WO2015096372A1 - 移位寄存器单元及其驱动方法、移位寄存器、显示装置 - Google Patents

移位寄存器单元及其驱动方法、移位寄存器、显示装置 Download PDF

Info

Publication number
WO2015096372A1
WO2015096372A1 PCT/CN2014/078274 CN2014078274W WO2015096372A1 WO 2015096372 A1 WO2015096372 A1 WO 2015096372A1 CN 2014078274 W CN2014078274 W CN 2014078274W WO 2015096372 A1 WO2015096372 A1 WO 2015096372A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
pull
transistor
shift register
signal input
Prior art date
Application number
PCT/CN2014/078274
Other languages
English (en)
French (fr)
Inventor
邵贤杰
李红敏
李小和
刘永
姜清华
张晓洁
秦锋
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/424,247 priority Critical patent/US9613583B2/en
Publication of WO2015096372A1 publication Critical patent/WO2015096372A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0871Several active elements per pixel in active matrix panels with level shifting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Definitions

  • Shift register unit and driving method thereof shift register, display device
  • the present disclosure relates to a shift register unit and a driving method thereof, a shift register, and a display device.
  • a TFT-LCD (Thin Film Transistor-Liquid Crystal Display) driver mainly includes a gate driver and a data driver, wherein the gate driver converts the input clock signal into a liquid crystal display panel through a shift register Grid line.
  • the shift register is commonly used in the gate driver of the liquid crystal display panel, and each gate line is connected to one stage circuit unit of the shift register.
  • the gate input signal is output through the gate drive circuit, and each pixel is scanned one by one.
  • the gate driving circuit can be disposed in the display panel by a chip on Array (COF) on a flexible substrate or a chip on glass (COG) on a glass substrate, or an integrated circuit unit can be formed by using a TFT. Formed in the display panel.
  • COF chip on Array
  • COG chip on glass
  • the gate driver integrated on the glass substrate (Gate on Array, GO A) design can reduce the cost of the product, and can also reduce the cost of a process.
  • FIG. 2 is a timing chart of the operation of the shift register unit shown in FIG. 1, and its working principle is as follows:
  • the signal input terminal is a high level signal
  • the signal received at the signal input terminal is the output signal of the shift register of the previous stage, so that the M1' tube is turned on; when the first clock signal input terminal CLK1 is low.
  • the high-potential signal at the input charges the C1' capacitor, so that the potential of the PU node of the first node is pulled high, and the M5', M6' tube is opened.
  • the ratio of M5' to M6' the potential of the PD at this time is made. For low potential, ⁇ 8', M9' are turned off, thus ensuring the stability of the signal output.
  • the first node PU In the second phase, when the signal input is low, the ⁇ tube is turned off, the first node PU continues to maintain a high potential, and the M3' tube remains open. At this time, the first clock signal input terminal CLK1 is at a high potential. At this time, the first node amplifies the voltage of the first node due to the bootstrapping effect, and finally transmits the driving signal to the output terminal; at this time, the first node PU point is high. The potential, M6' is still on, so M8' and M9' continue to turn off, ensuring the stability of the signal output.
  • the reset signal input terminal is connected to the output terminal of the next-stage shift register, and the next-stage output G ( n+1 ), that is, the reset terminal signal Reset is at a high level.
  • High level signal guide at the input of the reset signal The transistors M2', M4' are made to transmit a turn-off signal to the first node PU node and the output terminal, turn off the transistor M3', and pull the output signal to the VGL potential.
  • the second clock signal input terminal CLK2 is at a low potential, wherein the second clock signal has the same period as the first clock signal, and the phase is opposite.
  • the first clock signal input terminal CLK1 is at a high potential, and M5' is turned off.
  • the two-node PD point potential is at a low potential, and the transistors M8' and M9' are turned off.
  • M6' since the previous stage has discharged the first node PU point and the output terminal through M2' and M4', M6' is in the off state. , so the second node PD point will not be discharged.
  • the second clock signal input terminal CLK2 is at a high potential. Since the second clock signal input terminal CLK2 is at a high potential, M5' is turned on, and the second node PD point potential is pulled high, thereby turning on the transistors M8' and M9'.
  • the first node PU point and the output terminal Output are noise-cancelled, so that the coupling (Coupling) noise voltage generated by the first clock signal input terminal CLK1 is eliminated, thereby ensuring low-voltage output and ensuring signal output stability.
  • the above shift register can only cancel the output end during the working part, while the output end is in the floating state at other times, resulting in a large noise in the signal outputted from the output end of the shift register. This results in an erroneous output and poses a significant risk to the panel.
  • a shift register unit and a driving method thereof, a shift register, and a display device are provided, which are capable of reducing noise in an output signal of an existing shift register.
  • a shift register unit including a first capacitor, an input buffer module, a pull-up module, a reset control module, a pull-down module, and a pull-down enhancement module; the input buffer module, respectively a start signal input end, a pull-down module, a first capacitor first end and a pull-up module connection, configured to pre-charge the first capacitor in a signal input buffer phase;
  • the pull-up module is respectively connected to the first clock signal input end, the first capacitor, the input buffer module, the pull-down module and the signal output end, and is configured to output a driving signal at the signal output end of the signal output stage;
  • the reset control module is respectively connected to the reset signal input end, the low level signal input end and the pull-down module, and is configured to control the pull-down module to be in an off state during the reset phase;
  • the pull-down module is respectively connected to the second clock signal input end, the low level signal input end, the signal output end, the input buffer module, the first capacitor, the pull-up module and the reset control module, and is used for the first noise-cancellation
  • the potential of the phase control signal output is lowered and discharged for the first capacitor
  • the pull-down enhancement module is respectively connected to the first clock signal input end and the pull-down module, and is configured to continuously reduce the potential of the output of the control block signal and continuously discharge the first capacitor in the second noise canceling phase.
  • the input buffer module includes:
  • a first transistor a gate of the first transistor and a first pole connected to the signal input, and a second pole of the first transistor is coupled to the first node.
  • the pull-up module includes a third transistor
  • the gate of the third transistor is connected to the first node, the first pole of the third transistor is connected to the first clock signal input end, and the second pole of the third transistor is connected to the signal output end.
  • the reset control module includes a second transistor and a fourth transistor
  • a gate of the second transistor is connected to the reset signal input end, a first pole of the second transistor is connected to the first node, and a second pole of the second transistor is connected to the low voltage signal input end;
  • the gate of the transistor is connected to the reset signal input end, the first pole of the fourth transistor is connected to the signal output end, and the second pole of the fourth transistor is connected to the low voltage signal input end.
  • the pull-down module includes a fifth transistor, a sixth transistor, an eighth transistor, and a ninth transistor;
  • a first pole and a gate of the fifth transistor are connected to the second clock signal input end, and a second pole of the fifth transistor is connected to the second node;
  • the first pole of the sixth transistor is connected to the second node, the gate is connected to the first node, and the second pole of the sixth transistor is connected to the low voltage signal input end;
  • the first pole of the eighth transistor is connected to the first node, the gate of the eighth transistor is connected to the second node, and the second pole of the eighth transistor is connected to the input terminal of the low voltage signal;
  • the first pole of the ninth transistor is connected to the signal output end, the gate of the ninth transistor is connected to the second node, and the second pole of the ninth transistor is connected to the low voltage signal input end.
  • the pulldown enhancement module includes:
  • At least one seventh transistor, a first pole and a gate of the seventh transistor are connected to the first clock signal input terminal, and a second pole of the seventh transistor is connected to the second node.
  • the first extreme source the second extreme drain.
  • a shift register comprising a plurality of shift register units of any of the above; except for the first stage shift register unit and the last stage shift register Outside the element, the start signal input end of each stage of the shift register unit is connected to the signal output end of its own upper shift register unit, and the reset signal input end of each stage shift register unit is connected to its own next The signal output of the stage shift register unit.
  • a display device comprising the above-described shift register, the signal output of each of the shift registers being connected to a corresponding gate line.
  • a driving method of a shift register unit comprising:
  • the input buffer module is in an on state, the pull-up module, the reset control module, the pull-down module, and the pull-down enhancement module are in an off state, and the input buffer module precharges the first capacitor;
  • the pull-up module is in an on state
  • the input buffer module, the reset control module, the pull-down module, and the pull-down enhancement module are in an off state, and the pull-up module control signal output end outputs a driving signal
  • the reset control module is in the on state, the input buffer module and the pull-up module are in the off state, the reset control module controls the pull-down module and the pull-down enhancement module is in the off state;
  • the first noise canceling phase the reset control module, the pull-down module, and The pull-down enhancement module is in an on state, the input buffer module and the pull-up module are in an off state, and the potential of the pull-down module control signal output terminal is lowered and discharged for the first capacitor;
  • the second noise canceling phase the reset control module, the pull-down module, and the pull-down enhancement module are in an on state, the input buffer module and the pull-up module are in an off state, and the potential of the pull-down enhancement module cooperates with the pull-down module control signal output terminal continuously decreases and is a capacitor continues to discharge;
  • the shift register unit Prior to the start of the next frame, the shift register unit repeatedly alternates between a first noise canceling phase and a second noise canceling phase, continuously controlling the potential drop at the signal output and discharging the first capacitor.
  • the first clock signal has the same period as the second clock signal, and the phases are opposite.
  • Embodiments of the present disclosure provide a shift register unit and a driving method thereof, a shift register, and a display device, which can not only function as a gate driving of a liquid crystal display, but also when an output state thereof is in an inactive state, It is continuously noise-cancelled, which reduces the noise in its output signal, thereby reducing the possibility of its erroneous output and improving the reliability of the shift register.
  • 1 is a schematic structural diagram of a shift register unit provided by the prior art
  • 2 is a timing chart of operation of a shift register unit provided by the prior art
  • FIG. 3 is a schematic structural diagram of a shift register unit according to an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of a shift register according to an embodiment of the present disclosure
  • FIG. 5 is an operational timing diagram of a shift register unit provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a shift register unit including a first capacitor, an input buffer module 31, a pull-up module 32, a reset control module 33, a pull-down module 34, and a pull-down enhancement module 35;
  • the input buffer module 31 is respectively connected to the start signal input terminal INPUT, the pull-down module 34, the first capacitor C1 first end and the pull-up module 32, and is used for pre-setting the first capacitor C1 in the signal input buffering stage. Charging
  • the pull-up module 32 is respectively connected to the first clock signal input terminal CLK1, the first capacitor C1, the input buffer module 31, the pull-down module 34, and the signal output terminal OUTPUT for controlling the signal output terminal OUTPUT output during the signal output phase.
  • Drive signal
  • the reset control module 33 is respectively connected to the reset signal input terminal RESET, the low level signal input terminal VGL and the pull-down module 34 for controlling the pull-down module 34 to be in an off state during the reset phase; the pull-down module 34, respectively The second clock signal input terminal CLK2, the low level signal input terminal VGL, the signal output terminal OUTPUT, the input buffer module 31, the first capacitor C1, the pull-up module 32 and the reset control module 33 are connected for use in the first noise canceling stage. Decreasing a potential of the control signal output terminal OUTPUT and discharging the first capacitor C1;
  • the pull-down enhancement module 35 is respectively connected to the first clock signal input terminal CLK1 and the pull-down module 34, and is configured to cooperate with the pull-down module 34 to control the potential of the signal output terminal OUTPUT to continue to be low in the second noise-cancellation phase, and to A capacitor C1 continues to discharge.
  • the input buffer module 31 includes:
  • the first transistor M1 has a gate and a first pole connected to the start signal input terminal INPUT, and a second pole of the first transistor M1 is connected to the first node PU.
  • the pull-up module 32 includes a third transistor M3;
  • the gate of the third transistor M3 is connected to the first node PU, and the third transistor M3
  • the first pole is connected to the first clock signal input terminal CLK1
  • the second pole of the third transistor M3 is connected to the signal output terminal OUTPUT.
  • the reset control module 33 includes a second transistor M2 and a fourth transistor M4; a gate of the second transistor M2 is connected to the reset signal input terminal RESET, and a first pole of the second transistor M2 is connected to the first Node PU, the second pole of the second transistor M2 is connected to the low voltage signal input terminal VGL;
  • the gate of the fourth transistor M4 is connected to the reset signal input terminal RESET, the first electrode of the fourth transistor M4 is connected to the signal output terminal OUTPUT, and the second electrode of the fourth transistor M4 is connected to the low electrode. Voltage signal input terminal VGL.
  • the pull-down module 34 includes a fifth transistor M5, a sixth transistor M6, an eighth transistor M8, and a ninth transistor M9;
  • the first transistor and the gate of the fifth transistor M5 are connected to the second clock signal input terminal CLK2, and the second electrode of the fifth transistor M5 is connected to the second node PD;
  • the first pole of the sixth transistor M6 is connected to the second node PD, the gate is connected to the first node PU, and the second pole of the sixth transistor M6 is connected to the low voltage signal input end;
  • a first pole of the eighth transistor M8 is connected to the first node PU, a gate of the eighth transistor M8 is connected to the second node PD, and a second pole of the eighth transistor M8 is connected to the low voltage signal input terminal VGL ;
  • a first pole of the ninth transistor M9 is connected to the signal output terminal OUTPUT, a gate of the ninth transistor M9 is connected to the second node PD, and a second pole of the ninth transistor M9 is connected to the low voltage Signal input VGL.
  • the pulldown enhancement module 35 includes:
  • At least one seventh transistor M7, the first electrode and the gate of the seventh transistor M7 are connected to the first clock signal input terminal CLK1, and the second electrode of the seventh transistor M7 is connected to the second node PD.
  • first extreme source and the second extreme drain Since the source and drain of the transistor used here are symmetrical, the source and drain are interchangeable. In an embodiment of the present disclosure, in order to distinguish the two poles of the transistor except the gate, one of the poles is referred to as a source and the other pole is referred to as a drain. If the source is selected as the signal input, the drain acts as the signal output and vice versa.
  • the second pole of the transistor can also be the first pole of the transistor.
  • the first transistor M1, the second transistor M2, the third transistor M3, the fourth transistor M4, the fifth transistor M5, the sixth transistor M6, the seventh transistor M7, the eighth transistor M8, the first Nine transistors M9 can be N-type transistors.
  • FIG. 4 is a structural diagram of a shift register provided by an embodiment of the present disclosure, including The first stage shift register unit SR1, the second stage shift register unit SR2, the third stage shift register unit SR3, the fourth stage shift register unit SR4, ..., wherein, in addition to the first stage shift register unit And the last stage shift register unit, the start signal input end of each stage shift register unit is connected to the signal output end of its own upper shift register unit, and the reset signal input of each stage shift register unit The terminals are connected to the signal output of their own next stage shift register unit.
  • the input signal of the first stage shift register unit is a field sync signal
  • the reset signal input end of the last stage shift register unit can be connected to the reset unit
  • the reset unit can be an additional redundant shift register, It can be an additional inverter.
  • an embodiment of the present disclosure further provides a driving method of a shift register unit, which is based on the shift register unit described above, and includes:
  • the input buffer module is in an on state, the pull-up module, the reset control module, the pull-down module, and the pull-down enhancement module are in an off state, and the input buffer module precharges the first capacitor;
  • the pull-up module is in an on state
  • the input buffer module, the reset control module, the pull-down module, and the pull-down enhancement module are in an off state, and the pull-up module control signal output end outputs a driving signal
  • the reset control module is in the on state, the input buffer module and the pull-up module are in the off state, the reset control module controls the pull-down module and the pull-down enhancement module is in the off state;
  • the first noise canceling phase the reset control module, the pull-down module, and The pull-down enhancement module is in an on state, the input buffer module and the pull-up module are in an off state, and the potential of the pull-down module control signal output terminal is lowered and discharged for the first capacitor;
  • the second noise canceling phase the reset control module, the pull-down module, and the pull-down enhancement module are in an on state, the input buffer module and the pull-up module are in an off state, and the potential of the pull-down enhancement module cooperates with the pull-down module control signal output terminal continuously decreases and is The first capacitor continues to discharge;
  • the shift register unit repeatedly alternates to experience the first noise canceling phase and before the start of the next frame In the second noise canceling phase, the potential of the signal output terminal is continuously controlled to be lowered and discharged for the first capacitor.
  • the first clock signal and the second clock signal have the same period and opposite phases. For example, if the first clock signal is CLK, the second clock signal is CLKB, and if the first clock signal is CLKB, the second clock signal is Is CLK.
  • the input signal input terminal is a high level signal
  • the signal received by the start signal input terminal is an output signal of the shift register of the previous stage, so that the first transistor M1 is turned on; the first clock signal input terminal CLK1
  • the high potential signal at the signal input charges the C1 capacitor, so that the potential of the PU node of the first node is pulled high, and the sixth transistor M6 is turned on, so that the potential of the PD node of the second node is low at this moment.
  • the eighth transistor M8 and the ninth transistor M9 are turned off, thereby ensuring the stable output of the signal.
  • the first transistor M1 is turned off, the first node PU continues to maintain a high potential, and the third transistor M3 remains turned on.
  • the first clock signal input terminal CLK1 is at a high potential.
  • the first node PU amplifies the voltage of the first node due to the bootstrapping effect, and finally transmits a driving signal to the output terminal; at this time, the first clock signal input end CLK1 is high, and the seventh transistor M7 is turned on. Since the PU point of the first node is high at this time, the sixth transistor M6 is still turned on, and the second node is designed by designing the ratio of the seventh transistor M7 to the sixth transistor M6.
  • the PD is at a low potential, so that the eighth transistor M8 and the ninth transistor M9 continue to be turned off, ensuring the stable output of the signal.
  • the next-stage output G ( n+1 ), that is, the reset terminal signal Reset is at a high level.
  • the high level signal of the reset signal input terminal turns on the second transistor M2 of the transistor, and the fourth transistor M4 transmits a turn-off signal to the first node PU and the output terminal, turns off the third transistor M3, and pulls the output signal to VGL potential, at this time, the first clock signal input terminal CLK1 is low, the seventh transistor M7 is turned off, the second clock signal input terminal CLK2 is high, the fifth transistor M5 is turned on, and the sixth transistor M6 is low due to the first node PU.
  • the second node PD is turned on, and the eighth transistor M8 and the ninth transistor M9 are turned on, and the first node PU and the signal output terminal are noise-canned, so that the coupling generated by the first clock signal input terminal CLK1 is generated.
  • the noise voltage is eliminated to ensure low-voltage output and ensure signal output stability.
  • the second clock signal input terminal CLK2 is at a low potential.
  • the first node PU and the output terminal Output have been discharged through the second transistor M2 and the fourth transistor M4, at which time the sixth transistor M6 is in the off state, the first clock signal input terminal CLK1 is at a high potential, and the fifth transistor M5 is turned off.
  • the seventh transistor M7 is turned on, the second node PD is still at a high potential, and the eighth transistor M8 and the ninth transistor M9 can continue to operate to perform noise cancellation on the first node PU and the output terminal Output.
  • the second clock signal input terminal CLK2 is at a high potential
  • the first clock signal input terminal CLK1 is at a low potential
  • the fifth transistor M5 is turned on
  • the sixth transistor M6 is in a closed state
  • the second node PD potential is maintained.
  • the eighth transistor M8 and the ninth transistor M9 are turned on to perform noise cancellation on the first node PU and the output terminal, so that the coupling (Coupling) noise voltage generated by the first clock signal input terminal CLK1 is eliminated, thereby ensuring low-voltage output and ensuring The stability of the signal output.
  • the shift register unit repeats the fourth phase and the fifth phase, and continuously performs noise cancellation on the gate circuit.
  • the shift register unit provided by the embodiment of the present disclosure can not only realize the function of the gate driving of the liquid crystal display, but also continuously suppresses noise when the output end thereof is in an inactive state, thereby reducing noise in the output signal thereof, thereby reducing the noise thereof.
  • the possibility of erroneous output is basically off when some key thin film transistors (TFTs) are in an inactive state, avoiding shortening or error of the life of the shift register due to the drift of the threshold voltage of the thin film transistor (TFT) itself. Output.
  • an embodiment of the present disclosure further provides a display device including the above-described shift register, and a signal output end of each of the shift registers is connected to a gate line.
  • the display device may be: a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like, or any display product or component.

Abstract

提供了一种移位寄存器单元及其驱动方法、移位寄存器、显示装置。该移位寄存器单元包括第一电容(C1)、输入缓冲模块(31)、上拉模块(32)、复位控制模块(33)、下拉模块(34)以及下拉强化模块(35);该输入缓冲模块(31)用于在信号输入缓冲阶段为第一电容(C1)进行预充电;该上拉模块(32)用于在信号输出阶段控制信号输出端(OUTPUT)输出驱动信号;该复位控制模块(33)用于在复位阶段控制下拉模块(34)处于截止状态;该下拉模块(34)用于在第一放噪阶段控制信号输出端(OUTPUT)的电位降低以及为该第一电容(C1)放电;该下拉强化模块(35)用于在第二放噪阶段协同下拉模块(34)控制信号输出端(OUTPUT)的电位持续降低以及为该第一电容(C1)持续放电。该移位寄存器能够减少移位寄存器输出信号中的噪声,提高移位寄存器的可靠性。

Description

移位寄存器单元及其驱动方法、 移位寄存器、 显示装置 技术领域
本公开涉及一种移位寄存器单元及其驱动方法、 移位寄存器、 显示装置。
背景技术
液晶显示面板采用 ΜχΝ点排列的逐行扫描矩阵显示。 TFT-LCD ( Thin Film Transistor-Liquid Crystal Display, 薄膜晶体管液晶显示装置)驱动器主要 包括栅极驱动器和数据驱动器, 其中, 栅极驱动器将输入的时钟信号通过移 位寄存器转换后加在液晶显示面板的栅线上。
移位寄存器常用于液晶显示面板的栅极驱动器中, 每一个栅线与移位寄 存器的一个级电路单元对接。 通过栅级驱动电路输出栅级输入信号, 逐行进 行扫描各像素。 栅级驱动电路可以以柔性基板上的芯片技术( Chip on Array, COF ) 或者玻璃基板上的芯片技术( Chip on Glass, COG ) 的封装方式设置 在显示面板中, 也可以用 TFT构成集成电路单元形成在显示面板中。 对于液 晶显示面板, 栅极驱动器集成在玻璃基板上 (Gate on Array, GO A )设计可 以使得产品成本下降, 也可以减去一道工序, 提高产能。
现有的移位寄存器单元中典型的结构如图 1所示, 图 2为图 1所示的移位寄 存器单元的工作时序图, 它的工作原理如下:
在第一阶段, 信号输入端 Input为高电平信号, 信号输入端接收的信号为 上一级移位寄存器的输出信号, 使得 Ml'管导通; 第一时钟信号输入端 CLK1 为低电位时, 输入端的高电位信号给 C1'电容进行充电,使得第一节点 PU节点 的电位被拉高, 同时 M5', M6'管打开, 通过设计 M5'与 M6'的比例, 使得这个 时刻 PD的电位为低电位, 使得 Μ8', M9'关断, 从而保证信号的稳定性输出。
在第二阶段, 当信号输入端 Input为低电平, ΜΓ管关断, 第一节点 PU继 续保持高电位, M3'管保持开启状态。 这时候第一时钟信号输入端 CLK1为高 电位, 此时, 第一节点由于自举效应 (bootstrapping )放大第一节点的电压, 最终向输出端传输驱动信号; 此时第一节点 PU点为高电位, M6'仍处于开启 状态, 从而 M8'和 M9'继续关闭, 保证信号的稳定性输出。
在第三阶段, 复位信号输入端连接下一级移位寄存器的输出端, 下一级 输出 G ( n+1 )即复位端信号 Reset为高电平。 复位信号输入端的高电平信号导 通晶体管 M2', M4', 使其对第一节点 PU节点和输出端 Output进行传输关断信 号, 关断晶体管 M3', 将输出信号拉到 VGL电位。
在第四阶段, 第二时钟信号输入端 CLK2为低电位, 其中, 该第二时钟信 号与第一时钟信号周期相同,相位相反,第一时钟信号输入端 CLK1为高电位, M5'关闭, 第二节点 PD点电位处于低电位, 晶体管 M8'和 M9'关闭, 此时, 由 于前一阶段通过 M2'和 M4'已对第一节点 PU点和输出端 Output进行了放电, M6'处于关闭状态, 所以不会对第二节点 PD点进行放电。
在第五阶段, 第二时钟信号输入端 CLK2为高电位, 由于第二时钟信号输 入端 CLK2为高电位, M5'打开, 第二节点 PD点电位被拉高, 从而打开晶体管 M8'和 M9', 对第一节点 PU点及输出端 Output进行放噪, 使得由第一时钟信号 输入端 CLK1产生的耦合( Coupling )噪声电压得以消除, 从而保证低压输出, 保证信号输出的稳定性。
但是, 上述的移位寄存器只能在工作的部分时间内对输出端进行放噪, 而在其他时间输出端则处于悬浮状态, 导致移位寄存器的输出端输出的信号 中有较大的噪声, 从而造成错误输出, 对面板造成极大隐患。
发明内容
在本公开的一些实施例中, 提供了一种移位寄存器单元及其驱动方法、 移位寄存器、 显示装置, 能够减少现有移位寄存器输出信号中的噪声。
根据本公开的一个方面, 提供了一种移位寄存器单元, 包括第一电容、 输入緩冲模块、 上拉模块、 复位控制模块、 下拉模块以及下拉强化模块; 所述输入緩冲模块, 分别与起始信号输入端、 下拉模块、 第一电容第一 端和上拉模块连接, 用于在信号输入緩冲阶段为第一电容进行预充电;
所述上拉模块, 分别与第一时钟信号输入端、 第一电容、 输入緩冲模块、 下拉模块和信号输出端连接, 用于在信号输出阶段控制信号输出端输出驱动 信号;
所述复位控制模块, 分别与复位信号输入端、 低电平信号输入端和下拉 模块连接, 用于在复位阶段控制下拉模块处于截止状态;
所述下拉模块, 分别与第二时钟信号输入端、 低电平信号输入端、 信号 输出端、 输入緩冲模块、 第一电容、 上拉模块和复位控制模块连接, 用于在 第一放噪阶段控制信号输出端的电位降低以及为所述第一电容放电; 所述下拉强化模块, 分别与第一时钟信号输入端和下拉模块连接, 用于 在第二放噪阶段协同下 莫块控制信号输出端的电位持续降低以及为所述第 一电容持续放电。
可选地, 所述输入緩冲模块包括:
第一晶体管, 所述第一晶体管的栅极和第一极连接所述信号输入端, 所 述第一晶体管的第二极连接至第一节点。
可选地, 所述上拉模块包括第三晶体管;
所述第三晶体管的栅极连接至第一节点, 所述第三晶体管的第一极连接 所述第一时钟信号输入端, 所述第三晶体管的第二极连接所述信号输出端。
可选地, 所述复位控制模块包括第二晶体管和第四晶体管;
所述第二晶体管的栅极连接所述复位信号输入端, 所述第二晶体管的第 一极连接第一节点, 所述第二晶体管的第二极连接低电压信号输入端; 所述第四晶体管的栅极连接所述复位信号输入端, 所述第四晶体管的第 一极连接所述信号输出端, 所述第四晶体管的第二极连接所述低电压信号输 入端。
可选地, 所述下拉模块包括第五晶体管、 第六晶体管、 第八晶体管以及 第九晶体管;
所述第五晶体管的第一极和栅极连接所述第二时钟信号输入端, 所述第 五晶体管的第二极连接第二节点;
所述第六晶体管的第一极连接第二节点, 栅极连接第一节点, 所述第六 晶体管的第二极连接所述低电压信号输入端;
所述第八晶体管的第一极连接第一节点, 所述第八晶体管的栅极连接第 二节点, 所述第八晶体管的第二极连接所述低电压信号输入端;
所述第九晶体管的第一极连接所述信号输出端, 所述第九晶体管的栅极 连接所述第二节点, 所述第九晶体管的第二极连接所述低电压信号输入端。
可选地, 所述下拉强化模块包括:
至少一个第七晶体管, 所述第七晶体管的第一极和栅极连接所述第一时 钟信号输入端, 所述第七晶体管的第二极连接第二节点。
可选地, 所述第一极为源极, 所述第二极为漏极。
根据本公开的另一方面, 还提供了一种移位寄存器, 包括多级上述任意 一种的移位寄存器单元; 除第一级移位寄存器单元和最后一级移位寄存器单 元外, 每一级移位寄存器单元的起始信号输入端均连接自身的上一级移位寄 存器单元的信号输出端, 每一级移位寄存器单元的复位信号输入端均连接自 身的下一级移位寄存器单元的信号输出端。
根据本公开的另一方面, 还提供了一种显示装置, 包括上述的移位寄存 器, 每个所述移位寄存器的信号输出端连接一条对应的栅线。
根据本公开的另一方面, 还提供了一种移位寄存器单元的驱动方法, 所 述方法基于上述的移位寄存器单元, 包括:
信号输入緩冲阶段: 输入緩冲模块处于导通状态, 上拉模块、 复位控制 模块、 下拉模块以及下拉强化模块处于截止状态, 输入緩冲模块为第一电容 预充电;
信号输出阶段: 上拉模块处于导通状态, 输入緩沖模块、 复位控制模块、 下拉模块以及下拉强化模块处于截止状态, 上拉模块控制信号输出端输出驱 动信号;
复位阶段: 复位控制模块处于导通状态, 输入緩冲模块、 上拉模块处于 截止状态, 复位控制模块控制下拉模块以及下拉强化模块处于截止状态; 第一放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于导通状 态, 输入緩冲模块以及上拉模块处于截止状态, 下拉模块控制信号输出端的 电位降低并为所述第一电容放电;
第二放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于导通状 态, 输入緩沖模块以及上拉模块处于截止状态, 下拉强化模块协同下拉模块 控制信号输出端的电位持续降低以及为所述第一电容持续放电;
在下一帧开始之前, 所述移位寄存器单元重复交替经历第一放噪阶段和 第二放噪阶段, 不断控制信号输出端的电位降低以及为所述第一电容放电。
可选地, 所述第一时钟信号与第二时钟信号周期相同, 相位相反。
本公开的实施例提供了一种移位寄存器单元及其驱动方法、移位寄存器、 显示装置, 该移位寄存器单元不仅能实现液晶显示器栅极驱动的作用, 并且 在其输出端无效状态时, 不断对其进行放噪, 进而减少其输出信号中的噪声, 从而减少了其错误输出的可能性, 提高了移位寄存器的可靠性。
附图说明
图 1是现有技术提供的一种移位寄存器单元的结构示意图; 图 2是现有技术提供的移位寄存器单元的工作时序图;
图 3是本公开的实施方式提供的一种移位寄存器单元的结构示意图; 图 4为本公开的实施方式提供的一种移位寄存器的结构图;
图 5是本公开的实施方式提供的移位寄存器单元的工作时序图。
具体实施方式
下面结合附图和实施例, 对本公开的具体实施方式作进一步详细描述。 以下实施例用于说明本公开的实施例,但不用来限制本公开的实施例的范围。
本公开的实施方式提供了一种移位寄存器单元, 包括第一电容、 输入緩 冲模块 31、 上拉模块 32、 复位控制模块 33、 下拉模块 34以及下拉强化模块 35;
所述输入緩冲模块 31, 分别与起始信号输入端 INPUT、 下拉模块 34、 第 一电容 C1第一端和上拉模块 32连接, 用于在信号输入緩冲阶段为第一电容 C1进行预充电;
所述上拉模块 32, 分别与第一时钟信号输入端 CLK1、 第一电容 Cl、 输 入緩冲模块 31、 下拉模块 34和信号输出端 OUTPUT连接, 用于在信号输出 阶段控制信号输出端 OUTPUT输出驱动信号;
所述复位控制模块 33, 分别与复位信号输入端 RESET、低电平信号输入 端 VGL和下拉模块 34连接,用于在复位阶段控制下拉模块 34处于截止状态; 所述下拉模块 34, 分别与第二时钟信号输入端 CLK2、 低电平信号输入 端 VGL、 信号输出端 OUTPUT, 输入緩冲模块 31、 第一电容 Cl、 上拉模块 32和复位控制模块 33连接, 用于在第一放噪阶段控制信号输出端 OUTPUT 的电位降低以及为所述第一电容 C1放电;
所述下拉强化模块 35,分别与第一时钟信号输入端 CLK1和下拉模块 34 连接, 用于在第二放噪阶段协同下拉模块 34控制信号输出端 OUTPUT的电 位持续 P争低以及为所述第一电容 C1持续放电。
其中, 参见图 3, 所述输入緩沖模块 31包括:
第一晶体管 Ml,所述第一晶体管 Ml的栅极和第一极连接所述起始信号 输入端 INPUT, 所述第一晶体管 Ml的第二极连接至第一节点 PU。
其中, 所述上拉模块 32包括第三晶体管 M3;
所述第三晶体管 M3的栅极连接至第一节点 PU, 所述第三晶体管 M3的 第一极连接所述第一时钟信号输入端 CLK1,所述第三晶体管 M3的第二极连 接所述信号输出端 OUTPUT。
其中, 所述复位控制模块 33包括第二晶体管 M2和第四晶体管 M4; 所述第二晶体管 M2的栅极连接所述复位信号输入端 RESET, 所述第二 晶体管 M2的第一极连接第一节点 PU, 所述第二晶体管 M2的第二极连接低 电压信号输入端 VGL;
所述第四晶体管 M4的栅极连接所述复位信号输入端 RESET , 所述第四 晶体管 M4的第一极连接所述信号输出端 OUTPUT, 所述第四晶体管 M4的 第二极连接所述低电压信号输入端 VGL。
其中, 所述下拉模块 34包括第五晶体管 M5、 第六晶体管 M6、 第八晶 体管 M8以及第九晶体管 M9;
所述第五晶体管 M5的第一极和栅极连接所述第二时钟信号输入端 CLK2 , 所述第五晶体管 M5的第二极连接第二节点 PD;
所述第六晶体管 M6的第一极连接第二节点 PD,栅极连接第一节点 PU, 所述第六晶体管 M6的第二极连接所述低电压信号输入端;
所述第八晶体管 M8的第一极连接第一节点 PU, 所述第八晶体管 M8的 栅极连接第二节点 PD, 所述第八晶体管 M8的第二极连接所述低电压信号输 入端 VGL;
所述第九晶体管 M9的第一极连接所述信号输出端 OUTPUT, 所述第九 晶体管 M9的栅极连接所述第二节点 PD, 所述第九晶体管 M9的第二极连接 所述低电压信号输入端 VGL。
其中, 所述下拉强化模块 35包括:
至少一个第七晶体管 M7,所述第七晶体管 M7的第一极和栅极连接所述 第一时钟信号输入端 CLK1 ,所述第七晶体管 M7的第二极连接第二节点 PD。
其中, 所述第一极为源极, 所述第二极为漏极。 由于这里采用的晶体管 的源极、 漏极是对称的, 所以其源极、 漏极是可以互换的。 在本公开的实施 例实施例中, 为区分晶体管除栅极之外的两极, 将其中一极称为源极, 另一 极称为漏极。 若选取源极作为信号输入端、 则漏极作为信号输出端, 反之亦 然。
此外, 需要说明的是, 对于液晶显示领域的晶体管来说, 第二极和第一 极没有明确的区别, 因此本公开的实施例中所提到的晶体管中的第一极可以 为晶体管的第二极, 晶体管的第二极也可以为晶体管的第一极。
其中, 在上述的实施方式中, 第一晶体管 Ml、 第二晶体管 M2、 第三晶 体管 M3、 第四晶体管 M4、 第五晶体管 M5、 第六晶体管 M6、 第七晶体管 M7、 第八晶体管 M8、 第九晶体管 M9均可为 N型晶体管。
此外, 本公开的实施方式提供了的一种移位寄存器, 包括多级上述的移 位寄存器单元; 参见图 4, 图 4是本公开的实施方式提供的一种移位寄存器 的结构图, 包括第一级移位寄存器单元 SR1、 第二级移位寄存器单元 SR2、 第三级移位寄存器单元 SR3、 第四级移位寄存器单元 SR4、 ..., 其中, 除第 一级移位寄存器单元和最后一级移位寄存器单元外, 每一级移位寄存器单元 的起始信号输入端均连接自身的上一级移位寄存器单元的信号输出端, 每一 级移位寄存器单元的复位信号输入端均连接自身的下一级移位寄存器单元的 信号输出端。 其中, 第一级移位寄存器单元的输入信号为场同步信号, 最后 一级移位寄存器单元的复位信号输入端可以连接至复位单元, 该复位单元可 以是额外增加的冗余移位寄存器, 也可以是额外增加的反相器。
此外, 本公开的实施例还提供了一种移位寄存器单元的驱动方法, 该方 法基于上述的移位寄存器单元, 包括:
信号输入緩冲阶段: 输入緩冲模块处于导通状态, 上拉模块、 复位控制 模块、 下拉模块以及下拉强化模块处于截止状态, 输入緩冲模块为第一电容 预充电;
信号输出阶段: 上拉模块处于导通状态, 输入緩沖模块、 复位控制模块、 下拉模块以及下拉强化模块处于截止状态, 上拉模块控制信号输出端输出驱 动信号;
复位阶段: 复位控制模块处于导通状态, 输入緩冲模块、 上拉模块处于 截止状态, 复位控制模块控制下拉模块以及下拉强化模块处于截止状态; 第一放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于导通状 态, 输入緩沖模块以及上拉模块处于截止状态, 下拉模块控制信号输出端的 电位降低并为所述第一电容放电;
第二放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于导通状 态, 输入緩冲模块以及上拉模块处于截止状态, 下拉强化模块协同下拉模块 控制信号输出端的电位持续降低以及为所述第一电容持续放电;
在下一帧开始之前, 所述移位寄存器单元重复交替经历第一放噪阶段和 第二放噪阶段, 不断控制信号输出端的电位降低以及为所述第一电容放电。 其中, 所述第一时钟信号与第二时钟信号周期相同, 相位相反, 例如, 若第一时钟信号为 CLK,则第二时钟信号为 CLKB,若第一时钟信号为 CLKB, 则第二时钟信号为 CLK。
为了进一步说明本公开的实施方式提供的移位寄存器单元, 下面结合图
5所示的时序图说明其工作原理。
第一阶段,起始信号输入端 Input为高电平信号,起始信号输入端接收的 信号为上一级移位寄存器的输出信号, 使得第一晶体管 Ml 导通; 第一时钟 信号输入端 CLK1为低电位时,信号输入端的高电位信号给 C1电容进行充电, 使得第一节点 PU节点的电位被拉高, 同时第六晶体管 M6打开,使得这个时 刻第二节点 PD节点的电位为低电位, 使得第八晶体管 M8, 第九晶体管 M9 关断, 从而保证信号的稳定性输出。
第二阶段, 当起始信号输入端 Input为低电平, 第一晶体管 Ml关断, 第一节点 PU继续保持高电位, 第三晶体管 M3保持开启状态。这时候第一时 钟信号输入端 CLK1 为高电位, 此时, 第一节点 PU 由于自举效应 ( bootstrapping )放大第一节点的电压, 最终向输出端传输驱动信号; 此时第 一时钟信号输入端 CLK1为高电位, 第七晶体管 M7打开, 由于此时第一节 点 PU点为高电位, 第六晶体管 M6仍处于开启状态, 通过设计第七晶体管 M7与第六晶体管 M6的比例, 使第二节点 PD处于低电位, 从而使第八晶体 管 M8和第九晶体管 M9继续关闭, 保证信号的稳定性输出。
第三阶段, 由于移位寄存器单元的复位信号输入端连接下一级移位寄存 器单元的输出端, 下一级输出 G ( n+1 ) 即复位端信号 Reset为高电平。 复位 信号输入端的高电平信号导通晶体管第二晶体管 M2, 第四晶体管 M4, 使其 对第一节点 PU和输出端 Output进行传输关断信号, 关断第三晶体管 M3,将 输出信号拉到 VGL电位, 此时第一时钟信号输入端 CLK1为低电位, 第七晶 体管 M7关闭, 第二时钟信号输入端 CLK2为高电位, 第五晶体管 M5打开, 第六晶体管 M6由于第一节点 PU低电位所以关闭,此时第二节点 PD为高电 位, 第八晶体管 M8和第九晶体管 M9打开, 对第一节点 PU及信号输出端 Output进行放噪, 使得由第一时钟信号输入端 CLK1产生的耦合( Coupling ) 噪声电压得以消除, 从而保证低压输出, 保证信号输出的稳定性。
第四阶段, 第二时钟信号输入端 CLK2为低电位。 此时, 由于前一阶段 通过第二晶体管 M2和第四晶体管 M4已对第一节点 PU和输出端 Output进 行了放电, 此时第六晶体管 M6 处于关闭状态, 第一时钟信号输入端 CLK1 为高电位, 第五晶体管 M5关闭, 第七晶体管 M7打开, 第二节点 PD仍处 于高电位, 第八晶体管 M8和第九晶体管 M9可以继续工作, 对第一节点 PU 及输出端 Output进行放噪。
第五阶段, 第二时钟信号输入端 CLK2为高电位, 第一时钟信号输入端 CLK1为低电位, 第五晶体管 M5打开, 此时第六晶体管 M6处于关闭状态, 第二节点 PD电位被保持, 第八晶体管 M8和第九晶体管 M9打开, 对第一节 点 PU及输出端 Output进行放噪, 使得由第一时钟信号输入端 CLK1产生的 耦合 (Coupling ) 噪声电压得以消除, 从而保证低压输出, 保证信号输出的 稳定性。
在下一帧到来之前, 该移位寄存器单元一直重复第四阶段与第五阶段, 不断对该栅极电路进行放噪。
本公开的实施方式提供的移位寄存器单元不仅能实现液晶显示器栅极驱 动的作用, 并且在其输出端无效状态时, 不断对其进行放噪, 进而减少其输 出信号中的噪声, 从而减少其错误输出的可能性, 对于一些关键薄膜晶体管 ( TFT )在无效状态时, 基本处于关闭状态, 避免了由于薄膜晶体管 (TFT ) 本身阈值电压的漂移而造成的该移位寄存器的使用寿命缩短或错误输出。
此外, 本公开的实施例还提供了一种显示装置, 包括上述的移位寄存器, 每个所述移位寄存器的信号输出端连接一条栅线。 所述显示装置可以为: 液 晶面板、 电子纸、 0LED 面板、 手机、 平板电脑、 电视机、 显示器、 笔记本 电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
以上实施方式仅用于说明本公开的实施例, 而并非对本发明的限制, 有 关技术领域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可 以做出各种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本 发明的专利保护范围应由权利要求限定。
本申请要求于 2013年 12月 27 曰递交的中国专利申请第 2013107386 32.3号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申 请的一部分。

Claims

权 利 要 求 书
1、 一种移位寄存器单元, 包括第一电容、 输入緩沖模块、 上拉模 块、 复位控制模块、 下拉模块以及下拉强化模块;
所述输入緩冲模块, 分别与起始信号输入端、 下拉模块、 第一电 容第一端和上拉模块连接, 用于在信号输入緩冲阶段为第一电容进行 预充电;
所述上拉模块, 分别与第一时钟信号输入端、 第一电容、 输入緩 沖模块、 下拉模块和信号输出端连接, 用于在信号输出阶段控制信号 输出端输出驱动信号;
所述复位控制模块, 分别与复位信号输入端、 低电平信号输入端 和下拉模块连接, 用于在复位阶段控制下拉模块处于截止状态;
所述下拉模块, 分别与第二时钟信号输入端、 低电平信号输入端、 信号输出端、 输入緩沖模块、 第一电容、 上拉模块和复位控制模块连 接, 用于在第一放噪阶段控制信号输出端的电位降低以及为所述第一 电容放电;
所述下拉强化模块, 分别与第一时钟信号输入端和下拉模块连接, 用于在第二放噪阶段协同下拉模块控制信号输出端的电位持续降低以 及为所述第一电容持续放电。
2、 根据权利要求 1所述的移位寄存器单元, 其中, 所述输入緩冲 模块包括:
第一晶体管, 所述第一晶体管的栅极和第一极连接所述起始信号 输入端, 所述第一晶体管的第二极连接至第一节点。
3、 根据权利要求 1-2任一项所述的移位寄存器单元, 其中, 所述 上拉模块包括第三晶体管;
所述第三晶体管的栅极连接至第一节点, 所述第三晶体管的第一 极连接所述第一时钟信号输入端, 所述第三晶体管的第二极连接所述 信号输出端。
4、 根据权利要求 1-3任一项所述的移位寄存器单元, 其中, 所述 复位控制模块包括第二晶体管和第四晶体管; 所述第二晶体管的栅极连接所述复位信号输入端, 所述第二晶体 管的第一极连接第一节点, 所述第二晶体管的第二极连接低电压信号 输入端;
所述第四晶体管的栅极连接所述复位信号输入端, 所述第四晶体 管的第一极连接所述信号输出端, 所述第四晶体管的第二极连接所述 低电压信号输入端。
5、 根据权利要求 1-4任一项所述的移位寄存器单元, 其中, 所述 下拉模块包括第五晶体管、 第六晶体管、 第八晶体管以及第九晶体管; 所述第五晶体管的第一极和栅极连接所述第二时钟信号输入端, 所述第五晶体管的第二极连接第二节点;
所述第六晶体管的第一极连接第二节点, 栅极连接第一节点, 所 述第六晶体管的第二极连接所述低电压信号输入端;
所述第八晶体管的第一极连接第一节点, 所述第八晶体管的栅极 连接第二节点, 所述第八晶体管的第二极连接所述低电压信号输入端; 所述第九晶体管的第一极连接所述信号输出端, 所述第九晶体管 的栅极连接所述第二节点, 所述第九晶体管的第二极连接所述低电压 信号输入端。
6、 根据权利要求 1-5任一项所述的移位寄存器单元, 其中, 所述 下拉强化模块包括:
至少一个第七晶体管, 所述第七晶体管的第一极和栅极连接所述 第一时钟信号输入端, 所述第七晶体管的第二极连接第二节点。
7、 根据权利要求 2到 6任一项所述的移位寄存器单元, 其中, 所 述第一极为源极, 所述第二极为漏极。
8、 一种移位寄存器, 包括多级如权利要求 1-7任一所述的移位寄 存器单元; 除第一级移位寄存器单元和最后一级移位寄存器单元外, 每一级移位寄存器单元的起始信号输入端均连接自身的上一级移位寄 存器单元的信号输出端, 每一级移位寄存器单元的复位信号输入端均 连接自身的下一级移位寄存器单元的信号输出端。
9、 一种显示装置, 包括如权利要求 8所述的移位寄存器, 每个所 述移位寄存器的信号输出端连接一条对应的栅线。
10、 一种移位寄存器单元的驱动方法, 所述方法基于权利要求 1-7 任一项所述的移位寄存器单元, 包括:
信号输入緩冲阶段: 输入緩冲模块处于导通状态, 上拉模块、 复 位控制模块、 下拉模块以及下拉强化模块处于截止状态, 输入緩冲模 块为第一电容预充电;
信号输出阶段: 上拉模块处于导通状态, 输入緩冲模块、 复位控 制模块、 下拉模块以及下拉强化模块处于截止状态, 上拉模块控制信 号输出端输出驱动信号;
复位阶段: 复位控制模块处于导通状态, 输入緩冲模块、 上拉模 块处于截止状态, 复位控制模块控制下拉模块以及下拉强化模块处于 截止状态;
第一放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于 导通状态, 输入緩冲模块以及上拉模块处于截止状态, 下拉模块控制 信号输出端的电位降低并为所述第一电容放电;
第二放噪阶段: 复位控制模块、 下拉模块以及下拉强化模块处于 导通状态, 输入緩沖模块以及上拉模块处于截止状态, 下拉强化模块 协同下拉模块控制信号输出端的电位持续降低以及为所述第一电容持 续放电;
在下一帧开始之前, 所述移位寄存器单元重复交替经历第一放噪 阶段和第二放噪阶段, 不断控制信号输出端的电位降低以及为所述第 一电容放电。
11、 根据权利要求 10所述的移位寄存器单元的驱动方法, 其特征 在于, 所述第一时钟信号与第二时钟信号周期相同, 相位相反。
PCT/CN2014/078274 2013-12-27 2014-05-23 移位寄存器单元及其驱动方法、移位寄存器、显示装置 WO2015096372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,247 US9613583B2 (en) 2013-12-27 2014-05-23 Shift register unit and driving method therefor, shift register, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310738632.3A CN103700356A (zh) 2013-12-27 2013-12-27 移位寄存器单元及其驱动方法、移位寄存器、显示装置
CN201310738632.3 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015096372A1 true WO2015096372A1 (zh) 2015-07-02

Family

ID=50361864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078274 WO2015096372A1 (zh) 2013-12-27 2014-05-23 移位寄存器单元及其驱动方法、移位寄存器、显示装置

Country Status (3)

Country Link
US (1) US9613583B2 (zh)
CN (1) CN103700356A (zh)
WO (1) WO2015096372A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556222B (zh) * 2015-10-29 2016-11-01 友達光電股份有限公司 移位暫存器
TWI571057B (zh) * 2016-03-23 2017-02-11 友達光電股份有限公司 移位暫存電路

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700356A (zh) * 2013-12-27 2014-04-02 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器、显示装置
CN106688029A (zh) * 2014-05-28 2017-05-17 可隆奥托株式会社 移位电路、移位寄存器和显示装置
TWI541814B (zh) * 2014-10-03 2016-07-11 友達光電股份有限公司 移位暫存裝置
CN104361869A (zh) * 2014-10-31 2015-02-18 京东方科技集团股份有限公司 移位寄存器单元电路、移位寄存器、驱动方法及显示装置
CN104299594B (zh) 2014-11-07 2017-02-15 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及显示装置
CN104318909B (zh) * 2014-11-12 2017-02-22 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及其驱动方法、显示面板
CN104392704A (zh) * 2014-12-15 2015-03-04 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器和显示装置
CN104464600B (zh) * 2014-12-26 2017-02-01 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器电路以及显示装置
CN104575436B (zh) * 2015-02-06 2017-04-05 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及显示装置
CN104575437B (zh) * 2015-02-06 2017-01-25 京东方科技集团股份有限公司 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置
CN104700805B (zh) * 2015-03-26 2016-09-07 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路、显示面板及显示装置
CN104700803B (zh) * 2015-03-26 2017-02-22 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路、显示面板及显示装置
CN104766580B (zh) * 2015-04-23 2017-08-01 合肥京东方光电科技有限公司 移位寄存器单元及驱动方法、栅极驱动电路和显示装置
CN104810003A (zh) * 2015-05-21 2015-07-29 合肥京东方光电科技有限公司 移位寄存器及其驱动方法、栅极驱动电路、显示装置
CN104952406B (zh) * 2015-06-08 2017-08-01 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路和显示装置
CN104934011B (zh) * 2015-07-20 2018-03-23 合肥京东方光电科技有限公司 移位寄存器单元、栅极驱动电路和显示装置
CN104952417A (zh) * 2015-07-23 2015-09-30 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
US11127336B2 (en) 2015-09-23 2021-09-21 Boe Technology Group Co., Ltd. Gate on array (GOA) unit, gate driver circuit and display device
CN105096811B (zh) * 2015-09-23 2017-12-08 京东方科技集团股份有限公司 Goa单元、栅极驱动电路及显示装置
CN105185412A (zh) * 2015-10-19 2015-12-23 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN105185349B (zh) * 2015-11-04 2018-09-11 京东方科技集团股份有限公司 一种移位寄存器、栅极集成驱动电路及显示装置
CN105374314B (zh) * 2015-12-24 2018-01-19 京东方科技集团股份有限公司 移位寄存单元及其驱动方法、栅极驱动电路和显示装置
CN105469736B (zh) * 2016-01-07 2018-03-23 京东方科技集团股份有限公司 一种goa单元及其驱动方法、goa电路、显示装置
CN106023914A (zh) * 2016-05-16 2016-10-12 京东方科技集团股份有限公司 移位寄存器及其操作方法
CN105810170B (zh) * 2016-05-30 2018-10-26 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅线驱动电路和阵列基板
CN106531052A (zh) * 2017-01-03 2017-03-22 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路及显示装置
CN106486082B (zh) * 2017-01-03 2020-03-31 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动装置
CN107123391B (zh) * 2017-07-07 2020-02-28 京东方科技集团股份有限公司 栅极驱动单元及其驱动方法、栅极驱动电路和显示装置
CN107274856A (zh) * 2017-08-22 2017-10-20 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN108053789B (zh) * 2018-02-12 2021-02-05 合肥鑫晟光电科技有限公司 显示装置、栅极驱动器及其控制方法
KR102555779B1 (ko) * 2018-02-26 2023-07-17 삼성디스플레이 주식회사 게이트 구동 장치 및 이를 포함하는 표시 장치
CN108428469B (zh) * 2018-03-19 2021-01-26 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN109935269B (zh) * 2018-05-31 2023-05-16 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN108806628B (zh) * 2018-06-21 2021-01-22 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN109616077B (zh) * 2019-02-14 2022-01-07 惠科股份有限公司 栅极驱动电路及液晶显示器
WO2020191695A1 (zh) * 2019-03-28 2020-10-01 京东方科技集团股份有限公司 栅极驱动单元、方法、栅极驱动电路、显示面板和装置
CN110459185B (zh) * 2019-07-19 2021-09-17 信利半导体有限公司 一种低噪声的goa驱动电路、驱动方法、和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533623A (zh) * 2009-02-26 2009-09-16 深圳华映显示科技有限公司 可抑制临界电压漂移的闸极驱动电路
US20100231497A1 (en) * 2009-03-13 2010-09-16 Yi-Suei Liao Display device providing bi-directional voltage stabilization
CN102651186A (zh) * 2011-04-07 2012-08-29 北京京东方光电科技有限公司 移位寄存器及栅线驱动装置
CN103700356A (zh) * 2013-12-27 2014-04-02 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593071B2 (ja) 2002-03-26 2010-12-08 シャープ株式会社 シフトレジスタおよびそれを備えた表示装置
KR20100006063A (ko) * 2008-07-08 2010-01-18 삼성전자주식회사 게이트 드라이버 및 이를 갖는 표시장치
TWI410944B (zh) * 2009-06-10 2013-10-01 Au Optronics Corp 顯示裝置之移位暫存器
CN102708926B (zh) * 2012-05-21 2015-09-16 京东方科技集团股份有限公司 一种移位寄存器单元、移位寄存器、显示装置和驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533623A (zh) * 2009-02-26 2009-09-16 深圳华映显示科技有限公司 可抑制临界电压漂移的闸极驱动电路
US20100231497A1 (en) * 2009-03-13 2010-09-16 Yi-Suei Liao Display device providing bi-directional voltage stabilization
CN102651186A (zh) * 2011-04-07 2012-08-29 北京京东方光电科技有限公司 移位寄存器及栅线驱动装置
CN103700356A (zh) * 2013-12-27 2014-04-02 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556222B (zh) * 2015-10-29 2016-11-01 友達光電股份有限公司 移位暫存器
TWI571057B (zh) * 2016-03-23 2017-02-11 友達光電股份有限公司 移位暫存電路

Also Published As

Publication number Publication date
CN103700356A (zh) 2014-04-02
US20160049128A1 (en) 2016-02-18
US9613583B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
WO2015096372A1 (zh) 移位寄存器单元及其驱动方法、移位寄存器、显示装置
US9734918B2 (en) Shift register and the driving method thereof, gate driving apparatus and display apparatus
US9269455B2 (en) Shift register unit, gate driving circuit, array substrate and display apparatus
WO2017121176A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路和显示装置
WO2017045346A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动装置以及显示装置
WO2016070543A1 (zh) 移位寄存器单元、栅极驱动电路及显示装置
US9779680B2 (en) Shift register unit, gate driving circuit and display apparatus
US10497454B2 (en) Shift register, operation method thereof, gate driving circuit and display device
WO2016074395A1 (zh) 移位寄存器单元、栅极驱动电路及其驱动方法、显示面板
US9558843B2 (en) Shift register unit, gate driving circuit, and display device comprising the same
TWI421872B (zh) 能降低耦合效應之移位暫存器
WO2015180420A1 (zh) 移位寄存器、栅极集成驱动电路及显示屏
WO2017197917A1 (zh) 移位寄存器及其操作方法
WO2014161229A1 (zh) 移位寄存器单元、移位寄存器和显示装置
WO2015018141A1 (zh) 移位寄存器单元及其驱动方法、移位寄存器与显示装置
US11308853B2 (en) Shift register and driving method thereof, gate driving circuit and display apparatus
WO2014166251A1 (zh) 移位寄存器单元及栅极驱动电路
WO2014180074A1 (zh) 移位寄存单元、移位寄存器和显示装置
WO2014139249A1 (zh) 移位寄存器、显示装置、栅极驱动电路及驱动方法
WO2014015580A1 (zh) 栅极驱动电路、方法及液晶显示器
WO2014173025A1 (zh) 移位寄存器单元、栅极驱动电路与显示器件
WO2015100967A1 (zh) 移位寄存器单元、栅极驱动电路及显示装置
WO2014172980A1 (zh) 移位寄存单元及显示装置
WO2017128854A1 (zh) 移位寄存器及其驱动方法、驱动电路和显示装置
WO2014172965A1 (zh) 移位寄存器单元、栅极驱动电路及阵列基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14424247

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.10.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14873615

Country of ref document: EP

Kind code of ref document: A1