurrence of steel sheet breakage is suppressed as much as possible to stably cool the steel sheet. Suitable for hot rolling.

Abstract

 本発明の一態様である冷間圧延設備は、順次搬送される鋼板を加熱装置によって加熱し、加熱後の鋼板をタンデム圧延機によって順次冷間圧延するものであって、蛇行量測定部と、蛇行修正装置と、形状測定部と、形状制御部と、制御部とを備える。蛇行量測定部は、加熱装置による加熱前の鋼板の蛇行量を測定する。蛇行修正装置は、加熱装置による加熱前の鋼板の蛇行を修正する。形状測定部は、タンデム圧延機における最上流の圧延機による冷間圧延後の鋼板形状を測定する。形状制御部は、最上流の圧延機による冷間圧延後の鋼板形状を制御する。制御部は、蛇行量の測定値に基づき蛇行修正装置を制御して加熱前の鋼板の蛇行を制御し、且つ、鋼板形状の測定値に基づき形状制御部を制御して鋼板の圧延起因の蛇行を制御する。

Description

冷間圧延設備および冷間圧延方法
 本発明は、鋼板を冷間圧延する冷間圧延設備および冷間圧延方法に関するものである。
 従来、鋼板の冷間圧延の操業においては、完全連続式冷間タンデムミル、酸洗ライン後段の連続式タンデムミル、単スタンドのリバースミル等、冷間圧延設備の如何を問わず、室温程度、すなわち高くとも40℃程度の鋼板が冷間圧延される。これは、鋼板の温度増加に伴って鋼板の変形抵抗が低下することを考慮しても、被圧延材である鋼板の温度を高めることによって得られるメリットに比べ、被るデメリットが大きいからである。例えば、鋼板の温度を高めることによるメリットとして、鋼板の変形抵抗の低下に伴う圧延動力の低下が挙げられるが、このメリットは、鋼板の冷間圧延の操業において、殆ど無視される程度である。これに対して、鋼板を昇温するためのコスト的損失が非常に大きいこと、高温の鋼板のハンドリングが労働環境面から問題であること等、鋼板の高温化に起因するデメリットが多大である。
 上述したような室温レベルの鋼板が冷間圧延に供された場合、冷間圧延中の鋼板の幅方向端部(以下、エッジ部という)に耳割れが生じる可能性がある。特に、1%以上の珪素を含有する珪素鋼板、ステンレス鋼板、高炭素鋼板等の難圧延材は一般の鋼板と比較して脆性材料となるため、室温レベルの難圧延材を冷間圧延した際、耳割れが顕著に発生する。耳割れの程度が大きい場合には、耳割れを起点として鋼板が冷間圧延中に破断する虞がある。
 この問題を解決する方法として、例えば、特許文献1には、珪素鋼板を冷間圧延するに際して、エッジ部を60℃(延性-脆性遷移温度)以上の温度に昇温した珪素鋼板を被圧延材として圧延機に供給する珪素鋼板の冷間圧延方法が開示されている。また、特許文献2には、鋼板のエッジ部を誘導加熱で昇温させる手段として、C型インダクタ(誘導子)を用いた一対の誘導加熱装置が開示されている。この特許文献2に記載の誘導加熱装置は、鋼板の幅方向(以下、板幅方向と適宜いう)の両エッジ部をC型インダクタのスリット内に上下から非接触に挟み、C型インダクタのコイルに電源装置から高周波電流を流して鋼板の厚さ方向(以下、板厚方向と適宜いう)の磁束を鋼板の両エッジ部に与えて、これら両エッジ部に誘導電流を生じさせ、この誘導電流によって発生するジュール熱により、これら両エッジ部を加熱する。
 ここで、鋼板のエッジ部を所定の温度に昇温するためには、鋼板のエッジ部とこのエッジ部を板厚方向の上下から非接触に挟むC型インダクタとの重なり合う長さ(以下、ラップ長という)が予め設定された値となるように、C型インダクタを支持する台車の位置を鋼板の板幅に応じてセットする必要がある。しかしながら、実操業においては、鋼板のセンタリング不良や平坦度不良によって鋼板が板幅方向に蛇行するため、ラップ長が変化してしまう。ラップ長が小さくなれば、磁束の流れを遮る渦電流の発生が少なくなるため、力率が悪化して無効電流が増加し、C型インダクタのコイルに流れる高周波電流が定格値まで増加しても所定の出力が出せず、この結果、エッジ部の加熱不足が生じることがある。あるいは、エッジ部の一部分を過度に加熱する事態(局部異常加熱)に至ることがある。
 加熱不足の場合には、鋼板の冷間圧延中にエッジ部に耳割れが生じてしまう。この耳割れは、上述したように、冷間圧延中の鋼板の破断を引き起こす原因になる。一方、局部異常加熱の場合には、鋼板のエッジ部に、熱応力による変形に起因して耳波が生じてしまう。耳波の程度が大きい場合には、冷間圧延中の鋼板に絞り破断が生じる虞があり、このため、鋼板の安定した冷間圧延が困難になる。以上のことから、冷間圧延される鋼板のエッジ部を誘導加熱によって所定の温度に昇温するに際しては、ラップ長を最適な値に制御することが極めて重要となる。
 なお、上述したラップ長の制御に関する従来技術として、例えば、搬送される鋼板のエッジ部を加熱する加熱コイルと、この加熱コイルを搭載したコイル台車体と、このコイル台車体を鋼板の進行方向と直角の方向へ移動させる移動機構と、このコイル台車体に取り付けられて鋼板のエッジ部に接触するガイドローラとを備えた誘導加熱装置がある(特許文献3参照)。この特許文献3に記載の誘導加熱装置は、鋼板の誘導加熱中にガイドローラが鋼板のエッジ部に接触するように移動機構を動作させて、鋼板と加熱コイルとの相対位置関係を常に一定に保つようにしている。
 また、鋼板の左右エッジ部が通過するラインの左右側位置に鋼板進行方向と直角方向に進退する台車を配置し、これら左右の各台車に、鋼板のエッジ部を上下から挟むインダクタを設置し、台車の自動位置コントローラにより、鋼板のエッジ部とインダクタとのラップ長を制御して、鋼板のエッジ部を加熱する誘導加熱制御方法がある(特許文献4参照)。この特許文献4に記載の誘導加熱制御方法では、左右の各インダクタの加熱コイルに流れる高周波電流を検出して、鋼板の蛇行によるラップ長の変化によって発生する電流値の偏差を求め、予め記憶した偏差電流値と偏差電流値を零とするに必要なインダクタの台車位置補正量との関係に基づき台車位置補正値を求める。ついで、電流値の大きい側の台車位置初期設定値から台車位置補正値を減算すると共に、電流値の小さい側の台車位置初期設定値に台車位置補正値を加算して左右の台車補正位置を求める。その後、左右の各台車の自動位置コントローラに、前述のように加減算した左右の台車補正位置を出力し、これにより、これら左右の各台車の位置を自動位置コントローラが補正するようにし、これを通して、鋼板の左右エッジ部と左右の各インダクタとのラップ長を制御している。
特開昭61-15919号公報 特開平11-290931号公報 特開昭53-70063号公報 特開平11-172325号公報
 上述した従来技術において、鋼板のエッジ部と誘導加熱装置のインダクタとのラップ長は、鋼板の蛇行に起因するエッジ部の位置変化に応じて補正される。言うなれば、このエッジ部の位置変化に応じてラップ長を補正するフィードバック制御が、従来、行われている。しかしながら、インダクタを搭載する台車の移動速度と比較して鋼板の蛇行速度が速い故に、上述した従来技術では、鋼板の蛇行に起因するエッジ部の位置変化にラップ長のフィードバック制御を十分に追従させることが困難である。このため、冷間圧延される前の鋼板のエッジ部を誘導加熱によって所定の温度に昇温するに際して、ラップ長を最適な値に安定して制御することは極めて困難である。この結果、被圧延材としての鋼板においてエッジ部の加熱不足または局部異常加熱が発生し、この状態の鋼板を冷間圧延した際、エッジ部の加熱不足による耳割れに起因して鋼板の破断が発生し、あるいは、エッジ部の局部異常加熱による耳波に起因して鋼板の絞り破断が発生してしまう。このような鋼板の耳割れに起因する破断または耳波に起因する絞り破断(以下、これらを纏めて鋼板破断と適宜いう)の発生は、鋼板の冷間圧延の操業を阻害するとともに、冷間圧延の生産効率の低下を招来する。
 本発明は、上記の事情に鑑みてなされたものであって、鋼板破断の発生を可能な限り抑制して、鋼板の安定した冷間圧延を実現することが可能な冷間圧延設備および冷間圧延方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる冷間圧延設備は、順次搬送される鋼板を加熱装置によって加熱し、加熱後の前記鋼板を、前記鋼板の搬送方向に並ぶ複数の圧延機を有するタンデム圧延機によって順次冷間圧延する冷間圧延設備において、前記加熱装置による加熱前の前記鋼板の蛇行量を測定する蛇行量測定部と、加熱前の前記鋼板の蛇行を修正する蛇行修正装置と、前記タンデム圧延機における最上流の圧延機による冷間圧延後の前記鋼板の形状を測定する形状測定部と、前記最上流の圧延機による冷間圧延後の前記鋼板の形状を制御する形状制御部と、前記蛇行量測定部による前記鋼板の蛇行量の測定値に基づき前記蛇行修正装置の動作を制御して、加熱前の前記鋼板の蛇行を制御し、且つ、前記形状測定部による前記鋼板の形状の測定値に基づき前記形状制御部の動作を制御して、前記タンデム圧延機による前記鋼板の冷間圧延に起因する前記鋼板の蛇行を制御する制御部と、を備えたことを特徴とする。
 また、本発明にかかる冷間圧延設備は、上記の発明において、前記蛇行修正装置は、前記加熱装置よりも前記鋼板の搬送方向の上流側に配置され、前記蛇行量測定部は、前記蛇行修正装置と前記加熱装置との間に配置されることを特徴とする。
 また、本発明にかかる冷間圧延設備は、上記の発明において、前記加熱装置は、前記鋼板の幅方向の両エッジ部を前記鋼板の厚さ方向の両側から非接触に挟むC型のインダクタを備え、誘導加熱方式によって前記鋼板のうちの前記両エッジ部を加熱することを特徴とする。
 また、本発明にかかる冷間圧延方法は、順次搬送される鋼板を加熱装置によって加熱し、加熱後の前記鋼板を、前記鋼板の搬送方向に並ぶ複数の圧延機を有するタンデム圧延機によって順次冷間圧延する冷間圧延方法において、前記加熱装置による加熱前の前記鋼板の蛇行量と、前記タンデム圧延機における最上流の圧延機による冷間圧延後の前記鋼板の形状とを測定する測定ステップと、前記鋼板の蛇行量の測定値に基づいて加熱前の前記鋼板の蛇行を制御し、且つ、前記鋼板の形状の測定値に基づいて前記鋼板の冷間圧延に起因する蛇行を制御する蛇行制御ステップと、を含むことを特徴とする。
 また、本発明にかかる冷間圧延方法は、上記の発明において、前記測定ステップは、前記加熱装置よりも前記鋼板の搬送方向の上流側に配置されて加熱前の前記鋼板の蛇行を修正する蛇行修正装置と前記加熱装置との間に配置された蛇行量測定部によって、加熱前の前記鋼板の蛇行量を測定することを特徴とする。
 また、本発明にかかる冷間圧延方法は、上記の発明において、前記鋼板の幅方向の両エッジ部を前記鋼板の厚さ方向の両側から非接触に挟むC型のインダクタを備えた前記加熱装置を用い、前記蛇行制御ステップによって蛇行を制御された前記鋼板の幅方向の両エッジ部を誘導加熱方式によって加熱する加熱ステップを含むことを特徴とする。
 本発明によれば、鋼板破断の発生を可能な限り抑制して、鋼板の安定した冷間圧延を実現することができるという効果を奏する。
図1は、本発明の実施の形態にかかる冷間圧延設備の一構成例を示す図である。 図2は、本実施の形態における蛇行修正装置のブライドルロールを傾動する状態を例示する図である。 図3は、本実施の形態における冷間圧延設備の加熱装置の一構成例を示す図である。 図4は、本発明の実施の形態にかかる冷間圧延方法の一例を示すフローチャートである。
 以下に、添付図面を参照して、本発明にかかる冷間圧延設備および冷間圧延方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。
(冷間圧延設備)
 まず、本発明の実施の形態にかかる冷間圧延設備について説明する。図1は、本発明の実施の形態にかかる冷間圧延設備の一構成例を示す図である。図1に示すように、本実施の形態にかかる冷間圧延設備1は、被圧延材の搬送経路の入口端に巻戻し機2を備え、出口端にテンションリール12を備える。また、冷間圧延設備1は、巻戻し機2とテンションリール12との間に、被圧延材の搬送経路に沿って、溶接機3と、ルーパ4と、蛇行修正装置5と、板幅計6と、加熱装置7と、タンデム圧延機8および形状測定部10と、走間シャー11とを備える。このタンデム圧延機8における最上流の圧延機8aには、形状制御アクチュエータ9が設けられている。また、冷間圧延設備1は、蛇行修正装置5および形状制御アクチュエータ9を制御する制御部13を備える。
 巻戻し機2は、熱延鋼板等の鋼材を巻いたコイルから鋼板15を巻き戻し、冷間圧延設備1における被圧延材の搬送経路へ鋼板15を順次払い出す。巻戻し機2から払い出された鋼板15は、ピンチロール等を経て、巻戻し機2よりも鋼板15の搬送方向の下流側に位置する溶接機3へ順次搬送される。
 溶接機3は、レーザ溶接機等を用いて実現され、図1に示すように、巻戻し機2とルーパ4との間における被圧延材の搬送経路近傍に配置される。溶接機3は、巻戻し機2から払い出された複数の鋼板15を順次受け入れ、これら複数の鋼板15のうちの搬送方向に先行する鋼板(以下、先行材という)の尾端部と、この先行材に後続する鋼板(以下、後行材という)の先端部とを溶接する。溶接機3は、巻戻し機2からの複数の鋼板15に対して、上述した先行材の尾端部と後行材の先端部との溶接処理を順次行い、これにより、これら複数の鋼板15の先尾端部同士を接合してなる鋼帯16を形成する。鋼帯16は、溶接機3から搬出された後、溶接機3よりも鋼帯16の搬送方向の下流側に位置するルーパ4へ順次搬送される。
 ルーパ4は、冷間圧延等の連続処理が施される鋼帯16を適宜蓄積または払い出すための装置である。具体的には、図1に示すように、ルーパ4は、複数の固定ロール4a,4c,4e,4gと、固定ロール4a,4c,4e,4gに対して接近または離間する方向(以下、接離方向という)に移動可能な複数の可動ロール4b,4d,4fとを備える。このようなルーパ4において、図1に示すように、固定ロール4a、可動ロール4b、固定ロール4c、可動ロール4d、固定ロール4e、可動ロール4f、および固定ロール4gは、この順に鋼帯16の搬送経路に沿って配置されている。
 固定ロール4a,4c,4e,4gは、各々、設置位置が固定された搬送ロールであり、例えば図1に示すように、溶接機3から蛇行修正装置5に向かう方向に並ぶように配置される。各固定ロール4a,4c,4e,4gは、鋼帯16を巻き掛けられる等によって鋼帯16に接触しながら、駆動部(図示せず)の作用によって自身のロール中心軸を中心に回転する。これにより、各固定ロール4a,4c,4e,4gは、鋼帯16をその搬送経路に沿って搬送するとともに、定位置において鋼帯16に張力を付与する。一方、可動ロール4b,4d,4fは、各々、ループカー等の移動機構(図示せず)の作用によって接離方向に移動可能な搬送ロールである。可動ロール4b,4d,4fは、鋼帯16を巻き掛けられる等によって鋼帯16に接触しながら、自身のロール中心軸を中心に回転する。これにより、可動ロール4b,4d,4fは、固定ロール4a,4c,4e,4gとの間において鋼帯16を張架するとともに、鋼帯16をその搬送方向に送出する。
 上述したような構成を有するルーパ4は、図1に示すように、タンデム圧延機8よりも鋼帯16の搬送方向の上流側、詳細には溶接機3と蛇行修正装置5との間に配置され、鋼帯16を蓄積または払い出しする。これにより、ルーパ4内における鋼帯16の滞留時間が調整される。このルーパ4による鋼帯16の蓄積または払い出しは、溶接機3による鋼板溶接の際に生じる鋼帯16の搬送休止時間等を吸収するために行われる。
 例えば、冷間圧延設備1において、溶接機3が鋼帯16の溶接を行っていない期間、ルーパ4は、溶接機3から鋼帯16を受け入れつつ、可動ロール4b,4d,4fを固定ロール4a,4c,4e,4gから離間させる。これにより、ルーパ4は、溶接機3からの鋼帯16を蓄積しつつ、タンデム圧延機8側に向けて鋼帯16を連続的に搬送する。一方、溶接機3が各鋼板15の先尾端部同士を溶接している期間、溶接機3からルーパ4への鋼帯16の搬送が停止する。この場合、ルーパ4は、可動ロール4b,4d,4fを固定ロール4a,4c,4e,4gに接近させる。これにより、ルーパ4は、上述したように蓄積していた鋼帯16をタンデム圧延機8側に払い出して、溶接機3側からタンデム圧延機8側への鋼帯16の連続的な搬送を維持する。ルーパ4は、溶接機3による鋼帯16の溶接が完了後、再び、可動ロール4b,4d,4fを固定ロール4a,4c,4e,4gから離間させる。ルーパ4は、この状態において溶接機3から受け入れた鋼帯16を蓄積しつつ、タンデム圧延機8側へ鋼帯16を連続的に搬送する。このようにして、ルーパ4は、溶接機3側からタンデム圧延機8側への鋼帯16の連続的な搬送を維持する。このルーパ4から払い出された鋼帯16は、ルーパ4よりも鋼帯16の搬送方向の下流側に位置する蛇行修正装置5へ順次搬送される。
 蛇行修正装置5は、図1に示すように、加熱装置7よりも鋼帯16の搬送方向の上流側に配置され、加熱装置7による加熱前の鋼帯16の蛇行を修正する。本実施の形態において、蛇行修正装置5は、4つのブライドルロール5a~5dと、ブライドルロール5a~5dを傾動するロール傾動部5eとを備える。
