WO2014163084A1 - マルチコア光ファイバ及びマルチコア光ファイバケーブル - Google Patents

マルチコア光ファイバ及びマルチコア光ファイバケーブル Download PDF

Info

Publication number
WO2014163084A1
WO2014163084A1 PCT/JP2014/059656 JP2014059656W WO2014163084A1 WO 2014163084 A1 WO2014163084 A1 WO 2014163084A1 JP 2014059656 W JP2014059656 W JP 2014059656W WO 2014163084 A1 WO2014163084 A1 WO 2014163084A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
core optical
cross
mass
Prior art date
Application number
PCT/JP2014/059656
Other languages
English (en)
French (fr)
Inventor
塚本 好宏
武史 北山
英樹 木原
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201480018719.6A priority Critical patent/CN105103018B/zh
Priority to JP2014521383A priority patent/JP6460321B2/ja
Priority to US14/770,895 priority patent/US9448358B2/en
Priority to EP14779336.8A priority patent/EP2983022B1/en
Publication of WO2014163084A1 publication Critical patent/WO2014163084A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/046Light guides characterised by the core material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/048Light guides characterised by the cladding material

Definitions

  • the present invention relates to a multi-core optical fiber cable used in a LAN (local area network), FA (factory automation), OA (office automation) or the like as a high-speed optical signal transmission medium.
  • LAN local area network
  • FA factor automation
  • OA office automation
  • plastic optical fibers have been developed that have advantages such as low cost, light weight, large diameter, easy end face processing and handling, lighting applications, sensor applications, indoor wiring for FA, OA, LAN, etc. It has been put into practical use in the field of short / medium-distance communication applications such as wiring in a mobile body such as LAN.
  • Patent Document 1 JP-A-11-95048
  • a PMMA resin is used to form a plurality of cores and a clad is formed using a vinylidene fluoride-tetrafluoroethylene-hexafluoropropene copolymer having a specific composition.
  • a multi-core plastic optical fiber cable has been proposed that exhibits excellent heat resistance by protective coating with a vinylidene fluoride resin.
  • Patent Document 2 discloses that the bending loss can be reduced by setting the refractive index difference between the core and the clad of the multi-core plastic optical fiber and the ratio of the cross-sectional area between the core and the clad within a specific range. It is disclosed.
  • Patent Document 3 discloses that the transmission loss can be reduced and the bending loss can be reduced in a wide transmission band by setting the refractive index difference between the core and the clad of the multi-core plastic optical fiber within a specific range.
  • WO 98/35247 discloses a technique for reducing bending loss and increasing the amount of received light by using a multi-core plastic optical fiber having a structure having two layers of clad having different refractive indexes.
  • Patent Document 5 in Japanese Patent Laid-Open No. 11-160553 (Patent Document 5), in a multi-core plastic optical fiber, the cross-sectional area of the core is specified, and the core shape at the center is a hexagonal structure to reduce bending loss and increase the amount of received light.
  • Technology is disclosed.
  • Patent Document 6 discloses a technique for improving heat resistance by covering a plastic optical fiber with a resin mainly composed of a polypropylene resin.
  • Patent Document 7 discloses a technique for improving heat resistance by coating water-crosslinked polyethylene on the outside of a plastic optical fiber.
  • Patent Documents 1 to 4 described above the core occupying ratio in the fiber cross section cannot be increased because each core shape is to be maintained in a nearly circular structure, so that sufficient light reception can be achieved compared to a single-core plastic optical fiber.
  • the amount cannot be secured.
  • the substantial core cross-sectional area is improved by making the core shape a polygon.
  • the cross-sectional area of each core is small, the amount of light received by each core decreases, A sufficient amount of received light cannot be secured for the entire optical fiber.
  • the first object of the present invention is to reduce the loss of the amount of light received by using a multi-core while maintaining the characteristic of reducing bending loss, which is a feature of the multi-core plastic optical fiber, and to achieve a single-core plastic optical fiber. Is to obtain the same amount of received light.
  • Patent Documents 6 and 7 are all about single-core plastic optical fibers, and it is unclear whether the same effect can be obtained with multi-core plastic optical fibers.
  • a second object of the present invention is to provide a multi-core optical fiber cable having high heat resistance characteristics.
  • the present invention is as follows.
  • the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber is 80 to 95%.
  • the occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber is 82 to 93%.
  • the sea part material is a fluororesin containing at least a vinylidene fluoride unit and having a heat of crystal melting of 70 mJ / mg or less in differential scanning calorimetry.
  • melt spinning is performed on 82 to 93% by mass of the core material and 7 to 18% by mass of the sea part material.
  • the multicore optical fiber according to [1] wherein the core material is 82 to 93% by mass, the clad material is 0.1 to 8% by mass, and the sea part material is 6.9 to 17.9% by mass. Manufacturing method.
  • a multi-core optical fiber that can reduce the bending loss and at the same time obtain a light receiving amount equivalent to that of a single-core plastic optical fiber.
  • a multi-core optical fiber cable having high heat resistance can be provided.
  • the multi-core optical fiber of the present invention has a structure having a plurality of cores, preferably seven or more cores, and a sea part formed around each core, and is substantially circular. Has a cross section. More preferably, it has 19 or more cores. Particularly preferably, it has 19 cores.
  • the sea portion is configured around each core portion.
  • One or more clads may exist between the core and the sea.
  • a multi-core optical fiber having a core, a clad and a sea part as shown in FIG. 3 may be used, and a multi-core optical fiber having a core and a sea part as shown in FIG. 4 may be used.
  • the multi-core optical fiber of the present invention satisfies at least the following condition 1 or condition 2.
  • condition 1 or condition 2 The occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber is 80 to 95%.
  • Condition 2 The occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber is 82 to 93%.
  • the “outer region” of the cross-section of the multi-core optical fiber refers to the case where a concentric circle having a diameter of 60% from the center of the fiber diameter having a substantially circular cross-section is drawn in the cross-section of the optical fiber. A region sandwiched between the outer side of the concentric circle and the outer periphery of the fiber (see FIG. 2).
  • the cross section of the optical fiber and the cross section of the core refer to a cross section perpendicular to the length direction of the fiber.
  • “Occupancy ratio of the total cross-sectional area of the core” in the outer region of the multi-core optical fiber is the total cross-sectional area of the core part included in the outer region of the cross-section of the multi-core optical fiber relative to the total area of the outer region of the cross-section of the multi-core optical fiber. This is the ratio of occupancy.
  • the occupation ratio of the total cross-sectional area of the core in the outer region of the cross-section of the multi-core optical fiber is preferably 81 to 90%.
  • the occupation ratio of the total cross-sectional area of the core in the outer region of the cross-section of the multi-core optical fiber By setting the occupation ratio of the total cross-sectional area of the core in the outer region of the cross-section of the multi-core optical fiber to 80% or more, even when a light source with a large numerical aperture is used, a high light reception amount equivalent to that of a single-core optical fiber can be obtained. Obtainable.
  • the occupation ratio of the total cross-sectional area of the core in the outer region of the cross-section of the multi-core optical fiber can be further increased by reducing the diameter of each arrayed core and increasing the filling rate. The amount of light received alone decreases. In order to ensure the amount of light received as the entire optical fiber, it is necessary to set the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber to 90% or less.
  • the occupation ratio of the total cross-sectional area of the core in the cross-section of the multi-core optical fiber refers to the ratio of the total cross-sectional area of the core portion included in the cross-section of the multi-core optical fiber to the total cross-sectional area of the multi-core optical fiber.
  • the core occupation ratio in the multi-core optical fiber is preferably 84 to 88%. When the total cross-sectional area of the core portion occupies 82 to 93%, a sufficient amount of received light can be obtained.
  • the occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber By setting the occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber to 82% or more, even when a light source having a large numerical aperture is used, a high light reception amount equivalent to that of a single-core optical fiber can be obtained. it can. Furthermore, the occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber can be further increased by reducing the diameter of each arranged core and increasing the filling rate. The amount decreases. In order to secure the amount of light received as the entire optical fiber, it is necessary that the occupation ratio of the total cross-sectional area of the core in the cross section of the multi-core optical fiber be 93% or less.
  • the cores arranged on the outermost periphery preferably have at least two different shapes.
  • the shape is not particularly limited, and can take any shape.
  • the shape may be a polygon, and there is no particular problem even if each side has a straight line or a curvature.
  • a rectangular or pentagonal elliptical shape is preferable.
  • the material of the core is not limited, and may be, for example, glass or plastic. It is preferable to use plastic as the core part because it is excellent in processability and mechanical properties when manufacturing an optical fiber. In this specification, either optical fiber can be used, but a plastic optical fiber (POF) will be described as a representative.
  • the material constituting the core is preferably polymethyl methacrylate (PMMA) or a copolymer of methyl methacrylate (MMA) and one or more monomers other than methyl methacrylate.
  • the copolymer a copolymer of at least one vinyl monomer and a methyl methacrylate monomer (hereinafter referred to as PMMA resin) is more preferably used.
  • PMMA resin a copolymer of at least one vinyl monomer and a methyl methacrylate monomer
  • the content of the MMA unit is preferably 50% by mass or more, more preferably 60% by mass or more, and most preferably 70% by mass or more from the viewpoint of sufficiently ensuring transparency.
  • the copolymerization component of the MMA unit a monomer unit that has been proposed as a core material for plastic optical fiber (POF), such as a methacrylic acid ester unit and an acrylic acid ester unit, can be appropriately selected.
  • PPF plastic optical fiber
  • the material of the sea part that forms the periphery of each core part preferably includes at least a vinylidene fluoride (VdF) unit (such a material is hereinafter referred to as “vinylidene fluoride-containing”). More preferably, it is made of a vinylidene fluoride-containing resin containing units of vinylidene fluoride and tetrafluoroethylene (TFE).
  • VdF vinylidene fluoride
  • a vinylidene fluoride-containing resin containing a TFE unit together with a vinylidene fluoride (VdF) unit is preferable in that it has excellent chemical resistance and impact resistance, and has a low refractive index and excellent heat resistance.
  • vinylidene fluoride resins include copolymers of VdF units and TFE units, copolymers of VdF units, TFE units, and HFP (hexafluoropropylene) units, and VdF units and HFP units.
  • a copolymer of a TFE unit and a hexafluoroacetone unit can be mentioned, but is not limited thereto.
  • the vinylidene fluoride-containing resin it is particularly preferable to use VdF units and HFP units because a resin having high transparency and excellent stability during POF melt spinning can be obtained.
  • a binary copolymer comprising 60 to 90% by mass of VdF units and 10 to 40% by mass of TFE units; A terpolymer comprising 10 to 60% by mass of VdF units, 20 to 70% by mass of TFE units, and 5 to 35% by mass of HFP units; A terpolymer comprising 5 to 25% by mass of VdF units, 50 to 80% by mass of TFE units, and 5 to 25% by mass of perfluoro (fluoro) alkyl vinyl ether units; A terpolymer comprising 5 to 60% by mass of ethylene units, 25 to 70% by mass of TFE units, and 5 to 45% by mass of HFP units; A quaternary copolymer comprising 10 to 30% by mass of VdF units, 40 to 68% by mass of TFE units, 21 to 40% by mass of HFP units, and 1 to 15% by mass of perfluoro (fluoro) alkyl vinyl ether units; Etc.
  • FVE unit perfluoro alkyl vinyl ether unit
  • CF 2 CF- (OCF 2 CF (CF 3)) aO-Rf 2 (I)
  • Rf 2 represents an alkyl group or fluoroalkyl group having 1 to 8 carbon atoms, an alkoxylalkyl group or a fluoroalkoxylalkyl group, and a is an integer of 0 to 3
  • Rf 2 represents an alkyl group or fluoroalkyl group having 1 to 8 carbon atoms, an alkoxylalkyl group or a fluoroalkoxylalkyl group, and a is an integer of 0 to 3
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF2CF 3
  • CF 2 CFOCH 2 CF 3
  • CF 2 CFOCH 2 CF 2 CF 3
  • the crystallinity of the vinylidene fluoride-containing resin can be expressed using the heat of crystal fusion measured by differential scanning calorimetry (DSC) as an index.
  • the heat of crystal melting is the amount of heat generated due to the thermal melting of crystal components derived from the TFE unit and VdF unit of the vinylidene fluoride-containing resin, and the higher the value, the higher the crystallinity of the resin.
  • the vinylidene fluoride-containing resin has a relatively low crystallinity, and an increase in transmission loss of the POF cable can be suppressed even when placed in a high temperature environment for a long time. More preferably, it is 50 mJ / mg or less, and more preferably 20 mJ / mg or less.
  • a known material used as a POF clad material such as a fluorinated methacrylate polymer or a vinylidene fluoride polymer is appropriately selected as a resin for forming a clad.
  • a fluorinated methacrylate polymer or a vinylidene fluoride polymer is appropriately selected as a resin for forming a clad.
  • at least the fluorinated methacrylate has features such as easy adjustment of the refractive index, high transparency and high heat resistance, and excellent flexibility and workability. It is preferable to use a fluorinated methacrylate polymer containing a unit.
  • the fluorinated methacrylate-based copolymer 0 to 80% by mass of the long-chain fluoroalkyl methacrylate unit (C), 10 to 90% by mass of the short-chain fluoroalkyl methacrylate unit (D), and other copolymers
  • a copolymer having a monomer unit (E) of 10 to 50% by mass and a refractive index in the range of 1.39 to 1.435 can be exemplified.
  • POF It is possible to further reduce the bending light amount loss when the cable is bent.
  • the transmission band can be widened, but the effect of suppressing the bending light loss due to the sea tends to be insufficient. It is desirable to design appropriately so that the required transmission band and bending light loss can be obtained according to the environment.
  • the other copolymerizable monomer units (E) are not particularly limited, but methyl (meth) acrylate units are used to improve transparency, and ethyl (meth) acrylate is used to improve mechanical properties.
  • (Meth) acrylic acid alkyl ester units such as (meth) butyl acrylate, (meth) acrylic acid cyclohexyl, (meth) acrylic acid methyl cyclohexyl, (meth) acrylic acid bornyl, (meta) ) Units of (meth) acrylic acid cycloalkyl esters such as isobornyl acrylate and adamantyl (meth) acrylate, units of (meth) acrylic acid aromatic esters such as phenyl (meth) acrylate and benzyl (meth) acrylate, Units of hexafluoroneopentyl (meth) acrylate, N-methylmaleimide, N-ethylmaleimide, N-propyl N-
  • (meth) acrylic acid is used as another copolymerizable monomer (E) from the viewpoint of obtaining a POF cable excellent in transparency, long-term heat resistance at around 100 to 105 ° C., and mechanical strength. Particular preference is given to using methyl units.
  • the Tg of the clad is about 100 ° C. or higher, but in the POF cable of the present invention, the Tg is 70 to 90 ° C. Even when a known fluorinated methacrylate polymer is used, long-term heat resistance at 100 to 105 ° C. can be satisfied.
  • the known fluorinated methacrylate polymer having a Tg of about 70 to 90 ° C. is not limited to the clad, and when the clad is composed of two or more layers, it can be applied to other layers except the outermost layer.
  • a fluorinated methacrylate polymer having a Tg of 70 ° C. to 90 ° C. is more flexible than a fluorinated methacrylate polymer having a Tg of around 100 ° C. or higher, and has a characteristic that it is difficult to break.
  • a POF cable having particularly excellent bending characteristics can be obtained.
  • the coating material for forming the coating layer of the POF cable of the present invention is excellent in heat resistance, flex resistance, chemical resistance and processability, and has an appropriate melting point, and has the optical transmission characteristics of the POF cable. It is preferable to use a resin that can easily coat POF without lowering. As such a resin, at least the innermost layer of the coating layer has a heat deformation temperature (load 4.6 kgf (45.1 N)) measured in accordance with ASTM D-648 of 90 ° C. or higher and a polypropylene resin as a main component. An olefin-based thermoplastic elastomer (X) in which an appropriate amount of a rubber component is blended with the resin component (F) is used.
  • X olefin-based thermoplastic elastomer
  • a resin mainly composed of a polypropylene resin is used in terms of improving the heat resistance of the POF cable.
  • Specific examples include at least one selected from polypropylene, a propylene-ethylene copolymer, a propylene- ⁇ olefin copolymer, and a blend composition of polypropylene and polyethylene.
  • a blend composition of polypropylene (G) and polyethylene (H) is preferable from the viewpoint that the heat resistance of the POF cable can be easily adjusted by appropriately selecting the blending ratio of the respective polymers (G, H).
  • the temperature at the time of forming a coating layer in POF can be set lower than 230 degreeC, and the fall of the optical performance of POF which generate
  • Polypropylene indicates isotactic or syndiotactic polypropylene, and polyethylene indicates low density, medium density or high density polyethylene.
  • the proportion of polypropylene (G) and polyethylene (H) may be appropriately selected according to the required temperature at which the POF cable is used.
  • the resin component is preferably composed of a mixture of 30 to 100 parts by weight of polypropylene (G) and 0 to 70 parts by weight of polyethylene (H).
  • the resin component preferably comprises a mixture of 0 to 50 parts by mass of polyethylene (G) and 50 to 100 parts by mass of polypropylene (H).
  • there is too much polyethylene (G) there exists a tendency for heat resistance to fall, such as a POF cable becoming easy to thermally deform at 100 degreeC or more.
  • examples of the rubber component include a copolymer (J) having ethylene and / or propylene units and non-conjugated diene units as main components, and a copolymer (K) obtained by hydrogenating the copolymer (J) (K). At least one polymer selected from (1) is preferred.
  • a block copolymer comprising a polymer block (L) having an ethylene and / or propylene unit as a main component and a polymer block (M) having a non-conjugated diene compound unit as a main component.
  • examples of the copolymer (K) include a block copolymer (O) obtained by hydrogenating the block copolymer (N).
  • non-conjugated diene monomer examples include ethylidene norbornene, 1,4-hexadiene, dichloropentadiene, and the like, but are not particularly limited thereto.
  • the terpolymer of ethylene-propylene-nonconjugated diene monomer can not only exhibit the above-described function as a rubber component and give the POF cable appropriate flexibility, but also the polyethylene of the resin component. There is an advantage that it also has the effect of improving the compatibility between (G) and polypropylene (H).
  • the hydrogenation of the copolymer (J) or (N) described above means that the copolymer (J) or (N) has an unsaturated bond (carbon / carbon double bond) in the main chain and is heat resistant. Since chemical stability such as weather resistance is inferior, it means that the unsaturated bond portion is changed to a stable saturated bond by hydrogenation. As the amount of residual double bonds contained in the main chain of the polymer decreases due to the hydrogenation reaction, that is, as the hydrogenation rate increases, the heat resistance, chemical resistance, weather resistance, etc. of the coating layer tend to improve. is there.
  • This olefin-based thermoplastic elastomer (X) exhibits the same behavior as a vulcanized rubber at low temperatures in addition to the effect that the soft block, which is a rubber component having entropy elasticity, has the effect of softening the POF cable at room temperature.
  • the hard block that is a resin component has an effect of preventing plastic deformation, and at high temperatures, the resin component does not soften to its crystalline melting point, so it has sufficient heat resistance and is flexible, Excellent workability.
  • this elastomer (X) is thermoplastic, it can be processed in the same manner as polyethylene and polypropylene, and does not require complicated post-crosslinking treatment after coating on POF. Since it does not contain low molecular weight compounds that migrate into POF, the heat and humidity resistance of the POF cable is also good.
  • the heat resistance and flexibility of the olefin-based thermoplastic elastomer (X) can be adjusted by the mixing ratio of the resin component and the rubber component.
  • a resin component (resin component (F) containing a polypropylene resin as a main component) 100 is used for an application requiring heat resistance of 100 ° C. or higher, further 125 ° C. or higher, which is required for automobile applications.
  • It is preferably composed of a resin composition containing 5 to 40 parts by mass of a rubber component (for example, a block copolymer (N and / or O)), based on 10 parts by mass of the resin composition. More preferably. If the rubber component is too much, the heat resistance of the POF cable and the molding stability when forming a coating layer on the POF tend to be lowered. If it is too little, a flexible POF cable cannot be obtained.
  • the olefin-based thermoplastic elastomer (X) it is possible to improve the heat resistance by crosslinking (vulcanizing) the copolymer (J) or (N).
  • the copolymer (J) or (N) is added to a sulfur compound as a vulcanizing agent (crosslinking agent), an organic peroxide as a crosslinking initiator, and in some cases, a filler or vulcanization accelerator.
  • a crosslinking treatment (vulcanization) is performed by adding an agent and a vulcanization acceleration aid.
  • a system that combines a vulcanizing agent (crosslinking agent), a crosslinking initiator, a vulcanization accelerator, and a vulcanization acceleration aid is called a vulcanization system.
  • the vulcanization system used is required for the structure, properties, and product of the polymer.
  • the type and amount of the vulcanization accelerator may be selected according to the performance to be performed and the product manufacturing method.
  • the vulcanization temperature needs to be higher than the decomposition temperature of the organic peroxide.
  • the kind of sulfur as a crosslinking agent there are sulfur white, deoxidized sulfur, powdered sulfur, precipitated sulfur, colloidal sulfur, etc., but powdered sulfur is most often used.
  • the selection of the organic peroxide needs to be selected depending on the vulcanization method and the type of crosslinking aid.
  • the organic peroxide include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and 1,1′-di-t-butylperoxy-3. , 3,5-trimethylenecyclohexane, 1,3-di- (t-butylperoxy) -diisopropylbenzene, and the like.
  • Examples of the filler include barium sulfate, zinc oxide, carbonates, metal powder, and high specific gravity metal powder.
  • Examples of the vulcanization accelerator include sulfenamide compounds, thiuram compounds, dithiocarbamates, zinc butylxanthate, thiourea compounds, thiazole compounds, aldehyde ammonia compounds, guanidine compounds, vulcanizations, and the like.
  • Examples of the type of the acceleration aid include stearic acid and zinc stearate.
  • thermoplastic elastomers examples include Miralastomer (trade name) manufactured by Mitsui Chemicals, Thermoran (trade name) manufactured by Mitsubishi Chemical, Sumitomo TPE manufactured by Sumitomo Chemical Co., Ltd. (product) Name). For example, if a resin capable of satisfying heat resistance of 100 ° C. or higher, further 125 ° C.
  • the olefin-based thermoplastic elastomer (X) needs to have a heat distortion temperature (load 4.6 kgf (45.1 N)) measured in accordance with ASTM D-648 of 90 ° C. or higher.
  • the heat distortion temperature is more preferably 100 ° C. or higher, and further preferably 110 ° C. or higher. If the heat distortion temperature is too low, when the POF cable is used at around 100 to 105 ° C., the coating layer tends to be significantly deformed and the optical performance of the POF tends to deteriorate.
  • the melt flow index of the olefinic thermoplastic elastomer (X) is preferably in the range of 5-50. If the melt flow index is too low, the orientation strain tends to increase when the coating layer is coated on the POF portion. If the processing temperature is raised to suppress this orientation strain, the POF tends to be thermally deteriorated. On the other hand, if the melt flow index is too high, the strength of the coating layer becomes extremely weak, which may cause inconvenience in use.
  • the olefin-based thermoplastic elastomer (X) includes an antioxidant, a light-blocking agent such as black inorganic pigment (for example, carbon black) for preventing external light from entering the POF, talc, glass fiber, Inorganic or organic fillers such as aromatic polyamide and carbon fiber may be included.
  • a light-blocking agent such as black inorganic pigment (for example, carbon black) for preventing external light from entering the POF, talc, glass fiber, Inorganic or organic fillers such as aromatic polyamide and carbon fiber may be included.
  • a secondary coating layer made of a thermoplastic resin may be formed on the outer periphery of the coating layer (primary coating layer) in the coating material.
  • the material for the secondary coating layer include vinyl chloride resin, polyethylene resin, polypropylene resin, chlorinated polyethylene resin, polyamide resin, polyurethane resin, fluorine resin, and ethylene-vinyl acetate copolymer. These can be used singly or in a combination of two or more appropriately selected according to the use environment of the POF cable. Particularly for automobile wiring, it is preferable to use a material excellent in oil resistance, heat resistance and the like as the secondary coating layer.
  • nylon 11, nylon 12, nylon 6, nylon 66, nylon 6-12 and other homopolymers, nylon copolymers composed of combinations of monomer units of these polymers, and flexible to these polymers A nylon-based elastomer into which various segments are introduced, and a polyamide-based resin containing this elastomer as a main component are preferable.
  • nylon-based elastomers or a mixture of nylon-based elastomers and other polyamide-based resins are preferable because they have good moldability and hardly cause thermal and mechanical damage to the POF cable.
  • a water-crosslinked polyolefin resin can also be used as a covering material for forming the covering layer of the POF cable of the present invention.
  • the water-crosslinked polyolefin-based resin has excellent bending resistance, solvent resistance, and processability, and has an appropriate melting point, and can easily coat POF strands without degrading the optical transmission characteristics of the POF cable. it can.
  • water-crosslinked polyethylene having a density of 0.935 g / cm 3 or more tends to improve not only long-term heat resistance but also oil resistance and gasoline resistance. It is preferable to use a resin.
  • the water-crosslinked polyolefin resin includes an antioxidant, an additive such as a black inorganic pigment such as carbon black for preventing external light from entering the POF, talc, glass fiber, aromatic A filler such as polyamide or carbon fiber may be included.
  • an additive such as a black inorganic pigment such as carbon black for preventing external light from entering the POF, talc, glass fiber, aromatic A filler such as polyamide or carbon fiber may be included.
  • the water-crosslinked polyolefin resin is prepared by, for example, kneading a compound having a crosslinkable functional group such as an alkoxysilane group with a polyolefin resin serving as a base polymer, and graft-polymerizing or copolymerizing (silyl-modified). It can be obtained by forming a body resin and reacting it with moisture or the like in the presence of a silanol condensation catalyst to form —Si—O—Si— bonds.
  • Examples of the base polymer of the water-crosslinked polyolefin resin include low density, medium density or high density polyethylene resin, isotactic or syndiotactic polypropylene resin, copolymers thereof, block copolymers, blends and the like.
  • a fluorine-containing olefin-based resin containing HFP units and FVE units is used as the sea outermost layer, and a coating layer made of the above-mentioned water-crosslinked polyolefin resin is formed on the outer periphery of the POF cable.
  • the adhesion of the layer can be further improved.
  • Production of the multi-core optical fiber of the present invention In the production of the multi-core optical fiber of the present invention, a known method can be used, but a production method of melt spinning using a melt compound spinning equipment is particularly preferable.
  • a production method of melt spinning using a melt compound spinning equipment is particularly preferable.
  • the spinning nozzles are arranged so that the center of the nozzles comes to the center and the line connecting the centers of the outermost nozzle holes is a regular hexagon (see Fig.
  • a plurality of core-cladding-sea structures are formed by supplying a component for forming a core, a component for forming a clad and a component for forming a sea part to the spinning nozzle (see FIG. 1, concentrically arranged nozzle cross-sectional shapes), Simultaneously with or after the formation of the core (-cladding) -sea structure, a plurality of cores (-cladding) -sea structures are integrated, and if necessary, a protective layer is coated and stretched. It is possible to manufacture the optical fiber.
  • the spinning nozzle is preferably a spinning nozzle arranged in a hexagonal arrangement because the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber can be increased.
  • a core When integrating a plurality of cores (-cladding) -sea structure, a core is used to form a hexagonal core so that the cores (-cladding) -sea structure are brought into close contact with each other to fill the gap.
  • a funnel As the base at the time of integration, a funnel having a cylindrical shape or a circular end surface is preferably used.
  • the drawing is performed after the optical fiber is formed, and the draw ratio can be appropriately adjusted within the range of 1.2 to 4 times so as to satisfy the required optical properties and mechanical properties.
  • any method such as heating using radiant heat using far infrared rays or heating using a liquid such as hot water may be used in addition to the method using hot air.
  • the coating layer may be coated on the outer periphery of the POF by a coating layer forming method that is generally used as a POF cable forming method.
  • a method of forming a water-crosslinked polyolefin precursor resin using a crosshead die is preferable.
  • the melt flow index of the water-crosslinked polyolefin precursor resin used for the coating layer is preferably in the range of 5-20.
  • the melt flow index is less than 5, the orientation strain tends to increase when the coating layer is coated on the POF.
  • the processing temperature is raised to suppress the orientation strain, the POF strand tends to be thermally deteriorated. is there.
  • the melt flow index is higher than 20, the strength of the coating layer tends to decrease.
  • the precursor resin is crosslinked with moisture.
  • the thermal efficiency is very superior to that in hot steam, and the crosslinking treatment can be performed in a very short time so that POF is not affected by thermal degradation.
  • the optical transmission characteristics at the initial stage of the POF cable are not significantly impaired.
  • sufficient relaxation treatment can be simultaneously applied to the POF drawn at the time of spinning, and the dimensional stability of the POF cable can also be improved.
  • the temperature during the crosslinking treatment is preferably 90 ° C. or higher, more preferably 95 ° C. or higher. At a temperature lower than 90 ° C., it takes a very long time to perform a sufficient water crosslinking reaction.
  • the crosslinking treatment can also be carried out at a temperature exceeding the boiling point of water of 100 ° C. by using an autoclave or the like under pressure. In that case, it is preferable to carry out at a temperature of 120 ° C. or less so as not to cause a decrease in the strength of the POF due to a decrease in the orientation orientation of the POF.
  • the time required for the crosslinking treatment with warm water is set according to the temperature of the warm water. For example, when the water temperature is 95 to 98 ° C., it is preferably in the range of 30 minutes to 6 hours, and more preferably in the range of 3 hours to 4 hours.
  • the treatment time is shorter than 30 minutes, the cross-linking reaction of the coating layer and the relaxation of the POF cable are insufficient, and there is a tendency that dimensional changes such as heat shrinkage of the POF cable and occurrence of pistoning easily occur.
  • the relaxation of the POF cable becomes excessive, and the optical transmission characteristics of the POF cable tend to deteriorate.
  • optical communication system including the multi-core optical fiber of the present invention.
  • the optical communication system of the present invention can be constructed by a conventional method without any limitation except that the multi-core optical fiber of the present invention is included as an optical fiber.
  • Another embodiment of the present invention is an optical fiber sensor including the multi-core optical fiber of the present invention.
  • the optical fiber sensor of the present invention can be manufactured by a conventional method without any particular limitation except that the multi-core optical fiber of the present invention is included as an optical fiber.
  • optical fiber light including the multi-core optical fiber of the present invention.
  • the optical fiber light of the present invention can be produced by a conventional method without any particular limitation except that the multi-core optical fiber of the present invention is included as an optical fiber.
  • Crystal melting heat ( ⁇ H) A differential scanning calorimeter (DSC) (manufactured by Seiko Instruments Inc., DSC-220) was used for the measurement. The sample was heated to 200 ° C. at a rate of temperature increase of 10 ° C./min, held in that state for 5 minutes and melted, and then cooled to 0 ° C. at a rate of temperature decrease of 10 ° C./min. This operation was repeated again, and the heat of crystal melting at this time was determined.
  • DSC differential scanning calorimeter
  • Example 1 PMMA (refractive index 1.492) as the core material, 2,2,2-trifluoroethyl methacrylate (3FM) / 2- (perfluorooctyl) ethyl methacrylate (17FM) / MMA / methacrylic acid (MAA) as the cladding material (51/30/18/1 (mass%)) copolymer (FM1) (refractive index 1.417), as a sea material, VdF / TFE / HFP (48/43/9 (mass%)) copolymer (Refractive index 1.375, crystal melting heat 14 mJ / mg), 86% by mass of core material, 5% by mass of clad material, and 9% by mass of sea material were respectively melted and supplied to a spinning head at 220 ° C.
  • Spinning is performed by combining a spinning nozzle in which six nozzle holes are arranged in a hexagonal array and a funnel-shaped die, and the yarn is drawn twice, and a multi-core plastic optical fiber having 19 optical transmission core portions.
  • the occupation ratio of the total cross sectional area of the core in the cross section of the multi-core optical fiber was 86.6%, and the occupation ratio of the total cross sectional area of the core in the outer region of the cross section of the multi core optical fiber was 81.6%.
  • the shape of the core portion in contact with the outer peripheral edge of this optical fiber was a quadrilateral or pentagonal elliptical shape.
  • FIG. 5 shows a schematic sectional view of the obtained multi-core plastic optical fiber.
  • this multi-core plastic optical fiber is cut to a length of 1 m by an optical fiber cable coated with polyethylene and having an outer diameter of 2.2 mm, and light having a wavelength of 650 nm and a numerical aperture (NA) of 0.1 and 0.65 is emitted from one end.
  • the emitted light quantity of this multi-core plastic optical fiber is 249.2 nA (P0.1), 219.4 nA (P0.65), and the light quantity ratio (P0.65 / 0.1) was 0.88.
  • the transmission band at 50 m and NA 0.3 was 213 MHz, which was a multi-core plastic optical fiber cable having an excellent transmission band. Detailed results are shown in Table 1.
  • Example 2 As in Example 1, except that a VdF / TFE / HFP (48/43/9 (mass%)) copolymer (refractive index 1.375, crystal melting heat 14 mJ / mg) was used as the clad material. A multi-core plastic optical fiber was obtained. The occupation ratio of the total cross-sectional area of the core in the cross section of the obtained multi-core optical fiber was 87.0%, and the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber was 85.9%.
  • the amount of emitted light was 250. 8nA (P0.1), 218.4 nA (P0.65), and the light quantity ratio (P0.65 / 0.1) are 0.87, which is high when light having a wide numerical aperture or a low numerical aperture is incident. The light intensity was maintained. Detailed results are shown in Table 1.
  • Example 3 A multi-core plastic optical fiber was obtained in the same manner as in Example 1 except that a spinning nozzle having nozzle holes arranged in a concentric arrangement was used.
  • the occupation ratio of the total cross-sectional area of the core in the cross section of the obtained multi-core optical fiber was 82.0%, and the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber was 80.3%.
  • FIG. 6 shows a schematic sectional view of the obtained multi-core plastic optical fiber.
  • Example 4 Multicore plastic light in the same manner as in Example 1 except that a VdF / TFE (80/20 (mol%)) copolymer (refractive index 1.402, heat of crystal melting 60 mJ / mg) was used as the clad material and the sea material. A fiber was obtained. The occupation ratio of the total cross-sectional area of the core in the cross section of the obtained multi-core optical fiber was 87.8%, and the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber was 87.6%.
  • Example 1 As a result of measuring the amount of emitted light in the same manner as in Example 1 by cutting an optical fiber cable having an outer diameter of 2.2 mm coated with polyethylene on the outer periphery of the multi-core plastic optical fiber and measuring the amount of emitted light in the same manner as in Example 1, the amount of emitted light was 253. 1 nA (P0.1), 212.5 nA (P0.65), and the light quantity ratio (P0.65 / 0.1) were 0.84. Detailed results are shown in Table 1.
  • Example 5 Adjust the discharge rate of each resin supply pump that supplies the core material, clad material, and sea material, reduce the core material polymer amount supplied to the spinning nozzle by 2%, reduce the clad material polymer supply amount by 40%, A multi-core plastic optical fiber was obtained in the same manner as in Example 1 except that the combined supply amount was adjusted to 44% (compared to Example 1). The occupation ratio of the total cross-sectional area of the core in the cross section of the obtained multi-core optical fiber was 83.8%, and the occupation ratio of the total cross-sectional area of the core in the outer region of the cross section of the multi-core optical fiber was 75.9%.
  • the shape of the core portion in contact with the outer peripheral edge of the optical fiber was a quadrilateral or pentagon-like circular shape, and the curvature of the surface in contact with the outer peripheral edge of the optical fiber was large.
  • the amount of emitted light was 205.
  • Example 2 Using a spinning nozzle in which 151 nozzle holes are arranged in a hexagonal arrangement, the discharge amount of each resin supply pump that supplies core material, cladding material, and sea material is adjusted, and the amount of core material polymer supplied to the spinning nozzle is 13
  • a multi-core plastic optical fiber was manufactured in the same manner as in Example 1 except that the percentage was increased to 79%, the clad polymer supply was reduced by 79%, and the seawater polymer supply was reduced by 76% (compared to Example 1). Obtained.
  • the shape of the core portion in contact with the outer peripheral edge of the optical fiber is a quadrilateral or pentagonal elliptical shape, but the curvature of the surface in contact with the outer peripheral edge of the optical fiber is large.
  • the occupation ratio of the total cross sectional area of the core in the cross section of the obtained multi-core optical fiber was 98.5%, and the occupation ratio of the total cross sectional area of the core in the outer region of the cross section of the multi core optical fiber was 97.6%.
  • the emitted light quantity was 163.
  • Example 6 The same procedure as in Example 1 was performed except that an alloy (polypropylene / polyethylene / vulcanized rubber component made by Mitsui Chemicals, Ltd., Miralastomer 9070B) was used as the olefin-based thermoplastic elastomer on the outer periphery of the multi-core plastic optical fiber obtained in Example 1.
  • a multi-core plastic optical fiber cable was obtained.
  • the transmission loss of the obtained plastic optical fiber cable at 25-1 m, 650 nm, and NA 0.1 was 152 dB / km.
  • the transmission loss measured after the multi-core plastic optical fiber cable was heat-treated for 3000 hours under an environment of 105 ° C. was 180 dB / km, and the cable had high heat resistance. Detailed results are shown in Table 2.
  • Example 7 A water-crosslinked polyethylene precursor resin (Linklon XHM-611N manufactured by Mitsubishi Chemical) was used on the outer periphery of the multi-core plastic optical fiber obtained in Example 1, and after the coating, it was immersed in warm water at 98 ° C. for 3 hours for crosslinking treatment.
  • a multi-core plastic optical fiber cable was obtained in the same manner as in Example 1 except that.
  • the transmission loss of the obtained plastic optical fiber cable at 25-1 m, 650 nm, and NA 0.1 was 155 dB / km.
  • the transmission loss measured after the multi-core plastic optical fiber cable was heat-treated for 3000 hours in a 105 ° C. environment was 175 dB / km, and the cable had high heat resistance. Detailed results are shown in Table 2.
  • Example 8 and 9 A multi-core plastic optical fiber cable was obtained in the same manner as in Examples 6 and 7 except that the multi-core plastic optical fiber was changed to that of Example 2. The obtained cable had good heat resistance and band characteristics. Detailed results are shown in Table 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 曲げ損失を低減すると同時に、単芯のプラスチック光ファイバと同等の受光量を得ることができるマルチコア光ファイバを提供する。 本発明のマルチコア光ファイバは複数のコアと、各コアの周りに形成された海部とを有する、マルチコア光ファイバであって、 少なくとも以下の条件1又は条件2を満たす、マルチコア光ファイバである。 (条件1)マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率が、80~95%である。 (条件2)マルチコア光ファイバの断面におけるコアの総断面積の占有率が、82~93%である。

Description

マルチコア光ファイバ及びマルチコア光ファイバケーブル
 本発明は、高速光信号伝送用媒体としてLAN(ローカルエリアネットワーク)やFA(ファクトリーオートメーション)、OA(オフィスオートメーション)等で使用されるマルチコア光ファイバケーブルに関する。
 近年、安価、軽量、大口径であり、端面加工や取り扱いが容易である等の長所を有するプラスチック光ファイバが開発され、ライティング用途やセンサー用途、あるいはFA、OA、LAN等の屋内配線、自動車内LAN等の移動体内配線等の短・中距離通信用途の分野で実用化されている。
 従来実用化されている単芯のプラスチック光ファイバの場合には、小さな曲げ半径で曲げると曲げ損失が大きいという問題を有している。この曲げ損失を低減することを目的として多数の芯(コア)が鞘(クラッド)によって個別に仕切られる構造のマルチコアプラスチック光ファイバが提案されている。また、適用環境を拡大するため、優れた耐熱性を有するマルチコアプラスチック光ファイバの開発が望まれている。
 特開平11-95048(特許文献1)には、PMMA系樹脂で複数のコアを形成し、特定の組成からなるビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロペン共重合体を用いてクラッドを構成し、ビニリデンフロライド系樹脂で保護被覆することにより、優れた耐熱性を示すマルチコアプラスチック光ファイバケーブルが提案されている。
 特開平9-33737(特許文献2)にはマルチコアプラスチック光ファイバのコアとクラッドの屈折率差およびコアとクラッドの断面積の比を特定の範囲にすることで曲げ損失を低減することができることが開示されている。
 WO95/32442(特許文献3)にはマルチコアプラスチック光ファイバのコアとクラッドの屈折率差を特定の範囲にすることで広い伝送帯域で伝送損失が小さく、曲げ損失を低減することができることが開示されている。
 WO98/35247(特許文献4)ではマルチコアプラスチック光ファイバにおいて屈折率の異なる2層のクラッドを有する構造とすることで曲げ損失を低減し受光量を大きくする技術が開示されている。
 特開平11-160553(特許文献5)でマルチコアプラスチック光ファイバにおいてはコアの断面積を特定のものとし、中心部のコア形状を六角形構造とすることで曲げ損失を低減し受光量を大きくする技術が開示されている。
 また、プラスチック光ファイバを高い耐熱特性が要求される自動車内LANまたは航空機内LAN等の移動体内配線として使用するため、様々な材料でプラスチック光ファイバの外側を被覆して耐熱性を付与することが提案されている。
 特開2006-215178(特許文献6)にはプラスチック光ファイバの外側にポリプロピレン系樹脂を主成分とする樹脂を被覆することにより耐熱性を向上させる技術が開示されている。
 特開2005-266742(特許文献7)にはプラスチック光ファイバの外側に水架橋ポリエチレンを被覆することにより耐熱性を向上させる技術が開示されている。
特開平11-95048号公報 特開平9-33737号公報 WO95/32442号パンフレット WO98/35247号パンフレット 特開平11-160553号公報 特開2006-215178号公報 特開2005-266742号公報
 上記特許文献1~4では、コアの各形状を円形に近い構造に保とうとする為に、ファイバ断面に占めるコア占有率を上げることができず、単芯のプラスチック光ファイバに比べて十分な受光量が確保できない。特に外周部のクラッド部や海部の存在が多いため、広開口数の光源を用いたときの受光量の損失が大きい。
 この点に関し、特許文献5ではコア形状を多角形とすることで実質的なコア断面積を向上させているが、各々のコアの断面積が小さいため、コアの単独の受光量は減少し、光ファイバ全体としての十分な受光量が確保できない。
 そこで、本発明の第1の目的は、マルチコアプラスチック光ファイバの特徴である曲げ損失を低減するという特性を維持しつつ、マルチコアにすることによる受光量の損失を低減し、単芯のプラスチック光ファイバと同等の受光量を得ることである。
 また、上記特許文献6および7はいずれも単芯のプラスチック光ファイバについてのものであり、マルチコアプラスチック光ファイバについても同様の効果が得られるかどうかは不明である。そこで本発明の第2の目的は、高い耐熱特性を有するマルチコア光ファイバケーブルを提供することである。
 すなわち本発明は、以下の通りである。
[1]複数のコアと、各コアの周りに形成された海部とを有する、マルチコア光ファイバであって、
 少なくとも以下の条件1又は条件2を満たす、マルチコア光ファイバ。
  (条件1)マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率が、80~95%である。
  (条件2)マルチコア光ファイバの断面におけるコアの総断面積の占有率が、82~93%である。
[2]条件1及び条件2のいずれの条件も満たす、前記[1]に記載のマルチコア光ファイバ。
[3]コアの材料が、ポリメチルメタクリレート又はメチルメタクリレートとメチルメタクリレート以外の1種以上の単量体との共重合体である、前記[1]又は[2]に記載のマルチコア光ファイバ。
[4]海部の材料が、少なくともフッ化ビニリデン単位を含み、示差走査熱量測定における結晶融解熱が70mJ/mg以下であるフッ素系樹脂である、前記[1]~[3]のいずれか1項に記載のマルチコア光ファイバ。
[5]コアの外周に、少なくとも1層のクラッドを有する、前記[1]~[4]のいずれか1項に記載のマルチコア光ファイバ。
[6]クラッドの材料が、少なくともフッ素化メタクリレート単位を含む、前記[5]に記載のマルチコア光ファイバ。
[7]コアの材料82~93質量%及び海部の材料7~18質量%を溶融紡糸する、前記[1]に記載のマルチコア光ファイバの製造方法。
[8]コアの材料82~93質量%、クラッドの材料0.1~8質量%及び海部の材料6.9~17.9質量%を溶融紡糸する、前記[1]に記載のマルチコア光ファイバの製造方法。
[9]ノズル孔が六方配列で配置されたノズルを用いて溶融紡糸する、前記[7]又は[8]に記載のマルチコア光ファイバの製造方法。
[10]前記[1]~[6]のいずれか1項に記載のマルチコア光ファイバの外周に、被覆層を有する、マルチコア光ファイバケーブル。
[11]前記[1]~[6]のいずれか1項に記載のマルチコア光ファイバを含む、光通信システム。
[12]前記[1]~[6]のいずれか1項に記載のマルチコア光ファイバを含む、光ファイバセンサ。
[13]前記[1]~[6]のいずれか1項に記載のマルチコア光ファイバを含む、光ファイバライト。
 本発明によれば、曲げ損失を低減すると同時に単芯のプラスチック光ファイバと同等の受光量を得ることができるマルチコア光ファイバを提供することができる。また本発明によれば高い耐熱特性を有するマルチコア光ファイバケーブルを提供することができる。
ノズル断面形状と得られるファイバ断面の違い マルチコア光ファイバの断面の外側領域 コア、クラッド及び海部を有するマルチコア光ファイバの断面図 コア及び海部を有するマルチコア光ファイバの断面図 実施例1のマルチコア光ファイバの断面図 実施例3のマルチコア光ファイバの断面図
 以下、本発明の好適な実施の形態について詳細に説明する。
(1)本発明の光ファイバの構造
 本発明のマルチコア光ファイバは複数のコア、好ましくは7本以上のコアと、各コアの周りに形成された海部とを有する構造をなし、実質的に円形断面を有する。さらに好ましくは19本以上のコアを有する。特に好ましくは19本のコアを有する。
 本発明のマルチコア光ファイバにおいて、海部は各コア部の周りを構成する。またコアと海部の間には一層以上のクラッドが存在していても良い。
 例えば、図3に示すようなコア、クラッド及び海部を有するマルチコア光ファイバであってもよく、図4に示すようなコア及び海部を有するマルチコア光ファイバであってもよい。
 本発明のマルチコア光ファイバは、少なくとも以下の条件1又は条件2を満たす。
  (条件1)マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率が、80~95%である。
  (条件2)マルチコア光ファイバの断面におけるコアの総断面積の占有率が、82~93%である。
 ここでマルチコア光ファイバの断面の「外側領域」とは、光ファイバの断面において、実質的に円形断面を有するファイバ径の円中心から60%にあたる長さの径を持つ同心円を描いた場合にその同心円の外側とファイバの外周に挟まれる領域をいう(図2参照)。なお、本明細書において光ファイバの断面およびコアの断面とは、ファイバの長さ方向に対して垂直な断面をいう。マルチコア光ファイバの外側領域における「コアの総断面積の占有率」とはマルチコア光ファイバの断面の外側領域の総面積に対する、マルチコア光ファイバの断面の外側領域に含まれるコア部の総断面積の占める割合をいう。マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は好ましくは81~90%である。マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率を80%以上とすることにより、開口数の大きい光源を用いた場合においても、単芯の光ファイバと同等の高い受光量を得ることができる。また、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は、配列される各コアを細径化し充填率を高めることでさらに高めることができるが、細径化されたコアの単独の受光量は減少する。光ファイバ全体としての受光量を確保するためには、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率を90%以下とすることが必要である。
 また、マルチコア光ファイバの断面におけるコアの総断面積の占有率とは、マルチコア光ファイバの総断面積に対するマルチコア光ファイバの断面に含まれるコア部の総断面積が占める割合をいう。マルチコア光ファイバにおけるコアの占有率は好ましくは84~88%である。コア部の総断面積が82~93%を占めることにより、十分な受光量を得ることができる。マルチコア光ファイバの断面におけるコアの総断面積の占有率を82%以上とすることにより、開口数の大きい光源を用いた場合においても、単芯の光ファイバと同等の高い受光量を得ることができる。また、マルチコア光ファイバの断面におけるコアの総断面積の占有率は、配列される各コアを細径化し充填率を高めることでさらに高めることができるが、細径化されたコアの単独の受光量は減少する。光ファイバ全体としての受光量を確保するためには、マルチコア光ファイバの断面におけるコアの総断面積の占有率を93%以下とすることが必要である。
 本発明のマルチコア光ファイバにおいて最外周に配置されたコアの形状は、好ましくは少なくとも異なる2種類以上の形状を有する。形状は特に限定されず、どのような形状を取ることもできる。形状は多角形であってよく、各辺は直線でも曲率を有していても特に問題はない。好ましくは四角形乃至五角形様の楕円形状である。
 (2)コア
 本発明のマルチコア光ファイバにおいて、コアの材質としては限定されず、例えば、ガラスであってもよいし、プラスチックであってもよい。コア部としてプラスチックを使用すると、光ファイバを製造する際の加工性や、機械特性が優れているので好ましい。本明細書においては、どちらの光ファイバを使用することもできるが、代表してプラスチック光ファイバ(POF)について述べる。
 本発明において、コアを構成する材料としては、ポリメチルメタクリレート(PMMA)またはメチルメタクリレート(MMA)とメチルメタクリレート以外の1種以上の単量体との共重合体が好ましい。共重合体としては1種類以上のビニル系単量体とメチルメタクリレート単量体との共重合体(以下、これらをPMMA系樹脂という。)がさらに好ましく用いられる。なかでも透明性と機械的強度のバランスに優れたPMMAを用いることが特に好ましい。コアが後者の共重合体からなる場合には、透明性を十分に確保する点から、MMA単位の含有量は50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が最も好ましい。MMA単位の共重合成分としては、メタクリル酸エステル単位、アクリル酸エステル単位等の、プラスチック光ファイバ(POF)用コア材としてこれまでに提案されている単量体単位を適宜選択する事ができる。
 (3)海部
 本発明のマルチコア光ファイバにおいて、各コア部の周りを形成する海部の材料は、少なくともフッ化ビニリデン(VdF)単位を含むことが好ましく(このような材料を以下「含フッ化ビニリデン樹脂」という)、フッ化ビニリデン及びテトラフルオロエチレン(TFE)の単位を含む含フッ化ビニリデン樹脂からなることがさらに好ましい。フッ化ビニリデン(VdF)単位と共にTFE単位を含む含フッ化ビニリデン樹脂は、耐薬品性、耐衝撃性に優れるとともに、低屈折率で耐熱性に優れている点で好ましい。
 このような含フッ化ビニリデン樹脂としては、例えば、VdF単位とTFE単位との共重合体、VdF単位とTFE単位とHFP(ヘキサフルオロプロピレン)単位との共重合体、VdF単位とHFP単位との共重合体、VdF単位とTFE単位とHFP単位とパーフルオロ(フルオロ)アルキルビニルエーテル単位との共重合体、VdF単位とTFE単位とパーフルオロ(フルオロ)アルキルビニルエーテル単位との共重合体、VdF単位とTFE単位とヘキサフルオロアセトン単位との共重合体等が挙げられるが、これに限定されるものではない。含フッ化ビニリデン樹脂としては、特にVdF単位およびHFP単位を用いることが、透明性が高く、かつPOFの溶融紡糸時の安定性に優れた樹脂を得ることができることから好ましい。
 より具体的には、
VdF単位60~90質量%とTFE単位10~40質量%からなる2元共重合体、
VdF単位10~60質量%と、TFE単位20~70質量%と、HFP単位5~35質量%とからなる3元共重合体、
VdF単位5~25質量%と、TFE単位50~80質量%と、パーフルオロ(フルオロ)アルキルビニルエーテル単位5~25質量%からなる3元共重合体、
エチレン単位5~60質量%と、TFE単位25~70質量%と、HFP単位5~45質量%とからなる3元共重合体、
VdF単位10~30質量%と、TFE単位40~68質量%と、HFP単位21~40質量%と、パーフルオロ(フルオロ)アルキルビニルエーテル単位1~15質量%とからなる4元共重合体、
等を挙げることができる。
 TFEを含む含フッ化ビニリデン樹脂に上記のパーフルオロ(フルオロ)アルキルビニルエーテル単位(以下、FVE単位という。)を含む場合には、下記一般式(I)
CF2=CF-(OCF2CF(CF3))aO-Rf2 (I)
(式中、Rf2は炭素原子数が1~8個のアルキル基もしくはフルオロアルキル基又はアルコキシルアルキル基もしくはフルオロアルコキシルアルキル基を示し、aは0~3の整数である。)
で示される構造単位が挙げられる。
 なかでも、FVE単位としては、下記一般式(II)~(V)
CF2=CFO(CF2n-OCF3 (II)
(式中、nは1~3の整数)
CF2=CF(OCF2CF(CF3))nO(CF2mCF3 (III)
(式中、nは0~3の整数、mは0~3の整数)
CF2=CFO(CH2n(CF2mCF3 (IV)
(式中、nは1~3の整数、mは0~3の整数)
CF2=CFO(CH2nCH3 (V)
(式中、nは0~3の整数)
の何れかで表わされる単位であることが好ましい。
 上記のFVE単位としては、特にCF2=CFOCF3、CF2=CFOCF2CF3、CF2=CFOCF2CF2CF3、CF2=CFOCH2CF3、CF2=CFOCH2CF2CF3、CF2=CFOCH2CF2CF2CF3、CF2=CFOCH3、CF2=CFOCH2CH3及びCF2=CFOCH2CH2CH3からなる群より選ばれた少なくとも1種の化合物の単位を用いることが、原料が低コストである点から好ましい。
 しかし、上記のようなTFE単位を含む含フッ化ビニリデン樹脂の結晶性が高い場合は透明性が低下する傾向にあるため、結晶融解熱が70mJ/mg以下であるものを用いることが好ましい。
 含フッ化ビニリデン樹脂の結晶性は、示差走査熱量測定(DSC)で測定した結晶融解熱を指標として表すことができる。結晶融解熱は、含フッ化ビニリデン樹脂のTFE単位およびVdF単位に由来する結晶成分の熱融解に起因して発生する熱量であって、値が大きい程樹脂の結晶性が高くなる傾向がある。
 特にこの結晶融解熱が70mJ/mgより大きいと著しく白濁する傾向があり、POFケーブルの初期の伝送損失および高温環境下に長期間放置された場合の伝送損失の増加が著しくなる傾向がある。
 結晶融解熱が70mJ/mgより小さければ、含フッ化ビニリデン樹脂は比較的低い結晶性を有し、長時間高温環境下に置かれてもPOFケーブルの伝送損失の増加を抑えることができる。より好ましくは50mJ/mg以下であり、20mJ/mg以下であればさらに好ましい。
 (4)クラッド
 本発明のマルチコア光ファイバにおいて、クラッドを形成する樹脂としては、フッ素化メタクリレート系重合体、フッ化ビニリデン系重合体等のPOF用クラッド材として使用されている公知の材料を適宜選択することができるが、本発明のPOFケーブルにおいては、屈折率の調整が容易である、透明性および耐熱性が高い、屈曲性及び加工性に優れているといった特徴を有する点から少なくともフッ素化メタクリレート単位を含むフッ素化メタクリレート系重合体を用いることが好ましい。
 上記のフッ素化メタクリレート系重合体としては、より具体的には下記一般式(VI)
  CH2=CX-COO(CH2m(CF2nY  (VI)
 (式中、Xは水素原子またはメチル基、Yは水素原子またはフッ素原子を示し、mは1又は2、nは1~12の整数を示す。)
で表されるフルオロアルキル(メタ)アクリレートの単位(A)15~90質量%と、他の共重合可能な単量体の単位(B)10~85質量%からなり、屈折率が1.39~1.475の範囲にある共重合体を挙げることができる。
 また、クラッドのフッ素化メタクリレート系重合体として、下記一般式(VII)、
  CH2=C(CH3)COO-(CH2m(CF2nCF3  (VII)
 (式中、mは1又は2、nは5~12の整数を示す。)
で表わされる長鎖フルオロアルキルメタクリレートの単位(C)0~50質量%と、下記一般式(VIII)
  CH2=C(CH3)COO-CH2(CF2mX  (VIII)
 (式中、Xは水素原子またはフッ素原子、mは1~4の整数を示す。)
で表わされる短鎖フルオロアルキルメタクリレートの単位(D)0~50質量%と、他の共重合可能な単量体の単位(E)50~80質量%からなり(単位(C)と(D)の少なくともいずれか一方を含む)、屈折率が1.45~1.48の範囲にあるフッ素化メタクリレート系重合体を挙げることができ、この重合体を用いる場合は、POFケーブルの伝送帯域をより広くすることができる。
 また、上記フッ素化メタクリレート系共重合体として、上記長鎖フルオロアルキルメタクリレート単位(C)0~80質量%と、上記短鎖フルオロアルキルメタクリレート単位(D)10~90質量%と、他の共重合可能な単量体単位(E)10~50質量%とからなり、屈折率が1.39~1.435の範囲にある共重合体を挙げることができ、この重合体を用いる場合は、POFケーブル屈曲時の曲げ光量損失をより低減することができる。
 但し、クラッドの屈折率が高すぎると、伝送帯域を広げることができる一方で海部による曲げ光量損失の抑制効果が不十分になる傾向があるため、クラッドは上記の組成範囲内でPOFケーブルが使用される環境に応じて必要とされる伝送帯域と曲げ光量損失が得られるように適宜設計することが望ましい。
 上記の他の共重合可能な単量体の単位(E)としては特に限定されないが、透明性の向上には(メタ)アクリル酸メチル単位を、機械特性の向上には(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸アルキルエステルの単位を、耐熱性の向上には(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル等の(メタ)アクリル酸シクロアルキルエステルの単位、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸芳香族エステルの単位、(メタ)アクリル酸ヘキサフルオロネオペンチルの単位、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のN-置換マレイミドの単位、α-メチレン-γ-ブチロラクトン、α-メチレン-γ-メチル-γ-ブチロラクトン、α-メチレン-γ、γ-ジメチル-γ-ブチロラクトン、α-メチレン-γ-エチル-γ-ブチロラクトン、α-メチレン-γ-シクロヘキシル-γ-ブチロラクトン等のγ-ブチロラクトン系化合物の単位を用いることができる。
 これらのなかでも透明性および100~105℃付近での長期耐熱性、機械的強度に優れたPOFケーブルが得られる点から、他の共重合可能な単量体(E)として(メタ)アクリル酸メチルの単位を用いることが特に好ましい。
 また、100℃付近での耐熱性を満足するためには、通常クラッドのTgは100℃前後あるいはそれ以上であることが好ましいが、本発明のPOFケーブルにおいては、クラッドにTgが70~90℃程度の公知のフッ素化メタクリレート系重合体を用いた場合であっても100~105℃での長期耐熱性を満足することができる。
 このTgが70~90℃程度の公知のフッ素化メタクリレート系重合体はクラッドに限定されず、クラッドが2層以上からなる場合には最外層を除いた他の層にも適用することができる。Tgが70℃~90℃のフッ素化メタクリレート系重合体は、Tgが100℃前後あるいはそれ以上のフッ素化メタクリレート系重合体と比較すると柔軟性に富み、割れにくい特徴を有しているため、クラッドに用いた場合、特に曲げ特性に優れたPOFケーブルを得ることができる。
 (5)被覆層1
 本発明のPOFケーブルの被覆層を形成する被覆材には、耐熱性、耐屈曲性、耐化学薬品性、加工性に優れるとともに、適度な融点を有しており、POFケーブルの光伝送特性を低下させることなく容易にPOFを被覆することができる樹脂を用いることが好ましい。
 このような樹脂として、少なくとも被覆層の最内層には、ASTM D-648に準じて測定した熱変形温度(荷重4.6kgf(45.1N))が90℃以上で、ポリプロピレン系樹脂を主成分とする樹脂成分(F)にゴム成分を適当量配合したオレフィン系熱可塑性エラストマー(X)を用いる。
 樹脂成分(F)としては、POFケーブルの耐熱性を向上できる点からポリプロピレン系樹脂を主成分とする樹脂を用いる。具体的には、ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-αオレフィン共重合体、ポリプロピレンとポリエチレンのブレンド組成物から選ばれた少なくとも1種を挙げることができる。特に、ポリプロピレン(G)とポリエチレン(H)のブレンド組成物は、各重合体(G、H)の配合比を適宜選ぶことにより、POFケーブルの耐熱性を容易に調整できる点から好ましい。また、ポリプロピレン系樹脂を主成分とする樹脂であれば、POFに被覆層を形成する時の温度を230℃より低く設定でき、被覆工程時に発生するPOFの光学性能の低下も抑えることができる。なお、ポリプロピレンとはアイソタクチックまたはシンジオタクチックなポリプロピレンを示し、ポリエチレンとは低密度、中密度または高密度なポリエチレンを示す。
 上述したポリプロピレン(G)とポリエチレン(H)のブレンド組成物において、ポリプロピレン(G)とポリエチレン(H)の割合は、POFケーブルが使用される要求温度に従って適宜選べば良いが、POFケーブルが100℃以上で長期間使用される場合には、樹脂成分はポリプロピレン(G)30~100質量部とポリエチレン(H)0~70質量部の混合物からなることが好ましく、POFケーブルが125℃以上で長期間使用される場合には、ポリエチレン(G)0~50質量部、ポリプロピレン(H)50~100質量部の混合物からなることが好ましい。ポリエチレン(G)が多すぎると、POFケーブルが100℃以上で熱変形しやすくなる等、耐熱性が低下する傾向がある。
 一方、ゴム成分としては、エチレンおよび/またはプロピレンの単位と非共役ジエンの単位を主成分として有する共重合体(J)、この共重合体(J)に水素添加してなる共重合体(K)から選ばれた少なくとも1種の重合体が好ましい。共重合体(J)としては、エチレンおよび/またはプロピレンの単位を主成分として有する重合体ブロック(L)と非共役ジエン化合物の単位を主成分として有する重合体ブロック(M)とからなるブロック共重合体(N)が挙げられ、共重合体(K)としてはこのブロック共重合体(N)に水素添加してなるブロック共重合体(O)が挙げられる。なお、非共役ジエンモノマーとしては、エチリデンノルボルネン、1,4-ヘキサジエン、ジクロロペンタジエン等を挙げることができるが、特にこれらに限定されるものではない。特に、エチレン-プロピレン-非共役ジエンモノマーの三元共重合体は、上述したゴム成分としての機能を発現してPOFケーブルに適度な柔軟性を持たせることができるだけではなく、上記樹脂成分のポリエチレン(G)とポリプロピレン(H)の相溶性を向上する効果も合わせ持つという利点がある。
 また、上述した共重合体(J)又は(N)の水素添加とは、共重合体(J)又は(N)は主鎖に不飽和結合(炭素・炭素二重結合)を含み耐熱性、耐候性などの化学的安定性が劣るため、その不飽和結合部分を水素化することによって、安定な飽和結合へと変化させることを意味する。水素化反応により、ポリマーの主鎖中に含まれる残存二重結合の量が少なくなるほど、つまり水素化率が高くなるほど、被覆層の耐熱性、耐化学薬品性、耐候性などが向上する傾向がある。
 このオレフィン系熱可塑性エラストマー(X)は、室温においては、エントロピー弾性を有するゴム成分である軟質ブロックが、POFケーブルを柔軟にする効果を有することに加え、低温時には加硫ゴムと同様の挙動をとり、樹脂成分である硬質ブロックがその塑性変形を防止する効果を有し、また高温下では、その樹脂成分がその結晶融点までは軟化しないため、十分な耐熱性を有し、かつ柔軟で、優れた加工性を備えている。また、このエラストマー(X)は熱可塑性であるため、ポリエチレン、ポリプロピレン同様の加工が可能であり、POFへ被覆後、煩雑な後架橋処理も必要とせず、オレフィン系ポリマーであることから官能基やPOF中へ移行する低分子化合物を含まないため、POFケーブルの耐湿熱特性も良好である。
 オレフィン系熱可塑性エラストマー(X)の耐熱性や柔軟性は、樹脂成分とゴム成分を混合する割合によって調整することが可能である。例えば自動車用途等で要求されている100℃以上、さらには125℃以上の耐熱性を要求される用途で利用するには、樹脂成分(ポリプロピレン系樹脂を主成分とする樹脂成分(F))100質量部に対して、ゴム成分(例えばブロック共重合体(N及び/又はO))を5~40質量部配合した樹脂組成物からなることが好ましく、10~30質量部配合した樹脂組成物からなることがより好ましい。ゴム成分が多すぎると、POFケーブルの耐熱性やPOFに被覆層を形成する時の成形安定性が低下する傾向があり、少なすぎると、柔軟なPOFケーブルを得ることができない。
 さらに、オレフィン系熱可塑性エラストマー(X)において、前記共重合体(J)又は(N)を、架橋(加硫)することによって耐熱性を向上することが可能である。具体的には、前記共重合体(J)又は(N)に、加硫剤(架橋剤)としての硫黄化合物、架橋開始剤としての有機過酸化物、さらに場合によっては充填剤や加硫促進剤、加硫促進助剤を添加して架橋処理(加硫)を行う。加硫剤(架橋剤)、架橋開始剤、加硫促進剤、加硫促進助剤の組み合わせた系を加硫系というが、使用される加硫系は、ポリマーの構造、性質、製品に要求される性能、製品の製造方法などに従って加硫促進剤の種類、量の選定を行えば良い。なお、加硫温度は有機過酸化物の分解温度以上である必要がある。
 架橋剤としての硫黄の種類としては、硫黄華、脱酸硫黄、粉末硫黄、沈降硫黄、コロイド硫黄などがあるが、特に粉末硫黄が最も多く使われている。有機過酸化物の選定は、加硫方法や架橋助剤の種類によって選択する必要がある。有機過酸化物の種類としては、例えば、ベンゾイルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,1′-ジ-t-ブチルペルオキシ-3,3,5-トリメチレンシクロヘキサン、1,3-ジ-(t-ブチルペルオキシ)-ジイソプロピルベンゼン等がある。充填剤の種類としては、例えば、硫酸バリウム、酸化亜鉛、炭酸塩類、金属粉末、高比重金属粉末等がある。加硫促進剤の種類としては、例えば、スルフェンアミド系化合物、チウラム系化合物、ジチオカルバミン酸塩類、ブチルキサントゲン酸亜鉛、チオ尿素系化合物、チアゾール系化合物、アルデヒドアンモニア系化合物、グアニジン系化合物、加硫促進助剤の種類としては、例えば、ステアリン酸、ステアリン酸亜鉛等がある。
 市販品として入手可能なオレフィン系熱可塑性エラストマー(X)としては、例えば三井化学社製のミラストマー(商品名)、三菱化学社製のサーモラン(商品名)、住友化学工業社製の住友TPE(商品名)等がある。例えば自動車用途等で要求されている100℃以上、さらには125℃以上の耐熱性を満足することが可能な樹脂を挙げると、三井化学社製の商品名:ミラストマー5030B、6030B、7030B、8030B、9020B、9070B、M2400B、M4400B、M2600B、M3800B、M4800B、三菱化学社製の商品名:サーモラン3555B、3655B、3705B、3755B、3855B、3981B、3707B、Z102B、5800B、215B、Z101N、5850N、TT744N、住友化学工業社製の商品名:住友TPE3000、4000、5000、8000、9000シリーズ等がある。
 また上述したように、オレフィン系熱可塑性エラストマー(X)は、ASTM D-648に準じて測定した熱変形温度(荷重4.6kgf(45.1N))が90℃以上であることが必要であるが、例えば自動車用途で要求されるような高い耐熱性を満足するには、この熱変形温度が100℃以上であることがより好まく、110℃以上であることがさらに好ましい。熱変形温度が低すぎると、POFケーブルが100~105℃付近で用いられた時に、被覆層が著しく変形して、POFの光学性能が低下する傾向がある。
 また、上記オレフィン系熱可塑性エラストマー(X)のメルトフローインデックスは5~50の範囲にあることが好ましい。メルトフローインデックスが低すぎると、POF部に被覆層を被覆する際、配向ひずみが大きくなる傾向があり、この配向ひずみを抑えるために加工温度を上げると、POFの熱劣化を生じる傾向がある。また、メルトフローインデックスが高すぎると、被覆層の強度が極めて弱いものとなり、使用上不都合を生じるおそれがある。
 オレフィン系熱可塑性エラストマー(X)には、必要に応じて酸化防止剤、POFへの外光の入射を防止するための黒色無機顔料等(例えばカーボンブラック等)の遮光剤、タルク、ガラス繊維、芳香族ポリアミド、炭素繊維等の無機物あるいは有機物のフィラー等を含有させてもよい。
 また、耐久性、耐環境特性などをさらに良好なものとするために、被覆材において、上記被覆層(一次被覆層)の外周に、熱可塑性樹脂からなる二次被覆層を形成しても良い。
 二次被覆層の材料としては、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、塩素化ポリエチレン樹脂、ポリアミド系樹脂、ポリウレタン樹脂、フッ素系樹脂、エチレン-酢酸ビニル共重合体を例示することができる。これらはPOFケーブルの使用環境に応じて、1種単独で、又は2種以上を適宜選択し混合したものを用いることができる。特に自動車内配線用などでは、二次被覆層として、耐油性、耐熱性等に優れた材料を用いることが好ましい。具体的には、ナイロン11、ナイロン12、ナイロン6、ナイロン66、ナイロン6-12等の単独重合体や、これら重合体の単量体単位の組合せからなるナイロン共重合体、これら重合体に柔軟なセグメントを導入したナイロン系エラストマー、このエラストマーを主成分とするポリアミド系樹脂が好ましい。また、これらの中でも、成形性が良好で、POFケーブルに熱的及び機械的ダメージを与えにくいことから、ナイロン系エラストマー、又はナイロン系エラストマーと他のポリアミド系樹脂との混合物が好ましい。
 (6)被覆層2
 また本発明のPOFケーブルの被覆層を形成する被覆材には、水架橋ポリオレフィン樹脂を用いることもできる。水架橋ポリオレフィン系樹脂は、耐屈曲性、耐溶剤性、加工性に優れるとともに適度な融点を有しており、POFケーブルの光伝送特性を低下させることなく容易にPOF素線を被覆することができる。
 特にPOFケーブルが自動車エンジンルーム内で用いられる場合には、長期耐熱性だけではなく耐油性、耐ガソリン性等も向上する傾向がある点から、密度が0.935g/cm3以上の水架橋ポリエチレン樹脂を用いることが好ましい。
 また、上記水架橋ポリオレフィン樹脂には、必要に応じて酸化防止剤、あるいはPOFへの外光の入射を防止するためのカーボンブラック等の黒色無機顔料等の添加剤、タルク、ガラス繊維、芳香族ポリアミド、炭素繊維等の充填材等を含有させてもよい。
 水架橋ポリオレフィン樹脂は、例えば、ベースポリマーとなるポリオレフィン樹脂に、アルコキシシラン基等のような架橋性官能基を有する化合物を混練し、グラフト重合或いは共重合する(シリル変性)等により水架橋ポリオレフィン前駆体樹脂を生成させ、これをシラノール縮合触媒の存在下で水分等と反応させ、-Si-O-Si-結合を生成させることにより得ることができる。
 水架橋ポリオレフィン樹脂のベースポリマーとしては、低密度、中密度または高密度ポリエチレン樹脂、アイソタクチックまたはシンジオタクチックポリプロピレン樹脂、これらの共重合体、ブロック共重合体、ブレンド物等が挙げられる。
 本発明のPOFケーブルにおいては、海部最外層として、HFP単位およびFVE単位を含有する含フッ素オレフィン系樹脂を用い、その外周に上述の水架橋ポリオレフィン樹脂からなる被覆層を形成することによりPOFと被覆層の密着性をより向上させることができる。このようにPOFと被覆層との密着性を高めることによって、POFケーブル末端にプラグ等を固定するための端末処理を行う場合に被覆層の上からプラグ等を締め付けて固定できるため端末処理を簡略化できると同時に、POFケーブルに振動が加わった際にPOFが損傷、破断することを防止することができる。
 また、POFと被覆層との密着性をより高めることにより、被覆層に対してのPOFの突き出しや引っ込みなど(ピストニング)の寸法変化の発生を十分に防止することができる。
 (7)本発明のマルチコア光ファイバの製造
 本発明のマルチコア光ファイバの製造に際しては、公知の方法を用いることが可能であるが、特に溶融複合紡糸設備により、溶融紡糸する製造方法が好ましい。コアを形成する成分、必要に応じてクラッドを形成する成分、海部を形成する成分を用意し、コアの数に相当するノズル孔を例えば六方配列で配置、すなわち三角形格子の格子点に各ノズル孔の中心がくるように、且つ最も外側に配置されたノズル孔の中心を結んだ線が正六角形となるように配置した紡糸ノズル(図1、六方配列のノズル断面形状参照)又は同心円配列で配置した紡糸ノズル(図1、同心円配列のノズル断面形状参照)にコアを形成する成分及びクラッドを形成する成分と海部を形成する成分を供給して複数本のコア-クラッド-海構造を形成し、このコア(-クラッド)-海構造の形成と同時に或いはその後に複数本のコア(-クラッド)-海構造体を一体化し、必要に応じて保護層を被覆し、延伸することにより本発明の光ファイバを製造することができる。
 紡糸ノズルは、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率を上げることができることから、六方配列で配置した紡糸ノズルが好ましい。
 本発明において、コアの材料82~93質量%及び海部の材料6.9~18質量%を溶融紡糸することが好ましく、コアの材料82~93質量%、クラッドの材料0.1~8質量%及び海部の材料7~17.9質量%を溶融紡糸することがさらに好ましい。
 複数本のコア(-クラッド)-海構造体の一体化時に口金を用いて互いのコア(-クラッド)-海構造体を密着させ隙間を埋めるようにして六角形状の芯部を形成させる。この一体化時の口金には、形状が円筒状や終端面が円形であるロート状のものが好ましく用いられる。
 延伸は、光ファイバ成形後に行うが、延伸倍率は1.2~4倍の範囲で必要な光学特性と機械的特性を満足する範囲で適宜調整が可能である。延伸時における光ファイバの加熱・冷却を目的として、熱風を用いる方法の他、遠赤外線を用いた輻射熱による加熱、温水等液体を用いることによる加熱等いずれの方法を用いても良い。
 また、本発明のPOFケーブルを得るには、POFのケーブル化方法として一般的に使用されている被覆層の形成方法によってPOF外周に被覆層を被覆すればよいが、本発明の効果を十分に発現するにはクロスヘッドダイを用いて水架橋ポリオレフィン前駆体樹脂を形成する方法が好ましい。
 被覆層に用いられる水架橋ポリオレフィン前駆体樹脂のメルトフローインデックスは5~20の範囲にあることが好ましい。メルトフローインデックスが5未満の場合は、POFに被覆層を被覆する際、配向ひずみが大きくなる傾向があり、配向ひずみを抑えるために加工温度を上げると、POF素線の熱劣化を生じる傾向がある。また、メルトフローインデックスが20より高い場合には、被覆層の強度が低下する傾向にある。
 上記の方法でPOFに水架橋ポリオレフィン前駆体樹脂を被覆したのち、水分によって前駆体樹脂の架橋処理を行う。このような架橋処理を短時間で効率よく実施するためには、熱水蒸気中や温水中にPOFケーブルを曝す方法をとることが好ましい。
 特に、温水中であれば、熱水蒸気中に比べて熱効率が非常に優れており、POFが熱劣化の影響を受けない程度の非常に短い時間で架橋処理を行うことができるため、架橋処理後もPOFケーブル初期の光伝送特性が大きく損なわれることがない。また、温水中であれば、紡糸時に延伸されたPOFに十分な緩和処理も同時に施すことができ、POFケーブルの寸法安定性も合わせて向上させることができる。
 架橋処理を行う際の温度は、90℃以上であることが好ましく、95℃以上がより好ましい。90℃より低い温度では、十分な水架橋反応を行うために非常に長時間を要する傾向がある。また、オートクレーブ等を用いて加圧条件下とすることによって水の沸点である100℃を超えた温度で架橋処理を実施することもできる。その際にはPOFの延伸配向の低下によってPOFの強度低下を招かないように120℃以下の温度で実施することが好ましい。
 温水による架橋処理に要する時間は、温水の温度に応じて設定される。例えば、水温が95~98℃の場合には、30分以上6時間以下の範囲であることが好ましく、3時間以上4時間以内の範囲であることがより好ましい。処理時間が30分より短い場合には、被覆層の架橋反応やPOFケーブルの緩和が不充分となり、POFケーブルの熱収縮やピストニングの発生等の寸法変化が起こり易くなる傾向がある。また、処理を6時間より長く実施した場合には、POFケーブルの緩和が過剰となるため、POFケーブルの光伝送特性が低下する傾向がある。
 (8)他の態様
 本発明の他の態様として、本発明のマルチコア光ファイバを含む、光通信システムがあげられる。本発明の光通信システムは光ファイバとして本発明のマルチコア光ファイバを含むこと以外は特に制限なく従来の方法により構築することができる。
 本発明の他の態様として、本発明のマルチコア光ファイバを含む、光ファイバセンサがあげられる。本発明の光ファイバセンサは光ファイバとして本発明のマルチコア光ファイバを含むこと以外は特に制限なく従来の方法により製造することができる。
 本発明の他の態様として、本発明のマルチコア光ファイバを含む、光ファイバライトである。本発明の光ファイバライトは光ファイバとして本発明のマルチコア光ファイバを含むこと以外は特に制限なく、従来の方法により製造することができる。
 以下、実施例により本発明のPOFケーブルを説明する。なお、本発明の実施例における評価結果は、下記の評価方法により実施して得られたものである。
(結晶融解熱(ΔH))
 測定には示差走査熱量計(DSC)(セイコーインスツルメンツ社製、DSC-220)を使用した。サンプルを、昇温速度10℃/分で200℃まで昇温し、その状態で5分間保持して溶融させた後、降温速度10℃/分で0℃まで降温させた。この操作を再度繰り返して行い、この時の結晶融解熱を求めた。
(伝送損失)
 波長650nmの光を用い、励振NA=0.1の条件で、25-1mのカットバック法により測定した。測定は、POFケーブルの初期状態と、POFケーブルを温度105℃のオーブンに放置して3000時間経過後について実施した。
[実施例1]
 コア材としてPMMA(屈折率1.492)、クラッド材として、2,2,2-トリフルオロエチルメタクリレート(3FM)/2-(パーフルオロオクチル)エチルメタクリレート(17FM)/MMA/メタクリル酸(MAA)(51/30/18/1(質量%))共重合体(FM1)(屈折率1.417)、海材として、VdF/TFE/HFP(48/43/9(質量%))共重合体(屈折率1.375、結晶融解熱14mJ/mg)を用い、コア材86質量%、クラッド材5質量%、海材9質量%をそれぞれ溶融して、220℃の紡糸ヘッドに供給し、19個のノズル孔を六方配列で配置した紡糸ノズルと、ロート状の口金を組み合わせて紡糸を行い、2倍に延伸して、19個の光伝送コア部を有するマルチコアプラスチック光ファイバを得た。このマルチコア光ファイバの断面におけるコアの総断面積の占有率は86.6%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は81.6%であった。この光ファイバの外周縁に接するコア部の形状は、四角形乃至五角形様の楕円形状であった。得られたマルチコアプラスチック光ファイバの断面形状概略図を図5に示す。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、一端から波長650nm、開口数(NA)0.1及び0.65の光を入射し、他端での出射光量を測定した結果、このマルチコアプラスチック光ファイバの出射光量は、それぞれ249.2nA(P0.1)、219.4nA(P0.65)、光量比(P0.65/0.1)は0.88であった。
 また50m、NA0.3における伝送帯域は213MHzであり、優れた伝送帯域を有するマルチコアプラスチック光ファイバケーブルであった。
 詳細な結果を表1に示す。
[実施例2]
 クラッド材として、VdF/TFE/HFP(48/43/9(質量%))共重合体(屈折率1.375、結晶融解熱14mJ/mg)を用いた以外は、実施例1と同様にしてマルチコアプラスチック光ファイバを得た。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は87.0%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は85.9%であった。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ250.8nA(P0.1)、218.4nA(P0.65)、光量比(P0.65/0.1)は0.87であり、広開口数、低開口数いずれの光を入射した場合も高い光量保持を維持した。
 詳細な結果を表1に示す。
[実施例3]
 ノズル孔を同心円配列で配置した紡糸ノズルを使用した以外は実施例1と同様にしてマルチコアプラスチック光ファイバを得た。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は82.0%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は80.3%であった。得られたマルチコアプラスチック光ファイバの断面形状概略図を図6に示す。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ245.3nA(P0.1)、200.3nA(P0.65)、光量比(P0.65/0.1)は0.82であった。
 詳細な結果を表1に示す。
[実施例4]
 クラッド材及び海材としてVdF/TFE(80/20(モル%))共重合体(屈折率1.402、結晶融解熱60mJ/mg)を使用した以外は実施例1と同様にしてマルチコアプラスチック光ファイバを得た。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は87.8%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は87.6%であった。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ253.1nA(P0.1)、212.5nA(P0.65)、光量比(P0.65/0.1)は0.84であった。
 詳細な結果を表1に示す。
[実施例5]
 コア材、クラッド材、海材を供給する各樹脂供給ポンプの吐出量を調整し、紡糸ノズルに供給するコア材重合体量を2%減、クラッド材重合体供給量40%減、海材重合体供給量を44%増(それぞれ実施例1との比較)に調整した以外は実施例1と同様にしてマルチコアプラスチック光ファイバを得た。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は83.8%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は75.9%であった。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ245.1nA(P0.1)、180.3nA(P0.65)、光量比(P0.65/0.1)は0.74であった。
 詳細な結果を表1に示す。
[比較例1]
 コア材、クラッド材、海材を供給する各樹脂供給ポンプの吐出量を調整し、紡糸ノズルに供給するコア材重合体量を12%減、クラッド材重合体供給量を40%増、海材重合体供給量を93%増(それぞれ実施例1との比較)に調整した以外は実施例1と同様の方法にてマルチコアプラスチック光ファイバを得た。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は76.0%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は68.8%であった。であった。この光ファイバの外周縁に接するコア部の形状は、四角形乃至五角形様の円形状であり、光ファイバ外周縁に接する面の曲率が大きかった。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ205.5nA(P0.1)、145.1nA(P0.65)、光量比(P0.65/0.1)は0.71であり、開口数の大きな光を入射した際の光の減衰が非常に大きいものであった。
 詳細な結果を表1に示す。
[比較例2]
 151個のノズル孔を六方配列で配置した紡糸ノズルを用い、コア材、クラッド材、海材を供給する各樹脂供給ポンプの吐出量を調整し、紡糸ノズルに供給するコア材重合体量を13%増、クラッド材重合体供給量79%減、海材重合体供給量76%減(それぞれ実施例1との比較)に調整した以外は実施例1と同様の方法にてマルチコアプラスチック光ファイバを得た。この光ファイバの外周縁に接するコア部の形状は、四角形乃至五角形様の楕円形状であるが、光ファイバ外周縁に接する面の曲率が大きくかった。得られたマルチコア光ファイバの断面におけるコアの総断面積の占有率は98.5%、マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率は97.6%であった。
 このマルチコアプラスチック光ファイバの外周に、ポリエチレンを被覆した外径2.2mmの光ファイバケーブルを長さ1mに切断し、実施例1と同様に出射光量を測定した結果、出射光量は、それぞれ163.3nA(P0.1)、61.3nA(P0.65)、光量比(P0.65/0.1)は0.38であり、開口数の大きな光を入射した際の光の減衰が非常に大きいものであった。
 詳細な結果を表1に示す。
[実施例6]
 実施例1にて得たマルチコアプラスチック光ファイバの外周にオレフィン系熱可塑性エラストマーとしてポリプロピレン/ポリエチレン/加硫ゴム成分とのアロイ(三井化学製 ミラストマー9070B)を用いた以外は実施例1と同様にしてマルチコアプラスチック光ファイバケーブルを得た。得られたプラスチック光ファイバケーブルの25-1m、650nm、NA0.1における伝送損失は152dB/kmであった。このマルチコアプラスチック光ファイバケーブルを105℃環境下、3000時間の熱処理を実施した後に測定した伝送損失は180dB/kmであり、高い耐熱性を有するケーブルであった。
 詳細な結果を表2に示す。
[実施例7]
 実施例1にて得たマルチコアプラスチック光ファイバの外周に水架橋ポリエチレン前駆体樹脂(三菱化学製 リンクロンXHM-611N)を用い、被覆後98℃の温水中に3時間浸漬して架橋処理を行った以外は実施例1と同様にしてマルチコアプラスチック光ファイバケーブルを得た。得られたプラスチック光ファイバケーブルの25-1m、650nm、NA0.1における伝送損失は155dB/kmであった。このマルチコアプラスチック光ファイバケーブルを105℃環境下、3000時間の熱処理を実施した後に測定した伝送損失は175dB/kmであり、高い耐熱性を有するケーブルであった。
 詳細な結果を表2に示す。
[実施例8、9]
 マルチコアプラスチック光ファイバを実施例2のものに変えた以外は実施例6、7と同様にしてマルチコアプラスチック光ファイバケーブルを得た。得られたケーブルの耐熱性、帯域特性はいずれも良好であった。
 詳細結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 1  コア
 2  クラッド
 3  海部

Claims (13)

  1.  複数のコアと、各コアの周りに形成された海部とを有する、マルチコア光ファイバであって、
     少なくとも以下の条件1又は条件2を満たす、マルチコア光ファイバ。
      (条件1)マルチコア光ファイバの断面の外側領域におけるコアの総断面積の占有率が、80~95%である。
      (条件2)マルチコア光ファイバの断面におけるコアの総断面積の占有率が、82~93%である。
  2.  条件1及び条件2のいずれの条件も満たす、請求項1に記載のマルチコア光ファイバ。
  3.  コアの材料が、ポリメチルメタクリレート又はメチルメタクリレートとメチルメタクリレート以外の1種以上の単量体との共重合体である、請求項1又は2に記載のマルチコア光ファイバ。
  4.  海部の材料が、少なくともフッ化ビニリデン単位を含み、示差走査熱量測定における結晶融解熱が70mJ/mg以下であるフッ素系樹脂である、請求項1~3のいずれか1項に記載のマルチコア光ファイバ。
  5.  コアの外周に、少なくとも1層のクラッドを有する、請求項1~4のいずれか1項に記載のマルチコア光ファイバ。
  6.  クラッドの材料が、少なくともフッ素化メタクリレート単位を含む、請求項5に記載のマルチコア光ファイバ。
  7.  コアの材料82~93質量%及び海部の材料7~18質量%を溶融紡糸する、マルチコア光ファイバの製造方法。
  8.  コアの材料82~93質量%、クラッドの材料0.1~8質量%及び海部の材料6.9~17.9質量%を溶融紡糸する、マルチコア光ファイバの製造方法。
  9.  ノズル孔が六方配列で配置されたノズルを用いて溶融紡糸する、請求項7又は8に記載のマルチコア光ファイバの製造方法。
  10.  請求項1~6のいずれか1項に記載のマルチコア光ファイバの外周に、被覆層を有する、マルチコア光ファイバケーブル。
  11.  請求項1~6のいずれか1項に記載のマルチコア光ファイバを含む、光通信システム。
  12.  請求項1~6のいずれか1項に記載のマルチコア光ファイバを含む、光ファイバセンサ。
  13.  請求項1~6のいずれか1項に記載のマルチコア光ファイバを含む、光ファイバライト。
PCT/JP2014/059656 2013-04-02 2014-04-01 マルチコア光ファイバ及びマルチコア光ファイバケーブル WO2014163084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480018719.6A CN105103018B (zh) 2013-04-02 2014-04-01 多芯光纤以及多芯光缆
JP2014521383A JP6460321B2 (ja) 2013-04-02 2014-04-01 マルチコア光ファイバ及びマルチコア光ファイバケーブル
US14/770,895 US9448358B2 (en) 2013-04-02 2014-04-01 Multicore optical fiber and multicore optical fiber cable
EP14779336.8A EP2983022B1 (en) 2013-04-02 2014-04-01 Multi-core optical fiber and multi-core optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013076828 2013-04-02
JP2013-076828 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014163084A1 true WO2014163084A1 (ja) 2014-10-09

Family

ID=51658379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059656 WO2014163084A1 (ja) 2013-04-02 2014-04-01 マルチコア光ファイバ及びマルチコア光ファイバケーブル

Country Status (5)

Country Link
US (1) US9448358B2 (ja)
EP (1) EP2983022B1 (ja)
JP (1) JP6460321B2 (ja)
CN (1) CN105103018B (ja)
WO (1) WO2014163084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068320A (zh) * 2020-09-14 2020-12-11 哈尔滨工程大学 一种基于多芯光纤的光致微马达

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603977B (zh) * 2016-05-11 2020-08-07 直观外科手术操作公司 具有用于安全性的冗余纤芯的多纤芯光学纤维
WO2018047867A1 (ja) * 2016-09-09 2018-03-15 住友電気工業株式会社 光増幅器およびマルチコア光ファイバ
CN110869828A (zh) * 2017-08-31 2020-03-06 旭化成株式会社 塑料光纤、塑料光纤线缆、带有连接器的塑料光纤线缆、光通信系统、和塑料光纤传感器
CN108381955B (zh) * 2018-02-27 2020-04-14 西南科技大学 一种塑料闪烁体光纤阵列的制备方法
US11652337B2 (en) 2019-05-10 2023-05-16 Meta Platforms, Inc. Systems and methods for installing fiber optic cable onto a powerline conductor
US11261130B2 (en) 2019-05-10 2022-03-01 Facebook, Inc. Spool-free fiber optic cable configuration for cable installation onto a powerline conductor
US11262521B1 (en) * 2019-11-27 2022-03-01 Facebook, Inc. Fiber optic cable assembly for installation on a powerline conductor
US11353672B1 (en) 2019-11-27 2022-06-07 Meta Platforms, Inc. Components for fiber optic cable installation on a powerline conductor
CN111562645B (zh) * 2020-04-21 2022-07-22 艾菲博(宁波)光电科技有限责任公司 一种复合材料光纤及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032442A1 (fr) 1994-05-24 1995-11-30 Asahi Kasei Kogyo Kabushiki Kaisha Faisceau de fibres plastiques pour communication optique
JPH0915432A (ja) * 1995-06-26 1997-01-17 Asahi Chem Ind Co Ltd 光センサー用プラスチック光ファイバ
JPH0933737A (ja) 1995-07-18 1997-02-07 Asahi Chem Ind Co Ltd 光通信用多芯プラスチック光ファイバ及びケーブル
WO1998035247A1 (fr) 1997-02-07 1998-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques
JPH1195048A (ja) 1997-09-19 1999-04-09 Asahi Chem Ind Co Ltd 多芯プラスチック光ファイバ裸線、これを用いた素線及びケーブル
JPH11160553A (ja) 1997-11-27 1999-06-18 Mitsubishi Rayon Co Ltd 六角芯プラスチック製マルチ光ファイバ
JPH11167031A (ja) * 1997-12-02 1999-06-22 Mitsubishi Rayon Co Ltd プラスチック製マルチ光ファイバケーブル
JPH11194220A (ja) * 1997-12-26 1999-07-21 Mitsubishi Rayon Co Ltd プラスチック製マルチ光ファイバ及びケーブル
JP2005266742A (ja) 2003-12-05 2005-09-29 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルおよびその製造方法
JP2006215178A (ja) 2005-02-02 2006-08-17 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
JP2007047371A (ja) * 2005-08-09 2007-02-22 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816202A (en) * 1986-10-09 1989-03-28 Idemitsu Kosan Co., Ltd. Method of melt spinning pitch
WO2006070824A1 (ja) * 2004-12-27 2006-07-06 Mitsubishi Rayon Co., Ltd. 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
KR20120044363A (ko) 2007-09-19 2012-05-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 내굴곡 플라스틱 광섬유 케이블
EP2306227B1 (en) * 2008-06-23 2015-11-04 Mitsubishi Rayon Co., Ltd. Plastic optical fiber cable and method of transmitting signal
CN102122042A (zh) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 一种耐热光缆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032442A1 (fr) 1994-05-24 1995-11-30 Asahi Kasei Kogyo Kabushiki Kaisha Faisceau de fibres plastiques pour communication optique
JPH0915432A (ja) * 1995-06-26 1997-01-17 Asahi Chem Ind Co Ltd 光センサー用プラスチック光ファイバ
JPH0933737A (ja) 1995-07-18 1997-02-07 Asahi Chem Ind Co Ltd 光通信用多芯プラスチック光ファイバ及びケーブル
WO1998035247A1 (fr) 1997-02-07 1998-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques
JPH1195048A (ja) 1997-09-19 1999-04-09 Asahi Chem Ind Co Ltd 多芯プラスチック光ファイバ裸線、これを用いた素線及びケーブル
JPH11160553A (ja) 1997-11-27 1999-06-18 Mitsubishi Rayon Co Ltd 六角芯プラスチック製マルチ光ファイバ
JPH11167031A (ja) * 1997-12-02 1999-06-22 Mitsubishi Rayon Co Ltd プラスチック製マルチ光ファイバケーブル
JPH11194220A (ja) * 1997-12-26 1999-07-21 Mitsubishi Rayon Co Ltd プラスチック製マルチ光ファイバ及びケーブル
JP2005266742A (ja) 2003-12-05 2005-09-29 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルおよびその製造方法
JP2006215178A (ja) 2005-02-02 2006-08-17 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
JP2007047371A (ja) * 2005-08-09 2007-02-22 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068320A (zh) * 2020-09-14 2020-12-11 哈尔滨工程大学 一种基于多芯光纤的光致微马达

Also Published As

Publication number Publication date
CN105103018A (zh) 2015-11-25
JP6460321B2 (ja) 2019-01-30
EP2983022A1 (en) 2016-02-10
JPWO2014163084A1 (ja) 2017-02-16
US9448358B2 (en) 2016-09-20
EP2983022A4 (en) 2016-03-23
US20160011366A1 (en) 2016-01-14
EP2983022B1 (en) 2020-03-25
CN105103018B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
JP6460321B2 (ja) マルチコア光ファイバ及びマルチコア光ファイバケーブル
KR101675413B1 (ko) 플라스틱 광파이버 및 플라스틱 광파이버 코드
JP6897863B2 (ja) 光ファイバケーブル、ハーネス、及び光ファイバケーブルの製造方法
CN1576915A (zh) 光信号传输系统
CN111801608B (zh) 塑料光纤和塑料光纤软线
JP2007052095A (ja) プラスチック光ファイバケーブル
JP5304704B2 (ja) プラスチック光ファイバコード
JP5537315B2 (ja) プラスチック光ファイバケーブル
JP4680715B2 (ja) プラスチック光ファイバケーブルの製造方法
JP5459070B2 (ja) プラスチック光ファイバおよびプラスチック光ファイバコード
JP2006215178A (ja) プラスチック光ファイバケーブル
JP6326883B2 (ja) プラスチック光ファイバコード
JP2004219579A (ja) プラスチック光ファイバ及びプラスチック光ファイバケーブル
JP2005266742A (ja) プラスチック光ファイバケーブルおよびその製造方法
JP2011253108A (ja) プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル
JP4225547B2 (ja) プラスチック光ファイバ、及びプラスチック光ファイバケーブル
JP2007047258A (ja) プラスチック光ファイバケーブル
JP2015028645A (ja) プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル
JP5235426B2 (ja) プラスチック光ファイバケーブルの製造方法
JP2021036312A (ja) プラスチック光ファイバおよびそれを用いたプラスチック光ファイバコード
JP2006195078A (ja) マルチコアプラスチック光ファイバ、及びマルチコアプラスチック光ファイバケーブル
JP2006064767A (ja) プラスチック光ファイバコード
JP2005181446A (ja) プラスチック光学部材用プリフォーム及びその製造方法並びにプラスチック光ファイバ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018719.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014521383

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770895

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014779336

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE