WO2006070824A1 - 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法 - Google Patents

重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法 Download PDF

Info

Publication number
WO2006070824A1
WO2006070824A1 PCT/JP2005/023939 JP2005023939W WO2006070824A1 WO 2006070824 A1 WO2006070824 A1 WO 2006070824A1 JP 2005023939 W JP2005023939 W JP 2005023939W WO 2006070824 A1 WO2006070824 A1 WO 2006070824A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
general formula
meth
represented
mass
Prior art date
Application number
PCT/JP2005/023939
Other languages
English (en)
French (fr)
Inventor
Amane Aoyagi
Yoshihiro Tsukamoto
Keiji Iwasaka
Keiichi Sakashita
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to EP05822855A priority Critical patent/EP1834968A4/en
Priority to JP2006550812A priority patent/JP5340542B2/ja
Priority to US11/794,313 priority patent/US7512309B2/en
Publication of WO2006070824A1 publication Critical patent/WO2006070824A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F224/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • Polymer composition plastic optical fiber, plastic optical fiber cable, and method for producing plastic optical fiber
  • the present invention relates to a polymer composition excellent in transparency and heat resistance, a plastic optical fiber, a plastic optical fiber cable, and a method for producing a plastic optical fiber.
  • Plastic optical fiber has been put to practical use as an information transmission medium in lighting applications, FA sensors, or communication fields, taking advantage of its low cost, light weight, flexibility, and large diameter.
  • PMMA polymethylmetatalylate
  • POF with PMMA as a core material has a glass transition temperature (Tg) of about 110 ° C, so that it can be used even if a polymer with higher heat resistance is coated on the outside.
  • Tg glass transition temperature
  • the upper limit is about 110 ° C.
  • POF has been proposed in which various materials such as amorphous polyolefin-based resin having a main chain in the main chain are used as the core material.
  • POF using polycarbonate-based resin (PC resin) as the core material is difficult to purify the core material, remove foreign matter, etc., or light derived from the uneven density of the polymer itself. Due to the large scattering loss, POF using PC resin as the core material has a significantly inferior transmission characteristic (transmission loss of 500 dBkm or more) compared to POF using PMMA as the core material (transmission loss 130 dBZkm).
  • PC resin polycarbonate-based resin
  • PMMA transmission loss 130 dBZkm
  • Polyfluoride alkyl (meth) acrylate homopolymers or copolymers, or fluorinated styrene polymers, which are widely used as cladding materials for POF have low adhesion to polycarbonate.
  • the POF used for the core material is core clad Easily cause structural changes such as interface peeling! /.
  • Patent Document 5 there is a methacrylate having an alicyclic group in the side chain, such as borne methacrylate, adamantyl methacrylate, tricyclodecanyl methacrylate, etc.
  • a POF with relatively good transmission characteristics using a copolymer of methyl methacrylate (MMA) as a core material has been proposed.
  • a POF having a polymer having a (meth) acrylate monomer unit having a normal alicyclic group in the side chain as a core material is a polymer force of the core material such as an extruder or a nozzle.
  • the core material such as an extruder or a nozzle.
  • ⁇ -methylene is excellent in the balance between transparency and high heat resistance such as high glass transition temperature and heat decomposition resistance.
  • Derivatives of ⁇ -butyrolatatane for example, (X-methylene ⁇ -methyl-y butyrolatatane, (X —methylene-one ⁇ , y-methylolone-y-buty-mouth rataton, ⁇ -methylene-one ⁇ -ethynole-one y —petit-mouthed rataton, a — A homopolymer of methylene 1 / 3-methyl- ⁇ -petit-mouth rataton, etc.) and a copolymer of these monomers and methacrylate monomers have been proposed as core materials.
  • the copolymerization system of a-methylene ⁇ -petite rataton derivative and a methacrylic acid ester monomer has a difference in reactivity ratio as described in Non-Patent Document 2, Non-Patent Document 3, and the like. Larger copolymers tend to be block copolymers. In addition, when the refractive index difference between the a-methylene ⁇ petit-mouth rataton derivative and the methacrylic acid ester monomer is large, these copolymers are generally used as a core material for POF. Therefore, it is not easy to use the core material of ⁇ F as a transparent material for optical use as it is.
  • Non-Patent Document 4 and Non-Patent Document 5 a technique for subjecting PMMA to heat melting treatment has been reported as a technique for reducing the light scattering loss of a polymer.
  • the above technology is applied to homopolymers, and is a copolymer with a large block copolymerization property or a copolymer with a large difference in refractive index between constituent monomers.
  • the loss has been sufficiently reduced and put into practical use as a POF core material.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-200004
  • Patent Document 2 JP-A-6-200005
  • Patent Document 3 Japanese Patent Laid-Open No. 4-365003
  • Patent Document 4 JP 2001-174647 A
  • Patent Document 5 Japanese Patent Laid-Open No. 63-74010
  • Patent Document 6 Japanese Unexamined Patent Publication No. 63-163306
  • Patent Document 7 JP-A-8-231648
  • Patent Document 8 Japanese Patent Laid-Open No. 09-033375
  • Patent Document 9 Japanese Patent Application Laid-Open No. 09-0333736
  • Non-Patent Document 1 Akira Tanaka, 8th POF Consortium Abstract, POF Consortium, April 26, 1995, p. 7-15
  • Non-Patent Document 2 Polymer, Vol. 21, 1215-1216 (1979)
  • Non-patent document 3 Journal oi Polymer science: Part A: Polymer chemistry, Vol. 41, 1759-1777 (2003)
  • Non-Patent Document 4 Polymer Journals, Vol. 42, No. 4, 265—271 (1985)
  • Non-Patent Document 5 Polymer Papers, Vol. 53, No. 10, 682—688 (1996)
  • An object of the present invention is to provide a polymer composition excellent in heat resistance and transparency, a plastic optical fiber using the same, a plastic optical fiber cable, and a plastic optical fiber excellent in heat resistance and transparency. It is to provide a manufacturing method.
  • the inventors of the present invention have developed a cloudiness in a molded product of homopolymers of a-methylene 1 / 3-methyl- ⁇ -petit latataton and ⁇ -methylene ⁇ -ethyl- ⁇ butyrolatataton having a substituent at the ⁇ -position.
  • the higher the content of the rataton compound the more transparent the appearance, but the smaller the light scattering loss value of the optical fiber. It has been found that the light scattering loss value required for optical waveguides and optical waveguides may become extremely high.
  • the unit force of the ratatoni compound is the SS isomer or the R isomer.
  • light scattering loss tends to increase when it is composed of a single unit.
  • the polymer containing these isomer units in a specific range the increase in light scattering loss is suppressed, and the knowledge that heat resistance can be improved while maintaining high transparency is obtained. Based on knowledge, the present invention has been achieved ⁇
  • the present invention provides a unit of a ratatone compound represented by the general formula (1) as a structural unit.
  • the present invention relates to a polymer composition
  • a polymer composition comprising the S) body unit and the (R) body unit represented by the general formula (3) in a mass ratio of 70 to 30 to 70 and having a total light scattering loss of lOOdBZkm or less.
  • R 1 represents a methyl group, an ethyl group or a propyl group
  • R 2 and R 3 are independently carbon atoms optionally substituted by a hydrogen atom, unsubstituted or a fluorine atom.
  • R 1 represents an alkyl group of 1 to 12, a phenyl group which may be unsubstituted or substituted with an alkyl group, or a cyclohexyl group which may be unsubstituted or substituted with a fluorine atom;
  • R 3 may be combined with each other to form a 5- or 6-membered ring including the carbon atom to which they are bonded, and the 5- or 6-membered ring may be substituted with a fluorine atom.
  • the present invention provides a transmission loss power of not more than 00 dBZkm and the core is a unit of ratatoi compound represented by the general formula (1) as a structural unit (A) 5: L00 mass% ) Acrylate ester unit (B) containing 0 to 95% by mass, and the unit (A) of the latatotone compound is represented by the (S) isomer unit represented by the general formula (2) and the general formula (3) (R ) It relates to a plastic optical fiber comprising a polymer composition having a body unit in a mass ratio of 70 Z30 to 30 Z70.
  • R 1 represents a methyl group, an ethyl group or a propyl group
  • R 2 and R 3 are independently carbon atoms optionally substituted by a hydrogen atom, unsubstituted or a fluorine atom.
  • R 1 represents an alkyl group of 1 to 12, a phenyl group which may be unsubstituted or substituted with an alkyl group, or a cyclohexyl group which may be unsubstituted or substituted with a fluorine atom;
  • R 3 may be combined with each other to form a 5- or 6-membered ring including the carbon atom to which they are bonded, and the 5- or 6-membered ring may be substituted with a fluorine atom.
  • the present invention relates to a plastic optical fiber cable having a covering layer containing a thermoplastic resin on the outer periphery of the plastic optical fiber.
  • the present invention is represented by the general formula (1) containing the (S) isomer represented by the general formula (2) and the (R) isomer represented by the general formula (3) in a mass ratio of 70Z30 to 30Z70.
  • Rataton compound (A ) 5 ⁇ A monomer mixture containing LOO mass% and (meth) acrylic acid ester (B) 0-95 mass% is polymerized to a polymer content of 94% or more, and then the temperature Tc ° C (Tc ⁇ Tg + 40) (Tg indicates the glass transition temperature of the polymer composition), and relates to a method for producing a polymer composition, characterized by melting under a pressure of 0.6 MPa or more.
  • R 1 represents a methyl group, an ethyl group or a propyl group
  • R 2 and R 3 are independently carbon atoms optionally substituted by a hydrogen atom, unsubstituted or a fluorine atom.
  • R 1 represents an alkyl group of 1 to 12, a phenyl group which may be unsubstituted or substituted with an alkyl group, or a cyclohexyl group which may be unsubstituted or substituted with a fluorine atom;
  • R 3 may be combined with each other to form a 5- or 6-membered ring including the carbon atom to which they are bonded, and the 5- or 6-membered ring may be substituted with a fluorine atom.
  • the present invention is represented by the general formula (1) containing the (S) isomer represented by the general formula (2) and the (R) isomer represented by the general formula (3) in a mass ratio of 70Z30 to 30Z70.
  • the core formed by the product is subjected to a heat melting treatment at a temperature of Tc ° C (Tc ⁇ Tg + 40) (Tg indicates the glass transition temperature of the polymer composition) and a pressure of 0.6 MPa or more.
  • the present invention relates to a method of manufacturing a plastic optical fiber characterized by the following.
  • the polymer composition of the present invention is excellent in heat resistance and transparency. Of this invention using this For plastic optical fiber and plastic optical fiber cable, it has excellent heat resistance, reduced transmission loss, and excellent transmission characteristics.
  • the polymer composition of the present invention comprises, as structural units, units of the ratatoi compound represented by the general formula (1) (A) 5: L00% by mass and (meth) acrylate unit (B) 0
  • the unit (A) of the latatatone compound comprises (S) body unit represented by the general formula (2) and (R) body unit represented by the general formula (3) in a mass ratio of 70Z30 It is included in the range of 30Z70, and the total light scattering loss is less than lOOdBZkm.
  • R 1 represents a methyl group, an ethyl group or a propyl group
  • R 2 and R 3 are independently a carbon atom which may be substituted with a hydrogen atom, unsubstituted or a fluorine atom.
  • R 2 , R 3 may be integrated with each other to form a 5- or 6-membered ring including the carbon atom to which they are bonded, or the 5- or 6-membered ring may be substituted with a fluorine atom.
  • the latatin compound as the unit (A) of the latatin compound is a derivative of a-methylene mono- ⁇ -petit latatatone, and has the structure of the substituent R 1 at the position.
  • ⁇ -Methylene ⁇ - petita rataton is a ratatony compound with a 5-membered ring structure having a methylene group at the ⁇ -position, and is structurally a methyl group ester-bonded to the ⁇ -position carbon of methyl methacrylate. It has a structure in which it is bonded to carbon and cyclized.
  • Rataton compounds of other structures that do not have a substituent structure at the ⁇ -position and have a substituent only at the ⁇ -position eg, ⁇ -methylene- ⁇ -methyl- ⁇ -butyrorataton, ⁇ -methylene- ⁇ - ⁇ , y-dimethyl- ⁇
  • Polymeric compositions based on units such as small-sized plastics are not sufficient as POF core materials because of their large light scattering loss.
  • the polymer can suppress an increase in light scattering loss and can maintain extremely high transparency.
  • Substituent R 1 at the ⁇ -position is selected from a methyl group, an ethyl group, and a propyl group because the structure becomes bulky and the polymerizability at the time of copolymerization decreases and the heat resistance of the resulting polymer decreases. It is done.
  • the Ratatone compound represented by the above general formula (1) may be one having no substituent at the ⁇ -position, but in the formula, R 2 and R 3 are independently represented.
  • R 2 and R 3 are independently represented.
  • it may be unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms which may be substituted with a fluorine atom, unsubstituted or substituted with an alkyl group, may be a phenyl group, or unsubstituted or fluorine. It may be a cyclohexyl group which may be substituted with an atom.
  • R 2 and R 3 may be combined with each other to form a 5- or 6-membered ring including the carbon atom to which they are bonded, and the 5- or 6-membered ring is substituted with a fluorine atom.
  • the strong alkyl group having 1 to 12 carbon atoms is represented by CnH2n + 1 (n represents a natural number of 1 to 12), and the shape thereof may be linear or branched.
  • the fluorine-containing alkyl group having 1 to 12 carbon atoms is represented by Cn F m H2n + 1- m (n is a natural number of 1 to 12, m is a natural number of 2n + 1 or less).
  • the shape may be linear or branched.
  • carbon atoms in the main chain of R 2 may be substituted with S, N, P heteroatoms or O atoms.
  • the unit (A) of the above-mentioned latathone compound not only has the structure of the substituent R 1 at the 8-position, but also has an (S) isomer unit represented by the general formula (2) and the general formula (3
  • the (R) body unit represented by) is contained in a ratio of 30Z 70 to 70Z30 (mass ratio).
  • the rataton compound unit represented by the general formula (1) is composed of the (S) body unit represented by the general formula (2) and the (R) body unit represented by the above general formula (3) at the above ratio. By containing it, it has extremely high transparency even in a high temperature environment, and the transmission loss can be stably kept low in the POF using this. More expensive!
  • the external compound unit represented by the general formula (1) is represented by the general formula (2) and the (S) body unit and the general formula (3).
  • the (R) body unit is more preferably contained within the range of 40-60 to 40-40, and more preferably within the range of 45 55-55 45.
  • one of the (S) body unit and the (R) body unit contained in the unit ( ⁇ ) of the ratatoni compound is 70.
  • the content exceeds 5% by mass, the transparency of the polymer is lowered, so that it is not preferred for use as a POF core material.
  • Specific examples of the unit (A) of the latatin compound represented by the general formula (1) include: a-methylene-1-13-methyl- ⁇ -methyl- ⁇ -butymouth latataton (j8 ⁇ ⁇ MMBL), a —methylene-1-13-methyl- ⁇ -dimethyl-1- ⁇ -butyrolactone ( J 8 M ⁇ DMMBL), a-methylene-1-13-methyl- ⁇ -ethyl- ⁇ -butyral rataton (j8 ⁇ ⁇ EMBL), a — Methylene-13-methyl- ⁇ -propyl-1- ⁇ -butyrolactone ( J 8 M ⁇ PMBL), a-methylene-1-13-methyl- ⁇ -cyclohexyl ⁇ -butyral rataton (j8 ⁇ ⁇ CHMBL), Q; —Methylene- J 8 —Ethyl- ⁇ -methyl- ⁇ -butyrolactone ( J 8 E ⁇ MMBL), a —Methylene-l 13-ethyl
  • a compound in which R 2 and R 3 are both hydrogen atoms (X-methylene 13-methyl- ⁇ -butyrorataton (jg MMBL a-methylene-one j8-ethyl- ⁇ -butyoratolaton (j8 EM BL), a-methylene-one) 13-Propyl ⁇ -Butuchiguchi Rataton (j8 PMBL) is preferable as a POF core material, because it has very high optical transparency, and ⁇ ⁇ BL and jS EMBL have a small glass transition. It is particularly preferred because of its excellent temperature improvement effect.
  • the unit (A) of the latatatone compound represented by the general formula (1) may be one or a combination of two or more units.
  • (meth) acrylic acid ester unit (B) constituting the polymer composition of the present invention specifically, (meth) acrylic acid alkyl ester, (meth) acrylic acid cycloalkyl ester, (meth) ) Acrylic acid aromatic esters, (meth) acrylic acid substituted aromatic esters, (meth) acrylic acid halogenated alkyl esters, (meth) acrylic acid hydroxyalkyl esters, other (meth) acrylic acid esters, etc. Units can be mentioned.
  • Examples of the above (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • the above (meth) acrylic acid aromatic ester includes phenyl (meth) acrylate, benzyl (meth) acrylate, tricyclomethacrylate [5. 2. 1. 02, 6] -deca 8-yl. And so on.
  • Examples of the (meth) acrylic acid-substituted aromatic ester include (meth) acrylic acid fluorophenyl, (meth) acrylic acid chlorophthalate, (meth) acrylic acid fluorobenzyl, (meth) acrylic acid chloro.
  • (meth) acrylic acid fluorophenyl (meth) acrylic acid chlorophthalate
  • (meth) acrylic acid fluorobenzyl (meth) acrylic acid chloro.
  • Mental benzyl and the like can be mentioned.
  • the (meth) acrylic acid halogenated alkyl ester includes fluoromethyl (meth) acrylate, fluorethyl (meth) acrylate, trifluoroethyl (meth) acrylate, (meth) acrylic acid 2, 2, 3, 3—Tetrafluoropropyl, 2, 2, 3, 3, 3—Pentafluoropropyl methacrylate, (meth) acrylic acid 2, 2, 3, 3, 4, 4, 5, 5 —Octafluoropentyl, (meth) acrylic acid 1, 1, 2, 2-tetrahydride perfluorooctyl, (meth) acrylic acid 1, 1, 2, 2-tetrahydride perfluorode force , (Meth) acrylic acid hexafluoronepentyl, (meth) acrylic acid 1, 1, 2, 2-tetrahydride mouth perfluorode force, (meth) acrylic acid 1, 1, 2, 2-tetrahydride mouth perful For example, it is possible to cite the power of the tet
  • Examples of the hydroxyalkyl ester of (meth) acrylic acid include (meth) acrylic acid 2-hydroxide, (meth) acrylic acid 2-hydroxypropyl, and the like.
  • (meth) acrylic acid esters include, for example, (meth) acrylic acid glycidyl, methacrylicidyl metatalylate, (meth) acrylic acid ethylene glycol ester, (meth) acrylic acid polyethylene glycol ester, and the like. Can be mentioned.
  • One or more of the above (meth) acrylic acid esters can be used in combination as the (meth) acrylic acid ester unit (B).
  • methyl methacrylate (MMA) is particularly a lactate. It is preferable because it has good copolymerizability with the copper compound, and when it is used as a POF core material, it excels in maintaining transparency, mechanical strength, and heat resistance.
  • the content of these units in the polymer containing the unit (A) of the above ratatoi compound and the unit (B) of the (meth) acrylate ester unit is such that the unit (A) of the ratatoni compound is 5 ⁇ : LOO mass%, and (meth) acrylic acid ester unit (B) is 0 to 95 mass%.
  • containing organic content of the unit (B) content is 5 to 50 mass 0/0
  • MMA units of Rataton compound in the polymer (A) is in the range of 50 to 95 wt%, more preferably
  • the content of the unit (A) of the ratatoi compound is 20 to 40% by mass
  • the content of the unit (B) of MMA is 60 to 80% by mass.
  • the unit (A) and (meth) acrylic acid ester unit (B) of the ratatoi compound in the polymer have such a content ratio, a polymer having a high Tg of 115 ° C or higher and sufficient heat resistance is obtained. Obtainable. If the unit (A) of the ratatoin compound in the polymer is 5% by mass or more, the Tg of the polymer can be increased. Especially when used as a POF core material, the heat resistance of the POF is improved. Can be made.
  • the upper limit is not particularly limited, but if it is 50% by mass or less, a decrease in mechanical strength can be suppressed when used as a POF core material, and POF can be obtained at a low cost. .
  • the polymer composition of the present invention has a low hygroscopic property and a heat resistant temperature, the structural units of which are only the unit (A) and (meth) acrylic ester unit (B) of the above-mentioned ratatoi compound.
  • the structural units of which are only the unit (A) and (meth) acrylic ester unit (B) of the above-mentioned ratatoi compound.
  • other copolymerizable monomer units (C) may be contained.
  • Other copolymerizable monomer units (C) are preferably contained in a range of 40% by mass or less of all structural units! /.
  • the monomer unit (C) is not particularly limited !, but is unsaturated fatty acid ester, aromatic bur compound, cyanide bur compound, hydrophilic bur compound, unsaturated dibasic acid or The derivative
  • the aromatic Bulle compound, styrene, alpha-methyl styrene, alpha-Echirusu styrene such as alpha - substituted styrenes, unloading Leo Russia styrene, can be mentioned substituted styrenes such as methyl styrene.
  • Examples of the cyanobi-louis compound include acrylonitrile and meta-tallow-tolyl.
  • Examples of the hydrophilic beer compound include (meth) acrylic acid.
  • Examples of the unsaturated dibasic acid or derivatives thereof include N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylenomaleimide, N-phenylmaleimide, N-methylmaleimide, N- N-substituted maleimides such as black mouth maleimide, maleic acid, maleic anhydride, fumaric acid and the like can be mentioned.
  • the unsaturated fatty acids and derivatives thereof include (meth) acrylamides such as (meth) acrylamide, N-dimethyl (meth) acrylamide, and N-jetyl (meth) acrylamide; (meth) calcium acrylate, ( (Meth) acrylic acid barium, (meth) acrylic acid lead, (meth) acrylic acid tin, (meth) acrylic acid metal salt such as zinc acrylate; (meth) acrylic acid .
  • the molecular weight of the polymer containing the unit (A) and the (meth) acrylic acid ester unit (B) of the latatotony compound does not deteriorate the molding processability, and sufficient mechanical strength can be obtained. It is preferable to be within the range.
  • the molecular weight (weight average molecular weight) calculated by polystyrene conversion of GPC is 10,000 to 300,000. S is preferable, more preferable ⁇ or 50,000 to 150,000, Further preferred is ⁇ 70,000 to 125, 000.
  • the molecular weight force is 10,000 or more, POF can be prevented from becoming brittle, and when it is 300,000 or less, the effect of low loss due to heat melting treatment can be sufficiently obtained.
  • the polymer composition of the present invention is produced by mass-producing the (S) isomer represented by the general formula (2) and the (R) isomer represented by the general formula (3) in a mass ratio of 70/30 to 30 / Ratatony compound represented by general formula (1) in the range of 70 ( ⁇ ) 5 ⁇ : Monomer mixture containing L00% by mass and (meth) acrylic acid ester ( ⁇ ) 0 ⁇ 95% by mass was polymerized to a polymer content of 94% or higher, and the temperature was Tc ° C (Tc ⁇ T g + 40) (Tg represents the glass transition temperature of the polymer composition) and the pressure was 0.6 MPa or higher. It can be based on a method of heat melting treatment.
  • any method can be used, but a method by radical polymerization is preferred.
  • the polymerization method for radical polymerization polymerization methods such as solution, block, suspension, and emulsification can be used. From the viewpoint of low loss of POF, block polymerization or solution polymerization is optimal. is there.
  • the bulk polymerization method can avoid contamination with impurities, and the preferred solution polymerization method is easy to control the molecular weight, molecular weight distribution, composition distribution, etc. Good.
  • a method for obtaining a polymer from the above monomer by a bulk polymerization method will be described.
  • it contains a rataton compound represented by the general formula (1) in which the mass ratio of the (S) isomer and the (R) isomer is in the range of 30Z70 to 70Z30, and a methacrylic acid ester as necessary.
  • a polymerization initiator and, if necessary, a chain transfer agent are mixed in a monomer mixture containing other copolymerizable monomers.
  • the obtained mixture is maintained at a predetermined temperature for a certain period of time to complete the polymerization, and the obtained bulk polymer is pulverized and further devolatilized to remain in the polymer.
  • the polymer can be obtained by removing the unreacted monomer, polymerization initiator, chain transfer agent and the like.
  • the polymerization initiator is not particularly limited as long as it does not have adverse effects such as side reactions and coloring during the polymerization, and can be arbitrarily selected depending on the polymerization mode, polymerization temperature, polymerization rate, and polymerization time. A plurality of kinds of polymerization initiators may be used in combination.
  • 2, 2'-azobis (2, 4, 4 trimethylpentane) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VR-110), 2, 2'-azobis (isobuty mouth) -Tolyl), 1, 1'-azobis (sucral hexanecarbo-tolyl), 2, 2'-azobis (2,4 dimethylvale-tolyl), dimethyl 2,2'-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., product) Name: V-601) and other azo initiators, benzoyl peroxide, lauryl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxy 2-ethylhexanoate, 1,1-di-t Examples thereof include peroxide initiators such as butylperoxy 2-methylcyclohexane.
  • V-601 which is preferred as an azo-based initiator, is particularly preferred because of the small influence of heat coloring of the polymer.
  • the amount of these polymerization initiators used can be, for example, in the range of 0.001 to 3 parts by mass with respect to 100 parts by mass of the monomer component.
  • the chain transfer agent used for the purpose of adjusting the molecular weight at the time of polymerization may be a target molecular weight as long as it does not cause adverse reactions such as side reactions or product coloring. Therefore, any type can be selected, and a plurality of types may be used.
  • Specific examples of chain transfer agents include n-butyl mercaptan, isobutyl mercaptan, and tert-butyl mecaptan. Examples thereof include primary, secondary, tertiary mercaptans, thioglycolic acid and esters thereof such as lucabtan and n-octyl mercaptan.
  • n-butylmerkabutane is preferred because it is easy to remove by volatilization in the melt extrusion process where the volatilization temperature is low.
  • chain transfer agents can be used in an amount of, for example, 3 parts by mass or less with respect to 100 parts by mass of the monomer component.
  • the polymerization temperature varies depending on the polymerization initiator used and the polymerization type, but is in the range of 50 to 170 ° C, more preferably in the range of 60 to 150 ° C.
  • the monomer mixture is polymerized until the polymer content reaches 94% or more.
  • the polymer content is preferably 97% or more, more preferably 99% or more.
  • foaming due to the remaining unpolymerized monomer can be suppressed when the heat melting treatment described later is performed.
  • a method of adjusting conditions such as polymerization temperature and polymerization initiator concentration, or the obtained polymer is supplied to a devolatilizing extruder, and unreacted monomers, mercabtan, This can be achieved by a method of removing the solvent.
  • the polymer composition thus obtained can be appropriately adjusted in balance between low hygroscopicity and heat resistance by selecting a composition of a monomer that copolymerizes at a high temperature of 200 ° C or higher with little degradation. it can.
  • the polymer composition obtained by polymerizing the monomer mixture to a polymer content of 94% or more has local composition fluctuations due to the heterogeneous structure formed during the polymerization. Therefore, this local fluctuation of the composition causes the fluctuation of the refractive index and increases the light scattering loss of the polymer.
  • the polymer composition is subjected to heat melting treatment. Powerful heat-melting treatment is performed using a polymer composition containing the above polymer at a temperature Tc ° C (Tc ⁇ Tg + 40) (Tg indicates the glass transition temperature of the polymer composition), and a pressure of 0.6 MPa or more. It is a heat-melting process performed under the conditions.
  • the polymer composition is (Tg + 40) ° C
  • the heat melting treatment at a pressure of 0.6 MPa or more, foaming of the polymer composition can be suppressed when the temperature reaches the boiling point of any monomer.
  • the time for performing the heat melting treatment can be appropriately changed depending on the temperature Tc of the heat melting treatment and the state of the polymer, and the time in which the polymer composition is not long enough to cause coloration due to thermal deterioration.
  • the light scattering loss value can be appropriately selected so as to be within the target range, for example, from 30 minutes to 5 hours so that the non-uniform structure can be sufficiently removed.
  • the latatone compound in general and the (meth) acrylic acid ester unit (B) have a relationship of r ⁇ l> r> 0 when the respective reactivity ratios 3 ⁇ 4 ⁇ and r to the copolymerization reaction so
  • the polymer may contain other substances, for example, colorants such as known dyes and pigments, various antioxidants, release agents, etc., before and after the heat-melting treatment. be able to.
  • the polymer composition of the present invention thus obtained can achieve a total light scattering loss value of lOOdBZkm or less.
  • the transmission loss of POF using the polymer composition of the present invention as a core material can be made sufficiently excellent at 400 dBZkm or less.
  • the light transmittance measured according to the ASTM D1003 standard can be increased to 90.5% or more, and information such as communication wiring in automobiles can be obtained.
  • the light transmittance measured according to the ASTM D1003 standard can be increased to 90.5% or more, and information such as communication wiring in automobiles can be obtained.
  • the optical components that require high transparency and light scattering loss in addition to heat resistance in the field of optoelectronics such as gradient index lenses, optical waveguides, and optical devices. It can also be applied.
  • the plastic optical fiber according to the present invention has a transmission loss force of less than 00dBZkm, and has a powerful core force as a structural unit of a ratatoi compound (A) 5: L00 mass%.
  • (Meth) acrylic acid ester unit (B) containing 0 to 95% by mass, the unit (A) of the latatin compound is represented by the (S) isomer unit represented by the general formula (2) and the general formula (3) It is characterized in that it comprises a polymer composition in which the (R) body unit shown is in the range of 70Z30 to 30Z70 by mass ratio.
  • the refractive index of the clad has a refractive index such that NA (Numerical Apature) described later falls within a predetermined range.
  • the clad provided on the outer periphery of the core is not limited to a single-layer structure.
  • a multi-layer force of two or more layers may also be formed.
  • the refractive index nl of the core, the refractive index n2 of the first cladding, and the refractive index n3 of the second cladding are expressed by the relational expression (4)
  • the refractive index is the refractive index at 25 ° C by sodium D line.
  • a POF satisfying the relational expression (4) is preferable because even when bent and light leaks from the first cladding, the leaked light can be reflected by the second cladding and transmission loss can be reduced. Good.
  • the numerical aperture of the POF of the present invention is in the range of 0.3 to 0.7, especially in the case of LA for automobiles.
  • a range of 5 to 0.65 is preferable.
  • the POFs that have been put into practical use have NA in the above range, and if the POF has the above numerical aperture in connection with these or in connection with the light emitting / receiving element based on these POFs, Increase in coupling loss due to NA difference can be suppressed.
  • NA is the same as the numerical aperture (NA) normally used in the normal optical field.
  • NA (ncore nclad 2 ) (7)
  • ncore represents the refractive index of the core material
  • nclad represents the refractive index of the clad material
  • a fluorine-containing olefin-based resin, a fluorinated metatalylate-based polymer, or the like can be appropriately selected.
  • a fluorinated olefin-based resin or a fluorinated metatalylate-based polymer, or both of them can be used.
  • the clad is formed of two or more layers, it is preferable to select a fluorinated metatalylate polymer as the innermost clad.
  • the fluorine-containing olefin-based resin used for the clad is preferably one containing a tetrafluoroethylene (TFE) unit. More specifically, a vinylidene fluoride (VdF) unit is 10 to 60 masses.
  • TFE tetrafluoroethylene
  • VdF vinylidene fluoride
  • HFP hexa full O b propylene
  • the fluorine-containing olefin-containing resin containing the TFE unit those not having high crystallinity are preferable. This is because the fluorine-containing olefin resin containing TFE units having high crystallinity tends to decrease in transparency.
  • the crystallinity of the fluorinated olefin-based resin can be expressed using the heat of crystal fusion measured by differential scanning calorimetry (DSC) as an index.
  • the heat of crystal melting is the amount of heat generated due to the thermal melting of the crystal components derived from the TFE units and VdF units of the fluorinated polyolefin resin. The higher the value, the higher the crystallinity of the resin. Tend.
  • the heat of crystal melting of the fluorine-containing olefin-containing resin containing TFE units is preferably 40 mj / mg or less.
  • the heat of crystal melting of the fluorine-containing olefin-based resin is 40 mjZmg or less, increase in POF transmission loss can be suppressed even when POF is left in a high temperature environment of about 125 ° C for a long period of time. If the heat of crystal melting is small, the crystallinity of the resin can be lowered, and the increase in POF transmission loss can be suppressed even under long-term high temperature environments. 15 mjZmg or less is more preferable in order to express the extremely high heat resistance that is more preferable at 20mi / mg or less.
  • the fluorinated metatalylate polymer is a polymer that is easy to adjust the refractive index, has excellent transparency and heat resistance, and is excellent in flexibility and cacheability. It is suitable as a lid material.
  • the fluorinated methacrylate polymer that can be suitably used particularly for the innermost layer is represented by the general formula (8)
  • Fluoroalkyl (meth) acrylate unit (D) 15-90% by mass and other copolymerizable monomer units
  • X represents a hydrogen atom, a fluorine atom or a methyl group
  • represents a hydrogen atom or a fluorine atom
  • m represents 1 or 2
  • n represents an integer of 1 to 12.
  • X represents a hydrogen atom, a fluorine atom, or a methyl group
  • R2f and R3f independently represent a fluoroalkyl group
  • R1 represents a hydrogen atom, a methyl group, or a fluorine atom
  • m represents 1 or 2
  • N represents an integer of 1 to 12.
  • fluoroalkyl (meth) talylate represented by the general formula (10)
  • branched fluorine such as (meth) acrylic acid hexafluoroneopentyl, (meth) acrylic acid hexafluoroisobutyl, etc.
  • examples thereof include (meth) acrylic acid fluorinated ester having an alkyl group in the side chain.
  • Specific units of powerful rataton compounds include ⁇ -methylene mono- ⁇ -methyl- ⁇ -butyrolatathone, a-methylene mono-13-methyl- ⁇ -methyl- ⁇ -butyral rataton, and a-methylene mono- ⁇ -ethynole. Examples thereof include a -methylene-l-13-anolequinolates such as y-buty-mouthed ratatones and ⁇ -buty-mouthed ratatones.
  • the coalescence is particularly preferable because it has excellent mechanical strength and heat resistance (glass transition temperature, thermal decomposability) as well as excellent transparency as a clad material.
  • the other copolymerizable monomer unit ( ⁇ ) in addition to the unit of the ratatoy compound, the heat resistance (glass transition temperature, thermal decomposability), water absorption, mechanical properties of the clad material
  • the heat resistance glass transition temperature, thermal decomposability
  • water absorption mechanical properties of the clad material
  • units of (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate may be included! /.
  • the melt mass flow rate (HMFR) of the fluorinated olefin-based olefin resin constituting the clad is preferably in the range of 5-50, more preferably in the range of 10-40. The range of 15 to 25 is more preferable. If the MFR is 50 or less, it is possible to suppress a decrease in the flexibility and cacheability of the POF and a decrease in the POF transmission loss due to the deformation of the cladding material when the POF is placed in a high temperature environment. If the MFR is 5 or more, deterioration of the moldability of the copolymer can be suppressed.
  • the POF core and clad form of the present invention includes a core in which a single core is coated and a clad having a lower refractive index than the core is provided around the core.
  • it may be a sea-island type multi-core in which islands having a plurality of cores or core-clad structural forces are scattered in a sea part made of clad.
  • the present invention is not limited to the above-described forms, and various forms having a core-cladding structure may be used.
  • the POF of the present invention may have a protective layer on the outer periphery thereof.
  • the material for the protective layer include a copolymer of VdF and TFE, a copolymer of VdF, TFE, and HFP, and VdF and TFE.
  • Copolymer of HFP and perfluoro (fluoro) alkyl butyl ether Copolymer of VdF and TFE and perfluoro (fluoro) alkyl butyl ether, Copolymer of ethylene, TFE and HFP, TFE and HFP
  • the clad material include, but are not limited to, a copolymer, a copolymer of VdF, TFE, and hexafluoroacetone.
  • This protective layer can be formed on the core Z-cladding structure using a coating method or dipping method, or can be formed by extrusion-molding together with the core and cladding using a composite spinning nozzle.
  • the thermal contraction rate in the axial direction when the POF is heat-treated at 125 ° C for 24 hours is preferably 1.5% or less. If the heat shrinkage rate is 1.5% or less, this is a POF cable with a coating layer made of thermoplastic resin, as will be described later, when used for a long time at a high temperature of 125 ° C or higher. In addition, the coating layer can suppress the shrinkage of the POF and suppress the occurrence of the piston.
  • the axial heat shrinkage rate of the POF is preferably 1% or less, more preferably 0, in order to further improve the dimensional stability of the POF in a high temperature environment and to further reduce the POF's pisteung. Less than 5%.
  • the above heat shrinkage characteristics are determined by setting the Tg of the polymer constituting the core material according to the operating environment temperature of the POF, the stretch ratio for giving the POF appropriate flexibility, and further the POF This can be achieved by applying relaxation treatment so as not to impair performance such as mechanical strength and transmission loss.
  • a method for producing the POF for example, a clad obtained by forming the core material core and then dissolving the clad material in a solvent such as ethyl acetate, dimethylformamide, dimethylacetamide, etc.
  • a solvent such as ethyl acetate, dimethylformamide, dimethylacetamide, etc.
  • the method include coating the material solution on the surface of the core by a coating method or a dipping method to form a clad.
  • a method of forming POF in which the core is coated with the clad by extrusion molding by a composite spinning method using a composite spinning nozzle.
  • the plastic optical fiber cable of the present invention is characterized by having a coating layer containing thermoplastic resin on the outer periphery of the plastic optical fiber.
  • the coating layer is provided on the outer periphery of the clad of the plastic optical fiber or the outer periphery of the protective layer, and can improve the bending resistance and the heat and moisture resistance.
  • thermoplastic resin used for the material of the coating layer examples include a polyamide-based resin, a polyethylene-based resin, a polypropylene-based resin, and a water-crosslinked polyethylene resin, depending on the environment in which the POF cable is used. Fat, water cross-linked polypropylene resin, polysalt resin-redene resin
  • One or a mixture of two or more selected from the group forces consisting of chlorinated polyethylene resin, polyurethane-based resin, vinylidene fluoride-based resin, various ⁇ ⁇ ultraviolet curable resins can be used. Since this coating layer does not directly contact the core, no particular problem arises even if the transparency decreases due to crystallization.
  • polyamide-based resins and water-crosslinked polyethylene resins are excellent in heat resistance, bending resistance, and solvent resistance, and are therefore suitable for applications that require heat resistance and environmental resistance such as automobiles. It is suitable as a material for the POF coating layer.
  • these resins have an appropriate melting point that is easy to process, the POF can be easily coated without degrading the POF transmission performance.
  • polyamide-based resin homopolymers of monomers such as nylon 10, nylon 11, nylon 12, nylon 6, nylon 66, and the like, and copolymers composed of combinations of these monomers,
  • a nylon elastomer containing a nylon monomer into which a flexible segment is introduced is introduced.
  • polymers and compounds other than polyamide-based resin can be mixed and used as the coating layer material.
  • the method for forming the coating layer can be selected as appropriate depending on the physical properties of the coating layer material. However, in terms of excellent workability! The forming method is preferred.
  • Example [0106] The polymer composition, POF, and POF cable of the present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited thereto.
  • the abbreviations of monomers used in each Example and Comparative Example indicate the following compounds.
  • MAA methacrylic acid
  • VdF Biridene fluoride
  • PA12 Nylon 12 (trade name: Daiamide L1640, manufactured by Daicel & Degussa Co., Ltd.)
  • the physical properties of polymers and POFs evaluated in Examples and Comparative Examples are as follows.
  • a differential scanning calorimeter (manufactured by Seiko Instruments Inc., DSC-220) was used for the measurement.
  • the pelletized polymer was heated to 220 ° C at a heating rate of 10 ° CZ, held and melted for 5 minutes, then cooled to 0 ° C at 10 ° CZ, and again at a heating rate of 10 °.
  • the temperature was raised at CZ, held for 5 minutes, and lowered at 10 ° CZ, and the glass transition temperature at this time was determined.
  • a solution obtained by dissolving the obtained polymer in THF (tetrahydrofuran) is dropped into methanol, the polymer is precipitated, and the polymer is collected by filtration, and then dried at 50 ° C for 24 hours using a vacuum dryer. And used as a measurement sample.
  • TA / TGA220 differential thermogravimetric simultaneous measurement device
  • Temperature rise 1st step 40 ° C to 100 ° C (temperature rise rate 100 ° CZ min), hold at 100 ° C for 60 minutes, temperature rise 2nd step: 100 ° C to 500 ° C (temperature rise rate 10 ° CZ min) ).
  • Evaluation method The weight after holding at 100 ° C. for 60 minutes was used as the sample weight, and the weight loss at each temperature shown in Table 1 was evaluated according to the following criteria.
  • nD25 refractive index
  • the light transmittance was measured based on D1003 standard.
  • the total light scattering loss value (at) For the measurement of the total light scattering loss value (at), a fully automatic light scattering measuring device (manufactured by Mitsubishi Rayon Co., Ltd.) was used. A 488 nm argon laser was used as the light source, and it was installed so as to be vertically polarized. Incident light was incident on the cylindrical polymer rod set in the center of the goometer from the side. Next, the angle dependence of the scattering intensity of the scattering intensity (VV) scattered by the vertically polarized light and the scattering intensity (Hv) scattered by the vertically polarized light was measured. The absolute scattering intensity of the sample was determined based on the scattering intensity of benzene.
  • the isotropic scattering loss a is ° and the anisotropic scattering loss were obtained.
  • Escherichia coli FERM BP 3835 was inoculated into LB medium (1% polypeptone, 0.5% yeast extract, 0.5% NaCl) containing ampicillin, and cultured with shaking at 37 ° C for 24 hours. After completion of the culture, the culture solution was centrifuged, and the whole amount of the obtained cells was washed with ion exchanged water and then suspended in 50 ml of 50 mM phosphate buffer (pH 7.0). Racemic methyl succinic acid obtained in (Synthesis 1) -4 tert-Pitreux 1-methyl Luster ( a ) was added and reacted at 30 ° C for 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using 1NN aOH aqueous solution.
  • Potassium carbonate was dissolved in water to give 37% formalin. While stirring this at room temperature, crude (4R) aethyloxyxalyl / 3-methyl- ⁇ -peptidyl (g) dissolved in tetrahydrofuran was added dropwise over about 1 hour. After completion of dropping, after stirring for 2 hours at room temperature The salts precipitated in were separated by suction filtration. Thereafter, the tetrahydrofuran phase was separated, and the remaining aqueous phase was extracted by adding methyl t-butyl ether.
  • the obtained bulk polymer was dissolved in methylene chloride, precipitated with methanol, filtered, washed with water, and dried at 75 ° C for 24 hours to obtain a polymer. Thereafter, the mixture was extruded at a cylinder temperature of 230 ° C. using a twin-screw extruder (PCM30 manufactured by Ikegai Co., Ltd.) and pelletized.
  • PCM30 manufactured by Ikegai Co., Ltd.
  • the obtained POF had a diameter of lmm, a core diameter of 980 ⁇ m, and a cladding thickness of 10 ⁇ m.
  • Examples 13-22, Comparative Examples 12-14 A POF having a core Z-clad structure was manufactured in the same manner as in Example 12 except that the core material and the clad material having the composition shown in Table 3 were used, and the transmission loss and thermal shrinkage were measured. The results are shown in Table 3. In Comparative Example 14, the POF in which the core material also has PMMA force is described.
  • a POF having a core Z-clad structure was manufactured in the same manner as in Example 12 except that the core material and the clad material having the composition shown in Table 4 were used, and the transmission loss was evaluated.
  • the evaluation results obtained are summarized in Table 4.
  • a POF cable having a diameter of 1.5 mm is coated on the outer periphery of the POF of Example 22 and Example 16 with polyamide 12 resin (trade name: Daiamide-L 1640, manufactured by Daicel Degussa) using a coating die.
  • polyamide 12 resin trade name: Daiamide-L 1640, manufactured by Daicel Degussa
  • the obtained POF had a diameter of 1 mm, a core diameter of 60 / ⁇ ⁇ , and a thickness of the first cladding and the second cladding of 10 ⁇ m.
  • a POF having a core Z-clad structure was manufactured in the same manner as in Example 16 (core MMBL 25%, clad 2F—4F—6F—VE quaternary system). Transmission loss was 1200dBZKm in the initial stage and 0.8% heat shrinkage.
  • j8 MBL mass ratio of S to R is 50:50
  • V-601 2,2'-Diazobisisobutyrate
  • n-butyl mercabtan was added and stirred.
  • the stirred and dissolved mixture is put into a glass ampoule tube, and freezing and vacuum devolatilization are repeated 5 times to remove dissolved oxygen.
  • the mixture is removed in an oil bath at 65 ° C for 12 hours and then at 120 ° C for 5 hours.
  • a time heat treatment was performed to complete the polymerization.
  • the resulting copolymer composition had a polymer content of 97% and a total light scattering loss of 150 dBZkm.
  • the above copolymer composition was placed in a dedicated heat compression apparatus, and subjected to heat melting treatment for 2 hours under conditions of a cylinder temperature of 210 ° C and a load of 0.9 MPa.
  • the total light scattering loss of the obtained transparent resin composition was 45 dBZkm.
  • the copolymer composition had a refractive index of 1.500 and a glass transition temperature (Tg) of 149 ° C.
  • Polymerization was carried out in the same manner as in Example 34 except that 55 parts by mass of methyl methacrylate and 45 parts by mass of ex-methylene- ⁇ , y-dimethyl- ⁇ -petit-mouth rataton ((DMBL) were used as monomers. went.
  • the copolymer content of the obtained copolymer composition was 96%, and the total light scattering loss was 1 OOOdBZkm or more.
  • the obtained rosin composition became cloudy.
  • the copolymer composition had a Tg of 148 ° C.
  • Polymerization was carried out in the same manner as in Example 34, except that 45 parts by mass of methyl methacrylate and 55 parts by mass of ex-methylene ⁇ -methyl-y-petite rataton ( ⁇ MBL) were used as monomers.
  • the obtained rosin composition was cloudy.
  • the polymerization rate was 97%.
  • the resulting copolymer composition had a polymer content of 97% and a total light scattering loss of 145 dBZkm. Subsequently, when the heat melting treatment was performed in the same manner as in Example 34, the total light scattering loss of the obtained copolymer composition was 40 dBZM.
  • the copolymer composition had a refractive index of 1.502 and a glass transition temperature (Tg) of 150 ° C.
  • methyl methacrylate 50 wt 0/0, a Mechiren ⁇ -methyl- ⁇ Buchi port Rataton (jS MMBL) (mass ratio of S-form and R-form are shown in Table 8) were used 50 parts by weight or less
  • the polymerization was carried out in the same manner as in Example 34 except for above.
  • heat melting treatment was performed in the same manner as in Example 34, and the physical properties of the obtained resin composition were measured. The results are shown in Table 8.
  • Example 34 Except for using 75 parts by weight of methyl methacrylate and 25 parts by weight of ex-methylene ⁇ -methyl-y-petit-mouth rataton ( ⁇ MMBL) (mass ratio of S to R is 50:50) as monomers. Polymerization was carried out as in Example 34. The resulting copolymer composition had a polymer content of 97%, a glass transition temperature (Tg) of 150 ° C., and a total light scattering loss of 160 dBZkm. Table 9 shows the total light scattering loss of the copolymer composition obtained when the heat melting treatment was performed under the conditions described in Table 9! / ⁇ .
  • Tg glass transition temperature
  • Table 9 shows the total light scattering loss of the copolymer composition obtained when the heat melting treatment was performed under the conditions described in Table 9! / ⁇ .
  • Example 27 Example 22 PA12 235 250
  • Example 28 Example 16 PA12 240 250
  • Comparative example 25 150 210 0.5 160
  • a polymer with excellent heat resistance and transparency and a total light scattering loss value of lOOdBZkm or less can be obtained.
  • a plastic optical fiber or plastic optical fiber cable with a transmission loss of OOdBZkm or less can be obtained.
  • high transparency and light scattering loss are remarkable. It can be applied to various optical components that are required to be small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 構成単位として一般式(1)で示されるラクトン化合物の単位(A)5~100質量%と(メタ)アクリル酸エステル単位(B)0~95質量%とを含み、前記ラクトン化合物の単位(A)は一般式(2)で示される(S)体単位および一般式(3)で示される(R)体単位を質量比で70/30~30/70の範囲で含み、かつ全光散乱損失が100dB/km以下である重合体組成物であり、耐熱性および透明性に優れる。

Description

明 細 書
重合体組成物、プラスチック光ファイバ一、プラスチック光ファイバーケー ブル及びプラスチック光ファイバ一の製造方法
技術分野
[0001] 本発明は、透明性及び耐熱性に優れる重合体組成物、プラスチック光ファイバ一、 プラスチック光ファイバ一ケーブルや、プラスチック光ファイバ一の製造方法に関する 背景技術
[0002] プラスチック光ファイバ一(POF)は、安価、軽量、柔軟性、大口径と 、う特長を生か し、照明用途、 FA用センサー、あるいは通信分野における情報伝送用媒体として実 用化されているが、これらのコア材として十分な機械的強度および伝送特性を有する ポリメチルメタタリレート(PMMA)榭脂を主成分として用いて!/、る。
[0003] PMMAをコア材とする POFは、 PMMAのガラス転移温度(Tg)が 110°C程度であ ることから、より耐熱性の高い重合体を外側に被覆しても実際に使用できる温度は 11 0°C程度が上限である。このため、さらに耐熱性が要求される用途では PMMAより耐 熱性の高い材料をコア材として使用することが検討されている。具体的には、特許文 献 1あるいは特許文献 2に記載されているポリカーボネート系榭脂や、特許文献 3、特 許文献 4、非特許文献 1などに記載されている耐熱性の高い脂環式基を主鎖に有す る非晶性ポリオレフイン系榭脂など種々の材料をコア材とする POFが提案されて 、る
[0004] し力し、コア材としてポリカーボネート系榭脂(PC榭脂)を用いた POFは、コア材の 精製、異物除去等が困難であったり、ポリマー自体の密度の不均一に由来する光散 乱損失が大きいことから、 PMMAをコア材とする POF (伝送損失 130dBZkm)と比 ベて PC榭脂をコア材とする POFは伝送特性 (伝送損失 500dBkm以上)が大きく劣 る。また POFのクラッド材として広く用いられるフッ化アルキル (メタ)アタリレート系の 単独重合体または共重合体、あるいは含フッ化工チレン系の重合体はポリカーボネ ートとの密着性が低いため、ポリカーボネートをコア材に用いた POFはコアークラッド 界面の剥離等の構造変化を起こしやす!/、。
[0005] また、各社から POFコア材用として上巿されている脂環式基を主鎖に有する重合 体は精製が困難であり、これらをコア材に用いた POFは、ポリカーボネート系榭脂を コア材とする POFと同様に、伝送特性やコアとクラッドの密着性が低い等の問題点を 有している。
[0006] 一方で、特許文献 5、あるいは許文献 6においては、ボル-ルメタタリレート、ァダマ ンチルメタタリレート、トリシクロデカニルメタタリレート等の脂環式基を側鎖に有するメ タクリレートとメチルメタタリレート(MMA)との共重合体をコア材とした、伝送特性が 比較的良好な POFが提案されている。
[0007] しかし、通常の脂環式基を側鎖に有する (メタ)アタリレートの単量体単位を有する 重合体をコア材とする POFは、コア材の重合体力 押出機やノズルのような 200°C以 上に保たれた高温体の中を通過する時に、重合体の脂環式基がエステル結合部分 で分解、脱離しやすぐ溶融賦形する際に熱劣化が生じて伝送特性が低下するとい う問題がある。また、このようにして製造した POFについても耐熱性の点で改善が求 められている。
[0008] 最近では、特許文献 8、特許文献 9などにぉ 、て、透明性と、高 、ガラス転移温度 を有し、耐熱分解性を有する等の耐熱性とのバランスに優れた α メチレン一 γ - ブチロラタトンの誘導体(例えば、 (Xーメチレン γ—メチルー y ブチロラタトン、 (X —メチレン一 γ、 y—メチノレ一 y—ブチ口ラタトン、 α—メチレン一 γ—ェチノレ一 y —プチ口ラタトン、 a—メチレン一 /3—メチルー γ—プチ口ラタトン等)の単独重合体 、及びこれらの単量体とメタクリル酸エステルの単量体との共重合体をコア材とする Ρ OFが提案されている。
[0009] しかし、これら文献に記載される a—メチレン— γ—プチ口ラタトン誘導体の単独重 合体、または該 α—メチレン γ プチ口ラタトン誘導体とメタクリル酸エステル単量 体との共重合体は、 POFのコア材として用いるには透明性が不十分である。さらに、 ポリカーボネートと同程度のガラス転移温度を有するものとするためには、共重合体 中に α—メチレン γ—プチ口ラタトンの誘導体の単位を 50質量%前後共重合させ る必要があるため、得られた共重合体の機械的強度が低下するという問題がある。 [0010] また特許文献 7において、 aーメチレン βーメチルー γ ブチロラタトンや α—メ チレン βーェチルー γ ブチロラタトンの単独重合体、及びそれらの単量体とそ のメタクリル酸エステルの単量体との共重合体は、 ΡΜΜΑよりも高 、ガラス転移温度 を有し、さらに透明性 (光線透過率)にも優れ、さらに高屈折率であることから、光導 波路のコア材に適用できる可能性にっ 、て報告されて 、るものの、 POFとしての性 能は実際には確認されて!ヽな ヽ。
[0011] 一般に、 aーメチレン γ—プチ口ラタトン誘導体とメタクリル酸エステル単量体と の共重合系は、非特許文献 2、非特許文献 3等に記載されているように反応性比の 差が大きぐ生成した共重合体はブロック共重合体となる傾向がある。しかも aーメチ レン γ プチ口ラタトン誘導体とメタクリル酸エステル単量体間の屈折率差が大き い場合には、これらの共重合体は、現在、一般に POF用コア材として用いられている ΡΜΜΑ榭脂よりも極めて大き 、光散乱損失値を有することになるため、そのまま ΡΟ Fのコア材ゃ光学用透明材料として用いることは容易ではな 、。
[0012] 重合体の光散乱損失を低減する技術については、非特許文献 4や非特許文献 5に 記載されているように、 PMMAに熱溶融処理を施す手法が報告されている。しかし、 上記の技術は単独重合体 (ホモポリマー)に適用されたものであり、上述のブロック共 重合性の大きい共重合体や、構成モノマー間の屈折率差が大きい共重合体で、光 散乱損失を充分に低減して、 POFのコア材として実用化がなされた例は知られてい ない。
特許文献 1:特開平 6 - 200004号公報
特許文献 2:特開平 6 - 200005号公報
特許文献 3:特開平 4-365003号公報
特許文献 4 :特開 2001- 174647号公報
特許文献 5:特開昭 63 - 74010号公報
特許文献 6:特開昭 63 - 163306号公報
特許文献 7:特開平 8 - 231648号公報
特許文献 8:特開平 09— 033735号公報
特許文献 9:特開平 09— 033736号公報 非特許文献 1 :田中章、第 8回 POFコンソーシアム講演要旨集、 POFコンソーシアム 、 1995年 4月 26日、 p. 7〜15
非特許文献 2 : Polymer、 Vol. 21、 1215 - 1216 ( 1979)
非特干文献 3: Journal oi Polymer science : Part A : Polymer chemistr y、 Vol. 41 , 1759 - 1777 (2003)
非特許文献 4 :高分子論文集、 Vol. 42、 No. 4、 265— 271 ( 1985)
非特許文献 5 :高分子論文集、 Vol. 53、 No. 10、 682— 688 ( 1996)
発明の開示
[0013] 本発明の課題は、耐熱性および透明性に優れた重合体組成物やこれを用いたプ ラスチック光ファイバ一、プラスチック光ファイバ一ケーブルや、耐熱性および透明性 に優れたプラスチック光ファイバ一の製造方法を提供することにある。
[0014] 本発明者らは、 β位に置換基を有する a—メチレン一 /3—メチルー γ—プチ口ラタ トンや α—メチレン βーェチルー γ ブチロラタトンの単独重合体の成形体にお いて、白濁が生じる場合があり、また、これらとメタクリル酸エステルとの共重合体の成 形体において、ラタトンィ匕合物の含有量が高くなる程、外観は透明であっても光散乱 損失値が光ファイバ一や光導波路に要求される光散乱損失値のレベルを超えて極 めて高くなつてしまう場合があることに気付いた。本発明者らはこの問題に着目し、ラ タトンィ匕合物と (メタ)アクリル酸エステルの(共)重合体にお 、てラタトンィ匕合物の単位 力 SS体異性体または R体異性体の単独の単位で構成される場合に、光散乱損失が 大きくなる傾向にあることを見い出した。これらの異性体の単位を特定の範囲で含む 重合体において、光散乱損失が増大するのを抑制し、高い透明性を維持して耐熱性 を向上することができることの知見を得て、これらの知見に基づき本発明をするに至 つた ο
[0015] すなわち、本発明は、 構成単位として一般式(1)で示されるラタトン化合物の単位
(Α) 5〜: L00質量%と (メタ)アクリル酸エステル単位(Β) 0〜95質量%とを含み、前 記ラタトンィ匕合物の単位 (Α)は一般式 (2)で示される (S)体単位および一般式 (3)で 示される (R)体単位を質量比で 70Ζ30〜30Ζ70の範囲で含み、かつ全光散乱損 失が lOOdBZkm以下である重合体組成物に関する。
Figure imgf000006_0001
[ε^ ] [8ΐοο]
(Ζ)
Figure imgf000006_0002
ίΖ^] [ ΐΟΟ]
Figure imgf000006_0003
[ΐ^ ] [9100]C6CZ0/S00Zdf/X3d 9 (式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
また、本発明は、伝送損失力 00dBZkm以下であって、かつコアが、構成単位と して一般式(1)で示されるラタトンィ匕合物の単位 (A) 5〜: L00質量%と (メタ)アクリル 酸エステル単位 (B) 0〜95質量%とを含み、前記ラタトン化合物の単位 (A)が一般 式 (2)で示される (S)体単位および一般式 (3)で示される (R)体単位を質量比で 70 Z30〜30Z70の範囲にある重合体組成物からなることを特徴とするプラスチック光 ファイバーに関する。
[0019] [化 4]
Figure imgf000007_0001
[0020] [化 5]
Figure imgf000008_0001
[ィ匕 6]
Figure imgf000008_0002
(式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
また、本発明は、上記プラスチック光ファイバ一の外周に、熱可塑性榭脂を含む被 覆層を有することを特徴とするプラスチック光ファイバ一ケーブルに関する。
また、本発明は、一般式 (2)で示される(S)体および一般式 (3)で示される (R)体を 、質量比で 70Z30〜30Z70の範囲で含む一般式(1)で示されるラタトン化合物(A ) 5〜: LOO質量%と、(メタ)アクリル酸エステル (B) 0〜95質量%とを含む単量体混合 物を重合体含有率 94%以上に重合した後、温度 Tc°C (Tc≥Tg+40) (Tgは重合 体組成物のガラス転移温度を示す。 )、圧力 0. 6MPa以上の条件下で溶融処理する ことを特徴とする重合体組成物の製造方法に関する。
[0023] [化 7]
Figure imgf000009_0001
[0024] [化 8]
Figure imgf000009_0002
[0025] [化 9]
Figure imgf000010_0001
(式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
また、本発明は、一般式 (2)で示される(S)体および一般式 (3)で示される (R)体を 、質量比で 70Z30〜30Z70の範囲で含む一般式(1)で示されるラタトン化合物(A ) 5〜: L00質量%と、(メタ)アクリル酸エステル (Β) 0〜95質量%とを含む単量体混合 物を重合体含有率 94%以上に重合した重合体組成物によって形成されたコアに、 温度 Tc°C (Tc≥Tg+40) (Tgは重合体組成物のガラス転移温度を示す。)、圧力 0 . 6MPa以上の条件下で熱溶融処理を施すことを特徴とするプラスチック光ファイバ 一の製造方法に関する。
Figure imgf000011_0001
[0027] [化 11]
Figure imgf000011_0002
[0028] [化 12]
Figure imgf000011_0003
本発明の重合体組成物は、耐熱性および透明性に優れる。これを用いた本発明の プラスチック光ファイバ一や、プラスチック光ファイバ一ケーブルにおいて、耐熱性に 優れ、伝送損失が低減され伝送特性に優れる。
発明を実施するための最良の形態
[0029] 本発明の重合体組成物は、構成単位として一般式(1)で示されるラタトンィ匕合物の 単位 (A) 5〜: L00質量%と (メタ)アクリル酸エステル単位 (B) 0〜95質量%とを含み 、前記ラタトン化合物の単位 (A)は一般式 (2)で示される (S)体単位および一般式( 3)で示される (R)体単位を質量比で 70Z30〜30Z70の範囲で含み、かつ全光散 乱損失が lOOdBZkm以下であることを特徴とする。
[0030] [化 13]
Figure imgf000012_0001
[0031] [化 14]
Figure imgf000012_0002
[0032] [化 15]
Figure imgf000013_0001
式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されて 、てもよ 、。
[0033] 上記ラタトンィ匕合物の単位 (A)としてのラタトンィ匕合物は、 a—メチレン一 γ—プチ 口ラタトンの誘導体であり、 位に置換基 R1 の構造を有することを特徴とする。 α - メチレン Ί—プチ口ラタトンは、 α位にメチレン基を有する 5員環構造のラタトンィ匕 合物であり、構造的にはメタクリル酸メチルの α位の炭素とエステル結合しているメチ ル基の炭素とが結合し、環状化した構造を有するものである。
[0034] β位に置換基の構造を有さず γ位のみに置換基を有する他の構造のラタトン化合 物(例えば、 α メチレン一 γ メチル γ ブチロラタトン、 α メチレン一 γ , y —ジメチル— γ—プチ口ラ外ン等)などを単位とする重合組成物は、光散乱損失が 大きいため、 POFのコア材としては不十分である。しかし、 j8位に置換基を有すると、 重合体にお 1、て光散乱損失の増大を抑制し、極めて高 、透明性を維持することがで きる。
[0035] さらに、 j8位に置換基を有することにより、重合体の主鎖の回転運動が束縛され、 γ位に置換基を有する他の構造のラタトンィ匕合物(例えば、 α—メチレン γ -メチ ルー γ—ブチ口ラタトン、 α—メチレン一 γ、 γ—ジメチル一 γ—ブチロラタトン等)と 比較して、重合体の耐熱性 (ガラス転移温度)を著しく向上することができる。 β位の 置換基 R1は、構造が嵩高くなると共に共重合時の重合性が低下し、得られる重合体 の耐熱性を低下させるようになるため、メチル基、ェチル基、プロピル基から選択され る。
[0036] 上記一般式(1)で表されるラタトン化合物としては、その γ位に置換基を有さな 、も のであってもよいが、式中、 R2、 R3として、独立して、水素原子の他、無置換もしくは フッ素原子で置換されていてもよい炭素数 1〜12のアルキル基、無置換もしくはアル キル基で置換されて 、てもよ 、フエニル基、または無置換もしくはフッ素原子で置換 されていてもよいシクロへキシル基であってもよい。また、 R2、 R3は相互に一体となつ てこれらが結合する炭素原子を含めて 5または 6員環を形成していてもよぐ該 5また は 6員環はフッ素原子で置換されていてもよい。力かる炭素数 1〜12のアルキル基は 、 CnH2n+l (nは 1〜12の自然数を示す。)で表わされるものであり、その形状は直鎖 状であっても分岐していてもよぐまた炭素数 1〜12の含フッ素アルキル基は、 Cn F m H2n+1- m (nは 1〜12の自然数、 mは 2n+ l以下の自然数を示す。)で表わされ るものであり、その形状は直鎖状であっても、分岐していてもよい。さらに、 R2 、 の 主鎖中の炭素原子は、 S、 N、 Pのへテロ原子又は O原子で置換されていてもよい。
[0037] 更に、上記ラタトン化合物の単位 (A)は、 |8位に置換基 R1 の構造を有するのみで はなく、一般式 (2)で示される (S)体単位と一般式 (3)で示される (R)体単位を 30Z 70〜70Z30 (質量比)の割合で含むものである。一般式(1)で表されるラタトン化合 物単位が、一般式 (2)で表される (S)体単位と上記一般式 (3)で表される (R)体単位 とを上記割合で含有することにより、高温環境下においても、極めて高い透明性を有 し、これを用いた POFにおいて伝送損失を安定的に低く維持することができる。より 高!、透明性を維持できる点から一般式(1)で表されるラ外ンィ匕合物単位が一般式( 2)で表される (S)体単位と上記一般式(3)で表される (R)体単位とを 40Ζ60〜60 Ζ40の範囲内で含有することがより好ましぐ 45Ζ55〜55Ζ45の範囲内で含有す ることが更に好ましい。
[0038] 尚、ラタトンィ匕合物の単位 (Α)に含まれる(S)体単位または (R)体単位の一方が 70 質量%を超えると、重合体の透明性が低下するため POFのコア材として用いるには 好ましくなぐ特に一方のみから構成される場合、その単独重合体は白濁する傾向に ある。
[0039] このような一般式(1)で表されるラタトンィ匕合物の単位 (A)としては、具体的には、 a—メチレン一 13—メチルー γ—メチルー γ—ブチ口ラタトン( j8 Μ γ MMBL)、 a —メチレン一 13—メチルー γ—ジメチル一 γ—ブチロラクトン(J8 M γ DMMBL)、 a—メチレン一 13—メチルー γ—ェチルー γ—ブチ口ラタトン( j8 Μ γ EMBL)、 a —メチレン一 13—メチルー γ—プロピル一 γ—ブチロラクトン(J8 M γ PMBL)、 a - メチレン一 13—メチルー γ—シクロへキシルー γ—ブチ口ラタトン( j8 Μ γ CHMBL) 、 Q;—メチレンーJ8—ェチルーγ—メチルーγ—ブチロラクトン(J8 E γ MMBL)、 a —メチレン一 13—ェチルー γ , γ—ジメチル一 γ—ブチ口ラタトン( j8 E γ DMMBL )、 a—メチレン一 j8—ェチノレ一 γ—ェチノレ一 γ—ブチロラクトン(J8 E γ EMBL)、 a—メチレン一 13—ェチルー γ—プロピル一 γ—ブチ口ラタトン( j8 Ε γ PMBL)、 a —メチレン一 13—ェチノレ一 γ—シクロへキシル一 γ—ブチ口ラタトン(jS E y CHMB L)等の単位を挙げることができる。
[0040] 特に、 R2 、 R3 が共に水素原子である化合物、 (Xーメチレン 13ーメチルー γ ブチロラタトン(jg MMBL a—メチレン一 j8—ェチルー γ—ブチ口ラタトン( j8 EM BL)、 a—メチレン一 13—プロピル一 γ—ブチ口ラタトン( j8 PMBL)は、 POF用コア 材として、非常に高い光学的透明性が得られる点力 好ましい。この中でも、 β ΜΜ BL、 jS EMBLは少量でのガラス転移温度の向上効果に優れる点から、特に好まし い。
[0041] 上記一般式(1)で表されるラタトン化合物の単位 (A)としては 1種または 2種以上の 単位を組み合わせたものであってもよ 、。
[0042] 本発明の重合体組成物を構成する (メタ)アクリル酸エステル単位 (B)としては、具 体的に、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸シクロアルキルエステル 、(メタ)アクリル酸芳香族エステル、(メタ)アクリル酸置換芳香族エステル、(メタ)ァク リル酸ハロゲン化アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル、そ の他の (メタ)アクリル酸エステル等の単位を挙げることができる。 [0043] 上記 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)ァク リル酸ェチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸 2—ェチルへキシル等、上 記(メタ)アクリル酸シクロアルキルエステルとしては、(メタ)アクリル酸シクロへキシル 、(メタ)アクリル酸メチルシクロへキシル、(メタ)アクリル酸ボル-ル、(メタ)アクリル酸 イソボル-ル、(メタ)アクリル酸ァダマンチル等を挙げることができる。
[0044] 上記 (メタ)アクリル酸芳香族エステルとしては、(メタ)アクリル酸フ ニル、(メタ)ァ クリル酸ベンジル、メタクリル酸トリシクロ〔5. 2. 1. 02, 6〕ーデカー 8—ィル等を挙げ ることがでさる。
[0045] 上記 (メタ)アクリル酸置換芳香族エステルとしては、(メタ)アクリル酸フルオロフェ- ル、(メタ)アクリル酸クロ口フエ-ル、(メタ)アクリル酸フルォロベンジル、(メタ)アタリ ル酸クロ口ベンジル等を挙げることができる。
[0046] 上記 (メタ)アクリル酸ハロゲン化アルキルエステルとしては、(メタ)アクリル酸フルォ ロメチル、(メタ)アクリル酸フルォロェチル、(メタ)アクリル酸トリフルォロェチル、(メタ )アクリル酸 2, 2, 3, 3—テ卜ラフルォロプロピル、 2, 2, 3, 3, 3—ペンタフルォロプロ ピルメタタリレート、(メタ)アクリル酸 2, 2, 3, 3, 4, 4, 5, 5—ォクタフルォロペンチル 、(メタ)アクリル酸 1, 1, 2, 2—テトラハイド口パーフルォロォクチル、(メタ)アクリル酸 1, 1, 2, 2—テトラハイド口パーフルォロデ力-ル、(メタ)アクリル酸へキサフルォロネ ォペンチル、(メタ)アクリル酸 1, 1, 2, 2—テトラハイド口パーフルォロドデ力-ル、(メ タ)アクリル酸 1, 1, 2, 2—テトラハイド口パーフルォロテトラデ力-ル等を挙げること ができる。
[0047] 上記 (メタ)アクリル酸ヒドロキシアルキルエステルとしては、(メタ)アクリル酸 2—ヒド 口キシェチル、(メタ)アクリル酸 2—ヒドロキシプロピル等を挙げることができる。
[0048] その他の(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル、メ チルダリシジルメタタリレート、(メタ)アクリル酸エチレングリコールエステル、(メタ)ァ クリル酸ポリエチレングリコールエステル等を挙げることができる。
[0049] 上記 (メタ)アクリル酸エステルの 1種または 2種以上を組み合わせて、(メタ)アクリル 酸エステル単位 (B)として用いることができる。
[0050] 上記の (メタ)アクリル酸エステル中でも、特にメタクリル酸メチル (MMA)は、ラクト ン化合物との共重合性が良好で、し力も POFのコア材として用いたとき透明性、機械 的強度、耐熱性の維持に優れる点から好まし ヽ。
[0051] 上記ラタトンィ匕合物の単位 (A)と (メタ)アクリル酸エステル単位 (B)を含む重合体に おけるこれらの単位の含有量としては、ラタトンィ匕合物の単位 (A)が 5〜: LOO質量% であり、(メタ)アクリル酸エステル単位 (B)が 0〜95質量%である。好ましくは、重合 体中のラタトン化合物の単位 (A)の含有量が 5〜50質量0 /0、 MMAの単位(B)の含 有量が 50〜95質量%の範囲にあり、より好ましくはラタトンィ匕合物の単位 (A)の含有 量が 20〜40質量%、 MMAの単位(B)の含有量が 60〜80質量%の範囲である。 重合体中のラタトンィ匕合物の単位 (A)と (メタ)アクリル酸エステル単位 (B)がこのよう な含有割合であると、 Tgが 115°C以上と高く耐熱性が十分な重合体を得ることができ る。重合体中のラタトンィ匕合物の単位 (A)が 5質量%以上であれば、重合体の Tgを 上昇させることができ、特に POFのコア材として用いたときには、 POFの耐熱性を向 上させることができる。上限は特に限定されるものではないが、 50質量%以下であれ ば、 POFのコア材に用いたときに機械的強度の低下を抑制することができ、かつ PO Fを安価に得ることができる。
[0052] さらに、本発明の重合体組成物としては、その構成単位が上記ラタトンィ匕合物の単 位 (A)および (メタ)アクリル酸エステル単位 (B)のみでなぐ低吸湿性、耐熱温度、 曲げ、機械強度など要求される特性に応じて、他の共重合可能な単量体単位 (C)を 含有していてもよい。他の共重合可能な単量体単位 (C)としては全構成単位の 40質 量%以下の範囲で含有させることが好まし!/、。
[0053] 上記単量体単位 (C)としては、特に限定されな!、が、不飽和脂肪酸エステル、芳香 族ビュル化合物、シアン化ビュル化合物、親水性ビュル化合物、不飽和二塩基酸ま たはその誘導体、不飽和脂肪酸またはその誘導体等を挙げることができる。
[0054] 上記芳香族ビュル化合物としては、スチレン、 α—メチルスチレン、 α—ェチルス チレン等の α—置換スチレン、フノレオロスチレン、メチルスチレン等の置換スチレン 等を挙げることができる。
[0055] 上記シアンィ匕ビ-ルイ匕合物としては、アクリロニトリル、メタタリ口-トリル等が挙げら れる。親水性ビ-ルイ匕合物としては、(メタ)アクリル酸を挙げることができる。 [0056] 上記不飽和二塩基酸またはその誘導体としては、 N—メチルマレイミド、 N—ェチル マレイミド、 N—プロピルマレイミド、 N—シクロへキシノレマレイミド、 N—フエニルマレイ ミド、 N—メチルマレイミド、 N—クロ口フエ-ルマレイミド等の N—置換マレイミド、マレ イン酸、無水マレイン酸、フマル酸等を挙げることができる。
[0057] 上記不飽和脂肪酸及びその誘導体としては、(メタ)アクリルアミド、 N—ジメチル (メ タ)アクリルアミド、 N—ジェチル (メタ)アクリルアミド等の (メタ)アクリルアミド類;(メタ) アクリル酸カルシウム、(メタ)アクリル酸バリウム、(メタ)アクリル酸鉛、(メタ)アクリル酸 すず、(メタ)アクリル酸亜鉛等の (メタ)アクリル酸の金属塩;(メタ)アクリル酸等を挙げ ることがでさる。
[0058] 上記ラタトンィ匕合物の単位 (A)と (メタ)アクリル酸エステル単位 (B)を含む重合体の 分子量は、成型加工性が低下せず、また、十分な機械的強度が得られる範囲とする ことが好ましい。力かる分子量としては、例えば GPCのポリスチレン換算により求めた 分子量(重量平均分子量)が、 10, 000-300, 000であること力 S好ましく、より好まし < ίま 50, 000〜150, 000、更に好まし <ίま 70, 000〜125, 000である。分子量力 1 0, 000以上であれば POFが脆くなるのを抑制することができ、 300, 000以下であ れば熱溶融処理による低損失ィ匕の効果を十分に得ることができる。
[0059] 本発明の重合体組成物の製造は、一般式 (2)で示される (S)体および一般式 (3) で示される(R)体を、質量比で 70/30〜30/70の範囲で含む一般式(1)で示され るラタトンィ匕合物 (Α) 5〜: L00質量%と、(メタ)アクリル酸エステル (Β) 0〜95質量% とを含む単量体混合物を重合体含有率 94%以上に重合した後、温度 Tc°C (Tc≥T g + 40) (Tgは重合体組成物のガラス転移温度を示す。)、圧力 0. 6MPa以上の条 件下で熱溶融処理する方法によることができる。
[0060] 上記一般式(1)で表されるラタトン化合物と、(メタ)アクリル酸エステルとを重合する 方法としては、いずれの方法も使用することができるが、ラジカル重合による方法が 好ましい。また、ラジカル重合の重合様式については、溶液、塊状、懸濁、乳化など の重合様式を用いることができるが、 POFの低損失ィ匕の観点から、塊状重合法また は溶液重合法が最適である。塊状重合法は不純物の混入を避けることができる点で 好ましぐ溶液重合法は分子量、分子量分布、組成分布などを制御しやすい点で好 ましい。
[0061] 上記単量体から塊状重合法により重合体を得る方法について説明する。まず、 (S) 体と (R)体の質量比が 30Z70〜70Z30の範囲内にある一般式(1)で表されるラタ トン化合物と、必要に応じてメタクリル酸エステルとを含み、場合によってその他の共 重合可能な単量体を含む単量体混合物に、重合開始剤及び必要に応じて連鎖移 動剤を混合する。
[0062] 次 ヽで、得られた混合物を所定の温度で一定時間保持して重合を完結させ、得ら れた塊状重合物を粉砕し、さらに脱揮押し出しすることにより、重合体中に残存して いる未反応の単量体や重合開始剤、連鎖移動剤等を除去して、重合体を得ることが できる。
[0063] 上記重合開始剤としては、重合時に副反応や着色等の悪影響を及ぼさないもので あれば、特に限定されるものではなぐ重合様式、重合温度、重合率、重合時間に応 じて任意に選択でき、複数種の重合開始剤を併用して用いてもよい。重合体開始剤 として具体的には、 2, 2'—ァゾビス(2, 4, 4一トリメチルペンタン)(和光純薬社製、 商品名: VR— 110)、 2, 2' -ァゾビス(イソブチ口-トリル)、 1, 1' ―ァゾビス(シク 口へキサンカルボ-トリル)、 2, 2' —ァゾビス(2, 4 ジメチルバレ口-トリル)、 2, 2' ーァゾビスイソ酪酸ジメチル (和光純薬社製、商品名: V— 601)などの等のァゾ系開 始剤、ベンゾィルパーオキサイド、ラウリルパーオキサイド、ジクミルパーオキサイド、 ジー t ブチルパーオキサイド、 t ブチルパーォキシ 2—ェチルへキサノエート、 1, 1ージー t ブチルパーォキシ 2—メチルシクロへキサンなどの過酸ィ匕物系開始剤 等を挙げることができる。中でも、重合体の加熱着色の影響が小さいことから、ァゾ系 開始剤が好ましぐ V— 601が特に好ましい。これらの重合開始剤の使用量は、上記 単量体成分 100質量部に対して例えば 0. 001〜3質量部の範囲とすることができる
[0064] また、重合時にお 、て分子量を調節する目的で使用する連鎖移動剤としては、副 反応を進行させたり生成物の着色等の悪影響を及ぼさないものであれば、 目的とす る分子量とするため、任意の種類を選択でき、複数種を用いてもよい。連鎖移動剤と して具体的には、 n—ブチルメルカプタン、イソブチルメルカプタン、 tert—ブチルメ ルカブタン、 n—ォクチルメルカプタンなどの第一級、第二級、第三級メルカプタン、 チォグリコール酸および、そのエステルなどを挙げることができる。特に、 n—ブチルメ ルカブタンは揮発温度が低ぐ溶融押出工程で揮発除去が容易であることから好まし い。これらの連鎖移動剤の使用量は、上記単量体成分 100質量部に対して例えば 3 質量部以下の範囲とすることができる。
[0065] 重合温度は、使用する重合開始剤、および重合形式により異なるが、 50〜170°C の範囲、より好ましくは 60〜150°Cの範囲である。
[0066] 重合開始剤として上述のァゾアルカン系熱重合開始剤を、連鎖移動剤として上述 の低沸点のメルカブタン用い、連続塊状重合または連続溶液重合によって重合し、 次いで得られた重合体を脱揮押出機に供給し、未反応のモノマー、メルカブタン、溶 剤等を除去することで、耐熱性が高ぐ高温環境での伝送特性の劣化が少ないコア 材として好適な重合体組成物を得ることができる。
[0067] ここで単量体混合物は、重合体含有率が 94%以上に達するまで重合する。重合体 含有率としては好ましくは 97%以上、より好ましくは 99%以上である。重合体含有率 が 94%以上であれば、後述する熱溶融処理を行うときに、残存の未重合の単量体に よる発泡を抑制することができる。重合体含有率を 94%以上とするには、重合温度 や重合開始剤濃度等の条件を調整する方法、あるいは得られた重合体を脱揮押出 機に供給し、未反応のモノマー、メルカブタン、溶剤等を除去する方法により達成す ることができる。このようにして得られた重合体組成物は 200°C以上の高温において 分解が少なぐ共重合する単量体の組成を選ぶことによって、低吸湿性および耐熱 性のバランスを適宜調整することができる。
[0068] しかし、上記単量体混合物を重合体含有率 94%以上に重合して得られる重合体 組成物には、重合の際に形成される不均一構造による局所的な組成の揺らぎが存 在し、この局所的な組成の揺らぎは屈折率の揺らぎの起因となり、重合体の光散乱 損失を増大させる原因となる。この不均一構造を散逸除去するために、重合体組成 物の熱溶融処理を行う。力かる熱溶融処理は、上記重合体を含む重合体組成物を、 温度 Tc°C (Tc≥Tg+40) (Tgは重合体組成物のガラス転移温度を示す。)、圧力 0 . 6MPa以上の条件下で行う熱溶融処理である。重合体組成物をその (Tg+40) °C 以上の温度で熱溶融処理することにより、完全に不均一構造を消去することができ、 光散乱損失を著しく低減することができる。一方、熱溶融処理を 0. 6MPa以上の圧 力で行うことにより、いずれかの単量体の沸点以上の温度に達したときに、重合体組 成物の発泡を抑制することができる。
[0069] 熱溶融処理を行う時間については、熱溶融処理の温度 Tcや重合体の状態により、 適宜変更することができ、重合体組成物が熱劣化により着色が生じるような長時間と ならない範囲で、不均一構造の除去が十分行なわれるように、例えば、 30分から 5時 間など、光散乱損失値が目的の範囲になるように適宜選択することができる。
[0070] 一般に、ラタトン化合物全般と (メタ)アクリル酸エステル単位 (B)とは、共重合反応 に対するそれぞれの反応性比 ¾τ、 rとしたとき、 r≥l >r > 0の関係を有するもので
1 2 1 2
あり、この関係を満たすとき、ラタトンィ匕合物と (メタ)アクリル酸エステル力もなる共重 合系では、一般的にブロック共重合性が大きくなる傾向があるため、光散乱損失は大 きい。しかし、ラタトンィ匕合物として、上述した j8位に置換基の構造を有するラタトン化 合物の単位 (A)を用いる場合には、熱溶融処理により、顕著な光散乱損失の低減が 達成され、 POFのコア材としての適用が可能となる。
[0071] 具体的な例を挙げると、 aーメチレン βーメチルー γ ブチロラタトン( j8 MMB L)と MMAの反応'性比を Finemann— Lossの方法 (Journal of Polymer Scien ce、 VOL 5、 p259 ( 1950) )により測定した値は、それぞれ = 1. 9、 r = 0. 50であ
1 2
り、 α—メチレン一 γ , y—ジメチル一 γ—ブチ口ラタトン(DMBL)と ΜΜΑの反応 性比は r = 3. 6、 r = 0. 38である。
1 2
[0072] し力しながら、これらの共重合体にっ 、て、本発明における熱溶融処理を行った場 合、 DMBLと MMAのコポリマーの場合には、逆にブロックコポリマー相分離によると 思われる透明性の著しい低下が見られるが、 13 MMBLと MMAのコポリマーの場合 には、光散乱損失の低減化が達成され、 POFのコア材として充分使用できるレベル となる。
[0073] 上記重合体には、熱溶融処理の前後を問わず、必要に応じて他の物質、例えば、 公知の染料、顔料等の着色剤、各種酸化防止剤、離型剤などを含有させることがで きる。 [0074] このようにして得られる本発明の重合体組成物は、全光散乱損失値で lOOdBZk m以下を達成することが可能となる。本発明の重合体組成物をコア材として用いた P OFの伝送損失を、 400dBZkm以下と充分に優れたものとすることが可能となる。ま た、低吸湿性、耐熱性のバランスを適宜調整することで、 ASTM D1003規格に準 じて測定した光線透過率を 90. 5%以上とすることができ、自動車内通信配線のよう な情報伝達用のみならず、屈折率分布型レンズや光導波路、光デバイス等のォプト エレクトロニクス分野において耐熱性に加え、高度な透明性、光散乱損失が著しく少 ないことを要求される各種光学部品用として適用することも可能となる。
[0075] 次に、本発明のプラスチック光ファイバ一について説明する。
[0076] 本発明のプラスチック光ファイバ一は、伝送損失力 00dBZkm以下であって、力 つコア力 構成単位として一般式 )で示されるラタトンィ匕合物の単位 (A) 5〜: L00 質量%と (メタ)アクリル酸エステル単位 (B) 0〜95質量%とを含み、前記ラタトンィ匕合 物の単位 (A)は一般式(2)で示される(S)体単位および一般式(3)で示される (R) 体単位を質量比で 70Z30〜30Z70の範囲にある重合体組成物からなることを特 徴とする。
[0077] さらに、クラッドの屈折率により、後述する NA (Numerical Apature)を所定の範 囲とするような屈折率を有するものとすることが好ましい。
[0078] 本発明の POFにおいて、上記コアの外周に設けるクラッドは 1層構造に限定されず
、 2層以上の複数層力も形成されてもよいが、製造コストを削減する観点力もは、内層 の第 1クラッドの外周に第 2クラッドを同心円状に設けた 2層構造を有することが好まし い。
[0079] クラッドが 2層構造を有する場合、コアの屈折率 nl、第 1クラッドの屈折率 n2、第 2ク ラッドの屈折率 n3が、関係式 (4)
nl >n2>n3 (4)
を満たして!/、ても、または関係式 (5)および (6)
nl >n2 (5)
n2<n3 (6)
を満たしていてもよい。ここで、屈折率は、ナトリウム D線による 25°Cにおける屈折率 をいう。
[0080] 特に、関係式 (4)を満たす POFは、屈曲されて第 1クラッドから光が漏れた場合でも 、漏れた光を第 2クラッドで反射することができ、伝送損失を低減できることから好まし い。
[0081] 本発明の POFの開口数は、 0. 3〜0. 7の範囲、特に自動車内 LA用の場合は 0.
5〜0. 65の範囲とすることが好ましい。これまで実用化されている POFは、上記範囲 の NAを有し、これらとの接続、あるいはこれらの POFを前提とした受発光素子との接 続において、 POFが上記開口数を有すれば、 NAの違いによる結合損失の増加を 抑制することができる。ここで、 NAは、通常の光学分野で通常用いられる開口数 (N A)と同様に、式 (7)
NA= (ncore nclad2) (7)
(ncoreはコア材の屈折率、 ncladはクラッド材の屈折率を示す。 )
で定義されるパラメーターである。
[0082] 本発明の POFに用いるクラッド材としては、含フッ素ォレフィン系榭脂や、フッ素化 メタタリレート系重合体等を適宜選択することができる。クラッドが 1層構造の場合は、 含フッ素ォレフィン系榭脂若しくはフッ素化メタタリレート系重合体の 、ずれか、又は これらの双方を用いることができる。クラッドが 2層以上の複数層から形成されて 、る 場合は、最内層クラッドにはフッ素化メタタリレート系重合体を選択することが好ましい
[0083] クラッドに用いる含フッ素ォレフィン系榭脂としては、テトラフルォロエチレン (TFE) 単位を含むものが好ましぐより具体的には、ビ-リデンフルオライド (VdF)単位 10〜 60質量0 /0と TFE単位 20〜70質量0 /0とへキサフルォロプロピレン(HFP)単位 5〜3 5質量%からなる 3元共重合体、 VdF単位 5〜25質量%と TFE単位 50〜80質量% とパーフルォロ(フルォロ)アルキルビュルエーテル単位 5〜25質量%力 なる 3元 共重合体、 VdF単位 10〜30質量%、 TFE単位 40〜80質量%、 HFP単位 5〜40 質量0 /0、パーフルォロ(フルォロ)アルキルビュルエーテル単位 0. 1〜15質量0 /0から なる 4元共重合体、 TFE単位 40〜90質量0 /0とパーフルォロ(フルォロ)アルキルビ- ルエーテル単位 10〜60質量%力 なる 2元共重合体、 TFE単位 30〜75質量%と HFP単位 25〜70質量%力もなる 2元共重合体等を挙げることができる。
[0084] 更に、上記 TFE単位を含む含フッ素ォレフィン系榭脂としては、結晶性が高くない ものが好ましい。結晶性が高い TFE単位を含む含フッ素ォレフィン系榭脂は、透明 性が低下する傾向があるためである。含フッ素ォレフィン系榭脂の結晶性は、示差走 查熱量測定 (DSC)で測定した結晶融解熱を指標として表すことができる。結晶融解 熱は、含フッ素ォレフィン系榭脂の TFE単位、 VdF単位に由来する結晶成分の熱融 解に起因して発生する熱量であって、値が大きい程、榭脂の結晶性が高くなる傾向 がある。 TFE単位を含む含フッ素ォレフィン系榭脂の結晶融解熱としては 40mj/m g以下であることが好ま 、。含フッ素ォレフィン系榭脂の結晶融解熱が 40mjZmg 以下であれば、 POFが 125°C程度の高温環境下に長期間放置された場合でも、 PO Fの伝送損失の増加を抑制することができる。結晶融解熱が小さければ榭脂の結晶 性を低くすることができ、長時間の高温環境下においても POFの伝送損失の増加を 抑制することができることから、含フッ素ォレフィン系榭脂の結晶融解熱は 20mi/m g以下がより好ましぐ非常に高い耐熱性を発現するためには、 15mjZmg以下がさ らに好ましい。
[0085] 一方、フッ素化メタタリレート系重合体は、屈折率の調整が容易で、良好な透明性 及び耐熱性を有しながら、屈曲性及びカ卩ェ性に優れる重合体であるため POFのクラ ッド材として好適である。
[0086] クラッドが多層クラッドの場合、特に最内層に好適に用いることが可能なフッ素化メ タクリレート系重合体としては、一般式 (8)
CH =CX-COO (CH ) m-Rlf (8)
2 2
(式中、 Xは水素原子、フッ素原子、又はメチル基を示し、 Rlfは炭素数 1〜12の(フ ルォ口)アルキル基を示し、 mは 1又は 2の整数を示す。)で表されるフルォロアルキ ル (メタ)アタリレートの単位 (D) 15〜90質量%と、他の共重合可能な単量体の単位
(E) 10〜85質量%力もなり、屈折率が 1. 39-1. 475の範囲にある共重合体を挙 げることができる。
[0087] 上記一般式(8)で表されるフルォロアルキル (メタ)タリレートの単位 (D)として、より 具体的には、一般式 (9) CH =CX-COO (CH ) m (CF ) nY (9)
2 2 2
(式中、 Xは水素原子、フッ素原子、又はメチル基、 Υは水素原子又はフッ素原子を 示し、 mは 1又は 2、 nは 1〜12の整数を示す。 )
あるいは、一般式(10)
CH =CX-COO (CH ) m- (C)R2fR3fRl (10)
2 2
(式中、 Xは水素原子、フッ素原子、又はメチル基を示し、 R2f、 R3fは独立してフル ォロアルキル基を示し、 R1は水素原子又はメチル基、又はフッ素原子を示し、 mは 1 又は 2、 nは 1〜12の整数を示す。)で表されるフルォロアルキル (メタ)タリレートの単 位を挙げることができる。
[0088] 具体的には、一般式(9)が表すフルォロアルキル (メタ)タリレートとして、(メタ)ァク リル酸— 2, 2, 2 トリフルォロェチル(3FM)、(メタ)アクリル酸— 2, 2, 3, 3—テトラ フルォロプロピル(4FM)、(メタ)アクリル酸 2, 2, 3, 3, 3 ペンタフルォロプロピ ノレ(5FM)、(メタ)アタリノレ酸一 2, 2, 3, 4, 4, 4 へキサフノレ才ロブチノレ(6FM)、 ( メタ)アクリル酸 1H, 1H, 5H ォクタフルォロペンチル(8FM)、(メタ)アクリル酸 2 (パーフルォロブチル)ェチル(9FM)、(メタ)アクリル酸 2 (パーフルォロ へキシル)ェチル(13FM)、(メタ)アクリル酸— 1H, 1H, 9H へキサデカフルォロ ノニル(16FM)、(メタ)アクリル酸 2 (パーフルォロォクチル)ェチル(17FM)、 ( メタ)アクリル酸一 1H, 1H, 11H— (ィコサフルォロウンデシル)(20FM)、(メタ)ァク リル酸 2—(パーフルォロデシル)ェチル(21FM)等の、直鎖状フッ素化アルキル 基を側鎖に有する (メタ)アクリル酸フッ素化エステルを例示することができる。
[0089] また、一般式(10)が表すフルォロアルキル (メタ)タリレートとして、(メタ)アクリル酸 へキサフルォロネオペンチルゃ、(メタ)アクリル酸へキサフルォロイソブチル等の、分 岐状フッ素化アルキル基を側鎖に有する (メタ)アクリル酸フッ素化エステル等を例示 することができる。
[0090] 一方、上記クラッドを構成するフッ素化メタタリレート系重合体の構成単位として、一 般式(8)で表されるフルォロアルキル (メタ)アタリレートの単位 (D)と共に用いられる 他の共重合可能な単量体単位 (E)として、上記一般式 (2)で示される (S)体単位お よび一般式(3)で示される(R)体単位を質量比で 70Z30〜30Z70の範囲で含む 一般式(1)で表されるラタトンィ匕合物の単位を挙げることができる。力かるラタトン化合 物の単位としては、具体的に、前述した α—メチレン一 βーメチルー γ ブチロラタ トン、 a—メチレン一 13—メチルー γ—メチルー γ—ブチ口ラタトン、 a—メチレン一 β—ェチノレ一 y—ブチ口ラタトン等の a—メチレン一 13—ァノレキノレ一 γ—ブチ口ラタ トン類等を挙げることができる。
[0091] 上記一般式(8)で表されるフルォロアルキル (メタ)タリレートの単位 (D)と、他の共 重合可能な単量体の単位 (Ε)としての一般式 (2)で表される S体単位と一般式 (3)で 表される R体単位とを 70Ζ30〜30Ζ70の範囲で含有する一般式(1)で表されるラ タトンィ匕合物の単位を含むフッ素ィ匕メタタリレート系重合体は、クラッド材としての透明 性に優れるだけではなぐ機械的強度や耐熱性 (ガラス転移温度、熱分解性)も良好 であることから、特に好ましい。
[0092] 上記他の共重合可能な単量体単位 (Ε)として、上記ラタトンィ匕合物の単位の他に、 クラッド材の耐熱性 (ガラス転移温度、熱分解性)や吸水率、機械的強度の改善する ために、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸ブチル等 の(メタ)アクリル酸アルキルエステルの単位を含んで 、てもよ!/、。
[0093] クラッドを構成する前記含フッ素ォレフィン系榭脂ゃフッ素化メタタリレート系重合体 のメルトマスフローレイ HMFR)は、 5〜50の範囲内にあることが好ましぐ 10〜40 の範囲内がより好ましぐ 15〜25の範囲内がさらに好ましい。 MFRが 50以下であれ ば、 POFの屈曲性およびカ卩ェ性の低下や、 POFが高温環境に置かれた時にクラッ ド材の変形による POFの伝送損失の低下を抑制することができる。 MFRが 5以上で あれば、共重合体の成形性の低下を抑制することができる。
[0094] 本発明の POFのコア及びクラッドの形態としては、 1本の中心軸状のコアを被覆し てその周囲にコアより低屈折率なクラッドを設けたコア Ζクラッド構造力 なる SI型や 、複数のコアあるいはコア Ζクラッド構造力もなる島部がクラッドからなる海部に点在 する海島型のマルチコアであってもよい。また、以上に例示した形態に限定されず、 コア Ζクラッド構造を有する種々の形態であってもよ 、。
[0095] 本発明の POFはその外周部に保護層を有していてもよい。保護層の材料としては 、例えば、 VdFと TFEとの共重合体、 VdFと TFEと HFPとの共重合体、 VdFと TFE と HFPとパーフルォロ(フルォロ)アルキルビュルエーテルとの共重合体、 VdFと TF Eとパーフルォロ(フルォロ)アルキルビュルエーテルとの共重合体、エチレンと TFE と HFPとの共重合体、 TFEと HFPとの共重合体、 VdFと TFEとへキサフルォロアセ トンとの共重合体等上記クラッド材として挙げた材料を挙げることができるがこれらに 限定されるものではない。この保護層は、コア Zクラッド構造にコーティング法ゃ浸漬 法を用いて成形することができ、あるいは複合紡糸ノズルを用いコア、クラッドと共に 押出賦形することによって成形することができる。
[0096] 上記 POFの 125°Cで 24時間熱処理した時の軸方向の熱収縮率は、 1. 5%以下で あることが好ましい。これは、熱収縮率が 1. 5%以下であれば、後述するように熱可 塑性榭脂からなる被覆層を形成した POFケーブルとして、 125°C以上の高温下で長 期使用した場合に、被覆層によって POFの収縮を抑制しピストユングの発生を抑制 することができる。 POFの軸方向の熱収縮率は、高温環境下での POFの寸法安定 性のより一層の向上および POFのピストユングのより一層の低減を図る点から、好ま しくは 1%以下、より好ましくは 0. 5%以下である。
[0097] 上記の熱収縮特性は、 POFの使用環境温度に応じてコア材を構成する重合体の Tgや、 POFに適度な屈曲性を持たせるための延伸率を設定し、さらには POFの機 械的強度、伝送損失などの性能を損なわないよう緩和処理を施すことによって達成 することができる。
[0098] 例えば POFの使用環境温度が 125°C程度の場合には、コア材の Tgが 140〜16 0°Cの範囲にあり、 POFの延伸率は 1. 3〜3. 0の範囲であることが好ましい。ここで、 延伸率は、 POFを 150°Cの恒温槽に 20分放置した時に、熱処理前の糸直径を dl、 熱処理後の糸直径を d2とした場合に、延伸率 = (d2Zdl)から算出される値である。
[0099] 上記 POFの製造方法としては、例えば、上記コア材力 コアを形成した後、例えば 、酢酸ェチル、ジメチルホルムアミド、ジメチルァセトアミド等の溶媒に上記クラッド材 を、溶解して得られるクラッド材溶液を、コーティング法、浸漬法によってコアの表面 に被覆しクラッドを形成する方法を挙げることができる。また、 SI型 POFを製造する場 合、複合紡糸ノズルを用いた複合紡糸法により押出賦形して、コアがクラッドに被覆 された POFを形成する方法を挙げることができる。特に押出賦形時に、紡糸装置内 部を温度 Tc°C (Tc≥Tg+40) (Tgは重合体組成物のガラス転移温度を示す。)、圧 力 0. 6MPa以上の条件下にすることによって、コアの光散乱損失が十分に低減され 、伝送損失が十分に小さぐかつ耐熱性の高い POFを得ることができる。
[0100] 本発明のプラスチック光ファイバ一ケーブルは、上記プラスチック光ファイバ一の外 周に熱可塑性榭脂を含む被覆層を有することを特徴とする。
[0101] 上記被覆層は上記プラスチック光ファイバ一のクラッドの外周あるいは保護層の外 周に設けられ、耐屈曲性および耐湿熱性を向上させることができる。
[0102] 上記被覆層の材料に用いられる熱可塑性榭脂としては、例えば、 POFケーブルが 使用される環境に応じて、ポリアミド系榭脂、ポリエチレン系榭脂、ポリプロピレン系榭 脂、水架橋ポリエチレン榭脂、水架橋ポリプロピレン榭脂、ポリ塩ィ匕ビ -リデン系榭脂
、塩素化ポリエチレン榭脂、ポリウレタン系榭脂、フッ化ビ -リデン系榭脂、各種 υν· 紫外線硬化樹脂からなる群力 選ばれる 1種又は 2種以上の混合物を用いることが できる。この被覆層は、コアと直接接しないので、結晶化により透明性が低下しても特 に問題は生じない。
[0103] これらのうち、ポリアミド系榭脂、水架橋ポリエチレン榭脂は、耐熱性、耐屈曲性、耐 溶剤特性に優れることから、自動車等の耐熱性および耐環境特性を要求される用途 向けの POFの被覆層の材料として好適である。また、これらの榭脂は加工性がよぐ 適度な融点を有しているため、 POFの伝送性能を低下させることなく容易に POFを 被覆することができる。
[0104] 特に、ポリアミド系榭脂としては、ナイロン 10、ナイロン 11、ナイロン 12、ナイロン 6、 ナイロン 66などの各単量体の単独重合体や、これら単量体の組合せからなる共重合 体、柔軟なセグメントを導入したナイロン単量体を含むナイロン系エラストマ一などを 挙げることができる。必要に応じて、被覆層材料としてポリアミド系榭脂以外の重合体 や化合物を混合して使用してもょ ヽ。
[0105] 上記被覆層の形成方法としては、被覆層材の物性によって、適宜選択して行うこと ができるが、加工性に優れて!/ヽる点からはクロスヘッドダイを用いて被覆層を形成す る方法が好ましい。
実施例 [0106] 以下に、実施例によって本発明の重合体組成物、 POF、 POFケーブルについて 具体的に説明するが、本発明の技術的範囲はこれらによって限定されるものではな い。各実施例、比較例において用いた単量体の略号は、以下の化合物を示す。
[0107] (R) - β MMBL : (R)体の a—メチレン一 j8—メチルー y—ブチ口ラタトン
(S) - β MMBL : (S)体の α—メチレン一 j8—メチルー y—ブチ口ラタトン MMA:メタクリル酸メチル
MAA :メタクリル酸、
a 3FA : a フルォロアクリル酸 2、 2、 2 トリフルォロェチル
a FMe : a フルォロアクリル酸メチル
6FNPMA:メタクリル酸へキサフルォロネオペンチル
VdF :フッ化ビ-リデン
TFE:テトラフルォロエチレン
HFP:へキサフルォロプロピレン
TFMVE :パーフルォロトリフォロメチルビ-ルエーテル(CF = CFOCF )
2 3
PFPVE :パーフルォロペンタフォロプロピルビュルエーテル(CF = CFOCH CF
2 2 2
CF )
3
PA12 :ナイロン 12 (ダイセル'デグッサ社製、商標名:ダイアミド L1640)、 また、実施例および比較例で実施した重合体および POFの物性の評価方法は次 の通りである。
[ガラス転移温度 (Tg) ]
測定には示差走査熱量計 (DSC) (セイコーインスツルメンッ社製、 DSC— 220)を 使用した。ペレット状重合体を、昇温速度 10°CZ分で 220°Cまで昇温し、 5分間保持 して溶融させた後、 10°CZ分で 0°Cまで降温し、再度昇温速度 10°CZ分で昇温、 5 分間保持、 10°CZ分で降温を行い、この時のガラス転移温度を求めた。
熱分解性]
得られた重合体を THF (テトラヒドロフラン)に溶解した液をメタノール中に滴下し、 重合体を沈殿させ、濾過により重合体を回収した後、真空乾燥機を使用して 50°Cで 24時間乾燥させ測定用試料とした。測定にはセイコー電子工業 (株)製 SEIKO D TA/TGA220 (示差熱重量同時測定装置)を使用し、得られた測定用試料を以下 の条件で昇温し、各温度における重量減少を測定した。
[0108] 測定条件雰囲気:窒素 (流量 200mlZ分)
昇温 1stステップ: 40°Cから 100°C (昇温速度 100°CZ分)、 100°Cで 60分保持、 昇温 2ndステップ: 100°Cから 500°C (昇温速度 10°CZ分)。
[0109] 評価方法: 100°Cで 60分保持した後の重量をサンプル重量として、表 1に示した各 温度における重量減少を次の基準で評価した。
[0110] 〇:重量減少がほとんど見られない。
[0111] △:重量減少が若干見られる。
[0112] X:重量減少がかなり見られる。
[屈折率]
ペレット状重合体を用いて、溶融プレスにより厚さ 200 mのフィルム状の試験片を 形成し、アッベの屈折計を用い、 25°Cにおけるナトリウム D線の屈折率 (nD25)を測 し 7こ。
[光線透過率]
ペレット状の重合体を用いて厚み 2. Ommの射出成形試片を作製した後、 ASTM
D1003規格に基づき、光線透過率を測定した。
[全光散乱損失値(a t)測定]
全光散乱損失値 ( a t)の測定には、全自動型光散乱測定装置 (三菱レイヨン株式 会社製)を用いた。光源には 488nmのアルゴンレーザーを用い、垂直偏光となるよう に設置した。入射光は、ゴ-ォメーターの中心にセットされた円柱状のポリマーロッド に側面から入射した。次いで、垂直偏光で入射し、垂直偏光で散乱する散乱強度 (V V)および垂直偏光で散乱する散乱強度 (Hv)の散乱強度の角度依存性を測定した 。サンプルの絶対散乱強度は、ベンゼンの散乱強度を基準にして求めた。このように して得られた Vv、 Hv力ら、 Macromolecules, Vol. 22、 P1367 (1989)に記載さ れている方法に準じて、等方性散乱損失 a is°、異方性散乱損失 を算出し、全散 乱損失値 a t ( = a is°+ (650nmの値に換算)を求めた。
[0113] [伝送損失] 励振 NAO. 1、測定波長 650nmの光を用い、 POFの伝送損失を 20m— 5mカット バック法にて測定した。
[0114] [熱収縮率]
試長間距離を lmとした POFを 125°Cの乾燥機内につり下げ、 24時間後の試長間 距離の変化量を測定し、最初の試長(lm)で割り返し、 POFの繊維軸方向の収縮率 を求めた。
[重合体の合成方法]
以下に説明する合成 1〜8によって、(R) - a—メチレン一 β—メチルー γ—プチ 口ラタトン((R) jS MMBL)および(S) - a—メチレン一 13—メチル一 γ—ブチロラ タトン((S)— j8 MMBL)の合成を行った。
[合成 1 ]ラセミ体メチルコハク酸 4 tert ブチル 1 メチルエステル(a)の合成 ィタコン酸- 1- メチルエステルのトルエン溶液をガラス製オートクレーブに仕込み、 イオン交換榭脂 (RCP— 160H、三菱ィ匕学)を添加した。次いでイソブチレンを冷却 下で添加し、室温にて 5時間反応させた。その後、反応混合液力もイオン交換榭脂を 濾別し、残った溶液を等量の 10%炭酸ナトリウム水溶液で 2回洗浄した。有機層を無 水硫酸ナトリウムで乾燥した後、濃縮して、ィタコン酸ー4 tert—プチルー 1ーメチ ルエステルを得た。
[0115] 得られたィタコン酸 4 tert ブチル 1 メチルエステル全量をメタノールに溶 解し、次いで 5%パラジウム Zカーボン (和光純薬)を添加した。これに lkgZcm2条 件下で水素添加し、 2時間反応させた。反応終了後、触媒を濾別し、残った溶液を減 圧濃縮して、ラセミ体のメチルコハク酸 4 tert ブチル 1 メチルエステル(a) を得た。
[合成 2]光学活性メチルコハク酸誘導体の合成
ェシエリキア'コリ (Escherichia coli)FERM BP 3835を、アンピシリンを含む L B培地(1 %ポリペプトン、 0. 5%酵母エキス、 0. 5%NaCl)に植菌し、 37°Cで 24 時間振盪培養した。培養終了後、培養液を遠心分離し、得られた菌体の全量をィ オン交換水で洗浄したのち、 50mMリン酸緩衝液 (pH7. 0) 50mlに懸濁した。この 菌体懸濁液に (合成 1)で得たラセミ体メチルコハク酸ー4 tert—プチルー 1ーメチ ルエステル(a)を添カ卩し、 30°Cで 20時間反応させた。この間、反応液の pHは、 1NN aOH 水溶液を用いて 7. 0に調整した。
[0116] 反応終了後、遠心分離により菌体を除き、未反応のメチルコハク酸— 4— tert—ブ チル— 1—メチルエステルを酢酸ェチルで抽出した。有機層に無水硫酸ナトリウムを 加えて脱水し、溶媒を蒸発留去し、光学活性メチルコハク酸ー4 tert—プチルー 1 —メチルエステル (al)を得た。光学純度を測定するため、これをトリフルォロ酢酸で処 理した後、 3倍モルの水酸ィ匕ナトリウム水溶液で加水分解し、光学活性メチルコハク 酸とし、高速液体クロマトグラフィー (カラム: Chiralcel OD (ダイセル社製)、移動層 :へキサン Zイソプロパノール ZTFA=90Z10Z0. 1 、流速: 0. 5mlZmin)を測 定したところ、(S)体 95. 5%e. e.であった。
[0117] 一方、抽残水層に 2N塩酸を添加し、 pHを 2. 0に調整し、反応生成物である光学 活性メチルコハク酸— 4— tert -ブチルエステルを酢酸ェチルで抽出した。有機相 に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発留機し、 光学活性メチルコハク 酸 4 tert ブチルエステル (a2)を得た。上記と同様に光学純度を測定したところ 、(R)体 99. 5%e. e.であった。
[0118] 以下に得られた化合物の物性値を示す。
( S ) メチルコハク酸 4 tert ブチル 1 メチルエステル(a 1 )
1H— NMRスペクトル CDC1、内部標準 TMS
δ Η 1. 19〜: L 24 (3Η, d, CH )
3
δ Η 1. 44 (9Η, s, -tBu)
δ Η 2. 29〜2. 38 (1Η, m, CH - -)
2
δ Η 2. 60〜2. 69 (1H, m, CH - -)
2
δ Η 2. 83〜2. 91 (1H, m, CH— -)
δ Η 3. 69 (3H, s, -COOCH )
'C— NMR ^ベクトル CDC1、内部標準 TMS
3
6 C 16. 90 (-CH )
3
6 C 28. 05 (-tBu)
S C 35. 76 (-CH 一) SC 39.06(-CH-)
SC 51.77(— COOCH )
3
SC 80.66(-tBu)
SC 171. OO(-COOtBu)
SC 175.84 (- COOCH )
3
光学純度 (S)体 95.5%e. e.
比旋光度 [o;]D25=— 2. 11 (neat)
(R) メチルコハク酸 4 tert ブチルエステル(a2)
1H— NMRスペクトル CDC1、内部標準 TMS
δΗ 1. 23〜: L 25 (3Η, d, - CH )
3
δΗ 1. 44 (9Η, s, -tBu)
δΗ 2. 32〜2.40 (1H, m, - - CH -
2 -)
δΗ 2. 60〜2.69 (1H, m, - - CH -
2 -)
δΗ 2. 86〜2.93 (1H, m, - - CH— -)
δΗ 9. 80(1H, s, COOH)
C— NMR ^ベクトル CDC1、内部標準 TMS
SC 16.69( -CH )
3
SC 28.02 ( -tBu)
SC 35.91( CH—)
2
SC 38.75 ( -CH-)
SC 81.01( -tBu)
SC 170.98(— COOtBu)
SC 181.53(-COOH)
光学純度 (R)体 99.5%
比旋光度 [a]D25=+4.74(c = 2.30, EtOH)
[合成 3] (R)—4—ヒドロキシ— 3—メチルブタン酸— t—ブチルエステル (b)の合成 水素化ホウ素ナトリウムを無水テトラヒドロフランに懸濁させた。これに氷冷下、 3フッ 化ホウ素ージェチルエーテル錯体を徐々に加え、 1時間攪拌した後、析出したフッ化 ホウ素ナトリウムを窒素気流下で濾別した (水素化ホウ素ナトリウムは 3フッ化ホウ素に 対して 1. 1当量)。
[0119] 上記のように調製したボラン—テトラヒドロフラン錯体溶液に、(合成 2)で得た (R) - メチルコハク酸 4 tert ブチルエステル(a2) (光学純度 99. 5%ee)の無水テト ラヒドロフラン溶液を、氷冷下で滴下した後、同温度で 2時間反応させた。反応後、こ の反応液にメタノールを、氷冷下、徐々に加えた。得られた反応液を濃縮して、粗 (R ) 4ーヒドロキシ 3—メチルブタン酸 t ブチルエステル (b)を得た。液体クロマトグ ラフィ一で分析したところ、(R)—4—ヒドロキシ一 3—メチルブタン酸 t—ブチルエス テル(b) 97. 0%、(R) メチルコハク酸 0. 1%、(R)— 2—メチル 1, 4 ブタンジ オール 2. 1%、不明物 0. 8%であった(液体クロマトグラフィー条件:カラム ODS— 1 20A (東ソ一製) 4. 6mm径 X 25cm、移動相:ァセトニトリル Z水 Zリン酸 =40/60 /0. 1、流速: 1. OmlZ分、検出 UV220nm)。(R)— 2—メチル 1, 4 ブタンジ オールは、常法によりトシレートに誘導した後、液体クロマトグラフィーで分析した (液 体クロマトグラフィー条件:カラム ODS— 120A (東ソ一製) 4. 6mm径 X 25cm、移動 相 ァセトニトリル Z水 Zリン酸 = 70Z30ZO. 1、流速 1. OmlZ分、検出 UV25 4nm)。
[0120] 上記粗生成物を、酢酸ェチルに溶解させ、 10%炭酸ナトリウム水溶液で 2回洗浄し た後、有機層を無水硫酸ナトリウムで乾燥した後、濃縮して、 (R)—4—ヒドロキシ— 3 —メチルブタン酸 t ブチルエステル (b)を得た(光学純度 98%ee ; (R) - β—メチ ルー γ—プチ口ラタトンに誘導した後、旋光度を測定して求めた。 [ a ]D20= + 24. 46° (c = 2,メタノール)を得た(収率 87%) )。
[合成 4] (S) 4ーヒドロキシー 3—メチルブタン酸 t ブチルエステル(e)の合成
(合成 1)で得られた (S)ーメチルコハク酸—4—tert—ブチルー 1 メチルエステル (al) を、 3倍モルの水酸化ナトリウム溶液で加水分解し(S)— 3—カルボキシブタン 酸 t ブチルエステル (d) (光学純度 97%ee)を得た。(合成 3)において 1. 2当量(12 0)の水素化ホウ素ナトリウムを用いて調製したボラン一テトラヒドロフラン錯体を用い た点、および、原料として、 (S) 3—カルボキシブタン酸 t ブチルエステル (e)を用 いた点以外は (合成 1)〜(合成 3)と同様に操作を行ったところ、 (S)—4—ヒドロキシ 3—メチルブタン酸 t ブチルエステル(e)を得た(光学純度 97%ee ; (S)— β—メ チル— γ—プチ口ラタトンに誘導した後、旋光度を測定して求めた。 [ a ] D20 = - 2 3. 28。 (c =4,メタノール))(収率 85%)。
[合成 5] (R) - β—メチル一 γ—プチ口ラタトン (f)の合成
(合成 3)で得た (R)—4—ヒドロキシ— 3—メチルブタン酸 t ブチルエステル(b)と エタノール、 p トルエンスルフォン酸をマグネチック攪拌子と共に丸底フラスコに仕 込み、 5時間還流した。反応終了後、冷機しながら粉状の炭酸カリウムを加えて室温 で約 1時間攪拌した後に不溶の塩類を除去して、減圧で濃縮した。得られた粗生成 物を減圧蒸留して目的の (R)— 18—メチル一 γ—プチ口ラタトン (f)を得た。 (沸点: 6 8°CZ7torr、純度: 95%)を得た。
[合成 6] (4R) 3—ェチルォキザリル 4ーメチルー γ ブチロラタトン (g)の合成
28%ナトリウムメトキシドメタノール溶液をスリーワンモーターに連動した攪拌羽を付 けて、窒素置換した三口フラスコに仕込み、氷水で冷却した。シユウ酸ジェチルを滴 下ロートより滴下し、次いで (合成 5)で得た (R) - β—メチル— γ—プチ口ラタトン (f )を約 30分かけて滴下した。滴下終了後、 1時間氷水で冷却しながら内温を 0〜5°C に保って攪拌を続けた。その後、室温で 3時間攪拌を続けると反応液が固化した。そ のまま室温で一夜放置し、再び反応液を氷水で冷却してから 35%濃塩酸と水をカロえ て反応液を懸濁状態にした。ここにメチル t—ブチルエーテルをカ卩えて抽出した。有 機相を分離した後に再びメチル t—ブチルエーテルを水相にカ卩えて抽出した。これら の有機相を併せて飽和食塩水で洗浄した。有機相は硫酸マグネシウムで乾燥した後 に減圧で濃縮し、約 100°Cのオイルバスにて加熱しながら 70°CZ7torrまでの留分 を留去して、粗 α ェチルォキザリル— j8—メチルー γ—プチ口ラタトン (g)を得た。 これをそのまま次の(合成 7)で使用した。
[合成 7] (R) - a—メチレン一 β—メチル一 γ—ブチ口ラタトン((R) - β MMBL) ( h)の合成
炭酸カリウムを水に溶解し、 37%ホルマリンをカロえた。これを室温で攪拌しながらテ トラヒドロフランに溶解した粗 (4R) aーェチルォキザリル /3ーメチルー γ—プチ 口ラ外ン (g)を約 1時間時間かけて滴下した。滴下終了後、室温で 2時間攪拌した後 に析出した塩類を吸引ろ過で分離した。その後、テトラヒドロフラン相を分離し、残つ た水相にメチル t-ブチルエーテルを加えて抽出した。
[0121] テトラヒドロフラン相とメチル t—ブチルエーテル相を併せて飽和食塩水で洗浄し、 硫酸マグネシウムで乾燥して減圧にて濃縮し後に減圧蒸留した。得られた (R) - a —メチレン一 β—メチルー γ—ブチ口ラタトン((R) - β MMBL) (h)は、沸点 70— 7 5°CZ5torr、 GLC純度 99%であった。
[合成 8] (S) aーメチレン βーメチルー γ ブチロラタトン((S) - β MMBL) (i )の合成
(合成 5)で (R)—4—ヒドロキシ— 3—メチルブタン酸 t—ブチルエステル(b)の替わ りに、(合成 4)で得た(S)—4ーヒドロキシー3—メチルブタン酸 t—ブチルエステル(d )を用いた以外は、(合成 5)〜(合成 7)と同様の手順で (S)— aーメチレン βーメ チルー γ ブチロラタトン((S)— β MMBL) (i)を得た。 (S)— β MMBL (i)は、沸 点 70〜75°CZ5torr、 GLC純度 99%であった。
[0122] [実施例 1]
上記の(合成 7)で得た (R) - β MMBLと、(合成 8)で得た(S) - β MMBLを、そ れぞれ 50質量部ずつ混合して、 β MMBLの (R)体と(S)体の混合物( (RZS) - β MMBL) (h)を得た。
[0123] ビーカーに、上記の (RZS) - β MMBLIOO質量部に対して、重合開始剤として 2 , 2'—ァゾビスイソ酪酸ジメチル (V— 601) 0. 3質量部、連鎖移動剤として η—ブチ ルメルカブタン 0. 3g質量部を加え攪拌した。攪拌溶解した混合物を、ガラス製アン プル管に投入し、凍結と真空脱揮を 5回繰り返して、溶存酸素を除去した後、オイル バス中で 65°Cで 12時間、次 、で 120°Cで 5時間熱処理を行 、重合を完結させた。
[0124] 得られた塊状重合体を、塩化メチレンに溶解し、メタノールで沈殿させた後、濾過、 水洗し、 75°Cで 24時間乾燥して重合物を得た。その後、 2軸押出機 (池貝 (株)製 P CM30)を用いて、シリンダー温度 230°Cで押出し、ペレツトイ匕した。
[0125] また、射出成形機(日精榭脂 (株)製、 PS— 60E)を用いて、シリンダー温度 230°C 、金型温度 75°C、射出速度 50%、射出時間 10秒、冷却時間 25秒の条件で、射出 圧力を変更させながら射出成型を行い、試片の作製を行った。 [0126] 得られたペレットまたは試片につ 、て、屈折率、ガラス転移温度、光線透過率、耐 熱分解性を評価し、その結果を表 1に示す。
[0127] [実施例 2〜7、比較例 1〜7]
(R) β MMBLと(S)— β MMBLと ΜΜΑの混合物の組成を、表 1に示すように 変更した以外は、実施例 1と同様に重合、ペレット化、試片作製を行い、各種の評価 を行った。得られた評価結果を一括して表 1に示す。
[0128] [実施例 8〜: L 1、比較例 8〜: L 1]
(R) β MMBLと(S)— β MMBLと ΜΜΑの混合物の組成を、表 2に示すように 変更した以外は、実施例 1と同様に重合、ペレット化、試片作製を行い、光線透過率 を評価した。得られた評価結果を表 2に示す。
[0129] [実施例 12]
上記の(合成 7)で得た (R) - β MMBLと、(合成 8)で得た(S) - β MMBLを、そ れぞれ 50質量部ずつ混合して、 β MMBLの (R)体と(S)体の混合物( (RZS) - β MMBL) (h)を得た。
[0130] さらに、この(RZS)— β MMBL10質量部と ΜΜΑ90質量部を混合した。この単 量体混合液 100質量部に対して、開始剤として 2, 2'—ァゾビスイソ酪酸ジメチル (V 601) 0. 3質量部、連鎖移動剤として η プチルメルカブタン 0. 2質量部を添加し て塊状共重合することにより、 POFのコア材用ポリマーを製造した。得られたポリマー の Tgは 127°Cであった。一方、クラッド材としては α—フルォロアクリル酸トリフルォロ ェチル Ζ α フルォロアクリル酸メチル(モル比 85Ζ15、屈折率 1. 397)共重合体 を用いた。これらのポリマーを、二層同心円状複合ノズルを備えたラム押出式の紡糸 装置を用いて紡糸し、コア Ζクラッド構造の POFを製造した。なお紡糸中において、 コア材用ポリマーを投入したラム押出式の紡糸装置のバレル内、およびノズルの突 出口付近の温度は 225°C、圧力は 1. 5〜2. OMPaの範囲であった。得られた POF は直径が lmmで、コア径が 980 μ m、クラッド厚みが 10 μ mであった。
[0131] このようにして得られた POFの伝送損失は 180dBZkm (測定法; 20m— 5mカット バック法、波長; 650nm、入射 NA=0. 1)であった。
[0132] [実施例 13〜22、比較例 12〜14] 表 3に示した組成のコア材及びクラッド材を用いた点を除き、実施例 12と同様にし てコア Zクラッド構造の POFを製造し、伝送損失、熱収縮を測定した。結果を表 3に 示す。なお、比較例 14にはコア材が PMMA力もなる POFについて記載した。
[0133] [実施例 23〜26、比較例 15〜18]
表 4に示した組成のコア材及びクラッド材を用いた点を除き、実施例 12と同様にし てコア Zクラッド構造の POFを製造し、伝送損失を評価した。得られた評価結果を一 括して表 4に示す。
[0134] [実施例 27、 28]
実施例 22及び実施例 16の POFの外周部に、被覆用ダイを用いてポリアミド 12榭 脂 (ダイセル'デグッサ社製、商標名:ダイアミド- L 1640)を被覆し、直径 1. 5mmの POFケーブルを製造し、初期および 125°Cで 1000時間熱処理した後の伝送損失を 測定した。得られた結果を表 5に示す。
[0135] [実施例 29〜32]
表 6に示した 2種類の組成のクラッド材を用 、た点を除き、実施例 12と同様にして 三層同心円状複合ノズルを備えたラム押出式の紡糸装置を用いて紡糸し、コア Z第 1クラッド Z第 2クラッド構造の POFを製造し、伝送損失、熱収縮を測定した。結果を 表 6に示す。得られた POFは直径が lmmで、コア径カ 60 /ζ πι、第 1クラッド及び第 2クラッドの厚みが 10 μ mであった。
[0136] [実施例 33]
紡糸中、コア材用ポリマーを投入したラム押出式の紡糸装置のバレル内、およびノ ズルの突出口付近の温度は 225°C、圧力は 0. 4〜0. 5MPaの範囲とした点を除き、 実施例 16 (コア MMBL25%、クラッド 2F— 4F— 6F— VE4元系)と同様にしてコア Zクラッド構造の POFを製造した。伝送損失は初期 1200dBZKm、熱収縮 0. 8% であった。
[0137] [実施例 34]
メタクリル酸メチル 75質量部、 ex—メチレン一 β—メチルー γ—ブチ口ラタトン( j8 MBL) (S体と R体との質量比が 50対 50) 25質量部からなる混合物を作成し、重合 開始剤として 2, 2'—ァゾビスイソ酪酸ジメチル (V— 601) 0. 3質量部、連鎖移動剤 として n—プチルメルカブタン 0. 3質量部を加え攪拌した。攪拌溶解した混合物を、 ガラス製アンプル管に投入し、凍結と真空脱揮を 5回繰り返して、溶存酸素を除去し た後、オイルバス中で 65°Cで 12時間、次いで 120°Cで 5時間熱処理を行い重合を 完結させた。得られた共重合体組成物の重合体含有率は 97%、全光散乱損失は 1 50dBZkmであった。
[0138] 上記の共重合体組成物を、専用の加熱圧縮装置に設置し、シリンダー温度 210°C 、荷重 0. 9MPaの条件下で 2時間熱溶融処理を施した。得られた透明榭脂組成物 の全光散乱損失は 45dBZkmであった。この共重合体組成物の屈折率は 1. 500、 ガラス転移温度 (Tg)は 149°Cであった。
[0139] [比較例 19]
単量体として、メタクリル酸メチル 55質量部、 ex—メチレン— γ , y—ジメチル— γ —プチ口ラタトン( Ί DMBL) 45質量部を用いた以外は、実施例 34と同様にして重 合を行った。得られた共重合体組成物の重合体含有率は 96%、全光散乱損失は 1 OOOdBZkm以上であった。熱溶融処理を行ったところ得られた榭脂組成物は白濁 して 、た。この共重合体組成物の Tgは 148°Cであった。
[0140] [比較例 20]
単量体として、メタクリル酸メチル 45質量部、 exーメチレン γ—メチルー y—プチ 口ラタトン( γ MBL) 55質量部を用いた以外は、実施例 34と同様にして重合を行った 。得られた榭脂組成物は白濁していた。重合率は 97%であった。
[0141] [実施例 35]
単量体として、メタクリル酸メチル 80質量部、 ひーメチレン βーメチルー γーメチ ルー γ ブチロラタトン( j8 M y MBL) (S体と R体との質量比が 55対 45) 20質量部 を用いた以外は、実施例 34と同様にして重合を行った。得られた共重合体組成物の 重合体含有率は 97%、全光散乱損失は 145dBZkmであった。次いで実施例 34と 同様に熱溶融処理を行ったところ、得られた共重合体組成物の全光散乱損失は 40d BZkmであった。また、この共重合体組成物の屈折率は 1. 502であり、ガラス転移 温度 (Tg)は 150°Cであった。
[0142] [実施例 36〜40、比較例 21] メタクリル酸メチル(MMA)と a—メチレン一 13—ェチルー γ—ブチ口ラタトン( j8 E BL) (S体と R体との質量比が 45対 55)を表 7に示す組成比になるように混合し、実施 例 34と同様にして重合を行った。次いで実施例 34と同様に熱溶融処理を行ない、 得られた榭脂組成物の物性を測定した。結果を表 7に示す。
[0143] [実施例 41〜43および比較例 22、 23]
単量体として、メタクリル酸メチル 50質量0 /0、 aーメチレン βーメチルー γーブチ 口ラタトン(jS MMBL) (S体と R体との質量比は、表 8に示す) 50質量部を用いた以 外は、実施例 34と同様にして重合を行った。次いで実施例 34と同様に熱溶融処理 を行ない、得られた榭脂組成物の物性を測定した。結果を表 8に示す。
[0144] [実施例 44〜46および比較例 24、 25]
単量体として、メタクリル酸メチル 75質量部、 exーメチレン βーメチルー y—プチ 口ラタトン ( β MMBL) (S体と R体との質量比が 50: 50) 25質量部を用いた以外は、 実施例 34と同様にして重合を行った。得られた共重合体組成物の重合体含有率は 97%、ガラス転移温度 (Tg)は 150°C、全光散乱損失は 160dBZkmであった。表 9 に記載した条件で熱溶融処理を行な!/ヽ、得られた共重合体組成物の全光散乱損失 を表 9示す。
[0145] 表 1に示したように、実施例 1及び実施例 2〜7、比較例 1〜7で得られた (共)重合 体は、ポリメタクリル酸メチル (Tg = 110°C)に対して Tgの向上が見られ、耐熱分解性 が良好であった。しかし、比較例 1〜6のように |8 MBLが (R)体単独で構成された場 合、重合体の光線透過率に低下が見られた。
[0146] 表 2に示したように、(R) - β MMBLと(S) - β MMBLの混合比が 30 70〜70 Ζ30の範囲内にある重合体の光線透過率は良好であった力 この範囲外にある重 合体の光線透過率には低下が見られた。
[0147] 表 3の実施例 12〜22で示したように、 POFのコア材が、(R) - β MMBLと(S) - β MMBLの等量混合物からなる重合体により構成される場合、得られた POFの伝 送特性、熱収縮 (実施例 14〜22のみ)は良好であった。しかし、比較例 12〜13のよ うに、(R)— j8 MMBL単独力もなる重合体力も構成される場合、実施例 12、 14のよ うに (R)体と (S)体の混合物からなる共重合体により構成される場合と比較すると、 P OFの伝送特性は低下した。なお、実施例 12、 13、比較例 14に記載した POFは、熱 収縮測定時に、 POFがカール状に収縮するため測定不可であった。
[0148] 表 4に示したように、 POFのコア材が、(R) - β MMBLと(S) - β MMBLの混合 比が 30Ζ70〜70Ζ30の範囲内にある重合体力 構成される場合、得られた POF の初期の伝送特性は良好であった。しかし、この範囲外にある場合は、伝送特性は 著しく低下した。
[0149] 表 5に示したように、実施例 22及び実施例 16の POFの外周部に、ポリアミド 12榭 脂を被覆した POFケーブルは、伝送特性が良好であった。
[0150] [表 1]
〔〕 S〕01512
単量体仕込組成 (wt%) Tg 光線透過 耐熱 5l卜解性
屈折率
(S)-6MMBL MA (°C) 率(%) 240°C 260°C 280°C 300。C 実施例 1 50 50 0 1.518 >250。C 92 0 o 0 厶 実施例 2 5 5 90 1 .495 128 92 0 0 0 厶 実施例 3 10 10 80 1.497 143 92 0 o o Δ 実施例 4 15 15 70 1.500 159 92 〇 o o 厶 実施例 5 20 20 60 1.502 181 92 0 o o 厶 実施例 6 25 25 50 1.505 >250°C 92 0 0 o 厶 実施例 7 35 35 30 1.510 >250°C 92 〇 〇 o Δ 比較例 1 10 - 90 1.495 127 90 o 〇 o 厶 比較例 2 20 - 80 1.497 142 90 0 〇 o △ 比較例 3 30 - 70 1.500 165 89 0 0 0 厶 比較例 4 40 60 1.502 178 88 0 0 o 厶 比較例 5 50 - 50 1.505 >250°C 50 o 〇 o 厶 比較例 6 70 - 30 1.510 >250。C 白; S o 〇 o Δ 比較例 7 100 - 0 1.518 >250°C 白 o 0 o 厶
単量体仕込組成 (wt%) 光線透過
MMA 率(%) 比較例 8 25 75 0 30 実施例 8 35 65 0 92 実施例 9 65 35 0 92 比較例 9 75 25 0 30 比較例 10 6 19 75 50 実施例 10 9 16 75 92 実施例 1 1 16 9 75 92 比較例 1 1 19 6 75 50 3]
Figure imgf000044_0001
Figure imgf000045_0001
^01534
伝送損失 (dB/km)
光ファイバ 被覆材
初期 125°C*1 OOOh
実施例 27 実施例 22 PA12 235 250
実施例 28 実施例 16 PA12 240 250
sffl0154 〔s015
Figure imgf000047_0001
〔〕 sffi 組成比 (質量%) Tg 全光散乱損失 (dB/km) 実施例 屈折率
MMA 9EBL CC) 熱処理前 熱処理後 実施例 36 0 100 1.522 >250 146 48 実施例 37 25 75 1.515 >250 220 70 突施例 38 50 50 1.507 200 162 55 実施例 39 60 30 1.501 165 135 41 実施例 40 90 10 1.495 130 81 25 比較例 21 100 0 1.492 115 37 12
[0157] [表 8]
Figure imgf000048_0001
[0158] [表 9]
熱溶融処理 全光散乱損失 (dB/km) 実施例 T g CO
温度 ( ) 圧力 (MPa) 熱処理前 熱処理後 比較例 24 150 185 1.0 160 135 実施例 4 150 195 1.0 160 95 実施例 5 150 210 0.7 160 50 実施例 46 150 220 1.2 160 "
発泡により 比較例 25 150 210 0.5 160
測定不可 産業上の利用可能性
耐熱性および透明性に優れ、全光散乱損失値 lOOdBZkm以下の重合体が得ら れ、これをコア材として用いることにより伝送損失力 OOdBZkm以下のプラスチック 光ファイバ一、プラスチック光ファイバ一ケーブルを得ることができ、自動車内通信配 線のような情報伝達用のみならず、屈折率分布型レンズや光導波路、光デバイス等 のオプトエレクトロニクス分野において耐熱性に加え、高度な透明性、光散乱損失が 著しく少ないことを要求される各種光学部品用として適用することができる。

Claims

請求の範囲 構成単位として一般式(1)で示されるラ外ンィ匕合物の単位 (A) 5〜: L00質量%と( メタ)アクリル酸エステル単位 (B) 0〜95質量%とを含み、前記ラタトン化合物の単位 (A)は一般式 (2)で示される (S)体単位および一般式 (3)で示される (R)体単位を 質量比で 70Z30〜30Z70の範囲で含み、かつ全光散乱損失が lOOdBZkm以下 である重合体組成物。 [化 1] [化 2][化 3]
(式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
[2] (メタ)アクリル酸エステル単位 (B)力メタクリル酸メチル単位を含むことを特徴とする 請求項 1に記載の重合体組成物。
[3] 伝送損失力 OOdBZkm以下であって、かつコアが、構成単位として一般式(1)で 示されるラタトンィ匕合物の単位 (A) 5〜: LOO質量%と (メタ)アクリル酸エステル単位 ( ) 0〜95質量%とを含み、前記ラタトンィ匕合物の単位 (A)が一般式(2)で示される ( S)体単位および一般式(3)で示される (R)体単位を質量比で 70Z30〜30Z70の 範囲にある重合体組成物力もなることを特徴とするプラスチック光ファイバ一。
[化 4]
Figure imgf000052_0001
[化 5]
Figure imgf000052_0002
[化 6]
Figure imgf000052_0003
(式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
[4] (メタ)アクリル酸エステル単位 (B)カ^タクリル酸メチル単位を含むことを特徴とする 請求項 3に記載のプラスチック光ファイバ一。
[5] クラッドが、結晶融解熱が 40miZmg以下であるテトラフルォロエチレン単位を含 む含フッ素ォレフィン系榭脂を含むことを特徴とする請求項 3または 4に記載のプラス チック光ファイバ一。
[6] クラッドが、 1層または 2層以上からなり、最内層が一般式 (8)
CH =CX-COO (CH ) m-Rlf (8)
2 2
(式中、 Xは水素原子、フッ素原子、又はメチル基、 Rlfは炭素数 1〜12の(フルォロ )アルキル基、 mは 1又は 2の整数を示す。)
で表されるフルォロアルキル (メタ)アタリレートの単位(C) 15〜90質量0 /0と、一般式( 2)で示される (S)体単位および一般式(3)で示される (R)体単位を質量比で 70Z3 0〜30Z70の範囲で含む一般式(1)で示されるラタトン化合物の単位 (A) 10〜85 質量%を含む共重合体を含有することを特徴とする請求項 3から 5のいずれかに記 載のプラスチック光ファイバ一。
[7] 請求項 3から 6の 、ずれかに記載のプラスチック光ファイバ一の外周に、熱可塑性 榭脂を含む被覆層を有することを特徴とするプラスチック光ファイバ一ケーブル。
[8] 一般式 (2)で示される(S)体および一般式 (3)で示される (R)体を、質量比で 70Ζ 30〜30Ζ70の範囲で含む一般式(1)で示されるラタトン化合物(Α) 5〜: L00質量% と、(メタ)アクリル酸エステル (Β) 0〜95質量%とを含む単量体混合物を重合体含有 率 94%以上に重合した後、温度 Tc°C (Tc≥Tg+40) (Tgは重合体組成物のガラス 転移温度を示す。 )、圧力 0. 6MPa以上の条件下で熱溶融処理することを特徴とす る重合体組成物の製造方法。
[化 7]
Figure imgf000054_0001
[化 8]
Figure imgf000054_0002
[化 9]
Figure imgf000054_0003
(式(1)〜(3)中、 R1はメチル基、ェチル基またはプロピル基を示し、 R2、 R3は独立し て水素原子、無置換もしくはフッ素原子で置換されていてもよい炭素数 1〜12のアル キル基、無置換もしくはアルキル基で置換されていてもよいフエ-ル基、または無置 換もしくはフッ素原子で置換されていてもよいシクロへキシル基を示し、 R2、 R3は相互 に一体となってこれらが結合する炭素原子を含めて 5または 6員環を形成していても よぐ該 5または 6員環はフッ素原子で置換されていてもよい。 )
一般式 (2)で示される(S)体および一般式 (3)で示される (R)体を、質量比で 70Z 30〜30Z70の範囲で含む一般式(1)で示されるラタトン化合物(Α) 5〜: L00質量% と、(メタ)アクリル酸エステル (Β) 0〜95質量%とを含む単量体混合物を重合体含有 率 94%以上に重合した重合体組成物によって形成されたコアに、温度 Tc°C (Tc≥ Tg + 40) (Tgは重合体組成物のガラス転移温度を示す。)、圧力 0. 6MPa以上の 条件下で熱溶融処理を施すことを特徴とするプラスチック光ファイバ一の製造方法。
[化 10]
Figure imgf000055_0001
[化 11]
Figure imgf000056_0001
[化 12]
Figure imgf000056_0002
PCT/JP2005/023939 2004-12-27 2005-12-27 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法 WO2006070824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05822855A EP1834968A4 (en) 2004-12-27 2005-12-27 POLYMERIC COMPOSITION, PLASTIC LIGHT FILTER, PLASTIC LIGHT FILTER CABLE AND METHOD FOR PRODUCING PLASTIC LIGHT FILTER
JP2006550812A JP5340542B2 (ja) 2004-12-27 2005-12-27 重合体成形物及びその製造方法、並びにプラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
US11/794,313 US7512309B2 (en) 2004-12-27 2005-12-27 Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for manufacturing plastic optical fiber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-377186 2004-12-27
JP2004377186 2004-12-27
JP2005073121 2005-03-15
JP2005-073121 2005-03-15
JP2005-258279 2005-09-06
JP2005258279 2005-09-06

Publications (1)

Publication Number Publication Date
WO2006070824A1 true WO2006070824A1 (ja) 2006-07-06

Family

ID=36614936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023939 WO2006070824A1 (ja) 2004-12-27 2005-12-27 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法

Country Status (5)

Country Link
US (1) US7512309B2 (ja)
EP (1) EP1834968A4 (ja)
JP (1) JP5340542B2 (ja)
KR (1) KR100878084B1 (ja)
WO (1) WO2006070824A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237544A (ja) * 2008-03-07 2009-10-15 Toray Ind Inc 光導波路フィルムおよびその製造方法
JP2014533322A (ja) * 2011-11-11 2014-12-11 サジティス・インコーポレイテッド ポリ(ラクトン)、製造方法、およびその使用
WO2023054141A1 (ja) * 2021-09-30 2023-04-06 日東電工株式会社 プラスチック光ファイバー及びその製造方法
WO2023189998A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 プラスチック光ファイバおよび医療用センサ機器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841949B2 (ja) 2009-12-18 2016-01-13 ダウ グローバル テクノロジーズ エルエルシー 環状ブロックコポリマーを含むプラスチック光ファイバ
KR101875983B1 (ko) * 2010-09-30 2018-07-06 제이에스알 가부시끼가이샤 감방사선성 수지 조성물, 중합체 및 화합물
BR112013024928A2 (pt) * 2011-03-30 2016-12-20 Dsm Ip Assets Bv processo para curar radicalmente uma composição
US9309332B2 (en) 2012-08-24 2016-04-12 Colorado State University Research Foundation Polymerization catalysts, methods and products
WO2014163084A1 (ja) * 2013-04-02 2014-10-09 三菱レイヨン株式会社 マルチコア光ファイバ及びマルチコア光ファイバケーブル
US10215015B2 (en) 2015-03-10 2019-02-26 Halliburton Energy Services, Inc. Strain sensitive optical fiber cable package for downhole distributed acoustic sensing
US10215016B2 (en) 2015-03-10 2019-02-26 Halliburton Energy Services, Inc. Wellbore monitoring system using strain sensitive optical fiber cable package
US10173381B2 (en) 2015-03-10 2019-01-08 Halliburton Energy Services, Inc. Method of manufacturing a distributed acoustic sensing cable
MX2017016618A (es) 2015-07-31 2018-05-15 Halliburton Energy Services Inc Dispositivo acustico para reducir los ruidos sismicos inducidos por ondas de cable.
KR20210099212A (ko) 2017-08-31 2021-08-11 아사히 가세이 가부시키가이샤 플라스틱 광 파이버, 플라스틱 광 파이버 케이블, 커넥터가 부착된 플라스틱 광 파이버 케이블, 광 통신 시스템, 및 플라스틱 광 파이버 센서
WO2019083906A1 (en) * 2017-10-27 2019-05-02 3M Innovative Properties Company BRANCHED FLUORINATED THERMOPLASTICS AND PROCESS FOR THEIR PREPARATION

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231648A (ja) * 1995-01-17 1996-09-10 Degussa Ag キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法
JPH0912646A (ja) * 1995-06-30 1997-01-14 Mitsubishi Rayon Co Ltd 耐熱性樹脂
JPH0912641A (ja) * 1995-06-29 1997-01-14 Mitsubishi Rayon Co Ltd 含フッ素重合体
JPH09304635A (ja) * 1996-05-16 1997-11-28 Fuji Xerox Co Ltd 光ファイバーおよびそれを用いた光学素子
JP2002202415A (ja) * 2000-12-21 2002-07-19 Three M Innovative Properties Co 側面発光性光ファイバー
JP2005330462A (ja) * 2004-04-20 2005-12-02 Mitsubishi Rayon Co Ltd 共重合体、樹脂組成物、カラーフィルター、スペーサー、tft素子平坦化膜、および液晶表示装置
JP2006011161A (ja) * 2004-06-28 2006-01-12 Mitsubishi Rayon Co Ltd プラスチック光ファイバー用鞘材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374010A (ja) 1986-09-18 1988-04-04 Toray Ind Inc 耐熱性の良好なプラスチツク光フアイバ−
JPS63163306A (ja) 1986-12-25 1988-07-06 Toray Ind Inc プラスチツク光フアイバ
JP3127490B2 (ja) 1991-06-12 2001-01-22 ジェイエスアール株式会社 光ファイバー
JPH06200005A (ja) 1992-11-02 1994-07-19 Teijin Chem Ltd 芳香族ポリカーボネート共重合体
JPH06200004A (ja) 1992-11-02 1994-07-19 Furukawa Electric Co Ltd:The 芳香族ポリカーボネート共重合体
JP3486483B2 (ja) 1995-07-14 2004-01-13 三菱レイヨン株式会社 プラスチック光ファイバ
JP3479573B2 (ja) 1995-07-14 2003-12-15 三菱レイヨン株式会社 プラスチック光ファイバ
JP2001174647A (ja) 1999-12-16 2001-06-29 Asahi Kasei Corp 耐熱プラスチック光ファイバ
US20050074216A1 (en) * 2000-12-21 2005-04-07 Shinichi Irie Side-illumination type optical fiber
CN101014635A (zh) * 2004-08-30 2007-08-08 三菱丽阳株式会社 光学用共聚物及由其构成的成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231648A (ja) * 1995-01-17 1996-09-10 Degussa Ag キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法
JPH0912641A (ja) * 1995-06-29 1997-01-14 Mitsubishi Rayon Co Ltd 含フッ素重合体
JPH0912646A (ja) * 1995-06-30 1997-01-14 Mitsubishi Rayon Co Ltd 耐熱性樹脂
JPH09304635A (ja) * 1996-05-16 1997-11-28 Fuji Xerox Co Ltd 光ファイバーおよびそれを用いた光学素子
JP2002202415A (ja) * 2000-12-21 2002-07-19 Three M Innovative Properties Co 側面発光性光ファイバー
JP2005330462A (ja) * 2004-04-20 2005-12-02 Mitsubishi Rayon Co Ltd 共重合体、樹脂組成物、カラーフィルター、スペーサー、tft素子平坦化膜、および液晶表示装置
JP2006011161A (ja) * 2004-06-28 2006-01-12 Mitsubishi Rayon Co Ltd プラスチック光ファイバー用鞘材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237544A (ja) * 2008-03-07 2009-10-15 Toray Ind Inc 光導波路フィルムおよびその製造方法
JP2014533322A (ja) * 2011-11-11 2014-12-11 サジティス・インコーポレイテッド ポリ(ラクトン)、製造方法、およびその使用
WO2023054141A1 (ja) * 2021-09-30 2023-04-06 日東電工株式会社 プラスチック光ファイバー及びその製造方法
WO2023189998A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 プラスチック光ファイバおよび医療用センサ機器

Also Published As

Publication number Publication date
KR100878084B1 (ko) 2009-01-13
JPWO2006070824A1 (ja) 2008-06-12
US7512309B2 (en) 2009-03-31
JP5340542B2 (ja) 2013-11-13
EP1834968A1 (en) 2007-09-19
KR20070098885A (ko) 2007-10-05
US20080166091A1 (en) 2008-07-10
EP1834968A4 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2006070824A1 (ja) 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
US5148511A (en) Low refractive index plastics for optical fiber cladding
JP3991730B2 (ja) 重合性化合物およびその重合体
WO2006075646A1 (ja) 化合物、重合体および光学部品
WO2006025360A1 (ja) 光学用共重合体及びそれからなる成形体
JP2008291138A (ja) メチルメタクリレート系共重合体の製造方法、及びプラスチック光ファイバの製造方法
CN101087820A (zh) 聚合物组合物、塑料光纤、塑料光缆以及塑料光纤的制造方法
JP2005145861A (ja) ジフェニルスルフィド基を有する化合物、並びに、該化合物を利用した共重合体、光学部材、プラスチック光ファイバプリフォームの製造方法およびプラスチック光ファイバの製造方法
JP2009227787A (ja) メチルメタクリレート系共重合体の製造方法、及びプラスチック光ファイバの製造方法
JP4520364B2 (ja) 非晶質コポリマー、光学部材およびプラスチック光ファイバー
JP4245521B2 (ja) プラスチック光ファイバー用鞘材
JP2012140559A (ja) 樹脂組成物、成形体及び光ファイバー
JP4315758B2 (ja) 重水素化された環状脂肪族基を有する不飽和エステル類、その製造方法、重合体、およびそれを含む光学部品
JP2000239325A (ja) 透明樹脂組成物
JP3657113B2 (ja) 低複屈折共重合体、その製法およびピックアップレンズ
JP3930421B2 (ja) プラスチック光ファイバおよびその製造方法
US20060056786A1 (en) Optical members and compositions for producing them
JP5442527B2 (ja) メタクリレート系共重合体からなる色消し組合せレンズ
JP2005255956A (ja) 重合体及び光学用材料
JP2006131549A (ja) 化合物、重合性組成物、光学部材、屈折率分布型光学部材の製造方法
JP2020190717A (ja) プラスチック光ファイバおよびその製造方法
JP2005148300A (ja) 複素環基を有する重合性化合物を利用した共重合体、光学部材およびプラスチック光ファイバの製造方法、並びに、チアジアゾール基を有する化合物
JP2004149743A (ja) 共重合体
JP2004151661A (ja) 光学部材の製造方法および光学部材
JPH09176238A (ja) 合成樹脂製光ファイバー材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006550812

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580044920.2

Country of ref document: CN

Ref document number: 2350/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11794313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005822855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077017224

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005822855

Country of ref document: EP