 ブライドルロール5a~5dは、鋼帯16を搬送するロール体としての機能と、鋼帯16の張力を制御するためのロール体としての機能とを有する。具体的には、ブライドルロール5a~5dは、各々、鋼帯16の巻付き角が所定値以上(例えば90度以上)となるように、鋼帯16の搬送経路に沿って配置される。なお、巻付き角は、ブライドルロール5a~5dのうちの鋼帯16が接触する外周面部分に対応するブライドルロール5a~5dの中心角である。このように配置されたブライドルロール5a~5dは、鋼帯16を巻き掛けられる等によって鋼帯16に接触しながら、駆動部(図示せず)の作用によって自身のロール中心軸を中心に回転する。これにより、ブライドルロール5a~5dは、自身の外周面と鋼帯16との摩擦力によって鋼帯16に張力を付与しながら、ルーパ4側から加熱装置7側へ鋼帯16を搬送する。
 詳細には、ブライドルロール5aは、ブライドルロール5bと協働して鋼帯16を張架するとともに、ルーパ4側からブライドルロール5b側へ鋼帯16を搬送する。ブライドルロール5bは、ブライドルロール5a,5cと協働して鋼帯16を張架するとともに、ブライドルロール5a側からブライドルロール5c側へ鋼帯16を搬送する。ブライドルロール5cは、ブライドルロール5b,5dと協働して鋼帯16を張架するとともに、ブライドルロール5b側からブライドルロール5d側へ鋼帯16を搬送する。ブライドルロール5dは、ブライドルロール5cと協働して鋼帯16を張架するとともに、ブライドルロール5c側から加熱装置7側へ鋼帯16を搬送する。上述したようにブライドルロール5a~5dによって鋼帯16に付与された張力は、ブライドルロール5a~5dの各回転速度を調整することにより、制御される。
 また、ブライドルロール5a~5dは、鋼帯16の蛇行を矯正することが可能なステアリング機能を有する。具体的には、ブライドルロール5a~5dは、自身のロール中心軸を回転中心として回転可能な状態でロール傾動部5eに支持される。ロール傾動部5eは、ブライドルロール5a~5dのロール中心軸が水平方向に対して傾斜するように、ブライドルロール5a~5dを傾動する。図2は、本実施の形態における蛇行修正装置のブライドルロールを傾動する状態を例示する図である。ロール傾動部5eは、鋼帯16に蛇行が生じた場合、例えば図2に示すように、鋼帯16を張架するブライドルロール5a,5bの各ロール中心軸C1,C2が水平方向に対して傾斜するようにブライドルロール5a,5bを傾動する。本実施の形態において、ロール傾動部5eは、ブライドルロール5c,5dについても、上記のブライドルロール5a,5bの場合と同様に傾動する。ブライドルロール5a~5dは、このようなロール傾動部5eの傾動作用、すなわちステアリング機能によって、鋼帯16の蛇行方向と反対方向に下る傾斜を形成し、これにより、加熱装置7による加熱前の鋼帯16の蛇行を修正する。
 上述した蛇行修正装置5から搬出された鋼帯16は、蛇行修正装置5の出側に配置された板幅計6を経由し、蛇行修正装置5よりも鋼帯16の搬送方向の下流側に配置された加熱装置7へ順次搬送される。
 板幅計6は、加熱装置7による加熱前の鋼帯16の蛇行量を測定する蛇行量測定部としての機能を有する装置であり、図1に示すように、蛇行修正装置5と加熱装置7との間に配置される。板幅計6は、蛇行修正装置5の出側において鋼帯16の両エッジ部を検出し、検出した両エッジ部の各位置を算出する。ついで、板幅計6は、算出した両エッジ部の各位置をもとに、鋼帯16の板幅方向の中心位置を算出し、この中心位置と鋼帯16の搬送経路中心との差を、鋼帯16の蛇行量として算出する。また、板幅計6は、得られた両エッジ部の各位置をもとに、鋼帯16の板幅を算出する。板幅計6は、このような蛇行修正装置5の出側における鋼帯16の蛇行量および板幅の算出を連続的または所定時間毎に断続的に実行する。その都度、板幅計6は、算出した鋼帯16の蛇行量を、蛇行修正装置5の出側における鋼帯16の蛇行量の測定値として制御部13に送信する。且つ、板幅計6は、算出した鋼帯16の板幅を、蛇行修正装置5の出側における鋼帯16の板幅の測定値として加熱装置7に送信する。
 加熱装置7は、順次搬送される鋼帯16を冷間圧延前に加熱するものである。本実施の形態において、加熱装置7は、図1に示すように、タンデム圧延機8よりも鋼帯16の搬送方向の上流側、詳細には板幅計6とタンデム圧延機8における最上流の圧延機8aとの間に配置され、誘導加熱方式によって鋼帯16のうちの両エッジ部を加熱(誘導加熱)する。図3は、本実施の形態における冷間圧延設備の加熱装置の一構成例を示す図である。図3に示すように、加熱装置7は、鋼帯16の板幅方向の両エッジ部16a,16bを鋼帯16の板厚方向の両側(例えば上下)から非接触に挟む一対のC型のインダクタ71a,71bを備える。
 インダクタ71aの脚部72a,73aには、加熱コイル74aが設けられる。加熱コイル74aは、インダクタ71aの脚部72a,73aの間隙内を鋼帯16のエッジ部16aが通過する際、このエッジ部16aに板厚方向の磁束を与えて、このエッジ部16aを誘導加熱する。一方、インダクタ71bの脚部72b,73bには、加熱コイル74bが設けられる。加熱コイル74bは、インダクタ71bの脚部72b,73bの間隙内を鋼帯16のエッジ部16bが通過する際、このエッジ部16bに板厚方向の磁束を与えて、このエッジ部16bを誘導加熱する。
 また、加熱装置7は、図3に示すように、整合盤77と、高周波電源78と、計算ユニット79とを備える。高周波電源78は、整合盤77を介して加熱コイル74a,74bに接続される。また、高周波電源78には、計算ユニット79が接続される。計算ユニット79は、鋼帯16の板厚、搬送速度および鋼種に基づいて鋼帯16の加熱条件を設定し、設定した加熱条件に応じて、加熱コイル74a,74bに流す高周波電流の出力を高周波電源78に指示する。高周波電源78は、この計算ユニット79からの出力指示に基づき、整合盤77を介して加熱コイル74a,74bに高周波電流を流し、これにより、加熱コイル74a,74bに板厚方向の磁束(高周波磁束)を生じさせる。この高周波磁束によって、鋼帯16の両エッジ部16a,16bに誘導電流が生じ、誘導電流によって両エッジ部16a,16bにジュール熱が発生する。両エッジ部16a,16bは、発生したジュール熱によって誘導加熱され、この結果、延性-脆性遷移温度以上の温度に昇温する。
 一方、加熱装置7は、図3に示すように、インダクタ71a,71bを各々鋼帯16の板幅方向に移動させる台車75a,75bと、インダクタ71a,71bの位置を制御する位置制御部76a,76bとを備える。インダクタ71aは台車75a上に設置され、インダクタ71bは台車75b上に設置されている。台車75a,75bは、鋼帯16の板幅方向に移動することによって、インダクタ71a,71bを鋼帯16の板幅方向に各々移動させる。位置制御部76a,76bには、図3に示すように、計算ユニット79が接続される。計算ユニット79は、上述した板幅計6から鋼帯16の板幅の測定値を受信し、受信した板幅の測定値に応じて、鋼帯16の板幅方向におけるインダクタ71a,71bの各目標位置(詳細には加熱コイル74a,74bの各目標位置)を算出する。計算ユニット79は、算出したインダクタ71a,71bの各目標位置を位置制御部76a,76bに各々送信する。位置制御部76a,76bは、計算ユニット79から受信したインダクタ71a,71bの各目標位置に基づいて、台車75a,75bを駆動制御し、台車75a,75bの駆動制御を通して、インダクタ71a,71bの位置を制御する。
 詳細には、位置制御部76aは、インダクタ71aの位置と鋼帯16の板幅に応じた目標位置とが一致するように、鋼帯16の板幅方向における台車75aの移動を制御し、この台車75aの制御を通して、インダクタ71aの位置を目標位置に制御する。これと同時に、位置制御部76bは、インダクタ71bの位置と鋼帯16の板幅に応じた目標位置とが一致するように、鋼帯16の板幅方向における台車75bの移動を制御し、この台車75bの制御を通して、インダクタ71bの位置を目標位置に制御する。この結果、鋼帯16の両エッジ部16a,16bとインダクタ71a,71bとの各ラップ長La,Lb(図3参照)は、鋼帯16の板幅の変化によらず定常に制御される。このように定常に制御されたラップ長La,Lbは、鋼帯16の両エッジ部16a,16bを延性-脆性遷移温度以上の温度に昇温するに最適な値となっている。
 本実施の形態において、図3に示すように、鋼帯16のエッジ部16aとインダクタ71aとのラップ長Laは、インダクタ71aの脚部72a,73aによって板厚方向の上下から非接触に挟まれるエッジ部16aとインダクタ71a(詳細には脚部72a,73a)との重なり合う長さである。鋼帯16のエッジ部16bとインダクタ71bとのラップ長Lbは、インダクタ71bの脚部72b,73bによって板厚方向の上下から非接触に挟まれるエッジ部16bとインダクタ71b(詳細には脚部72b,73b)との重なり合う長さである。
 タンデム圧延機8は、順次搬送される鋼帯16を連続的に冷間圧延するタンデム型の圧延機であり、鋼帯16の搬送方向に並ぶ複数の圧延機(本実施の形態においては4つの圧延機8a~8d)を有する。タンデム圧延機8は、図1に示すように、加熱装置7よりも鋼帯16の搬送方向の下流側、詳細には加熱装置7と走間シャー11との間に配置され、加熱装置7による加熱後の鋼帯16を順次冷間圧延する。
 タンデム圧延機8を構成する4つの圧延機8a~8dは、この順で鋼帯16の搬送方向に並設される。すなわち、タンデム圧延機8において、圧延機8aは、鋼帯16の搬送方向の最上流に位置し、圧延機8dは、鋼帯16の搬送方向の最下流に位置する。この最上流の圧延機8aの後段(鋼帯16の搬送方向の下流側)には、圧延機8bが配置される。この圧延機8bと最下流の圧延機8dとの間には、圧延機8cが配置される。加熱装置7による加熱後の鋼帯16は、加熱装置7の出側からタンデム圧延機8の入側(最上流の圧延機8a)に向かって搬送される。タンデム圧延機8は、この加熱後の鋼帯16を最上流の圧延機8aによって受け入れ、ついで、この受け入れた鋼帯16を圧延機8a~8dによって連続的に冷間圧延する。これにより、タンデム圧延機8は、この鋼帯16の板厚を所定の目標板厚にする。タンデム圧延機8による冷間圧延後の鋼帯16は、最下流の圧延機8dの出側に搬出され、その後、ピンチロール等を経て走間シャー11へ順次搬送される。
 また、タンデム圧延機8における最上流の圧延機8aには、形状制御アクチュエータ9が設けられる。形状制御アクチュエータ9は、タンデム圧延機8における最上流の圧延機8aによる冷間圧延後の鋼帯16の形状を制御する形状制御部としての機能を有する。形状制御アクチュエータ9は、バックアップロール等を介して最上流の圧延機8aのワークロール8aaに撓みまたは傾斜を付与し、これにより、最上流の圧延機8aによる冷間圧延後の鋼帯16の形状を制御する。このような鋼帯16の形状制御を通して、形状制御アクチュエータ9は、例えば、この冷間圧延後の鋼帯16の板幅方向に非対称な形状を対称な形状に修正する。また、形状制御アクチュエータ9は、最上流の圧延機8aによる冷間圧延後の鋼帯16の形状を制御することにより、タンデム圧延機8による鋼帯16の冷間圧延に起因する鋼帯16の蛇行を修正する。
 形状測定部10は、タンデム圧延機8における最上流の圧延機8aによる冷間圧延後の鋼帯16の形状を測定する。具体的には、形状測定部10は、鋼帯16の応力を板幅方向の所定領域毎に検出する複数のセンサが外周面に設けられたロール体等を用いて構成され、図1に示すように、最上流の圧延機8aの出側(圧延機8a,8b間)に配置される。形状測定部10は、自身のロール中心軸を中心に1回転する都度、最上流の圧延機8aの出側における鋼帯16の板幅方向の張力分布を測定し、得られた張力分布をもとに、最上流の圧延機8aの出側における鋼帯16の形状(以下、鋼帯形状と適宜いう)を測定する。形状測定部10は、このように鋼帯形状を測定する都度、得られた鋼帯形状の測定値を制御部13に送信する。
 走間シャー11は、図1に示すように、タンデム圧延機8の出側とテンションリール12との間に配置され、タンデム圧延機8による冷間圧延後の鋼帯16を所定の長さに切断する。テンションリール12は、この走間シャー11によって切断された鋼帯16をコイル状に巻き取る。
 制御部13は、鋼帯16の母材となる鋼板15の形状に起因して加熱装置7の入側の鋼帯16に発生する蛇行(以下、母板形状起因の蛇行と適宜いう)と、タンデム圧延機8による鋼帯16の冷間圧延に起因して加熱装置7の出側の鋼帯16に発生する蛇行(以下、圧延起因の蛇行と適宜いう)とを分けて制御する。具体的には、制御部13は、板幅計6による鋼帯16の蛇行量の測定値に基づいて、蛇行修正装置5のロール傾動部5eの動作を制御し、このロール傾動部5eの制御を通して、蛇行修正装置5のブライドルロール5a~5dの水平方向に対する傾斜角度および傾斜方向を制御する。これにより、制御部13は、加熱装置7による加熱前の鋼帯16の蛇行(母板形状起因の蛇行)を制御する。且つ、制御部13は、形状測定部10による鋼帯形状の測定値に基づいて、形状制御アクチュエータ9の動作を制御し、この形状制御アクチュエータ9の制御を通して、タンデム圧延機8による鋼帯16の冷間圧延に起因する鋼帯16の蛇行(圧延起因の蛇行)を制御する。一方、制御部13は、蛇行修正装置5のブライドルロール5a~5dの各回転速度を制御し、これにより、ブライドルロール5a~5dによる鋼帯16の張力を制御する。
(冷間圧延方法)
 つぎに、本発明の実施の形態にかかる冷間圧延方法について説明する。図4は、本発明の実施の形態にかかる冷間圧延方法の一例を示すフローチャートである。本実施の形態にかかる冷間圧延方法において、図1に示した冷間圧延設備1は、ルーパ4の出側からテンションリール12に向かって順次搬送される鋼帯16毎に、図4に示すステップS101~S105の各処理ステップを行い、被圧延材である鋼帯16を加熱して冷間圧延する。
 詳細には、図4に示すように、冷間圧延設備1は、まず、加熱装置7による加熱前の鋼帯16の蛇行量と、タンデム圧延機8における最上流の圧延機8aによる冷間圧延後の鋼帯16の形状とを測定する(ステップS101)。ステップS101において、冷間圧延設備1は、図1に示したように蛇行修正装置5と加熱装置7との間に配置された板幅計6によって、加熱前の鋼帯16の蛇行量を測定する。この蛇行修正装置5は、上述したように、加熱装置7よりも鋼帯16の搬送方向の上流側に配置されて加熱前の鋼帯16の蛇行を修正するものである。板幅計6は、蛇行修正装置5の出側から加熱装置7の入側に向かって搬送される鋼帯16の蛇行量を測定し、得られた蛇行量を、加熱装置7による加熱前の鋼帯16の蛇行量として制御部13に送信する。
 これに並行して、冷間圧延設備1は、図1に示したように最上流の圧延機8aの出側に配置された形状測定部10によって、この最上流の圧延機8aによる冷間圧延後の鋼帯16の形状を測定する。この際、形状測定部10は、タンデム圧延機8における最上流の圧延機8aの出側に搬送された鋼帯16の板幅方向の張力分布を測定し、得られた張力分布をもとに、この鋼帯16の形状を測定する。形状測定部10は、このような張力分布に基づく鋼帯形状の測定値を制御部13に送信する。
 ステップS101の実行後、冷間圧延設備1は、ステップS101による鋼帯16の蛇行量の測定値に基づいて、加熱装置7による加熱前の鋼帯16の蛇行を制御し、且つ、ステップS101による鋼帯形状の測定値に基づいて、鋼帯16の冷間圧延に起因する蛇行を制御する(ステップS102)。
 ステップS102において、制御部13は、板幅計6から取得した鋼帯16の蛇行量の測定値をもとに、蛇行修正装置5のロール傾動部5eの動作を制御する。これにより、制御部13は、上述した加熱前の鋼帯16の蛇行、すなわち鋼帯16の母板形状起因の蛇行を修正するように、蛇行修正装置5のブライドルロール5a~5dのステアリング機能を制御する。制御部13は、このステアリング機能の制御を通して、加熱装置7の入側における鋼帯16の母板形状起因の蛇行を制御する。このように、鋼帯16の母板形状起因の蛇行は、加熱前の鋼帯16の蛇行量に基づいて、フィードバック制御される。
 また、ステップS102において、制御部13は、タンデム圧延機8による冷間圧延に起因する鋼帯16の蛇行、すなわち鋼帯16の圧延起因の蛇行を、上述した母板形状起因の蛇行の制御に並行して制御する。詳細には、制御部13は、形状測定部10から取得した鋼帯形状の測定値に基づいて、タンデム圧延機8における最上流の圧延機8aの形状制御アクチュエータ9を制御する。この際、制御部13は、形状測定部10からの鋼帯形状の測定値をもとに、最上流の圧延機8aの出側における鋼帯16の板幅方向の張力分布を把握する。ついで、制御部13は、この張力分布が鋼帯16の長手方向に線対称(以下、左右対称という)となるように、望ましくは板幅方向に均一となるように、形状制御アクチュエータ9の動作を制御する。形状制御アクチュエータ9は、この制御部13の制御に基づいて、鋼帯16の板幅方向の張力分布が左右対称となるように圧延機8aのワークロール中心軸方向の両端部の圧下量(以下、左右の圧下量という)を調整する。これにより、形状制御アクチュエータ9は、最上流の圧延機8aの出側における鋼帯形状を修正するとともに、鋼帯16の圧延起因の蛇行を修正する。制御部13は、この形状制御アクチュエータ9の制御を通して、加熱装置7の出側における鋼帯16の圧延起因の蛇行を制御する。このように、鋼帯16の圧延起因の蛇行は、最上流の圧延機8aによる冷間圧延後の鋼帯16の形状に基づいて、フィードバック制御される。
 ステップS102の実行後、冷間圧延設備1は、タンデム圧延機8よりも鋼帯16の搬送方向の上流側に位置する加熱装置7を用い、ステップS102によって蛇行を制御された鋼帯16を加熱する(ステップS103)。加熱装置7は、図3に示したように、鋼帯16の板幅方向の両エッジ部16a,16bをその板厚方向の両側から非接触に挟むC型のインダクタ71a,71bを備えた誘導加熱方式の加熱装置である。ステップS103において、加熱装置7は、上述したように母板形状起因の蛇行および圧延起因の蛇行が制御された状態の鋼帯16の両エッジ部16a,16bを誘導加熱方式によって加熱する。
 この加熱装置7によって加熱される際の鋼帯16の蛇行量は、上述したステップS102により、加熱装置7における許容範囲内の値に低減されている。この蛇行量の許容範囲は、図3に示した加熱装置7のインダクタ71a,71bと鋼帯16の両エッジ部16a,16bとのラップ長La,Lbを定常に制御し得る鋼帯16の蛇行量の範囲であり、例えば零値または零値に近似する値である。加熱装置7は、このような許容範囲内の蛇行量に低減された状態の鋼帯16の両エッジ部16a,16bを誘導加熱することにより、これら両エッジ部16a,16bの温度を延性-脆性遷移温度以上の温度に安定して昇温することができる。
 ステップS103の実行後、冷間圧延設備1は、ステップS103による加熱後の鋼帯16をタンデム圧延機8によって冷間圧延する(ステップS104)。ステップS104において、タンデム圧延機8は、圧延機8a,8b,8c,8dを用いて、この順に、加熱後の鋼帯16を連続的に冷間圧延する。ステップS104による冷間圧延後の鋼帯16は、図1に示した走間シャー11によって切断され、その後、テンションリール12によってコイル状に巻き取られる。
 ステップS104の実行後、冷間圧延設備1は、被圧延材である鋼帯16の全長に亘って冷間圧延が終了すれば(ステップS105,Yes)、本処理を終了する。一方、冷間圧延設備1は、鋼帯16の冷間圧延が終了していなければ(ステップS105,No)、上述したステップS101に戻り、このステップS101以降の処理ステップを適宜繰り返す。
 ここで、鋼帯16は、順次搬送される複数の鋼板15のうちの先行材の尾端部と後行材の先端部とを接合することによって形成される帯状の鋼板であり、本実施の形態における被圧延材としての鋼板の一例である。また、鋼帯16を構成する各鋼板15として、例えば、1%以上の珪素を含有する珪素鋼板、ステンレス鋼板、高炭素鋼板等の難圧延材が用いられる。
 このような冷間圧延対象の鋼帯16は、一般に、その母材となる熱延コイル(熱延鋼板)の熱間圧延時に形成された腹伸びまたは片伸び等の形状不良を含んでいる。このため、冷間圧延設備1において、鋼帯16が加熱装置7に向かって順次搬送される際、鋼帯16の形状に応じて発生する板幅方向の張力分布に起因して作用する曲げモーメントにより、搬送中の鋼帯16に母板形状起因の蛇行が生じる。仮に、加熱装置7の前段に蛇行修正装置5が設置されていない場合、加熱装置7の入側において、母材形状起因の蛇行が鋼帯16に随時発生する。特に、鋼帯16を構成する各鋼板同士の接合部分においては、母板形状起因の急激な蛇行が鋼帯16に発生する。このように鋼帯16に母板形状起因の蛇行が生じる場合、この鋼帯16のエッジ部16a,16bを加熱装置7によって均一に誘導加熱することは困難である。これに起因して、鋼帯16のエッジ部16a,16bの加熱不足または局部異常加熱が発生し、この結果、鋼帯16の冷間圧延中に鋼板破断が発生してしまう。
 これに対し、本実施の形態にかかる冷間圧延設備1は、図1に示したように、加熱装置7の前段に蛇行修正装置5を備え、この蛇行修正装置5によって鋼帯16の母板形状起因の蛇行を常に修正している。この結果、加熱装置7の入側における鋼帯16の母板形状起因の蛇行が解消されることから、上述した鋼板破断等の問題を解決することができる。
 一方、鋼帯16がタンデム圧延機8によって冷間圧延される際、その圧延条件によっては、冷間圧延中の鋼帯16に蛇行が発生する場合がある。例えば、鋼帯16の母材である熱延鋼板の板幅方向の板厚プロフィルに板厚の偏り(板幅方向の一端側の板厚が他端側に比べて厚い等)が生じている場合、タンデム圧延機8の鋼帯16に対するワークロールの圧下位置が平行であっても、鋼帯16内の板厚が厚い部分の圧下量が大きくなり、これに起因して、冷間圧延中の鋼帯16に蛇行が発生する。このような鋼帯16の圧延起因の蛇行は、冷間圧延中の鋼帯16に連続する一連の鋼帯部分、すなわち、タンデム圧延機8の入側に位置する冷間圧延前の鋼帯16に対して影響を及ぼす。具体的には、鋼帯16の圧延起因の蛇行は、タンデム圧延機8の前段に位置する加熱装置7によって加熱される鋼帯16の蛇行を引き起こす。このため、加熱装置7のインダクタ71a,71bと鋼帯16の両エッジ部16a,16bとのラップ長La,Lb(図3参照)が、鋼帯16の圧延起因の蛇行に起因して変化し、この結果、鋼帯16のエッジ部16a,16bの加熱不足または局部異常加熱が発生し、延いては、冷間圧延中の鋼帯16の鋼板破断に繋がる。
 なお、上述した蛇行修正装置5は、ブライドルロール5a~5dのステアリング機能によって鋼帯16の蛇行を修正するものである。このような蛇行修正装置5によって修正される鋼帯16の蛇行は、母材形状起因の蛇行であり、タンデム圧延機8において発生する鋼帯16の圧延起因の蛇行とは発生原因が異なる。したがって、加熱装置7に向かう搬送中の鋼帯16の母材形状起因の蛇行と加熱装置7の出側における鋼帯16の圧延起因の蛇行とを、蛇行修正装置5によって同時に安定して修正することは困難である。
 また、鋼帯16の圧延起因の蛇行は、一般に、鋼帯16を冷間圧延する際に左右の圧下シリンダに作用する圧延荷重を測定し、測定した左右の圧延荷重の差に比例して左右の圧下量を調整することにより、制御される。しかし、上述したようにタンデム圧延機8の前段に位置する加熱装置7によって鋼帯16の両エッジ部16a,16bを加熱する場合、鋼帯16の変形抵抗が板幅方向に変化するため、図3に示したラップ長La,Lb等の変化によって、鋼帯16の両エッジ部16a,16bの温度が変化する可能性がある。このような場合、鋼帯16を冷間圧延する際の左右の圧延荷重が同じであっても、鋼帯16の右側(一方のエッジ部16a側)と左側(他方のエッジ部16b側)との間において圧下量が異なり、この結果、鋼帯16に圧延起因の蛇行が発生してしまう。
 これに対し、本実施の形態にかかる冷間圧延設備1は、図1に示したように、タンデム圧延機8における最上流の圧延機8aに形状制御アクチュエータ9を備え、この形状制御アクチュエータ9を用いて、鋼帯16の圧延起因の蛇行を制御している。詳細には、冷間圧延設備1は、最上流の圧延機8aの出側における鋼帯形状を直に測定し、この鋼帯形状の測定値に基づいて、この圧延機8aの左右の圧下量を調整するように形状制御アクチュエータ9を制御し、これにより、加熱装置7の出側における鋼帯16の圧延起因の蛇行を修正している。このため、鋼帯16の変形抵抗が板幅方向に変化するか否かによらず、常に、鋼帯16の圧延起因の蛇行が加熱装置7内の鋼帯16に及ぼす影響を無くすことができる。これにより、鋼帯16の板幅の変化以外の原因によって加熱装置7におけるラップ長La,Lbが変化することが無くなり、このことから、加熱装置7による鋼帯16の両エッジ部16a,16bの安定した加熱を実現することが可能となる。この結果、上述した鋼板破断等の問題を解決することができる。
(実施例)
 つぎに、本発明の実施例について説明する。本実施例において、図1に示した冷間圧延設備1は、珪素の含有量が3.0%以上である各鋼板15の先尾端部同士を溶接機3によって接合して鋼帯16とし、この鋼帯16の両エッジ部16a,16bを加熱装置7によって加熱し、加熱後の鋼帯16をタンデム圧延機8によって連続的に冷間圧延した。この際、加熱装置7による鋼帯16の加熱条件は、タンデム圧延機8によって噛み込む直前の鋼帯16の両エッジ部16a,16bが60℃以上の温度を確保するように設定した。また、冷間圧延設備1は、蛇行修正装置5のステアリング機能によって鋼帯16の母板形状起因の蛇行を修正し、且つ、タンデム圧延機8における最上流の圧延機8aの出側において測定した鋼帯形状に基づき形状制御アクチュエータ9を制御して、鋼帯16の圧延起因の蛇行を修正した。冷間圧延設備1は、上記の蛇行修正状態を維持しつつ、加熱装置7によって鋼帯16の両エッジ部16a,16bを加熱した。
 また、本実施例に対する比較例1,2において、冷間圧延設備1は、蛇行修正装置5、加熱装置7、および形状制御アクチュエータ9の設定条件を変えて鋼帯16を冷間圧延した。具体的には、比較例1において、冷間圧延設備1は、上述した蛇行修正装置5による鋼帯16の蛇行修正機能を有効にするが、最上流の圧延機8aの出側における鋼帯形状の測定値に基づく形状制御アクチュエータ9の制御を無効にして、鋼帯16の圧延起因の蛇行を制御しない状態とし、この状態を維持しつつ、加熱装置7によって鋼帯16の両エッジ部16a,16bを加熱した。一方、比較例2において、冷間圧延設備1は、上述した蛇行修正装置5による鋼帯16の蛇行修正機能と形状制御アクチュエータ9による鋼帯16の形状修正機能(蛇行修正機能)との双方を無効とし、この状態を維持しつつ、加熱装置7によって鋼帯16の両エッジ部16a,16bを加熱した。なお、比較例1,2における他の条件は、本実施例と同じにした。
 本実施例および比較例1,2の各々について、500本のコイル分の鋼帯16を冷間圧延し、冷間圧延時の鋼帯16の破断発生率を調査した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施例における鋼帯16の破断発生率は、0.2%であり、比較例1における鋼帯16の破断発生率(=0.8%)および比較例2における鋼帯16の破断発生率(=1.4%)に比べて、低い値となった。特に、本実施例における鋼帯16の破断発生率は、蛇行修正装置5による鋼帯16の蛇行修正機能と形状制御アクチュエータ9による鋼帯16の蛇行修正機能とを無効にした比較例2の1/7に低減することが分かった。このことは、加熱装置7の入側における鋼帯16の母板形状起因の蛇行を蛇行修正装置5のステアリング機能によって修正する機能と、加熱装置7の出側における鋼帯16の圧延起因の蛇行を形状制御アクチュエータ9によって修正する機能との相乗作用により、加熱装置7と鋼帯16とのラップ長La,Lbが定常に制御され、この結果、鋼帯16の両エッジ部16a,16bの温度を延性-脆性遷移温度以上に確保して鋼帯16を冷間圧延することが可能となったことを意味している。
 すなわち、加熱装置7の入側における鋼帯16の母板形状起因の蛇行を修正し且つ加熱装置7の出側における鋼帯16の圧延起因の蛇行を修正することは、加熱装置7と鋼帯16とのラップ長La,Lbを定常制御して鋼帯16の両エッジ部16a,16bを安定的に加熱することに極めて有効である。さらには、これら両エッジ部16a,16bの加熱不足および局部異常加熱を防止して鋼帯16の冷間圧延時における鋼板破断(耳割れに起因する破断、耳波に起因する絞り破断等)の発生を低減することに極めて有効である。
 以上、説明したように、本発明の実施の形態では、順次搬送される鋼帯を冷間圧延するタンデム圧延機の前段に配置された加熱装置の入側における鋼帯の蛇行量を測定し、得られた蛇行量の測定値に基づいて、この加熱装置による加熱前の鋼帯の蛇行を制御し、且つ、このタンデム圧延機における最上流の圧延機による冷間圧延後の鋼帯の形状を測定し、得られた鋼帯形状の測定値に基づいて、鋼帯の圧延起因の蛇行を制御している。
 このため、加熱装置の入側の鋼帯に発生する母板形状起因の蛇行と、加熱装置の出側の鋼帯に発生する圧延起因の蛇行とを共に制御することができる。これにより、加熱装置の入側における鋼帯の蛇行量を、加熱装置に許容される許容範囲内の値に矯正できるとともに、鋼帯の圧延起因の蛇行が加熱装置内の鋼帯に及ぼす影響を無くすことができる。この結果、加熱装置によって鋼帯を加熱する期間、加熱装置と鋼帯とのラップ長を鋼帯の冷間圧延に最適な値に定常制御できることから、鋼帯の両エッジ部を延性-脆性遷移温度以上の温度に安定的に昇温できる。このことから、鋼帯の両エッジ部の加熱不足(耳割れ)または局部異常加熱(耳波)に起因する鋼板破断の発生を可能な限り抑制して、鋼帯の安定した冷間圧延を実現することができる。
 本発明にかかる冷間圧延設備および冷間圧延方法を用いることにより、一般的な鋼板は勿論、珪素鋼板等の難圧延材または先行材と後行材との接合部分を有する帯状の鋼板(鋼帯)等、如何なる種類の被圧延材についても、急激な被圧延材形状の変化またはクラウン変化に起因して生じる被圧延材の蛇行と、冷間圧延に起因して生じる被圧延材の蛇行とを共に抑制することができる。このような被圧延材の蛇行抑制作用を加熱装置の入側および出側において実行しているため、加熱装置における被圧延材のラップ長を最適値に定常制御でき、これにより、被圧延材の両エッジ部を安定して目標温度に加熱することができる。この結果、エッジ部の加熱不足による耳割れに起因して冷間圧延中の被圧延材に破断が生じる事態と、エッジ部の局部異常加熱による耳波に起因して冷間圧延中の被圧延材に絞り破断が生じる事態とを共に回避できることから、冷間圧延の操業効率および生産効率を向上することが可能となる。
 なお、上述した実施の形態では、コイルから払い出した鋼板を連続的に冷間圧延した後にコイル状に巻き取る完全連続式冷間タンデムミル態様の冷間圧延設備を例示したが、本発明は、これに限定されるものではない。本発明にかかる冷間圧延設備は、完全連続式冷間タンデムミル以外の態様のもの、例えば、酸洗ラインの後段に続く連続式タンデムミルであってもよい。
 また、上述した実施の形態では、鋼帯の搬送方向に4つの圧延機が並設されてなるタンデム圧延機を備えていたが、本発明は、これに限定されるものではない。すなわち、本発明において、冷間圧延設備内の圧延機の設置数(スタンド数)およびロール段数は、特に問われない。
 さらに、上述した実施の形態では、被圧延材の一例として鋼帯を示したが、本発明は、これに限定されるものではない。本発明にかかる冷間圧延設備および冷間圧延方法は、一般的な鋼板、複数の鋼板を接合してなる帯状の鋼板(鋼帯)、珪素鋼板等の難圧延材の何れについても適用可能である。すなわち、本発明において、被圧延材としての鋼板の鋼種、接合状態、および形状は特に問われない。
 また、上述した実施の形態では、4つのブライドルロールを備えた蛇行修正装置を例示したが、本発明は、これに限定されるものではない。本発明にかかる冷間圧延設備の蛇行修正装置は、ロール体のステアリング機能によって被圧延材の蛇行を修正可能なものであればよい。この際、蛇行修正装置のロール体は、ブライドルロールに限らず、ステアリングロールであってもよい。また、蛇行修正装置におけるロール体の配置数は、4つに限らず、複数であればよい。
 さらに、上述した実施の形態では、タンデム圧延機を構成する複数の圧延機のうちの最上流の圧延機に形状制御アクチュエータを設けていたが、本発明は、これに限定されるものではない。本発明にかかる冷間圧延設備のタンデム圧延機を構成する複数の圧延機のうち、最上流の圧延機を除く残りの圧延機(例えば図1に示した圧延機8b~8d)に、この最上流の圧延機と同様の形状制御アクチュエータを設けてもよい。この場合、各圧延機の出側における鋼帯形状の測定値に基づいて、各圧延機の形状制御アクチュエータを各々制御してもよい。
 また、上述した実施の形態および実施例により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。
 以上のように、本発明にかかる冷間圧延設備および冷間圧延方法は、鋼板の冷間圧延に有用であり、特に、鋼板破断の発生を可能な限り抑制して、鋼板を安定的に冷間圧延することに適している。
 1 冷間圧延設備
 2 巻戻し機
 3 溶接機
 4 ルーパ
 4a,4c,4e,4g 固定ロール
 4b,4d,4f 可動ロール
 5 蛇行修正装置
 5a~5d ブライドルロール
 5e ロール傾動部
 6 板幅計
 7 加熱装置
 8 タンデム圧延機
 8a~8d 圧延機
 8aa ワークロール
 9 形状制御アクチュエータ
 10 形状測定部
 11 走間シャー
 12 テンションリール
 13 制御部
 15 鋼板
 16 鋼帯
 16a,16b エッジ部
 71a,71b インダクタ
 72a,72b,73a,73b 脚部
 74a,74b 加熱コイル
 75a,75b 台車
 76a,76b 位置制御部
 77 整合盤
 78 高周波電源
 79 計算ユニット
 C1,C2 ロール中心軸

Claims (6)

  1.  順次搬送される鋼板を加熱装置によって加熱し、加熱後の前記鋼板を、前記鋼板の搬送方向に並ぶ複数の圧延機を有するタンデム圧延機によって順次冷間圧延する冷間圧延設備において、
     前記加熱装置による加熱前の前記鋼板の蛇行量を測定する蛇行量測定部と、
     加熱前の前記鋼板の蛇行を修正する蛇行修正装置と、
     前記タンデム圧延機における最上流の圧延機による冷間圧延後の前記鋼板の形状を測定する形状測定部と、
     前記最上流の圧延機による冷間圧延後の前記鋼板の形状を制御する形状制御部と、
     前記蛇行量測定部による前記鋼板の蛇行量の測定値に基づき前記蛇行修正装置の動作を制御して、加熱前の前記鋼板の蛇行を制御し、且つ、前記形状測定部による前記鋼板の形状の測定値に基づき前記形状制御部の動作を制御して、前記タンデム圧延機による前記鋼板の冷間圧延に起因する前記鋼板の蛇行を制御する制御部と、
     を備えたことを特徴とする冷間圧延設備。
  2.  前記蛇行修正装置は、前記加熱装置よりも前記鋼板の搬送方向の上流側に配置され、
     前記蛇行量測定部は、前記蛇行修正装置と前記加熱装置との間に配置されることを特徴とする請求項1に記載の冷間圧延設備。
  3.  前記加熱装置は、前記鋼板の幅方向の両エッジ部を前記鋼板の厚さ方向の両側から非接触に挟むC型のインダクタを備え、誘導加熱方式によって前記鋼板のうちの前記両エッジ部を加熱することを特徴とする請求項1または2に記載の冷間圧延設備。
  4.  順次搬送される鋼板を加熱装置によって加熱し、加熱後の前記鋼板を、前記鋼板の搬送方向に並ぶ複数の圧延機を有するタンデム圧延機によって順次冷間圧延する冷間圧延方法において、
     前記加熱装置による加熱前の前記鋼板の蛇行量と、前記タンデム圧延機における最上流の圧延機による冷間圧延後の前記鋼板の形状とを測定する測定ステップと、
     前記鋼板の蛇行量の測定値に基づいて加熱前の前記鋼板の蛇行を制御し、且つ、前記鋼板の形状の測定値に基づいて前記鋼板の冷間圧延に起因する蛇行を制御する蛇行制御ステップと、
     を含むことを特徴とする冷間圧延方法。
  5.  前記測定ステップは、前記加熱装置よりも前記鋼板の搬送方向の上流側に配置されて加熱前の前記鋼板の蛇行を修正する蛇行修正装置と前記加熱装置との間に配置された蛇行量測定部によって、加熱前の前記鋼板の蛇行量を測定することを特徴とする請求項4に記載の冷間圧延方法。
  6.  前記鋼板の幅方向の両エッジ部を前記鋼板の厚さ方向の両側から非接触に挟むC型のインダクタを備えた前記加熱装置を用い、前記蛇行制御ステップによって蛇行を制御された前記鋼板の幅方向の両エッジ部を誘導加熱方式によって加熱する加熱ステップを含むことを特徴とする請求項4または5に記載の冷間圧延方法。
PCT/JP2015/050533 2014-01-29 2015-01-09 冷間圧延設備および冷間圧延方法 WO2015115156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/114,540 US10259027B2 (en) 2014-01-29 2015-01-09 Cold rolling facility and cold rolling method
KR1020167019943A KR101780618B1 (ko) 2014-01-29 2015-01-09 냉간 압연 설비 및 냉간 압연 방법
CN201580006264.0A CN105934286B (zh) 2014-01-29 2015-01-09 冷轧设备以及冷轧方法
EP15743926.6A EP3100793B1 (en) 2014-01-29 2015-01-09 Cold-rolling facility and cold-rolling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014014646A JP6020479B2 (ja) 2014-01-29 2014-01-29 冷間圧延設備および冷間圧延方法
JP2014-014646 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115156A1 true WO2015115156A1 (ja) 2015-08-06

Family

ID=53756733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050533 WO2015115156A1 (ja) 2014-01-29 2015-01-09 冷間圧延設備および冷間圧延方法

Country Status (7)

Country Link
US (1) US10259027B2 (ja)
EP (1) EP3100793B1 (ja)
JP (1) JP6020479B2 (ja)
KR (1) KR101780618B1 (ja)
CN (1) CN105934286B (ja)
TW (1) TWI584887B (ja)
WO (1) WO2015115156A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107137B (zh) * 2015-02-02 2018-12-18 东芝三菱电机产业系统株式会社 轧制生产线的蛇行控制装置
JP6884589B2 (ja) * 2016-02-16 2021-06-09 株式会社神戸製鋼所 冷間圧延方法
KR20190078337A (ko) 2017-12-26 2019-07-04 주식회사 포스코 인공지능을 이용한 압연기 제어 장치
CN108031716B (zh) * 2017-12-29 2023-07-18 绿华能源(福建)有限公司 一种标准化移动式轻钢生产线及其自适应送料方法
JP6835008B2 (ja) * 2018-02-20 2021-02-24 Jfeスチール株式会社 金属帯の冷間圧延方法
JP6959582B2 (ja) * 2018-11-30 2021-11-02 Jfeスチール株式会社 非接触式搬送装置における帯状基材の蛇行制御方法
WO2020213542A1 (ja) * 2019-04-19 2020-10-22 日本製鉄株式会社 被圧延材の蛇行制御方法
JP7269484B2 (ja) * 2019-08-15 2023-05-09 日本製鉄株式会社 冷間タンデム圧延設備及び冷間タンデム圧延方法
JP7311764B2 (ja) * 2019-08-15 2023-07-20 日本製鉄株式会社 冷間タンデム圧延設備及び冷間タンデム圧延方法
JP7192715B2 (ja) * 2019-08-27 2022-12-20 東芝三菱電機産業システム株式会社 蛇行制御装置
KR102180819B1 (ko) 2019-11-01 2020-11-19 주식회사 포스코 인공 지능을 이용한 압연기 제어 장치
KR102281202B1 (ko) 2019-12-13 2021-07-26 주식회사 포스코 강판의 두께 제어 장치
CN111346929A (zh) * 2020-03-04 2020-06-30 首钢京唐钢铁联合有限责任公司 防止带钢断带堆钢的方法、装置、冷轧机组及存储介质
JP2021179414A (ja) * 2020-05-14 2021-11-18 Jfeスチール株式会社 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法
JP7331801B2 (ja) * 2020-08-04 2023-08-23 東芝三菱電機産業システム株式会社 圧延機の蛇行制御装置
JP6988982B1 (ja) * 2020-10-29 2022-01-05 Jfeスチール株式会社 金属ストリップの蛇行量検出方法及び蛇行制御方法
JP7448468B2 (ja) 2020-12-16 2024-03-12 株式会社神戸製鋼所 冷間圧延鋼板の製造方法
US20240009723A1 (en) 2020-12-17 2024-01-11 Primetals Technologies Japan, Ltd. Rolling mill facility
JP7111217B1 (ja) * 2021-04-30 2022-08-02 Jfeスチール株式会社 冷延鋼板の製造方法及び製造設備
CN113732071B (zh) * 2021-09-15 2023-09-15 首钢智新迁安电磁材料有限公司 硅钢冷连轧轧制过程温度获取方法、装置及电子设备
CN114178321A (zh) * 2021-11-17 2022-03-15 首钢智新迁安电磁材料有限公司 一种降低冷轧轧制力的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370063A (en) 1976-12-02 1978-06-22 Mitsubishi Electric Corp Beltlike rolled substance edge heat induction device
JPS6115919A (ja) 1984-06-29 1986-01-24 Kawasaki Steel Corp けい素鋼板の冷間圧延方法
JPH11172325A (ja) 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd 鋼板エッジ部の誘導加熱制御方法
JPH11290931A (ja) 1998-04-16 1999-10-26 Nippon Steel Corp ストリップエッジの誘導加熱装置の加熱電力制御方法および加熱電力制御装置
JP2003275811A (ja) * 2002-03-19 2003-09-30 Jfe Steel Kk タンデム圧延機におけるストリップの蛇行制御装置及び蛇行制御方法
JP2006346715A (ja) * 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc 蛇行検出装置及びその方法
JP2007007754A (ja) * 2005-06-29 2007-01-18 Toshiba Mitsubishi-Electric Industrial System Corp サイドトリマ用誘導加熱装置
JP2012148310A (ja) * 2011-01-19 2012-08-09 Jfe Steel Corp 鋼板エッジ部の加熱方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179913A (en) * 1976-10-29 1979-12-25 National Steel Corporation Metal strip tensioning apparatus for use in continuous strip reduction cold mill and method
JPH0716683B2 (ja) * 1986-06-27 1995-03-01 川崎製鉄株式会社 ステンレス鋼帯用連続温間圧延設備
JPH069700B2 (ja) * 1986-07-14 1994-02-09 石川島播磨重工業株式会社 蛇行制御装置
JPS63183713A (ja) * 1986-09-05 1988-07-29 Sumitomo Metal Ind Ltd 蛇行制御方法
JPH0284216A (ja) * 1988-09-21 1990-03-26 Kawasaki Steel Corp 金属ストリップの溶接形状異常診断方法
JP2751403B2 (ja) * 1989-05-26 1998-05-18 住友金属工業株式会社 ストリップの蛇行修正装置
JPH0716683A (ja) * 1993-07-02 1995-01-20 Tokyo Tekko Co Ltd 鉄筋篭の製造方法
JP2002049631A (ja) * 2000-08-01 2002-02-15 Sony Corp 情報提供装置および方法、並びに記録媒体
JP2002059208A (ja) * 2000-08-11 2002-02-26 Nkk Corp 冷延鋼帯の板幅制御方法
JP4306273B2 (ja) * 2003-02-14 2009-07-29 Jfeスチール株式会社 タンデム圧延機におけるストリップの蛇行制御装置及び蛇行制御方法
JP4114646B2 (ja) * 2004-07-07 2008-07-09 株式会社日立製作所 圧延制御装置,圧延制御方法及び圧延装置
WO2007114181A1 (ja) * 2006-03-31 2007-10-11 Justsystems Corporation データ入力装置、方法、及びプログラム
EP2197600A4 (en) * 2007-08-28 2011-10-05 Air Prod & Chem CRYOGEN FLOW ON WORKPIECE SURFACES IN A COLD ROLLING MILL
JP4864173B2 (ja) 2009-11-09 2012-02-01 三菱日立製鉄機械株式会社 冷間圧延材製造設備および冷間圧延方法
DE102010011840B3 (de) * 2010-03-11 2011-06-09 Peter Müller GmbH Kompressionsbandage und Verfahren zu deren Herstellung
JP5691231B2 (ja) * 2010-04-16 2015-04-01 Jfeスチール株式会社 冷間圧延方法
CN103269810B (zh) * 2010-12-24 2015-03-25 三菱日立制铁机械株式会社 热轧设备以及热轧方法
JP7016683B2 (ja) * 2017-12-07 2022-02-07 株式会社日立製作所 静止誘導電器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370063A (en) 1976-12-02 1978-06-22 Mitsubishi Electric Corp Beltlike rolled substance edge heat induction device
JPS6115919A (ja) 1984-06-29 1986-01-24 Kawasaki Steel Corp けい素鋼板の冷間圧延方法
JPH11172325A (ja) 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd 鋼板エッジ部の誘導加熱制御方法
JPH11290931A (ja) 1998-04-16 1999-10-26 Nippon Steel Corp ストリップエッジの誘導加熱装置の加熱電力制御方法および加熱電力制御装置
JP2003275811A (ja) * 2002-03-19 2003-09-30 Jfe Steel Kk タンデム圧延機におけるストリップの蛇行制御装置及び蛇行制御方法
JP2006346715A (ja) * 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc 蛇行検出装置及びその方法
JP2007007754A (ja) * 2005-06-29 2007-01-18 Toshiba Mitsubishi-Electric Industrial System Corp サイドトリマ用誘導加熱装置
JP2012148310A (ja) * 2011-01-19 2012-08-09 Jfe Steel Corp 鋼板エッジ部の加熱方法

Also Published As

Publication number Publication date
CN105934286A (zh) 2016-09-07
TWI584887B (zh) 2017-06-01
EP3100793B1 (en) 2018-11-21
US10259027B2 (en) 2019-04-16
JP6020479B2 (ja) 2016-11-02
US20160339493A1 (en) 2016-11-24
CN105934286B (zh) 2017-12-12
JP2015139810A (ja) 2015-08-03
EP3100793A4 (en) 2017-09-20
EP3100793A1 (en) 2016-12-07
KR20160102042A (ko) 2016-08-26
KR101780618B1 (ko) 2017-09-21
TW201545822A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6020479B2 (ja) 冷間圧延設備および冷間圧延方法
JP6020475B2 (ja) 冷間圧延設備
JP5799511B2 (ja) 鋼板エッジ部の加熱方法
JP4814558B2 (ja) サイドトリマ用誘導加熱装置
JP3337122B2 (ja) 熱間圧延設備及び熱間圧延方法
JP5915595B2 (ja) 蛇行修正装置および蛇行修正方法
WO1992002313A1 (fr) Procede et dispositif d'assemblage de billettes
JP5391762B2 (ja) 鋼板エッジ部の誘導加熱方法
JP3187355B2 (ja) 熱間圧延設備
JP4595388B2 (ja) 鋼板の蛇行防止方法およびルーパ設備
JP3428400B2 (ja) 熱間圧延設備及び熱間圧延方法
JP7126076B2 (ja) 冷延鋼帯の製造設備および冷延鋼帯の製造方法
JP2003126902A (ja) 熱間圧延設備及び熱間圧延方法
JPH01321010A (ja) 熱間シートバーの加熱方法
JP3261039B2 (ja) 連続熱間圧延における金属片の接合方法および装置
JP2005169455A (ja) 電縫鋼管の製造装置
JP2017094379A (ja) ループカー、ルーパー設備、及びルーパー設備を用いた鋼板の貯蔵方法
JP2000280018A (ja) ストリップの連続プロセス処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019943

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015743926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15114540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE