WO2015098582A1 - 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器 - Google Patents

室温硬化性ポリオルガノシロキサン組成物および電気・電子機器 Download PDF

Info

Publication number
WO2015098582A1
WO2015098582A1 PCT/JP2014/083054 JP2014083054W WO2015098582A1 WO 2015098582 A1 WO2015098582 A1 WO 2015098582A1 JP 2014083054 W JP2014083054 W JP 2014083054W WO 2015098582 A1 WO2015098582 A1 WO 2015098582A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyorganosiloxane
room temperature
formula
substituted
Prior art date
Application number
PCT/JP2014/083054
Other languages
English (en)
French (fr)
Inventor
勲 飯田
健 砂賀
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to EP14875467.4A priority Critical patent/EP3088471B1/en
Priority to CN201480070993.8A priority patent/CN106068307B/zh
Priority to JP2015504798A priority patent/JP5763284B1/ja
Priority to KR1020167015979A priority patent/KR102276889B1/ko
Publication of WO2015098582A1 publication Critical patent/WO2015098582A1/ja
Priority to US15/190,916 priority patent/US10160883B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Definitions

  • the present invention relates to a room temperature curable polyorganosiloxane composition and an electric / electronic device, and in particular, forms a cured film excellent in scratch resistance and is useful as a coating material for electric / electronic devices.
  • the present invention relates to a siloxane composition and an electric / electronic device having a cured coating of the room temperature-curable polyorganosiloxane composition.
  • various room temperature-curable polyorganosiloxane compositions that are cured at room temperature to form a rubber-like cured product are known.
  • it is a type that causes a curing reaction by contact with moisture in the air, and releases alcohol, acetone, etc. during curing Is commonly used.
  • Such type of room temperature curable polyorganosiloxane composition has good workability, and alcohol and acetone released during curing are less corrosive to metals, which may cause corrosion of electrodes and wiring. There is an advantage that there is little, and adhesiveness etc. are excellent.
  • a conformal coating agent applied to protect the surface of an electric / electronic component or a circuit board on which the electric / electronic component is mounted from a use environment a coating material made of a low-viscosity room temperature-curable polyorganosiloxane composition (for example, , And Patent Documents 1 and 2) and a coating material in which a silicone resin is dissolved in a solvent is used.
  • a coating material made of a low-viscosity room temperature-curable polyorganosiloxane composition has a cured film that is brittle and has low hardness, and scratch strength such as scratch resistance is not sufficient.
  • solvent-type coating materials containing silicone resins require a solvent removal process by heating during curing, so the volatilization of the solvent can lead to deterioration of the work environment and the electrical / electronic components and circuit boards on which they are mounted. There was a risk of causing corrosion and deterioration. Furthermore, in order to improve the working environment, a high investment was required to recover the solvent without releasing it into the atmosphere.
  • the present invention has been made to solve these problems, and is a room temperature-curable polyorganosiloxane that forms a cured film having a low viscosity, no solvent, good coatability, high hardness, and excellent scratch resistance.
  • An object is to provide a composition.
  • the room temperature curable polyorganosiloxane composition of the present invention comprises: (A1) 10 to 80 parts by mass of a polyorganosiloxane having 2 or more alkoxy groups bonded to silicon atoms in the molecule and having a viscosity at 23 ° C.
  • R 1 is an unsubstituted monovalent hydrocarbon group, or a monovalent hydrocarbon group in which a part of the hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group
  • R 2 is an alkyl group, Or an alkoxy-substituted alkyl group in which a part of hydrogen atoms of the alkyl group is substituted with an alkoxy group
  • a and b are positive numbers satisfying 0.5 ⁇ a ⁇ 1.5 and 0 ⁇ b ⁇ 3
  • Mw weight average molecular weight
  • the electrical / electronic device of the present invention is characterized in that it has a film made of a cured product of the room temperature-curable polyorganosiloxane composition of the present invention on the surface of the electrode and / or wiring.
  • room temperature means a normal temperature that is neither heated nor cooled, for example, 23 ° C.
  • Solid means a normal so-called solid state having no fluidity.
  • Solid means that the material is not in a solid state because it has a slight fluidity, but it is in a highly viscous state such that it is not recognized as a liquid, such as a viscous candy. That is, “semi-solid” means a state having a high viscosity, for example, a viscosity of 10 Pa ⁇ s or more and a slight fluidity.
  • the room temperature-curable polyorganosiloxane composition of the present invention has a low viscosity and good coating properties, and can be applied as it is by a normal coating method without being diluted with a solvent. And a coating film hardens
  • the room temperature curable polyorganosiloxane composition of the embodiment of the present invention is: (A1) a first polyorganosiloxane having at least two alkoxy groups bonded to silicon atoms in the molecule and having a viscosity at 23 ° C. of 3 mPa ⁇ s to 500 mPa ⁇ s at room temperature, (A2) A second polyorganosiloxane which is represented by an average composition formula (a2), has a three-dimensional network structure, has a weight average molecular weight (Mw) of 2,000 to 100,000, and is solid or semisolid at room temperature.
  • the room temperature-curable polyorganosiloxane composition of the embodiment can further contain (C) a silane compound represented by the formula (c1) described later.
  • a silane compound represented by the formula (c1) described later Asinafter, each component which comprises the room temperature curable polyorganosiloxane composition of embodiment, a content rate, etc. are demonstrated.
  • the polyorganosiloxane mixture as the component (A) is a polymer component serving as a base of the present composition, and (A1) an alkoxy bonded to a silicon atom in the molecule.
  • viscosity 3 mPa ⁇ s to 500 mPa ⁇ s
  • a second polyorganosiloxane represented by (a2) having a three-dimensional network structure, having a weight average molecular weight (Mw) of 2,000 to 100,000 and solid or semisolid at room temperature; Become. Mw is a value obtained by GPC (gel permeation chromatograph) based on polystyrene.
  • the molecular structure of the first polyorganosiloxane component (A1) has at least two alkoxy groups bonded to silicon atoms in the molecule, and the viscosity is 3 mPa ⁇ s to 500 mPa ⁇ s. It may be a straight chain or a structure having a branched chain (hereinafter referred to as a branched chain).
  • a linear polyorganosiloxane is preferred because the viscosity is easily set in the above range.
  • when using branched polyorganosiloxane in order to maintain the viscosity prescribed
  • the viscosity of the component (A1) is 3 mPa ⁇ s to 500 mPa ⁇ s.
  • the viscosity of the component (A1) is less than 3 mPa ⁇ s, the resulting cured product has poor rubber elasticity, and when it exceeds 500 mPa ⁇ s, the workability in producing a cured product such as a cured film is reduced.
  • the viscosity of (A1) component exceeds 500 mPa * s, compatibility with the (A2) component mentioned later is bad, and a uniform composition cannot be obtained.
  • the viscosity of the component (A1) is preferably in the range of 5 mPa ⁇ s to 100 mPa ⁇ s.
  • the component may be composed of one or more polyorganosiloxanes.
  • the component (A1) is composed of one kind of polyorganosiloxane
  • the polyorganosiloxane has two or more alkoxy groups in the molecule and has a viscosity of 3 mPa ⁇ s to 500 mPa ⁇ s.
  • (A1) component is comprised with the mixture of 2 or more types of polyorganosiloxane, this mixture should just satisfy
  • each polyorganosiloxane do not necessarily satisfy the above-mentioned definition, but the structure and viscosity of each polyorganosiloxane constituting the component (A1) preferably satisfy the above-mentioned definition. .
  • the two or more alkoxy groups bonded to the silicon atom may be bonded to the silicon atom at the molecular end and bonded to the silicon atom in the middle part. It may be. It is preferable that at least one alkoxy group is bonded to the silicon atom at the molecular end. In this case, all of the alkoxy groups of the linear polyorganosiloxane may be bonded to the silicon atom at the molecular end, or at least one alkoxy group may be bonded to the middle silicon atom. Good.
  • the linear polyorganosiloxane constituting the component (A1) is preferably a polyorganosiloxane having both ends alkoxysilyl group blocked represented by the following general formula (a11).
  • the polyorganosiloxane represented by the formula (a11) is also referred to as polyorganosiloxane (a11).
  • abbreviations including symbols representing the formulas may be used for compounds represented by other formulas.
  • R 5 represents an alkyl group or an alkoxy-substituted alkyl group in which a part of hydrogen atoms of the alkyl group is substituted with an alkoxy group.
  • R ⁇ 5 > may mutually be same or different.
  • Specific examples of the alkyl group for R 5 include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Specific examples of the alkoxy-substituted alkyl group include a 2-methoxyethyl group, a 2-ethoxyethyl group, Examples include 3-methoxypropyl group.
  • R 5 is preferably a methyl group.
  • R 6 is an unsubstituted monovalent hydrocarbon group or a monovalent hydrocarbon group in which a part of hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group.
  • the plurality of R 6 may be the same as or different from each other.
  • R 7 is also an unsubstituted monovalent hydrocarbon group or a monovalent hydrocarbon group in which a part of hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group.
  • a plurality of R 7 may be the same as or different from each other.
  • unsubstituted monovalent hydrocarbon group for R 6 and R 7 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, and dodecyl group.
  • a cycloalkyl group such as a cyclohexyl group; an alkenyl group such as a vinyl group or an allyl group; an aryl group such as a phenyl group, a tolyl group or a xylyl group; a benzyl group, a 2-phenylethyl group, or a 2-phenylpropyl group; Aralkyl group and the like can be mentioned.
  • the substituted monovalent hydrocarbon group includes, for example, a chloromethyl group, a 3-chloropropyl group, 3,3,3-trifluoro in which a part of the hydrogen atoms of the monovalent hydrocarbon group is substituted with a halogen atom. Examples thereof include a halogenated alkyl group such as a propyl group, and a 3-cyanopropyl group in which part of the hydrogen atoms of the monovalent hydrocarbon group is substituted with a cyanoalkyl group.
  • R 6 and R 7 are preferably methyl groups because they are easy to synthesize, have a low viscosity relative to the molecular weight, and give good physical properties to the cured product (cured film). However, when it is necessary to impart heat resistance or cold resistance to the cured film, it is preferable that a part of R 6 and / or R 7 is an aryl group such as a phenyl group.
  • X is a divalent oxygen (oxy group) or a divalent hydrocarbon group.
  • Two Xs may be the same or different.
  • the divalent hydrocarbon include alkylene groups such as methylene group, ethylene group, propylene group and trimethylene group, and arylene groups such as phenylene group.
  • alkylene groups such as methylene group, ethylene group, propylene group and trimethylene group
  • arylene groups such as phenylene group.
  • a divalent oxygen atom (oxy group) or an ethylene group is preferable, and an oxy group is particularly preferable.
  • n is an integer such that the viscosity of the polyorganosiloxane (a11) is 3 mPa ⁇ s to 500 mPa ⁇ s, specifically, an integer satisfying 1 ⁇ n ⁇ 250.
  • the viscosity of the polyorganosiloxane (a11) is preferably in the range of 5 mPa ⁇ s to 100 mPa ⁇ s, and the value of n is preferably an integer of 3 to 100.
  • the polyorganosiloxane (a11) is obtained by subjecting a cyclic diorganosiloxane low monomer such as octamethylsiloxane to ring-opening polymerization or ring-opening copolymerization in the presence of water using an acidic catalyst or an alkaline catalyst.
  • the terminal hydroxyl group-containing dioliganopolysiloxane can be obtained by encapping with methyltrimethoxysilane or the like.
  • the polyorganosiloxane (a11) is preferably a methyldimethoxysilyl group or a trimethyl group at both ends represented by the following formula (where d is 0 or 1, and n is the same as in the formula (a11) including preferred embodiments). Examples thereof include polydimethylsiloxane having a methoxysilyl group.
  • a trifunctional siloxane unit (wherein one organic group bonded to silicon is an unsubstituted monovalent hydrocarbon group, or a part of the hydrogen atoms are halogen atoms or cyanoalkyl groups) Substituted monovalent hydrocarbon groups) and / or branched polyorganosiloxanes having tetrafunctional siloxane units.
  • T unit the trifunctional siloxane unit
  • Q unit the tetrafunctional siloxane unit
  • the branched polyorganosiloxane may constitute the component (A1) alone, or may be used together with the linear polyorganosiloxane, for example, the polyorganosiloxane (a11) to constitute the component (A1). Good. In view of easy adjustment of the viscosity as the component (A1) to the above specified range, it is preferable to use it together with a linear polyorganosiloxane.
  • This branched polyorganosiloxane is a monofunctional siloxane unit (however, the three organic groups bonded to silicon are independently an unsubstituted monovalent hydrocarbon group or a part of hydrogen atoms.
  • the monofunctional siloxane unit is referred to as M unit
  • the bifunctional siloxane unit is referred to as D unit.
  • the branched polyorganosiloxane is preferably a polyorganosiloxane containing D units and T units.
  • the molecular weight of the branched polyorganosiloxane is set so that the viscosity as the component (A1) can be a specified viscosity.
  • the viscosity of such a branched polyorganosiloxane is 3 mPa ⁇ s to 500 mPa ⁇ s when used alone, similarly to the linear polyorganosiloxane, and ranges from 5 mPa ⁇ s to 100 mPa ⁇ s. It is preferable to do.
  • the branched polyorganosiloxane is combined with the above linear polyorganosiloxane, for example, polyorganosiloxane (a11), the viscosity when used as the component (A1) may be in the above range.
  • the branched polyorganosiloxane used as the component (A1) has two or more alkoxy groups bonded to silicon atoms in the molecule.
  • the alkoxy group may be bonded to any unit silicon atom.
  • the branched polyorganosiloxane is a polyorganosiloxane containing a D unit and a T unit, 80% or more of the two or more alkoxy groups bonded to the silicon atom are bonded to the silicon atom of the T unit. Is preferred. More preferably, all of the alkoxy groups are bonded to the silicon atom of the T unit.
  • Examples of the alkoxy group possessed by the branched polyorganosiloxane include the same groups as OR 5 in the formula (a11) representing the polyorganosiloxane (a11).
  • this alkoxy group a methoxy group and an ethoxy group are preferable.
  • the organic group bonded to the silicon atom of the branched polyorganosiloxane that is, an unsubstituted monovalent hydrocarbon group, or a monovalent hydrocarbon group in which a part of the hydrogen atom is substituted with a halogen atom or a cyanoalkyl group, And a group similar to R 6 in the formula (a11) representing the polyorganosiloxane (a11).
  • the organic group is preferably a methyl group.
  • the above-mentioned linear polyorganosiloxane for example, a mixture of the polyorganosiloxane (a11) and the branched polyorganosiloxane is further added to the partially hydrolyzed silane compound (a12).
  • a decomposition condensate can also be blended.
  • linear polyorganosiloxanes for example, polyorganosiloxane (a11), branched polyorganosiloxane, and partially hydrolyzed condensate of silane compound (a12) may be used alone. You may mix and use 2 or more types.
  • R 8 is an unsubstituted monovalent hydrocarbon group or a monovalent hydrocarbon group in which a part of the hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group, Examples thereof are the same groups as R 6 in formula (a11) representing organosiloxane (a11).
  • R 8 is preferably a methyl group, a vinyl group or the like.
  • R 9 is an alkyl group or an alkoxy-substituted alkyl group, and examples thereof include the same groups as R 5 in formula (a11) representing the above-described linear polyorganosiloxane (a11).
  • R 9 is preferably a methyl group, an ethyl group, or the like.
  • e is 0, 1 or 2.
  • Examples of the silane compound (a12) used as a starting material for such a partial hydrolysis-condensation product include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and vinyl.
  • Examples include triethoxysilane, phenyltriethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, vinylmethyldimethoxysilane, dimethyldiethoxysilane, and the like.
  • a partial hydrolysis-condensation product is obtained by, for example, partially hydrolyzing a silane compound such as methyltrimethoxysilane by the presence of water, an acidic catalyst or an alkaline catalyst. Further, it can be obtained by encaprating a silanol group generated by partial hydrolysis with methyltrimethoxysilane or the like.
  • the viscosity of the polyorganosiloxane that is a partial hydrolysis-condensation product of the silane compound (a12) is also the linear polyorganosiloxane, for example, the polyorganosiloxane (a11) or the above It is sufficient that the viscosity is 3 mPa ⁇ s to 500 mPa ⁇ s when the component (A1) is combined with the branched polyorganosiloxane.
  • the viscosity of the polyorganosiloxane that is the partial hydrolysis-condensation product of the silane compound (a12) is preferably in the range of 5 mPa ⁇ s to 100 mPa ⁇ s.
  • the number of Si in the partial hydrolysis-condensation product of the silane compound (a12) is selected so that the viscosity in the partial hydrolysis-condensation product falls within the above range.
  • the component (A1) for example, when a partial hydrolysis condensate of polyorganosiloxane (a11) and silane compound (a12) is used in combination, a partial hydrolysis condensate of polyorganosiloxane (a11) and silane compound (a12).
  • the ratio is preferably such that when the polyorganosiloxane (a11) is 100 parts by mass, the partial hydrolysis-condensation product of the silane compound (a12) is 1 to 200 parts by mass, and the ratio is 10 to 100 parts by mass. Is more preferable.
  • the second polyorganosiloxane as component (A2) is represented by an average composition formula (a2): R 1 a Si (OR 2 ) b O ⁇ 4- (a + b) ⁇ / 2 (a2)
  • the polyorganosiloxane has a three-dimensional network structure, is solid or semi-solid at normal temperature (23 ° C.), and has an Mw of 2,000 to 100,000.
  • R 1 is an unsubstituted monovalent hydrocarbon group or a monovalent hydrocarbon group in which a part of the hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group
  • R 6 is the same groups as R 6 in the formula (a11) showing the polyorganosiloxane (a11).
  • R 1 is preferably a methyl group.
  • R 2 is an alkyl group or an alkoxy-substituted alkyl group in which a part of hydrogen atoms of the alkyl group is substituted with an alkoxy group, and represents the above-described linear polyorganosiloxane (a11) (a11)
  • the same groups as R 5 in are exemplified.
  • R 2 is preferably a methyl group.
  • a and b are positive numbers satisfying 0.5 ⁇ a ⁇ 1.5 and 0 ⁇ b ⁇ 3.
  • a and b are preferably positive numbers satisfying 0.8 ⁇ a ⁇ 1.5 and 0 ⁇ b ⁇ 1. It is more preferable that a and b are positive numbers satisfying 0.9 ⁇ a ⁇ 1.4 and 0 ⁇ b ⁇ 0.5.
  • Such a polyorganosiloxane (a2) is prepared by, for example, hydrolyzing alkoxysilanes to prepare a polyorganosiloxane having a silanol group and having a three-dimensional network structure, and then encapsulating the polyorganosiloxane with alkoxysilane.
  • a2 is prepared by, for example, hydrolyzing alkoxysilanes to prepare a polyorganosiloxane having a silanol group and having a three-dimensional network structure, and then encapsulating the polyorganosiloxane with alkoxysilane.
  • the Mw of the component (A2) is preferably 2,000 to 50,000, and more preferably 3,000 to 30,000.
  • a component consists of 1 type, or 2 or more types of polyorganosiloxane (a2).
  • Mw of the polyorganosiloxane (a2) is 2,000 to 100,000.
  • the component (A2) is composed of a plurality of polyorganosiloxanes (a2), if the Mw as the component (A2) is 2,000 to 100,000, the Mw of each polyorganosiloxane (a2) is not necessarily 2,000. Although it is not necessary to be in the range of 100,000 to 100,000, it is preferable to be within this range.
  • Mw is preferably 2,000 to 50,000, more preferably 3,000 to 30,000.
  • the second polyorganosiloxane (A2) in the form of a liquid is mixed with the first polyorganosiloxane (A1) that is liquid at room temperature and has a predetermined viscosity.
  • the mixing ratio of the component (A1) and the component (A2) is such that the whole component (A) is 100 parts by mass, the component (A1) is 10 to 80 parts by mass, and the component (A2) is 90 to 20 parts by mass. .
  • the compounding amount of the component (A1) is less than 10 parts by mass and the compounding amount of the component (A2) exceeds 90 parts by mass, it is difficult to obtain a composition that can be used as a coating material without any solvent.
  • the compounding quantity of (A1) component exceeds 80 mass parts and the compounding quantity of (A2) component is less than 20 mass parts, the cured film which has sufficient scratch resistance cannot be obtained.
  • the blending ratio of the component (A1) to the component (A2) is more preferably in the range of 10 to 70 parts by weight for the component (A1) and 90 to 30 parts by weight for the component (A2). 20 to 60 parts by weight for the component (A1)
  • the component (A2) is more preferably in the range of 80 to 40 parts by mass.
  • the organotitanium compound as component (B) is composed of (A1) component and (A2) component alkoxy group (A) and / or Or it is a curing catalyst for reacting the alkoxy group of (A) component and the alkoxy group of the crosslinking agent which is (C) component mentioned later in the presence of moisture to form a crosslinked structure.
  • organic titanium compounds that are curing catalysts include tetraethoxy titanium, tetrapropoxy titanium, tetrabutoxy titanium, diisopropoxy-bis (ethyl acetoacetate) titanium, diisopropoxy-bis (methyl acetoacetate) titanium, di Examples include isopropoxy-bis (acetylacetone) titanium, dibutoxy-bis (ethyl acetoacetate) titanium, dimethoxy-bis (ethyl acetoacetate) titanium, and the like. These organic titanium compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • titanium chelates such as diisopropoxy-bis (ethyl acetoacetate) titanium are preferred because a composition having a high catalytic ability and a small amount of impurities can be obtained in the presence of a small amount.
  • dibutyltin dioctoate is used as a curing catalyst for accelerating the reaction between the alkoxy groups of the base component and the reaction of the alkoxy group of the base component and the alkoxy group of the crosslinking agent.
  • An organotin compound such as dibutyltin dilaurate may be used, but when an organotin compound is used as a curing catalyst, it takes a long time to cure, which is not preferable.
  • the organotitanium compound is used from the viewpoints of both curability of the composition (speed of curing) and scratch resistance of the cured film.
  • the blending amount of the organic titanium compound as the component (B) is 0.1 to 15 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 0.1 parts by mass, it will not function sufficiently as a curing catalyst, and it will not only take a long time to cure, but in particular, curing at a deep part far from the contact surface with air will be insufficient. On the other hand, if it exceeds 15 parts by mass, there is no effect corresponding to the blending amount, and it is meaningless and uneconomical. In addition, the storage stability is lowered.
  • silane compound represented by the formula (c1): R 3 c Si (OR 4 ) 4-c (c1) can be contained.
  • This silane compound functions as a crosslinking agent for the base polymer as the component (A).
  • R 3 is an unsubstituted monovalent hydrocarbon group or a monovalent hydrocarbon group in which a part of the hydrogen atoms is substituted with a halogen atom or a cyanoalkyl group, and the polyorganosiloxane (a11 And a group similar to R 6 in formula (a11).
  • R 3 is preferably a methyl group, a vinyl group or the like.
  • R 4 is an alkyl group or an alkoxy-substituted alkyl group, and examples thereof include the same groups as R 5 in the formula (a11) showing the polyorganosiloxane (a11).
  • R 4 is preferably a methyl group, an ethyl group, or the like.
  • c is 0, 1 or 2.
  • silane compound (c1) examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane, tetra Examples include propoxysilane, tetraisopropoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, vinylmethyldimethoxysilane, and dimethyldiethoxysilane. These silane compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • silane compound (c1) which is a crosslinking agent As a silane compound (c1) which is a crosslinking agent, it is easy to synthesize, does not impair the storage stability of the composition, has little corrosiveness to metals, and provides a high crosslinking reaction rate, that is, a curing rate. It is preferable to use tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, dimethyldimethoxysilane, vinylmethyldimethoxysilane, dimethyldiethoxysilane, and particularly preferably methyltrimethoxysilane.
  • the blending amount is 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A).
  • the compounding quantity of (C) component exceeds 15 mass parts, the shrinkage rate in the case of hardening will become large, and the physical property after hardening will fall. In addition, the curing rate is remarkably slow, which is economically disadvantageous.
  • an isocyanurate compound such as tris (N-trialkoxysilylpropyl) isocyanurate can be blended as an adhesiveness imparting agent.
  • the isocyanurate compound include 1,3,5-tris (N-trimethoxysilylpropyl) isocyanurate.
  • the amount of such an adhesion-imparting agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of component (A).
  • the room temperature curable polyorganosiloxane composition of the embodiment includes inorganic fillers, pigments, thixotropy imparting agents, viscosity modifiers for improving extrusion workability, which are usually blended in this type of composition, Various additives such as ultraviolet absorbers, fungicides, heat resistance improvers, flame retardants and the like can be blended as necessary within a range not impairing the effects of the present invention.
  • the inorganic filler include fumed silica, calcined silica, precipitated silica, fumed titanium, and those whose surfaces are hydrophobized with organochlorosilanes, polyorganosiloxanes, hexamethyldisilazane, and the like.
  • calcium carbonate organic acid surface-treated calcium carbonate, diatomaceous earth, ground silica, aluminosilicate, magnesia, alumina, and the like can be used.
  • blending an inorganic filler 100 mass parts or less are preferable with respect to 100 mass parts of (A) component, and, as for the compounding quantity, 50 mass parts or less are more preferable.
  • the component (A) and the component (B), and the component (C) and the components described above are mixed in a state where moisture is blocked. Can be obtained.
  • the resulting composition has a viscosity of 20 mPa ⁇ s to 1000 mPa ⁇ s at 23 ° C.
  • the viscosity is preferably 20 mPa ⁇ s to 500 mPa ⁇ s.
  • the room temperature curable polyorganosiloxane composition of the embodiment does not contain a solvent.
  • a solvent removal step is not required at the time of forming the cured film, and volatilization of the solvent does not cause deterioration of the working environment, and corrosion / deterioration of electric / electronic components and circuit boards on which they are mounted.
  • the room temperature curable polyorganosiloxane composition obtained above is stored as it is in a sealed container and is used only as a so-called one-packaging room temperature curable composition which is cured only by exposure to moisture in the air during use. Can do.
  • the room temperature curable polyorganosiloxane composition of the embodiment is prepared by separately dividing, for example, the component (A), the crosslinking agent (C) and the curing catalyst (B) separately, and appropriately 2 to It can also be used as a so-called multi-packaging room temperature curable composition that is stored in three separate containers and mixed at the time of use.
  • the order of mixing of each component is not specifically limited.
  • the room temperature curable polyorganosiloxane composition of the present invention has a sufficiently low viscosity of 20 mPa ⁇ s to 1000 mPa ⁇ s at 23 ° C. as described above, the coating property is good, and it remains as it is without being diluted with a solvent. It can be applied by a normal coating method.
  • the coating film is rapidly cured at room temperature by coming into contact with moisture in the air.
  • the hardness of the cured coating (Type A) is as high as 60 or more, and it has excellent electrical and mechanical properties, especially scratch resistance.
  • the composition of the present invention is useful for applications such as coating materials and potting materials for electrical and electronic equipment, and particularly on the surface of electrical and electronic components such as conformal coating agents and circuit boards on which these are mounted. Suitable for protecting applications.
  • it is suitably used as a coating material for electrodes, wiring, and the like in electrical and electronic equipment equipped with semiconductor devices such as ICs, electronic components such as resistors and capacitors.
  • the room temperature curable polyorganosiloxane composition of the present invention as a wiring board electrode or wiring coating material, as a coating method, a dipping method, a brush coating method, a spray method, a dispensing method, etc. can be used,
  • the thickness of the coating layer is usually 0.01 to 3 mm, preferably 0.05 to 2 mm. If the thickness is less than 0.01 mm, scratch resistance may not be sufficiently obtained. On the other hand, if the thickness exceeds 3 mm, not only the effect can be obtained, but also it takes time to harden the inside, which is uneconomical.
  • FIG. 1 is a cross-sectional view showing an example of an electric / electronic device (apparatus) according to the present invention.
  • the electrical / electronic device 1 of the embodiment includes a wiring board 2 in which a wiring 2b made of a conductor such as a copper foil is formed on an insulating board 2a such as a glass epoxy board.
  • An electrical / electronic component such as an IC package 3 or a capacitor 4 is mounted at a predetermined position on one main surface of the wiring board 2 and is electrically connected to the wiring 2b.
  • the connection between the IC package 3 or the capacitor 4 and the wiring 2b is such that the lead terminals 3a and 4a of these components are inserted into the component holes (not shown) of the wiring substrate 2 and are joined via solder or the like. It is done by doing.
  • a cured film 5 made of a cured product of the above-described room temperature curable polyorganosiloxane composition of the present invention is formed on the component mounting surface of the wiring board 2 so as to cover the upper surfaces of the IC package 3 and the capacitor 4. Yes.
  • the wiring board 2 and the electrical / electronic components mounted on the main surface thereof are covered with the cured coating 5 that has excellent scratch resistance and is less likely to be peeled off or turned up due to friction. So it is highly reliable.
  • a 1 L separable flask was charged with 200 g of a polyorganosiloxane having a silanol group at the end and a branched structure (three-dimensional network structure) and 50 g of methyltrimethoxysilane, and stirred for 5 minutes at room temperature. While stirring, 0.76 g of formic acid was added into the flask. Thereafter, the temperature in the flask was raised to 80 ° C., followed by stirring with heating. After 30 minutes, the methanol removal reaction between the silanol group and methyltrimethoxysilane started, and methanol was by-produced. By-product methanol was removed from the flask using a drain tube. After heating and stirring at 80 ° C.
  • polyorganosiloxane (A2-1) corresponding to polyorganosiloxane (a2) was synthesized as follows.
  • a 5 L separable flask was charged with 1410 g of toluene and 135 g of methanol, and a mixture of 1326 g of methyltrimethoxysilane and 20 g of methyltrichlorosilane was added to the flask while stirring. And after raising the temperature in a flask to 35 degreeC using the mantle heater, 510 g of city water was dripped in the flask. The liquid temperature after completion of the dropwise addition was raised to 60 ° C. After heating and refluxing for 2 hours, 510 g of city water was added for liquid separation, and the upper water / methanol / HCL layer was discarded.
  • the lower resin / toluene layer was dehydrated at normal pressure, and then excess toluene was distilled off by vacuum stripping to a non-volatile content of 50%. After filtration, 1268 g of polyorganosiloxane having a silanol group at the end and a three-dimensional network structure was obtained. Next, terminal methoxylation reaction of the obtained polyorganosiloxane was performed.
  • a 1 L separable flask was charged with 400 g of a 50% toluene solution of a polyorganosiloxane having a silanol group at the terminal and having a branched structure (three-dimensional network structure) and 112 g of methyltrimethoxysilane, and the mixture was stirred for 5 minutes at room temperature. After stirring, 0.76 g of formic acid was added to the flask while stirring. Thereafter, the temperature in the flask was raised to 80 ° C., followed by stirring with heating. After 30 minutes, the methanol removal reaction between the silanol group and methyltrimethoxysilane started, and methanol was by-produced.
  • the lower resin / toluene layer was dehydrated at normal pressure, and then excess toluene was distilled off by vacuum stripping to a non-volatile content of 50%. After filtration, 1268 g of polyorganosiloxane having a silanol group at the end and a three-dimensional network structure was obtained. Next, terminal methoxylation reaction of the obtained polyorganosiloxane was performed.
  • a 1 L separable flask was charged with 400 g of a 50% toluene solution of a polyorganosiloxane having a silanol group at the terminal and having a branched structure (three-dimensional network structure) and 112 g of methyltrimethoxysilane, and the mixture was stirred for 5 minutes at room temperature. After stirring, 0.76 g of formic acid was added to the flask while stirring. Thereafter, the temperature in the flask was raised to 80 ° C., followed by stirring with heating. After 30 minutes, the methanol removal reaction between the silanol group and methyltrimethoxysilane started, and methanol was by-produced.
  • a 5 L separable flask was charged with 1410 g of toluene and 135 g of methanol, and a mixture of 1739 g of methyltrimethoxysilane, 298 g of dimethyldimethoxysilane and 20 g of methyltrichlorosilane was added to the flask while stirring. And after raising the temperature in a flask to 35 degreeC using the mantle heater, 510 g of city water was dripped in the flask. The liquid temperature after completion of the dropwise addition was raised to 60 ° C. After heating and refluxing for 2 hours, 510 g of city water was added for liquid separation, and the upper water / methanol / HCL layer was discarded.
  • the lower resin / toluene layer was dehydrated at normal pressure, and then excess toluene was distilled off by vacuum stripping to a non-volatile content of 50%. After filtration, 1268 g of polyorganosiloxane having a silanol group at the end and a three-dimensional network structure was obtained. Next, terminal methoxylation reaction of the obtained polyorganosiloxane was performed.
  • a 1 L separable flask was charged with 400 g of a 50% toluene solution of a polyorganosiloxane having a silanol group at the terminal and having a branched structure (three-dimensional network structure) and 112 g of methyltrimethoxysilane, and the mixture was stirred for 5 minutes at room temperature. After stirring, 0.76 g of formic acid was added to the flask while stirring. Thereafter, the temperature in the flask was raised to 80 ° C., followed by stirring with heating. After 30 minutes, the methanol removal reaction between the silanol group and methyltrimethoxysilane started, and methanol was by-produced.
  • Example 1 50 parts by weight of linear polydimethylsiloxane (viscosity: 10 mPa ⁇ s) in which both ends of the molecular chain are blocked with methyldimethoxysilyl groups are classified as the above polyorganosiloxane (a11) as component (A1)
  • Example 2 to 12 Each component shown in Table 1 was blended in the composition shown in the same table and mixed in the same manner as in Example 1 to obtain a polyorganosiloxane composition.
  • the abbreviations of the polyorganosiloxane used as the component (A1) are as follows.
  • (A11) is a linear polyorganosiloxane classified as polyorganosiloxane (a11)
  • (A12) is a branched polyorganosiloxane
  • (A13) is a partially hydrolyzed condensate of the silane compound (a12). Show.
  • (A11-1) represents a linear polydimethylsiloxane (viscosity: 10 mPa ⁇ s) in which both ends of the molecular chain classified as polyorganosiloxane (a11) are blocked with methyldimethoxysilyl groups as described above.
  • (A11-2) represents a linear polydimethylsiloxane (viscosity 15 mPa ⁇ s) in which both ends of the molecular chain classified as polyorganosiloxane (a11) are blocked with trimethoxysilyl groups.
  • (A11-3) represents linear polydimethylsiloxane (viscosity: 100 mPa ⁇ s) in which both ends of the molecular chain classified as polyorganosiloxane (a11) are blocked with trimethoxysilyl groups.
  • (A12-1) represents the branched polyorganosiloxane having a viscosity of 40 mPa ⁇ s and Mw of 2,700 obtained in Synthesis Example 1.
  • (A13-1) represents a partially hydrolyzed condensate of methyltrimethoxysilane (viscosity 18 mPa ⁇ s, Si number 7).
  • (A2) component is a polyorganosiloxane (Mw7, Mw7) represented by the average composition formula (CH 3 ) 1.0 Si (OCH 3 ) 0.2 O 1.4 obtained in Synthesis Example 2 as described above. 000).
  • (A2-2) represents a polyorganosiloxane (Mw 5,000) represented by the average composition formula (CH 3 ) 1.1 Si (OCH 3 ) 0.2 O 1.35 obtained in Synthesis Example 3.
  • (A2-3) represents the polyorganosiloxane (Mw 29,000) represented by the average composition formula (CH 3 ) 1.2 Si (OCH 3 ) 0.22 O 1.29 obtained in Synthesis Example 4. Show.
  • viscosity The viscosity of the polyorganosiloxane composition was measured according to JIS K6249. A rotational viscometer (manufactured by Shibaura Semtec Co., Ltd., product name: Bismetron VDA-2) was used, and the rotational speed was 30 rpm. Measurements were taken at 2.
  • the tack free time of the polyorganosiloxane composition was measured according to JIS K6249. The sample was placed flat in an aluminum petri dish so that bubbles did not enter (the thickness of the sample was 3 mm), and then the surface was lightly touched with a fingertip washed with ethyl alcohol. The time at which the sample did not adhere to the fingertip was defined as the tack free time (minutes).
  • the hardness of the polyorganosiloxane composition was measured as shown below according to JIS K6249. That is, after the polyorganosiloxane composition was formed into a sheet having a thickness of 2 mm, it was allowed to cure at 23 ° C. and 50% RH for 3 days. Next, three of the obtained cured sheets were stacked and the hardness was measured with a durometer (Type A).
  • the polyorganosiloxane composition was applied to a comb-shaped electrode substrate (copper electrode, pattern width 0.316 mm) defined by JIS Z3197 (ISO 9455) at a thickness of 100 ⁇ m, and allowed to stand at 23 ° C. and 50% RH for 3 days. And cured. Next, the formed cured film was subjected to a pencil hardness test according to JIS K5600-5-4 to evaluate scratch resistance. In the pencil hardness test, 2B and 4B pencils were used, a line was drawn with a load of 750 g, the subsequent state of the cured film was visually observed, and evaluation was performed according to the following criteria.
  • the polyorganosiloxane compositions obtained in Examples 1 to 12 have a uniform viscosity suitable for thin film coating and a high hardness (Type A) of 60 or more, and scratch resistance. It was found that an excellent cured film was formed.
  • the room temperature curable polyorganosiloxane of the present invention is useful for applications such as coating materials and potting materials for electrical and electronic equipment, and in particular, conformal coating agents for electrical and electronic equipment in which electronic components are mounted on a substrate. It is suitable as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

 低粘度、無溶剤で塗布性が良く、かつ耐スクラッチ性に優れた硬化被膜を形成する室温硬化性ポリオルガノシロキサン組成物を提供する。本発明の室温硬化性ポリオルガノシロキサン組成物は、(A1)ケイ素原子に結合するアルコキシ基を2個以上有し、粘度が3mPa・s~500mPa・sのポリオルガノシロキサン10~80質量部と、(A2)平均組成式:R Si(OR{4-(a+b)}/2(式中、Rは、非置換の一価炭化水素基など、Rは、アルキル基またはアルコキシ置換アルキル基。aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、Mwが2,000~100,000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90~20質量部とを混合してなる混合物(A)100質量部に対して、(B)有機チタン化合物0.1~15質量部を含有する。

Description

室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
 本発明は、室温硬化性ポリオルガノシロキサン組成物および電気・電子機器に係り、特に、耐スクラッチ性に優れた硬化被膜を形成し、電気・電子機器用コーティング材等として有用な室温硬化性ポリオルガノシロキサン組成物と、この室温硬化性ポリオルガノシロキサン組成物の硬化被膜を有する電気・電子機器に関する。
 従来から、室温で硬化してゴム状等の硬化物を生じる種々の室温硬化性ポリオルガノシロキサン組成物が知られている。それらのうちで、電気・電子部品のコーティング材やポッティング材等の用途には、空気中の水分と接触することにより硬化反応を生起するタイプのもので、硬化時にアルコールやアセトン等を放出するものが一般に用いられている。そのようなタイプの室温硬化性ポリオルガノシロキサン組成物は、作業性が良好であるうえに、硬化時に放出するアルコールやアセトンが金属類に対して腐食性が低いため、電極や配線の腐食のおそれが少なく、また接着性等にも優れるという利点がある。
 特に、電気・電子部品やそれらを搭載した回路基板の表面を使用環境から保護するために施されるコンフォーマルコーティング剤としては、低粘度の室温硬化性ポリオルガノシロキサン組成物からなるコーティング材(例えば、特許文献1、2参照。)や、シリコーンレジンを溶剤に溶解させたタイプのコーティング材が使用されている。
 しかしながら、低粘度の室温硬化性ポリオルガノシロキサン組成物からなるコーティング材では、得られる硬化被膜が脆くて硬度が低く、耐スクラッチ性のような引っかき強度が十分ではなかった。
 また、シリコーンレジンを含む溶剤タイプのコーティング材においては、硬化時に加熱による溶剤除去工程を必要とするため、溶剤の揮発により、作業環境の悪化や、電気・電子部品およびそれらを搭載した回路基板の腐食や劣化を引き起こすおそれがあった。さらに、作業環境を改善するために、溶剤を大気中に放出せずに回収しようとすると、高額の投資を必要とした。
特開平7-173435号公報 特開平7-238259号公報
 本発明はこれらの問題を解決するためになされたもので、低粘度、無溶剤で塗布性が良好であり、硬度が高く、耐スクラッチ性に優れた硬化被膜を形成する室温硬化性ポリオルガノシロキサン組成物を提供することを目的とする。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、
 (A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s~500mPa・sであるポリオルガノシロキサン10~80質量部と、
 (A2)平均組成式(a2):R Si(OR{4-(a+b)}/2  …(a2)
(式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。また、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、重量平均分子量(Mw)が2000~100000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90~20質量部
 とを混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
 (B)硬化触媒として有機チタン化合物0.1~15質量部
を含有することを特徴とする。
 本発明の電気・電子機器は、電極および/または配線の表面に、前記本発明の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる被膜を有することを特徴とする。
 本発明において、「常温」は、特に加熱も冷却もしない平常の温度を意味し、例えば23℃を示す。そして、「固体状」とは、全く流動性を有しない、通常のいわゆる固体状態を意味する。「半固体状」とは、若干の流動性を有するため固体状態ではないが、例えば粘稠な水あめ状のように、液状とは認められない程度に高粘度な状態を意味する。すなわち、「半固体状」とは、高粘度、例えば、粘度10Pa・s以上であって、若干の流動性を有する状態をいう。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、低粘度で塗布性が良く、溶剤で希釈することなくそのまま通常の塗布方法で塗布することができる。そして、塗布膜は室温で速やかに硬化し、硬度(Type A)が60以上と高く、耐スクラッチ性に優れた硬化被膜を形成する。したがって、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特に、コンフォーマルコーティング剤のような、電気・電子部品をコーティングする用途に好適する。
本発明の電気・電子機器の一例を示す断面図である。
 以下、本発明の実施の形態について説明する。
 本発明の実施形態の室温硬化性ポリオルガノシロキサン組成物は、
 (A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s~500mPa・sである常温で液状の第1のポリオルガノシロキサンと、(A2)上記平均組成式(a2)で表され、三次元網目構造を有し、重量平均分子量(Mw)が2,000~100,000で常温で固体状または半固体状の第2のポリオルガノシロキサンとを、特定の割合で混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
 (B)硬化触媒として有機チタン化合物0.1~15質量部を含有する。
 実施形態の室温硬化性ポリオルガノシロキサン組成物は、(C)後述の式(c1)で表されるシラン化合物をさらに含有することができる。
 以下、実施形態の室温硬化性ポリオルガノシロキサン組成物を構成する各成分、含有割合等について説明する。
(A)ポリオルガノシロキサン混合物
 本発明の実施形態において、(A)成分であるポリオルガノシロキサン混合物は、本組成物のベースとなるポリマー成分であり、(A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、常温で液状で23℃における粘度(以下、単に粘度と示す。)が3mPa・s~500mPa・sである第1のポリオルガノシロキサンと、(A2)上記平均組成式(a2)で表され、三次元網目構造を有し、重量平均分子量(Mw)が2,000~100,000で常温で固体状または半固体状の第2のポリオルガノシロキサンとを混合してなる。なお、Mwは、ポリスチレンを基準とするGPC(ゲルパーミエーションクロマトグラフ)により求められる値である。
(A1)成分
 (A1)成分である第1のポリオルガノシロキサンの分子構造は、分子中にケイ素原子に結合するアルコキシ基を2個以上有し、粘度が3mPa・s~500mPa・sであれば、直鎖状であっても、分岐鎖を有する構造(以下、分岐状と示す。)であってもよい。粘度を上記範囲に設定しやすいことから、直鎖状のポリオルガノシロキサンが好ましい。なお、分岐状のポリオルガノシロキサンを使用する場合には、(A1)成分全体として上に規定された粘度を保つために、直鎖状のポリオルガノシロキサンと併用することが好ましい。
 (A1)成分の粘度は3mPa・s~500mPa・sである。(A1)成分の粘度が3mPa・s未満であると、得られる硬化物のゴム弾性が乏しくなり、500mPa・sを超えると硬化被膜等の硬化物を作製する際の作業性が低下する。また、(A1)成分の粘度が500mPa・sを超えると、後述する(A2)成分との相溶性が悪く、均一な組成物が得られない。(A1)成分の粘度は、5mPa・s~100mPa・sの範囲が好ましい。
 (A1)成分は、ポリオルガノシロキサンの1種または2種以上で構成され得る。(A1)成分が1種のポリオルガノシロキサンで構成される場合、該ポリオルガノシロキサンは分子中に2個以上のアルコキシ基を有し、粘度が3mPa・s~500mPa・sである。(A1)成分が、2種以上のポリオルガノシロキサンの混合物で構成される場合、該混合物が(A1)成分としての上記アルコキシ基数や粘度の規定を満足すればよい。したがって、この場合、個々のポリオルガノシロキサンの構造や粘度は必ずしも上記規定を満たさなくてもよいが、(A1)成分を構成する個々のポリオルガノシロキサンの構造および粘度が上記規定を満たすことが好ましい。
 (A1)成分が直鎖状のポリオルガノシロキサンである場合、ケイ素原子に結合した2個以上のアルコキシ基は、分子末端のケイ素原子に結合していてもよく、中間部のケイ素原子に結合していてもよい。少なくとも1個のアルコキシ基が分子末端のケイ素原子に結合していることが好ましい。この場合、直鎖状のポリオルガノシロキサンが有するアルコキシ基の全てが分子末端のケイ素原子に結合していてもよいし、あるいは少なくとも1個のアルコキシ基が中間部のケイ素原子に結合していてもよい。
 (A1)成分を構成する直鎖状のポリオルガノシロキサンとしては、下記一般式(a11)で表される両末端アルコキシシリル基封鎖ポリオルガノシロキサンが好ましい。本明細書において、式(a11)で表されるポリオルガノシロキサンをポリオルガノシロキサン(a11)といもいう。以下、他の式で表される化合物についても同様にその式を示す記号を含む略称を用いることがある。
Figure JPOXMLDOC01-appb-C000002
 式(a11)中、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。複数のRは、互いに同一であっても異なっていてもよい。上記Rのアルキル基として具体的には、メチル基、エチル基、プロピル基、ブチル基等が例示され、アルコキシ置換アルキル基として具体的には、2-メトキシエチル基、2-エトキシエチル基、3-メトキシプロピル基等が例示される。Rは好ましくはメチル基である。
 Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。複数のRは、互いに同一であっても異なっていてもよい。Rも、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。複数のRは、互いに同一であっても異なっていてもよい。
 上記RおよびRの非置換の一価炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基のようなアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基等が挙げられる。置換された一価炭化水素基としては、上記一価炭化水素基の水素原子の一部がハロゲン原子で置換された、例えばクロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基のようなハロゲン化アルキル基や、前記一価炭化水素基の水素原子の一部がシアノアルキル基で置換された、例えば3-シアノプロピル基等が例示される。
 合成が容易で、分子量の割に低い粘度を有し、かつ硬化物(硬化被膜)に良好な物理的性質を与えることから、RおよびRはメチル基であることが好ましい。ただし、硬化被膜に耐熱性や耐寒性を付与する必要がある場合には、Rおよび/またはRの一部を、フェニル基のようなアリール基とすることが好ましい。
 式(a11)中、Xは、二価の酸素(オキシ基)または二価炭化水素基である。2個のXは同一であっても異なっていてもよい。二価炭化水素としては、メチレン基、エチレン基、プロピレン基、トリメチレン基等のアルキレン基、フェニレン基等のアリーレン基が例示される。合成の容易さから、二価の酸素原子(オキシ基)またはエチレン基が好ましく、特にオキシ基が好ましい。
 式(a11)中、dは0または1である。nはポリオルガノシロキサン(a11)の粘度が3mPa・s~500mPa・sとなる整数であり、具体的には、1≦n<250の整数である。ポリオルガノシロキサン(a11)の粘度は、5mPa・s~100mPa・sの範囲が好ましく、nの値は3~100の整数であることが好ましい。
 ポリオルガノシロキサン(a11)は、例えば、オクタメチルシロキサンのような環状ジオルガノシロキサン低量体を、水の存在下に酸性触媒またはアルカリ性触媒によって開環重合または開環共重合させることにより得られる両末端水酸基含有ジオリガノポリシロキサンを、メチルトリメトキシシラン等でエンキャップすることにより得ることができる。
 ポリオルガノシロキサン(a11)として好ましくは、下記式(ただし、dは0または1、nは好ましい態様を含めて式(a11)と同様である。)で示される両末端にメチルジメトキシシリル基またはトリメトキシシリル基を有するポリジメチルシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 また、(A1)成分としては、3官能型シロキサン単位(ただし、ケイ素に結合する1個の有機基は非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)および/または4官能型シロキサン単位を有する分岐状のポリオルガノシロキサンを用いることができる。以下、3官能型シロキサン単位をT単位、4官能型シロキサン単位をQ単位とそれぞれ示す。分岐状のポリオルガノシロキサンは、単独で(A1)成分を構成してもよく、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)とともに用いて(A1)成分を構成してもよい。(A1)成分としての粘度を上記規定の範囲に調整しやすい点から、直鎖状のポリオルガノシロキサンと併用することが好ましい。
 なお、この分岐状のポリオルガノシロキサンは、1官能型シロキサン単位(ただし、ケイ素に結合する3個の有機基は、独立して、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)および/または2官能型シロキサン単位(ただし、ケイ素に結合する2個の有機基は、独立して、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基である。)を有することができる。以下、1官能型シロキサン単位をM単位、2官能型シロキサン単位をD単位とそれぞれ示す。
 分岐状のポリオルガノシロキサンとしては、D単位とT単位を含むポリオルガノシロキサンが好ましい。この場合、D単位とT単位の含有モル比は、D:T=1:99~99:1が好ましい。D:T=10:90~90:10がより好ましい。分岐状のポリオルガノシロキサンの分子量は、(A1)成分としての粘度を規定の粘度とできる分子量とする。
 このような分岐状のポリオルガノシロキサンの粘度も、直鎖状のポリオルガノシロキサンと同様に、単独で用いる場合は、3mPa・s~500mPa・sであり、5mPa・s~100mPa・sの範囲とすることが好ましい。粘度は、分岐状のポリオルガノシロキサンを上記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)と組み合わせる場合には、(A1)成分とした際の粘度が上記範囲であればよい。
 上記(A1)成分として用いる分岐状のポリオルガノシロキサンは、分子内にケイ素原子に結合したアルコキシ基を2個以上有する。該アルコキシ基はいずれの単位のケイ素原子に結合していてもよい。分岐状のポリオルガノシロキサンが、D単位とT単位を含むポリオルガノシロキサンの場合、ケイ素原子に結合する2個以上のアルコキシ基は、その80%以上がT単位のケイ素原子に結合していることが好ましい。アルコキシ基は全てがT単位のケイ素原子に結合していることがより好ましい。
 分岐状のポリオルガノシロキサンが有するアルコキシ基としては、ポリオルガノシロキサン(a11)を示す式(a11)におけるORと同様の基が例示される。該アルコキシ基としては、メトキシ基、エトキシ基が好ましい。分岐状のポリオルガノシロキサンが有するケイ素原子に結合した有機基、すなわち非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基としては、ポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。該有機基としてはメチル基が好ましい。
 さらに、(A1)成分として、式(a12):R Si(OR4-e…(a12)で表されるシラン化合物の部分加水分解縮合物であるポリオルガノシロキサンを、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)とともに用いることができる。また、(A1)成分として、前記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)と前記分岐状のポリオルガノシロキサンとの混合物に、さらにこのようなシラン化合物(a12)の部分加水分解縮合物を配合することもできる。そして、直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)、分岐状のポリオルガノシロキサン、シラン化合物(a12)の部分加水分解縮合物のそれぞれは、1種を単独で使用してもよく2種以上を混合して使用してもよい。
 式(a12)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、ビニル基等が好ましい。また、Rは、アルキル基またはアルコキシ置換アルキル基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、エチル基等が好ましい。式(a12)中、eは0、1または2である。
 このような部分加水分解縮合物の出発物質となるシラン化合物(a12)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシラン等が例示される。そして、部分加水分解縮合物は、例えば、メチルトリメトキシシラン等のシラン化合物を、水の存在化、酸性触媒またはアルカリ性触媒によって部分加水分解することにより得られる。また、部分加水分解で生じたシラノール基を、メチルトリメトキシシラン等でエンキャップすることにより得られる。
 シラン化合物(a12)の部分加水分解縮合物であるポリオルガノシロキサンの粘度も、前記分岐状のポリオルガノシロキサンと同様に、上記直鎖状のポリオルガノシロキサン、例えば、ポリオルガノシロキサン(a11)や上記分岐状のポリオルガノシロキサンと組み合わせて(A1)成分とした際の粘度が3mPa・s~500mPa・sとなるような粘度であればよい。シラン化合物(a12)の部分加水分解縮合物であるポリオルガノシロキサンの粘度は、5mPa・s~100mPa・sの範囲とすることが好ましい。
 シラン化合物(a12)の部分加水分解縮合物におけるSi数は、部分加水分解縮合物における粘度が上記範囲となる数が選択される。
 (A1)成分として、例えば、ポリオルガノシロキサン(a11)とシラン化合物(a12)の部分加水分解縮合物を組み合わせて用いる場合、ポリオルガノシロキサン(a11)とシラン化合物(a12)の部分加水分解縮合物の割合は、ポリオルガノシロキサン(a11)を100質量部とした場合に、シラン化合物(a12)の部分加水分解縮合物が1~200質量部となる割合が好ましく、10~100質量部となる割合がより好ましい。
(A2)成分
 (A2)成分である第2のポリオルガノシロキサンは、平均組成式(a2):R Si(OR{4-(a+b)}/2…(a2)で表され、三次元網目構造を有し、常温(23℃)で固体状または半固体状でMwが2,000~100,000のポリオルガノシロキサンである。
 式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基であることが好ましい。また、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、前記した直鎖状のポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基であることが好ましい。
 式(a2)中、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。aおよびbは、0.8≦a≦1.5、0<b<1を満足する正数であることが好ましい。aおよびbは、0.9≦a≦1.4、0<b<0.5を満足する正数であることがより好ましい。
 このようなポリオルガノシロキサン(a2)は、例えば、アルコキシシラン類を加水分解し、シラノール基を含有し三次元網目構造を有するポリオルガノシロキサンを調製した後、このポリオルガノシロキサンをアルコキシシランでエンキャップする方法で得ることができる。
 (A2)成分のMwは2,000~50,000が好ましく、3,000~30,000がより好ましい。(A2)成分はポリオルガノシロキサン(a2)の1種または2種以上からなる。(A2)成分がポリオルガノシロキサン(a2)の1種からなる場合、該ポリオルガノシロキサン(a2)のMwは2,000~100,000である。(A2)成分が複数のポリオルガノシロキサン(a2)からなる場合、(A2)成分としてのMwが2,000~100,000であれば、各ポリオルガノシロキサン(a2)のMwは必ずしも2,000~100,000である必要はないが、該範囲内にあることが好ましい。ポリオルガノシロキサン(a2)についても、Mwは2,000~50,000が好ましく、3,000~30,000がより好ましい。
 本発明の室温硬化性ポリオルガノシロキサン組成物のベース成分である(A)成分は、このようなMwが2,000~100,000で、三次元網目構造を有し常温で固体状または半固体状の第2のポリオルガノシロキサン(A2)と、前記した常温で液状で所定の粘度を有する第1のポリオルガノシロキサン(A1)とを混合して構成される。
 (A1)成分と(A2)成分との混合割合は、(A)成分全体を100質量部として、(A1)成分を10~80質量部とし、(A2)成分を90~20質量部とする。(A1)成分の配合量が10質量部未満であり(A2)成分の配合量が90質量部を超えると、無溶剤でそのままコーティング材として使用可能な組成物を得ることが難しい。また、(A1)成分の配合量が80質量部を超え(A2)成分の配合量が20質量部未満の場合には、十分な耐スクラッチ性を有する硬化被膜が得られない。(A1)成分と(A2)成分の配合割合は、(A1)成分が10~70質量部、(A2)成分が90~30質量部の範囲がより好ましく(A1)成分が20~60質量部、(A2)成分が80~40質量部の範囲がさらに好ましい。
(B)成分
 本発明の室温硬化性ポリオルガノシロキサン組成物において、(B)成分である有機チタン化合物は、(A1)成分と(A2)成分からなる(A)成分のアルコキシ基同士、および/または(A)成分のアルコキシ基と後述する(C)成分である架橋剤のアルコキシ基とを、水分の存在下に反応させて架橋構造を形成させるための硬化触媒である。
 (B)硬化触媒である有機チタン化合物としては、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタン、ジイソプロポキシ-ビス(アセト酢酸エチル)チタン、ジイソプロポキシ-ビス(アセト酢酸メチル)チタン、ジイソプロポキシ-ビス(アセチルアセトン)チタン、ジブトキシ-ビス(アセト酢酸エチル)チタン、ジメトキシ-ビス(アセト酢酸エチル)チタン等を挙げることができる。これらの有機チタン化合物は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。微量の存在で大きな触媒能を持ち、かつ不純物の少ない組成物が得られることから、これらのなかでも特に、ジイソプロポキシ-ビス(アセト酢酸エチル)チタン等のチタンキレート類が好ましい。
 なお、室温硬化性ポリオルガノシロキサン組成物においては、ベース成分のアルコキシ基同士の反応や、ベース成分のアルコキシ基と架橋剤のアルコキシ基との反応を促進するための硬化触媒として、ジブチルスズジオクトエートやジブチルスズジラウレートのような有機スズ化合物が使用されることがあるが、硬化触媒として有機スズ化合物を使用した場合には、硬化に時間がかかり過ぎ好ましくない。本発明の実施形態においては、組成物の硬化性(硬化の速さ)と硬化被膜の耐スクラッチ性の両方の観点から、前記有機チタン化合物が使用される。
 (B)成分である有機チタン化合物の配合量は、前記(A)成分100質量部に対して0.1~15質量部、好ましくは0.1~10質量部である。0.1質量部未満では、硬化触媒として十分に機能せず、硬化に長い時間がかかるばかりでなく、特に空気との接触面から遠い深部における硬化が不十分となる。反対に15質量部を超えると、その配合量に見合う効果がなく無意味であるばかりか非経済的である。また、保存安定性も低下する。
(C)成分
 本発明の実施形態においては、(C)式(c1):R Si(OR4-c…(c1)で表されるシラン化合物を含有させることができる。このシラン化合物は、前記(A)成分であるベースポリマーの架橋剤として働く。
 式(c1)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基であり、前記したポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、ビニル基等が好ましい。また、Rは、アルキル基またはアルコキシ置換アルキル基であり、前記したポリオルガノシロキサン(a11)を示す式(a11)におけるRと同様の基が例示される。Rは、メチル基、エチル基等が好ましい。式(c1)中、cは0、1または2である。
 このようなシラン化合物(c1)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシラン等が例示される。これらのシラン化合物は、1種を単独で使用してもよく2種以上を混合して使用してもよい。
 合成が容易で、組成物の保存安定性を損なうことがなく、金属類に対する腐食性が少ないこと、かつ大きな架橋反応速度すなわち硬化速度が得られることから、架橋剤であるシラン化合物(c1)としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、ジメチルジメトキシシラン、ビニルメチルジメトキシシラン、ジメチルジエトキシシランを用いることが好ましく、特にメチルトリメトキシシランの使用が好ましい。
 (C)シラン化合物を配合する場合、その配合量は、前記(A)成分100質量部に対して0.1~15質量部であり、好ましくは1~10質量部である。(C)成分の配合量が15質量部を超えると、硬化の際の収縮率が大きくなり、硬化後の物性が低下する。また、硬化速度が著しく遅くなり、経済的に不利である。
 実施形態の室温硬化性ポリオルガノシロキサン組成物には、接着性付与剤として、トリス(N-トリアルコキシシリルプロピル)イソシアヌレートのようなイソシアヌレート化合物を配合することができる。イソシアヌレート化合物としては、1,3,5-トリス(N-トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。組成物への相溶性の観点から、このような接着性付与剤の配合量は、(A)成分100質量部に対して0.01~5質量部とすることが好ましい。
 また、実施形態の室温硬化性ポリオルガノシロキサン組成物には、この種の組成物に通常配合されている無機充填剤、顔料、チクソトロピー性付与剤、押出作業性を改良するための粘度調整剤、紫外線吸収剤、防かび剤、耐熱性向上剤、難燃剤等の各種添加剤を、本発明の効果を阻害しない範囲で、必要に応じて配合することができる。無機充填剤の例としては、煙霧質シリカ、焼成シリカ、沈澱シリカ、煙霧質チタンおよびこれらの表面をオルガノクロロシラン類、ポリオルガノシロキサン類、ヘキサメチルジシラザン等で疎水化したもの等が挙げられる。その他、炭酸カルシウム、有機酸表面処理炭酸カルシウム、けいそう土、粉砕シリカ、アルミノケイ酸塩、マグネシア、アルミナ等も使用可能である。無機充填剤を配合する場合、その配合量は、(A)成分100質量部に対して100質量部以下が好ましく、50質量部以下がより好ましい。
 実施形態の室温硬化性ポリオルガノシロキサン組成物は、前記(A)成分と(B)成分、および必要に応じて配合される(C)成分および上記各成分を、湿気を遮断した状態で混合することにより得られる。得られた組成物は、23℃で20mPa・s~1000mPa・sの粘度を有する。粘度は、好ましくは、20mPa・s~500mPa・sである。なお、実施形態の室温硬化性ポリオルガノシロキサン組成物は溶剤を含有しない。そのため、硬化被膜形成時に溶剤除去工程を必要とせず、溶剤の揮発により、作業環境の悪化や、電気・電子部品およびそれらを搭載した回路基板の腐食や劣化を引き起こすことがない。
 上記で得られた室温硬化性ポリオルガノシロキサン組成物は、密閉容器中でそのまま保存し、使用時に空気中の水分に曝すことによってはじめて硬化する、いわゆる1包装型室温硬化性組成物として使用することができる。また、実施形態の室温硬化性ポリオルガノシロキサン組成物を、例えば(A)成分と、(C)成分である架橋剤や(B)成分である硬化触媒とを別に分けて調製し、適宜2~3個の別々の容器に分けて保存し、使用時にこれらを混合する、いわゆる多包装型室温硬化性組成物として使用することもできる。なお、各成分の混合の順序は特に限定されるものではない。
 本発明の室温硬化性ポリオルガノシロキサン組成物は、前記したように23℃で20mPa・s~1000mPa・sの十分に低い粘度を有するので、塗布性が良好であり、溶剤で希釈することなくそのまま通常のコーティング方法で塗布することができる。塗布膜は、空気中の水分と接触することにより室温で速やかに硬化する。硬化被膜の硬度(Type A)は60以上と高く、電気的・機械的特性、とりわけ耐スクラッチ性に優れている。
 したがって、本発明の組成物は、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特にコンフォーマルコーティング剤のような、電気・電子部品やこれらを搭載した回路基板の表面を保護する用途に好適する。具体的には、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等からなる基板やアルミナ等のセラミックからなる基板上に、ITO、銅、アルミニウム、銀、金等からなる電極および配線を形成した配線基板上に、IC等の半導体装置、抵抗体、コンデンサ等の電子部品を搭載した電気・電子機器において、電極や配線等のコーティング材として好適に使用される。
 本発明の室温硬化性ポリオルガノシロキサン組成物を配線基板の電極や配線のコーティング材として使用する場合、塗布方法としては、ディップ法、刷毛塗り法、スプレー法、ディスペンス法等を用いることができ、塗布層の厚さは、通常0.01~3mm、好ましくは0.05~2mmである。厚さが0.01mmに満たないと、耐スクラッチ性が十分に得られないおそれがある。また、3mmを超えると、それ以上の効果が得られないばかりでなく、内部が硬化するのに時間がかかり不経済である。
 次に、本発明の電気・電子機器について図面を参照して説明する。図1は、本発明に係る電気・電子機器(装置)の一例を示す断面図である。
 実施形態の電気・電子機器1は、ガラスエポキシ基板のような絶縁基板2aの上に、銅箔のような導電体からなる配線2bが形成された配線基板2を備えている。そして、このような配線基板2の一方の主面の所定の位置に、ICパッケージ3やコンデンサ4のような電気・電子部品が搭載され、前記配線2bと電気的に接続されている。なお、ICパッケージ3やコンデンサ4と配線2bとの接続は、これらの部品のリード端子3a、4aが配線基板2の部品孔(図示を省略する。)に挿入され、はんだ等を介して接合されることで行われている。
 また、配線基板2の部品搭載面には、前記した本発明の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる硬化被膜5が、ICパッケージ3およびコンデンサ4の上面を覆うように形成されている。
 このような実施形態の電気・電子機器1においては、配線基板2およびその主面に搭載された電気・電子部品が、耐スクラッチ性に優れ、摩擦によって剥がれやめくれが生じにくい硬化被膜5で覆われているので、信頼性が高い。
 以下、本発明を実施例により具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。なお、実施例中、「部」とあるのはいずれも「質量部」、「%」とあるのはいずれも「質量%」を表し、粘度は全て23℃、相対湿度50%での値を示す。
[合成例1]
 (A1)成分として実施例に用いる分岐状ポリオルガノシロキサンである末端トリメチルシリル基封鎖分岐状ポリメチルシロキサン(A12-1)を以下のようにして合成した。
 3Lのセパラブルフラスコに水1300gを仕込み、撹拌しながら、ジメチルジクロロシラン410gとメチルトリクロロシラン123gとトリメチルクロロシラン16gの混合物をフラスコ内に滴下した。
 次いで、分液ロートを用いて下層の塩酸層を除去し、さらに水650gと食塩20gを添加し撹拌した後、食塩水層を除去し、ろ過した。こうして、末端シラノール基を有する分岐状のポリオルガノシロキサン800gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
 1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサン200gとメチルトリメトキシシラン50gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランを系外に留去させた。
 こうして、得られたポリオルガノシロキサン(A12-1)の組成および構造を、H-NMRおよび29Si-NMRで調べたところ、式:(CHSiO1/2で表されるM単位と、式:(CHSiO2/2で表されるD単位と、式:(CH)(OCH0.2SiO2.8/2で表されるT単位からなる平均組成を有し、各単位の含有モル比が、M:D:T=1:19:5である分岐状のポリオルガノシロキサンであることがわかった。また、得られたポリオルガノシロキサン(A12-1)の粘度は、40mPa・sであり、Mwは2,700であった。
[合成例2]
 実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2-1)を以下のようにして合成した。
 5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1326gとメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
 1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
 こうして、得られたポリオルガノシロキサン(A2-1)の組成および構造を、H-NMRで調べたところ、平均組成式:(CH1.0Si(OCH0.21.4で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2-1)は、常温で固体状であり、Mwは7,000であった。
[合成例3]
 実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2-2)を以下のようにして合成した。
 5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1326gとジメチルジメトキシシラン130gおよびメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
 1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながらギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
 こうして、得られたポリオルガノシロキサン(A2-2)の組成および構造を、H-NMRで調べたところ、平均組成式:(CH1.1Si(OCH0.21.35で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2-2)は、常温で半固体状(水あめ状)であり、Mwは5,000であった。
[合成例4]
 実施例に用いる(A2)成分として、ポリオルガノシロキサン(a2)に相当するポリオルガノシロキサン(A2-3)を以下のようにして合成した。
 5Lのセパラブルフラスコに、トルエン1410gとメタノール135gを仕込み、撹拌しながら、メチルトリメトキシシラン1739gとジメチルジメトキシシラン298gおよびメチルトリクロロシラン20gの混合物をフラスコ内に添加した。そして、マントルヒーターを用いて、フラスコ内の温度を35℃まで昇温させた後、市水510gをフラスコ内に滴下した。滴下終了後の液温は60℃まで昇温した。2時間、加熱還流を継続した後、市水510gを加えて分液を行い、上層の水・メタノール・HCLの層は廃棄した。下層のレジン・トルエン層は常圧で脱水した後、減圧ストリッピングにより過剰のトルエンを留去し、不揮発分を50%とした。ろ過後、末端にシラノール基を有し三次元網目構造を有するポリオルガノシロキサン1268gが得られた。次に、得られたポリオルガノシロキサンの末端のメトキシ化反応を行った。
 1Lのセパラブルフラスコに、得られた末端にシラノール基を有し分岐構造(三次元網目構造)を有するポリオルガノシロキサンの50%トルエン溶液400gと、メチルトリメトキシシラン112gを仕込み、室温で5分間撹拌を行った後、撹拌を行いながら、ギ酸0.76gをフラスコ内に添加した。その後、フラスコ内の温度を80℃まで昇温させ、加熱撹拌を行った。30分後、シラノール基とメチルトリメトキシシランの脱メタノール反応が開始し、メタノールが副生してきた。副生したメタノールは、水抜き管を用いてフラスコ内から除去した。80℃で24時間加熱撹拌を行った後、室温まで冷却を行った。そして、IRスペクトル測定により、シラノール基の吸収ピークが消失していることを確認した。次いで、減圧留去により、過剰のメチルトリメトキシシランとトルエンを系外に留去させた。
 こうして、得られたポリオルガノシロキサン(A2-3)の組成および構造を、H-NMRで調べたところ、平均組成式:(CH1.2Si(OCH0.221.29で表される三次元網目構造を有するポリオルガノシロキサンであることがわかった。また、このポリオルガノシロキサン(A2-3)は、常温で半固体状(水あめ状)であり、Mwは29,000であった。
[実施例1]
 (A1)成分として上記ポリオルガノシロキサン(a11)に分類される(A11-1)分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度10mPa・s)50部に、合成例2で得られた平均組成式:(CH1.0Si(OCH0.21.4で表されるポリオルガノシロキサン(A2-1)(Mw7,000)50部、(C)メチルトリメトキシシラン5部、(B)ジイソプロポキシ-ビス(アセト酢酸エチル)チタン2部、および1,3,5-トリス(N-トリメトキシシリルプロピル)イソシアヌレート0.2部をそれぞれ配合し、湿気遮断下で均一に混合してポリオルガノシロキサン組成物を得た。
[実施例2~12]
 表1に示す各成分を同表に示す組成でそれぞれ配合し、実施例1と同様に混合してポリオルガノシロキサン組成物を得た。
 なお、表1において、(A1)成分として用いたポリオルガノシロキサンの略号は以下のとおりである。
 (A11)はポリオルガノシロキサン(a11)に分類される直鎖状ポリオルガノシロキサンを、(A12)は分岐状ポリオルガノシロキサンを、(A13)は、シラン化合物(a12)の部分加水分解縮合物を示す。
(A11-1)は、上記のとおりポリオルガノシロキサン(a11)に分類される分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度10mPa・s)を示す。
(A11-2)は、ポリオルガノシロキサン(a11)に分類される分子鎖両末端がトリメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度15mPa・s)を示す。
(A11-3)は、ポリオルガノシロキサン(a11)に分類される分子鎖両末端がトリメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度100mPa・s)を示す。
(A12-1)は、合成例1で得られた粘度40mPa・sでMw2,700の分岐状のポリオルガノシロキサンを示す。
(A13-1)は、メチルトリメトキシシランの部分加水分解縮合物(粘度18mPa・s、Si数7)を示す。
 また、(A2)成分として用いたポリオルガノシロキサンの略号は以下のとおりである。
(A2-1)は、上記のとおり合成例2で得られた平均組成式:(CH1.0Si(OCH0.21.4で表されるポリオルガノシロキサン(Mw7,000)を示す。
(A2-2)は、合成例3で得られた平均組成式:(CH1.1Si(OCH0.21.35で表されるポリオルガノシロキサン(Mw5,000)を示す。
(A2-3)は、合成例4で得られた平均組成式:(CH1.2Si(OCH0.221.29で表されるポリオルガノシロキサン(Mw29,000)を示す。
[比較例1~4]
 表2に示す各成分を同表に示す組成でそれぞれ配合し、実施例1と同様に混合してポリオルガノシロキサン組成物を得た。
 なお、比較例3において、実施例における(A)成分の代わりに(A1)’成分として分子鎖両末端がメチルジメトキシシリル基で封鎖された直鎖状のポリジメチルシロキサン(粘度1,000mPa・s)を使用した。また、比較例1および4においては、硬化触媒として、(B)ジイソプロポキシ-ビス(アセト酢酸エチル)チタンに代わって(B)’ジブチルスズジラウレートを使用した。
 実施例1~12および比較例1~4で得られたポリオルガノシロキサン組成物について、下記に示す方法で各種特性を測定し評価した。これらの結果を組成とともに、実施例1~12については表1に、比較例1~4については表2にそれぞれ示す。
[粘度]
 上記ポリオルガノシロキサン組成物の粘度を、JIS K6249に拠って測定した。回転粘度計(芝浦セムテック株式会社製、製品名:ビスメトロンVDA-2)を使用し、回転速度30rpm、回転子No.2で測定を行った。
[タックフリータイム]
 上記ポリオルガノシロキサン組成物のタックフリータイムを、JIS K6249に拠って測定した。試料を、泡が入らないようにアルミシャーレに平らに入れた(試料の厚みは3mm)後、エチルアルコールで洗浄した指先で表面に軽く触れた。試料が指先に付着しなくなる時間を、タックフリータイム(分)とした。
[硬度]
 上記ポリオルガノシロキサン組成物の硬度を、JIS K6249に拠り、以下に示すようにして測定した。すなわち、ポリオルガノシロキサン組成物を厚さ2mmのシート状に成形した後、23℃、50%RHで3日間放置して硬化させた。次いで、得られた硬化シートを3枚重ね、デュロメータ(Type A)により硬度を測定した。
[耐スクラッチ性]
 上記ポリオルガノシロキサン組成物を、JIS Z3197(ISO9455)で規定されたくし形電極基板(銅電極、パターン幅0.316mm)上に100μmの厚さで塗布し、23℃、50%RHで3日間放置して硬化させた。次いで、形成された硬化被膜に、JIS K5600-5-4に準じて鉛筆硬度試験を行い、耐スクラッチ性を評価した。鉛筆硬度試験では、2Bおよび4Bの鉛筆を用い、750g荷重で線を引き、硬化被膜のその後の状態を目視し、下記の基準に従って評価した。
<評価基準>
評価○:硬化被膜のめくれなし。
評価×:硬化被膜が破壊。めくれ有り。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1から、実施例1~12で得られたポリオルガノシロキサン組成物は、均一で薄膜塗布に適した粘度を有しているうえに、硬度(Type A)が60以上と高く、耐スクラッチ性に優れた硬化被膜を形成することがわかった。
 それに対して、表2からわかるように、比較例1および2では、均一で薄膜塗布に適した粘度を有するポリオルガノシロキサン組成物は得られなかった。また、比較例3で得られたポリオルガノシロキサン組成物は、薄膜塗布が可能な粘度ではあるが、得られた硬化被膜は硬度が低く、耐スクラッチ性も不良であった。さらに、比較例4で得られたポリオルガノシロキサン組成物は、タックフリータイムが長く、硬化に時間がかかり過ぎことがわかった。
 さらに、実施例1~12、比較例1~4で得られたポリオルガノシロキサン組成物について、以下に示すようにして、エポキシガラスに対する接着性を調べたところ、良好な結果が得られた。結果を表1および表2に示す。
[接着性]
 エポキシガラスからなる基材の表面に、ポリオルガノシロキサン組成物を長さ50mm、幅10mmで、厚さ1mmになるように塗布し、23℃、50%RHの雰囲気中に3日間放置して硬化させた。その後、基材表面から硬化物を金属ヘラで掻き取り、このときの硬化物の剥離の状態を調べた。そして、以下の基準で接着性を評価した。
<評価基準>
 接着性○:基材との界面から硬化物を剥離することができず、硬化物が破壊する。
 接着性△:基材との界面から硬化物の一部は剥離し、硬化物の一部は破壊する。
 接着性×:基材との界面から硬化物を剥離することができる。
 本発明の室温硬化性ポリオルガノシロキサンは、電気・電子機器のコーティング材、ポッティング材等の用途に有用であり、特に、基板上に電子部品等が搭載された電気・電子機器におけるコンフォーマルコーティング剤として好適する。
 1…電気・電子機器、2…配線基板、3…ICパッケージ、4…コンデンサ、5…室温硬化性ポリオルガノシロキサン組成物の硬化被膜。

Claims (6)

  1.  (A1)分子中にケイ素原子に結合するアルコキシ基を2個以上有し、23℃における粘度が3mPa・s~500mPa・sであるポリオルガノシロキサン10~80質量部と、
     (A2)平均組成式(a2):R Si(OR{4-(a+b)}/2  …(a2)
    (式(a2)中、Rは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基である。また、aおよびbは、0.5≦a≦1.5、0<b<3を満足する正数である。)で表され、重量平均分子量(Mw)が2,000~100,000であり、三次元網目構造を有し常温で固体状または半固体状であるポリオルガノシロキサン90~20質量部
    とを混合してなるポリオルガノシロキサン混合物(A)100質量部に対して、
     (B)硬化触媒として有機チタン化合物0.1~15質量部
    を含有することを特徴とする室温硬化性ポリオルガノシロキサン組成物。
  2.  さらに、(C)式(c1):R Si(OR4-c  …(c1)
    (式(c1)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、cは0、1または2である。)で表されるシラン化合物0.1~15質量部を含有することを特徴とする請求項1記載の室温硬化性ポリオルガノシロキサン組成物。
  3.  前記(A1)成分は、下記一般式(a11):
    Figure JPOXMLDOC01-appb-C000001
    (式(a11)中、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基、RおよびRは、非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Xは二価の酸素(オキシ基)または二価炭化水素基である。また、dは0または1であり、nは23℃における粘度が3mPa・s~500mPa・sとなる整数である。)で表されるポリオルガノシロキサンを含むことを特徴とする請求項1または2記載の室温硬化性ポリオルガノシロキサン組成物。
  4.  前記(A1)成分は、式(a12):R Si(OR4-e  …(a12)
    (式(a12)中、Rは非置換の一価炭化水素基、もしくは水素原子の一部がハロゲン原子またはシアノアルキル基で置換された一価炭化水素基、Rは、アルキル基、またはアルキル基の水素原子の一部がアルコキシ基で置換されたアルコキシ置換アルキル基であり、eは0、1または2である。)で表されるシラン化合物の部分加水分解縮合物であるポリオルガノシロキサンを含むことを特徴とする請求項1乃至3のいずれか1項に記載の室温硬化性ポリオルガノシロキサン組成物。
  5.  電気・電子機器の電極および/または配線のコーティング用組成物であることを特徴とする請求項1乃至4のいずれか1項記載の室温硬化性ポリオルガノシロキサン組成物。
  6.  電極および/または配線の表面に、請求項1乃至4のいずれか1項記載の室温硬化性ポリオルガノシロキサン組成物の硬化物からなる被膜を有することを特徴とする電気・電子機器。
PCT/JP2014/083054 2013-12-24 2014-12-12 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器 WO2015098582A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14875467.4A EP3088471B1 (en) 2013-12-24 2014-12-12 Room-temperature-curable polyorganosiloxane composition and electric/electronic device
CN201480070993.8A CN106068307B (zh) 2013-12-24 2014-12-12 室温固化性聚有机硅氧烷组合物和电气·电子设备
JP2015504798A JP5763284B1 (ja) 2013-12-24 2014-12-12 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
KR1020167015979A KR102276889B1 (ko) 2013-12-24 2014-12-12 실온 경화성 폴리오르가노실록산 조성물 및 전기·전자기기
US15/190,916 US10160883B2 (en) 2013-12-24 2016-06-23 Room-temperature-curable polyorganosiloxane composition and electric/electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013266101 2013-12-24
JP2013-266101 2013-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/190,916 Continuation US10160883B2 (en) 2013-12-24 2016-06-23 Room-temperature-curable polyorganosiloxane composition and electric/electronic apparatus

Publications (1)

Publication Number Publication Date
WO2015098582A1 true WO2015098582A1 (ja) 2015-07-02

Family

ID=53478446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083054 WO2015098582A1 (ja) 2013-12-24 2014-12-12 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器

Country Status (7)

Country Link
US (1) US10160883B2 (ja)
EP (1) EP3088471B1 (ja)
JP (1) JP5763284B1 (ja)
KR (1) KR102276889B1 (ja)
CN (1) CN106068307B (ja)
TW (1) TWI640576B (ja)
WO (1) WO2015098582A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058951A (ja) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物および電気・電子機器
WO2019039468A1 (ja) * 2017-08-22 2019-02-28 大阪ガスケミカル株式会社 硬化性組成物およびその用途
JP2019052207A (ja) * 2017-09-13 2019-04-04 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物及びその硬化物を有する電気・電子機器
WO2019189790A1 (ja) * 2018-03-30 2019-10-03 住友化学株式会社 混合組成物
WO2020217904A1 (ja) * 2019-04-23 2020-10-29 住友化学株式会社 混合組成物
JP2020176247A (ja) * 2019-04-23 2020-10-29 住友化学株式会社 混合組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622178B2 (ja) * 2016-12-05 2019-12-18 信越化学工業株式会社 縮合硬化性シリコーン樹脂組成物シート、縮合硬化性シリコーン樹脂組成物シートの製造方法、及び発光装置の製造方法
JP6403080B1 (ja) * 2017-08-22 2018-10-10 大阪ガスケミカル株式会社 塗料組成物および塗膜の製造方法
CN108587448B (zh) * 2018-04-09 2020-05-29 歌尔股份有限公司 一种电子器件表面处理方法及电子产品
JP7372033B2 (ja) * 2018-12-10 2023-10-31 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物、その硬化物および積層体
JP2020180277A (ja) * 2019-04-23 2020-11-05 住友化学株式会社 混合組成物
EP3926017A1 (de) * 2020-06-19 2021-12-22 Daw Se Beschichtungsmasse, kit-of-parts für eine beschichtungsmasse, beschichtung erhältlich mit der beschichtungsmasse oder dem kit-of-parts, beschichtetes substrat und verwendung der beschichtungsmasse
KR102630658B1 (ko) * 2021-08-02 2024-01-30 주식회사 케이씨씨실리콘 습기경화형 실록산 조성물
KR102462523B1 (ko) 2021-12-08 2022-11-01 윤필승 골프클럽용 그립
WO2023157603A1 (ja) 2022-02-21 2023-08-24 信越化学工業株式会社 オルガノポリシロキサンおよびそれを含む室温硬化性オルガノポリシロキサン組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359058A (ja) * 1991-06-03 1992-12-11 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法
JPH07173435A (ja) 1993-11-01 1995-07-11 Shin Etsu Chem Co Ltd 実装回路板保護用室温硬化性無溶剤シリコーンコーティング組成物、実装回路板の保護方法、及び実装回路版
JPH07238259A (ja) 1994-03-01 1995-09-12 Toray Dow Corning Silicone Co Ltd コンフォーマルコーティング剤
JP2002097367A (ja) * 2000-09-20 2002-04-02 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2010024327A (ja) * 2008-07-17 2010-02-04 Dow Corning Toray Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2010084063A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010180382A (ja) * 2009-02-09 2010-08-19 Shin-Etsu Chemical Co Ltd 室温硬化型オルガノポリシロキサン組成物
JP2013124343A (ja) * 2011-12-16 2013-06-24 Momentive Performance Materials Inc 室温硬化性ポリオルガノシロキサン組成物
WO2014017397A1 (ja) * 2012-07-27 2014-01-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696090A (en) * 1970-09-28 1972-10-03 Gen Electric Room temperature vulcanizable silicone rubber composition
US3897376A (en) * 1970-09-28 1975-07-29 Gen Electric Room temperature vulcanizable silicone rubber composition
US3839246A (en) * 1973-08-09 1974-10-01 Gen Electric Two-part room temperature vulcanizable systems
US3956209A (en) * 1973-08-09 1976-05-11 General Electric Company Two-part room temperature vulcanizable systems
US3888815A (en) * 1973-08-20 1975-06-10 Gen Electric Self-bonding two-package room temperature vulcanizable silicone rubber compositions
US4293597A (en) * 1974-12-30 1981-10-06 General Electric Company Method of forming a roofing composite using silicone rubber composition
US4461854A (en) * 1982-08-11 1984-07-24 General Electric Company Room temperature vulcanizable polysiloxane having a heat-activated catalyst
DE3323909A1 (de) * 1983-07-02 1985-01-10 Bayer Ag, 5090 Leverkusen Stabile siliconemulsionen
DE3773015D1 (de) * 1986-01-21 1991-10-24 Gen Electric Polysiloxankautschukzusammensetzungen.
JP2635107B2 (ja) * 1988-07-01 1997-07-30 東芝シリコーン株式会社 室温硬化性組成物
DE19616789A1 (de) * 1996-04-26 1997-11-06 Huels Silicone Gmbh Adhäsive RTV-Siliconkautschukmischungen
CN1178131A (zh) * 1996-04-26 1998-04-08 希尔斯硅股份有限公司 胶粘性的在室温下交联形成弹性体的硅橡胶胶料
BRPI0621110A2 (pt) * 2005-12-20 2011-11-29 Oreal processos cosméticos, composição cosmética e kit para revestimento das matérias queratìnicas
JP4788897B2 (ja) * 2006-03-02 2011-10-05 信越化学工業株式会社 室温硬化性ポリオルガノシロキサン組成物
JP2007321122A (ja) * 2006-06-05 2007-12-13 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
EP2231754B1 (de) * 2007-12-14 2011-07-20 Henkel AG & Co. KGaA Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
KR101357530B1 (ko) * 2007-12-19 2014-01-29 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 실온 경화성 폴리오르가노실록산 조성물
JP5265813B2 (ja) * 2011-05-13 2013-08-14 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359058A (ja) * 1991-06-03 1992-12-11 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法
JPH07173435A (ja) 1993-11-01 1995-07-11 Shin Etsu Chem Co Ltd 実装回路板保護用室温硬化性無溶剤シリコーンコーティング組成物、実装回路板の保護方法、及び実装回路版
JPH07238259A (ja) 1994-03-01 1995-09-12 Toray Dow Corning Silicone Co Ltd コンフォーマルコーティング剤
JP2002097367A (ja) * 2000-09-20 2002-04-02 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2010024327A (ja) * 2008-07-17 2010-02-04 Dow Corning Toray Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2010084063A (ja) * 2008-10-01 2010-04-15 Momentive Performance Materials Inc 室温硬化性オルガノポリシロキサン組成物
JP2010180382A (ja) * 2009-02-09 2010-08-19 Shin-Etsu Chemical Co Ltd 室温硬化型オルガノポリシロキサン組成物
JP2013124343A (ja) * 2011-12-16 2013-06-24 Momentive Performance Materials Inc 室温硬化性ポリオルガノシロキサン組成物
WO2014017397A1 (ja) * 2012-07-27 2014-01-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058951A (ja) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物および電気・電子機器
WO2019039468A1 (ja) * 2017-08-22 2019-02-28 大阪ガスケミカル株式会社 硬化性組成物およびその用途
US11078364B2 (en) 2017-08-22 2021-08-03 Osaka Gas Chemicals Co., Ltd. Curable composition and use of same
JP2019052207A (ja) * 2017-09-13 2019-04-04 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物及びその硬化物を有する電気・電子機器
WO2019189790A1 (ja) * 2018-03-30 2019-10-03 住友化学株式会社 混合組成物
JP2019183148A (ja) * 2018-03-30 2019-10-24 住友化学株式会社 混合組成物
JP7420477B2 (ja) 2018-03-30 2024-01-23 住友化学株式会社 混合組成物
WO2020217904A1 (ja) * 2019-04-23 2020-10-29 住友化学株式会社 混合組成物
JP2020176247A (ja) * 2019-04-23 2020-10-29 住友化学株式会社 混合組成物
WO2020217903A1 (ja) * 2019-04-23 2020-10-29 住友化学株式会社 混合組成物
TWI824122B (zh) * 2019-04-23 2023-12-01 日商住友化學股份有限公司 混合組成物

Also Published As

Publication number Publication date
US10160883B2 (en) 2018-12-25
CN106068307A (zh) 2016-11-02
US20160304745A1 (en) 2016-10-20
EP3088471A4 (en) 2017-08-09
KR20160102992A (ko) 2016-08-31
EP3088471B1 (en) 2019-08-28
EP3088471A1 (en) 2016-11-02
KR102276889B1 (ko) 2021-07-12
TWI640576B (zh) 2018-11-11
JP5763284B1 (ja) 2015-08-12
TW201531531A (zh) 2015-08-16
CN106068307B (zh) 2019-07-16
JPWO2015098582A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5763284B1 (ja) 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
JP5497241B1 (ja) 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
EP3575365B1 (en) Thermally conductive polyorganosiloxane composition
EP1381650B1 (en) Addition-curable silicone gel composition
JP2005154766A (ja) 硬化性シリコーン組成物およびその硬化物
JP4663969B2 (ja) 硬化性シリコーンレジン組成物およびその硬化物
JP2004323764A (ja) 接着性ポリオルガノシロキサン組成物
JP6762188B2 (ja) 硬化性ポリオルガノシロキサン組成物および電気・電子機器
JP6762189B2 (ja) 硬化性ポリオルガノシロキサン組成物および電気・電子機器
JP4522816B2 (ja) 難燃性を有する接着性ポリオルガノシロキサン組成物
JP6964472B2 (ja) 室温硬化性ポリオルガノシロキサン組成物及びその硬化物を有する電気・電子機器
JP6319168B2 (ja) 縮合反応生成物の製造方法、該縮合反応生成物を含有する室温硬化性オルガノポリシロキサン組成物の製造方法
JP6580371B2 (ja) 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
JP6580370B2 (ja) 室温硬化性ポリオルガノシロキサン組成物および電気・電子機器
CN113015775B (zh) 粘接性聚有机硅氧烷组合物
JP4553562B2 (ja) 接着性ポリオルガノシロキサン組成物
EP0634440A2 (en) Method for curing organosiloxane compositions in the presence of cure inhibiting materials
JP7437140B2 (ja) 紫外線硬化型ポリオルガノシロキサン組成物及びその硬化物を有する電気・電子機器
TW202039669A (zh) 接著性聚有機矽氧烷組成物
JPH10140009A (ja) 電気絶縁材料用熱硬化性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015504798

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015979

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014875467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875467

Country of ref document: EP