WO2015056673A1 - 排気ガスセンサー及び排気ガスセンサーの製造方法 - Google Patents

排気ガスセンサー及び排気ガスセンサーの製造方法 Download PDF

Info

Publication number
WO2015056673A1
WO2015056673A1 PCT/JP2014/077348 JP2014077348W WO2015056673A1 WO 2015056673 A1 WO2015056673 A1 WO 2015056673A1 JP 2014077348 W JP2014077348 W JP 2014077348W WO 2015056673 A1 WO2015056673 A1 WO 2015056673A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas sensor
glass
sensor according
diffusion resistance
Prior art date
Application number
PCT/JP2014/077348
Other languages
English (en)
French (fr)
Inventor
清行 奥長
小林 正宏
一平 福富
Original Assignee
日本電気硝子株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, トヨタ自動車株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2015542615A priority Critical patent/JPWO2015056673A1/ja
Publication of WO2015056673A1 publication Critical patent/WO2015056673A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier

Definitions

  • the present invention relates to an exhaust gas sensor and a method for manufacturing the exhaust gas sensor.
  • Patent Documents 1 and 2 describe an example of an air-fuel ratio sensor that is a kind of exhaust gas sensor.
  • the air-fuel ratio sensor described in Patent Document 1 has a solid electrolyte layer made of oxygen ion conductive ceramics such as zirconia.
  • the solid electrolyte layer is sandwiched between the exhaust gas side electrode layer and the atmosphere side electrode layer.
  • a diffusion resistance layer is provided on the exhaust gas side electrode layer.
  • the diffusion resistance layer has a function of limiting the amount of oxygen ions transferred in the solid electrolyte layer.
  • Patent Document 1 describes that the diffusion resistance layer is made of porous ceramics (heat-resistant inorganic substance).
  • the air-fuel ratio sensor described in Patent Document 2 describes that a diffusion resistance layer can be formed of alumina or the like.
  • Exhaust gas sensors used in automobiles and the like are required to have excellent thermal shock resistance.
  • the diffusion resistance layer made of alumina has low thermal shock resistance.
  • an exhaust gas sensor provided with a diffusion resistance layer made of alumina has a problem of low thermal shock resistance.
  • the main object of the present invention is to provide an exhaust gas sensor excellent in thermal shock resistance.
  • the exhaust gas sensor according to the present invention includes a solid electrolyte layer, a first electrode, a second electrode, and a diffusion resistance layer.
  • the first electrode is provided on one main surface of the solid electrolyte layer.
  • the second electrode is provided on the other main surface of the solid electrolyte layer.
  • the diffusion resistance layer is provided on one main surface of the solid electrolyte layer so as to cover the first electrode.
  • the diffusion resistance layer is made of a porous body.
  • the diffusion resistance layer includes glass and an inorganic filler. The glass content in the diffusion resistance layer is 50% by volume or less.
  • the inorganic filler is composed of crystallized glass, quartz glass, ⁇ -spodumene, ⁇ -eucryptite, willemite, cordierite, aluminum titanate, zirconium tungstate and zirconium phosphotungstate. It is preferable to consist of at least one selected from the group.
  • the inorganic filler is preferably made of crystallized glass containing ⁇ -spodumene solid solution or ⁇ -quartz solid solution as precipitated crystals.
  • the glass is preferably made of silica borate glass.
  • the silica borate glass is, by mass%, SiO 2 25 to 70%, B 2 O 3 1 to 50%, MgO 0 to 10%, CaO 0 to 25%, SrO 0 to It is preferable to contain 10%, BaO 0-40%, MgO + CaO + SrO + BaO 10-45%, Al 2 O 3 0-20%, and ZnO 0-25%.
  • the total content of alkali metal components in the silica borate glass is preferably 10% by mass or less.
  • the diffusion resistance layer preferably has a thermal expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C. or less.
  • the glass has a thermal expansion coefficient of 100 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient of the inorganic filler is preferably 70 ⁇ 10 ⁇ 7 / ° C. or less.
  • the glass softening temperature is preferably 400 ° C. to 1100 ° C.
  • the inorganic filler preferably has an average particle diameter (D 50 ) of 2 ⁇ m to 50 ⁇ m.
  • the ratio (D 99 / D 50 ) of the 99% particle diameter (D 99 ) to the average particle diameter (D 50 ) of the inorganic filler is preferably 3 to 100.
  • the diffusion resistance layer preferably has a porosity of 20% to 80%.
  • the exhaust gas sensor manufacturing method is a method for manufacturing the exhaust gas sensor.
  • a diffusion resistance layer is formed by firing a paste layer made of a paste containing glass powder and an inorganic filler.
  • the paste layer is preferably baked at a temperature between the softening temperature of glass and the softening temperature of glass + 400 ° C.
  • the average particle size (D 50 ) of the glass powder is 0.5 ⁇ m to 20 ⁇ m.
  • the average particle diameter of the glass powder in the production method of the exhaust gas sensor according to the present invention (D 50) is smaller than the average particle diameter of the inorganic filler (D 50) are preferred.
  • an exhaust gas sensor excellent in thermal shock resistance can be provided.
  • FIG. 1 is a schematic cross-sectional view of a main part of an exhaust gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a photomicrograph of a fracture surface of the diffusion resistance layer in Sample 1.
  • FIG. 3 is a photomicrograph of a fracture surface of the diffusion resistance layer in Sample 2.
  • FIG. 4 is a photomicrograph of the fracture surface of the diffusion resistance layer in Sample 4.
  • FIG. 5 is a photomicrograph of the fracture surface of the diffusion resistance layer in Sample 5.
  • FIG. 6 is a photomicrograph of the fracture surface of the diffusion resistance layer in Sample 6.
  • FIG. 1 is a schematic cross-sectional view of a main part of an exhaust gas sensor according to the present embodiment. As shown in FIG. 1, the exhaust gas sensor 1 has a solid electrolyte layer 10.
  • the solid electrolyte layer 10 can be made of, for example, ceramic having conductivity with respect to oxygen ions contained in the exhaust gas.
  • the solid electrolyte layer 10 can be composed of partially stabilized zirconia such as zirconia and yttrium partially stabilized zirconia, ceria, and the like.
  • the solid electrolyte layer 10 composed of partially stabilized zirconia such as zirconia or yttrium partially stabilized zirconia, ceria, etc. exhibits conductivity with respect to oxygen ions or the like when heated to a high temperature of about 500 ° C., for example. Therefore, the exhaust gas sensor 1 is used by being heated to a temperature at which the solid electrolyte layer 10 exhibits conductivity with respect to oxygen ions and the like.
  • the exhaust gas sensor 1 usually includes a heating mechanism for the solid electrolyte layer 10.
  • the solid electrolyte layer 10 has a first main surface 10a and a second main surface 10b.
  • a first electrode 11 is provided on the first main surface 10a.
  • a second electrode 12 is provided on the second main surface 10b.
  • the solid electrolyte layer 10 is sandwiched between the first electrode 11 and the second electrode 12.
  • the first and second electrodes 11 and 12 each have air permeability. Therefore, oxygen contained in the exhaust gas can pass through the first and second electrodes 11 and 12 in the thickness direction.
  • the first and second electrodes 11 and 12 may be, for example, a porous film or may be provided in a mesh shape.
  • the first and second electrodes 11 and 12 can each be composed of a noble metal having high catalytic activity such as Pt.
  • the exhaust gas sensor 1 When the exhaust gas sensor 1 is disposed in an exhaust path of an automobile or the like, the exhaust gas sensor 1 is disposed such that the first electrode 11 faces the engine side and the second electrode 12 faces the outside air side.
  • an oxygen sensor which is a kind of exhaust gas sensor
  • the oxygen concentration in the atmosphere on the first electrode 11 side and the oxygen concentration in the atmosphere on the second electrode 12 side are different, the oxygen concentration is increased from the side with the higher oxygen concentration.
  • An oxygen ion stream is generated toward the lower side.
  • an electromotive force is generated.
  • the exhaust gas sensor 1 can be applied to an air-fuel ratio sensor that can detect a continuous change in air-fuel ratio, a NO x sensor that can detect NO x concentration, and the like. .
  • a diffusion resistance layer 13 covering the first electrode 11 is provided on the first main surface 10a.
  • the diffusion resistance layer 13 is a layer having a function of limiting the amount of exhaust gas supplied to the solid electrolyte layer 10.
  • the diffusion resistance layer 13 is made of a porous body having open cells. For this reason, the exhaust gas can pass through the diffusion resistance layer 13 in the thickness direction.
  • the thickness of the diffusion resistance layer 13 is preferably 50 ⁇ m to 500 ⁇ m, more preferably 60 ⁇ m to 300 ⁇ m, and even more preferably 70 ⁇ m to 200 ⁇ m in order to obtain a desired exhaust gas diffusion resistance capability.
  • the diffusion resistance layer 13 includes glass and an inorganic filler.
  • the glass content in the diffusion resistance layer 13 is 50% by volume or less. For this reason, as can be seen from the results of the following experimental examples and the like, the diffusion resistance layer 13 has good porosity and high thermal shock resistance. Further, the diffusion resistance layer 13 has high adhesion with the solid electrolyte layer 10.
  • the diffusion resistance layer 13 is made of an inorganic porous film containing glass and an inorganic filler and having a glass content of 50% by volume or less, and has high thermal shock resistance and high adhesion to other members. Has strength.
  • the diffusion resistance layer 13 has a thermal expansion coefficient of ⁇ 10 ⁇ 10 ⁇ 7 / ° C. to 70 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is preferably ⁇ 10 ⁇ 10 ⁇ 7 / ° C. to 30 ⁇ 10 ⁇ 7 / ° C., more preferably 0 / ° C. to 15 ⁇ 10 ⁇ 7 / ° C. .
  • the glass contained in the diffusion resistance layer 13 preferably has a thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 / ° C. to 100 ⁇ 10 ⁇ 7 / ° C., and 40 ⁇ 10 ⁇ 7 / ° C.
  • the inorganic filler contained in the diffusion resistance layer 13 preferably has a thermal expansion coefficient of ⁇ 80 ⁇ 10 ⁇ 7 / ° C. to 70 ⁇ 10 ⁇ 7 / ° C., and ⁇ 80 ⁇ 10 ⁇ 7 / ° C. to 40 ⁇ 10 ⁇ 7 / ° C. is more preferable, and ⁇ 10 ⁇ 10 ⁇ 7 / ° C. to 30 ⁇ 10 ⁇ 7 / ° C. is further preferable.
  • the thermal expansion coefficient means a linear thermal expansion coefficient in the range of 30 ° C. to 300 ° C.
  • Examples of the inorganic filler having a low coefficient of thermal expansion as described above include crystallized glass, quartz glass, ⁇ -spodumene, ⁇ -eucryptite, willemite, cordierite, aluminum titanate, zirconium tungstate, and phosphoric acid. Examples thereof include zirconium tungstate.
  • crystallized glass examples include crystallized glass containing ⁇ -spodumene solid solution as precipitated crystals, crystallized glass containing ⁇ -quartz solid solution as precipitated crystals, and the like.
  • the crystallization start temperature of the crystallized glass is preferably 700 ° C. or higher, and more preferably 750 ° C. or higher. If the crystallization start temperature is too low, the heat resistance of the diffusion resistance layer 13 may be reduced.
  • the diffusion resistance layer 13 may include one type of inorganic filler or may include a plurality of types of inorganic fillers.
  • the melting point of the inorganic filler is preferably higher than the softening temperature of the glass.
  • the average particle diameter (D 50 ) of the inorganic filler is preferably 2 ⁇ m to 50 ⁇ m, and more preferably 3 ⁇ m to 15 ⁇ m. If the average particle diameter (D 50 ) of the inorganic filler is too large, the mechanical strength of the porous body may be low, or a uniform porous body may not be obtained. If the average particle diameter (D 50 ) of the inorganic filler is too small, the pores may be too small and the exhaust gas may not pass easily.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a substantially spherical shape and an elliptical shape. Especially, when the inorganic filler is substantially spherical, the distribution of pores inside the diffusion resistance layer 13 is likely to be uniform, and as a result, the air permeability of the exhaust gas is easily stabilized.
  • the softening temperature of glass refers to a value measured with a DTA (differential thermal analyzer).
  • the ratio of the 99% particle diameter to the average particle diameter of the inorganic filler (D 50) (D 99) (D 99 / D 50) is preferably 3 or more, further preferably 5 or more. By doing so, the thermal shock resistance of the diffusion resistance layer 13 can be improved. However, if D 99 / D 50 is too high, the mechanical strength of the porous body may be lowered. Therefore, D 99 / D 50 is preferably 100 or less, and more preferably 30 or less.
  • the average particle size (D 50 ) and the 99% particle size (D 99 ) can be measured with a laser diffraction particle size distribution meter.
  • the glass content in the diffusion resistance layer 13 is higher.
  • the glass content in the diffusion resistance layer 13 is preferably 3% by volume or more, and more preferably 5% by volume or more.
  • the glass content in the diffusion resistance layer 13 needs to be 50% by volume or less, preferably 30% by volume or less, and more preferably 20% by volume or less.
  • the porosity of the diffusion resistance layer 13 can be appropriately set according to characteristics required for the diffusion resistance layer 13.
  • the porosity of the diffusion resistance layer 13 is preferably 20% to 80%, and more preferably 30% to 70%.
  • the softening temperature of the glass contained in the diffusion resistance layer 13 is preferably 1100 ° C. or less, and more preferably 1000 ° C. or less. If the softening temperature of the glass contained in the diffusion resistance layer 13 is too high, the inorganic filler may be altered during firing.
  • the lower limit of the softening temperature of the glass contained in the diffusion resistance layer 13 is not particularly limited, but is preferably 400 ° C. or higher in order to suppress softening deformation under the use environment of the exhaust gas sensor, that is, to improve heat resistance. It is more preferably 500 ° C. or higher, further preferably 600 ° C. or higher, particularly preferably 700 ° C. or higher, and most preferably 800 ° C. or higher.
  • the glass contained in the diffusion resistance layer 13 is preferably a silica borate glass from the viewpoint of heat resistance.
  • Specific examples of the silica borate glass include, by mass%, SiO 2 25 to 70%, B 2 O 3 1 to 50%, MgO 0 to 10%, CaO 0 to 25%, SrO 0 to 10%, BaO 0. -40%, MgO + CaO + SrO + BaO 10-45%, Al 2 O 3 0-20%, and ZnO 0-25%.
  • the alkali metal component Li 2 O, Na 2 O and K 2 O
  • the total content of alkali metal components is preferably 10% or less, more preferably 5% or less, further preferably 1% or less, and particularly preferably not contained.
  • the diffusion resistance layer 13 is provided only on the first main surface 10a.
  • the present invention is not limited to this configuration.
  • the diffusion resistance layer 13 may be provided on each of the first main surface 10a and the second main surface 10b.
  • the exhaust gas sensor 1 can be manufactured, for example, in the following manner. Here, only the manufacturing method of the main part of the exhaust gas sensor 1 will be described. The manufacturing method of other parts may be the same as the conventional method, for example.
  • the solid electrolyte layer 10 is prepared.
  • the first electrode 11 and the second electrode 12 are formed on the solid electrolyte layer 10.
  • the formation method of the 1st and 2nd electrodes 11 and 12 is not specifically limited.
  • the first and second electrodes 11 and 12 can be formed, for example, by sputtering, vapor deposition, plating, or the like.
  • a diffusion resistance layer 13 is formed on the first main surface 10a so as to cover the first electrode 11.
  • a paste containing glass powder and an inorganic filler is prepared.
  • the paste may contain a resin binder, a solvent and the like in addition to the glass powder and the inorganic filler.
  • the porosity of the diffusion resistance layer 13 can be increased (the pore diameter is increased) by adding fibrous crystalline cellulose to the paste.
  • the paste is applied on the first main surface 10a so as to cover the first electrode 11, and dried to form a paste layer (paste method). Thereafter, the diffusion resistance layer 13 can be formed by firing the paste layer.
  • you may perform the degreasing process which removes a resin binder, a solvent, etc. before baking of a paste layer.
  • the firing of the paste layer is preferably performed within the range of the glass softening temperature to the glass softening temperature + 400 ° C., more preferably within the range of the glass softening temperature + 50 ° C. to the glass softening temperature + 250 ° C. It is more preferable to carry out within the range of the softening temperature of the glass + 50 ° C. to the softening temperature of the glass + 200 ° C. If the firing temperature of the paste layer is too high, the resulting diffusion resistance layer 13 may not be a suitable porous body.
  • the firing temperature of the paste layer is too low, the firing does not proceed sufficiently and the thermal shock resistance of the obtained diffusion resistance layer 13 is lowered, or the adhesion between the diffusion resistance layer 13 and the solid electrolyte layer 10 is lowered. Sometimes.
  • the average particle diameter (D 50 ) of the glass powder is preferably 0.5 ⁇ m to 20 ⁇ m, and more preferably 2 ⁇ m to 10 ⁇ m. If the average particle diameter (D 50 ) of the glass powder is too large, a uniform porous body may not be obtained. If the average particle diameter (D 50 ) of the glass powder is too small, the strength of the porous body may be inferior.
  • the average particle diameter of the glass powder (D 50) is smaller than the average particle diameter of the inorganic filler (D 50) are preferred. That is, the ratio of the average particle diameter of the inorganic filler to the average particle diameter of the glass powder (D 50) (D 50) (average particle diameter of the inorganic filler (D 50) / average particle diameter (D 50 of the glass powder)) is 1 Larger is preferred.
  • the average particle diameter of the inorganic filler (D 50 ) / average particle diameter of the glass powder (D 50 ) is more preferably 3 or more, and even more preferably 10 or more.
  • the thickness of the glass wall formed around the inorganic filler can be reduced, and the diffusion resistance layer 13 can be reduced. It can be set as a suitable porous body. However, if the (average particle diameter of the inorganic filler (D 50 ) / average particle diameter of the glass powder (D 50 )) is too large, the strength of the porous body may decrease. Therefore, (average particle diameter of inorganic filler (D 50 ) / average particle diameter of glass powder (D 50 )) is preferably 50 or less, and more preferably 30 or less.
  • the example in which the solid electrolyte layer 10 is first prepared and then the paste layer for forming the diffusion resistance layer 13 is fired on the solid electrolyte layer 10 has been described.
  • These paste layers and a paste layer for forming the solid electrolyte layer 10 may be laminated and fired simultaneously.
  • the solid electrolyte layer 10 and the diffusion resistance layer 13 may be formed by a spray method, a dipping method, or the like.
  • a paste layer was formed on a zirconia substrate so that the coating thickness was 200 ⁇ m.
  • a zirconia substrate As a zirconia substrate, the surface of a dense zirconia manufactured by AS ONE (50 mm ⁇ 50 mm ⁇ 2 mm size divided into 4 ⁇ 25 mm ⁇ 25 mm ⁇ 2 mm) was polished with a diamond # 1000 electrodeposition polishing machine It was used. Thereafter, the paste layer was baked at 850 ° C. for 10 minutes to prepare Sample 1.
  • a photomicrograph of the fracture surface of the diffusion resistance layer in Sample 1 is shown in FIG.
  • the porosity was calculated from the theoretical density and the apparent density by calculating the theoretical density from the density of the glass powder and the crystallized glass powder, determining the apparent density from the volume and mass of the sample.
  • the thermal expansion coefficient of the diffusion resistance layer was measured as follows. Raw material powder was put into a stainless steel mold, and after press molding, heat treatment was performed at the above temperature and time to obtain a sintered body. The obtained sintered body was processed into a diameter of about 5 mm and a length of about 20 mm to prepare a measurement sample. About the sample for a measurement, the thermal expansion coefficient was measured using the thermomechanical analyzer. The measurement conditions were a temperature increase rate of 10 ° C./min and a temperature range of 30 ° C. to 300 ° C.
  • Example 2 Sample 2 was produced in the same manner as in Experimental Example 1, except that the glass powder content was 10% by volume. A photomicrograph of the fracture surface of the diffusion resistance layer in Sample 2 is shown in FIG.
  • Example 3 Sample 3 was produced in the same manner as in Experimental Example 1 except that the firing temperature of the paste layer was 800 ° C.
  • Example 4 Sample 4 was produced in the same manner as in Experimental Example 2, except that the firing temperature of the paste layer was 800 ° C. A photomicrograph of the fracture surface of the diffusion resistance layer in Sample 4 is shown in FIG.
  • Example 5 Sample 5 was produced in the same manner as in Experimental Example 1, except that the glass powder content was 20% by volume and the paste layer was fired at 800 ° C. A micrograph of the fracture surface of the diffusion resistance layer in Sample 5 is shown in FIG.
  • Example 6 Instead of crystallized glass powder, alumina powder (FO-1000 manufactured by Fujimi Incorporated, average particle size (D 50 ): 12.7 ⁇ m, 99% particle size (D 99 ): 23 ⁇ m, thermal expansion coefficient: 60 to 70 ⁇ 10 ⁇ 7 / ° C.), and the content of glass powder ( ⁇ (volume content of glass powder) / (volume content of glass powder + volume content of alumina powder) ⁇ ⁇ 100) is 30% by volume.
  • a sample 6 was produced in the same manner as in Experimental Example 1 except for the above. A micrograph of the fracture surface of the diffusion resistance layer in Sample 6 is shown in FIG.
  • Example 7 Sample 7 was produced in the same manner as in Experimental Example 6 except that only the alumina powder was used without using the glass powder.
  • Example 8 As glass powder, silica borate glass GA-13 manufactured by Nippon Electric Glass Co., Ltd. (average particle size (D 50 ): 2.3 ⁇ m, 99% particle size (D 99 ): 6.8 ⁇ m, softening temperature: 848 ° C., heat Sample 8 was prepared in the same manner as in Experimental Example 1, except that the coefficient of expansion was 64.9 ⁇ 10 ⁇ 7 / ° C., the glass powder content was 8% by volume, and the paste layer firing temperature was 930 ° C. Produced.
  • Example 9 Sample 9 was prepared in the same manner as in Experimental Example 8, except that the glass powder content was 10% by volume and the paste layer firing temperature was 900 ° C.
  • Example 10 Sample 10 was produced in the same manner as in Experimental Example 8, except that the glass powder content was 55% by volume and the paste layer firing temperature was 900 ° C.
  • samples 8 and 9 were evaluated as ⁇ , and sample 10 was evaluated as ⁇ . Samples 8 and 9 were further evaluated for adhesion when the adhesion strength was measured.
  • the obtained samples 2 'and 9' were heat-treated at 750 ° C for 24 hours, and the change rate of the diameter and height after the heat treatment before the heat treatment was obtained by the following formula.
  • Diameter change rate ⁇ (diameter after heat treatment ⁇ diameter before heat treatment) / diameter before heat treatment ⁇ ⁇ 100 (%)
  • Change rate of height ⁇ (height after heat treatment ⁇ height before heat treatment) / diameter before heat treatment ⁇ ⁇ 100 (%)
  • exhaust gas sensor 10 solid electrolyte layer 10a: first main surface 10b of solid electrolyte layer: second main surface 11 of solid electrolyte layer 11: first electrode 12: second electrode 13: diffusion resistance layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】耐熱衝撃性に優れた排気ガスセンサーを提供する。 【解決手段】排気ガスセンサー1は、固体電解質層10と、第1の電極11と、第2の電極12と、拡散抵抗層13とを備える。第1の電極11は、固体電解質層10の一主面の上に設けられている。第2の電極12は、固体電解質層10の他主面の上に設けられている。拡散抵抗層13は、固体電解質層の10一主面の上に、第1の電極11を覆うように設けられている。拡散抵抗層13は、多孔質体からなる。拡散抵抗層13は、ガラスと、無機フィラーとを含む。拡散抵抗層13におけるガラスの含有率が50体積%以下である。

Description

排気ガスセンサー及び排気ガスセンサーの製造方法
 本発明は、排気ガスセンサー及び排気ガスセンサーの製造方法に関する。
 従来、例えば自動車の排気通路等には、酸素ガスを検知する排気ガスセンサーが配されている。特許文献1及び2には、排ガスセンサーの一種である空燃比センサーの一例が記載されている。
 特許文献1に記載の空燃比センサーは、ジルコニア等の酸素イオン導電性のセラミックスからなる固体電解質層を有する。固体電解質層は、排気ガス側電極層と大気側電極層とにより挟持されている。排気ガス側電極層の上には、拡散抵抗層が設けられている。
 拡散抵抗層は、固体電解質層における酸素イオンの移動量を制限する機能を有する。特許文献1には、拡散抵抗層を、多孔質セラミックス(耐熱性無機物質)により構成することが記載されている。また、特許文献2に記載の空燃比センサーには、アルミナ等により拡散抵抗層を構成できる旨が記載されている。
国際公開2011/074132号公報 特開2013-15398号公報
 自動車等に用いられる排気ガスセンサーには、耐熱衝撃性に優れていることが要求される。しかしながら、アルミナからなる拡散抵抗層は耐熱衝撃性が低い。このため、アルミナからなる拡散抵抗層を備える排気ガスセンサーは、耐熱衝撃性が低いという問題を有する。
 本発明の主な目的は、耐熱衝撃性に優れた排気ガスセンサーを提供することにある。
 本発明に係る排気ガスセンサーは、固体電解質層と、第1の電極と、第2の電極と、拡散抵抗層とを備える。第1の電極は、固体電解質層の一主面の上に設けられている。第2の電極は、固体電解質層の他主面の上に設けられている。拡散抵抗層は、固体電解質層の一主面の上に、第1の電極を覆うように設けられている。拡散抵抗層は、多孔質体からなる。拡散抵抗層は、ガラスと、無機フィラーとを含む。拡散抵抗層におけるガラスの含有率が50体積%以下である。
 本発明に係る排気ガスセンサーでは、無機フィラーは、結晶化ガラス、石英ガラス、β-スポジュメン、β-ユークリプタイト、ウイレマイト、コーディエライト、チタン酸アルミニウム、タングステン酸ジルコニウム及びリンタングステン酸ジルコニウムからなる群から選ばれた少なくとも一種からなることが好ましい。
 本発明に係る排気ガスセンサーでは、無機フィラーは、β-スポジュメン固溶体またはβ-石英固溶体を析出結晶として含有する結晶化ガラスからなることが好ましい。
 本発明に係る排気ガスセンサーでは、ガラスは、シリカホウ酸系ガラスからなることが好ましい。
 本発明に係る排気ガスセンサーでは、シリカホウ酸系ガラスは、質量%で、SiO 25~70%、B 1~50%、MgO 0~10%、CaO 0~25%、SrO 0~10%、BaO 0~40%、MgO+CaO+SrO+BaO 10~45%、Al 0~20%、及びZnO 0~25%含有することが好ましい。
 本発明に係る排気ガスセンサーでは、シリカホウ酸系ガラスにおけるアルカリ金属成分の含有量の合量が、質量%で10%以下であることが好ましい。
 本発明に係る排気ガスセンサーでは、拡散抵抗層は、熱膨張係数が70×10-7/℃以下であることが好ましい。
 本発明に係る排気ガスセンサーでは、ガラスの熱膨張係数が100×10-7/℃以下であることが好ましい。
 本発明に係る排気ガスセンサーでは、無機フィラーの熱膨張係数が70×10-7/℃以下であることが好ましい。
 本発明に係る排気ガスセンサーでは、ガラスの軟化温度が400℃~1100℃であることが好ましい。
 本発明に係る排気ガスセンサーでは、無機フィラーの平均粒子径(D50)が2μm~50μmであることが好ましい。
 本発明に係る排気ガスセンサーでは、無機フィラーの平均粒子径(D50)に対する99%粒子径(D99)の比(D99/D50)が3~100であることが好ましい。
 本発明に係る排気ガスセンサーでは、拡散抵抗層は、気孔率が20%~80%であることが好ましい。
 本発明に係る排気ガスセンサーの製造方法は、上記排気ガスセンサーを製造するための方法である。本発明に係る排気ガスセンサーの製造方法では、ガラス粉末と無機フィラーとを含むペーストからなるペースト層を焼成することにより拡散抵抗層を形成する。
 本発明に係る排気ガスセンサーの製造方法では、ガラスの軟化温度~ガラスの軟化温度+400℃の温度でペースト層を焼成することが好ましい。
 本発明に係る排気ガスセンサーの製造方法では、ガラス粉末の平均粒子径(D50)が0.5μm~20μmであることが好ましい。
 本発明に係る排気ガスセンサーの製造方法でガラス粉末の平均粒子径(D50)が、無機フィラーの平均粒子径(D50)よりも小さいことが好ましい。
 本発明によれば、耐熱衝撃性に優れた排気ガスセンサーを提供することができる。
図1は、本発明の一実施形態に係る排気ガスセンサーの要部の模式的断面図である。 図2は、サンプル1における拡散抵抗層の破断面の顕微鏡写真である。 図3は、サンプル2における拡散抵抗層の破断面の顕微鏡写真である。 図4は、サンプル4における拡散抵抗層の破断面の顕微鏡写真である。 図5は、サンプル5における拡散抵抗層の破断面の顕微鏡写真である。 図6は、サンプル6における拡散抵抗層の破断面の顕微鏡写真である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 図1は、本実施形態に係る排気ガスセンサーの要部の模式的断面図である。図1に示されるように、排気ガスセンサー1は、固体電解質層10を有する。
 固体電解質層10は、例えば、排気ガスに含まれる酸素イオン等に対して導電性を有するセラミックスにより構成することができる。具体的には、固体電解質層10は、ジルコニア、イットリウム部分安定化ジルコニア等の部分安定化ジルコニア、セリアなどにより構成することができる。ジルコニア、イットリウム部分安定化ジルコニア等の部分安定化ジルコニア、セリアなどにより構成された固体電解質層10は、例えば500℃程度の高温に加熱されたときに酸素イオン等に対して導電性を示す。従って、排気ガスセンサー1は、固体電解質層10が酸素イオン等に対して導電性を示す温度に加熱されて使用される。排気ガスセンサー1は、通常、固体電解質層10の加熱機構を備えている。
 固体電解質層10は、第1の主面10aと、第2の主面10bとを有する。第1の主面10aの上には、第1の電極11が設けられている。第2の主面10bの上には、第2の電極12が設けられている。固体電解質層10は、第1の電極11と第2の電極12とにより挟持されている。
 第1及び第2の電極11,12は、それぞれ、通気性を有する。よって、排気ガスに含まれる酸素等は、第1及び第2の電極11,12のそれぞれを厚み方向に通過可能である。第1及び第2の電極11,12は、例えば、多孔質膜であってもよいし、メッシュ状に設けられていてもよい。
 第1及び第2の電極11,12は、それぞれ、Pt等の触媒活性の高い貴金属により構成することができる。
 排気ガスセンサー1は、自動車等の排気経路に配される場合は、第1の電極11がエンジン側に向き、第2の電極12が外気側に向くように配される。
 排気ガスセンサーの一種である酸素センサーにおいては、第1の電極11側の雰囲気における酸素濃度と、第2の電極12側の雰囲気における酸素濃度とが異なると、酸素濃度が高い側から酸素濃度が低い側へと酸素イオン流が発生する。これにより、起電力が生じる。この起電力を検出することにより、酸素を検出することができる。なお、排気ガスセンサー1は、酸素センサー以外にも、連続的な空燃比の変化を検出することができる空燃比センサーやNO濃度を検出可能なNOセンサー等に適用することも可能である。
 第1の主面10aの上には、第1の電極11を覆う拡散抵抗層13が設けられている。拡散抵抗層13は、固体電解質層10に供給される排気ガス量を制限する機能を有する層である。
 拡散抵抗層13は、連続気泡を有する多孔質体からなる。このため、排気ガスは、拡散抵抗層13を厚み方向に通過可能である。拡散抵抗層13の厚みは、所望の排気ガス拡散抵抗能を得るため、50μm~500μmであることが好ましく、60μm~300μmであることがより好ましく、70μm~200μmであることがさらに好ましい。
 本実施形態では、拡散抵抗層13は、ガラスと、無機フィラーとを含む。拡散抵抗層13におけるガラスの含有率は、50体積%以下である。このため、下記の実験例等の結果からも分かるように、拡散抵抗層13は、良好な多孔性を有し、かつ、耐熱衝撃性が高い。また、拡散抵抗層13は、固体電解質層10との密着性が高い。
 すなわち、拡散抵抗層13は、ガラスと無機フィラーとを含み、ガラスの含有率が50体積%以下である無機多孔質膜からなり、耐熱衝撃性が高く、かつ、他の部材に対して高い密着強度を有する。
 耐熱衝撃性をさらに高め、かつ、固体電解質層10との密着性をさらに高める観点からは、拡散抵抗層13は、熱膨張係数が-10×10-7/℃~70×10-7/℃であることが好ましく、熱膨張係数が-10×10-7/℃~30×10-7/℃であることがより好ましく、0/℃~15×10-7/℃であることがさらに好ましい。拡散抵抗層13に含まれるガラスは、熱膨張係数が30×10-7/℃~100×10-7/℃であることが好ましく、40×10-7/℃~80×10-7/℃であることがより好ましい。拡散抵抗層13に含まれる無機フィラーは、熱膨張係数が-80×10-7/℃~70×10-7/℃であることが好ましく、-80×10-7/℃~40×10-7/℃であることがより好ましく、-10×10-7/℃~30×10-7/℃であることがさらに好ましい。なお、本発明において、熱膨張係数は、30℃~300℃の範囲における線熱膨張係数を意味する。
 上記のような低い熱膨張係数を有する無機フィラーとしては、例えば、結晶化ガラス、石英ガラス、β-スポジュメン、β-ユークリプタイト、ウイレマイト、コーディエライト、チタン酸アルミニウム、タングステン酸ジルコニウム、リン酸タングステン酸ジルコニウム等が挙げられる。
 結晶化ガラスの具体例としては、β-スポジュメン固溶体を析出結晶として含有する結晶化ガラス、β-石英固溶体を析出結晶として含有する結晶化ガラス等が挙げられる。結晶化ガラスの結晶化開始温度は、700℃以上であることが好ましく、750℃以上であることがより好ましい。結晶化開始温度が低すぎると、拡散抵抗層13の耐熱性が低下する場合がある。
 拡散抵抗層13は、1種の無機フィラーを含んでいてもよいし、複数種類の無機フィラーを含んでいてもよい。無機フィラーの融点は、ガラスの軟化温度よりも高いことが好ましい。無機フィラーの平均粒子径(D50)は、2μm~50μmであることが好ましく、3μm~15μmであることがより好ましい。無機フィラーの平均粒子径(D50)が大きすぎると、多孔質体の機械的強度が低い場合や、均一な気孔質体が得られない場合がある。無機フィラーの平均粒子径(D50)が小さすぎると、気孔が小さくなりすぎて、排気ガスが通過しにくくなる場合がある。
 無機フィラーの形状は特に限定されず、例えば略球状、楕球状等が挙げられる。なかでも、無機フィラーが略球状であることにより、拡散抵抗層13内部の気孔の分布が均一になりやすく、結果として排気ガスの通気性が安定しやすくなる。
 本明細書において、ガラスの軟化温度は、DTA(示差熱分析装置)により測定した値をいう。
 無機フィラーの平均粒子径(D50)に対する99%粒子径(D99)の比(D99/D50)は、3以上であることが好ましく、5以上であることがさらに好ましい。そうすることにより、拡散抵抗層13の耐熱衝撃性を高めることができる。但し、D99/D50が高すぎると多孔質体の機械的強度が低くなる場合がある。従って、D99/D50は、100以下であることが好ましく、30以下であることがより好ましい。
 本発明において、平均粒子径(D50)及び99%粒子径(D99)は、レーザー回折式粒度分布計により測定することができる。
 なお、拡散抵抗層13と固体電解質層10との密着性を高める観点からは、拡散抵抗層13におけるガラスの含有率が高い方が好ましい。このため、拡散抵抗層13におけるガラスの含有率は、3体積%以上であることが好ましく、5体積%以上であることがより好ましい。しかしながら、拡散抵抗層13におけるガラスの含有率が高すぎると、拡散抵抗層13の耐熱衝撃性が低下したり、気孔率が低くなりすぎる場合がある。従って、拡散抵抗層13におけるガラスの含有率は、50体積%以下である必要があり、30体積%以下であることが好ましく、20体積%以下であることがさらに好ましい。
 拡散抵抗層13の気孔率は、拡散抵抗層13に求められる特性等に応じて適宜設定することができる。拡散抵抗層13の気孔率は、例えば、20%~80%であることが好ましく、30%~70%であることがより好ましい。
 拡散抵抗層13に含まれるガラスの軟化温度は、1100℃以下であることが好ましく、1000℃以下であることがより好ましい。拡散抵抗層13に含まれるガラスの軟化温度が高すぎると、焼成時に無機フィラーが変質する場合がある。拡散抵抗層13に含まれるガラスの軟化温度の下限は特に限定されないが、排気ガスセンサーの使用環境下における軟化変形を抑制する、すなわち耐熱性を向上させるため、400℃以上であることが好ましく、500℃以上であることがより好ましく、600℃以上であることがさらに好ましく、700℃以上であることが特に好ましく、800℃以上であることが最も好ましい。
 拡散抵抗層13に含まれるガラスとしては、耐熱性の観点から、シリカホウ酸系ガラスであることが好ましい。シリカホウ酸系ガラスの具体例としては、質量%で、SiO 25~70%、B 1~50%、MgO 0~10%、CaO 0~25%、SrO 0~10%、BaO 0~40%、MgO+CaO+SrO+BaO 10~45%、Al 0~20%、及びZnO 0~25%含有するものが挙げられる。さらには、質量%で、SiO 30~70%、B 1~15%、MgO 0~10%、CaO 0~25%、SrO 0~10%、BaO 0~40%、MgO+CaO+SrO+BaO 10~45%、Al 0~20%、及びZnO 0~10%含有するものが好ましい。なお、アルカリ金属成分(LiO、NaO及びKO)は軟化温度を低下させるため、その含有量が多すぎると拡散抵抗層13の耐熱性が低下する場合がある。よって、アルカリ金属成分の含有量は、合量で10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましく、含有しないことが特に好ましい。
 なお、本実施形態では、第1の主面10aの上にのみ拡散抵抗層13が設けられている例について説明した。但し、本発明は、この構成に限定されない。例えば、第1の主面10aと第2の主面10bとのそれぞれの上に拡散抵抗層13が設けられていてもよい。
 排気ガスセンサー1は、例えば以下の要領で製造することができる。なお、ここでは、排気ガスセンサー1の要部の製造方法についてのみ説明する。その他の部分の製造方法は、例えば、従来の方法と同様としてもよい。
 まず、固体電解質層10を用意する。次に、固体電解質層10の上に、第1の電極11と第2の電極12とを形成する。第1及び第2の電極11,12の形成方法は、特に限定されない。第1及び第2の電極11,12は、例えば、スパッタリング法、蒸着法、メッキ法等により形成することができる。
 次に、第1の主面10aの上に、第1の電極11を覆うように拡散抵抗層13を形成する。具体的には、まず、ガラス粉末と、無機フィラーとを含むペーストを準備する。ペーストは、ガラス粉末及び無機フィラーに加え、樹脂バインダーや、溶剤等を含んでいてもよい。なお、ペースト中に繊維状の結晶性セルロースを添加することにより、拡散抵抗層13の気孔率を高める(気孔径を大きくする)ことができる。次に、ペーストを第1の主面10aの上に、第1の電極11を覆うように塗布し、乾燥させることにより、ペースト層を形成する(ペースト法)。その後、ペースト層を焼成することにより、拡散抵抗層13を形成することができる。なお、ペースト層の焼成の前に、樹脂バインダーや溶剤等を除去する脱脂工程を行ってもよい。
 ペースト層の焼成は、ガラスの軟化温度~ガラスの軟化温度+400℃の範囲内で行うことが好ましく、ガラスの軟化温度+50℃~ガラスの軟化温度+250℃の範囲内で行うことがより好ましく、ガラスの軟化温度+50℃~ガラスの軟化温度+200℃の範囲内で行うことがさらに好ましい。ペースト層の焼成温度が高すぎると、得られる拡散抵抗層13が好適な多孔質体とならない場合がある。一方、ペースト層の焼成温度が低すぎると、十分に焼成が進まず、得られる拡散抵抗層13の耐熱衝撃性が低くなったり、拡散抵抗層13と固体電解質層10との密着性が低くなったりする場合がある。
 ガラス粉末の平均粒子径(D50)は、0.5μm~20μmであることが好ましく、2μm~10μmであることがより好ましい。ガラス粉末の平均粒子径(D50)が大きすぎると、均一な多孔質体が得られない場合がある。ガラス粉末の平均粒子径(D50)が小さすぎると、多孔質体の強度に劣る場合がある。
 ガラス粉末の平均粒子径(D50)は、無機フィラーの平均粒子径(D50)よりも小さいことが好ましい。すなわち、ガラス粉末の平均粒子径(D50)に対する無機フィラーの平均粒子径(D50)の比(無機フィラーの平均粒子径(D50)/ガラス粉末の平均粒子径(D50))が1より大きいことが好ましい。(無機フィラーの平均粒子径(D50)/ガラス粉末の平均粒子径(D50))は、3以上であることがより好ましく、10以上であることがさらに好ましい。(無機フィラーの平均粒子径(D50)/ガラス粉末の平均粒子径(D50))を小さくすることにより、無機フィラーの周囲に形成されるガラス壁の厚みを薄くでき、拡散抵抗層13を好適な多孔質体とすることができる。但し、(無機フィラーの平均粒子径(D50)/ガラス粉末の平均粒子径(D50))が大きすぎると、多孔質体の強度が低下する場合がある。従って、(無機フィラーの平均粒子径(D50)/ガラス粉末の平均粒子径(D50))は、50以下であることが好ましく、30以下であることがより好ましい。
 なお、本実施形態では、まず固体電解質層10を用意した後に、固体電解質層10の上に拡散抵抗層13作製用ペースト層の焼成を行う例について説明したが、拡散抵抗層13を形成するためのペースト層と、固体電解質層10を形成するためのペースト層を積層して同時焼成してもよい。また、ペースト法以外にも、スプレー法やディッピング法等により、固体電解質層10や拡散抵抗層13を形成してもよい。
 以下、本発明について、具体的な実験例に基づいて、さらに詳細に説明するが、本発明は以下の実験例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実験例1)
 ガラス粉末(日本電気硝子株式会社製シリカホウ酸系ガラスGA-4、平均粒子径(D50):2.9μm、99%粒子径(D99):10μm、軟化温度:625℃、熱膨張係数:64×10-7/℃)と、結晶化ガラス粉末(日本電気硝子株式会社製β-石英固溶体析出結晶化ガラス、結晶化開始温度:870℃、平均粒子径(D50):7.3μm、99%粒子径(D99):87μm、熱膨張係数:-7×10-7/℃)と、樹脂バインダー(エチルセルロース)、有機溶剤(ターピネオール及びブチルカルビトールアセテート)を混練し、ペーストを作製した。なお、ガラス粉末の含有率({(ガラス粉末の体積含有量)/(ガラス粉末の体積含有量+結晶化ガラス粉末の体積含有量)}×100)を5体積%とした。
 ジルコニア基板の上に、塗布厚が200μmとなるように塗布し、ペースト層を形成した。ジルコニア基板としては、アズワン社製の緻密質ジルコニア(50mm×50mm×2mmのサイズのものを4分割して25mm×25mm×2mmとしたもの)の表面をダイヤモンド#1000電着研磨盤で研磨したものを使用した。その後、ペースト層を850℃で10分間焼成することにより、サンプル1を作製した。サンプル1における拡散抵抗層の破断面の顕微鏡写真を図2に示す。
 なお、気孔率は、ガラス粉末と結晶化ガラス粉末の密度から理論密度を求め、試料の体積と質量から見かけ密度を求め、理論密度と見かけ密度から算出した。また、拡散抵抗層の熱膨張係数は次のようにして測定した。ステンレス金型に原料粉末を入れ、プレス成型後、上記の温度と時間で熱処理を行って焼結体を得た。得られた焼結体を直径5mm、長さ20mm程度に加工して測定用試料を作製した。測定用試料について、熱機械分析装置を用いて熱膨張係数を測定した。測定条件は、昇温速度10℃/分、温度範囲30℃~300℃とした。
 (実験例2)
 ガラス粉末の含有率を10体積%としたこと以外は、実験例1と同様にしてサンプル2を作製した。サンプル2における拡散抵抗層の破断面の顕微鏡写真を図3に示す。
 (実験例3)
 ペースト層の焼成温度を800℃としたこと以外は、実験例1と同様にしてサンプル3を作製した。
 (実験例4)
 ペースト層の焼成温度を800℃としたこと以外は、実験例2と同様にしてサンプル4を作製した。サンプル4における拡散抵抗層の破断面の顕微鏡写真を図4に示す。
 (実験例5)
 ガラス粉末の含有率を20体積%とし、ペースト層の焼成温度を800℃としたこと以外は、実験例1と同様にしてサンプル5を作製した。サンプル5における拡散抵抗層の破断面の顕微鏡写真を図5に示す。
 (実験例6)
 結晶化ガラス粉末の代わりに、アルミナ粉末(フジミインコーポレーテッド社製FO-1000、平均粒子径(D50):12.7μm、99%粒子径(D99):23μm、熱膨張係数:60~70×10-7/℃)を用い、ガラス粉末の含有率({(ガラス粉末の体積含有量)/(ガラス粉末の体積含有量+アルミナ粉末の体積含有量)}×100)を30体積%としたこと以外は、実験例1と同様にしてサンプル6を作製した。サンプル6における拡散抵抗層の破断面の顕微鏡写真を図6に示す。
 (実験例7)
 ガラス粉末を用いず、アルミナ粉末のみを用いたこと以外は、実験例6と同様にしてサンプル7を作製した。
 (耐熱衝撃性の評価)
 実験例1~7において作製したサンプル1~7のそれぞれを500℃に加熱し、その上に水を滴下した。室温まで冷却後、上記と同様の密着強度評価を実施し、膜が全く剥がれなかった場合を「◎」とし、一部しか剥がれなかった場合を、「○」とし、半分以上剥がれた場合を「△」、完全に剥がれた場合またはクラックが入った場合を「×」とした。結果を表1に示す。
 (密着強度評価)
 実験例1~7において作製したサンプル1~7のそれぞれについて、100mmの高さから木製の板の上に10回落下をすることにより密着強度を評価した。膜が剥がれなかった場合を、「◎」とし、一部しか剥がれなかった場合を、「○」とし、半分以上剥がれた場合を「△」、完全に剥がれた場合を「×」とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実験例8)
 ガラス粉末として、日本電気硝子株式会社製シリカホウ酸系ガラスGA-13(平均粒子径(D50):2.3μm、99%粒子径(D99):6.8μm、軟化温度:848℃、熱膨張係数:64.9×10-7/℃)を用い、ガラス粉末の含有率を8体積%、ペースト層の焼成温度を930℃としたこと以外は、実験例1と同様にしてサンプル8を作製した。
 (実験例9)
 ガラス粉末の含有率を10体積%、ペースト層の焼成温度を900℃としたこと以外は、実験例8と同様にしてサンプル9を作製した。
 (実験例10)
 ガラス粉末の含有率を55体積%、ペースト層の焼成温度を900℃としたこと以外は、実験例8と同様にしてサンプル10を作製した。
 サンプル8~10について、上記の方法で耐熱衝撃性を評価したところ、表2に示す通り、サンプル8及び9は◎、サンプル10は×の評価であった。サンプル8及び9について、さらに密着強度を測定したところ、◎の評価であった。
Figure JPOXMLDOC01-appb-T000002
 (耐熱性の評価)
 サンプル2及び9における拡散抵抗層の耐熱性を評価するため、以下の試験を行った。実験例2及び9で用いたガラス粉末と、結晶化ガラス粉末を、ガラス粉末の含有率が10体積%となるように混合した。得られた混合粉末を、φ20mmの金型に理論密度に相当する分量を充填し、プレス成形を行うことにより円柱状の予備成型体を得た。予備成型体を表3に記載の温度で10分間焼成し、得られた円柱状焼結体の上下面を#1000の耐水研磨紙で研磨することにより円柱状のサンプル2’及び9’を得た。
 得られたサンプル2’及び9’を750℃で24時間熱処理し、熱処理前に対する熱処理後の直径及び高さの変化率を下記の式により求めた。
  直径の変化率={(熱処理後の直径-熱処理前の直径)/熱処理前の直径}×100(%)
  高さの変化率={(熱処理後の高さ-熱処理前の高さ)/熱処理前の直径}×100(%)
Figure JPOXMLDOC01-appb-T000003
1:排気ガスセンサー
10:固体電解質層
10a:固体電解質層の第1の主面
10b:固体電解質層の第2の主面
11:第1の電極
12:第2の電極
13:拡散抵抗層

Claims (17)

  1.  固体電解質層と、
     前記固体電解質層の一主面の上に設けられた第1の電極と、
     前記固体電解質層の他主面の上に設けられた第2の電極と、
     前記固体電解質層の一主面の上に、前記第1の電極を覆うように設けられた多孔質体からなる拡散抵抗層と、
    を備え、
     前記拡散抵抗層は、ガラスと、無機フィラーとを含み、ガラスの含有率が50体積%以下である、排気ガスセンサー。
  2.  前記無機フィラーが、結晶化ガラス、石英ガラス、β-スポジュメン、β-ユークリプタイト、ウイレマイト、コーディエライト、チタン酸アルミニウム、タングステン酸ジルコニウム及びリンタングステン酸ジルコニウムからなる群から選ばれた少なくとも一種からなる、請求項1に記載の排気ガスセンサー。
  3.  前記無機フィラーが、β-スポジュメン固溶体またはβ-石英固溶体を析出結晶として含有する結晶化ガラスからなる、請求項1に記載の排気ガスセンサー。
  4.  前記ガラスが、シリカホウ酸系ガラスである、請求項1~3のいずれか一項に記載の排気ガスセンサー。
  5.  前記シリカホウ酸系ガラスが、質量%で、SiO 25~70%、B 1~50%、MgO 0~10%、CaO 0~25%、SrO 0~10%、BaO 0~40%、MgO+CaO+SrO+BaO 10~45%、Al 0~20%、及びZnO 0~25%含有する、請求項4に記載の排気ガスセンサー。
  6.  前記シリカホウ酸系ガラスにおけるアルカリ金属成分の含有量の合量が、質量%で10%以下である、請求項4または5に記載の排気ガスセンサー。
  7.  前記拡散抵抗層は、熱膨張係数が70×10-7/℃以下である、請求項1~6のいずれか一項に記載の排気ガスセンサー。
  8.  前記ガラスの熱膨張係数が100×10-7/℃以下である、請求項1~7のいずれか一項に記載の排気ガスセンサー。
  9.  前記無機フィラーの熱膨張係数が70×10-7/℃以下である、請求項1~8のいずれか一項に記載の排気ガスセンサー。
  10.  前記ガラスの軟化温度が400℃~1100℃である、請求項1~9のいずれか一項に記載の排気ガスセンサー。
  11.  前記無機フィラーの平均粒子径(D50)が2μm~50μmである、請求項1~10のいずれか一項に記載の排気ガスセンサー。
  12.  前記無機フィラーの平均粒子径(D50)に対する99%粒子径(D99)の比(D99/D50)が3~100である、請求項1~11のいずれか一項に記載の排気ガスセンサー。
  13.  前記拡散抵抗層は、気孔率が20%~80%である、請求項1~12のいずれか一項に記載の排気ガスセンサー。
  14.  請求項1~13のいずれか一項に記載の排気ガスセンサーの製造方法であって、
     ガラス粉末と前記無機フィラーとを含むペーストからなるペースト層を焼成することにより前記拡散抵抗層を形成する、排気ガスセンサーの製造方法。
  15.  前記ガラスの軟化温度~前記ガラスの軟化温度+400℃の温度で前記ペースト層を焼成する、請求項14に記載の排気ガスセンサーの製造方法。
  16.  前記ガラス粉末の平均粒子径(D50)が0.5μm~20μmである、請求項14又は15に記載の排気ガスセンサーの製造方法。
  17.  前記ガラス粉末の平均粒子径(D50)が、前記無機フィラーの平均粒子径(D50)よりも小さい、請求項14~16のいずれか一項に記載の排気ガスセンサーの製造方法。
PCT/JP2014/077348 2013-10-15 2014-10-14 排気ガスセンサー及び排気ガスセンサーの製造方法 WO2015056673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542615A JPWO2015056673A1 (ja) 2013-10-15 2014-10-14 排気ガスセンサー及び排気ガスセンサーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013214481 2013-10-15
JP2013-214481 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015056673A1 true WO2015056673A1 (ja) 2015-04-23

Family

ID=52828118

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/077349 WO2015056674A1 (ja) 2013-10-15 2014-10-14 無機多孔質膜及び無機多孔質膜の製造方法
PCT/JP2014/077348 WO2015056673A1 (ja) 2013-10-15 2014-10-14 排気ガスセンサー及び排気ガスセンサーの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077349 WO2015056674A1 (ja) 2013-10-15 2014-10-14 無機多孔質膜及び無機多孔質膜の製造方法

Country Status (2)

Country Link
JP (2) JPWO2015056674A1 (ja)
WO (2) WO2015056674A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148877B2 (ja) * 2016-04-21 2022-10-06 日本電気硝子株式会社 セラミック粉末
JP6951657B2 (ja) * 2017-01-30 2021-10-20 日本電気硝子株式会社 無機多孔質シートの製造方法
JP6822501B2 (ja) * 2018-02-28 2021-01-27 Jfeスチール株式会社 絶縁被膜付き方向性電磁鋼板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136601A (ja) * 1986-11-28 1988-06-08 昭栄化学工業株式会社 厚膜抵抗体
JPH02287251A (ja) * 1989-04-28 1990-11-27 Hitachi Ltd 空燃比測定用検出器
JPH05332985A (ja) * 1992-06-02 1993-12-17 Fujikura Ltd 酸素センサのセンサエレメントとその製造方法
JP2947942B2 (ja) * 1995-10-03 1999-09-13 旭化成工業株式会社 光学情報記録媒体、その製造方法、その製造に使用されるターゲット
JP2008156192A (ja) * 2006-12-26 2008-07-10 Asahi Glass Co Ltd 誘電体用ガラスペースト
JP2011117935A (ja) * 2009-10-28 2011-06-16 Denso Corp ガスセンサ素子
JP2011222658A (ja) * 2010-04-07 2011-11-04 Noritake Co Ltd 絶縁層を有する高熱伝導性基板ならびに該絶縁層形成用材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306509B2 (en) * 1996-03-21 2001-10-23 Showa Denko K.K. Ion conductive laminate and production method and use thereof
JP3122413B2 (ja) * 1997-10-03 2001-01-09 株式会社リケン ガスセンサ
JP3735206B2 (ja) * 1997-12-26 2006-01-18 日本特殊陶業株式会社 ガスセンサ
JP2000275210A (ja) * 1999-03-24 2000-10-06 Hitachi Ltd 燃焼ガス成分センサおよびその製造方法
JP2007197310A (ja) * 2005-12-28 2007-08-09 Nippon Electric Glass Co Ltd 結晶化ガラスおよびそれを用いた反射鏡基材並びに反射鏡
JP4936216B2 (ja) * 2006-09-27 2012-05-23 日本電気硝子株式会社 熱処理炉用防塵部材および熱処理炉
US9459233B2 (en) * 2012-06-25 2016-10-04 Steris Corporation Amperometric gas sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136601A (ja) * 1986-11-28 1988-06-08 昭栄化学工業株式会社 厚膜抵抗体
JPH02287251A (ja) * 1989-04-28 1990-11-27 Hitachi Ltd 空燃比測定用検出器
JPH05332985A (ja) * 1992-06-02 1993-12-17 Fujikura Ltd 酸素センサのセンサエレメントとその製造方法
JP2947942B2 (ja) * 1995-10-03 1999-09-13 旭化成工業株式会社 光学情報記録媒体、その製造方法、その製造に使用されるターゲット
JP2008156192A (ja) * 2006-12-26 2008-07-10 Asahi Glass Co Ltd 誘電体用ガラスペースト
JP2011117935A (ja) * 2009-10-28 2011-06-16 Denso Corp ガスセンサ素子
JP2011222658A (ja) * 2010-04-07 2011-11-04 Noritake Co Ltd 絶縁層を有する高熱伝導性基板ならびに該絶縁層形成用材料

Also Published As

Publication number Publication date
WO2015056674A1 (ja) 2015-04-23
JPWO2015056674A1 (ja) 2017-03-09
JPWO2015056673A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
KR101929733B1 (ko) 베타 알루미나를 포함하는 내화성 물체 및 이를 제조하고 사용하는 방법
JP5481854B2 (ja) 電子部品
EP3075719B1 (en) Porous material and heat insulating film
US9966628B2 (en) Solid-state electrolyte for use in lithium-air batteries or in lithium-water batteries
JP4473438B2 (ja) コージェライトハニカム構造体及びその製造方法
WO2015056673A1 (ja) 排気ガスセンサー及び排気ガスセンサーの製造方法
JP2010524816A (ja) 金属材料により規定される熱膨張係数に調整された組成を有するセラミック材料
JP5709007B2 (ja) 蓄熱式バーナ用蓄熱体及び蓄熱式バーナ用蓄熱体の製造方法
JP4502991B2 (ja) 酸素センサ
KR20200105930A (ko) 소성 지그
JP6577763B2 (ja) エンジンバルブ及びその製造方法
JP7225376B2 (ja) 耐火物
JP5465143B2 (ja) SiC焼成用道具材
JP2002187768A (ja) 高周波用低温焼結誘電体材料およびその焼結体
JPH09148746A (ja) 多層配線基板及び半導体素子収納用パッケージ
JP3898613B2 (ja) 酸素センサ素子
JP4084626B2 (ja) 電極形成用ペーストおよびそれを用いた酸素センサ
JP3935166B2 (ja) セラミックヒーター素子の製造方法
JP6951657B2 (ja) 無機多孔質シートの製造方法
KR100674860B1 (ko) 저온 소결용 글라스 프릿트
JP2005533744A (ja) ガラス−セラミック複合材料、該複合材料を有するセラミックシート、セラミック層状複合体またはマイクロハイブリッドならびに該ガラス−セラミック複合材料、該セラミックシート、該セラミック層状複合体またはマイクロハイブリッドの製造法
JP4794090B2 (ja) ジルコニア質焼結体及び酸素センサ
JP4416427B2 (ja) セラミックヒータおよびその製造方法
KR20150073164A (ko) 산소센서용 절연체 조성물 및 이를 이용한 산소센서
JP4113479B2 (ja) 酸素センサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854652

Country of ref document: EP

Kind code of ref document: A1