WO2015050142A1 - 電解液及びリチウムイオン二次電池 - Google Patents

電解液及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015050142A1
WO2015050142A1 PCT/JP2014/076213 JP2014076213W WO2015050142A1 WO 2015050142 A1 WO2015050142 A1 WO 2015050142A1 JP 2014076213 W JP2014076213 W JP 2014076213W WO 2015050142 A1 WO2015050142 A1 WO 2015050142A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
carbon atoms
mass
secondary battery
Prior art date
Application number
PCT/JP2014/076213
Other languages
English (en)
French (fr)
Inventor
真也 浜崎
文亮 尾崎
雄介 重森
将人 村上
大橋 亜沙美
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201480051178.7A priority Critical patent/CN105556732B/zh
Priority to EP14850357.6A priority patent/EP3054521B1/en
Priority to US15/025,192 priority patent/US10050306B2/en
Priority to KR1020167006406A priority patent/KR101848189B1/ko
Publication of WO2015050142A1 publication Critical patent/WO2015050142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution and a lithium ion secondary battery using the electrolytic solution.
  • lithium ion secondary batteries which are representative examples of power storage devices, have been mainly used as rechargeable batteries for portable devices, but in recent years, they are expected to be used as batteries for hybrid vehicles and electric vehicles.
  • a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent mainly composed of a carbonate-based solvent is widely used (for example, Patent Document 1). reference.).
  • the feature of the electrolytic solution containing this carbonate-based solvent is that it has a good balance between oxidation resistance and reduction resistance at a voltage of about 4 V, and is excellent in lithium ion conductivity.
  • a lithium ion secondary battery including a positive electrode containing a positive electrode active material that operates at a high potential of 4.4 V (vsLi / Li + ) or higher that is, a high voltage lithium ion secondary battery
  • vsLi / Li + a high voltage lithium ion secondary battery
  • the carbonate-based solvent is oxidatively decomposed on the surface of the positive electrode and the cycle life of the battery is reduced.
  • a solution to such a decrease in cycle life is not shown, and an electrolyte that improves the cycle life of the high-voltage lithium ion secondary battery and a lithium ion secondary battery including the same are desired.
  • the present invention has been made in view of such circumstances.
  • a lithium ion secondary battery that operates at a high voltage and has a high cycle life, and a non-ion that can provide such a lithium ion secondary battery can be provided. It aims at providing the electrolyte solution for water electrical storage devices.
  • the present inventors have found that the above problems can be solved if the electrolyte contains a non-aqueous solvent, a lithium salt, and a compound having a specific structure.
  • the present invention has been completed.
  • a non-aqueous solvent A lithium salt (A); A compound represented by the following formula (1), a compound represented by the following formula (2), a structural unit represented by the following formula (3a), and a structural unit represented by the following formula (3b)
  • a compound represented by the following formula (1) A compound represented by the following formula (1), a compound represented by the following formula (2), a structural unit represented by the following formula (3a), and a structural unit represented by the following formula (3b)
  • An electrolytic solution containing In the above formula (1), X represents a Li atom or a hydrogen atom, M represents a P atom or a B atom, n represents an integer of 0 when M is a B atom, and M represents a P atom.
  • n represents an integer of 0 or 1
  • R 1 and R 2 each independently represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon number.
  • a group consisting of an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms that may be substituted, an aryloxy group having 6 to 10 carbon atoms that may be substituted, and a siloxy group having 3 to 10 carbon atoms Represents a group selected from.
  • R 4 represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, or a substituted group.
  • each X independently represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, and a bromine atom
  • R 6 is each independently an optionally substituted carbon.
  • a hydrocarbon group of 1 to 10 a represents an integer of 0 or 1
  • n represents an integer of 0 to 2.
  • the cyclic carbonate includes one or more selected from the group consisting of ethylene carbonate and propylene carbonate
  • a positive electrode containing a positive electrode active material A negative electrode containing a negative electrode active material; The electrolyte solution according to any one of the preceding items [1] to [6];
  • a lithium ion secondary battery comprising: [8] The lithium ion secondary battery according to [7] above, wherein the positive electrode active material has a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or more.
  • the positive electrode active material is an oxide represented by formula (5), an oxide represented by formula (6), a complex oxide represented by formula (7), a compound represented by formula (8),
  • LiMn 2-x Ma x O 4 (5) (In the above formula (5), Ma represents one or more selected from the group consisting of transition metals, and x is 0.2 ⁇ x ⁇ 0.7.) LiMn 1-u Me u O 2 (6) (In the above formula (6), Me represents one or more selected from the group consisting of transition metals excluding Mn, and u is 0.1 ⁇ u ⁇ 0.9.) zLi 2 McO 3- (1-z) LiMdO 2 (7) (In the above formula (7), Mc and Md each independently represent one or more selected from the group consisting of transition metals, and z is 0.1 ⁇ z ⁇ 0.9.) LiMb 1-y Fe y PO 4 (8) (In the above formula (8), Mb represents one or more selected from the group consisting of Mn and Co, and y is 0 ⁇ y ⁇ 0.9.) Li 2 MfPO 4 F (9) (In the above formula (9), Mf represents one or more selected from the group consisting
  • SiFR 1 R 2 R 3 (10) (In the above formula (10), R 1 , R 2 , and R 3 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • SiF 2 R 4 R 5 (11) (In the above formula (11), R 4 and R 5 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • R 3 , R 4 and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms.
  • M represents a phosphorus atom or a boron atom
  • n is 0 or 1 when M is a phosphorus atom
  • n is 0 when M is a boron atom
  • R 3 , R 4 , And R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms
  • R 6 and R 7 each independently represents an OH group, an OLi group, or an optionally substituted carbon.
  • An alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms that may be substituted, a siloxy group having 3 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms A group selected from the group consisting of: (In the above formula (14), R 3 , R 4 , and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms, and R 8 is an optionally substituted carbon.
  • the organic group of the number 1 to 20 is shown.
  • a positive electrode comprising a positive electrode active material having a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or more;
  • a negative electrode comprising a negative electrode active material;
  • the electrolyte solution according to any one of [11] to [19] above, Lithium ion secondary battery.
  • the positive electrode active material is an oxide represented by the following formula (5), an oxide represented by the following formula (6), a composite oxide represented by the following formula (7), and a formula (8) below.
  • Ma represents one or more selected from the group consisting of transition metals, and x is 0.2 ⁇ x ⁇ 0.7.
  • LiMn 1-u Me u O 2 (6) (In the above formula (6), Me represents one or more selected from the group consisting of transition metals excluding Mn, and u is 0.1 ⁇ u ⁇ 0.9.)
  • zLi 2 McO 3- (1-z) LiMdO 2 (7) In the above formula (7), Mc and Md each independently represent one or more selected from the group consisting of transition metals, and z is 0.1 ⁇ z ⁇ 0.9.)
  • LiMb 1-y Fe y PO 4 (8) (In the above formula (8), Mb represents one or more selected from the group consisting of
  • the present invention it is possible to provide a lithium ion secondary battery that operates at a high voltage and has a high cycle life, and an electrolyte that can provide such a lithium ion secondary battery.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the electrolyte solution according to the first aspect is A non-aqueous solvent; A lithium salt (A); A compound represented by the following formula (1), a compound represented by the following formula (2), a structural unit represented by the following formula (3a), and a structural unit represented by the following formula (3b) One or more compounds (B) selected from the group consisting of compounds; Containing.
  • X represents a Li atom or a hydrogen atom
  • M represents a P atom or a B atom
  • n represents an integer of 0 when M is a B atom
  • M represents a P atom.
  • n represents an integer of 0 or 1
  • R 1 and R 2 each independently represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon number.
  • a group consisting of an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms that may be substituted, an aryloxy group having 6 to 10 carbon atoms that may be substituted, and a siloxy group having 3 to 10 carbon atoms Represents a group selected from.
  • R 4 represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, or a substituted group.
  • X represents a Li atom or a hydrogen atom.
  • the electrolytic solution according to the first aspect contains a non-aqueous solvent.
  • a non-aqueous solvent for example, an aprotic polar solvent etc. are mentioned.
  • the aprotic polar solvent is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, and 2,3-pentylene carbonate.
  • Cyclic carbonates such as trifluoromethylethylene carbonate, fluoroethylene carbonate and 4,5-difluoroethylene carbonate; lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; cyclic sulfones such as sulfolane; cyclic ethers such as tetrahydrofuran and dioxane; Methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate -Chain carbonates such as boronate, dibutyl carbonate, ethylpropyl carbonate and methyl trifluoroethyl carbonate; Nitriles such as acetonitrile; Chain ethers such as dimethyl ether; Chain carboxylic acid esters such as methyl propionate; Chain diethers such as dimethoxyethane Is mentioned.
  • Carbonate Although it does not specifically limit as a non-aqueous solvent, it is more preferable to use carbonate type
  • the cyclic carbonate is not particularly limited.
  • ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, trifluoro Examples include methylethylene carbonate, fluoroethylene carbonate, and 4,5-difluoroethylene carbonate.
  • at least one selected from the group consisting of ethylene carbonate and propylene carbonate is preferable.
  • the chain carbonate is not particularly limited.
  • ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, and methyl trifluoroethyl And carbonate is preferable.
  • the ionic conductivity of the electrolytic solution tends to improve.
  • the mixing ratio of the cyclic carbonate and the chain carbonate is preferably 1:10 to 5: 1 by volume ratio, more preferably 1: 5 to 3: 1, more preferably 1: 5 to 1: 1.
  • the mixing ratio of the cyclic carbonate and the chain carbonate is within the above range, the ion conductivity of the obtained lithium ion secondary battery tends to be further improved.
  • a carbonate-based solvent When a carbonate-based solvent is used, another non-aqueous solvent such as acetonitrile or sulfolane can be further used as necessary.
  • acetonitrile or sulfolane By using such a non-aqueous solvent, the battery physical properties of the lithium ion secondary battery tend to be further improved.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the electrolytic solution of the first aspect contains a lithium salt (A).
  • the content of the lithium salt (A) is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 7.0% by mass with respect to 100% by mass of the electrolytic solution. That's it.
  • the content of the lithium salt (A) is 1.0% by mass or more, the ion conductivity of the lithium ion secondary battery tends to be further improved.
  • the content of the lithium salt (A) is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less with respect to 100% by mass of the electrolytic solution.
  • the solubility of the lithium salt (A) at a low temperature tends to be further improved.
  • the content of the lithium salt (A) in the electrolytic solution can be confirmed by NMR measurement such as 19 F-NMR, 31 P-NMR.
  • the content of the lithium salt (A) in the electrolyte solution in the lithium ion secondary battery can be confirmed by NMR measurement such as 19 F-NMR and 31 P-NMR as described above.
  • the lithium salt (A) is not particularly limited, for example, LiPF 6, LiClO 4, LiAsF 6, Li 2 SiF 6, LiOSO 2 C k F 2k + 1 [k is an integer of 1-8], LiN (SO 2 C k F 2k + 1 ) 2 [k is an integer of 1 to 8], LiPF n (C k F 2k + 1 ) 6-n [n is an integer of 1 to 5, k is an integer of 1 to 8], LiPF 4 (C 2 O 2 ), and LiPF 2 (C 2 O 2 ) 2 .
  • LiPF 6 LiOSO 2 C k F 2k + 1 [k is an integer of 1 to 8] LiN (SO 2 C k F 2k + 1 ) 2 [k is an integer of 1 to 8], LiPF n (C k F 2k + 1) 6-n [n is an integer of 1 to 5, k is an integer of 1 to 8,] LiPF 4 (C 2 O 2 ), and LiPF 2 (C 2 O 2 ) 2 are preferable.
  • the lithium salt (A) contains LiPF 6 . By using such a lithium salt (A), the ion conductivity of the lithium ion secondary battery tends to be more excellent.
  • the lithium salt (A) may contain a lithium salt (C) having a boron atom, which will be described later, and / or lithium difluorophosphate and lithium monofluorophosphate in addition to or instead of the lithium salt.
  • lithium salt (A) contains the lithium salt (C) which has a boron atom represented by Formula (3).
  • the cycle life of the lithium ion secondary battery tends to be further improved.
  • the compound (B) and the lithium salt (C) having a boron atom cooperate to act on the positive electrode, the negative electrode, or both, and oxidize the electrolyte in the lithium ion secondary battery. This is presumed to suppress decomposition.
  • the lithium salt (C) having a boron atom has a function as an electrolyte responsible for ionic conductivity, but can mainly function as an additive for the purpose of improving the cycle life.
  • each X independently represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, and a bromine atom, and R 6 is each independently an optionally substituted carbon.
  • X represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, and a bromine atom. preferable.
  • X is a fluorine atom, the chemical durability of the lithium salt in the lithium ion secondary battery tends to be further improved.
  • R 6 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group is not particularly limited, and examples thereof include an aliphatic hydrocarbon group; and an aromatic hydrocarbon group such as a phenyl group; and a fluorine-substituted hydrocarbon group such as a difluoromethylene group in which a hydrogen atom is substituted with a fluorine atom. Can be mentioned.
  • the hydrocarbon group may have a functional group as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -) And the like.
  • R 6 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. When the carbon number is within the above range, the miscibility with the non-aqueous solvent tends to be superior.
  • R 6 include, but are not limited to, methylene group, ethylene group, 1-methylethylene group, propylene group, butylene group, 1,2-dimethylethylene group, 1,2-di (trifluoromethyl) ) Aliphatic hydrocarbon groups such as ethylene group and fluoroethylene group; aromatic hydrocarbon groups such as phenyl group, nitrile-substituted phenyl group and fluorinated phenyl group.
  • methylene group, ethylene group, 1-methylethylene group, propylene group, 1,2-dimethylethylene group, 1,2-di (trifluoromethyl) ethylene group, and fluoroethylene group are more preferable.
  • R 6 is such a hydrocarbon group, the ion conductivity of the lithium ion secondary battery tends to be superior.
  • a represents an integer of 0 or 1, and a is preferably 0. Since a is 0, it tends to be more excellent in stability.
  • the structure on the right side in formula (4) is an oxalic acid structure.
  • n represents an integer of 0-2.
  • the lithium salt (C) having a boron atom represented by the formula (4) may be represented by the following formulas (4-1) to (4-7). ) Is preferred. Of these, a compound represented by formula (4-1), a compound represented by formula (4-2), and a compound represented by formula (4-3) are more preferable. The compound represented by 1) and the compound represented by formula (4-2) are more preferable.
  • the content of the lithium salt (C) having a boron atom is preferably 0.010% by mass or more and 10% by mass or less, more preferably 0.050% by mass or more and 5.0% by mass with respect to 100% by mass of the electrolytic solution. % By mass or less, more preferably 0.10% by mass or more and 5.0% by mass or less, still more preferably 0.20% by mass or more and 3.0% by mass or less, still more preferably 0.40 The mass is not less than 2.0% by mass.
  • the content of the lithium salt (C) having a boron atom is 0.010% by mass or more, the cycle life of the lithium ion secondary battery tends to be further improved.
  • the lithium salt (C) having a boron atom has a content of 0 in the electrolytic solution mainly from the viewpoint that it can function as an additive for the purpose of improving the cycle life. Even if the amount is as small as .010 mass% or more and 10 mass% or less, a sufficient effect can be exhibited.
  • the content of the lithium salt (C) having a boron atom in the electrolytic solution can be confirmed by NMR measurement such as 11 B-NMR and 19 F-NMR.
  • the content of the lithium salt (C) having a boron atom in the electrolytic solution in the lithium ion secondary battery can be confirmed by NMR measurement such as 11 B-NMR and 19 F-NMR, as described above. it can.
  • lithium salt (A) contains the lithium salt (C) which has a boron atom, and the lithium salt which does not have a boron atom
  • content of the lithium salt (C) which has a boron atom is lithium salt (A).
  • they are 0.50 mass% or more and 50 mass% or less with respect to the total amount, More preferably, they are 1.0 mass% or more and 40 mass% or less, More preferably, they are 2.0 mass% or more and 30 mass% or less. Yes, and more preferably from 5.0% by weight to 20% by weight.
  • the cycle life of the lithium ion secondary battery tends to be further improved. Moreover, it exists in the tendency for battery output to improve more because content of lithium salt (C) which has a boron atom is 50 mass% or less with respect to the total amount of lithium salt (A).
  • the content of the lithium salt (C) having a boron atom in the electrolytic solution in the lithium ion secondary battery can also be confirmed by NMR measurement such as 11 B-NMR and 19 F-NMR, as described above.
  • the lithium salt (A) preferably contains one or more lithium salts selected from the group consisting of lithium difluorophosphate and lithium monofluorophosphate (hereinafter also referred to as compound (F)).
  • compound (F) lithium monofluorophosphate
  • the content of lithium difluorophosphate and lithium monofluorophosphate is preferably 0.0010% by mass to 3.0% by mass, and more preferably 0.0050% by mass with respect to 100% by mass of the electrolytic solution. % To 2.0% by mass, and more preferably 0.020% to 1.0% by mass.
  • the cycle life of the lithium ion secondary battery tends to be further improved.
  • lithium difluorophosphate and lithium monofluorophosphate in the electrolyte can be confirmed by NMR measurements such as 19 F-NMR and 31 P-NMR. Also, the content of lithium difluorophosphate and lithium monofluorophosphate in the electrolyte solution in the lithium ion secondary battery should be confirmed by NMR measurements such as 19 F-NMR and 31 P-NMR, as described above. Can do.
  • lithium salt (A) contains lithium salts other than compound (F) and compound (F)
  • the content of compound (F) is preferably relative to the total amount of lithium salt (A). It is 0.50 mass% or more and 50 mass% or less, More preferably, it is 1.0 mass% or more and 40 mass% or less, More preferably, it is 2.0 mass% or more and 30 mass% or less, More preferably, it is 5 It is 0.0 mass% or more and 20 mass% or less.
  • the content of the compound (F) is 0.50% by mass or more based on the total amount of the lithium salt (A)
  • the cycle life of the lithium ion secondary battery tends to be further improved.
  • the electrolytic solution according to the first aspect includes a compound represented by the following formula (1), a compound represented by the following formula (2), a structural unit represented by the following formula (3a), and the following formula (3b).
  • n represents an integer of 0 or 1
  • R 1 and R 2 each independently represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon number.
  • a group consisting of an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms that may be substituted, an aryloxy group having 6 to 10 carbon atoms that may be substituted, and a siloxy group having 3 to 10 carbon atoms Represents a group selected from.
  • R 4 represents an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, or a substituted group.
  • X represents a Li atom or a hydrogen atom.
  • the content of the compound (B) is preferably 0.010% by mass or more and 10% by mass or less, and more preferably 0.010% by mass or more and 5.0% by mass with respect to 100% by mass of the electrolytic solution. Or less, more preferably 0.010% by mass or more and 5.0% by mass or less, still more preferably 0.050% by mass or more and 3.0% by mass or less, and still more preferably 0.10% by mass.
  • the content is 3.0% by mass or less and particularly preferably 0.20% by mass or more and 3.0% by mass or less.
  • the compound (B) only needs to be contained in the electrolytic solution, and may be added at the time of preparing the electrolytic solution, or may be generated by reaction in the electrolytic solution.
  • X represents a Li atom or a hydrogen atom.
  • Li atom is preferable.
  • M represents a P atom or a B atom.
  • n is 0, and when M is a P atom, n represents an integer of 0 or 1.
  • R 1 and R 2 are each independently an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, An optionally substituted alkoxy group having 1 to 10 carbon atoms, an optionally substituted aryl group having 6 to 10 carbon atoms, an optionally substituted aryloxy group having 6 to 10 carbon atoms, and siloxy having 3 to 10 carbon atoms A group selected from the group consisting of groups is shown.
  • the optionally substituted alkyl group having 1 to 10 carbon atoms is not particularly limited as long as it shows a structure in which a carbon atom is directly bonded to an M atom.
  • an aliphatic hydrocarbon group A fluorine-substituted hydrocarbon group such as a difluoromethylene group or a trifluoromethyl group substituted with a fluorine atom can be mentioned.
  • the alkyl group may have a functional group as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -).
  • alkyl group for R 1 and R 2 are not particularly limited.
  • an aliphatic alkyl group such as a group.
  • a methyl group, an ethyl group, an allyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a fluorohexyl group are more preferable.
  • chemical stability tends to be further improved.
  • the carbon number of the alkyl group is 1 to 10, preferably 2 to 10, and more preferably 3 to 8.
  • the number of carbon atoms is 1 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the optionally substituted alkoxy group having 1 to 10 carbon atoms is not particularly limited as long as it has a structure in which a carbon atom is bonded to an M atom through an oxygen atom.
  • an aliphatic hydrocarbon oxy group And fluorine-substituted hydrocarbonoxy groups such as a trifluoroethyloxy group and a hexafluoroisopropyloxy group in which a hydrogen atom in an alkoxy group in which a hydrogen atom is substituted with a fluorine atom is substituted with fluorine.
  • the alkoxy group may have a functional group as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -).
  • alkoxy group of R 1 and R 2 are not particularly limited.
  • methoxy group, ethoxy group, vinyloxy group, allyloxy group, propoxy group, butoxy group, cyanohydroxy group, fluoroethoxy group An aliphatic alkoxy group such as a fluoropropoxy group can be mentioned.
  • a methoxy group, an ethoxy group, a vinyloxy group, an allyloxy group, a propoxy group, a butoxy group, a cyanohydroxy group, a fluoroethoxy group, and a fluoropropoxy group are more preferable.
  • chemical stability tends to be superior.
  • the carbon number of the alkoxy group is 1 or more and 10 or less, preferably 1 or more and 8 or less, more preferably 2 or more and 8 or less.
  • the number of carbon atoms is 1 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the aryl group having 6 to 10 carbon atoms which may be substituted is not particularly limited, and examples thereof include an aromatic hydrocarbon group such as a phenyl group or a benzyl group.
  • the aryl group may have a functional group as necessary.
  • a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • aryl group of R 1 and R 2 are not particularly limited, and for example, aromatic such as benzyl group, phenyl group, nitrile-substituted phenyl group, fluorinated phenyl group, nitrile-substituted benzyl group, and fluorinated benzyl group
  • aromatic such as benzyl group, phenyl group, nitrile-substituted phenyl group, fluorinated phenyl group, nitrile-substituted benzyl group, and fluorinated benzyl group
  • An alkyl group is mentioned.
  • a benzyl group and a phenyl group are more preferable.
  • the carbon number of the aryl group is 6 to 10, preferably 6 to 8.
  • the number of carbon atoms is 6 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the aryloxy group having 6 to 10 carbon atoms which may be substituted is not particularly limited, and examples thereof include aromatic hydrocarbon oxy groups such as phenoxy group and benzylalkoxy group.
  • the aryloxy group may have a functional group as needed.
  • a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • aryloxy group for R 1 and R 2 are not particularly limited.
  • aromatic alkoxy groups such as Among these, a phenoxy group and a benzylalkoxy group are more preferable.
  • the carbon number of the aryloxy group is 6 to 10, preferably 6 to 8.
  • the number of carbon atoms is 6 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the siloxy group having 3 to 10 carbon atoms is not particularly limited as long as it shows a structure in which a silicon atom is bonded to an M atom through an oxygen atom.
  • the siloxy group is a siloxane structure such as Si—O—Si—. May be included.
  • a trimethylsiloxy group a triethylsiloxy group, a dimethylethylsiloxy group, a diethylmethylsiloxy group etc. are mentioned preferably from a chemical stability viewpoint. Among these, a trimethylsiloxy group is more preferable.
  • the carbon number of the siloxy group is 3 or less and 10 or less, preferably 3 or more and 8 or less, more preferably 3 or more and 6 or less.
  • the number of carbon atoms of the siloxy group is 1 or more, battery performance tends to be further improved.
  • the carbon number of the siloxy group is 10 or less, the chemical stability tends to be further improved.
  • the number of silicon in the siloxy group is not particularly limited, but is preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, still more preferably 1 or more and 2 or less, and even more preferably 1. .
  • the number of silicon in the siloxy group is within the above range, chemical stability and battery performance tend to be further improved.
  • R 1 and R 2 are an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, and a siloxy group having 3 to 10 carbon atoms. Preferably there is.
  • R 1 and R 2 are such groups, the solubility in the electrolytic solution tends to be further improved.
  • at least one of R 1 and R 2 of the compound (A) is a functional group selected from the group consisting of an optionally substituted alkoxy group having 1 to 10 carbon atoms and a siloxy group having 3 to 10 carbon atoms. It is more preferable that By having such a group, chemical stability and battery performance tend to be further improved.
  • a compound represented by Formula (15) is preferable.
  • X represents a Li atom or a hydrogen atom
  • R 1 and R 2 each independently represents an OH group, an OLi group, or an optionally substituted alkyl group having 1 to 10 carbon atoms.
  • X represents a Li atom or a hydrogen atom.
  • Li atom is preferable.
  • X is a Li atom, the battery capacity tends to be further improved.
  • R 3 represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group is not particularly limited, and examples thereof include an aliphatic hydrocarbon group; an aromatic hydrocarbon group such as a phenyl group; and a trifluoromethyl group in which all hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms. And a fluorine-substituted hydrocarbon group.
  • the hydrocarbon group may have a functional group as needed.
  • the functional group is not particularly limited, but for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom, nitrile group (—CN), ether group (—O—), carbonate group (—OCO 2 —), An ester group (—CO 2 —), a carbonyl group (—CO—), a sulfide group (—S—), a sulfoxide group (—SO—), a sulfone group (—SO 2 —), and a urethane group (—NHCO 2 —).
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom, nitrile group (—CN), ether group (—O—), carbonate group (—OCO 2 —), An ester group (—CO 2 —), a carbonyl group (—CO—), a sulfide group (—S—), a sulfoxide group (—SO—), a sulfone group (—SO
  • R 3 preferably has a structure represented by the following formula (16) and / or the following formula (17).
  • the basic skeleton of the compound (B) has a dicarboxylic acid derivative structure.
  • the battery performance tends to be more excellent.
  • Y represents a Li atom or a hydrogen atom
  • R 4 represents an optionally substituted hydrocarbon group having 1 to 19 carbon atoms.
  • R 5 represents an optionally substituted hydrocarbon group having 1 to 13 carbon atoms
  • R 6 represents an optionally substituted hydrocarbon group having 1 to 6 carbon atoms, or And represents an optionally substituted trialkylsilyl group having 3 to 6 carbon atoms.
  • R 4 is not particularly limited, and examples thereof include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • R 4 is such a functional group, the chemical stability of the compound (A) tends to be further improved.
  • R 5 is not particularly limited, and examples thereof include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • R 5 is such a functional group, the chemical stability of the compound (A) tends to be further improved.
  • R 6 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a vinyl group, an allyl group, and a trimethylsilyl group.
  • R 6 is such a functional group, the chemical stability of the compound (A) tends to be further improved.
  • R 3 has 1 to 20 carbon atoms, preferably 1 or more and 16 or less, and more preferably 1 or more and 14 or less. When the carbon number of R 3 is within the above range, the solubility of the compound (B) tends to be more excellent.
  • the compound having a structural unit represented by the formula (3a) and a structural unit represented by the formula (3b) is not particularly limited.
  • the compound represented by the formula (1) (M is P ) Is a polymerized product.
  • X represents a Li atom or a hydrogen atom.
  • Li atom is preferable.
  • X is a Li atom, the battery capacity tends to be further improved.
  • R 4 is an OH group, an OLi group, or an optionally substituted carbon atom.
  • the aryloxy group having 6 to 10 carbon atoms and the siloxy group having 3 to 10 carbon atoms are not particularly limited, and examples thereof include the same groups as those exemplified in Formula (1).
  • a compound represented by Formula (18), Formula ( Of the compound represented by 19) and the compound represented by formula (20) a compound in which at least one of the —OTMS groups is substituted with a —PF 5 Li group is preferable.
  • a lithium ion secondary battery that operates at a high voltage and has a higher cycle life can be obtained.
  • the number of phosphoric acid atoms in the compound having the structural unit represented by the formula (3a) and the structural unit represented by the formula (3b) is preferably 2 to 16, more preferably 2 to 8, more preferably 2-4.
  • a lithium ion secondary battery that operates at a high voltage and has a higher cycle life can be obtained.
  • the compound (B) is not particularly limited, but for example, those having the following structures are preferable. By using such a compound, a lithium ion secondary battery that operates at a high voltage and has a higher cycle life can be obtained.
  • the electrolytic solution used in the first aspect preferably contains a compound (D) having a silicon atom represented by formula (10) and / or formula (11).
  • a compound (D) having a silicon atom represented by formula (10) and / or formula (11).
  • SiFR 1 R 2 R 3 (10) (In the above formula (10), R 1 , R 2 , and R 3 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • SiF 2 R 4 R 5 (11) In the above formula (11), R 4 and R 5 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • the electrolyte solution which concerns on a 1st aspect contains the compound (D) which has a silicon atom, and the lithium salt (C) which has the said boron atom in electrolyte solution,
  • the cycle of a lithium ion secondary battery Lifetime can be greatly improved.
  • the lithium salt (C) having a boron atom having the structure of the formula (4) and the compound (D) having a silicon atom act on the positive electrode, the negative electrode, or both, and the lithium ion This is presumed to suppress oxidative decomposition of the electrolyte in the secondary battery.
  • the lithium salt (C) having a boron atom having the structure of the formula (4) has a function as an electrolyte responsible for ionic conductivity, but mainly functions as an additive for the purpose of improving the cycle life. Therefore, a sufficient effect can be exhibited even in a small amount of 0.01% by mass to 10% by mass in the electrolytic solution.
  • the content of the compound (D) having a silicon atom is preferably 0.0010% by mass or more and 3.0% by mass or less, more preferably 0.0030% by mass with respect to 100% by mass of the electrolytic solution. It is more than 2.0 mass%, More preferably, it is 0.0050 mass% or more and 2.0 mass% or less, More preferably, it is 0.010 mass% or more and 1.0 mass% or less, Especially preferably, It is 0.020 mass% or more and 2.0 mass% or less.
  • a good cycle life tends to be obtained in the lithium ion secondary battery.
  • the compound (D) which has a silicon atom should just be contained in electrolyte solution, may be added at the time of electrolyte solution preparation, and may be produced
  • the content of the compound (D) having a silicon atom in the electrolytic solution can be confirmed by NMR measurement such as 1 H-NMR and 19 F-NMR.
  • the content of the compound (D) having a silicon atom in the electrolytic solution in the lithium ion secondary battery can be confirmed by NMR measurement such as 1 H-NMR, 19 F-NMR, as described above. .
  • R 1 , R 2 , and R 3 each independently represent an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.
  • a hydrocarbon group is not particularly limited, and examples thereof include an aliphatic hydrocarbon group; an aromatic hydrocarbon group such as a phenyl group; and trifluoromethyl in which all hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms. And fluorine-substituted hydrocarbon groups such as a group.
  • the hydrocarbon group may have a functional group as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -).
  • R 1 , R 2 , and R 3 are not particularly limited.
  • aliphatic groups such as a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, a propyl group, a butyl group, and a fluoromethyl group Hydrocarbon groups; aromatic hydrocarbon groups such as benzyl groups, phenyl groups, nitrile-substituted phenyl groups, and fluorinated phenyl groups.
  • aromatic hydrocarbon groups such as benzyl groups, phenyl groups, nitrile-substituted phenyl groups, and fluorinated phenyl groups.
  • a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, and a fluoromethyl group are more preferable.
  • R 1 , R 2 , and R 3 are such hydrocarbon groups, they tend to be more excellent in chemical stability.
  • the hydrocarbon group of R 1 , R 2 , and R 3 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms. When the carbon number is within the above range, miscibility with a non-aqueous solvent tends to be further improved.
  • the compound containing silicon represented by the formula (10) (D) is not particularly limited, for example, FSi (CH 3) 3, FSi (C 2 H 5) 3, FSi (CHCH 2) 3, FSi (CH 2 CHCH 2 ) 3 and FSi (CF 3 ) 3 are preferable, and FSi (CH 3 ) 3 is more preferable.
  • FSi (CH 3) 3, FSi (C 2 H 5) 3, FSi (CHCH 2) 3, FSi (CH 2 CHCH 2 ) 3 and FSi (CF 3 ) 3 are preferable, and FSi (CH 3 ) 3 is more preferable.
  • R 4 and R 5 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.
  • a hydrocarbon group is not particularly limited, and examples thereof include an aliphatic hydrocarbon group; an aromatic hydrocarbon group such as a phenyl group; and trifluoromethyl in which all hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms. And fluorine-substituted hydrocarbon groups such as a group.
  • the hydrocarbon group may have a functional group as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -).
  • R 4 and R 5 are not particularly limited, but examples thereof include aliphatic hydrocarbon groups such as a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, a propyl group, a butyl group, and a fluoromethyl group; Aromatic hydrocarbon groups such as benzyl group, phenyl group, nitrile-substituted phenyl group, and fluorinated phenyl group can be mentioned. Of these, a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, and a fluoromethyl group are more preferable. When R 4 and R 5 are such hydrocarbon groups, they tend to be more excellent in chemical stability.
  • the hydrocarbon group of R 4 and R 5 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the compound containing silicon represented by the formula (11) (D), is not particularly limited, for example, F 2 Si (CH 3) 2 is preferred.
  • F 2 Si (CH 3) 2 is preferred.
  • At least one hydrogen atom of an acid selected from the group consisting of a sulfonic acid, a carboxylic acid, and a protonic acid having a phosphorus atom and / or a boron atom is represented by the following formula (12). It is preferable to contain the compound (E) substituted by the structure. By including such a compound (E), the cycle performance of the lithium ion secondary battery tends to be further improved.
  • R 3 , R 4 and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms.
  • the electrolyte solution which concerns on a 1st aspect exists in the tendency for a cycle life to improve more by including the compound (D) which has the said silicon atom, and a compound (E).
  • the protonic acid having a phosphorus atom is not particularly limited as long as it is a compound having a phosphorus atom in the molecule and a hydrogen atom that can dissociate as a proton.
  • Protonic acid having a phosphorus atom contains hetero atoms such as Si, B, O, N, etc. in addition to halogen atoms such as fluorine atom and chlorine atom, organic groups such as alkoxy group and alkyl group in the molecule. May be.
  • the protonic acid having a phosphorus atom may contain a plurality of phosphorus atoms in the molecule like polyphosphoric acid.
  • the proton acid having such a phosphorus atom is not particularly limited, but for example, phosphoric acid, phosphorous acid, pyrophosphoric acid, polyphosphoric acid, and phosphonic acid are preferable. Of these, phosphoric acid, phosphorous acid, and phosphonic acid are more preferable. By using such a compound (E), the stability tends to be more excellent. These protonic acids may be substituted.
  • the proton acid having a boron atom is not particularly limited as long as it is a compound having a boron atom in the molecule and a hydrogen atom that can dissociate as a proton.
  • Protonic acid having a boron atom contains hetero atoms such as Si, P, O, N, etc. in addition to halogen atoms such as fluorine atom and chlorine atom, organic groups such as alkoxy group and alkyl group in the molecule. May be.
  • the protonic acid having a boron atom may contain a plurality of boron atoms in the molecule.
  • Such a protonic acid having a boron atom is not particularly limited, but for example, boric acid, boronic acid, and borinic acid are preferable. These protonic acids may be substituted.
  • the sulfonic acid is not particularly limited as long as it is a compound having a —SO 3 H group (sulfonic acid group) in the molecule, and may have a plurality of sulfonic acid groups in the molecule.
  • the sulfonic acid includes sulfuric acid (HOSO 3 H).
  • HOSO 3 H sulfuric acid
  • methylsulfonic acid, ethylsulfonic acid, propylsulfonic acid, 1,2 ethane disulfonic acid, trifluoromethylsulfonic acid, phenylsulfonic acid, benzylsulfonic acid, sulfuric acid etc. are mentioned preferably. be able to.
  • the carboxylic acid is not particularly limited as long as it is a compound having a CO 2 H group (carboxylic acid group) in the molecule, and may have a plurality of carboxylic acid groups in the molecule.
  • the carboxylic acid is not particularly limited, and examples thereof include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, valeric acid, acrylic acid, methacrylic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid. Examples include acids, salicylic acid, malonic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, and itaconic acid.
  • dicarboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, malonic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, and itaconic acid are preferred.
  • Adipic acid, itaconic acid, succinic acid Acid, isophthalic acid, and terephthalic acid are more preferred.
  • At least one hydrogen atom of an acid selected from the group consisting of a sulfonic acid, a carboxylic acid, and a protonic acid having a phosphorus atom and / or a boron atom is substituted with a structure represented by the formula (12) Compound.
  • R 3 , R 4 , and R 5 each independently represent an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group represented by R 3 , R 4 , and R 5 is not particularly limited, and examples thereof include an aliphatic hydrocarbon group; an aromatic hydrocarbon group such as a phenyl group; and a hydrogen atom in the hydrocarbon group. Fluorine-substituted hydrocarbon groups such as a trifluoromethyl group, all substituted with fluorine atoms.
  • the hydrocarbon group may have a functional group as needed.
  • a functional group is not particularly limited. For example, a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • R 3 , R 4 , and R 5 are not particularly limited.
  • aliphatic groups such as a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, a propyl group, a butyl group, and a fluoromethyl group Hydrocarbon groups; aromatic hydrocarbon groups such as benzyl groups, phenyl groups, nitrile-substituted phenyl groups, and fluorinated phenyl groups.
  • a methyl group, an ethyl group, a vinyl group, a 1-methylvinyl group, and a fluoromethyl group are more preferable.
  • Two Rs may be bonded to form a ring. In order to form a ring, for example, a substituted or unsubstituted, substituted or unsubstituted alkylene group can be mentioned.
  • R 3 , R 4 , and R 5 have 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. When the carbon number is within the above range, the miscibility with the non-aqueous solvent tends to be superior.
  • the structure represented by the formula (12) is not particularly limited.
  • —Si (CH 3 ) 3 , —Si (C 2 H 5 ) 3 , —Si (CHCH 2 ) 3 , —Si (CH 2) CHCH 2 ) 3 and —Si (CF 3 ) 3 are preferable, and —Si (CH 3 ) 3 is more preferable.
  • the acid selected from the group consisting of a sulfonic acid, a carboxylic acid, and a protonic acid having a phosphorus atom and / or a boron atom has a plurality of hydrogen atoms
  • at least one hydrogen atom is represented by formula (12). It may be substituted with a structure represented by Further, the remaining hydrogen atoms that are not substituted may be present as they are, or may be substituted with a functional group other than the structure represented by the formula (12).
  • a functional group is not particularly limited, and for example, a halogen-substituted or unsubstituted saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms can be preferably exemplified.
  • the halogen-substituted or unsubstituted, saturated or unsaturated hydrocarbon group is not particularly limited, and examples thereof include an alkyl group, an alkenyl group, an alkynyl group, an allyl group, and a vinyl group.
  • the substituent of two hydrogen atoms may couple
  • substituted or unsubstituted and substituted with a saturated or unsaturated alkylene group can be mentioned.
  • M represents a phosphorus atom (hereinafter also referred to as “P atom”) or a boron atom (hereinafter also referred to as “B atom”), and n is 0 when M is a P atom.
  • R 3 , R 4 , and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms
  • R 6 and R 7 are each independently an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, or a carbon number of 3 to 10 And a group selected from the group consisting of a siloxy group, an aryl group having 6 to 15 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms.
  • R 3 , R 4 , and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms
  • R 8 is an optionally substituted carbon.
  • the organic group of the number 1 to 20 is shown.
  • M represents a P atom or a B atom
  • n represents an integer of 0 or 1 when M is a P atom
  • n represents 0 when M is a B atom.
  • R 3 , R 4 , and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms
  • R 6 and R 7 are each independently , OH group, OLi group, optionally substituted alkyl group having 1 to 10 carbon atoms, optionally substituted alkoxy group having 1 to 10 carbon atoms, siloxy group having 3 to 10 carbon atoms, and 6 to 15 carbon atoms
  • R 6 and R 7 are each independently an OH group, an OLi group, an optionally substituted alkyl group having 1 to 10 carbon atoms, a substituted group And a group selected from the group consisting of an alkoxy group having 1 to 10 carbon atoms, a siloxy group having 3 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms .
  • the optionally substituted alkyl group having 1 to 10 carbon atoms represents a structure in which a carbon atom is directly bonded to an M atom.
  • the alkyl group is not particularly limited, and examples thereof include an aliphatic group and a fluorine-substituted hydrocarbon group such as a trifluoromethyl group in which at least a part of hydrogen atoms are substituted with fluorine atoms.
  • the alkyl group may be substituted with various functional groups as necessary. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -), Aromatic groups such as phenyl and benzyl groups.
  • alkyl group represented by R 6 and R 7 include, but are not limited to, for example, methyl group, ethyl group, vinyl group, allyl group, propyl group, butyl group, pentyl group, hexyl group And aliphatic alkyl groups such as a fluorohexyl group.
  • methyl, ethyl, allyl, propyl, butyl, pentyl, hexyl, and fluorohexyl are more preferred from the viewpoint of chemical stability.
  • Carbon number of the alkyl group represented by R 6 and R 7 is 1 or more and 10 or less, preferably 2 or more and 10 or less, more preferably 3 or more and 8 or less.
  • the number of carbon atoms is 1 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the optionally substituted alkoxy group having 1 to 10 carbon atoms has a structure in which a carbon atom is bonded to an M atom via an oxygen atom.
  • the alkoxy group is not particularly limited, and examples thereof include an alkoxy group having an aliphatic group, and a fluorine-substituted alkoxy group such as a trifluoroethyloxy group or a hexafluoroisopropoxy group in which a hydrogen atom in the alkoxy group is fluorine-substituted. It is done.
  • the alkoxy group may be substituted with various functional groups as necessary. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -), Aromatic groups such as phenyl and benzyl groups.
  • alkoxy group represented by R 6 and R 7 are not particularly limited.
  • examples thereof include aliphatic alkoxy groups such as ethoxy group and fluoropropoxy group.
  • a methoxy group, an ethoxy group, a vinyloxy group, an allyloxy group, a propoxy group, a butoxy group, a cyanohydroxy group, a fluoroethoxy group, and a fluoropropoxy group are more preferable.
  • the alkoxy group represented by R 6 and R 7 has 1 to 10 carbon atoms, preferably 1 or more and 8 or less, more preferably 2 or more and 8 or less.
  • the number of carbon atoms is 1 or more, battery performance tends to be further improved.
  • affinity with electrolyte solution it exists in the tendency for affinity with electrolyte solution to improve more because carbon number is 10 or less.
  • the siloxy group having 3 to 10 carbon atoms has a structure in which a silicon atom is bonded to an M atom through an oxygen atom.
  • the siloxy group may contain a siloxane structure such as Si—O—Si—.
  • Si—O—Si— a siloxane structure
  • a trimethylsiloxy group, a triethylsiloxy group, a dimethylethylsiloxy group, a diethylmethylsiloxy group etc. are mentioned preferably from a chemical stability viewpoint. More preferably, it is a trimethylsiloxy group.
  • the carbon number of the siloxy group is 3 or more and 10 or less, preferably 3 or more and 8 or less, more preferably 3 or more and 6 or less.
  • the carbon number of the siloxy group is 3 or more, battery performance tends to be further improved.
  • the carbon number of the siloxy group is 10 or less, the chemical stability tends to be further improved.
  • the number of silicon in the siloxy group is not particularly limited, but is preferably 1 or more and 4 or less, preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, and further preferably 1.
  • the number of silicon in the siloxy group is within the above range, chemical stability and battery performance tend to be further improved.
  • An aryl group indicates a structure in which an aromatic ring carbon atom is directly bonded to an M atom.
  • the aryl group may be substituted with various functional groups as necessary.
  • Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • aryl group are not particularly limited, and examples thereof include aromatic alkyl groups such as a benzyl group, a phenyl group, a nitrile-substituted phenyl group, and a fluorinated phenyl group.
  • the carbon number of the aryl group is 6 or more and 15 or less, preferably 6 or more and 12 or less.
  • the aryl group has 6 or more carbon atoms, the chemical stability of the compound tends to be further improved. Further, when the aryl group has 15 or less carbon atoms, the battery performance tends to be further improved.
  • An aryloxy group indicates a structure in which an aryl group is bonded to an M atom through oxygen.
  • the aryloxy group may be substituted with various functional groups as necessary.
  • Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • aryloxy group are not particularly limited, and examples thereof include aromatic alkoxy groups such as phenoxy group, benzylalkoxy group, nitrile-substituted phenoxy group, and fluorinated phenoxy group.
  • the carbon number of the aryloxy group is 6 or more and 15 or less, preferably 6 or more and 12 or less.
  • the aryloxy group has 6 or more carbon atoms, the chemical stability of the compound tends to be further improved.
  • the carbon number of the aryloxy group is 15 or less, the battery performance tends to be further improved.
  • R 6 and R 7 are not particularly limited, and examples thereof include an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, and a siloxy having 3 to 10 carbon atoms. Groups are preferred. In addition, at least one of R 6 and R 7 may be a functional group selected from the group consisting of an optionally substituted alkoxy group having 1 to 10 carbon atoms and a siloxy group having 3 to 10 carbon atoms. More preferred. When R 6 and R 7 are such groups, the solubility in the electrolytic solution tends to be further improved.
  • R 3 , R 4 , and R 5 each independently represent a hydrocarbon group having 1 to 10 carbon atoms.
  • the preferred structure of R 3, R 4, and R 5 are the same as the preferred structures of R 3, R 4, and R 5 in the structure represented by the formula (14) described above.
  • R 8 represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group represented by R 8 is not particularly limited.
  • an aliphatic hydrocarbon group, an aromatic hydrocarbon group such as a phenyl group, and all the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms.
  • Fluorine-substituted hydrocarbon groups such as a trifluoromethyl group can be mentioned.
  • the hydrocarbon group may be substituted with various functional groups as needed. Such a functional group is not particularly limited.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, a nitrile group (—CN), an ether group (—O—), a carbonate group (—OCO 2 ).
  • Ester group (-CO 2- ), carbonyl group (-CO-) sulfide group (-S-), sulfoxide group (-SO-), sulfone group (-SO 2- ), urethane group (-NHCO 2 -).
  • the carbon number of the hydrocarbon group represented by R 8 is 1 or more and 20 or less, preferably 1 or more and 16 or less, more preferably 1 or more and 14 or less.
  • the hydrocarbon group represented by R 8 is not particularly limited, but a structure represented by the following formula (19) is preferable.
  • the basic skeleton of the compound (E) has a dicarboxylic acid derivative structure.
  • R 9 represents an optionally substituted hydrocarbon group having 1 to 13 carbon atoms
  • R 10 represents an optionally substituted hydrocarbon group having 1 to 6 carbon atoms, Or a trialkylsilyl group having 3 to 6 carbon atoms which may be substituted.
  • R 9 is preferably a methylene group, an ethylene group, a propylene group, a butylene group, a phenyl group, a fluoromethylene group, a fluoroethylene group, a fluoro group, from the viewpoint of the chemical stability of the compound (E).
  • Examples include a propylene group and a fluorobutylene group.
  • R 10 is preferably a trialkylsilyl group such as a methyl group, an ethyl group, a vinyl group, an allyl group, a trimethylsilyl group, or a triethylsilyl group from the viewpoint of the chemical stability of the compound (E). Groups. More preferred are trialkylsilyl groups such as trimethylsilyl group and triethylsilyl group.
  • R 10 is a trialkylsilyl group
  • the compound (E) has a structure represented by the following formula (20).
  • R 3 , R 4 , and R 5 each independently represents an organic group having 1 to 10 carbon atoms
  • R 9 is an optionally substituted carbon group having 1 to 13 carbon atoms. Indicates a hydrocarbon group.
  • the compound (E) are not particularly limited.
  • tris phosphate trimethylsilyl
  • tris phosphite trimethylsilyl
  • tetrakis pyrophosphate trimethylsilyl
  • trimethylsilyl polyphosphate di (trimethylsilyl) butylphosphonate, propylphosphonic acid Di (trimethylsilyl), ethylphosphonate di (trimethylsilyl), methylphosphonate di (trimethylsilyl), monomethyldi (trimethylsilyl) phosphate, monoethyldi (trimethylsilyl) phosphate, mono (trifluoroethyl) di (trimethylsilyl) phosphate, monophosphate More preferred are (hexafluoroisopropyl) di (trimethylsilyl), di (trimethylsilyl) succinate, di (trimethylsilyl) itaconate, and di (trimethylsilyl) adipate.
  • the content of the compound (E) is preferably 0.010% by mass to 10% by mass, more preferably 0.020% by mass to 10% by mass, with respect to 100% by mass of the electrolytic solution. Preferably it is 0.050 mass% or more and 8.0 mass% or less, More preferably, it is 0.10 mass% or more and 5.0 mass% or less, More preferably, it is 0.20 mass% or more and 4.0 mass%. % Or less.
  • the content of the compound (E) is 0.010% by mass or more, the cycle life of the lithium ion secondary battery tends to be further improved. Moreover, it exists in the tendency for battery output to improve more because content of a compound (E) is 10 mass% or less.
  • the content of these compounds (E) in the electrolytic solution can be confirmed by NMR measurement. Moreover, content of the compound (E) in the electrolyte solution in a lithium ion secondary battery can also be confirmed by NMR measurement similarly to the above.
  • the electrolytic solution according to the first aspect can contain additives other than those described above as necessary.
  • additives include, but are not limited to, vinylene carbonate, fluoroethylene carbonate, ethylene sulfite, propane sultone, succinonitrile, and the like. By including such an additive, the cycle characteristics of the lithium ion secondary battery tend to be further improved.
  • the electrolyte solution according to the first aspect is suitably used as an electrolyte solution for non-aqueous energy storage devices.
  • the “non-aqueous electricity storage device” is an electricity storage device that does not use an aqueous solution for the electrolyte in the electricity storage device, and examples include a lithium ion secondary battery, a sodium ion secondary battery, a calcium ion secondary battery, and lithium.
  • An ion capacitor is mentioned.
  • the non-aqueous storage device is preferably a lithium ion secondary battery and a lithium ion capacitor, and more preferably a lithium ion secondary battery.
  • a lithium ion secondary battery (hereinafter also simply referred to as “battery”) according to a second aspect includes the above electrolytic solution, a positive electrode containing a positive electrode active material, and a negative electrode containing a negative electrode active material.
  • This battery may have the same configuration as a conventional lithium ion secondary battery except that it includes the above-described electrolyte solution.
  • a positive electrode will not be specifically limited if it acts as a positive electrode of a lithium ion secondary battery, A well-known thing can be used.
  • the positive electrode preferably contains one or more selected from the group consisting of materials capable of inserting and extracting lithium ions as a positive electrode active material.
  • the battery according to the second aspect further includes a positive electrode containing a positive electrode active material having a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or more from the viewpoint of realizing a higher voltage. preferable. Even when such a positive electrode is provided, the battery of the second aspect is useful in that it operates at a high voltage and can improve the recycling life.
  • 4.4 V and a positive electrode active material having a 10 mAh / g or more discharge capacity (vsLi / Li +) or more potential, 4.4V (vsLi / Li +) of the lithium ion secondary battery or a potential It is a positive electrode active material capable of causing charge and discharge reactions as a positive electrode, and has a discharge capacity at a constant current discharge of 0.1 C of 10 mAh or more with respect to 1 g of mass of the active material.
  • the positive electrode active material has a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or higher, and a discharge capacity at a potential of 4.4 V (vsLi / Li + ) or lower. There is no problem even if it has.
  • the discharge capacity of the positive electrode active material used in the second embodiment is preferably 10 mAh / g or more, more preferably 15 mAh / g or more, and further preferably 20 mAh at a potential of 4.4 V (vsLi / Li + ) or more. / G or more.
  • the upper limit of the discharge capacity of the positive electrode active material at a potential of 4.4 V (vsLi / Li + ) or higher is not particularly limited, but is preferably 400 mAh / g or less.
  • the discharge capacity of the positive electrode active material can be measured by the method described in the examples.
  • the positive electrode active materials having a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or more can be used singly or in combination of two or more. Also, as the positive electrode active material, 4.4V (vsLi / Li +) and the positive electrode active material having a 10 mAh / g or more discharge capacity than the potential, 4.4V (vsLi / Li +) or more potential 10 mAh / g A positive electrode active material having no discharge capacity as described above can also be used in combination.
  • the positive electrode active material having no 10 mAh / g or more discharge capacity 4.4V (vsLi / Li +) or more potential but are not limited to, for example, LiFePO 4.
  • Such a positive electrode active material is not particularly limited.
  • the structural stability of the positive electrode active material tends to be more excellent.
  • LiMn 2-x Ma x O 4 (5) (In the above formula (5), Ma represents one or more selected from the group consisting of transition metals, and x is 0.2 ⁇ x ⁇ 0.7.) LiMn 1-u Me u O 2 (6) (In the above formula (6), Me represents one or more selected from the group consisting of transition metals excluding Mn, and u is 0.1 ⁇ u ⁇ 0.9.) zLi 2 McO 3- (1-z) LiMdO 2 (7) (In the above formula (7), Mc and Md each independently represent one or more selected from the group consisting of transition metals, and z is 0.1 ⁇ z ⁇ 0.9.) LiMb 1-y Fe y PO 4 (8) (In the above formula (8), Mb represents one or more selected from the group consisting of Mn and Co, and y is 0 ⁇ y ⁇ 0.9.) Li 2 MfPO 4 F (9) (In the above formula (9), Mf represents one or more selected from the group consisting
  • a spinel type oxide is preferable and the oxide represented by Formula (5a) or Formula (5b) is more preferable.
  • LiMn 2-x Ni x O 4 (5a) (In the above formula (5a), x satisfies 0.2 ⁇ x ⁇ 0.7.)
  • LiMn 2-x Ni x O 4 (5b) (In the above formula (5b), x satisfies 0.3 ⁇ x ⁇ 0.6.)
  • the above formula (5a) or oxide represented by the above formula (5b), is not particularly limited, for example, LiMn 1.5 Ni 0.5 O 4 and LiMn 1.6 Ni 0.4 O 4 are exemplified It is done. By using such a spinel type oxide represented by the formula (5), the stability tends to be more excellent.
  • the oxide represented by the above formula (5) has a structure other than the above structure in a range of 10 mol% or less with respect to the number of moles of Mn atoms from the viewpoint of stability of the positive electrode active material, electronic conductivity, and the like. Further, a transition metal or a transition metal oxide may be contained.
  • the compounds represented by the above formula (5) are used singly or in combination of two or more.
  • the layered oxide represented by the above formula (6a) is not particularly limited.
  • LiMn 1/3 Co 1/3 Ni 1/3 O 2 LiMn 0.1 Co 0.1 Ni 0.8 O 2 , LiMn 0.3 Co 0.2 Ni 0.5 O 2 and the like.
  • the compound represented by Formula (6) is used individually by 1 type or in combination of 2 or more types.
  • complex oxide represented by the said Formula (7) it is preferable that it is a composite layered oxide, and it is more preferable that it is a complex oxide represented by following formula (7a).
  • zLi 2 MnO 3- (1-z) LiNi a Mn b Co c O 2 (7a) (In the above formula (7a), z satisfies 0.3 ⁇ z ⁇ 0.7, and a, b, and c are a + b + c 1, 0.2 ⁇ a ⁇ 0.6, 0.2 ⁇ b ⁇ 0.6, 0.05 ⁇ c ⁇ 0.4 is satisfied.)
  • an olivine type compound is preferable and the compound represented by the following formula (8a) and the following formula (8b) is more preferable.
  • LiMn 1-y Fe y PO 4 (8a) (In the above formula (8a), y satisfies 0.05 ⁇ y ⁇ 0.8.)
  • LiCo 1-y Fe y PO 4 (8b) (In the above formula (8b), y satisfies 0.05 ⁇ y ⁇ 0.8.)
  • the fluoride olivine-type positive electrode active material is a compound represented by the formula (9) is not particularly limited, for example, Li 2 FePO 4 F, Li 2 MnPO 4 F and Li 2 CoPO 4 F are preferred. By using such a compound represented by the formula (9), the stability tends to be more excellent.
  • the compound represented by Formula (9) is used individually by 1 type or in combination of 2 or more types.
  • the lithium-based positive electrode potential at the time of full charge of the lithium ion secondary battery according to the second aspect is preferably 4.4 V (vsLi / Li + ) or more, more preferably 4.45 V (vsLi / Li + ) or more. And more preferably 4.5 V (vsLi / Li + ) or more.
  • the positive electrode potential at the time of full charge is 4.4 V (vsLi / Li + ) or more, the charge / discharge capacity of the positive electrode active material of the lithium ion secondary battery tends to be efficiently utilized.
  • the positive electrode potential at full charge is 4.4 V (vsLi / Li + ) or more, the energy density of the lithium ion secondary battery tends to be further improved.
  • the positive electrode potential based on lithium at the time of full charge can be controlled by controlling the voltage of the battery at the time of full charge.
  • the upper limit of the positive electrode potential at the time of full charge is not particularly limited, but is preferably 5.2 V (vsLi / Li + ) or less.
  • Lithium-based positive electrode potential at full charge is to disassemble a fully charged lithium ion secondary battery in an Ar glove box, take out the positive electrode, reassemble the battery using metallic lithium as the counter electrode, and measure the voltage Can be measured easily. Further, when a carbon negative electrode active material is used for the negative electrode, the potential of the lithium ion secondary battery at the time of full charge (Va) since the potential of the carbon negative electrode active material at the time of full charge is 0.05 V (vsLi / Li + ). ) To 0.05V, the potential of the positive electrode at full charge can be easily calculated.
  • the positive electrode at the time of full charge is normally set to 4.2 V (vsLi / Li +) or less than 4.3 V (vsLi / Li +) in the conventional lithium ion secondary battery, the positive electrode at the time of full charge
  • a lithium ion secondary battery having a potential of 4.4 V (vsLi / Li +) or higher has a higher voltage than a conventional lithium ion secondary battery.
  • the “high voltage lithium ion secondary battery” means a lithium ion battery comprising a positive electrode having a positive electrode active material having a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vs Li / Li + ) or more.
  • a problem may arise that the carbonate-based solvent contained in the electrolytic solution is oxidatively decomposed on the surface of the positive electrode and the cycle life of the battery is reduced.
  • Such a problem is unlikely to occur in a conventional lithium ion secondary battery application used at a positive electrode potential of less than 4.4 V (vsLi / Li + ) at full charge.
  • the lithium ion secondary battery according to the second aspect can solve the problem that occurs when the positive electrode potential at the time of full charge is 4.4 V (vsLi / Li + ) or more by having the above-described configuration. Therefore, it can operate at a high voltage and has a high cycle life.
  • (vsLi / Li + ) represents a lithium-based potential.
  • the positive electrode active material can be produced by the same method as that for producing a general inorganic oxide.
  • the method for producing the positive electrode active material is not particularly limited.
  • inorganic oxide is obtained by firing a mixture in which metal salts (for example, sulfate and / or nitrate) are mixed at a predetermined ratio in an atmosphere containing oxygen.
  • a method of obtaining a positive electrode active material containing a product Alternatively, a carbonate and / or hydroxide salt is allowed to act on a solution in which the metal salt is dissolved to precipitate a hardly soluble metal salt, which is extracted and separated into lithium carbonate and / or hydroxide as a lithium source. After lithium is mixed, a method of obtaining a positive electrode active material containing an inorganic oxide by firing in an atmosphere containing oxygen can be given.
  • a paste containing a positive electrode mixture is prepared by dispersing, in a solvent, a positive electrode mixture obtained by adding a conductive additive or a binder to the positive electrode active material, if necessary.
  • this paste is applied to a positive electrode current collector and dried to form a positive electrode mixture layer, which is pressurized as necessary to adjust the thickness, whereby a positive electrode can be produced.
  • the positive electrode current collector is not particularly limited, and examples thereof include those composed of a metal foil such as an aluminum foil or a stainless steel foil.
  • the lithium ion secondary battery of the second aspect has a negative electrode.
  • a negative electrode will not be specifically limited if it acts as a negative electrode of a lithium ion secondary battery, A well-known thing can be used. It is preferable that a negative electrode contains 1 or more types chosen from the group which consists of a material which can occlude and discharge
  • a negative electrode active material containing an element capable of forming an alloy with lithium typified by a carbon negative electrode active material, a silicon alloy negative electrode active material, and a tin alloy negative electrode active material; Examples thereof include one or more selected from the group consisting of a silicon oxide negative electrode active material; a tin oxide negative electrode active material; and a lithium-containing compound represented by a lithium titanate negative electrode active material. These negative electrode active materials are used singly or in combination of two or more.
  • the carbon negative electrode active material is not particularly limited.
  • coke For example, pitch coke, needle coke, and petroleum coke are mentioned.
  • the fired body of the organic polymer compound is not particularly limited, and examples thereof include those obtained by firing and polymerizing a polymer material such as a phenol resin or a furan resin at an appropriate temperature.
  • the negative electrode active material containing an element capable of forming an alloy with lithium is not particularly limited, and may be, for example, a metal or a semimetal alone, an alloy or a compound, and one of these or It may have at least a part of two or more phases.
  • the “alloy” includes an alloy having one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements. Further, the alloy may contain a nonmetallic element as long as it has metal properties as a whole.
  • metal element and a metalloid element For example, titanium (Ti), tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn) , Antimony (Sb), bismuth (Bi), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), hafnium (Hf), zirconium (Zr) and yttrium (Y).
  • the metal elements and metalloid elements of Group 4 or 14 in the long-period periodic table are preferable, and titanium, silicon, and tin are particularly preferable.
  • a negative electrode is obtained as follows, for example. First, a negative electrode mixture containing a negative electrode mixture is prepared by dispersing, in a solvent, a negative electrode mixture prepared by adding a conductive additive or a binder to the negative electrode active material, if necessary. Next, this paste is applied to a negative electrode current collector and dried to form a negative electrode mixture layer, which is pressurized as necessary to adjust the thickness, whereby a negative electrode can be produced.
  • the negative electrode current collector is not particularly limited, and examples thereof include those made of metal foil such as copper foil, nickel foil, or stainless steel foil.
  • the conductive aid used as necessary is not particularly limited, and examples thereof include carbon black such as graphite, acetylene black and ketjen black, and carbon fiber.
  • the binder used as necessary in the production of the positive electrode and the negative electrode is not particularly limited.
  • the binder used as necessary in the production of the positive electrode and the negative electrode is not particularly limited.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyacrylic acid styrene butadiene rubber
  • fluorine fluorine. Rubber
  • the lithium ion secondary battery according to the second aspect preferably includes a separator between the positive electrode and the negative electrode from the viewpoint of providing safety such as prevention of short circuit between the positive and negative electrodes and shutdown.
  • a separator for example, the thing similar to what is equipped in a well-known lithium ion secondary battery can be used. Among these, an insulating thin film having high ion permeability and excellent mechanical strength is preferable.
  • the separator is not particularly limited, and examples thereof include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane.
  • a synthetic resin microporous membrane is preferable.
  • the porous film made from heat resistant resin such as the product made from a ceramic, the product made from polyolefin, the product made from polyester, the product made from polyamide, the product made from liquid crystal polyester, an aramid, is mentioned.
  • the synthetic resin microporous membrane is not particularly limited.
  • a polyolefin microporous membrane such as a microporous membrane containing polyethylene or polypropylene as a main component, or a microporous membrane containing both of these polyolefins may be used.
  • the separator may be a single microporous membrane or a laminate of a plurality of microporous membranes, or may be a laminate of two or more microporous membranes.
  • the lithium ion secondary battery according to the second embodiment is not particularly limited.
  • stacked the positive electrode, the separator, and the negative electrode is impregnated with the electrolyte solution of a 2nd aspect.
  • FIG. 1 is a schematic sectional view showing an example of a lithium ion secondary battery in the second embodiment.
  • a lithium ion secondary battery 100 shown in FIG. 1 includes a separator 110, a positive electrode 120 and a negative electrode 130 that sandwich the separator 110 from both sides, and a positive electrode current collector 140 that sandwiches a laminate thereof (arranged outside the positive electrode). And a negative electrode current collector 150 (arranged outside the negative electrode) and a battery outer case 160 for housing them.
  • a laminate in which the positive electrode 120, the separator 110, and the negative electrode 130 are stacked is impregnated with an electrolytic solution.
  • the electrolyte solution of the third aspect is A non-aqueous solvent, a lithium salt (A), and a compound (D) having a silicon atom represented by the following formula (10) and / or the following formula (11), Electrolyte solution whose content of the compound (D) which has the said silicon atom is 0.0010 mass% or more and 3.0 mass% or less.
  • SiFR 1 R 2 R 3 (10) (In the above formula (10), R 1 , R 2 , and R 3 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • SiF 2 R 4 R 5 (11) (In the above formula (11), R 4 and R 5 each independently represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms.)
  • nonaqueous solvent the lithium salt, the compound (D) having a silicon atom, the content thereof, and the like can be the same as in the first embodiment.
  • the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.
  • cyclic carbonate For example, 1 or more types chosen from the group which consists of ethylene carbonate and propylene carbonate is mentioned.
  • chain carbonate For example, 1 or more types chosen from the group which consists of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is mentioned.
  • the lithium salt (A) preferably contains LiPF 6 .
  • LiPF 6 the ionic conductivity of the electrolytic solution tends to be further improved.
  • the lithium salt (A) preferably contains a lithium salt (C) having a boron atom represented by the following formula (4).
  • a lithium salt (C) having a boron atom represented by the following formula (4) By including the lithium salt (C) having a boron atom represented by the following formula (4), the cycle life of the lithium ion secondary battery tends to be further improved.
  • each X independently represents a halogen atom selected from the group consisting of a fluorine atom, a chlorine atom, and a bromine atom
  • R 6 is each independently an optionally substituted carbon.
  • the lithium salt (A) preferably contains at least one selected from the group consisting of lithium difluorophosphate and lithium monofluorophosphate. By including one or more selected from the group consisting of lithium difluorophosphate and lithium monofluorophosphate, the cycle performance of the lithium ion secondary battery tends to be further improved.
  • the content of the compound (D) having a silicon atom is 0.0010% by mass to 3.0% by mass, preferably 0.0030% by mass to 2.0% by mass with respect to 100% by mass of the electrolytic solution. Or less, more preferably 0.0050% by mass or more and 2.0% by mass or less, further preferably 0.010% by mass or more and 1.0% by mass or less, and particularly preferably 0.020% by mass or more and 2% or less. 0.0 mass% or less.
  • a good cycle life can be obtained in the lithium ion secondary battery.
  • the swelling of a lithium ion secondary battery can be suppressed more because content of the compound (D) which has a silicon atom is 3.0 mass% or less.
  • the compound (D) which has a silicon atom should just be contained in electrolyte solution, may be added at the time of electrolyte solution preparation, and may be produced
  • the content of the compound (D) having a silicon atom in the electrolytic solution can be confirmed by NMR measurement such as 1 H-NMR and 19 F-NMR.
  • the content of the compound (D) having a silicon atom in the electrolytic solution in the lithium ion secondary battery can be confirmed by NMR measurement such as 1 H-NMR, 19 F-NMR, as described above. .
  • a compound (E) contains the compound represented by following formula (13) and / or following formula (14).
  • M represents a phosphorus atom or a boron atom
  • n is 0 or 1 when M is a phosphorus atom
  • n is 0 when M is a boron atom
  • R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms
  • R 6 and R 7 each independently represents an OH group, an OLi group, or an optionally substituted carbon.
  • An alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms that may be substituted, a siloxy group having 3 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, and an aryloxy group having 6 to 15 carbon atoms A group selected from the group consisting of: (In the above formula (14), R 3 , R 4 , and R 5 each independently represents an optionally substituted organic group having 1 to 10 carbon atoms, and R 8 is an optionally substituted carbon. The organic group of the number 1 to 20 is shown.)
  • the content of the compound (E) is preferably 0.010% by mass to 10% by mass, more preferably 0.020% by mass to 10% by mass, with respect to 100% by mass of the electrolytic solution. Preferably it is 0.050 mass% or more and 8.0 mass% or less, More preferably, it is 0.10 mass% or more and 5.0 mass% or less, More preferably, it is 0.20 mass% or more and 4.0 mass%. % Or less.
  • the content of the compound (E) is 0.010% by mass or more, the cycle life of the lithium ion secondary battery tends to be further improved. Moreover, it exists in the tendency for battery output to improve more because content of a compound (E) is 10 mass% or less.
  • the content of these compounds (E) in the electrolytic solution can be confirmed by NMR measurement. Moreover, content of the compound (E) in the electrolyte solution in a lithium ion secondary battery can also be confirmed by NMR measurement similarly to the above.
  • the electrolyte solution according to the third aspect is suitably used as an electrolyte solution for non-aqueous energy storage devices.
  • the lithium ion secondary battery of the fourth aspect (hereinafter also simply referred to as “battery”)
  • a positive electrode comprising a positive electrode active material having a discharge capacity of 10 mAh / g or more at a potential of 4.4 V (vsLi / Li + ) or more;
  • a negative electrode comprising a negative electrode active material;
  • an electrolytic solution according to a third aspect.
  • the positive electrode, the negative electrode, and the separator used as necessary can be the same as in the second embodiment.
  • the battery of the fourth aspect includes a positive electrode containing a positive electrode active material having a discharge capacity of 10 mAh / g or higher at a potential of 4.4 V (vsLi / Li + ) or higher from the viewpoint of realizing a higher voltage. Even when such a positive electrode is provided, the battery of the second aspect is useful in that it operates at a high voltage and can improve the recycling life.
  • the discharge capacity of the positive electrode active material used in the fourth embodiment is 10 mAh / g or more, preferably 15 mAh / g or more, more preferably 20 mAh / g or more, at a potential of 4.4 V (vsLi / Li + ) or more. It is. When the discharge capacity of the positive electrode active material is within the above range, a high energy density can be achieved by driving at a high voltage.
  • the upper limit of the discharge capacity of the positive electrode active material at a potential of 4.4 V (vsLi / Li + ) or higher is not particularly limited, but is preferably 400 mAh / g or less.
  • the discharge capacity of the positive electrode active material can be measured by the method described in the examples.
  • the lithium-based positive electrode potential at the time of full charge of the lithium ion secondary battery according to the fourth aspect is preferably 4.4 V (vsLi / Li + ) or more, more preferably 4.45 V (vsLi / Li + ) or more. And more preferably 4.5 V (vsLi / Li + ) or more.
  • the positive electrode potential at the time of full charge is 4.4 V (vsLi / Li + ) or more
  • the charge / discharge capacity of the positive electrode active material of the lithium ion secondary battery tends to be efficiently utilized.
  • the positive electrode potential at full charge is 4.4 V (vsLi / Li + ) or more, the energy density of the lithium ion secondary battery tends to be further improved.
  • the positive electrode potential based on lithium at the time of full charge can be controlled by controlling the voltage of the battery at the time of full charge.
  • the upper limit of the positive electrode potential at the time of full charge is not particularly limited, but is preferably 5.2 V (vsLi / Li + ) or less.
  • the oxide represented by following formula (5), the oxide represented by following formula (6), the complex oxide represented by following formula (7), 1 or more types chosen from the group which consists of a compound represented by following formula (8) and a compound represented by following formula (9) are preferable.
  • the structural stability of the positive electrode active material tends to be further improved.
  • LiMn 2-x Ma x O 4 (5) (In the above formula (5), Ma represents one or more selected from the group consisting of transition metals, and x is 0.2 ⁇ x ⁇ 0.7.) LiMn 1-u Me u O 2 (6) (In the above formula (6), Me represents one or more selected from the group consisting of transition metals excluding Mn, and u is 0.1 ⁇ u ⁇ 0.9.) zLi 2 McO 3- (1-z) LiMdO 2 (7) (In the above formula (7), Mc and Md each independently represent one or more selected from the group consisting of transition metals, and z is 0.1 ⁇ z ⁇ 0.9.) LiMb 1-y Fe y PO 4 (8) (In the above formula (8), Mb represents one or more selected from the group consisting of Mn and Co, and y is 0 ⁇ y ⁇ 0.9.) Li 2 MfPO 4 F (9) (In the above formula (9), Mf represents one or more selected from the group consisting
  • the electrolytic solutions of the first and third embodiments may be prepared to have a predetermined composition by mixing each component by a known technique, and prepared to have a predetermined composition by reaction in the electrolytic solution. May be.
  • the case of adjusting by reaction in the electrolytic solution specifically means that the electrolytic solutions of the first aspect and the third aspect are adjusted by the reaction in the battery.
  • the lithium ion secondary battery of the second and fourth aspects can be produced by a known method using the above-described electrolytic solution, positive electrode, negative electrode and, if necessary, a separator.
  • the laminate is formed in a battery case (exterior), and the electrolyte solution of the first aspect or the third aspect is injected into the case.
  • a lithium ion secondary battery can be produced by immersing the laminate in the electrolyte and sealing it.
  • the shape of the lithium ion secondary battery in the second aspect and the fourth aspect is not particularly limited, and for example, a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, and a laminated shape are suitably employed. Is done.
  • Example 1 ⁇ Synthesis of positive electrode active material> (Synthesis of LiNi 0.5 Mn 1.5 O 4 ) Nickel sulfate and manganese sulfate in an amount of 1: 3 as the molar ratio of the transition metal element were dissolved in water to prepare a nickel-manganese mixed aqueous solution so that the total metal ion concentration was 2 mol / L. Next, this nickel-manganese mixed aqueous solution was dropped into 1650 mL of a 2 mol / L sodium carbonate aqueous solution heated to 70 ° C. at an addition rate of 12.5 mL / min for 120 minutes.
  • nickel manganese compound During dropping, air with a flow rate of 200 mL / min was bubbled into the aqueous solution while stirring. Thereby, a precipitated substance was generated, and the obtained precipitated substance was sufficiently washed with distilled water and dried to obtain a nickel manganese compound.
  • the obtained nickel-manganese compound and lithium carbonate having a particle size of 2 ⁇ m were weighed so that the molar ratio of lithium: nickel: manganese was 1: 0.5: 1.5, and obtained after dry-mixing for 1 hour.
  • the obtained mixture was baked at 1000 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material represented by LiNi 0.5 Mn 1.5 O 4 .
  • This slurry-like solution was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, and the solvent was dried and removed, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a positive electrode.
  • the positive electrode and metal Li obtained above were used as a negative electrode, and a solution containing 1 mol / L of LiPF 6 salt in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed in an electrolyte solution at a volume ratio of 1: 2 was used.
  • This slurry-like solution was applied to one side of a copper foil having a thickness of 18 ⁇ m, and the solvent was removed by drying, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a negative electrode.
  • the obtained lithium ion secondary battery is housed in a thermostatic chamber set at 25 ° C. (trade name “PLM-73S”, manufactured by Futaba Kagaku Co., Ltd.), and charged / discharge device (manufactured by Asuka Electronics Co., Ltd., product name “ACD”). ⁇ 01 ”) and allowed to stand for 20 hours.
  • the battery was then charged with a constant current of 0.2 C, reached 4.8 V, charged for 8 hours with a constant voltage of 4.8 V, and then discharged to 3.0 V with a constant current of 0.2 C. .
  • the battery was charged to 4.8 V with a constant current of 1.0 C and discharged to 3.0 V with a constant current of 1.0 C in a thermostat set to 50 ° C.
  • This series of charging / discharging was made into 1 cycle, and 29 cycles charging / discharging was repeated, and 30 cycles charging / discharging was performed in total.
  • the discharge capacity per mass of the positive electrode active material in the first cycle and 30th cycle was confirmed.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolytic solution A is as high as 102 mAh / g
  • the discharge capacity at the 30th cycle is as high as 80 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 78%.
  • the positive electrode was taken out, the battery was assembled again using metallic lithium as the counter electrode, and the positive electrode When the potential was measured, the positive electrode potential based on lithium at full charge was 4.85 V (vsLi / Li + ).
  • the content of O P (OSi (CH 3 ) 3 ) 2 (OPF 5 Li) in the electrolytic solution B was 0.5% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution B was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte B is as high as 107 mAh / g
  • the discharge capacity at the 30th cycle is as high as 89 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 83%.
  • the content of O ⁇ P (OSi (CH 3 ) 3 ) 2 (OPF 5 Li) in the electrolytic solution C was 1.0% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution C was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte C is as high as 110 mAh / g
  • the discharge capacity at the 30th cycle is as high as 88 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 80%.
  • the content of O P (OSi (CH 3 ) 3 ) 2 (OPF 5 Li) in the electrolytic solution D was 4.0% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution D was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte C is as high as 100 mAh / g
  • the discharge capacity at the 30th cycle is as high as 81 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 81%.
  • the obtained white solid was identified by NMR (JNM-GSX400G, manufactured by JEOL Ltd.).
  • a white solid was dissolved in an EC / EMC mixed solvent and charged into an NMR inner tube, and NMR was measured using a deuterated chloroform solvent in the outer tube. The chemical shift of the product is shown below.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution E was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte E is as high as 111 mAh / g
  • the discharge capacity at the 30th cycle is as high as 87 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 78%.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution F was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte F is as high as 114 mAh / g
  • the discharge capacity at the 30th cycle is as high as 95 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 83%.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution G was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte G is as high as 109 mAh / g
  • the discharge capacity at the 30th cycle is as high as 91 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 84%.
  • the content of O P (OSi (CH 3 ) 3 ) 2 (OPF 5 Li) in the electrolytic solution H is 0.5% by mass, and the content of lithium difluorophosphate is 0.3% by mass, The content of LiB (C 2 O 4 ) 2 was 0.5% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution H was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolytic solution H is as high as 115 mAh / g
  • the discharge capacity at the 30th cycle is as high as 97 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 84%.
  • An electrolyte solution I was a solution in which 1 mol / L of LiPF 6 salt was contained in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2.
  • the content of LiPF 6 in the electrolytic solution I was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution I was evaluated.
  • the discharge capacity of the first cycle of the lithium ion secondary battery including the electrolytic solution I is 96 mAh / g
  • the discharge capacity of the 30th cycle is 66 mAh / g
  • the discharge capacity of the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was 69%.
  • Example 9 ⁇ Preparation of positive electrode> LiNi 1/3 Mn 1/3 Co 1/3 O 2 (manufactured by Nippon Kagaku Kogyo Co., Ltd.) as a positive electrode active material, acetylene black powder (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive additive, and a polyvinylidene fluoride solution as a binder (Manufactured by Kureha) at a solid content mass ratio of 90: 6: 4, N-methyl-2-pyrrolidone as a dispersion solvent was added to a solid content of 40% by mass, and further mixed. A slurry solution was prepared.
  • This slurry-like solution was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, and the solvent was removed by drying, followed by rolling with a roll press to obtain a positive electrode.
  • the rolled product was punched into a disk shape having a diameter of 16 mm to obtain a positive electrode.
  • the positive electrode and metal Li obtained above were used as a negative electrode, and a solution containing 1 mol / L of LiPF 6 salt in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed in an electrolyte solution at a volume ratio of 1: 2 was used.
  • This slurry-like solution was applied to one side of a copper foil having a thickness of 18 ⁇ m, and the solvent was removed by drying, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a negative electrode.
  • the obtained lithium ion secondary battery is housed in a thermostatic chamber set at 25 ° C. (trade name “PLM-73S”, manufactured by Futaba Kagaku Co., Ltd.), and charged / discharge device (manufactured by Asuka Electronics Co., Ltd., product name “ACD”). ⁇ 01 ”) and allowed to stand for 20 hours. Next, the battery was charged with a constant current of 0.2 C, reached 4.4 V, charged with a constant voltage of 4.4 V for 8 hours, and then discharged to 3.0 V with a constant current of 0.2 C.
  • the battery was charged to 4.4 V with a constant current of 1.0 C and discharged to 3.0 V with a constant current of 1.0 C in a thermostatic chamber set to 50 ° C.
  • This series of charging / discharging was made into 1 cycle, and 99 cycles charging / discharging was repeated, and the cycle charging / discharging of 100 cycles was performed in total.
  • the discharge capacity per mass of the positive electrode active material in the first cycle and the 100th cycle was confirmed.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolytic solution A is as high as 158 mAh / g
  • the discharge capacity at the 100th cycle is as high as 106 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 67%.
  • the positive electrode was taken out, the battery was assembled again using metallic lithium as the counter electrode, and the positive electrode When the potential was measured, the positive electrode potential based on lithium at the time of full charge was 4.45 V (vsLi / Li + ).
  • Example 10 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution B obtained in Example 2 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity of the first cycle of the lithium ion secondary battery including the electrolytic solution B is as high as 157 mAh / g, the discharge capacity of the 100th cycle is as high as 116 mAh / g, and the discharge capacity of the 100th cycle is 1 cycle. The discharge capacity retention ratio divided by the eye discharge capacity was as high as 74%.
  • Example 11 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution F obtained in Example 6 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte F is as high as 161 mAh / g, the discharge capacity at the 100th cycle is as high as 123 mAh / g, and the discharge capacity at the 100th cycle is 1 cycle. The discharge capacity retention ratio divided by the eye discharge capacity was as high as 76%.
  • Example 12 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution G obtained in Example 7 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte G is as high as 159 mAh / g, the discharge capacity at the 100th cycle is as high as 119 mAh / g, and the discharge capacity at the 100th cycle is 1 cycle. The discharge capacity retention rate divided by the eye discharge capacity was as high as 75%.
  • Example 13 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution H obtained in Example 8 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolytic solution H is as high as 161 mAh / g, the discharge capacity at the 100th cycle is as high as 127 mAh / g, and the discharge capacity at the 100th cycle is 1 cycle. The discharge capacity retention ratio divided by the eye discharge capacity was as high as 79%.
  • Example 14 To 9.95 g of a solution obtained by mixing 1 mol / L of LiPF 6 salt (LBG00069, manufactured by Kishida Chemical Co., Ltd.) into a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2, FSi (CH 3 ) 3 ( An electrolytic solution J was obtained by adding 0.05 g of 364533) manufactured by Aldrich. The content of FSi (CH 3 ) 3 in the electrolytic solution J was 0.5% by mass, and the content of LiPF 6 was 13% by mass.
  • LiPF 6 salt LiPF 6 salt
  • the battery performance of the lithium ion secondary battery including the electrolytic solution J was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte J is as high as 104 mAh / g
  • the discharge capacity at the 30th cycle is as high as 82 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 79%.
  • the positive electrode was taken out, the battery was assembled again using metallic lithium as the counter electrode, and the positive electrode When the potential was measured, the positive electrode potential based on lithium at full charge was 4.85 V (vsLi / Li + ).
  • Example 15 An electrolyte solution containing 0.01 g of FSi (CH 3 ) 3 in 9.99 g of a solution containing 1 mol / L of LiPF 6 salt in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2 K was obtained.
  • the content of FSi (CH 3 ) 3 in the electrolytic solution K was 0.1% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution K was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte K is as high as 105 mAh / g
  • the discharge capacity at the 30th cycle is as high as 84 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 80%.
  • Lithium bisoxalate borate (Rock) represented by formula (4) was added to 9.89 g of a solution obtained by adding 1 mol / L of LiPF 6 salt to a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2.
  • the electrolyte solution L was obtained by containing 0.1 g of “LiBOB” manufactured by Wood Co., Ltd. and 0.01 g of FSi (CH 3 ) 3 .
  • the content of LiBOB in the electrolytic solution L was 1% by mass, the content of FSi (CH 3 ) 3 was 0.1% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution L was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte L is as high as 115 mAh / g
  • the discharge capacity at the 30th cycle is as high as 97 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 84%.
  • Example 17 To 9.96 g of a solution obtained by adding 1 mol / L of LiPF 6 salt to a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2, 0.03 g of lithium difluorophosphate (LiPO 2 F 2 ) , FSi (CH 3 ) 3 was added in an amount of 0.01 g to obtain an electrolytic solution M.
  • the content of lithium difluorophosphate in the electrolyte M was 0.3% by mass
  • the content of FSi (CH 3 ) 3 was 0.1% by mass
  • the content of LiPF 6 was 13% by mass. It was.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution M was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte M is as high as 108 mAh / g
  • the discharge capacity at the 30th cycle is as high as 85 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 79%.
  • Example 18 To 9.86 g of a solution obtained by adding 1 mol / L of LiPF 6 salt to a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2, 0.1 g of LiBOB and 0.03 g of lithium difluorophosphate were obtained. , FSi (CH 3 ) 3 was added in an amount of 0.01 g to obtain an electrolytic solution N.
  • the content of LiBOB in the electrolytic solution N is 1% by mass
  • the content of lithium difluorophosphate is 0.3% by mass
  • the content of FSi (CH 3 ) 3 is 0.1% by mass
  • the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution N was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte N is as high as 113 mAh / g
  • the discharge capacity at the 30th cycle is as high as 99 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 88%.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution O was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte O is as high as 110 mAh / g
  • the discharge capacity at the 30th cycle is as high as 91 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 83%.
  • the concentration of O P (OSi (CH 3 ) 3 ) 3 in the electrolytic solution P is 1% by mass, the content of FSi (CH 3 ) 3 is 0.3% by mass, and the content of LiPF 6 is It was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution P was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte P is as high as 110 mAh / g
  • the discharge capacity at the 30th cycle is as high as 90 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 82%.
  • Example 21 9.89 g of a solution obtained by adding 1 mol / L of LiPF 6 salt to a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2 is added to 0.1 g of bis (trimethylsilyl) adipate, and FSi (
  • the electrolyte solution Q was obtained by containing 0.01 g of CH 3 ) 3 .
  • the concentration of bis (trimethylsilyl) adipate in the electrolytic solution Q was 1% by mass, the content of FSi (CH 3 ) 3 was 0.1% by mass, and the content of LiPF 6 was 13% by mass. .
  • the battery performance of the lithium ion secondary battery including the electrolytic solution Q was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte Q is as high as 112 mAh / g
  • the discharge capacity at the 30th cycle is as high as 90 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 80%.
  • the concentration of O P (OSi (CH 3 ) 3 ) 3 in the electrolytic solution R is 1% by mass, the concentration of LiBOB is 0.5% by mass, and the content of FSi (CH 3 ) 3 is 0.2%.
  • the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution R was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte R is as high as 115 mAh / g
  • the discharge capacity at the 30th cycle is as high as 101 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the eye discharge capacity was as high as 88%.
  • O P (OSi (CH 3 ) 3 ) 3 was added to 9.9 g of a solution containing 1 mol / L of LiPF 6 salt in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2. 1 g of electrolyte solution S was obtained. The concentration of O ⁇ P (OSi (CH 3 ) 3 ) 3 in the electrolytic solution S was 1% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution S was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte S is 104 mAh / g
  • the discharge capacity at the 30th cycle is 79 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention ratio divided by the discharge capacity of the eyes was 76%.
  • Example 23 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution J obtained in Example 14 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity of the first cycle of the lithium ion secondary battery including the electrolytic solution J is 157 mAh / g, the discharge capacity of the 100th cycle is as high as 109 mAh / g, and the discharge capacity of the 100th cycle is 1 cycle. The discharge capacity retention rate divided by the eye discharge capacity was as high as 69%.
  • the positive electrode was taken out, the battery was assembled again using metallic lithium as the counter electrode, and the positive electrode When the potential was measured, the positive electrode potential based on lithium at the time of full charge was 4.45 V (vsLi / Li + ).
  • Example 24 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution K obtained in Example 15 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity of the first cycle of the lithium ion secondary battery including the electrolytic solution B is as high as 165 mAh / g, the discharge capacity of the 100th cycle is as high as 126 mAh / g, and the discharge capacity of the 30th cycle is 1 cycle. The discharge capacity retention ratio divided by the eye discharge capacity was as high as 76%.
  • Example 25 In the same manner as in Example 9, a lithium ion secondary battery was produced using the electrolytic solution N obtained in Example 18 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte N is as high as 162 mAh / g, the discharge capacity at the 100th cycle is as high as 128 mAh / g, and the discharge capacity at the 30th cycle is 1 cycle. The discharge capacity retention ratio divided by the eye discharge capacity was as high as 79%.
  • the electrolyte solution T was obtained by adding 05 g and 0.01 g of FSi (CH 3 ) 3 .
  • the battery performance of the lithium ion secondary battery including the electrolytic solution T was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte T is as high as 162 mAh / g
  • the discharge capacity at the 30th cycle is as high as 129 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 80%.
  • the electrolyte solution U was obtained by adding 05 g, 0.05 g LiBOB, and 0.01 g FSi (CH 3 ) 3 .
  • the concentration of O P (OSi (CH 3 ) 3 ) 3 in the electrolyte U is 0.5% by mass, the concentration of LiBOB is 0.5% by mass, and the content of FSi (CH 3 ) 3 is The content of LiPF 6 was 0.1% by mass, and the content of LiPF 6 was 13% by mass.
  • the battery performance of the lithium ion secondary battery including the electrolytic solution U was evaluated.
  • the discharge capacity at the first cycle of the lithium ion secondary battery including the electrolyte U is as high as 161 mAh / g
  • the discharge capacity at the 30th cycle is as high as 131 mAh / g
  • the discharge capacity at the 30th cycle is 1 cycle.
  • the discharge capacity retention rate divided by the eye discharge capacity was as high as 81%.
  • Example 5 In the same manner as in Example 9, a lithium ion secondary battery was prepared using the electrolytic solution I used in Comparative Example 1 as the electrolytic solution, and the battery performance was evaluated. As a result, the discharge capacity of the first cycle of the lithium ion secondary battery including the electrolytic solution I is 157 mAh / g, the discharge capacity of the 100th cycle is 96 mAh / g, and the discharge capacity of the 100th cycle is 1 cycle. The discharge capacity retention rate divided by the eye discharge capacity was 61%.
  • the electrolyte solution for non-aqueous electricity storage devices of the present invention and a lithium ion secondary battery using the same have industrial applicability to various consumer power supplies and automotive power supplies.
  • SYMBOLS 100 Lithium ion secondary battery, 110 ... Separator, 120 ... Positive electrode, 130 ... Negative electrode, 140 ... Positive electrode collector, 150 ... Negative electrode collector, 160 ... Battery exterior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 非水溶媒と、 リチウム塩(A)と、下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物からなる群より選ばれる一種以上の化合物(B)と、を含有する、電解液。

Description

電解液及びリチウムイオン二次電池
 本発明は、電解液及び該電解液を用いたリチウムイオン二次電池に関する。
 近年の電子技術の発展や環境技術への関心の高まりに伴い、様々な電気化学デバイスが用いられている。特に、省エネルギー化への要請が多くあり、それに貢献できるものへの期待はますます高くなっている。蓄電デバイスの代表例であるリチウムイオン二次電池は、従来、主として携帯機器用充電池として使用されていたが、近年ではハイブリッド自動車及び電気自動車用電池としての使用が期待されている。
 従来の4V前後の電圧で作動するリチウムイオン二次電池では、カーボネート系溶媒を主成分とした非水溶媒に、リチウム塩を溶解した非水電解液が広く用いられている(例えば、特許文献1参照。)。このカーボネート系溶媒を含む電解液の特徴は、4V前後の電圧において、耐酸化性と耐還元性とのバランスが良く、かつ、リチウムイオンの伝導性に優れる点である。
 更に、リチウムイオン二次電池にはより一層高いエネルギー密度が求められており、その高いエネルギー密度を達成するため、電池の高電圧化が検討されている。電池の高電圧化を達成するためには高電位で作動する正極を用いる必要があり、具体的には、4.4V(vsLi/Li)以上で作動する種々の正極活物質が提案されている(例えば、特許文献2参照。)。
特開平7-006786号公報 特表2000-515672号公報
 ところが、4.4V(vsLi/Li)以上の高電位で作動する正極活物質を含有する正極を備えたリチウムイオン二次電池、すなわち高電圧リチウムイオン二次電池においては、上記電解液に含まれるカーボネート系溶媒が正極表面にて酸化分解し、電池のサイクル寿命が低下するという課題が生ずる。かかるサイクル寿命の低下に対する解決策は示されておらず、上記高電圧のリチウムイオン二次電池のサイクル寿命を向上させる電解液及びそれを備えたリチウムイオン二次電池が望まれている。
 本発明は、かかる事情に鑑みてなされたものであり、高電圧で作動し、かつ、高いサイクル寿命を有するリチウムイオン二次電池、及び、そのようなリチウムイオン二次電池を与えることのできる非水蓄電デバイス用電解液を提供することを目的とする。
 本発明者らは上記目的を達成すべく鋭意検討した結果、非水溶媒と、リチウム塩と、特定の構造を有する化合物と、を含有する電解液であれば、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕
 非水溶媒と、
 リチウム塩(A)と、
 下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物からなる群より選ばれる一種以上の化合物(B)と、
 を含有する、電解液。
Figure JPOXMLDOC01-appb-C000009
(上記式(1)中、Xは、Li原子又は水素原子を示し、Mは、P原子又はB原子を示し、MがB原子のときnは0の整数を示し、MがP原子のときnは0又は1の整数を示し、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000010
(上記式(2)中、Xは、Li原子又は水素原子を示し、Rは、置換されていてもよい炭素数1から20の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000011
(上記式(3a)中、Rは、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示し、上記式(3b)中、Xは、Li原子又は水素原子を示す。)
〔2〕
 前記化合物(B)の含有量が、前記電解液100質量%に対して、0.010質量%以上10質量%以下である、前項〔1〕に記載の電解液。
〔3〕
 前記リチウム塩(A)が、下記式(4)で表されるホウ素原子を有するリチウム塩(C)、を含む、前項〔1〕又は〔2〕に記載の電解液。
Figure JPOXMLDOC01-appb-C000012
(上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
〔4〕
 前記リチウム塩(A)が、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムからなる群より選ばれる1種以上のリチウム塩を、含有する、前項〔1〕~〔3〕のいずれかに記載の電解液。
〔5〕
 前記非水溶媒が、環状カーボネート及び鎖状カーボネートを含有する、前項〔1〕~〔4〕のいずれか1項に記載の電解液。
〔6〕
 前記環状カーボネートが、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上を含み、
 前記鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上を含む、前項〔5〕に記載の電解液。
〔7〕
 正極活物質を含有する正極と、
 負極活物質を含有する負極と、
 前項〔1〕~〔6〕のいずれか1項に記載の電解液と、
 を備える、リチウムイオン二次電池。
〔8〕
 前記正極活物質が、4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する、前項〔7〕に記載のリチウムイオン二次電池。
〔9〕
 前記正極活物質が、式(5)で表される酸化物、式(6)で表される酸化物、式(7)で表される複合酸化物、式(8)で表される化合物、式(9)で表される化合物からなる群より選ばれる1種以上を含む、前項〔7〕又は〔8〕に記載のリチウムイオン二次電池。
 LiMn2-xMa           (5)
(上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
LiMn1-uMe            (6)
(上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
 zLiMcO-(1-z)LiMdO  (7)
(上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
 LiMb1-yFePO          (8)
(上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
 LiMfPOF             (9)
(上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
〔10〕
 満充電時におけるリチウム基準の正極電位が、4.4V(vsLi/Li)以上である、前項〔7〕~〔9〕のいずれか1項に記載のリチウムイオン二次電池。
〔11〕
 非水溶媒、リチウム塩(A)、並びに、下記式(10)及び/又は下記式(11)で表されるケイ素原子を有する化合物(D)、を含有し、
 前記ケイ素原子を有する化合物(D)の含有量が、0.0010質量%以上3.0質量%以下である、電解液。
   SiFR     (10)
(上記式(10)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
   SiF     (11)
(上記式(11)中、R及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
〔12〕
 スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸の水素原子の少なくとも1つが下記式(12)で表される置換基で置換された化合物(E)を含有する、前項〔11〕に記載の電解液。
Figure JPOXMLDOC01-appb-C000013
(上記式(12)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示す。)
〔13〕
 前記化合物(E)が、下記式(13)及び/又は下記式(14)で表される化合物を含む、前項〔12〕に記載の電解液。
Figure JPOXMLDOC01-appb-C000014
(上記式(13)中、Mは、リン原子又はホウ素原子を示し、Mがリン原子のときnは0又は1であり、Mがホウ素原子のときnは0であり、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000015
(上記式(14)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、Rは置換されていてもよい炭素数1から20の有機基を示す。)
〔14〕
 前記化合物(E)の含有量が、電解液100質量%に対して、0.010質量%以上10質量%以下である、前項〔12〕又は〔13〕に記載の電解液。
〔15〕
 前記リチウム塩(A)が、LiPFを含む、前項〔11〕~〔14〕のいずれか1項に記載の電解液。
〔16〕
 前記リチウム塩(A)が、ジフルオロリン酸リチウム塩及びモノフルオロリン酸リチウム塩からなる群より選ばれる1種以上を含む、前項〔11〕~〔15〕のいずれか1項に記載の電解液。
〔17〕
 前記リチウム塩(A)が、下記式(4)で表されるホウ素原子を有するリチウム塩(C)を含む、前項〔1〕~〔16〕のいずれか1項に記載の電解液。
Figure JPOXMLDOC01-appb-C000016
(上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
〔18〕
 前記非水溶媒が、環状カーボネートと、鎖状カーボネートと、を含有する、前項〔11〕~〔17〕のいずれか1項に記載の電解液。
〔19〕
 前記環状カーボネートが、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上を含み、
 前記鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上を含む、前項〔18〕に記載の電解液。
〔20〕
 4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する正極活物質を備える正極と、
 負極活物質を備える負極と、
 前項〔11〕~〔19〕のいずれか1項に記載の電解液と、を有する、
 リチウムイオン二次電池。
〔21〕
 満充電時におけるリチウム基準の正極電位が、4.4V(vsLi/Li)以上である、前項〔20〕に記載のリチウムイオン二次電池。
〔22〕
 前記正極活物質が、下記式(5)で表される酸化物、下記式(6)で表される酸化物、下記式(7)で表される複合酸化物、下記式(8)で表される化合物、及び下記式(9)で表される化合物からなる群より選ばれる1種以上を含む、前項〔20〕又は〔21〕に記載のリチウムイオン二次電池。
   LiMn2-xMa           (5)
(上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
   LiMn1-uMe           (6)
(上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
   zLiMcO-(1-z)LiMdO  (7)
(上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
   LiMb1-yFePO          (8)
(上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
   LiMfPOF             (9)
(上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
 本発明によれば、高電圧で作動し、かつ、高いサイクル寿命を有するリチウムイオン二次電池、及び、そのようなリチウムイオン二次電池を与えることのできる電解液を提供することができる。
本実施形態におけるリチウムイオン二次電池の一例を概略的に示す断面図である。
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
〔第1態様:電解液〕
 第1態様に係る電解液は、
 非水溶媒と、
 リチウム塩(A)と、
 下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物からなる群より選ばれる一種以上の化合物(B)と、
 を含有する。
Figure JPOXMLDOC01-appb-C000017
(上記式(1)中、Xは、Li原子又は水素原子を示し、Mは、P原子又はB原子を示し、MがB原子のときnは0の整数を示し、MがP原子のときnは0又は1の整数を示し、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000018
(上記式(2)中、Xは、Li原子又は水素原子を示し、Rは、置換されていてもよい炭素数1から20の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000019
(上記式(3a)中、Rは、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示し、上記式(3b)中、Xは、Li原子又は水素原子を示す。)
〔非水溶媒〕
 第1態様に係る電解液は、非水溶媒を含有する。非水溶媒としては、特に限定されないが、例えば、非プロトン性極性溶媒等が挙げられる。非プロトン性極性溶媒としては、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート及び4,5-ジフルオロエチレンカーボネートなどの環状カーボネート;γ-ブチロラクトン及びγ-バレロラクトンなどのラクトン;スルホランなどの環状スルホン;テトラヒドロフラン及びジオキサンなどの環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート及びメチルトリフルオロエチルカーボネートなどの鎖状カーボネート;アセトニトリルなどのニトリル;ジメチルエーテルなどの鎖状エーテル;プロピオン酸メチルなどの鎖状カルボン酸エステル;ジメトキシエタンなどの鎖状ジエーテルが挙げられる。
(カーボネート)
 非水溶媒としては、特に限定されないが、例えば、環状カーボネート、鎖状カーボネートなどのカーボネート系溶媒を用いることがより好ましい。また、カーボネート系溶媒として、環状カーボネートと鎖状カーボネートを組合せて用いることがさらに好ましい。このようなカーボネートを含むことにより、イオン伝導性により優れる傾向にある。
 (環状カーボネート)
 環状カーボネートとしては、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート、及び4,5-ジフルオロエチレンカーボネートが挙げられる。このなかでも、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上が好ましい。このような環状カーボネートを含むことにより、電解液のイオン伝導性により向上する傾向にある。
 (鎖状カーボネート)
 鎖状カーボネートとしては、特に限定されないが、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート及びメチルトリフルオロエチルカーボネートが挙げられる。このなかでも、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上が好ましい。このような鎖状カーボネートを含むことにより、電解液のイオン伝導性により向上する傾向にある。
 カーボネート系溶媒として、環状カーボネートと鎖状カーボネートを組合せて含む場合、環状カーボネートと鎖状カーボネートとの混合比は、体積比で、好ましくは1:10~5:1であり、より好ましくは1:5~3:1であり、さらに好ましくは1:5~1:1である。環状カーボネートと鎖状カーボネートとの混合比が上記範囲内であることにより、得られるリチウムイオン二次電池のイオン伝導性がより向上する傾向にある。
 カーボネート系溶媒を用いる場合、必要に応じて、アセトニトリル、スルホラン等の別の非水溶媒をさらに併用することができる。このような非水溶媒を用いることにより、リチウムイオン二次電池の電池物性がより改善する傾向にある。
 非水溶媒は1種を単独で又は2種以上を組み合わせて用いることができる。
〔リチウム塩(A)〕
 第1態様の電解液は、リチウム塩(A)を含有する。リチウム塩(A)の含有量は、電解液100質量%に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上であり、さらに好ましくは7.0質量%以上である。リチウム塩(A)の含有量が1.0質量%以上であることにより、リチウムイオン二次電池のイオン伝導性がより向上する傾向にある。また、リチウム塩(A)の含有量は、電解液100質量%に対して、好ましくは40質量%以下であり、より好ましくは35質量%以下であり、さらに好ましくは30質量%以下である。リチウム塩(A)の含有量が40質量%以下であることにより、リチウム塩(A)の低温における溶解性がより向上する傾向にある。リチウム塩(A)の電解液中の含有量は、19F-NMR、31P-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中のリチウム塩(A)の含有量も、上記と同様に、19F-NMR、31P-NMRなどのNMR測定により確認することができる。
 リチウム塩(A)としては、特に限定されないが、例えば、LiPF、LiClO、LiAsF、LiSiF、LiOSO2k+1〔kは1~8の整数〕、LiN(SO2k+1〔kは1~8の整数〕、LiPF(C2k+16-n[nは1~5の整数、kは1~8の整数〕、LiPF(C)、及びLiPF(Cが挙げられる。このなかでも、LiPF、LiOSO2k+1〔kは1~8の整数〕、LiN(SO2k+1〔kは1~8の整数〕、LiPF(C2k+16-n[nは1~5の整数、kは1~8の整数〕、LiPF(C)、及びLiPF(Cが好ましい。さらに、リチウム塩(A)は、LiPFを含むことがより好ましい。このようなリチウム塩(A)を用いることにより、リチウムイオン二次電池のイオン伝導性により優れる傾向にある。
 リチウム塩(A)は、上記リチウム塩に加えて、又は代えて、後述するホウ素原子を有するリチウム塩(C)、及び/又は、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムを含んでもよい。
〔ホウ素原子を有するリチウム塩(C)〕
 また、リチウム塩(A)は、式(3)で表されるホウ素原子を有するリチウム塩(C)を含有することが好ましい。このようなリチウム塩を含むことにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。この理由としては明らかではないが、化合物(B)とホウ素原子を有するリチウム塩(C)が協働して正極又は負極、或いは両方に作用し、リチウムイオン二次電池内での電解液の酸化分解を抑制するためと推察される。ホウ素原子を有するリチウム塩(C)は、イオン伝導性を担う電解質としての機能もあるが、主に、サイクル寿命を改善させる効果を目的とした添加剤として機能しうる。
Figure JPOXMLDOC01-appb-C000020
(上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
 式(4)で表されるホウ素原子を有するリチウム塩(C)において、Xはフッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、このなかでもフッ素原子を示すことが好ましい。Xがフッ素原子であることにより、リチウムイオン二次電池中におけるリチウム塩の化学的耐久性がより向上する傾向にある。
 また、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基;及びフェニル基などの芳香族炭化水素基;水素原子がフッ素原子に置換されたジフルオロメチレン基などのフッ素置換炭化水素基が挙げられる。なお、炭化水素基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)等が挙げられる。
 Rの炭素数は、1~10であり、好ましくは1~8であり、より好ましくは1~6である。炭素数が上記範囲内であることにより、非水溶媒との混和性により優れる傾向にある。
 Rの好ましい例としては、特に限定されないが、例えば、メチレン基、エチレン基、1-メチルエチレン基、プロピレン基、ブチレン基、1,2-ジメチルエチレン基、1,2-ジ(トリフルオロメチル)エチレン基、フルオロエチレン基などの脂肪族炭化水素基;フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基などの芳香族炭化水素基が挙げられる。上記のなかでも、メチレン基、エチレン基、1-メチルエチレン基、プロピレン基、1,2-ジメチルエチレン基、1,2-ジ(トリフルオロメチル)エチレン基、フルオロエチレン基がより好ましい。Rがこのような炭化水素基であることにより、リチウムイオン二次電池のイオン伝導性により優れる傾向にある。
 また、式(4)中、aは0又は1の整数を示し、aは0であることが好ましい。aは0であることにより、安定性により優れる傾向にある。aが0の場合、式(4)中の右側の構造はシュウ酸構造となる。また、式(4)中、nは0~2の整数を示す。
 リチウムイオン二次電池中での化学的耐久性の観点から、式(4)で表されるホウ素原子を有するリチウム塩(C)としては、以下の式(4-1)~式(4-7)で表される化合物が好ましい。また、このなかでも、式(4-1)で表される化合物、式(4-2)で表される化合物、及び式(4-3)で表される化合物がより好ましく、式(4-1)で表される化合物、及び式(4-2)で表される化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000021
 ホウ素原子を有するリチウム塩(C)の含有量は、電解液100質量%に対して、好ましくは0.010質量%以上10質量%以下であり、より好ましくは0.050質量%以上5.0質量%以下であり、さらに好ましくは0.10質量%以上5.0質量%以下であり、よりさらに好ましくは0.20質量%以上3.0質量%以下であり、さらにより好ましくは0.40質量%以上2.0質量%以下である。ホウ素原子を有するリチウム塩(C)の含有量が0.010質量%以上であることにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、ホウ素原子を有するリチウム塩(C)の含有量が10質量%以下であることにより、電池出力がより向上する傾向にある。また、上述のとおり、ホウ素原子を有するリチウム塩(C)は、主に、上記サイクル寿命を改善させる効果を目的とした添加剤として機能しうるという観点から、その電解液中の含有量が0.010質量%以上10質量%以下と少量であっても十分な効果を発揮し得る。ホウ素原子を有するリチウム塩(C)の電解液中の含有量は、11B-NMR、19F-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中のホウ素原子を有するリチウム塩(C)の含有量も、上記と同様に、11B-NMR、19F-NMRなどのNMR測定により確認することができる。
 また、リチウム塩(A)が、ホウ素原子を有するリチウム塩(C)及びホウ素原子を有しないリチウム塩を含む場合、ホウ素原子を有するリチウム塩(C)の含有量は、リチウム塩(A)の総量に対して、好ましくは0.50質量%以上50質量%以下であり、より好ましくは1.0質量%以上40質量%以下であり、さらに好ましくは2.0質量%以上30質量%以下であり、よりさらに好ましくは5.0質量%以上20質量%以下である。ホウ素原子を有するリチウム塩(C)の含有量がリチウム塩(A)の総量に対して0.50質量%以上であることにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、ホウ素原子を有するリチウム塩(C)の含有量がリチウム塩(A)の総量に対して50質量%以下であることにより、電池出力がより向上する傾向にある。リチウムイオン二次電池中の電解液中のホウ素原子を有するリチウム塩(C)の含有量も、上記と同様に、11B-NMR、19F-NMRなどのNMR測定により確認することができる。
(ジフルオロリン酸リチウム及びモノフルオロリン酸リチウム)
 リチウム塩(A)は、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムからなる群より選ばれる1種以上のリチウム塩(以下、化合物(F)ともいう。)を含有することが好ましい。このようなリチウム塩を含むことにより、リチウムイオン二次電池のサイクル性能がより向上する傾向にある。
 ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの含有量は、それぞれ、電解液100質量%に対して、好ましくは0.0010質量%以上3.0質量%以下であり、より好ましくは0.0050質量%以上2.0質量%以下であり、さらに好ましくは0.020質量%以上1.0質量%以下である。ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの含有量が0.0010質量%以上であることにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの含有量が3.0質量%以下であることにより、リチウムイオン二次電池のイオン電導性がより向上する傾向にある。ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの電解液中の含有量は、19F-NMR、31P-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中のジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの含有量も、上記と同様に、19F-NMR、31P-NMRなどのNMR測定により確認することができる。
 また、リチウム塩(A)が、化合物(F)、並びに、化合物(F)以外のリチウム塩を含む場合、化合物(F)の含有量は、リチウム塩(A)の総量に対して、好ましくは0.50質量%以上50質量%以下であり、より好ましくは1.0質量%以上40質量%以下であり、さらに好ましくは2.0質量%以上30質量%以下であり、よりさらに好ましくは5.0質量%以上20質量%以下である。化合物(F)の含有量がリチウム塩(A)の総量に対して0.50質量%以上であることにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、化合物(F)の含有量がリチウム塩(A)の総量に対して50質量%以下であることにより、リチウムイオン二次電池のイオン電導性がより向上する傾向にある。
〔化合物(B)〕
 第1態様に係る電解液は、下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物からなる群より選ばれる一種以上の化合物(B)を含有する。
Figure JPOXMLDOC01-appb-C000022
(上記式(1)中、Xは、Li原子又は水素原子を示し、Mは、P原子又はB原子を示し、MがB原子のときnは0の整数を示し、MがP原子のときnは0又は1の整数を示し、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000023
(上記式(2)中、Xは、Li原子又は水素原子を示し、Rは、置換されていてもよい炭素数1から20の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000024
(上記式(3a)中、Rは、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示し、上記式(3b)中、Xは、Li原子又は水素原子を示す。)
 ここで、化合物(B)の含有量は、電解液100質量%に対して、好ましくは0.010質量%以上10質量%以下であり、より好ましくは0.010質量%以上5.0質量%以下であり、さらに好ましくは0.010質量%以上5.0質量%以下であり、よりさらに好ましくは0.050質量%以上3.0質量%以下であり、さらにより好ましくは0.10質量%以上3.0質量%以下であり、特に好ましくは0.20質量%以上3.0質量%以下である。化合物(B)の含有量が0.010質量%以上であることにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、化合物(B)の含有量が5.0質量%以下であることにより、リチウムイオン二次電池の入出力性能がより向上する傾向にある。化合物(B)の電解液中の含有量は、H-NMR、13C-NMR、11B-NMR、19F-NMR、31P-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中の化合物(B)の含有量も、上記と同様に、H-NMR、13C-NMR、11B-NMR、19F-NMR、31P-NMRなどのNMR測定により確認することができる。
 また、化合物(B)は、電解液中に含有されていればよく、電解液調製時に添加してもよく、また電解液中で反応により生成させてもよい。
(式(1)で表される化合物(B))
 式(1)で表される化合物(B)において、XはLi原子又は水素原子を示す。このなかでも、Li原子が好ましい。Li原子であることにより、電池容量がより向上する傾向にある。また、MはP原子又はB原子を示し、MがB原子のときnは0であり、MがP原子のときnは0又は1の整数を示す。
 式(1)で表される化合物(B)において、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。
 置換されていてもよい炭素数1から10のアルキル基としては、炭素原子が直接M原子に結合した構造を示すものであれば特に限定されないが、例えば、脂肪族炭化水素基;及び水素原子がフッ素原子に置換されたジフルオロメチレン基又はトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。なお、アルキル基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R及びRのアルキル基の好ましい例としては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、アリル基(allyl)、プロピル基、ブチル基、ペンチル基、ヘキシル基、フルオロヘキシル基などの脂肪族アルキル基が挙げられる。このなかでも、メチル基、エチル基、アリル基(allyl)、プロピル基、ブチル基、ペンチル基、ヘキシル基、フルオロヘキシル基がより好ましい。R及びRとしてこのようなアルキル基を用いることにより、化学的安定性がより向上する傾向にある。
 アルキル基の炭素数は、1から10であり、好ましくは2から10であり、より好ましくは3から8である。炭素数が1以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 置換されていてもよい炭素数1から10のアルコキシ基としては、炭素原子が酸素原子を介してM原子に結合した構造を示すものであれば特に限定されないが、例えば、脂肪族炭化水素オキシ基;及び水素原子がフッ素原子に置換されたアルコキシ基中の水素原子がフッ素置換されたトリフルオロエチルオキシ基やヘキサフルオロイソプロピルオキシ基などのフッ素置換炭化水素オキシ基が挙げられる。なお、アルコキシ基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R及びRのアルコキシ基の好ましい例としては、特に限定されないが、例えば、メトキシ基、エトキシ基、ビニロキシ基、アリロキシ基(allyloxy)、プロポキシ基、ブトキシ基、シアノヒドロキシ基、フルオロエトキシ基、フルオロプロポキシ基などの脂肪族アルコキシ基が挙げられる。このなかでも、メトキシ基、エトキシ基、ビニロキシ基、アリロキシ基(allyloxy)、プロポキシ基、ブトキシ基、シアノヒドロキシ基、フルオロエトキシ基、フルオロプロポキシ基がより好ましい。R及びRとしてこのようなアルコキシ基を用いることにより、化学的安定性により優れる傾向にある。
 アルコキシ基の炭素数は、1以上10以下であり、好ましくは1以上8以下であり、より好ましくは2以上8以下である。炭素数が1以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 置換されていてもよい炭素数6から10のアリール基としては、特に限定されないが、例えば、フェニル基又はベンジル基などの芳香族炭化水素基が挙げられる。なお、アリール基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R及びRのアリール基の好ましい例としては、特に限定されないが、例えば、ベンジル基、フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基、ニトリル置換ベンジル基、フルオロ化ベンジル基などの芳香族アルキル基が挙げられる。このなかでも、ベンジル基、フェニル基がより好ましい。R及びRとしてこのようなアリール基を用いることにより、化学的安定性がより向上する傾向にある。
 アリール基の炭素数は、6から10であり、好ましくは6から8である。炭素数が6以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 置換されていてもよい炭素数6から10のアリールオキシ基としては、特に限定されないが、例えば、フェノキシ基、ベンジルアルコキシ基などの芳香族炭化水素オキシ基が挙げられる。なお、アリールオキシ基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R及びRのアリールオキシ基の好ましい例としては、特に限定されないが、例えば、フェノキシ基、ベンジルアルコキシ基、ニトリル置換フェノキシ基、フルオロ化フェノキシ基、ニトリル置換ベンジルアルコキシ基、フルオロ化ベンジルアルコキシ基などの芳香族アルコキシ基が挙げられる。このなかでも、フェノキシ基、ベンジルアルコキシ基、がより好ましい。R及びRとしてこのようなアリールオキシ基を用いることにより、化学的安定性がより向上する傾向にある。
 アリールオキシ基の炭素数は、6から10であり、好ましくは6から8である。炭素数が6以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 炭素数3から10のシロキシ基としては、ケイ素原子が酸素原子を介してM原子に結合した構造を示すものであれば特に限定されないが、例えば、シロキシ基はSi-O-Si-といったシロキサン構造を含んでいてもよい。
 シロキシ基としては、特に限定されないが、例えば、化学的安定性の観点から、トリメチルシロキシ基、トリエチルシロキシ基、ジメチルエチルシロキシ基、ジエチルメチルシロキシ基などが好ましく挙げられる。このなかでも、より好ましくは、トリメチルシロキシ基である。
 シロキシ基の炭素数は、3以下10以下であり、好ましくは3以上8以下であり、より好ましくは3以上6以下である。シロキシ基の炭素数が1以上であることにより、電池性能がより向上する傾向にある。また、シロキシ基の炭素数が10以下であることにより、化学的安定性がより向上する傾向にある。
 また、シロキシ基中のケイ素数は特に制限されないが、好ましくは1以上4以下であり、より好ましくは1以上3以下であり、さらに好ましくは1以上2以下であり、よりさらに好ましくは1である。シロキシ基中のケイ素数が上記範囲内であることにより、化学的安定性及び電池性能がより向上する傾向にある。
 このなかでも、R及びRは、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基であることが好ましい。R及びRがこのような基であることにより、電解液への溶解性がより向上する傾向にある。また、化合物(A)のR及びRの少なくともいずれか1つが、置換されていてもよい炭素数1から10のアルコキシ基及び炭素数3から10のシロキシ基からなる群より選ばれる官能基であることがより好ましい。このような基を有することにより、化学的安定性及び電池性能がより向上する傾向にある。
 式(1)で表される化合物(B)としては、特に限定されないが、例えば、式(15)で表される化合物が好ましい。このような化合物を用いることにより、高電圧で作動し、かつ、より高いサイクル寿命を有するリチウムイオン二次電池を得ることができる。
Figure JPOXMLDOC01-appb-C000025
(上記式(15)中、Xは、Li原子もしくは水素原子を示し、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。)
(式(2)で表される化合物(B))
 式(2)で表される化合物(B)において、XはLi原子、もしくは水素原子を示す。このなかでも、Li原子が好ましい。XがLi原子であることにより、電池容量がより向上する傾向にある。
 式(2)で表される化合物(B)において、Rは置換されていてもよい炭素数1から20の炭化水素基を示す。炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基;フェニル基などの芳香族炭化水素基;及び炭化水素基中の水素原子がすべてフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。また、炭化水素基は必要に応じて、官能基を有していてもよい。官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 また、Rは、下記式(16)及び/又は下記式(17)で示すような構造を有することが好ましい。この場合、化合物(B)に基本骨格は、ジカルボン酸誘導体構造となる。このような構造を有することにより、電池性能がより優れる傾向にある。
Figure JPOXMLDOC01-appb-C000026
(式(16)中、Yは、Li原子又は水素原子を示し、Rは、置換されていてもよい炭素数1から19の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000027
(式(17)中、Rは、置換されていてもよい炭素数1から13の炭化水素基を示し、Rは、置換されていてもよい炭素数1から6の炭化水素基、又は、置換されもよい炭素数3から6のトリアルキルシリル基を示す。)
 式(16)中、Rとしては、特に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。Rがこのような官能基であることにより、化合物(A)の化学的安定性がより向上する傾向にある。
 式(17)中、Rとしては、特に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。Rがこのような官能基であることにより、化合物(A)の化学的安定性がより向上する傾向にある。
 式(17)中、Rとしては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、アリル基、トリメチルシリル基が挙げられる。Rがこのような官能基であることにより、化合物(A)の化学的安定性がより向上する傾向にある。
 Rの炭素数は、1から20であり、好ましくは1以上16以下であり、より好ましくは1以上14以下である。Rの炭素数が上記範囲内であることにより、化合物(B)の溶解性がより優れる傾向にある。
(式(3a)で表される構成単位と式(3b)で表される構成単位とを有する化合物)
 下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物としては、特に限定されないが、例えば、式(1)で表される化合物(MがPである場合)がポリマー化したものが挙げられる。
 下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物において、XはLi原子、もしくは水素原子を示す。このなかでも、Li原子が好ましい。XがLi原子であることにより、電池容量がより向上する傾向にある。
 式(3a)で表される構成単位と式(3b)で表される構成単位とを有する化合物(B)において、Rは、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。
 置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基としては、特に限定されないが、例えば、式(1)で例示したものと同様の基が挙げられる。
 式(3a)で表される構成単位と式(3b)で表される構成単位とを有する化合物(B)としては、特に限定されないが、例えば、式(18)で表される化合物、式(19)で表される化合物、及び式(20)で表される化合物のうち、-OTMS基の少なくとも一つが、-PFLi基で置換された化合物が好ましい。このような化合物を用いることにより、高電圧で作動し、かつ、より高いサイクル寿命を有するリチウムイオン二次電池を得ることができる。
Figure JPOXMLDOC01-appb-C000028
 なお、式(3a)で表される構成単位と式(3b)で表される構成単位とを有する化合物の有するリン酸原子の原子数は、好ましくは2~16であり、より好ましくは2~8であり、さらに好ましくは2~4である。リン酸原子の原子数が上記範囲内であることにより、高電圧で作動し、かつ、より高いサイクル寿命を有するリチウムイオン二次電池を得ることができる。
 上記の中でも、化合物(B)としては、特に限定されないが、例えば、以下の構造を有するものが好ましい。このような化合物を用いることにより、高電圧で作動し、かつ、より高いサイクル寿命を有するリチウムイオン二次電池を得ることができる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
〔ケイ素原子を有する化合物(D)〕
 第1態様で用いる電解液は、式(10)及び/又は式(11)で表されるケイ素原子を有する化合物(D)を含有することが好ましい。このようなケイ素原子を有する化合物(D)を含むことにより、サイクル寿命がより向上する傾向にある。
   SiFR     (10)
(上記式(10)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
   SiF     (11)
(上記式(11)中、R及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
 また、第1態様に係る電解液は、電解液中に、ケイ素原子を有する化合物(D)と、上記ホウ素原子を有するリチウム塩(C)と、を含むことにより、リチウムイオン二次電池のサイクル寿命を大幅に改善することができる。この理由としては明らかではないが、式(4)の構造を有するホウ素原子を有するリチウム塩(C)と、ケイ素原子を有する化合物(D)が正極又は負極、或いは両方に作用し、リチウムイオン二次電池内での電解液の酸化分解を抑制するためと推察される。式(4)の構造を有するホウ素原子を有するリチウム塩(C)はイオン伝導性を担う電解質としての機能もあるが、主に、上記サイクル寿命を改善させる効果を目的とした添加剤として機能するため、電解液中の含有量も0.01質量%以上10質量%以下と少量において十分な効果を発揮し得る。
 ここで、ケイ素原子を有する化合物(D)の含有量は、電解液100質量%に対して、好ましくは0.0010質量%以上3.0質量%以下であり、より好ましくは0.0030質量%以上2.0質量%以下であり、さらに好ましくは0.0050質量%以上2.0質量%以下であり、さらにより好ましくは0.010質量%以上1.0質量%以下であり、特に好ましくは0.020質量%以上2.0質量%以下である。ケイ素原子を有する化合物(D)の含有量が0.0010質量%以上であることにより、リチウムイオン二次電池において良好なサイクル寿命を得ることができる傾向にある。また、ケイ素原子を有する化合物(D)の含有量が3.0質量%以下であることにより、リチウムイオン二次電池の膨れがより抑制できる傾向にある。また、ケイ素原子を有する化合物(D)は、電解液中に含有していればよく、電解液調製時に添加してもよく、また電解液中で反応により生成させてもよい。ケイ素原子を有する化合物(D)の電解液中の含有量は、H-NMR、19F-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中のケイ素原子を有する化合物(D)の含有量も、上記と同様に、H-NMR、19F-NMRなどのNMR測定により確認することができる。
 式(10)で表されるケイ素原子を有する化合物(D)において、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。このような炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基;フェニル基などの芳香族炭化水素基;炭化水素基中の水素原子がすべてフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。また、炭化水素基は、必要に応じて、官能基を有してもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R、R、及びRの好ましい例としては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、1-メチルビニル基、プロピル基、ブチル基、フルオロメチル基などの脂肪族炭化水素基;ベンジル基、フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基などの芳香族炭化水素基が挙げられる。上記のなかでも、メチル基、エチル基、ビニル基、1-メチルビニル基、フルオロメチル基がより好ましい。R、R、及びRがこのような炭化水素基であることにより、化学的安定性により優れる傾向にある。
 R、R、及びRの炭化水素基の炭素数は、1~10であり、好ましくは1~8であり、より好ましくは1~6である。炭素数が上記範囲内であることにより、非水溶媒との混和性がより向上する傾向にある。
 式(10)で表されるケイ素を含有する化合物(D)としては、特に限定されないが、例えば、FSi(CH、FSi(C、FSi(CHCH、FSi(CHCHCH、FSi(CFが好ましく、FSi(CHがより好ましい。このような式(10)で表されるケイ素を含有する化合物(D)を用いることにより、リチウムイオン二次電池中での化学的耐久性がより向上する傾向にある。
 式(11)で表されるケイ素原子を有する化合物(D)において、R及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。このような炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基;フェニル基などの芳香族炭化水素基;炭化水素基中の水素原子がすべてフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。また、炭化水素基は、必要に応じて、官能基を有してもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 R及びRの好ましい例としては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、1-メチルビニル基、プロピル基、ブチル基、フルオロメチル基などの脂肪族炭化水素基;ベンジル基、フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基などの芳香族炭化水素基が挙げられる。このなかでも、メチル基、エチル基、ビニル基、1-メチルビニル基、フルオロメチル基がより好ましい。R及びRがこのような炭化水素基であることにより、化学的安定性により優れる傾向にある。
 R及びRの炭化水素基の炭素数は、1~10であり、好ましくは1~8であり、より好ましくは1~6である。
 式(11)で表されるケイ素を含有する化合物(D)としては、特に限定されないが、例えば、FSi(CHが好ましい。このような式(11)で表されるケイ素を含有する化合物(D)を用いることにより、リチウムイオン二次電池中での化学的耐久性がより向上する傾向にある。
〔化合物(E)〕
 第1態様に係る電解液は、スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸の水素原子の少なくとも1つが下記式(12)で表される構造で置換された化合物(E)を含有することが好ましい。このような化合物(E)を含むことにより、リチウムイオン二次電池のサイクル性能がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000031

(上記式(12)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示す。)
 なお、第1態様に係る電解液は、上記ケイ素原子を有する化合物(D)と、化合物(E)と、を含むことにより、サイクル寿命がより向上する傾向にある。
 リン原子を有するプロトン酸としては、分子内にリン原子を有し、かつプロトンとして解離しうる水素原子を有する化合物であれば特に限定されない。リン原子を有するプロトン酸は、分子内にフッ素原子、塩素原子等のハロゲン原子や、アルコキシ基、アルキル基等の有機基をはじめ、Si、B、O、N、等の異種原子を含有していてもよい。また、リン原子を有するプロトン酸は、ポリリン酸のように分子内にリン原子を複数個含有していてもよい。このようなリン原子を有するプロトン酸としては、特に限定されないが、例えば、リン酸、亜リン酸、ピロリン酸、ポリリン酸、ホスホン酸が好ましい。このなかでもリン酸、亜リン酸、ホスホン酸がより好ましい。このような化合物(E)を用いることにより、安定性により優れる傾向にある。これらのプロトン酸は置換されていてもよい。
 ホウ素原子を有するプロトン酸としては、分子内にホウ素原子を有し、かつプロトンとして解離しうる水素原子を有する化合物であれば特に限定されない。ホウ素原子を有するプロトン酸は、分子内にフッ素原子、塩素原子等のハロゲン原子や、アルコキシ基、アルキル基等の有機基をはじめ、Si、P、O、N、等の異種原子を含有していてもよい。また、ホウ素原子を有するプロトン酸は、分子内にホウ素原子を複数個含有していてもよい。このようなホウ素原子を有するプロトン酸としては、特に限定されないが、例えば、ホウ酸、ボロン酸、ボリン酸が好ましい。これらのプロトン酸は置換されていてもよい。
 スルホン酸としては、分子内に-SOH基(スルホン酸基)を有する化合物であれば特に限定されず、分子内に複数個のスルホン酸基を有していてもよい。また、第1態様においては、スルホン酸には硫酸(HOSOH)が含まれる。スルホン酸としては、特に限定されないが、例えば、メチルスルホン酸、エチルスルホン酸、プロピルスルホン酸、1,2エタンジスルホン酸、トリフルオロメチルスルホン酸、フェニルスルホン酸、ベンジルスルホン酸、硫酸などを好ましく挙げることができる。
 カルボン酸としては、分子内にCOH基(カルボン酸基)を有する化合物であれば特に限定されず、分子内に複数個のカルボン酸基を有していてもよい。カルボン酸としては特に限定されないが、例えば、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、吉草酸、アクリル酸、メタクリル酸、オレイン酸、リノール酸、リノレン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、マロン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、及びイタコン酸が挙げられる。このなかでも、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、マロン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、及びイタコン酸などのジカルボン酸が好ましく、アジピン酸、イタコン酸、コハク酸、イソフタル酸、及びテレフタル酸がより好ましい。
 化合物(E)は、スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸の水素原子の少なくとも1つが式(12)で表される構造で置換された化合物である。ここで、式(12)で表される構造において、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。
 R、R、及びRで示される炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基;フェニル基などの芳香族炭化水素基;及び炭化水素基中の水素原子がすべてフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。なお、炭化水素基は、必要に応じて、官能基を有していてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)等が挙げられる。
 R、R、及びRの好ましい例としては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、1-メチルビニル基、プロピル基、ブチル基、フルオロメチル基などの脂肪族炭化水素基;ベンジル基、フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基などの芳香族炭化水素基が挙げられる。上記のなかでも、化学的安定性の観点から、メチル基、エチル基、ビニル基、1-メチルビニル基、フルオロメチル基がより好ましい。また,2つのRが結合して環を形成していてもよい。環を形成するためには,例えば置換又は無置換で飽和又は不飽和のアルキレン基で置換される例が挙げられる。
 R、R、及びRの炭素数は、1~10であり、好ましくは1~8であり、より好ましくは1~6である。炭素数が上記範囲内であることにより、非水溶媒との混和性により優れる傾向にある。
 式(12)で表される構造としては、特に限定されないが、例えば、-Si(CH、-Si(C、-Si(CHCH、-Si(CHCHCH、-Si(CFが好ましく、-Si(CHがより好ましい。このような構造を有することにより、リチウムイオン二次電池中での化学的耐久性がより向上する傾向にある。
 スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸が水素原子を複数個有している場合には、少なくとも1つの水素原子が式(12)で表される構造で置換されていればよい。また、置換されていない残りの水素原子は、そのまま存在していてもよく、又は式(12)で表される構造以外の官能基で置換されていてもよい。そのような官能基としては、特に限定されないが、例えば、ハロゲン置換又は無置換の飽和又は不飽和の炭素数1~20の炭化水素基を好ましく挙げることができる。ハロゲン置換又は無置換の、飽和又は不飽和の炭化水素基としては、特に限定されないが、例えば、アルキル基、アルケニル基、アルキニル基、アリル基、ビニル基が挙げられる。また、2つの水素原子の置換基が結合して環を形成していてもよい。環を形成するためには、例えば置換又は無置換で飽和又は不飽和のアルキレン基で置換される例が挙げられる。
 化合物(E)としては、特に限定されないが、例えば、下記式(13)及び/又は下記式(14)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000032

(上記式(13)中、Mは、リン原子(以下、「P原子」ともいう。)又はホウ素原子(以下、「B原子」ともいう。)を示し、MがP原子のときnは0又は1であり、MがB素原子のときnは0であり、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000033
(上記式(14)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、Rは置換されていてもよい炭素数1から20の有機基を示す。)
 式(13)で表される化合物(E)において、Mは、P原子又はB原子を示し、MがP原子のときnは0または1の整数を示し、MがB原子のときnは0の整数を示す。すなわち、式(13)において、MがB原子でnが0のとき、化合物(E)は、ホウ酸構造となり、MがP原子でnが0のとき、化合物(E)は亜リン酸構造となり、MがP原子でnが1のとき化合物(E)はリン酸構造となる。化合物(E)を含有する電解液の安定性の観点から、MがP原子となる下記式(18)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000034
(上記式(18)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。)
 式(13)及び(18)で表される化合物(E)において、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。
 置換されてもよい炭素数1から10のアルキル基は、炭素原子が直接M原子に結合した構造を示すものである。アルキル基としては、特に限定されないが、例えば、脂肪族基、水素原子の少なくとも一部がフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。アルキル基は、必要に応じて、種々の官能基で置換されていてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)、フェニル基及びベンジル基等の芳香族基が挙げられる。
 R及びRで表されるアルキル基の好ましい例としては、特に限定されないが、例えば、メチル基、エチル基、ビニル基、アリル基(allyl)、プロピル基、ブチル基、ペンチル基、ヘキシル基、フルオロヘキシル基などの脂肪族アルキル基が挙げられる。このなかでも、化学的安定性の観点から、メチル基、エチル基、アリル基(allyl)、プロピル基、ブチル基、ペンチル基、ヘキシル基、フルオロヘキシル基がより好ましい。
 R及びRで表されるアルキル基の炭素数は、1以上10以下であり、好ましくは2以上10以下であり、より好ましくは3以上8以下である。炭素数が1以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 置換されてもよい炭素数1から10のアルコキシ基は、炭素原子が酸素原子を介してM原子に結合した構造を示すものである。アルコキシ基としては、特に限定されないが、例えば、脂肪族基を有するアルコキシ基、アルコキシ基中の水素原子がフッ素置換されたトリフルオロエチルオキシ基やヘキサフルオロイソプロポキシ基などのフッ素置換アルコキシ基が挙げられる。アルコキシ基は、必要に応じて、種々の官能基で置換されていてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)、フェニル基及びベンジル基等の芳香族基が挙げられる。
 R及びRで表されるアルコキシ基の好ましい例としては、特に限定されないが、例えば、メトキシ基、エトキシ基、ビニロキシ基、アリロキシ基(allyloxy)、プロポキシ基、ブトキシ基、シアノヒドロキシ基、フルオロエトキシ基、フルオロプロポキシ基などの脂肪族アルコキシ基が挙げられる。なかでも化学的安定性の観点から、メトキシ基、エトキシ基、ビニロキシ基、アリロキシ基(allyloxy)、プロポキシ基、ブトキシ基、シアノヒドロキシ基、フルオロエトキシ基、フルオロプロポキシ基がより好ましい。
 R及びRで表されるアルコキシ基の炭素数は、1から10であり、好ましくは1以上8以下であり、より好ましくは2以上8以下である。炭素数が1以上であることにより、電池性能がより向上する傾向にある。また、炭素数が10以下であることにより、電解液との親和性がより向上する傾向にある。
 炭素数3から10のシロキシ基は、ケイ素原子が酸素原子を介してM原子に結合した構造を示すものである。シロキシ基は、Si-O-Si-といったシロキサン構造を含んでいてもよい。シロキシ基としては、特に限定されないが、例えば、化学的安定性の観点から、トリメチルシロキシ基、トリエチルシロキシ基、ジメチルエチルシロキシ基、ジエチルメチルシロキシ基などが好ましく挙げられる。より好ましくは、トリメチルシロキシ基である。
 シロキシ基の炭素数は、3以上10以下であり、好ましくは3以上8以下であり、より好ましくは3以上6以下である。シロキシ基の炭素数が3以上であることにより、電池性能がより向上する傾向にある。また、シロキシ基の炭素数が10以下であることにより、化学的安定性がより向上する傾向にある。
 また、シロキシ基中のケイ素数は、特に制限されないが、1以上4以下が好ましく、好ましくは1以上3以下であり、より好ましくは1以上2以下であり、さらに好ましくは1である。シロキシ基中のケイ素数が上記範囲内であることにより、化学的安定性及び電池性能がより向上する傾向にある。
 アリール基とは、芳香族環の炭素原子が直接M原子に結合した構造を示すものである。アリール基は、必要に応じて、種々の官能基で置換されていてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)、アルキル基、及びアルコキシ基等が挙げられる。
 アリール基の好ましい例としては特に限定されないが、例えば、ベンジル基、フェニル基、ニトリル置換フェニル基、フルオロ化フェニル基などの芳香族アルキル基が挙げられる。
 アリール基の炭素数は、6以上15以下であり、好ましくは6以上12以下である。アリール基の炭素数が6以上であることにより、化合物の化学的安定性がより向上する傾向にある。また、アリール基の炭素数が15以下であることにより、電池性能がより向上する傾向にある。
 アリールオキシ基とは、アリール基が酸素を介してM原子に結合した構造を示すものである。アリールオキシ基は、必要に応じて、種々の官能基で置換されていてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)、アルキル基、及びアルコキシ基等が挙げられる。
 アリールオキシ基の好ましい例としては特に限定されないが、例えば、フェノキシ基、ベンジルアルコキシ基、ニトリル置換フェノキシ基、フルオロ化フェノキシ基などの芳香族アルコキシ基が挙げられる。
 アリールオキシ基の炭素数は、6以上15以下であり、好ましくは6以上12以下である。アリールオキシ基の炭素数が6以上であることにより、化合物の化学的安定性がより向上する傾向にある。また、アリールオキシ基の炭素数が15以下であることにより、電池性能がより向上する傾向にある。
 R及びRとしては、特に限定されないが、例えば、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基が好ましい。また、R及びRの少なくともいずれか1つは、置換されてもよい炭素数1から10のアルコキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる官能基であることがより好ましい。R及びRがこのような基であることにより、電解液への溶解性がより向上する傾向にある。
 式(13)及び(18)で表される化合物(E)において、R、R、及びRは、各々独立に、炭素数1から10の炭化水素基を示す。R、R、及びRの好ましい構造は、前述した式(14)で表される構造におけるR、R、及びRの好ましい構造と同じである。
 式(14)で表される化合物(E)において、Rは置換されていてもよい炭素数1から20の炭化水素基を示す。Rで示される炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基、フェニル基などの芳香族炭化水素基、及び炭化水素基中の水素原子がすべてフッ素原子に置換されたトリフルオロメチル基などのフッ素置換炭化水素基が挙げられる。また、炭化水素基は、必要に応じて、種々の官能基で置換されていてもよい。このような官能基としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子や、ニトリル基(-CN)、エーテル基(-O-)、カーボネート基(-OCO-)、エステル基(-CO-)、カルボニル基(-CO-)スルフィド基(-S-)、スルホキシド基(-SO-)、スルホン基(-SO-)、ウレタン基(-NHCO-)が挙げられる。
 ここで、Rで示される炭化水素基の炭素数は、1以上20以下であり、好ましくは1以上16以下であり、より好ましくは1以上14以下である。
 また、Rで示される炭化水素基としては、特に限定されないが、下記式(19)で示すような構造が好ましい。この場合、化合物(E)の基本骨格は、ジカルボン酸誘導体構造となる。
Figure JPOXMLDOC01-appb-C000035
(上記式(19)中、Rは、置換されていてもよい炭素数1から13の炭化水素基を示し、R10は、置換されていてもよい炭素数1から6の炭化水素基、又は置換されもよい炭素数3から6のトリアルキルシリル基を示す。)
 式(19)中、Rは、化合物(E)の化学的安定性の観点から、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、フェニル基、フルオロメチレン基、フルオロエチレン基、フルオロプロピレン基、フルオロブチレン基が挙げられる。
 また、式(19)中、R10は化合物(E)の化学的安定性の観点から、好ましくは、メチル基、エチル基、ビニル基、アリル基、トリメチルシリル基、トリエチルシリル基などのトリアルキルシリル基が挙げられる。より好ましくは、トリメチルシリル基、トリエチルシリル基などのトリアルキルシリル基が挙げられる。特に、R10がトリアルキルシリル基となる場合、化合物(E)は下記式(20)で示すような構造となる。
Figure JPOXMLDOC01-appb-C000036
(上記式(20)中、R、R、及びRは、各々独立に、炭素数1から10の有機基を示し、Rは、置換されていてもよい炭素数1から13の炭化水素基を示す。)
 化合物(E)の好ましい具体例としては、特に限定されないが、例えば、リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、ピロリン酸テトラキス(トリメチルシリル)、ポリリン酸トリメチルシリル、ブチルホスホン酸ジ(トリメチルシリル)、プロピルホスホン酸ジ(トリメチルシリル)、エチルホスホン酸ジ(トリメチルシリル)、メチルホスホン酸ジ(トリメチルシリル)、リン酸モノメチルジ(トリメチルシリル)、リン酸モノエチルジ(トリメチルシリル)、リン酸モノ(トリフルオロエチル)ジ(トリメチルシリル)、リン酸モノ(ヘキサフルオロイソプロピル)ジ(トリメチルシリル)、ホウ酸トリス(トリメチルシリル)、硫酸ジ(トリメチルシリル)、酢酸トリメチルシリル、シュウ酸ジ(トリメチルシリル)、マロン酸ジ(トリメチルシリル)、コハク酸ジ(トリメチルシリル)、イタコン酸ジ(トリメチルシリル)、アジピン酸ジ(トリメチルシリル)、フタル酸ジ(トリメチルシリル)、イソフタル酸ジ(トリメチルシリル)、テレフタル酸ジ(トリメチルシリル)が挙げられる。このなかでもサイクル寿命及びガス発生抑制の視点から、リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリメチルシリル)、ピロリン酸テトラキス(トリメチルシリル)、ポリリン酸トリメチルシリル、ブチルホスホン酸ジ(トリメチルシリル)、プロピルホスホン酸ジ(トリメチルシリル)、エチルホスホン酸ジ(トリメチルシリル)、メチルホスホン酸ジ(トリメチルシリル)、リン酸モノメチルジ(トリメチルシリル)、リン酸モノエチルジ(トリメチルシリル)、リン酸モノ(トリフルオロエチル)ジ(トリメチルシリル)、リン酸モノ(ヘキサフルオロイソプロピル)ジ(トリメチルシリル)、コハク酸ジ(トリメチルシリル)、イタコン酸ジ(トリメチルシリル)、アジピン酸ジ(トリメチルシリル)がより好ましい。
 化合物(E)の含有量は、電解液100質量%に対して、好ましくは0.010質量%以上10質量%以下であり、より好ましくは0.020質量%以上10質量%以下であり、さらに好ましくは0.050質量%以上8.0質量%以下であり、よりさらに好ましくは0.10質量%以上5.0質量%以下であり、さらにより好ましくは0.20質量%以上4.0質量%以下である。化合物(E)の含有量が0.010質量%以上であることにより、リチウムイオン二次電池においてサイクル寿命がより向上する傾向にある。また、化合物(E)の含有量が10質量%以下であることにより、電池出力がより向上する傾向にある。これらの化合物(E)の電解液中の含有量は、NMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中の化合物(E)の含有量も、上記と同様に、NMR測定により確認することができる。
〔その他の添加剤〕
 第1態様に係る電解液は、上記以外の添加剤を、必要に応じて、含有することができる。このような添加剤としては、特に限定されないが、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、エチレンスルファイト、プロパンスルトン、スクシノニトリルなどが挙げられる。このような添加剤を含むことにより、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。
 第1態様に係る電解液は、非水蓄電デバイス用電解液として好適に用いられる。ここで、「非水蓄電デバイス」とは、蓄電デバイス中の電解液に水溶液を用いない蓄電デバイスであり、一例として、リチウムイオン二次電池、ナトリウムイオン二次電池、カルシウムイオン二次電池及びリチウムイオンキャパシタが挙げられる。このなかでも、実用性及び耐久性の観点から、非水蓄電デバイスとしてはリチウムイオン二次電池及びリチウムイオンキャパシタが好ましく、より好ましくはリチウムイオン二次電池である。
〔第2態様:リチウムイオン二次電池〕
 第2態様に係るリチウムイオン二次電池(以下、単に「電池」ともいう。)は、上記電解液と、正極活物質を含有する正極と、負極活物質を含有する負極とを備える。この電池は、上述の電解液を備える以外は、従来のリチウムイオン二次電池と同様の構成を有していてもよい。
〔正極〕
 正極は、リチウムイオン二次電池の正極として作用するものであれば特に限定されず、公知のものを用いることができる。正極は、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上を含有することが好ましい。
(正極活物質)
 第2態様の電池は、より高い電圧を実現する観点から、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有する正極活物質を含有する正極を備えることがより好ましい。かかる正極を備えた場合であっても、第2態様の電池は、高電圧で作動し、かつ、リサイクル寿命の向上を可能にする点で有用である。ここで、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有する正極活物質とは、4.4V(vsLi/Li)以上の電位でリチウムイオン二次電池の正極として充電及び放電反応を起こし得る正極活物質であり、0.1Cの定電流放電時の放電容量が活物質の質量1gに対して10mAh以上であるものである。よって、正極活物質が、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有していればよく、4.4V(vsLi/Li)以下の電位において放電容量を有していても何ら差支えない。
 第2態様で用いる正極活物質の放電容量は、4.4V(vsLi/Li)以上の電位において、好ましくは10mAh/g以上であり、より好ましくは15mAh/g以上であり、さらに好ましくは20mAh/g以上である。正極活物質の放電容量が上記範囲内であることにより、高電圧で駆動することで高いエネルギー密度を達成することができる傾向にある。4.4V(vsLi/Li)以上の電位における正極活物質の放電容量の上限は、特に限定されないが、400mAh/g以下が好ましい。なお、正極活物質の放電容量は、実施例に記載の方法により測定することができる。
 上記4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有する正極活物質は、1種を単独で又は2種以上を組み合わせて用いることができる。また、正極活物質として、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有する正極活物質と、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有しない正極活物質とを組み合わせて用いることもできる。4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有しない正極活物質としては、特に限定されないが、例えば、LiFePOが挙げられる。
 このような正極活物質としては、特に限定されないが、例えば、式(5)で表される酸化物、式(6)で表される酸化物、式(7)で表される複合酸化物、式(8)で表される化合物、及び式(9)で表される化合物からなる群より選ばれる1種以上であることが好ましい。このような正極活物質を用いることにより、正極活物質の構造安定性がより優れる傾向にある。
   LiMn2-xMa           (5)
(上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
   LiMn1-uMe            (6)
(上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
   zLiMcO-(1-z)LiMdO  (7)
(上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
   LiMb1-yFePO          (8)
(上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
   LiMfPOF             (9)
(上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
 上記式(5)で表される酸化物としては、特に限定されないが、例えば、スピネル型酸化物が好ましく、式(5a)又は式(5b)で表される酸化物がより好ましい。
   LiMn2-xNi  (5a)
(上記式(5a)中、xは0.2≦x≦0.7を満たす。)
   LiMn2-xNi  (5b)
(上記式(5b)中、xは0.3≦x≦0.6を満たす。)
 上記式(5a)又は上記式(5b)で表される酸化物としては、特に限定されないが、例えば、LiMn1.5Ni0.5及びLiMn1.6Ni0.4が挙げられる。このような式(5)で表されるスピネル型酸化物を用いることにより、安定性により優れる傾向にある。
 ここで、上記式(5)で表される酸化物は、正極活物質の安定性、電子伝導性等の観点から、Mn原子のモル数に対して10モル%以下の範囲で、上記構造以外に、さらに遷移金属又は遷移金属酸化物を含有してもよい。上記式(5)で表される化合物は、1種を単独で又は2種以上を組み合わせて用いられる。
 上記式(6)で表される酸化物としては、特に限定されないが、例えば、層状酸化物であることが好ましく、下記式(6a)で表される酸化物であることがより好ましい。
   LiMn1-v-wCoNi   (6a)
(上記式(6a)中、0.1≦v≦0.4、0.1≦w≦0.8である。)
 上記式(6a)で表される層状酸化物としては、特に限定されないが、例えば、LiMn1/3Co1/3Ni1/3、LiMn0.1Co0.1Ni0.8、LiMn0.3Co0.2Ni0.5などが挙げられる。このような式(6)で表される化合物を用いることにより安定性がより向上する傾向にある。式(6)で表される化合物は、1種を単独で又は2種以上を組み合わせて用いられる。
 上記式(7)で表される複合酸化物としては、特に限定されないが、例えば、複合層状酸化物であることが好ましく、下記式(7a)で表される複合酸化物であることがより好ましい。
   zLiMnO-(1-z)LiNiMnCo  (7a)
(上記式(7a)中、zは0.3≦z≦0.7を満たし、a、b、及びcは、a+b+c=1、0.2≦a≦0.6、0.2≦b≦0.6、0.05≦c≦0.4を満たす。)
 このなかでも、上記式(7a)において、0.4≦z≦0.6、a+b+c=1、0.3≦a≦0.4、0.3≦b≦0.4、0.2≦c≦0.3である複合酸化物がより好ましい。このような式(7)で表される複合酸化物を用いることにより、安定性により優れる傾向にある。式(7)で表される複合酸化物は、1種を単独で又は2種以上を組み合わせて用いられる。
 上記式(8)で表される化合物としては、特に限定されないが、例えば、オリビン型化合物が好ましく、下記式(8a)及び、下記式(8b)で表される化合物がより好ましい。
   LiMn1-yFePO  (8a)
(上記式(8a)中、yは0.05≦y≦0.8を満たす。)
   LiCo1-yFePO  (8b)
(上記式(8b)中、yは0.05≦y≦0.8を満たす。)
 このような式(8)で表される化合物を用いることにより、安定性及び電子伝導性により優れる傾向にある。上記式(8)で表される化合物は、1種を単独で又は2種以上を組み合わせて用いられる。
 上記式(9)で表される化合物であるフッ化オリビン型正極活物質としては、特に限定されないが、例えば、LiFePOF、LiMnPOF及びLiCoPOFが好ましい。このような式(9)で表される化合物を用いることにより、安定性により優れる傾向にある。式(9)で表される化合物は、1種を単独で又は2種以上を組み合わせて用いられる。
(満充電時におけるリチウム基準の正極電位)
 第2態様に係るリチウムイオン二次電池の満充電時におけるリチウム基準の正極電位は、好ましくは4.4V(vsLi/Li)以上であり、より好ましくは4.45V(vsLi/Li)以上であり、さらに好ましくは4.5V(vsLi/Li)以上である。満充電時における正極電位が4.4V(vsLi/Li)以上であることにより、リチウムイオン二次電池の有する正極活物質の充放電容量を効率的に活用できる傾向にある。また、満充電時における正極電位が4.4V(vsLi/Li)以上であることにより、リチウムイオン二次電池のエネルギー密度がより向上する傾向にある。なお、満充電時におけるリチウム基準の正極電位は、満充電時の電池の電圧を制御することにより制御することができる。なお、満充電時における正極電位の上限は、特に限定されないが、5.2V(vsLi/Li)以下が好ましい。
 満充電時におけるリチウム基準の正極電位は、満充電状態のリチウムイオン二次電池をArグローブボックス中で解体し、正極を取り出し、対極に金属リチウムを用いて再度電池を組み、電圧を測定することで容易に測定することができる。また、負極に炭素負極活物質を用いる場合、満充電時の炭素負極活物質の電位が0.05V(vsLi/Li)であることから、満充電時におけるリチウムイオン二次電池の電圧(Va)に0.05Vを足すことで、容易に満充電時における正極の電位を算出することができる。例えば、負極に炭素負極活物質を用いたリチウムイオン二次電池において、満充電時におけるリチウムイオン二次電池の電圧(Va)が4.4Vであった場合、満充電時の正極の電位は、4.4V+0.05V=4.45Vと算出することができる。
 なお、従来のリチウムイオン二次電池は、満充電時の正極の電位が通常4.2V(vsLi/Li+)から4.3V(vsLi/Li+)以下で設定されているため、満充電時の正極の電位が4.4V(vsLi/Li+)以上のリチウムイオン二次電池は従来のリチウムイオン二次電池と比較して高い電圧を有する。第2態様において、「高電圧リチウムイオン二次電池」とは、4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する正極活物質を有する正極を備えるリチウムイオン二次電池であって、満充電時における正極電位が4.4V(vsLi/Li)以上で使用されるものをいう。このような高電圧リチウムイオン二次電池用途においては、電解液に含まれるカーボネート系溶媒が正極表面にて酸化分解し、電池のサイクル寿命が低下するという課題が生じうる。このような課題は満充電時における正極電位が4.4V(vsLi/Li)未満で使用される従来のリチウムイオン二次電池用途では、生じにくい課題である。第2態様に係るリチウムイオン二次電池は、上述の構成を有することにより、このような満充電時における正極電位が4.4V(vsLi/Li)以上の場合に生じる課題を解決することができるため、高電圧で作動でき、かつ、高いサイクル寿命を有するものとなる。なお、(vsLi/Li)はリチウム基準の電位を示す。
(正極活物質の製造方法)
 正極活物質は、一般的な無機酸化物の製造方法と同様の方法で製造できる。正極活物質の製造方法としては、特に限定されないが、例えば、所定の割合で金属塩(例えば硫酸塩及び/又は硝酸塩)を混合した混合物を、酸素を含む雰囲気環境下で焼成することで無機酸化物を含む正極活物質を得る方法が挙げられる。あるいは、金属塩を溶解させた液に炭酸塩及び/又は水酸化物塩を作用させて難溶性の金属塩を析出させ、それを抽出分離したものに、リチウム源として炭酸リチウム及び/又は水酸化リチウムを混合した後、酸素を含む雰囲気環境下で焼成することで、無機酸化物を含む正極活物質を得る方法が挙げられる。
(正極の製造方法)
 ここで、正極の製造方法の一例を以下に示す。まず、上記正極活物質に対して、必要に応じて、導電助剤やバインダー等を加えて混合した正極合剤を溶剤に分散させて正極合剤を含有するペーストを調製する。次いで、このペーストを正極集電体に塗布し、乾燥して正極合剤層を形成し、それを必要に応じて加圧し厚さを調整することによって、正極を作製することができる。
 正極集電体としては、特に限定されないが、例えば、アルミニウム箔、又はステンレス箔などの金属箔により構成されるものが挙げられる。
〔負極〕
 第2態様のリチウムイオン二次電池は、負極を有する。負極は、リチウムイオン二次電池の負極として作用するものであれば特に限定されず、公知のものを用いることができる。負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上を含有することが好ましい。このような負極活物質としては、特に限定されないが、例えば、炭素負極活物質、ケイ素合金負極活物質及びスズ合金負極活物質に代表されるリチウムと合金形成が可能な元素を含む負極活物質;ケイ素酸化物負極活物質;スズ酸化物負極活物質;及びチタン酸リチウム負極活物質に代表されるリチウム含有化合物からなる群より選ばれる1種以上が挙げられる。これらの負極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。
 炭素負極活物質としては、特に限定されないが、例えば、ハードカーボン、ソフトカーボン、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド及びカーボンブラックが挙げられる。コークスとしては、特に限定されないが、例えば、ピッチコークス、ニードルコークス及び石油コークスが挙げられる。また、有機高分子化合物の焼成体としては、特に限定されないが、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものが挙げられる。
 リチウムと合金を形成可能な元素を含む負極活物質としては、特に限定されないが、例えば、金属又は半金属の単体であっても、合金や化合物であってもよく、また、これらの1種又は2種以上の相を少なくとも一部に有するようなものであってもよい。なお、「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを有するものも含まれる。また、合金には、全体として金属の性質を有するものであれば非金属元素が含まれていてもよい。
 金属元素及び半金属元素としては、特に限定されないが、例えば、チタン(Ti)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ハフニウム(Hf)、ジルコニウム(Zr)及びイットリウム(Y)が挙げられる。これらのなかでも、長周期型周期表における4族又は14族の金属元素及び半金属元素が好ましく、特に好ましくはチタン、ケイ素及びスズである。
(負極の製造方法)
 負極は、例えば、下記のようにして得られる。まず、上記負極活物質に対して、必要に応じて、導電助剤やバインダー等を加えて混合した負極合剤を溶剤に分散させて負極合剤を含有するペーストを調製する。次いで、このペーストを負極集電体に塗布し、乾燥して負極合剤層を形成し、それを必要に応じて加圧し厚みを調整することによって、負極を作製することができる。
 負極集電体は、特に限定されないが、例えば、銅箔、ニッケル箔又はステンレス箔などの金属箔により構成されるものが挙げられる。
 正極及び負極の作製において、必要に応じて用いられる導電助剤としては、特に限定されないが、例えば、グラファイト、アセチレンブラック及びケッチェンブラックなどのカーボンブラック、並びに炭素繊維が挙げられる。
 また、正極及び負極の作製において、必要に応じて用いられるバインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム及びフッ素ゴムが挙げられる。
〔セパレータ〕
 第2態様に係るリチウムイオン二次電池は、正負極の短絡防止、シャットダウン等の安全性付与の観点から、正極と負極との間にセパレータを備えることが好ましい。セパレータとしては、特に限定されないが、例えば、公知のリチウムイオン二次電池に備えられるものと同様のものを用いることができる。このなかでも、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。
 セパレータとしては、特に限定されないが、例えば、織布、不織布、及び合成樹脂製微多孔膜が挙げられ、これらのなかでも、合成樹脂製微多孔膜が好ましい。また、不織布としては、特に限定されないが、例えば、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製などの耐熱樹脂製の多孔膜が挙げられる。さらに、合成樹脂製微多孔膜としては、特に限定されないが、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又はこれらのポリオレフィンを共に含有する微多孔膜等のポリオレフィン系微多孔膜が挙げられる。セパレータは、1種の微多孔膜を単層又は複数積層したものであってもよく、2種以上の微多孔膜を積層したものであってもよい。
 第2態様に係るリチウムイオン二次電池は、特に限定されないが、例えば、セパレータと、そのセパレータを両側から挟む正極と負極と、さらにそれらの積層体を挟む正極集電体(正極の外側に配置)と、負極集電体(負極の外側に配置)と、それらを収容する電池外装とを備える。正極とセパレータと負極とを積層した積層体は、第2態様の電解液に含浸されている。
 図1は、第2態様におけるリチウムイオン二次電池の一例を概略断面図で示すものである。図1に示されるリチウムイオン二次電池100は、セパレータ110と、そのセパレータ110を両側から挟む正極120と負極130と、さらにそれらの積層体を挟む正極集電体140(正極の外側に配置)と、負極集電体150(負極の外側に配置)と、それらを収容する電池外装160とを備える。正極120とセパレータ110と負極130とを積層した積層体は、電解液に含浸されている。
〔第3態様:電解液〕
 第3態様の電解液は、
 非水溶媒、リチウム塩(A)、並びに、下記式(10)及び/又は下記式(11)で表されるケイ素原子を有する化合物(D)、を含有し、
 前記ケイ素原子を有する化合物(D)の含有量が、0.0010質量%以上3.0質量%以下である、電解液。
   SiFR     (10)
(上記式(10)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
   SiF     (11)
(上記式(11)中、R及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
 以下に記載する点を除き、非水溶媒、リチウム塩、及び、ケイ素原子を有する化合物(D)、並びに、これらの含有量などについては、第1態様と同様とすることができる。
〔非水溶媒〕
 非水溶媒は、環状カーボネートと、鎖状カーボネートと、を含有することが好ましい。環状カーボネートとしては、特に限定されないが、例えば、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上が挙げられる。また、鎖状カーボネートとしては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上が挙げられる。このような環状カーボネートと鎖状カーボネートとを含むことにより、電解液のイオン伝導性がより向上する傾向にある。
〔リチウム塩(A)〕
 リチウム塩(A)は、LiPFを含むことが好ましい。LiPFを含むことにより、電解液のイオン伝導性がより向上する傾向にある。
 リチウム塩(A)は、下記式(4)で表されるホウ素原子を有するリチウム塩(C)を含むことが好ましい。下記式(4)で表されるホウ素原子を有するリチウム塩(C)を含むことにより、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000037
(上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
 また、リチウム塩(A)は、ジフルオロリン酸リチウム塩及びモノフルオロリン酸リチウム塩からなる群より選ばれる1種以上を含むことが好ましい。ジフルオロリン酸リチウム塩及びモノフルオロリン酸リチウム塩からなる群より選ばれる1種以上を含むことにより、リチウムイオン二次電池のサイクル性能がより向上する傾向にある。
〔化合物(D)〕
 ケイ素原子を有する化合物(D)の含有量は、電解液100質量%に対して、0.0010質量%以上3.0質量%以下であり、好ましくは0.0030質量%以上2.0質量%以下であり、より好ましくは0.0050質量%以上2.0質量%以下であり、さらに好ましくは0.010質量%以上1.0質量%以下であり、特に好ましくは0.020質量%以上2.0質量%以下である。ケイ素原子を有する化合物(D)の含有量が0.0010質量%以上であることにより、リチウムイオン二次電池において良好なサイクル寿命を得ることができる。また、ケイ素原子を有する化合物(D)の含有量が3.0質量%以下であることにより、リチウムイオン二次電池の膨れがより抑制できる。また、ケイ素原子を有する化合物(D)は、電解液中に含有していればよく、電解液調製時に添加してもよく、また電解液中で反応により生成させてもよい。ケイ素原子を有する化合物(D)の電解液中の含有量は、H-NMR、19F-NMRなどのNMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中のケイ素原子を有する化合物(D)の含有量も、上記と同様に、H-NMR、19F-NMRなどのNMR測定により確認することができる。
〔化合物(E)〕
 電解液は、スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸の水素原子の少なくとも1つが下記式(12)で表される置換基で置換された化合物(E)を含有することが好ましい。化合物(E)を含むことにより、リチウムイオン二次電池のサイクル性能がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000038
(上記式(12)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示す。)
 そのなかでも、化合物(E)は、下記式(13)及び/又は下記式(14)で表される化合物を含むことが好ましい。式(13)及び/又は式(14)で表される化合物については、第1態様と同様とすることができる。
Figure JPOXMLDOC01-appb-C000039
(上記式(13)中、Mは、リン原子又はホウ素原子を示し、Mがリン原子のときnは0又は1であり、Mがホウ素原子のときnは0であり、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。)
Figure JPOXMLDOC01-appb-C000040
(上記式(14)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、Rは置換されていてもよい炭素数1から20の有機基を示す。)
 化合物(E)の含有量は、電解液100質量%に対して、好ましくは0.010質量%以上10質量%以下であり、より好ましくは0.020質量%以上10質量%以下であり、さらに好ましくは0.050質量%以上8.0質量%以下であり、よりさらに好ましくは0.10質量%以上5.0質量%以下であり、さらにより好ましくは0.20質量%以上4.0質量%以下である。化合物(E)の含有量が0.010質量%以上であることにより、リチウムイオン二次電池においてサイクル寿命がより向上する傾向にある。また、化合物(E)の含有量が10質量%以下であることにより、電池出力がより向上する傾向にある。これらの化合物(E)の電解液中の含有量は、NMR測定により確認することができる。また、リチウムイオン二次電池中の電解液中の化合物(E)の含有量も、上記と同様に、NMR測定により確認することができる。
 第3態様に係る電解液は、非水蓄電デバイス用電解液として好適に用いられる。
〔第4態様:リチウムイオン二次電池〕
 第4態様のリチウムイオン二次電池(以下、単に「電池」ともいう。)は、
 4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する正極活物質を備える正極と、
 負極活物質を備える負極と、
 第3態様の電解液と、を有する。
 以下に記載する点を除き、正極、負極、必要に応じて用いられるセパレータなどについては、第2態様と同様とすることができる。
(正極活物質)
 第4態様の電池は、より高い電圧を実現する観点から、4.4V(vsLi/Li)以上の電位で10mAh/g以上の放電容量を有する正極活物質を含有する正極を備える。かかる正極を備えた場合であっても、第2態様の電池は、高電圧で作動し、かつ、リサイクル寿命の向上を可能にする点で有用である。
 第4態様で用いる正極活物質の放電容量は、4.4V(vsLi/Li)以上の電位において、10mAh/g以上であり、好ましくは15mAh/g以上であり、より好ましくは20mAh/g以上である。正極活物質の放電容量が上記範囲内であることにより、高電圧で駆動することで高いエネルギー密度を達成することができる。4.4V(vsLi/Li)以上の電位における正極活物質の放電容量の上限は、特に限定されないが、400mAh/g以下が好ましい。なお、正極活物質の放電容量は、実施例に記載の方法により測定することができる。
 第4態様に係るリチウムイオン二次電池の満充電時におけるリチウム基準の正極電位は、好ましくは4.4V(vsLi/Li)以上であり、より好ましくは4.45V(vsLi/Li)以上であり、さらに好ましくは4.5V(vsLi/Li)以上である。満充電時における正極電位が4.4V(vsLi/Li)以上であることにより、リチウムイオン二次電池の有する正極活物質の充放電容量を効率的に活用できる傾向にある。また、満充電時における正極電位が4.4V(vsLi/Li)以上であることにより、リチウムイオン二次電池のエネルギー密度がより向上する傾向にある。なお、満充電時におけるリチウム基準の正極電位は、満充電時の電池の電圧を制御することにより制御することができる。なお、満充電時における正極電位の上限は、特に限定されないが、5.2V(vsLi/Li)以下が好ましい。
 正極活物質としては、特に限定されないが、例えば、下記式(5)で表される酸化物、下記式(6)で表される酸化物、下記式(7)で表される複合酸化物、下記式(8)で表される化合物、及び下記式(9)で表される化合物からなる群より選ばれる1種以上が好ましい。このような正極活物質を用いることにより、正極活物質の構造安定性がより向上する傾向にある。
   LiMn2-xMa           (5)
(上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
   LiMn1-uMe           (6)
(上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
   zLiMcO-(1-z)LiMdO  (7)
(上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
   LiMb1-yFePO          (8)
(上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
   LiMfPOF             (9)
(上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
〔電解液の調製方法〕
 第1態様及び第3態様の電解液は、各成分を公知の手法により混合することで所定の組成となるよう調製してもよく、また電解液中で反応により所定の組成となるよう調製してもよい。電解液中で反応により調整する場合とは、具体的には、電池中における反応により、第1態様及び第3態様の電解液が調整されることをいう。
〔リチウムイオン二次電池の製造方法〕
 第2態様及び第4態様のリチウムイオン二次電池は、上述の電解液、正極、負極及び必要に応じてセパレータを用いて、公知の方法により作製することができる。例えば、正極と負極とを、その間にセパレータを介在させた積層状態で巻回して巻回構造の積層体に成形したり、それらを折り曲げや複数層の積層などによって、交互に積層した複数の正極と負極との間にセパレータが介在する積層体に成形し、次いで、電池ケース(外装)内にその積層体を収容して、第1態様又は第3態様の電解液をケース内部に注液し、上記積層体をその電解液に浸漬して封印することによって、リチウムイオン二次電池を作製することができる。第2態様及び第4態様におけるリチウムイオン二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形及びラミネート形などが好適に採用される。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
[実施例1]
<正極活物質の合成>
(LiNi0.5Mn1.5の合成)
 遷移金属元素のモル比として1:3の割合となる量の硫酸ニッケルと硫酸マンガンとを水に溶解し、金属イオン濃度の総和が2mol/Lになるようにニッケル-マンガン混合水溶液を調製した。次いで、このニッケル-マンガン混合水溶液を、70℃に加温した濃度2mol/Lの炭酸ナトリウム水溶液1650mL中に、12.5mL/minの添加速度で120分間滴下した。なお、滴下中は、攪拌の下、200mL/minの流量の空気を水溶液中にバブリングしながら吹き込んだ。これにより、析出物質が発生し、得られた析出物質を蒸留水で十分洗浄し、乾燥して、ニッケルマンガン化合物を得た。得られたニッケルマンガン化合物と粒径2μmの炭酸リチウムとを、リチウム:ニッケル:マンガンのモル比が1:0.5:1.5になるように秤量し、1時間乾式混合した後、得られた混合物を酸素雰囲気下において1000℃で5時間焼成し、LiNi0.5Mn1.5で表される正極活物質を得た。
<正極の作製>
 上述のようにして得られた正極活物質と、導電助剤としてグラファイトの粉末(TIMCAL社製、商品名「KS-6」)とアセチレンブラックの粉末(電気化学工業社製、商品名「HS-100」)と、バインダーとしてポリフッ化ビニリデン溶液(クレハ社製、商品名「L#7208」)とを、80:5:5:10の固形分質量比で混合した。得られた混合物に、分散溶媒としてN-メチル-2-ピロリドンを固形分35質量%となるように投入してさらに混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて正極を得た。
 なお、上記により得られた正極と金属Liを負極とし、電解液にエチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液を用いてハーフセルを作製し、0.02Cで4.85Vまで充電後、0.1Cで放電することにより、4.4V(vsLi/Li)以上の電位において111mAh/gの放電容量を有する正極活物質であることを確認した。
<負極の作製>
 負極活物質としてグラファイト粉末(大阪ガスケミカル社製、商品名「OMAC1.2H/SS」)及び別のグラファイト粉末(TIMCAL社製、商品名「SFG6」)と、バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース水溶液とを、90:10:1.5:1.8の固形分質量比で混合した。得られた混合物を、固形分濃度が45質量%となるように、分散溶媒としての水に添加して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ18μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極を得た。
<O=P(OSi(CH(OPFLi)の合成>
 窒素雰囲気下、アセトニトリル20mLに室温で、リン酸トリメチルシリル(アルドリッチ社製)を3.1g添加し、さらにアセトニトリル5mLに溶解させたLiPF(キシダ化学社製)を0.76g添加し、70℃で48時間撹拌した。その後室温減圧条件でアセトニトリルおよび反応副生成物等を除去し、白色固体を得た。得られた白色固体は、NMR(JNM-GSX400G、日本電子株式会社製)によって同定した。白色固体をEC/EMC混合溶媒中に溶解させNMRの内管に投入し、外管に重クロロホルム溶媒を用いNMRを測定した。生成物のケミカルシフトを以下に示す。
   H-NMR
     0.49ppm(18H、s)
   31P-NMR
      -28ppm(1P、s)
     -148ppm(1P、sext)
   19F-NMR
      -62ppm(4F、ddd)
      -75ppm(1F、d・quin)
 以上の結果から、生成物をO=P(OSi(CH(OPFLi)と同定した。
<電解液の調製>
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液(キシダ化学社製、LBG00069)9.99gに、O=P(OSi(CH(OPFLi)を0.1g含有させ、電解液Aを得た。電解液A中のO=P(OSi(CH(OPFLi)の含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
<電池の作製>
 上述のようにして作製した正極と負極とをポリプロピレン製の微多孔膜からなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm~1μm)の両側に重ね合わせた積層体を、ステンレス製の円盤型電池ケース(外装体)に挿入した。次いで、そこに、上記電解液Aを0.2mL注入し、積層体を電解液Aに浸漬した後、電池ケースを密閉してリチウムイオン二次電池を作製した。
<電池性能評価>
 得られたリチウムイオン二次電池を、25℃に設定した恒温槽(二葉科学社製、商品名「PLM-73S」)に収容し、充放電装置(アスカ電子(株)製、商品名「ACD-01」)に接続し、20時間静置した。次いで、その電池を0.2Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で8時間充電し、その後、0.2Cの定電流で3.0Vまで放電した。
 上記初期充放電後、50℃に設定した恒温槽中で、その電池を1.0Cの定電流で4.8Vまで充電し、1.0Cの定電流で3.0Vまで放電した。この一連の充放電を1サイクルとし、更に29サイクル充放電を繰り返し、全体で30サイクルのサイクル充放電を行った。1サイクル目及び30サイクル目の正極活物質質量当たりの放電容量を確認した。結果、電解液Aを備えるリチウムイオン二次電池の1サイクル目の放電容量は、102mAh/gと高く、30サイクル目の放電容量は、80mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、78%と高い値を示した。なお、本実施例のリチウムイオン二次電池を4.8V(満充電)まで充電した後、Arグローブボックス中で解体し、正極を取り出し、対極に金属リチウムを用いて再度電池を組み、正極の電位を測定したところ、満充電時におけるリチウム基準の正極電位は4.85V(vsLi/Li)であった。
[実施例2]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.95gに、O=P(OSi(CH(OPFLi)を0.05g含有させ、電解液Bを得た。電解液B中のO=P(OSi(CH(OPFLi)の含有量は0.5質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Bを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Bを備えるリチウムイオン二次電池の1サイクル目の放電容量は、107mAh/gと高く、30サイクル目の放電容量は、89mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、83%と高い値を示した。
[実施例3]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.90gに、O=P(OSi(CH(OPFLi)を0.1g含有させ、電解液Cを得た。電解液C中のO=P(OSi(CH(OPFLi)の含有量は1.0質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Cを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Cを備えるリチウムイオン二次電池の1サイクル目の放電容量は、110mAh/gと高く、30サイクル目の放電容量は、88mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、80%と高い値を示した。
[実施例4]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.60gに、O=P(OSi(CH(OPFLi)を0.4g含有させ、電解液Dを得た。電解液D中のO=P(OSi(CH(OPFLi)の含有量は4.0質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Dを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Cを備えるリチウムイオン二次電池の1サイクル目の放電容量は、100mAh/gと高く、30サイクル目の放電容量は、81mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、81%と高い値を示した。
[実施例5]
<(CHSiOCOCCOOPFLiの合成>
 窒素雰囲気下、アセトニトリル20mLに室温で、アジピン酸ビス(トリメチルシリル)(C10(Si(CH)、Gelest社製)を2.9g添加し、さらにアセトニトリル5mLに溶解させたLiPF(キシダ化学社製)を0.76g添加し、70℃で48時間撹拌した。その後室温減圧条件でアセトニトリルおよび反応副生成物等を除去し、白色固体を得た。得られた白色固体は、NMR(JNM-GSX400G、日本電子株式会社製)によって同定した。白色固体をEC/EMC混合溶媒中に溶解させNMRの内管に投入し、外管に重クロロホルム溶媒を用いNMRを測定した。生成物のケミカルシフトを以下に示す。
   H-NMR
     0.49ppm(9H、s)
     2.2ppm(4H、m)
     3.0ppm(4H、m)
   31P-NMR
     -146ppm(1P、sext)
   19F-NMR
      -67ppm(4F、ddd)
      -76ppm(1F、d・quin)
 以上の結果から、生成物を(CHSiOCOCCOOPFLiと同定した。
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.9gに、(CHSiOCOCCOOPFLiを0.1g含有させ、電解液Eを得た。電解液E中の(CHSiOCOCCOOPFLiの含有量は1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Eを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Eを備えるリチウムイオン二次電池の1サイクル目の放電容量は、111mAh/gと高く、30サイクル目の放電容量は、87mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、78%と高い値を示した。
[実施例6]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.90gに、O=P(OSi(CH(OPFLi)を0.05g含有させ、LiB(Cを0.5g含有させ、電解液Fを得た。電解液F中のO=P(OSi(CH(OPFLi)の含有量は0.5質量%であり、LiB(Cの含有量は0.5質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Fを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Fを備えるリチウムイオン二次電池の1サイクル目の放電容量は、114mAh/gと高く、30サイクル目の放電容量は、95mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、83%と高い値を示した。
[実施例7]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.92gに、O=P(OSi(CH(OPFLi)を0.05g含有させ、ジフルオロリン酸リチウム(LiPO)を0.03g含有させ、電解液Gを得た。電解液G中のO=P(OSi(CH(OPFLi)の含有量は0.5質量%であり、ジフルオロリン酸リチウムの含有量は0.3質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Gを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Gを備えるリチウムイオン二次電池の1サイクル目の放電容量は、109mAh/gと高く、30サイクル目の放電容量は、91mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、84%と高い値を示した。
[実施例8]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.87gに、O=P(OSi(CH(OPFLi)を0.05g含有させ、ジフルオロリン酸リチウムを0.03g含有させ、LiB(Cを0.05g含有させ、電解液Hを得た。電解液H中のO=P(OSi(CH(OPFLi)の含有量は0.5質量%であり、ジフルオロリン酸リチウムの含有量は0.3質量%であり、LiB(Cの含有量は0.5質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Hを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Hを備えるリチウムイオン二次電池の1サイクル目の放電容量は、115mAh/gと高く、30サイクル目の放電容量は、97mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、84%と高い値を示した。
[比較例1]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液を電解液Iとした。電解液I中のLiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Iを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Iを備えるリチウムイオン二次電池の1サイクル目の放電容量は、96mAh/gであり、30サイクル目の放電容量は、66mAh/gであり、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、69%であった。
 実施例1から実施例8、および比較例1の結果を表1にまとめる。本結果からわかるように、化合物(B)を含有する電解液を用いることにより、満充電時の電位が4.85V(vsLi/Li)もの高電位の正極を用いた場合においても、サイクル寿命を大幅に改善できることがわかる。
Figure JPOXMLDOC01-appb-T000041
[実施例9]
<正極の作製>
 正極活物質としてLiNi1/3Mn1/3Co1/3(日本化学工業社製)と、導電助剤としてアセチレンブラックの粉末(電気化学工業社製)と、バインダーとしてポリフッ化ビニリデン溶液(クレハ社製)とを、90:6:4の固形分質量比で混合し、分散溶媒としてN-メチル-2-ピロリドンを固形分40質量%となるように添加して更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延して正極とした。圧延後のものを直径16mmの円盤状に打ち抜いて正極を得た。
 なお、上記により得られた正極と金属Liを負極とし、電解液にエチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液を用いてハーフセルを作製し、0.02Cで4.6Vまで充電後、0.1Cで放電することにより、4.4V(vsLi/Li)以上の電位において23mAh/gの放電容量を有する正極活物質であることを確認した。
<負極の作製>
 負極活物質としてグラファイト粉末(大阪ガスケミカル社製、商品名「OMAC1.2H/SS」)及び別のグラファイト粉末(TIMCAL社製、商品名「SFG6」)と、バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース水溶液とを、90:10:1.5:1.8の固形分質量比で混合した。得られた混合物を、固形分濃度が45質量%となるように、分散溶媒としての水に添加して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ18μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極を得た。
<電池の作製>
 上述のようにして作製した正極と負極とをポリプロピレン製の微多孔膜からなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm~1μm)の両側に重ね合わせた積層体を、ステンレス製の円盤型電池ケース(外装体)に挿入した。次いで、そこに、実施例1で作製した電解液Aを0.2mL注入し、積層体を電解液Aに浸漬した後、電池ケースを密閉してリチウムイオン二次電池を作製した。
<電池性能評価>
 得られたリチウムイオン二次電池を、25℃に設定した恒温槽(二葉科学社製、商品名「PLM-73S」)に収容し、充放電装置(アスカ電子(株)製、商品名「ACD-01」)に接続し、20時間静置した。次いで、その電池を0.2Cの定電流で充電し、4.4Vに到達した後、4.4Vの定電圧で8時間充電し、その後0.2Cの定電流で3.0Vまで放電した。
 上記初期充放電後、50℃に設定した恒温槽中で、その電池を1.0Cの定電流で4.4Vまで充電し、1.0Cの定電流で3.0Vまで放電した。この一連の充放電を1サイクルとし、更に99サイクル充放電を繰り返し、全体で100サイクルのサイクル充放電を行った。1サイクル目及び100サイクル目の正極活物質質量当たりの放電容量を確認した。結果、電解液Aを備えるリチウムイオン二次電池の1サイクル目の放電容量は、158mAh/gと高く、100サイクル目の放電容量は、106mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、67%と高い値を示した。なお、本実施例のリチウムイオン二次電池を4.4V(満充電)まで充電した後、Arグローブボックス中で解体し、正極を取り出し、対極に金属リチウムを用いて再度電池を組み、正極の電位を測定したところ、満充電時におけるリチウム基準の正極電位は4.45V(vsLi/Li)であった。
[実施例10]
 実施例9と同様にして、電解液に実施例2で得た電解液Bを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Bを備えるリチウムイオン二次電池の1サイクル目の放電容量は、157mAh/gと高く、100サイクル目の放電容量は、116mAh/gと高く、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、74%と高い値を示した。
[実施例11]
 実施例9と同様にして、電解液に実施例6で得た電解液Fを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Fを備えるリチウムイオン二次電池の1サイクル目の放電容量は、161mAh/gと高く、100サイクル目の放電容量は、123mAh/gと高く、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、76%と高い値を示した。
[実施例12]
 実施例9と同様にして、電解液に実施例7で得た電解液Gを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Gを備えるリチウムイオン二次電池の1サイクル目の放電容量は、159mAh/gと高く、100サイクル目の放電容量は、119mAh/gと高く、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、75%と高い値を示した。
[実施例13]
 実施例9と同様にして、電解液に実施例8で得た電解液Hを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Hを備えるリチウムイオン二次電池の1サイクル目の放電容量は、161mAh/gと高く、100サイクル目の放電容量は、127mAh/gと高く、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、79%と高い値を示した。
[比較例2]
 実施例9と同様にして、電解液に比較例1で得た電解液Iを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Iを備えるリチウムイオン二次電池の1サイクル目の放電容量は、157mAh/gであり、100サイクル目の放電容量は、96mAh/gであり、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、61%であった。
 実施例9から実施例13、および比較例2の結果を表2にまとめる。本結果からわかるように、化合物(B)を含有する電解液を用いることにより、満充電時の電位が4.45V(vsLi/Li)もの高電位の正極を用いた場合においても、サイクル寿命を大幅に改善できることがわかる。
Figure JPOXMLDOC01-appb-T000042
[実施例14]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液(キシダ化学社製、LBG00069)9.95gに、FSi(CH(アルドリッチ社製、364533)を0.05g含有させ、電解液Jを得た。電解液J中のFSi(CHの含有量は0.5質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Jを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Jを備えるリチウムイオン二次電池の1サイクル目の放電容量は、104mAh/gと高く、30サイクル目の放電容量は、82mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、79%と高い値を示した。なお、本実施例のリチウムイオン二次電池を4.8V(満充電)まで充電した後、Arグローブボックス中で解体し、正極を取り出し、対極に金属リチウムを用いて再度電池を組み、正極の電位を測定したところ、満充電時におけるリチウム基準の正極電位は4.85V(vsLi/Li)であった。
[実施例15]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.99gに、FSi(CHを0.01g含有させ、電解液Kを得た。電解液K中のFSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Kを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Kを備えるリチウムイオン二次電池の1サイクル目の放電容量は、105mAh/gと高く、30サイクル目の放電容量は、84mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、80%と高い値を示した。
[実施例16]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.89gに、式(4)で表されるリチウムビスオキサレートボレート(ロックウッド社製、以下、「LiBOB」と表記する。)を0.1gと、FSi(CHを0.01g含有させ、電解液Lを得た。電解液L中のLiBOBの含有量は1質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Lを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Lを備えるリチウムイオン二次電池の1サイクル目の放電容量は、115mAh/gと高く、30サイクル目の放電容量は、97mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、84%と高い値を示した。
[実施例17]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.96gに、ジフルオロリン酸リチウム(LiPO)を0.03gと、FSi(CHを0.01g含有させ、電解液Mを得た。電解液M中のジフルオロリン酸リチウムの含有量は0.3質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Mを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Mを備えるリチウムイオン二次電池の1サイクル目の放電容量は、108mAh/gと高く、30サイクル目の放電容量は、85mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、79%と高い値を示した。
[実施例18]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.86gに、LiBOBを0.1gとジフルオロリン酸リチウムを0.03gと、FSi(CHを0.01g含有させ、電解液Nを得た。電解液N中のLiBOBの含有量は1質量%であり、ジフルオロリン酸リチウムの含有量は0.3質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Nを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Nを備えるリチウムイオン二次電池の1サイクル目の放電容量は、113mAh/gと高く、30サイクル目の放電容量は、99mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、88%と高い値を示した。
[実施例19]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.89gに、O=P(OSi(CHを0.1g含有させ、FSi(CHを0.01g含有させ、電解液Oを得た。電解液O中のO=P(OSi(CHの濃度は1質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Oを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Oを備えるリチウムイオン二次電池の1サイクル目の放電容量は、110mAh/gと高く、30サイクル目の放電容量は、91mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、83%と高い値を示した。
[実施例20]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.87gに、O=P(OSi(CHを0.1g含有させ、FSi(CHを0.03g含有させ、電解液Pを得た。電解液P中のO=P(OSi(CHの濃度は1質量%であり、FSi(CHの含有量は0.3質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Pを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Pを備えるリチウムイオン二次電池の1サイクル目の放電容量は、110mAh/gと高く、30サイクル目の放電容量は、90mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、82%と高い値を示した。
[実施例21]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.89gに、アジピン酸ビス(トリメチルシリル)を0.1g含有させ、FSi(CHを0.01g含有させ、電解液Qを得た。電解液Q中のアジピン酸ビス(トリメチルシリル)の濃度は1質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Qを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Qを備えるリチウムイオン二次電池の1サイクル目の放電容量は、112mAh/gと高く、30サイクル目の放電容量は、90mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、80%と高い値を示した。
[実施例22]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.84gに、O=P(OSi(CHを0.1g含有させ、LiBOBを0.05g含有させ、FSi(CHを0.01g含有させ、電解液Rを得た。電解液R中のO=P(OSi(CHの濃度は1質量%であり、LiBOBの濃度は0.5質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Rを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Rを備えるリチウムイオン二次電池の1サイクル目の放電容量は、115mAh/gと高く、30サイクル目の放電容量は、101mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、88%と高い値を示した。
[比較例3]
 比較例1で用いた電解液Iを用いて、実施例1と同様にして、電解液Iを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Iを備えるリチウムイオン二次電池の1サイクル目の放電容量は、96mAh/gであり、30サイクル目の放電容量は、66mAh/gであり、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、69%であった。
[比較例4]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.9gに、O=P(OSi(CHを0.1g含有させ、電解液Sを得た。電解液S中のO=P(OSi(CHの濃度は1質量%であり、LiPFの含有量は13質量%であった。
 実施例1と同様にして、電解液Sを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Sを備えるリチウムイオン二次電池の1サイクル目の放電容量は、104mAh/gであり、30サイクル目の放電容量は、79mAh/gであり、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、76%であった。
 実施例14から実施例22、比較例3、および比較例4の結果を表3にまとめる。本結果からわかるように、ケイ素原子を有する化合物(D)を含有する電解液を用いることにより、満充電時の電位が4.85V(vsLi/Li)もの高電位の正極を用いた場合においても、サイクル寿命を大幅に改善できることがわかる。
Figure JPOXMLDOC01-appb-T000043
[実施例23]
実施例9と同様にして、電解液に実施例14で得た電解液Jを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Jを備えるリチウムイオン二次電池の1サイクル目の放電容量は、157mAh/gであり、100サイクル目の放電容量は、109mAh/gと高く、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、69%と高い値を示した。なお、本実施例のリチウムイオン二次電池を4.4V(満充電)まで充電した後、Arグローブボックス中で解体し、正極を取り出し、対極に金属リチウムを用いて再度電池を組み、正極の電位を測定したところ、満充電時におけるリチウム基準の正極電位は4.45V(vsLi/Li)であった。
[実施例24]
 実施例9と同様にして、電解液に実施例15で得た電解液Kを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Bを備えるリチウムイオン二次電池の1サイクル目の放電容量は、165mAh/gと高く、100サイクル目の放電容量は、126mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、76%と高い値を示した。
[実施例25]
 実施例9と同様にして、電解液に実施例18で得た電解液Nを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Nを備えるリチウムイオン二次電池の1サイクル目の放電容量は、162mAh/gと高く、100サイクル目の放電容量は、128mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、79%と高い値を示した。
[実施例26]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.94gに、O=P(OSi(CHを0.05g含有させ、FSi(CHを0.01g含有させ、電解液Tを得た。電解液T中のO=P(OSi(CHの濃度は0.5質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例9と同様にして、電解液Tを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Tを備えるリチウムイオン二次電池の1サイクル目の放電容量は、162mAh/gと高く、30サイクル目の放電容量は、129mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、80%と高い値を示した。
[実施例27]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒にLiPF塩を1mol/L含有させた溶液9.89gに、O=P(OSi(CHを0.05g含有させ、LiBOBを0.05g含有させ、FSi(CHを0.01g含有させ、電解液Uを得た。電解液U中のO=P(OSi(CHの濃度は0.5質量%であり、LiBOBの濃度は0.5質量%であり、FSi(CHの含有量は0.1質量%であり、LiPFの含有量は13質量%であった。
 実施例9と同様にして、電解液Uを備えるリチウムイオン二次電池の電池性能評価を行った。結果、電解液Uを備えるリチウムイオン二次電池の1サイクル目の放電容量は、161mAh/gと高く、30サイクル目の放電容量は、131mAh/gと高く、30サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、81%と高い値を示した。
[比較例5]
 実施例9と同様にして、電解液に比較例1で用いた電解液Iを用いてリチウムイオン二次電池を作製し、電池性能評価を行った。結果、電解液Iを備えるリチウムイオン二次電池の1サイクル目の放電容量は、157mAh/gであり、100サイクル目の放電容量は、96mAh/gであり、100サイクル目の放電容量を1サイクル目の放電容量で除した放電容量維持率は、61%であった。
 実施例23から実施例27、および比較例5の結果を表4にまとめる。本結果からわかるように、ケイ素原子を有する化合物(D)を含有する電解液を用いることにより、満充電時の電位が4.45V(vsLi/Li)もの高電位の正極を用いた場合においても、サイクル寿命を大幅に改善できることがわかる。
Figure JPOXMLDOC01-appb-T000044
 以上より、本発明によれば、4.4V(vsLi/Li)以上の高電圧で作動する正極活物質を含有する正極を備える場合でも、高いサイクル寿命を有するリチウムイオン二次電池が達成されることが示された。
 本出願は、2013年10月4日に日本国特許庁へ出願された日本特許出願(特願2013-209015)、及び、2013年10月4日に日本国特許庁へ出願された日本特許出願(特願2013-209009)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の非水蓄電デバイス用電解液、及びそれを用いたリチウムイオン二次電池は、各種民生用機器用電源、自動車用電源への産業上利用可能性を有する。
 100…リチウムイオン二次電池、110…セパレータ、120…正極、130…負極、140…正極集電体、150…負極集電体、160…電池外装。

Claims (22)

  1.  非水溶媒と、
     リチウム塩(A)と、
     下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3a)で表される構成単位と下記式(3b)で表される構成単位とを有する化合物からなる群より選ばれる一種以上の化合物(B)と、
     を含有する、電解液。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、Xは、Li原子又は水素原子を示し、Mは、P原子又はB原子を示し、MがB原子のときnは0の整数を示し、MがP原子のときnは0又は1の整数を示し、R及びRは、各々独立に、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、Xは、Li原子又は水素原子を示し、Rは、置換されていてもよい炭素数1から20の炭化水素基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3a)中、Rは、OH基、OLi基、置換されていてもよい炭素数1から10のアルキル基、置換されていてもよい炭素数1から10のアルコキシ基、置換されていてもよい炭素数6から10のアリール基、置換されていてもよい炭素数6から10のアリールオキシ基、及び炭素数3から10のシロキシ基からなる群より選ばれる基を示し、上記式(3b)中、Xは、Li原子又は水素原子を示す。)
  2.  前記化合物(B)の含有量が、前記電解液100質量%に対して、0.010質量%以上10質量%以下である、請求項1に記載の電解液。
  3.  前記リチウム塩(A)が、下記式(4)で表されるホウ素原子を有するリチウム塩(C)、を含む、請求項1又は2に記載の電解液。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
  4.  前記リチウム塩(A)が、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムからなる群より選ばれる1種以上のリチウム塩を、含有する、請求項1~3のいずれかに記載の電解液。
  5.  前記非水溶媒が、環状カーボネート及び鎖状カーボネートを含有する、請求項1~4のいずれか1項に記載の電解液。
  6.  前記環状カーボネートが、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上を含み、
     前記鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上を含む、請求項5に記載の電解液。
  7.  正極活物質を含有する正極と、
     負極活物質を含有する負極と、
     請求項1~6のいずれか1項に記載の電解液と、
     を備える、リチウムイオン二次電池。
  8.  前記正極活物質が、4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する、請求項7に記載のリチウムイオン二次電池。
  9.  前記正極活物質が、式(5)で表される酸化物、式(6)で表される酸化物、式(7)で表される複合酸化物、式(8)で表される化合物、式(9)で表される化合物からなる群より選ばれる1種以上を含む、請求項7又は8に記載のリチウムイオン二次電池。
     LiMn2-xMa           (5)
    (上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
    LiMn1-uMe            (6)
    (上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
     zLiMcO-(1-z)LiMdO  (7)
    (上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
     LiMb1-yFePO          (8)
    (上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
     LiMfPOF             (9)
    (上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
  10.  満充電時におけるリチウム基準の正極電位が、4.4V(vsLi/Li)以上である、請求項7~9のいずれか1項に記載のリチウムイオン二次電池。
  11.  非水溶媒、リチウム塩(A)、並びに、下記式(10)及び/又は下記式(11)で表されるケイ素原子を有する化合物(D)、を含有し、
     前記ケイ素原子を有する化合物(D)の含有量が、0.0010質量%以上3.0質量%以下である、電解液。
       SiFR     (10)
    (上記式(10)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
       SiF     (11)
    (上記式(11)中、R及びRは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示す。)
  12.  スルホン酸、カルボン酸、並びに、リン原子及び/又はホウ素原子を有するプロトン酸からなる群より選ばれる酸の水素原子の少なくとも1つが下記式(12)で表される置換基で置換された化合物(E)を含有する、請求項11に記載の電解液。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(12)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示す。)
  13.  前記化合物(E)が、下記式(13)及び/又は下記式(14)で表される化合物を含む、請求項12に記載の電解液。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(13)中、Mは、リン原子又はホウ素原子を示し、Mがリン原子のときnは0又は1であり、Mがホウ素原子のときnは0であり、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、R及びRは、各々独立に、OH基、OLi基、置換されてもよい炭素数1から10のアルキル基、置換されてもよい炭素数1から10のアルコキシ基、炭素数3から10のシロキシ基、炭素数6から15のアリール基、及び炭素数6から15のアリールオキシ基からなる群より選ばれる基を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (上記式(14)中、R、R、及びRは、各々独立に、置換されていてもよい炭素数1から10の有機基を示し、Rは置換されていてもよい炭素数1から20の有機基を示す。)
  14.  前記化合物(E)の含有量が、電解液100質量%に対して、0.010質量%以上10質量%以下である、請求項12又は13に記載の電解液。
  15.  前記リチウム塩(A)が、LiPFを含む、請求項11~14のいずれか1項に記載の電解液。
  16.  前記リチウム塩(A)が、ジフルオロリン酸リチウム塩及びモノフルオロリン酸リチウム塩からなる群より選ばれる1種以上を含む、請求項11~15のいずれか1項に記載の電解液。
  17.  前記リチウム塩(A)が、下記式(4)で表されるホウ素原子を有するリチウム塩(C)を含む、請求項11~16のいずれか1項に記載の電解液。
    Figure JPOXMLDOC01-appb-C000008
    (上記式(4)中、Xは、各々独立に、フッ素原子、塩素原子、及び臭素原子からなる群より選ばれるハロゲン原子を示し、Rは、各々独立に、置換されていてもよい炭素数1から10の炭化水素基を示し、aは0又は1の整数を示し、nは0~2の整数を示す。)
  18.  前記非水溶媒が、環状カーボネートと、鎖状カーボネートと、を含有する、請求項11~17のいずれか1項に記載の電解液。
  19.  前記環状カーボネートが、エチレンカーボネート及びプロピレンカーボネートからなる群より選ばれる1種以上を含み、
     前記鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートからなる群より選ばれる1種以上を含む、請求項18に記載の電解液。
  20.  4.4V(vsLi/Li)以上の電位において10mAh/g以上の放電容量を有する正極活物質を備える正極と、
     負極活物質を備える負極と、
     請求項11~19のいずれか1項に記載の電解液と、を有する、
     リチウムイオン二次電池。
  21.  満充電時におけるリチウム基準の正極電位が、4.4V(vsLi/Li)以上である、請求項20に記載のリチウムイオン二次電池。
  22.  前記正極活物質が、下記式(5)で表される酸化物、下記式(6)で表される酸化物、下記式(7)で表される複合酸化物、下記式(8)で表される化合物、及び下記式(9)で表される化合物からなる群より選ばれる1種以上を含む、請求項20又は21に記載のリチウムイオン二次電池。
       LiMn2-xMa           (5)
    (上記式(5)中、Maは遷移金属からなる群より選ばれる1種以上を示し、xは0.2≦x≦0.7である。)
       LiMn1-uMe           (6)
    (上記式(6)中、MeはMnを除く遷移金属からなる群より選ばれる1種以上を示し、uは0.1≦u≦0.9である。)
       zLiMcO-(1-z)LiMdO  (7)
    (上記式(7)中、Mc及びMdは、各々独立に、遷移金属からなる群より選ばれる1種以上を示し、zは0.1≦z≦0.9である。)
       LiMb1-yFePO          (8)
    (上記式(8)中、Mbは、Mn及びCoからなる群より選ばれる1種以上を示し、yは0≦y≦0.9である。)
       LiMfPOF             (9)
    (上記式(9)中、Mfは遷移金属からなる群より選ばれる1種以上を示す。)
PCT/JP2014/076213 2013-10-04 2014-09-30 電解液及びリチウムイオン二次電池 WO2015050142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480051178.7A CN105556732B (zh) 2013-10-04 2014-09-30 电解液和锂离子二次电池
EP14850357.6A EP3054521B1 (en) 2013-10-04 2014-09-30 Electrolyte and lithium-ion secondary battery
US15/025,192 US10050306B2 (en) 2013-10-04 2014-09-30 Electrolyte and lithium-ion secondary battery
KR1020167006406A KR101848189B1 (ko) 2013-10-04 2014-09-30 전해액 및 리튬 이온 이차전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013209009 2013-10-04
JP2013209015 2013-10-04
JP2013-209015 2013-10-04
JP2013-209009 2013-10-04

Publications (1)

Publication Number Publication Date
WO2015050142A1 true WO2015050142A1 (ja) 2015-04-09

Family

ID=52778730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076213 WO2015050142A1 (ja) 2013-10-04 2014-09-30 電解液及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US10050306B2 (ja)
EP (1) EP3054521B1 (ja)
KR (1) KR101848189B1 (ja)
CN (1) CN105556732B (ja)
HU (1) HUE055266T2 (ja)
WO (1) WO2015050142A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140887A (zh) * 2015-09-17 2018-06-08 株式会社艾迪科 非水电解液及非水电解液二次电池
WO2019208246A1 (ja) * 2018-04-27 2019-10-31 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2019220829A1 (ja) * 2018-05-14 2019-11-21 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019536739A (ja) * 2016-09-21 2019-12-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ホスホネートをベースとするリチウム錯体
JPWO2020175513A1 (ja) * 2019-02-27 2020-09-03
JP2022547057A (ja) * 2019-09-04 2022-11-10 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908375B1 (en) 2013-10-28 2018-09-19 LG Chem, Ltd. Lithium secondary battery
CN106058316A (zh) * 2016-08-10 2016-10-26 东莞市凯欣电池材料有限公司 一种高镍三元锂离子动力电池电解液及高镍三元锂离子动力电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN108110317A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
US10461364B2 (en) 2017-04-20 2019-10-29 Uchicago Argonne, Llc Electrolyte additives for lithium-ion batteries under high-voltage operation
KR102460957B1 (ko) * 2017-08-03 2022-10-31 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN109950620B (zh) * 2017-12-20 2021-05-14 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及锂离子电池
US10840552B2 (en) 2017-12-29 2020-11-17 Uchicago Argonne, Llc Additives for high voltage lithium ion batteries
WO2019180945A1 (ja) 2018-03-23 2019-09-26 富山薬品工業株式会社 蓄電デバイス用電解質及び非水電解液
JP7110350B2 (ja) * 2018-07-26 2022-08-01 三井化学株式会社 ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、並びに、リチウム二次電池及びその製造方法
CN109546215A (zh) * 2018-11-02 2019-03-29 珠海市赛纬电子材料股份有限公司 一种防止钢壳腐蚀的非水锂离子电池用电解液
WO2020116574A1 (ja) * 2018-12-05 2020-06-11 日立化成株式会社 電解液及び電気化学デバイス
CN110265716B (zh) * 2019-06-13 2021-12-10 东莞维科电池有限公司 一种锂离子电池电解液及锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076786A (ja) 1992-11-18 1995-01-10 Sony Corp 非水電解液及び非水電解液電池
JP2000515672A (ja) 1996-07-22 2000-11-21 日本電池株式会社 リチウムバッテリ用正極
JP2009163939A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 非水系電解液
WO2012057311A1 (ja) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 非水系電解液及び非水系二次電池
WO2012170688A2 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for battery electrolytes and methods for use
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
JP2013098057A (ja) * 2011-11-01 2013-05-20 Asahi Kasei Corp 電解液用添加剤及びそれを含む電解液、リチウムイオン二次電池
WO2013114946A1 (ja) * 2012-02-03 2013-08-08 日本電気株式会社 リチウム二次電池
JP2013152825A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2013168821A1 (ja) * 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027626A1 (de) * 2000-06-07 2001-12-13 Merck Patent Gmbh Silanverbindungen als Additive in Elektrolyten für elektrochemischen Zellen
DE60143070D1 (de) * 2000-10-03 2010-10-28 Central Glass Co Ltd Elektrolyt für elektrochemische Vorrichtung
JP4448275B2 (ja) * 2001-05-11 2010-04-07 三星エスディアイ株式会社 リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP4367001B2 (ja) 2002-06-25 2009-11-18 三菱化学株式会社 非水電解液二次電池
JP2004039510A (ja) * 2002-07-05 2004-02-05 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP4450550B2 (ja) 2002-11-21 2010-04-14 三井化学株式会社 非水電解液およびそれを用いた二次電池
KR20040092425A (ko) * 2003-04-25 2004-11-03 미쓰이 가가쿠 가부시키가이샤 리튬전지용 비수전해액 및 리튬이온 이차전지
JP5671770B2 (ja) 2005-11-16 2015-02-18 三菱化学株式会社 リチウム二次電池
JP4972922B2 (ja) 2005-12-14 2012-07-11 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
KR200427903Y1 (ko) 2006-07-18 2006-10-02 세림교역주식회사 화장용 항균 브러시
KR101264332B1 (ko) * 2006-09-20 2013-05-14 삼성에스디아이 주식회사 캐소드 활물질 및 이를 채용한 리튬 전지
JP5508674B2 (ja) 2007-01-04 2014-06-04 株式会社東芝 非水電解質電池、電池パック及び自動車
JP2010205474A (ja) 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk 非水電解液及びそれを備えたリチウムイオン二次電池
KR101002652B1 (ko) * 2009-04-01 2010-12-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP5549438B2 (ja) 2009-07-30 2014-07-16 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP5525057B2 (ja) 2009-11-16 2014-06-18 ダウ グローバル テクノロジーズ エルエルシー リン−硫黄化合物を含有する電池電解質溶液
JP5908470B2 (ja) 2010-07-28 2016-04-26 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びそれを含むリチウム二次電池
KR101929599B1 (ko) 2011-02-10 2018-12-14 미쯔비시 케미컬 주식회사 2 차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076786A (ja) 1992-11-18 1995-01-10 Sony Corp 非水電解液及び非水電解液電池
JP2000515672A (ja) 1996-07-22 2000-11-21 日本電池株式会社 リチウムバッテリ用正極
JP2009163939A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 非水系電解液
WO2012057311A1 (ja) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 非水系電解液及び非水系二次電池
WO2012170688A2 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for battery electrolytes and methods for use
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
JP2013098057A (ja) * 2011-11-01 2013-05-20 Asahi Kasei Corp 電解液用添加剤及びそれを含む電解液、リチウムイオン二次電池
JP2013152825A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2013114946A1 (ja) * 2012-02-03 2013-08-08 日本電気株式会社 リチウム二次電池
WO2013168821A1 (ja) * 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140887A (zh) * 2015-09-17 2018-06-08 株式会社艾迪科 非水电解液及非水电解液二次电池
CN108140887B (zh) * 2015-09-17 2021-03-12 株式会社艾迪科 非水电解液及非水电解液二次电池
JP2019536739A (ja) * 2016-09-21 2019-12-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ホスホネートをベースとするリチウム錯体
JP7039572B2 (ja) 2016-09-21 2022-03-22 ビーエーエスエフ ソシエタス・ヨーロピア ホスホネートをベースとするリチウム錯体
JP2022023176A (ja) * 2018-04-27 2022-02-07 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2019208246A1 (ja) * 2018-04-27 2019-10-31 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7284422B2 (ja) 2018-04-27 2023-05-31 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2019208246A1 (ja) * 2018-04-27 2021-01-07 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7007615B2 (ja) 2018-04-27 2022-01-24 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7148819B2 (ja) 2018-05-14 2022-10-06 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2022017428A (ja) * 2018-05-14 2022-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2019220829A1 (ja) * 2018-05-14 2021-01-14 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7284423B2 (ja) 2018-05-14 2023-05-31 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2019220829A1 (ja) * 2018-05-14 2019-11-21 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2020175513A1 (ja) * 2019-02-27 2020-09-03
JP7277819B2 (ja) 2019-02-27 2023-05-19 ダイキン工業株式会社 化合物、電解液用添加剤、電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
US12113171B2 (en) 2019-02-27 2024-10-08 Daikin Industries, Ltd. Compound, electrolytic solution additive, electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP2022547057A (ja) * 2019-09-04 2022-11-10 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池
JP7362905B2 (ja) 2019-09-04 2023-10-17 東友ファインケム株式会社 リチウム二次電池用電解質およびこれを含むリチウム二次電池

Also Published As

Publication number Publication date
KR20160040716A (ko) 2016-04-14
US20160240888A1 (en) 2016-08-18
EP3054521A1 (en) 2016-08-10
EP3054521A4 (en) 2017-03-01
US10050306B2 (en) 2018-08-14
EP3054521B1 (en) 2021-06-16
HUE055266T2 (hu) 2021-11-29
KR101848189B1 (ko) 2018-04-11
CN105556732B (zh) 2018-04-03
CN105556732A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2015050142A1 (ja) 電解液及びリチウムイオン二次電池
JP2015076403A (ja) 非水蓄電デバイス用電解液及びリチウムイオン二次電池
WO2015098471A1 (ja) シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
JP2015156372A (ja) 非水蓄電デバイス用電解液及びリチウムイオン二次電池
JP6600449B2 (ja) リチウムイオン二次電池
JP2016186910A (ja) 電解液及びリチウムイオン二次電池
JP2015072867A (ja) リチウムイオン二次電池の製造方法
JP2014022333A (ja) 非水蓄電デバイス用電解液
JP2014022332A (ja) 非水蓄電デバイス用電解液
JP2016189327A (ja) 非水蓄電デバイス用電解液の添加剤
JP2015092470A (ja) 電解液及びリチウムイオン二次電池
JP2017069146A (ja) 化合物、添加剤、電解液及びリチウムイオン二次電池
JP2015072856A (ja) 非水蓄電デバイス用電解液及びリチウムイオン二次電池
JP2015125907A (ja) 非水蓄電デバイス用電解液及びリチウムイオン二次電池
JP2013098057A (ja) 電解液用添加剤及びそれを含む電解液、リチウムイオン二次電池
JP2016192401A (ja) 非水蓄電デバイス用電解液添加剤、非水蓄電デバイス用電解液、及びリチウムイオン二次電池
JP2014022334A (ja) 非水蓄電デバイス用電解液
JP2015092478A (ja) リチウムイオン二次電池の製造方法
JP2013191390A (ja) リチウムイオン二次電池
JP2015072858A (ja) 非水電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP2015060819A (ja) 非水電解液、及び該非水電解液を用いたリチウムイオン二次電池
JP6491447B2 (ja) 電解液及びリチウムイオン二次電池
JP2014022335A (ja) 非水蓄電デバイス用電解液
JP2016196452A (ja) 化合物、電解液添加剤、電解液、リチウムイオン二次電池
JP2015201310A (ja) 非水蓄電デバイス用電解液及びリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051178.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006406

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014850357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE