WO2023054141A1 - プラスチック光ファイバー及びその製造方法 - Google Patents

プラスチック光ファイバー及びその製造方法 Download PDF

Info

Publication number
WO2023054141A1
WO2023054141A1 PCT/JP2022/035277 JP2022035277W WO2023054141A1 WO 2023054141 A1 WO2023054141 A1 WO 2023054141A1 JP 2022035277 W JP2022035277 W JP 2022035277W WO 2023054141 A1 WO2023054141 A1 WO 2023054141A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
clad
core
pof
atoms
Prior art date
Application number
PCT/JP2022/035277
Other languages
English (en)
French (fr)
Inventor
紘司 大村
武士 斉藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023054141A1 publication Critical patent/WO2023054141A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to a plastic optical fiber and its manufacturing method.
  • a plastic optical fiber (hereinafter referred to as "POF") has a central core and a clad that covers the outer periphery of the core as a part that transmits light.
  • the core is made of a resin material having a high refractive index.
  • the clad is made of a resin material having a lower refractive index than the resin material of the core in order to confine light within the core.
  • Patent Documents 1 and 2 disclose a POF having a core made of a polymethyl methacrylate resin and a clad made of a material containing a fluorine-containing resin such as a fluorinated methacrylate resin or a fluorine-containing olefin resin.
  • a POF cable is disclosed that includes strands of wire and a coating layer that covers the strands of wire.
  • Patent Document 3 discloses a POF element wire having a core and a clad, and describes that a fluorine-containing resin having a low refractive index may be used as a material for the core.
  • POF had the problem that transmission loss increased over time when exposed to high temperature and high humidity environments. Therefore, in the POF cables disclosed in Patent Documents 1 to 3, for example, configurations for improving the heat resistance are proposed, such as an appropriate combination of the material of the clad and the material of the coating layer.
  • the POF cable disclosed in Patent Document 1 For example, in the POF cable disclosed in Patent Document 1, specific copolymers are used for the fluorine-containing resin used for the clad and the resin used for the coating layer, so that the heat shrinkage of the POF strands can be , a strong bond between the POF wire and the covering layer is realized. As a result, the POF cable disclosed in Patent Document 1 achieves low transmission loss and long-term heat resistance.
  • the core material is polymethyl methacrylate-based resin
  • the clad material is a material containing a fluorine-containing resin, disclosed in Patent Document 2.
  • Specific materials are also used for the cladding and covering layers in the POF cables that are used.
  • the thermal contraction rate of the POF wire is suppressed to 2.0% or less in order to reduce the difference in thermal shrinkage between the POF wire and the coating layer. ing. With these configurations, the POF cable of Patent Document 2 suppresses the shrinkage strain that occurs inside the POF cable and achieves long-term heat resistance in a high-temperature environment.
  • the present invention is a POF in which a fluorine-containing resin is used as a core and clad material, and even when exposed to a high-temperature and high-humidity environment, it is possible to suppress an increase in transmission loss over time. It is an object of the present invention to provide a POF and its manufacturing method.
  • the mechanism by which transmission loss increases over time when exposed to a high-temperature, high-humidity environment is complex, and it is still not entirely clear. Therefore, the present inventor believes that, in order to effectively suppress the increase in transmission loss, it is necessary to clarify the mechanism of the increase in transmission loss according to the materials constituting the core and clad, for example. Thought.
  • the inventor of the present invention has extensively studied POFs using a fluorine-containing resin as a material for the core and cladding. , found that the transmission loss increases due to the occurrence of the air gap.
  • the present inventors have found that the generation of such voids is related to the hydrophobicity peculiar to the fluororesin and the residual stress due to the orientation of the core and clad materials.
  • the present inventors have newly found a configuration of the core and the clad that can suppress the occurrence of .
  • the POF of the present invention is a core containing a first fluororesin as a main component; a clad disposed on the outer periphery of the core and containing a second fluororesin as a main component; with
  • the fiber structure composed of the core and the clad is heated at 90° C. for 24 hours, the fiber structure has a shrinkage rate of 5% or less in the longitudinal direction,
  • the present invention provides a method for manufacturing the above POF, comprising: The manufacturing method is (A) melting a core material containing the first fluorine-containing resin as a main component and extruding it into a fiber shape to prepare a fiber-like molded body made of the core material; (B) A lamination in which the core material and the clad material are concentrically laminated by melting the clad material containing the second fluorine-containing resin as a main component and extruding so as to cover the surface of the molded body.
  • a POF in which a fluorine-containing resin is used as a material for the core and the cladding can suppress an increase in transmission loss over time even when exposed to a high-temperature and high-humidity environment. It is possible to provide a POF and a method for manufacturing the same.
  • FIG. 1 is a schematic diagram showing an example of the cross-sectional structure of POF according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the POF according to the embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used for manufacturing POF.
  • the POF according to the first aspect of the present invention comprises a core containing a first fluororesin as a main component; a clad disposed on the outer periphery of the core and containing a second fluororesin as a main component; with
  • the fiber structure composed of the core and the clad is heated at 90° C. for 24 hours, the fiber structure has a shrinkage rate of 5% or less in the longitudinal direction,
  • At least one selected from the group consisting of the first fluorine-containing resin and the second fluorine-containing resin is represented by the following formula (1)
  • a fluorine-containing polymer containing the structural unit (A) is included.
  • R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
  • R ff 1 and R ff 2 may be linked to form a ring.
  • the fluoropolymer further contains a structural unit (B) represented by the following formula (2).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • the perfluoroalkyl group may have a ring structure.A portion of the fluorine atoms may be substituted with halogen atoms other than fluorine atoms.A portion of the fluorine atoms in the perfluoroalkyl group may be It may be substituted with a halogen atom other than a fluorine atom.
  • the fluoropolymer further contains a structural unit (C) represented by the following formula (3).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • the perfluoroalkyl group may have a ring structure.
  • Some of the fluorine atoms may be substituted with halogen atoms other than fluorine atoms, and some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer further comprises a structural unit (D) represented by the following formula (4): contains.
  • Z represents an oxygen atom, a single bond, or —OC(R 19 R 20 )O—
  • R 9 to R 20 each independently represent a fluorine atom, a C 1-5 per represents a fluoroalkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms, a portion of the fluorine atoms of which may be substituted with halogen atoms other than fluorine atoms, and a portion of the fluorine atoms in the perfluoroalkyl group , may be substituted with halogen atoms other than fluorine atoms.A portion of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • the POF according to any one of the first to fifth aspects further includes a coating layer arranged on the outer circumference of the clad.
  • a seventh aspect of the present invention is a method for manufacturing a POF according to any one of the first to sixth aspects, comprising: The manufacturing method is (A) melting a core material containing the first fluorine-containing resin as a main component and extruding it into a fiber shape to prepare a fiber-like molded body made of the core material; (B) A lamination in which the core material and the clad material are concentrically laminated by melting the clad material containing the second fluorine-containing resin as a main component and extruding so as to cover the surface of the molded body.
  • the temperature of the discharge port of the nozzle is set to a temperature at which the viscosities of the core material and the clad material at a shear rate of 1/s fall within the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the temperature of the ejection port of the nozzle is set within the range of 240°C or higher and 280°C or lower.
  • the temperature of the cooling pipe is set at 5°C or higher and 25°C or lower.
  • the amount of air blown in the cooling pipe is 1 mL/min or more and 10 mL/min or less.
  • the POF of this embodiment includes a core and a clad arranged around the core.
  • the POF of this embodiment is, for example, a gradient index (GI) type POF.
  • FIG. 1 shows an example of the cross-sectional structure of the POF of this embodiment.
  • the POF 10 shown in FIG. 1 includes a core 11 and a clad 12 arranged around the outer periphery of the core 11.
  • the core 11 contains the first fluororesin as a main component
  • the clad 12 contains the second fluororesin as a main component.
  • a fluorine-containing resin can achieve low transmission loss over a wide wavelength range. Therefore, the POF 10 of this embodiment can achieve low transmission loss over a wide wavelength range.
  • the fact that the core 11 contains the first fluororesin as a main component means that the first fluororesin is the component that is contained in the core 11 at the highest mass ratio.
  • the core 11 may contain the first fluorine-containing resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the fact that the clad 12 contains the second fluororesin as a main component means that the second fluororesin is the component that is contained in the clad 12 at the highest mass ratio.
  • the clad 12 may contain the second fluorine-containing resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the clad 12 may be composed only of the second fluorine-containing resin.
  • the clad 12 may further contain additives in addition to the second fluorine-containing resin.
  • the shrinkage rate of the fiber structure 13 in the longitudinal direction is 5% or less.
  • the fiber structure 13 having a shrinkage rate of 5% or less by the heat treatment described above has a small residual stress due to the orientation of the material of the core 11 and the material of the clad 12 . Therefore, even when the POF 10 of this embodiment is exposed to high temperature and high humidity for a long time, voids are less likely to occur in the core 11 and the clad 12 . As a result, the POF 10 of this embodiment can suppress an increase in transmission loss over time even when exposed to high temperature and high humidity conditions for a long time.
  • the shrinkage rate in the longitudinal direction of the fiber structure 13 due to the heat treatment is preferably 3% or less, more preferably 1% or less. .
  • the shrinkage rate in the length direction of the fiber structure 13 due to the above heat treatment is D1 for the length of the fiber structure 13 before heating at 90° C. for 24 hours, and When the length of the fiber structure 13 is D2, it is calculated based on the following formula (I).
  • Shrinkage rate (%) ⁇ (D1-D2)/D1 ⁇ x 100 (I)
  • Core 11 is a region that transmits light. Core 11 has a higher refractive index than clad 12 . With this configuration, the light that has entered the core 11 is confined inside the core 11 by the clad 12 and propagates through the POF 10 .
  • the core 11 contains the first fluororesin as a main component.
  • the core 11 may further contain additives in addition to the first fluorine-containing resin.
  • Additives are, for example, refractive index modifiers. That is, the core 11 may be made of a resin composition containing the first fluororesin and an additive such as a refractive index adjuster. As a refractive index adjuster, for example, a known refractive index adjuster used for POF core materials can be used.
  • the material of the core 11 may contain additives other than the refractive index modifier.
  • the core 11 has a refractive index distribution in which the refractive index changes in the radial direction.
  • a refractive index distribution can be formed, for example, by adding a refractive index modifier to the first fluorine-containing resin and diffusing (for example, thermal diffusion) the refractive index modifier in the first fluorine-containing resin. .
  • the first fluororesin of the core 11 contains the first fluoropolymer.
  • the first fluoropolymer contained in the first fluororesin preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and does not bind to carbon atoms. It is particularly preferred that all hydrogen atoms in the group are replaced by fluorine atoms. In other words, the first fluoropolymer preferably contains substantially no hydrogen atoms and is fully fluorinated. In the present specification, the fact that the fluoropolymer does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the fluoropolymer is 1 mol % or less.
  • the first fluoropolymer preferably has a fluoroalicyclic structure.
  • the fluorinated alicyclic structure may be contained in the main chain of the fluoropolymer, or may be contained in the side chain of the first fluoropolymer.
  • the first fluoropolymer has, for example, a structural unit (A) represented by the following structural formula (1).
  • R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
  • R ff1 and R ff2 may combine to form a ring .
  • Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1.
  • a perfluoroalkyl group may be linear or branched.
  • the perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
  • the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a perfluoroalkyl ether group may be linear or branched.
  • a perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
  • the ring may be a 5-membered ring or a 6-membered ring.
  • This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
  • structural unit (A) include structural units represented by the following formulas (A1) to (A8).
  • the structural unit (A) is preferably a structural unit (A2), that is, a structural unit represented by the following formula (5).
  • the first fluoropolymer may contain one or more of the structural units (A).
  • the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the first fluoropolymer tends to have higher heat resistance.
  • the structural unit (A) is contained in an amount of 40 mol % or more, the first fluoropolymer tends to have higher transparency and higher mechanical strength in addition to high heat resistance.
  • the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
  • the structural unit (A) is derived from, for example, a compound represented by the following formula (6).
  • R ff 1 to R ff 4 are the same as in formula (1).
  • the compound represented by formula (6) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
  • Specific examples of the compound represented by the formula (6) include compounds represented by the following formulas (M1) to (M8).
  • the first fluoropolymer may further contain other structural units in addition to the structural unit (A).
  • Other structural units include the following structural units (B) to (D).
  • the structural unit (B) is represented by the following formula (2).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the first fluoropolymer may contain one or more of the structural units (B).
  • the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (B) is derived from, for example, a compound represented by the following formula (7).
  • R 1 to R 4 are the same as in formula (2).
  • the compound represented by formula (7) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
  • the structural unit (C) is represented by the following formula (3).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the first fluoropolymer may contain one or more of the structural units (C).
  • the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (C) is derived from, for example, a compound represented by the following formula (8).
  • R 5 to R 8 are the same as in formula (3).
  • Compounds represented by formula (8) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
  • the structural unit (D) is represented by the following formula (4).
  • Z represents an oxygen atom, a single bond, or —OC(R 19 R 20 )O—
  • each of R 9 to R 20 independently represents a fluorine atom or perfluoro having 1 to 5 carbon atoms. It represents an alkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • s and t each independently represent an integer of 0 to 5 and s+t is an integer of 1 to 6 (provided that s+t may be 0 when Z is -OC(R 19 R 20 )O-).
  • the structural unit (D) is preferably represented by the following formula (9).
  • the structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (4).
  • R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. .
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • the first fluoropolymer may contain one or more of the structural units (D).
  • the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units.
  • the content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
  • the structural unit (D) is derived, for example, from a compound represented by the following formula (10).
  • Z, R 9 -R 18 , s and t are the same as in formula (4).
  • the compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
  • Structural unit (D) is preferably derived from a compound represented by the following formula (11).
  • R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
  • the first fluoropolymer may further contain structural units other than the structural units (A) to (D), but substantially other structural units other than the structural units (A) to (D) preferably does not contain
  • the fact that the first fluoropolymer does not substantially contain other structural units other than the structural units (A) to (D) means that the total number of structural units in the first fluoropolymer is It means that the total of (A) to (D) is 95 mol % or more, preferably 98 mol % or more.
  • the polymerization method for the first fluoropolymer is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used.
  • the polymerization initiator for polymerizing the first fluoropolymer may be a fully fluorinated compound.
  • the first fluoropolymer constitutes the first fluororesin.
  • the first glass transition temperature Tg 1 of the first fluorine-containing resin is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • the refractive index of the core 11 is not particularly limited as long as it is higher than the refractive index of the clad 12 .
  • the difference between the refractive indices of core 11 and cladding 12 be larger for the wavelength of light used.
  • the refractive index of the core 11 can be 1.340 or more, or 1.360 or more, for the wavelength of light used (for example, a wavelength of 850 nm).
  • the upper limit of the refractive index of the core is not particularly limited, it is, for example, 1.4000 or less.
  • the clad 12 contains the second fluororesin as a main component.
  • the second fluororesin of the clad 12 contains a second fluoropolymer.
  • fluororesin that can be used as the second fluororesin are the same as those exemplified as the fluororesin that can be used as the first fluororesin. That is, examples of the fluoropolymer that can be used as the second fluoropolymer are the same as those exemplified as the fluoropolymer that can be used as the first fluoropolymer.
  • the second fluoropolymer constitutes the second fluororesin.
  • the second glass transition temperature Tg 2 of the second fluorine-containing resin is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • the second fluororesin may be a fluororesin different from the first fluororesin, but preferably has affinity with the first fluororesin.
  • the second fluororesin may contain the same polymerization units as those contained in the first fluororesin, or may be the same as the first fluororesin. As a result, separation is less likely to occur at the interface between the core 11 and the clad 12, and transmission loss, for example, can be kept low.
  • the refractive index of the cladding 12 is not particularly limited as long as it is designed according to the refractive index of the core 11 .
  • the clad 12 may have a refractive index of, for example, 1.310 or less, or may have a refractive index of 1.300 or less at the wavelength of light used (eg, wavelength of 850 nm).
  • the POF 10 of the present embodiment may have a configuration further provided with a coating layer 14 arranged around the outer periphery of the clad 12, as shown in FIG.
  • Coating layer 14 is provided to improve the mechanical strength of POF 10 .
  • materials and structures used as coating layers in known POFs can be applied.
  • materials for the coating layer 14 include various engineering plastics such as polycarbonate, cycloolefin polymers, cycloolefin copolymers, polyesters, polyolefins, copolymers of monomers forming these polymers, and polytetrafluoroethylene (PTFE). , modified PTFE, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA).
  • the clad may be composed of a plurality of layers.
  • the POF of this embodiment comprises a core 11, a clad 22 arranged around the outer periphery of the core, and a coating layer 14 arranged around the outer periphery of the clad, like the modification shown in FIG.
  • the POF 20 may also be used.
  • the clad 22 is composed of two layers, a first clad layer 221 arranged in contact with the core 11 and a second clad layer 222 arranged on the outer peripheral side of the first clad layer 221. structure, that is, a double clad structure.
  • coating layer 14 is in contact with second cladding 222 .
  • FIG. 2 shows an example in which the clad 22 has a two-layer structure, the number of layers included in the clad 22 is not limited to this, and may include three or more layers.
  • the contraction rate in the longitudinal direction of the fiber structure 13 is 5% or less. be.
  • the fiber structure 13 that satisfies such a shrinkage ratio can be realized by forming the core 11 material and the clad 12 material so that the residual stress caused by the orientation is reduced.
  • Such POF 10 is manufactured using, for example, a melt spinning method.
  • An example of a method for manufacturing the POF 10 of this embodiment is as follows.
  • A melting a core material containing a first fluororesin as a main component and extruding it into a fibrous form to prepare a fibrous molded body made of the core material;
  • B A laminate in which the core material and the clad material are concentrically laminated by melting the clad material containing the second fluorine-containing resin as a main component and extruding the molded body so as to cover the surface thereof.
  • the temperature of the outlet of the nozzle By setting the temperature of the outlet of the nozzle within the above range, the residual stress due to the orientation of the material of the core 11 and the clad 12 formed, that is, the residual stress of the fiber structure 13 can be reduced. Therefore, even when the POF 10 obtained by the above manufacturing method is exposed to high temperature and high humidity for a long time, voids are less likely to occur in the core 11 and the clad 12 . As a result, the POF 10 obtained by the above manufacturing method can suppress an increase in transmission loss over time even when exposed to high temperature and high humidity conditions for a long time.
  • the specific set temperature of the discharge port of the nozzle depends on the type of fluorine-containing resin, such as the first fluorine-containing resin contained in the core material and the second fluorine-containing resin contained in the clad material, and the temperature added to the core material. There is no particular limitation because it depends on additives such as refractive index modifiers.
  • the set temperature of the discharge port of the nozzle can be, for example, within the range of 240° C. or higher and 280° C. or lower.
  • the cooling temperature in the cooling pipe may be set within the range of 5°C or higher and 25°C or lower.
  • the air flow rate in the cooling pipe may be set within a range of 1 mL/min or more and 10 mL/min or less.
  • the manufacturing method described above as an example of the manufacturing method of the POF 10 of the present embodiment can also be applied as a manufacturing method of a POF having a plurality of clad layers such as the POF 20.
  • two or more clad layers are formed in the step (B).
  • the second fluorine-containing resin for forming the first clad layer 221 A clad material A containing A as a main component and a clad material B containing a second fluorine-containing resin B for forming the second clad layer 222 as a main component are used as clad materials.
  • the cladding material A and the cladding material B are melted, and the cladding material A and the cladding material B are concentrically laminated on the surface of the molding made of the core material to produce a laminate. Then, through the steps (C) and (D), a POF having a plurality of clad layers can be obtained.
  • FIG. 3 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used for manufacturing the POF 10 of this embodiment.
  • the apparatus 100 shown in FIG. 3 includes a first extrusion device 101a for core formation, a second extrusion device 101b for clad formation, and a third extrusion device 101c for coating layer formation.
  • Device 100 further comprises first chamber 110 and second chamber 120 .
  • the first chamber 110 and the second chamber 120 are arranged vertically downward in this order.
  • the first extrusion device 101a has a first storage section 102a that stores the core material 1a, and a first extrusion section 103a that extrudes the core material 1a stored in the first storage section 102a from the first storage section 102a.
  • a heater or the like is provided in the first extrusion device 101a so that the core material 1a can be melted in the first housing portion 102a and the melted core material 1a can be kept in a molten state until it is molded.
  • a heating unit (not shown) may be further provided. In this case, for example, a rod-shaped core material (preform) 1a is inserted into the first accommodation portion 102a through the upper opening of the first accommodation portion 102a and heated in the first accommodation portion 102a. melted by
  • the core material 1a is extruded, for example by gas extrusion, out of the first receiving portion 102a via the first extrusion portion 103a to form the core 2.
  • the core material 1a extruded to form the core 2 through the first extruding portion 103a then moves vertically downward and is supplied to each of the first chamber 110 and the second chamber 120 in this order.
  • the core material 1a contains the first fluorine-containing resin as a main component.
  • the first fluororesin is as described above.
  • the second extrusion device 101b has a second storage section 102b that stores the clad material 1b, and a second extrusion section 103b that pushes out the clad material 1b stored in the second storage section 102b from the second storage section 102b.
  • the second extrusion device 101b extrudes the melted clad material 1b so as to cover the outer circumference of the core 2 formed of the core material 1a extruded from the first extrusion device 102a.
  • the clad material 1 b extruded from the second extrusion device 101 b is supplied to the first chamber 110 .
  • the clad 3 covering the outer circumference of the core 2 can be formed.
  • a laminate formed of the core 2 and the clad 3 covering the outer periphery of the core 2 moves from the first chamber 110 to the second chamber 120 .
  • the clad material 1b contains the second fluorine-containing resin as a main component.
  • the second fluororesin is as described above.
  • the third extrusion device 101c includes, for example, a third container 102c containing the coating layer material 1c, a screw 104 arranged in the third container 102c, and a hopper 105 connected to the third container 102c. ing.
  • the pellet-shaped coating layer material 1c is supplied through the hopper 105 to the third container 102c.
  • the coating layer material 1c supplied to the third container 102c is softened and becomes fluid by being kneaded by the screw 104 while being heated, for example.
  • the softened coating layer material 1c is extruded from the third accommodating portion 102c by the screw 104. As shown in FIG.
  • the coating layer material 1c extruded from the third extrusion device 101c is supplied to the second chamber 120.
  • the surface of the laminate formed of the core 2 and the clad 3 is covered with the coating layer material 1c, so that the coating layer 4 covering the outer periphery of the clad 3 can be formed.
  • the laminate 5 in which the core 2 , the clad 3 , and the coating layer 4 are concentrically laminated moves from the second chamber 120 to the diffusion tube 130 arranged vertically below the second chamber 120 .
  • Diffusion tube 130 may be provided with, for example, a heater (not shown) for heating this laminate.
  • the temperature and viscosity of the laminate 5 passing through the interior are appropriately adjusted. That is, the laminate 5 is drawn down while being heated to a predetermined temperature in, for example, the diffusion tube 130 .
  • the diffusion tube 130 can diffuse a dopant such as a refractive index adjuster contained in the laminate 5 passing through the diffusion tube 130 in the laminate 5 .
  • the diffusion tube 130 is connected to the internal channel of the nozzle 140 . That is, the lower opening of the diffusion tube 130 is connected to the inlet of the nozzle 140 , and the laminate 5 that has passed through the diffusion tube 130 flows into the internal flow path through the inlet of the nozzle 140 .
  • the laminated body 5 passes through the internal flow path, is reduced in diameter, and is discharged from the discharge port of the nozzle 140 in the form of a fiber.
  • the positional relationship between the second chamber 120 and the diffusion tube 130 may be switched. Namely.
  • the device configuration may be such that the diffusion pipe 130 is arranged under the first chamber 110, the second chamber 120 is arranged below it, and the nozzle 140 is installed further below the second chamber.
  • the laminate 5 discharged in a fiber form from the discharge port of the nozzle 140 flows, for example, into the internal space 151 of the cooling pipe 150, is cooled while passing through the internal space 151, and passes through the opening (that is, the cooling pipe 150 ) to the outside of the cooling pipe 150 .
  • the temperature of the outlet of the nozzle 140 is set to a temperature at which the viscosities of the core material and the clad material at a shear rate of 1/s fall within the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the temperature of the outlet of the nozzle 140 may be set within a range of 240° C. or higher and 280° C. or lower, for example.
  • the cooling temperature and the amount of cooling air that are set in the cooling pipe 150 are appropriately adjusted so that the shrinkage rate in the longitudinal direction of the fiber structure 13 is further reduced.
  • the temperature of the cooling pipe 150 may be set to, for example, 5°C or higher and 25°C or lower.
  • the amount of air blown in the cooling pipe 150 may be set to, for example, 1 mL/min or more and 10 mL/min or less.
  • the laminate 5 released from the cooling pipe 150 is spun.
  • the laminate 5 passes through, for example, two rolls 161 and 162 of a nip roll 160, passes through guide rolls 163-165, and is wound up on a take-up roll 166 as the POF .
  • a displacement gauge 170 for measuring the outer diameter of the POF 10 in the vicinity of the take-up roll 166, for example, between the guide roll 165 and the take-up roll 166 may be provided.
  • the apparatus shown in FIG. 3 is for manufacturing the POF 10 having one clad layer.
  • a device having a configuration in which a device is further provided may be used.
  • the present invention will be described in more detail below with examples and comparative examples, but the present invention is not limited to these.
  • a POF having a structure similar to that of the POF 20 shown in FIG. 2, that is, a POF having a double clad structure was fabricated.
  • the second fluorine-containing resin used to prepare the first clad layer 221 is referred to as the second fluorine-containing resin A
  • the second fluorine-containing resin used to prepare the second clad layer 222 is referred to as the second fluorine-containing resin. Described as fluororesin B.
  • Example 1 [Preparation of first fluororesin and second fluororesin A]
  • a polymer of perfluoro-4-methyl-2-methylene-1,3-dioxolane (compound of formula (M2) above, “PFMMD”) was prepared.
  • Perfluoro-4-methyl-2-methylene-1,3-dioxolane is obtained by first synthesizing 2-carbomethyl-2-trifluoromethyl-4-methyl-1,3-dioxolane and fluorinating it. Synthesized by decarboxylation separation of the carboxylate.
  • Perfluorobenzoyl peroxide was used as a polymerization initiator for the polymerization of perfluoro-4-methyl-2-methylene-1,3-dioxolane.
  • the obtained transparent rod was dissolved in Fluorinert FC-75 (manufactured by Sumitomo 3M), and the resulting solution was poured onto a glass plate to obtain a polymer thin film.
  • the obtained polymer had a glass transition temperature of 117° C. and was completely amorphous.
  • the product was purified by dissolving the transparent rod in hexafluorobenzene and adding chloroform to precipitate.
  • the glass transition temperature of the purified polymer was about 131°C. This polymer was referred to as the first fluororesin and the second fluororesin A.
  • Refractive index adjuster A chlorotrifluoroethylene low polymer (manufactured by Daikin Co., Ltd.) was used as the refractive index adjuster.
  • the first fluorine-containing resin prepared by the above method and the refractive index modifier were melt-mixed at 260° C. to prepare a resin composition.
  • the concentration of the refractive index modifier in the resin composition was 12% by mass. This resin composition was used as a core material.
  • Teflon (registered trademark) AF1600 manufactured by Mitsui Chemours Fluoro Products Co., Ltd.
  • Fomblin YR YR grade, manufactured by SOLVAY
  • Teflon (registered trademark) AF1600 and Fomblin YR was used as the double clad material.
  • the proportion of Teflon (registered trademark) AF1600 in the double clad material was 30% by mass.
  • Coating layer material Xylex7200 (manufactured by SABIC, glass transition temperature: 113° C.) was used as a coating layer material.
  • a POF having the same configuration as the POF 20 shown in FIG. 2 was produced by melt spinning.
  • the manufacturing apparatus 100 shown in FIG. A device with additional configurations was used.
  • the melting temperature of the core material was 250°C
  • the melting temperature of the clad material was 255°C
  • the melting temperature of the double clad material was 260°C
  • the melting temperature of the coating layer material was 240°C.
  • the temperature of the nozzle outlet was set at 240°C.
  • the viscosity of the core material (first fluorine-containing resin + refractive index modifier) at a shear rate of 1/s is 140 Pa ⁇ s
  • the viscosity of the clad material (second fluorine-containing resin A) is 3000 Pa. • s and the viscosity of the double clad material (Teflon® AF1600 + Fomblin YR) was 1400 Pa • s. That is, in Example 1, the temperature of the outlet of the nozzle was set to a temperature at which the viscosity of the core material and the clad material at a shear rate of 1/s falls within the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the temperature of the cooling pipe was set between 5°C and 15°C. Also, the air volume in the cooling pipe was set to 5 mL/min.
  • the outer diameter of the core was 35 ⁇ m
  • the outer diameter of the first clad layer was 50 ⁇ m
  • the outer diameter of the second clad layer was 60 ⁇ m
  • the outer diameter of the coating layer (that is, the outer diameter of the POF) was 230 ⁇ m. there were.
  • the transmission loss of the fabricated POF was measured. Next, after placing the POF in an atmosphere of 60° C. and 85% RH for 500 hours, the transmission loss of the POF was measured again. The transmission loss was measured according to JIS C6823:2010. The measurement wavelength was 850 nm.
  • the transmission loss of the POF after being placed in the atmosphere of 60° C. and 85% RH was +9 dB/km with respect to the transmission loss of the POF before being placed in the atmosphere of 60° C. and 85% RH. That is, the transmission loss of the POF of Example 1 increased by 9 dB/km when exposed to an atmosphere of 60° C. and 85% RH for 500 hours.
  • Example 2 [Production of POF] A POF was produced in the same manner as in Example 1, except that the set temperature of the discharge port of the nozzle was changed to 260°C. At 260° C., the viscosity of the core material (first fluorine-containing resin + refractive index modifier) at a shear rate of 1/s is 40 Pa ⁇ s, and the viscosity of the clad material (second fluorine-containing resin A) is 600 Pa. • s, and the viscosity of the double clad material (Teflon® AF1600 + Fomblin YR) was 600 Pa • s.
  • Example 2 the temperature of the outlet of the nozzle was set to a temperature at which the viscosity of the core material and the clad material at a shear rate of 1/s falls within the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the outer diameter of the core was 35 ⁇ m
  • the outer diameter of the first clad layer was 50 ⁇ m
  • the outer diameter of the second clad layer was 60 ⁇ m
  • the outer diameter of the coating layer (that is, the outer diameter of the POF) was 230 ⁇ m. there were.
  • the POF transmission loss was measured in the same manner as in Example 1.
  • the transmission loss of the POF after being placed in the atmosphere of 60° C. and 85% RH was ⁇ 33 dB/km compared to the transmission loss of the POF before being placed in the atmosphere of 60° C. and 85% RH. That is, the transmission loss of the POF of Example 2 was reduced by 33 dB/km when exposed to an atmosphere of 60° C. and 85% RH for 500 hours.
  • the transmission loss of the POF after being placed in the high-temperature and high-humidity atmosphere is lower than the transmission loss of the POF before being placed in the high-temperature and high-humidity atmosphere.
  • Example 2 in addition to suppressing the generation of voids in the POF fiber structure after being placed in a high-temperature and high-humidity atmosphere, the refractive index of the second clad layer was lowered, so that transmission It is considered that the loss is reduced.
  • Example 3 [Production of POF] A POF was produced in the same manner as in Example 1, except that the set temperature of the discharge port of the nozzle was changed to 270°C. At 270° C., the viscosity of the core material (first fluorine-containing resin + refractive index modifier) at a shear rate of 1/s is 20 Pa ⁇ s, and the viscosity of the clad material (second fluorine-containing resin A) is 300 Pa. • s and the viscosity of the double clad material (Teflon® AF1600 + Fomblin YR) was 400 Pa • s.
  • Example 3 the temperature of the outlet of the nozzle was set to a temperature at which the viscosity of the core material and the clad material at a shear rate of 1/s falls within the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the outer diameter of the core was 35 ⁇ m
  • the outer diameter of the first clad layer was 50 ⁇ m
  • the outer diameter of the second clad layer was 60 ⁇ m
  • the outer diameter of the coating layer (that is, the outer diameter of the POF) was 230 ⁇ m. there were.
  • the POF transmission loss was measured in the same manner as in Example 1.
  • the transmission loss of the POF after being placed in the atmosphere of 60° C. and 85% RH was -50 dB/km compared to the transmission loss of the POF before being placed in the atmosphere of 60° C. and 85% RH. That is, the transmission loss of the POF of Example 3 was reduced by 50 dB/km when exposed to an atmosphere of 60° C. and 85% RH for 500 hours.
  • the transmission loss of the POF after being placed in the high-temperature and high-humidity atmosphere is lower than the transmission loss of the POF before being placed in the high-temperature and high-humidity atmosphere.
  • Example 3 in addition to suppressing the generation of voids in the POF fiber structure after being placed in a high-temperature and high-humidity atmosphere, the refractive index of the second clad layer was lowered, so that the transmission It is considered that the loss is reduced. Moreover, in Example 3, the generation of voids in the POF fiber structure after being placed in a high-temperature and high-humidity atmosphere is considered to be more suppressed than in Example 2. As a result, it is considered that the POF of Example 3 has a lower transmission loss than the POF of Example 2.
  • FIG. 1 the refractive index of the second clad layer was lowered by being placed in a high-temperature and high-humidity atmosphere.
  • the temperature of the discharge port of the nozzle was set so that the viscosity of the clad material was outside the range of 10 Pa ⁇ s to 3700 Pa ⁇ s.
  • the outer diameter of the core was 35 ⁇ m
  • the outer diameter of the first clad layer was 50 ⁇ m
  • the outer diameter of the second clad layer was 60 ⁇ m
  • the outer diameter of the coating layer (that is, the outer diameter of the POF) was 230 ⁇ m. there were.
  • the POF transmission loss was measured in the same manner as in Example 1.
  • the transmission loss of the POF after being placed in an atmosphere of 60° C. and 85% RH was 41 dB/km compared to the transmission loss of the POF before being placed in an atmosphere of 60° C. and 85% RH. That is, the transmission loss of the POF of Comparative Example 1 increased by 41 dB/km when exposed to an atmosphere of 60° C. and 85% RH for 500 hours.
  • the POFs of Examples 1 to 3 have a fiber structure with a shrinkage rate of 5% or less when heated at 90°C for 24 hours. With this configuration, the POFs of Examples 1 to 3 were able to suppress an increase in transmission loss over time even when exposed to a high-temperature and high-humidity environment. In contrast, the POF of Comparative Example 1, which has a fiber structure with a shrinkage of more than 5% when heated at 90° C. for 24 hours, exhibits a transmission loss of increased significantly.
  • the POF of the present invention is suitable for high-speed communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明のプラスチック光ファイバー10は、第1含フッ素樹脂を主成分として含むコア11と、コア11の外周に配置され、第2含フッ素樹脂を主成分として含むクラッド12と、を備える。コア11及びクラッド12からなるファイバー構造体13が90℃で24時間加熱された場合に、ファイバー構造体13の長さ方向における収縮率は5%以下である。前記収縮率は、90℃で24時間加熱される前のファイバー構造体13の長さをD1、90℃で24時間加熱された後のファイバー構造体13の長さをD2としたときに、数式(I):収縮率(%)={(D1-D2)/D1}×100に基づいて算出される。

Description

プラスチック光ファイバー及びその製造方法
 本発明は、プラスチック光ファイバー及びその製造方法に関する。
 プラスチック光ファイバー(以下、「POF」と記載する)は、光を伝送する部分として、中心部のコアと、当該コアの外周を覆うクラッドとを備えている。コアは、高屈折率を有する樹脂材料によって形成されている。クラッドは、光をコア内に留めるために、コアの樹脂材料よりも低い屈折率を有する樹脂材料によって形成されている。
 例えば、特許文献1及び2には、ポリメチルメタクリレート系樹脂で構成されたコアと、フッ化メタクリレート樹脂又は含フッ素オレフィン系樹脂等の含フッ素樹脂を含む材料で構成されたクラッドとを備えたPOF素線を備え、さらに当該素線を被覆する被覆層を備えたPOFケーブルが開示されている。
 また、特許文献3には、コアとクラッドとを備えたPOF素線が開示されており、コアの材料として低屈折率である含フッ素樹脂を用いてもよいことが記載されている。
特許第6210716号公報 特開2007-47258号公報 特開2007-199420号公報
 従来、POFは、高温高湿の環境に曝された場合、伝送損失が経時的に増加してしまうという課題を有していた。そこで、例えば特許文献1~3のPOFケーブルにおいても、例えばクラッドの材料と被覆層の材料との適切な組み合わせ等の、耐熱性向上のための構成がそれぞれ提案されている。
 例えば、特許文献1に開示されているPOFケーブルは、クラッドに用いられる含フッ素樹脂及び被覆層に用いられる樹脂にそれぞれ特定の共重合体を用いることにより、POF素線の熱収縮率に関わらず、当該POF素線と被覆層との強固な接合を実現している。これにより、特許文献1に開示されているPOFケーブルは、低伝送損失及び長期耐熱性を実現している。
 また、特許文献1に開示されているPOFケーブルと同様に、コアの材料にポリメチルメタクリレート系樹脂が用いられ、かつクラッドの材料に含フッ素樹脂を含む材料が用いられている特許文献2に開示されているPOFケーブルにおいても、クラッド及び被覆層にそれぞれ特定の材料が用いられている。さらに、特許文献2に開示されているPOFケーブルにおいては、POF素線と被覆層との熱収縮の差を小さくすることを目的として、POF素線の熱収縮率を2.0%以下に抑えている。特許文献2のPOFケーブルは、これらの構成により、POFケーブル内部で発生する収縮歪を抑制して、高温環境下での長期耐熱性を実現している。
 しかし、本発明者の検討によると、コア及びクラッドが共に含フッ素樹脂によって形成されているPOFの場合、特許文献1及び2のPOFケーブルのように、POF素線と被覆層との接合性を向上させたり、POF素線と被覆層との熱収縮率の差を小さくしたりすることによって、すなわち、クラッドと被覆層との界面において生じ得る問題にのみ着目した構成では、高温高湿の環境に曝された場合の伝送損失の経時的な増加を効果的に抑えることが難しかった。なお、コア及びクラッドの材料が特に限定されていない特許文献3に開示されたPOFでは、コア形成工程においてコア内に生じる配向度の差を小さくすることによって、高温環境下で生じるコア内における熱収縮の不均一性を抑制し、低伝送損失を実現している。しかし、特許文献3に記載されているような、コアとクラッドとの界面において生じ得る問題にのみ着目した構成では、高温高湿の環境に曝された場合の伝送損失の経時的な増加を効果的に抑えることが難しかった。
 本発明は、コア及びクラッドの材料として含フッ素樹脂が用いられたPOFであって、高温高湿の環境に曝された場合であっても、伝送損失の経時的な増加を小さく抑えることができるPOFと、その製造方法とを提供することを目的とする。
 高温高湿の環境に曝された場合に伝送損失が経時的に増加するメカニズムは複雑であり、未だに全ては明らかではない。そこで、本発明者は、伝送損失の増加を効果的に抑えるためには、例えばコア及びクラッドを構成している材料等に応じて伝送損失の増加のメカニズムを明らかにすることが必要であると考えた。本発明者は、コア及びクラッドの材料として含フッ素樹脂が用いられたPOFについて鋭意検討を行い、当該POFが高温高湿の環境に曝された場合、コア及びクラッドに経時的に空隙が発生し、その空隙の発生によって伝送損失が増加することを突き止めた。さらなる鋭意検討の結果、本発明者は、そのような空隙の発生には、含フッ素樹脂特有の疎水性と、コア及びクラッドの材料の配向による残留応力とが関係していることを突き止め、空隙の発生を抑制し得るコア及びクラッドの構成を新たに見出し、以下の本発明の第1の態様に係るPOF及び第2の態様に係るPOFの製造方法に到達するに至った。
 本発明のPOFは、
 第1含フッ素樹脂を主成分として含むコアと、
 前記コアの外周に配置され、第2含フッ素樹脂を主成分として含むクラッドと、
を備え、
 前記コア及び前記クラッドからなるファイバー構造体が90℃で24時間加熱された場合に、前記ファイバー構造体の長さ方向における収縮率は5%以下であり、
 前記収縮率は、90℃で24時間加熱される前の前記ファイバー構造体の長さをD1、90℃で24時間加熱された後の前記ファイバー構造体の長さをD2としたときに、下記の数式(I)に基づいて算出される。
 収縮率(%)={(D1-D2)/D1}×100 ・・・(I)
 別の側面から、本発明は、上記POFの製造方法であって、
 前記製造方法は、
 (A)前記第1含フッ素樹脂を主成分として含むコア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
 (B)前記第2含フッ素樹脂を主成分として含むクラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
 (C)前記積層体を、所定の温度に加熱しながらノズルから吐出すること、
 (D)吐出された前記積層体を冷却管に流入させて冷却しながら引き落とすこと、
を含み、
 前記ノズルの吐出口の温度は、前記コア材料及び前記クラッド材料のせん断速度1/sでの粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定される。
 本発明によれば、コア及びクラッドの材料として含フッ素樹脂が用いられたPOFであって、高温高湿の環境に曝された場合であっても、伝送損失の経時的な増加を小さく抑えることができるPOFと、その製造方法とを提供できる。
図1は、本発明の実施形態によるPOFの断面構造の一例を示す模式図である。 図2は、本発明の実施形態によるPOFの断面構造の別の例を示す模式図である。 図3は、POFの製造に使用できる製造装置の一例を示す概略断面図である。
 本発明の第1態様にかかるPOFは、
 第1含フッ素樹脂を主成分として含むコアと、
 前記コアの外周に配置され、第2含フッ素樹脂を主成分として含むクラッドと、
を備え、
 前記コア及び前記クラッドからなるファイバー構造体が90℃で24時間加熱された場合に、前記ファイバー構造体の長さ方向における収縮率は5%以下であり、
 前記収縮率は、90℃で24時間加熱される前の前記ファイバー構造体の長さをD1、90℃で24時間加熱された後の前記ファイバー構造体の長さをD2としたときに、下記の数式(I)に基づいて算出される。
 収縮率(%)={(D1-D2)/D1}×100 ・・・(I)
 本発明の第2態様において、例えば、第1態様に係るPOFでは、前記第1含フッ素樹脂及び前記第2含フッ素樹脂からなる群より選択される少なくとも1つは、下記式(1)で表される構成単位(A)を含有する含フッ素重合体を含む。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は連結して環を形成してもよい。)
 本発明の第3態様において、例えば、第2態様に係るPOFでは、前記含フッ素重合体は、下記式(2)で表される構成単位(B)をさらに含有する。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
 本発明の第4態様において、例えば、第2又は第3態様に係るPOFでは、前記含フッ素重合体は、下記式(3)で表される構成単位(C)をさらに含有する。
Figure JPOXMLDOC01-appb-C000007
(式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
 本発明の第5態様において、例えば、第2から第4態様のいずれか1つの態様に係るPOFでは、前記含フッ素重合体は、下記式(4)で表される構成単位(D)をさらに含有する。
Figure JPOXMLDOC01-appb-C000008
(式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5で、かつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。)
 本発明の第6態様において、例えば、第1から第5態様のいずれか1つの態様に係るPOFは、前記クラッドの外周に配置された被覆層をさらに含む。
 本発明の第7態様は、第1から第6態様のいずれか1つの態様に係るPOFの製造方法であって、
 前記製造方法は、
 (A)前記第1含フッ素樹脂を主成分として含むコア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
 (B)前記第2含フッ素樹脂を主成分として含むクラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
 (C)前記積層体を所定の温度に加熱しながらノズルから吐出すること、及び
 (D)吐出された前記積層体を冷却管に流入させて冷却しながら引き落とすこと、
を含み、
 前記ノズルの吐出口の温度は、前記コア材料及び前記クラッド材料のせん断速度1/sでの粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定される。
 本発明の第8態様において、例えば、第7態様に係る製造方法では、前記ノズルの前記吐出口の温度は、240℃以上280℃以下の範囲内に設定される。
 本発明の第9態様において、例えば、第7又は第8態様に係る製造方法では、前記冷却管の温度が、5℃以上25℃以下に設定される。
 本発明の第10態様において、例えば、第7から第8態様のいずれか1つの態様に係る製造方法では、前記冷却管における送風量が、1mL/min以上10mL/min以下である。
 以下、本発明のPOFの実施形態について説明する。本実施形態のPOFは、コアと、コアの外周に配置されたクラッドとを備える。本実施形態のPOFは、例えば、屈折率分布(GI)型のPOFである。
 図1は、本実施形態のPOFの断面構造の一例を示す。
 図1に示されたPOF10は、コア11と、コア11の外周に配置されたクラッド12と、を備えている。
 本実施形態のPOF10において、コア11は、第1含フッ素樹脂を主成分として含み、クラッド12は、第2含フッ素樹脂を主成分として含む。含フッ素樹脂は、広い波長領域で低い伝送損失を実現可能である。したがって、本実施形態のPOF10は、広い波長領域で低い伝送損失を実現可能である。
 コア11が第1含フッ素樹脂を主成分として含むとは、コア11において、質量比で最も多く含まれる成分が第1含フッ素樹脂であることである。コア11は、第1含フッ素樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。
 また、クラッド12が第2含フッ素樹脂を主成分として含むとは、クラッド12において、質量比で最も多く含まれる成分が第2含フッ素樹脂であることである。クラッド12は、第2含フッ素樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。クラッド12は、第2含フッ素樹脂のみから構成されていてもよい。クラッド12は、第2含フッ素樹脂の他に、添加物をさらに含んでいてもよい。
 本実施形態のPOF10において、コア11及びクラッド12からなるファイバー構造体13が90℃で24時間加熱された場合に、ファイバー構造体13の長さ方向における収縮率は5%以下である。上記の熱処理によって5%以下の収縮率を満たすファイバー構造体13は、コア11の材料及びクラッド12の材料の配向による残留応力が小さい。したがって、本実施形態のPOF10が高温高湿の状態に長時間曝された場合でも、コア11及びクラッド12に空隙が発生しにくい。その結果、本実施形態のPOF10は、高温高湿の状態に長時間曝された場合でも、経時的な伝送損失の増加を抑えることができる。
 伝送損失の経時的な増加をより小さく抑えるために、本実施形態のPOF10において、上記の熱処理によるファイバー構造体13の長さ方向における収縮率は、3%以下が好ましく、1%以下がより好ましい。
 ここで、上記の熱処理によるファイバー構造体13の長さ方向における収縮率は、90℃で24時間加熱される前のファイバー構造体13の長さをD1、90℃で24時間加熱された後のファイバー構造体13の長さをD2としたときに、下記の数式(I)に基づいて算出される。
 収縮率(%)={(D1-D2)/D1}×100 ・・・(I)
 以下に、本実施形態のPOF10の各構成について、より詳しく説明する。
 (コア11)
 コア11は、光を伝送する領域である。コア11は、クラッド12よりも高い屈折率を有している。この構成により、コア11内に入射した光は、クラッド12によってコア11内部に閉じ込められて、POF10内を伝搬する。
 上述のとおり、コア11は、第1含フッ素樹脂を主成分として含む。
 コア11は、第1含フッ素樹脂の他に、添加物をさらに含んでいてもよい。添加物は、例えば屈折率調整剤である。すなわち、コア11は、第1含フッ素樹脂と、屈折率調整剤等の添加剤とを含む樹脂組成物によって形成されていてもよい。屈折率調整剤として、例えば、POFのコアの材料に用いられる公知の屈折率調整剤が用いられ得る。コア11の材料は、屈折率調整剤以外の他の添加物を含んでいてもよい。
 本実施形態のPOF10が例えばGI型である場合、コア11は、径方向に対して屈折率が変化する屈折率分布を有する。このような屈折率分布は、例えば、第1含フッ素樹脂に屈折率調整剤を添加し、屈折率調整剤を第1含フッ素樹脂中で拡散(例えば、熱拡散)させることによって、形成され得る。
 コア11の第1含フッ素樹脂は、第1含フッ素重合体を含む。
 第1含フッ素樹脂に含まれる第1含フッ素重合体は、C-H結合の伸縮エネルギーによる光吸収を抑制する観点から、実質的に水素原子を含んでいないことが好ましく、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることが特に好ましい。すなわち、第1含フッ素重合体は、実質的に水素原子を含まず、かつ全フッ素化されていることが好ましい。本明細書において、含フッ素重合体が実質的に水素原子を含んでいないとは、含フッ素重合体における水素原子の含有率が1モル%以下であることを意味する。
 第1含フッ素重合体は、含フッ素脂肪族環構造を有することが好ましい。含フッ素脂肪族環構造は、含フッ素重合体の主鎖に含まれていてもよく、第1含フッ素重合体の側鎖に含まれていてもよい。第1含フッ素重合体は、例えば、下記構造式(1)で表される構成単位(A)を有する。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は、連結して環を形成してもよい。「パーフルオロ」は、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることを意味する。式(1)において、パーフルオロアルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1であることがさらに好ましい。パーフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが挙げられる。
 式(1)において、パーフルオロアルキルエーテル基の炭素数は、1~5が好ましく、1~3がより好ましい。パーフルオロアルキルエーテル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキルエーテル基としては、パーフルオロメトキシメチル基などが挙げられる。
 Rff 1及びRff 2が連結して環を形成している場合、当該環は、5員環であってもよく、6員環であってもよい。この環としては、パーフルオロテトラヒドロフラン環、パーフルオロシクロペンタン環、パーフルオロシクロヘキサン環などが挙げられる。
 構成単位(A)の具体例としては、例えば、下記式(A1)~(A8)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 構成単位(A)は、上記式(A1)~(A8)で表される構成単位のうち、構成単位(A2)、すなわち下記式(5)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 第1含フッ素重合体は、構成単位(A)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、20モル%以上であることが好ましく、40モル%以上であることがより好ましい。構成単位(A)が20モル%以上含まれることにより、第1含フッ素重合体は、より高い耐熱性を有する傾向がある。構成単位(A)が40モル%以上含まれる場合、第1含フッ素重合体は、高い耐熱性に加えて、より高い透明性及び高い機械的強度も有する傾向がある。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、95モル%以下であることが好ましく、70モル%以下であることがより好ましい。
 構成単位(A)は、例えば、下記式(6)で表される化合物に由来する。式(6)において、Rff 1~Rff 4は、式(1)と同じである。なお、式(6)で表される化合物は、例えば特表2007-504125号公報に開示された製造方法をはじめ、すでに公知である製造方法によって得ることができる。
Figure JPOXMLDOC01-appb-C000012
 上記式(6)で表される化合物の具体例としては、例えば、下記式(M1)~(M8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 第1含フッ素重合体は、構成単位(A)以外に、他の構成単位をさらに含んでいてもよい。他の構成単位としては、以下の構成単位(B)~(D)が挙げられる。
 構成単位(B)は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 第1含フッ素重合体は、構成単位(B)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(B)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(B)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(B)は、例えば、下記式(7)で表される化合物に由来する。式(7)において、R1~R4は、式(2)と同じである。式(7)で表される化合物は、パーフルオロビニルエーテル等の含フッ素ビニルエーテルである。
Figure JPOXMLDOC01-appb-C000015
 構成単位(C)は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000016
 式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 第1含フッ素重合体は、構成単位(C)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(C)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(C)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(C)は、例えば、下記式(8)で表される化合物に由来する。式(8)において、R5~R8は、式(3)と同じである。式(8)で表される化合物は、テトラフルオロエチレン及びクロロトリフルオロエチレン等の含フッ素オレフィンである。
Figure JPOXMLDOC01-appb-C000017
 構成単位(D)は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000018
 式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5でかつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。
 構成単位(D)は、好ましくは下記式(9)で表される。なお、下記式(9)で表される構成単位は、上記式(4)においてZが酸素原子、sが0、かつtが2の場合である。
Figure JPOXMLDOC01-appb-C000019
 式(9)中、R141、R142、R151、及びR152は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 第1含フッ素重合体は、構成単位(D)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(D)の含有量は、全構成単位の合計に対し、30~67モル%が好ましい。構成単位(D)の含有量は、例えば35モル%以上であり、60モル%以下であってもよく、55モル%以下であってもよい。
 構成単位(D)は、例えば、下記式(10)で表される化合物に由来する。式(10)において、Z、R9~R18、s及びtは、式(4)と同じである。式(10)で表される化合物は、2個以上の重合性二重結合を有し、かつ環化重合し得る含フッ素化合物である。
Figure JPOXMLDOC01-appb-C000020
 構成単位(D)は、好ましくは下記式(11)で表される化合物に由来する。式(11)において、R141、R142、R151、及びR152は、式(9)と同じである。
Figure JPOXMLDOC01-appb-C000021
 式(10)又は式(11)で表される化合物の具体例としては、下記の化合物が挙げられる。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF32OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
 第1含フッ素重合体は、構成単位(A)~(D)以外の他の構成単位をさらに含んでいてもよいが、実質的に構成単位(A)~(D)以外の他の構成単位を含まないことが好ましい。なお、第1含フッ素重合体が実質的に構成単位(A)~(D)以外の他の構成単位を含まないとは、第1含フッ素重合体における全構成単位の合計に対し、構成単位(A)~(D)の合計が95モル%以上、好ましくは98モル%以上であることを意味する。
 第1含フッ素重合体の重合方法は、特に限定されず、例えば、ラジカル重合などの一般的な重合方法を利用できる。第1含フッ素重合体を重合するための重合開始剤は、全フッ素化された化合物であってもよい。
 第1含フッ素重合体は、第1含フッ素樹脂を構成する。第1含フッ素樹脂の第1ガラス転移温度Tg1は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。
 コア11の屈折率は、クラッド12の屈折率よりも高ければよいため、特には限定されない。POF10において高い開口数を実現するためには、使用される光の波長について、コア11の屈折率とクラッド12の屈折率との差がより大きいことが好ましい。例えば、使用される光の波長(例えば、波長850nm)について、コア11の屈折率は、1.340以上とすることができ、1.360以上とすることもできる。コアの屈折率の上限は、特には限定されないが、例えば1.4000以下である。
 (クラッド12)
 上述したとおり、本実施形態のPOF10において、クラッド12は、第2含フッ素樹脂を主成分として含む。
 クラッド12の第2含フッ素樹脂は、第2含フッ素重合体を含む。
 第2含フッ素樹脂として用いることができる含フッ素樹脂の例は、第1含フッ素樹脂ととして用いることができる含フッ素樹脂として例示したものと同じである。すなわち、第2含フッ素重合体として用いることができる含フッ素重合体の例は、第1含フッ素重合体として用いることができる含フッ素重合体として例示したものと同じである。
 第2含フッ素重合体は、第2含フッ素樹脂を構成する。第2含フッ素樹脂の第2ガラス転移温度Tg2は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。
 第2含フッ素樹脂は、第1含フッ素樹脂と異なる含フッ素樹脂であってもよいが、第1含フッ素樹脂と親和性を有することが好ましい。例えば、第2含フッ素樹脂は、第1含フッ素樹脂に含まれる重合単位と同じ重合単位を含んでいてもよいし、第1含フッ素樹脂と同じであってもよい。これにより、コア11とクラッド12との界面で剥離が生じにくくなり、例えば伝送損失を低く抑えることができる。
 クラッド12の屈折率は、コア11の屈折率に応じて設計されればよいため、特には限定されない。クラッド12は、使用される光の波長(例えば、波長850nm)において、例えば1.310以下の屈折率を有してもよく、1.300以下の屈折率を有してもよい。
 本実施形態のPOF10は、例えば、図1に示すように、クラッド12の外周に配置された被覆層14がさらに設けられた構成を有していてもよい。被覆層14は、POF10の機械的強度を向上させるために設けられる。被覆層14には、例えば、公知のPOFにおいて被覆層として用いられている材料及び構成が適用され得る。被覆層14の材料としては、例えば、ポリカーボネート等の各種エンジニアリングプラスチック、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリエステル、ポリオレフィン、及び、これらのポリマーを形成するモノマーの共重合体、ポリテトラフルオロエチレン(PTFE)、変性PTFE、及びテトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)等が挙げられる。
 本実施形態のPOFは、例えば、クラッドが複数の層によって構成されていてもよい。例えば、本実施形態のPOFは、図2に示されている変形例のような、コア11と、コアの外周に配置されたクラッド22と、クラッドの外周に配置された被覆層14とを備えたPOF20であってもよい。POF20において、クラッド22は、コア11に接して配置されている第1のクラッド層221と、第1のクラッド層221よりも外周側に配置されている第2のクラッド層222とからなる2層構造、すなわちダブルクラッド構造を有している。POF20において、被覆層14は第2のクラッド222に接している。なお、図2では、クラッド22が2層構造である例が示されているが、クラッド22に含まれる層数はこれに限定されず、3層以上が含まれていてもよい。
 次に、POF10の製造方法の一例について説明する。
 本実施形態のPOF10は、上述のとおり、コア11及びクラッド12からなるファイバー構造体13が90℃で24時間加熱された場合に、ファイバー構造体13の長さ方向における収縮率が5%以下である。このような収縮率を満たすファイバー構造体13は、コア11の材料及びクラッド12の材料の配向による残留応力が小さくなるように形成されることによって実現され得る。このようなPOF10は、例えば溶融紡糸法を用いて製造される。本実施形態のPOF10の製造方法の一例は、
 (A)第1含フッ素樹脂を主成分として含むコア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
 (B)第2含フッ素樹脂を主成分として含むクラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
 (C)前記積層体を所定の温度に加熱しながらノズルから吐出すること、及び
 (D)吐出された前記積層体を冷却管に流入させて冷却しながら引き落とすこと、
を含み、かつ、前記ノズルの吐出口の温度は、前記コア材料及び前記クラッド材料のせん断速度1/sでの粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定される。
 ノズルの吐出口の温度が上記範囲に設定されることにより、形成されるコア11の材料及びクラッド12の材料の配向による残留応力、すなわちファイバー構造体13の残留応力を小さくすることができる。したがって、上記製造方法によって得られるPOF10が高温高湿の状態に長時間曝された場合でも、コア11及びクラッド12に空隙が発生しにくい。その結果、上記製造方法によって得られるPOF10は、高温高湿の状態に長時間曝された場合でも、経時的な伝送損失の増加を抑えることができる。
 ノズルの吐出口の具体的な設定温度は、例えば、コア材料に含まれる第1含フッ素樹脂及びクラッド材料に含まれる第2含フッ素樹脂等の含フッ素樹脂の種類、さらにコア材料に添加される屈折率調整剤等の添加剤によるため、特には限定されない。一例として、ノズルの吐出口の設定温度は、例えば240℃以上280℃以下の範囲内とすることができる。
 ファイバー構造体13の残留応力を小さくするために、例えば、冷却管における冷却温度は5℃以上25℃以下の範囲内に設定されてもよい。また、ファイバー構造体13の残留応力を小さくするために、例えば、冷却管における送風量が、1mL/min以上、10mL/min以下の範囲内に設定されていてもよい。
 本実施形態のPOF10の製造方法の一例として説明した上記製造方法は、POF20のような複数のクラッド層を備えたPOFの製造方法としても適用できる。その場合、上記工程(B)において、2層以上の複数のクラッド層が形成される。例えば、上記工程(B)において2層構造のクラッド(第1のクラッド層221及び第2のクラッド層222)が形成される場合、第1のクラッド層221を形成するための第2含フッ素樹脂Aを主成分とするクラッド材料Aと、第2のクラッド層222を形成するための第2含フッ素樹脂Bを主成分とするクラッド材料Bとが、クラッド材料として用いられる。それらのクラッド材料A及びクラッド材料Bを溶融させて、コア材料からなる成形体の表面に、クラッド材料Aおよびクラッド材料Bを同心円状に積層させて積層体を作製する。その後、上記工程(C)及び(D)を経ることにより、複数のクラッド層を備えたPOFを得ることができる。
 図3は、本実施形態のPOF10の製造に使用できる製造装置の一例を示す概略断面図である。
 図3に示された装置100は、コア形成用の第1押出装置101a、クラッド形成用の第2押出装置101b、及び被覆層形成用の第3押出装置101cを備える。装置100は、第1室110及び第2室120をさらに備えている。第1室110及び第2室120は、鉛直方向下方にこの順で並んでいる。
 第1押出装置101aは、コア材料1aを収容する第1収容部102aと、第1収容部102aに収容されているコア材料1aを第1収容部102aから押し出す第1押出部103aとを有する。第1押出装置101aには、第1収容部102aでコア材料1aを溶融させることができるように、さらに溶融されたコア材料1aが成形されるまで溶融状態を保つことができるように、ヒーター等の加熱部(図示せず)がさらに設けられていてもよい。この場合、例えば、ロッド状のコア材料(プリフォーム)1aが、第1収容部102aの上方の開口部を通じて第1収容部102a内に挿入されて、第1収容部102a内で加熱されることによって溶融される。
 第1押出装置101aにおいては、コア材料1aは、例えばガス押出によって、第1押出部103aを介して第1収容部102aからコア2を形成するように外に押し出される。第1押出部103aを介してコア2を形成するように押し出されたコア材料1aは、その後鉛直方向下方に移動し、第1室110及び第2室120のそれぞれに、この順で供給される。コア材料1aは、第1含フッ素樹脂を主成分として含む。第1含フッ素樹脂は、上記に説明したとおりである。
 第2押出装置101bは、クラッド材料1bを収容する第2収容部102bと、第2収容部102bに収容されているクラッド材料1bを第2収容部102bから押し出す第2押出部103bとを有する。第2押出装置101bは、溶融したクラッド材料1bを、第1押出装置102aから押し出されたコア材料1aで形成されたコア2の外周を被覆するように押し出す。具体的には、第2押出装置101bから押し出されたクラッド材料1bは、第1室110に供給される。第1室110内において、コア材料1aで形成されるコア2をクラッド材料1bで被覆することによって、コア2の外周を覆うクラッド3を形成することができる。コア2と、コア2の外周を被覆するクラッド3とで形成された積層体は、第1室110から第2室120に移動する。クラッド材料1bは、第2含フッ素樹脂を主成分として含む。第2含フッ素樹脂は、上記に説明したとおりである。
 第3押出装置101cは、例えば、被覆層材料1cを収容する第3収容部102c、第3収容部102c内に配置されたスクリュー104、及び、第3収容部102cに接続されたホッパー105を備えている。第3押出装置101cでは、例えばペレット状の被覆層材料1cが、ホッパー105を通じて、第3収容部102cに供給される。第3収容部102cに供給された被覆層材料1cは、例えば、加熱されながらスクリュー104によって混錬されることによって、軟化して流動可能となる。軟化した被覆層材料1cは、スクリュー104によって第3収容部102cから押し出される。
 第3押出装置101cから押し出された被覆層材料1cは、第2室120に供給される。第2室120内において、コア2及びクラッド3で形成された積層体の表面を被覆層材料1cで被覆することによって、クラッド3の外周を覆う被覆層4を形成することができる。
 コア2、クラッド3、及び被覆層4が同心円状に積層された積層体5は、第2室120から、第2室120の鉛直方向下方に配置された拡散管130に移動する。拡散管130には、例えば、この積層体を加熱するためのヒーター(図示せず)が配置されていてもよい。拡散管130において、例えば、内部を通過する積層体5の温度及び粘度が適切に調整される。すなわち、積層体5は、例えば拡散管130において、所定の温度に加熱されながら引き落とされる。拡散管130は、拡散管130の内部を通過する積層体5に含まれる屈折率調整剤等のドーパントを、積層体5において拡散させることができる。
 拡散管130は、ノズル140の内部流路に連結している。すなわち、拡散管130の下方の開口部は、ノズル140の流入口と連結しており、拡散管130を通過した積層体5が、ノズル140の流入口を介して内部流路に流入する。積層体5は、内部流路を通過して縮径されて、ノズル140の吐出口からファイバー状に吐出される。
 第2室120と拡散管130の位置関係は、入れ替わっていてもよい。すなわち。第1室110の下に拡散管130が配置され、その下方に第2室120が配置され、第2室のさらに下方にノズル140が設置される装置構成であってもよい。
 ノズル140の吐出口からファイバー状に吐出された積層体5は、例えば、冷却管150の内部空間151内に流入し、内部空間151内を通過しながら冷却されて、開口部(すなわち、冷却管150の排出口)から冷却管150の外へ放出される。ノズル140の吐出口の温度は、コア材料及びクラッド材料のせん断速度1/sでの粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定される。一例として、ノズル140の吐出口の温度は、例えば240℃以上280℃以下の範囲内に設定されてもよい。冷却管150において設定される冷却温度及び冷却風の送風量は、ファイバー構造体13の長さ方向における収縮率がより低減するように、適宜調整されることが望ましい。上述のとおり、冷却管150の温度は、例えば、5℃以上25℃以下に設定されてもよい。また、冷却管150における送風量は、例えば、1mL/min以上10mL/min以下に設定されてもよい。
 冷却管150から放出された積層体5は、紡糸される。積層体5は、例えば、ニップロール160が有する2つのロール161及び162の間を通過し、さらにガイドロール163~165を経由して、POF10として巻き取りロール166に巻き取られる。巻き取りロール166の近傍、例えばガイドロール165と巻き取りロール166との間、においてPOF10の外径を測定する変位計170をさらに備えていてもよい。
 なお、図3に示された装置は、クラッド層が1層設けられたPOF10を製造する装置であるが、クラッド層が複数設けられたPOFを製造する場合は、例えば、クラッド層形成用の押出装置がさらに設けられた構成を有する装置を用いればよい。
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。以下の実施例及び比較例では、図2に示されたPOF20と同様の構成を有するPOF、すなわちダブルクラッド構造を有するPOFが作製された。以下、第1のクラッド層221の作製に用いられた第2含フッ素樹脂を第2含フッ素樹脂Aと記載し、第2のクラッド層222の作製に用いられた第2含フッ素樹脂を第2含フッ素樹脂Bと記載する。
 (実施例1)
 [第1含フッ素樹脂及び第2含フッ素樹脂Aの作製]
 第1含フッ素樹脂及び第2含フッ素樹脂Aとして、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン(上記式(M2)の化合物、「PFMMD」)の重合体を準備した。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランは、まず2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを合成し、これをフッ素化し、得られたカルボン酸塩を脱炭酸分離することによって合成された。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合には、重合開始剤として、パーフルオロ過酸化ベンゾイルが用いられた。
 以下に、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成、及びパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合について、詳細を説明する。
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成>
 水冷冷却器を備えた3L三口フラスコ、温度計、マグネチックスターラー、及び等圧滴下漏斗を準備し、2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとの混合物を139.4g(計1.4モル)をフラスコに投入した。フラスコは0℃に冷やし、その中にトリフルオロピルビン酸メチルをゆっくりと加え、さらに2時間攪拌した。そこに100mLのジメチルスルホキシド(DMSO)と194gの炭酸カリウムとを1時間かけて加えた後、さらに続けて8時間攪拌し、反応混合物を得た。この生成した反応混合物を1Lの水と混合し、その水相をわけ、これを更にジクロロメチレンで抽出後、このジクロロメチレン溶液を有機反応混合物相と混合し、その溶液を硫酸マグネシウムで乾燥した。溶媒を除去した後、245.5gの粗製物が得られた。この粗製物を減圧下(12Torr)で分留し、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を230.9g得た。精製物の沸点は、77~78℃で、収率は77%であった。なお、得られた精製物が2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランであることは、HNMR及び19FNMRによって確認された。
HNMR(ppm):4.2-4.6,3.8-3.6(CHCH2,muliplet,3H),3.85-3.88(COOCH3,multiplet,3H),1.36-1.43(CCH3,multiplet,3H)
19FNMR(ppm):-81.3(CF3,s,3F)
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化>
 10Lの攪拌反応槽に4Lの1,1,2-トリクロロトリフルオロエタンを注入した。攪拌反応槽で、窒素を1340cc/minの流速で流し、フッ素を580cc/minの流速で流し、窒素/フッ素の雰囲気下とした。5分後、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの290gを750mLの1,1,2-トリクロロトリフルオロエタン溶液に溶かし、この溶液を反応槽に0.5ml/分の速度で加えた。反応槽は0℃に冷却した。全てのジオキソランを24時間で加えた後、フッ素ガス流を止めた。窒素ガスをパージした後、水酸化カリウム水溶液を弱アルカリ性になるまで加えた。
 減圧下で揮発物質を除去した後、反応槽の周囲を冷却し、その後48時間70℃の減圧下で乾燥して、固体の反応生成物を得た。固形の反応生成物は、500mLの水に溶解させ、過剰の塩酸を添加して、有機相と水相とに分離させた。有機相を分離して減圧下で蒸留し、パーフルオロ-2,4-ジメチル-1,3-ジオキソラン-2-カルボン酸を得た。主蒸留物の沸点は103℃-106℃/100mmHgであった。フッ素化の収率は、85%であった。
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成>
 上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得た。このカリウム塩を1日間70℃で真空乾燥した。250℃~280℃で、かつ窒素又はアルゴン雰囲気下で、塩を分解した。-78℃に冷やした冷却トラップで凝縮させ、収率82%でパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得た。生成物の沸点は45℃/760mmHgであった。19FNMRとGC-MSを用いて生成物を同定した。
19FNMR:-84ppm(3F,CF3),-129ppm(2F,=CF2
GC-MS:m/e244(Molecular ion)225,197,169,150,131,100,75,50. 
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合>
 上記方法で得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン100gと、パーフルオロ過酸化ベンゾイル1gとをガラスチューブに封入した。このガラスチューブは、凍結脱気法によって系中の酸素が除去された後にアルゴンが再充填されて、50℃で数時間加熱された。内容物は固体となったが、さらに70℃で一晩加熱すると、100gの透明な棒状物が得られた。
 得られた透明棒状物をFluorinert FC-75(住友スリーエム社製)に溶かし、得られた溶液をガラス板に注ぎ、重合体の薄膜を得た。得られた重合体のガラス転移温度は117℃で、完全な非晶質であった。透明棒状物をヘキサフルオロベンゼンに溶かし、これにクロロホルムを加え沈殿させることで、生成物を精製させた。精製された重合体のガラス転移温度は、約131℃であった。この重合体を、第1含フッ素樹脂及び第2含フッ素樹脂Aとした。
 [屈折率調整剤]
 屈折率調整剤には、クロロトリフルオロエチレン低重合体(ダイキン株式会社製)が用いられた。
 [コア材料]
 上記の方法で作製した第1含フッ素樹脂と、上記の屈折率調整剤とを、260℃にて溶融混合して樹脂組成物を作製した。樹脂組成物における屈折率調整剤の濃度は、12質量%であった。この樹脂組成物をコア材料として用いた。
 [クラッド材料(第1のクラッド層の材料)]
 上記の方法で作製した第2含フッ素樹脂Aをクラッド材料(第1のクラッド層の材料)として用いた。
 [ダブルクラッド材料(第2のクラッド層の材料)]
 第2含フッ素樹脂Bとして、テフロン(登録商標)AF1600(三井・ケマーズフロロプロダクツ株式会社製)を用いた。また、含フッ素可塑剤として、フォンブリンYR(YRグレード、SOLVAY社製)も用いられた。すなわち、ダブルクラッド材料として、テフロン(登録商標)AF1600とフォンブリンYRとを含む組成物が用いられた。ダブルクラッド材料におけるテフロン(登録商標)AF1600の割合は、30質量%であった。
 [被覆層材料]
 被覆層材料として、Xylex7200(SABIC社製、ガラス転移温度:113℃)を用いた。
 [POFの作製]
 上記の方法で準備したコア材料、クラッド材料、ダブルクラッド材料、及び被覆層材料を用い、溶融紡糸法によって、図2に示されたPOF20と同様の構成を有するPOFを作製した。コア、クラッド(第1のクラッド層及び第2のクラッド層)、及び被覆層を含む線状体の作製には、図3に示した製造装置100に、ダブルクラッド層形成のための押出装置がさらに追加された構成を有する装置が用いられた。コア材料の溶融温度は250℃、クラッド材料の溶融温度は255℃、ダブルクラッド材料の溶融温度は260℃、被覆層材料の溶融温度は240℃であった。ノズルの吐出口の温度は、240℃に設定された。なお、240℃において、せん断速度1/sでのコア材料(第1含フッ素樹脂+屈折率調整剤)の粘度は140Pa・sであり、クラッド材料(第2含フッ素樹脂A)の粘度は3000Pa・sであり、ダブルクラッド材料(テフロン(登録商標)AF1600+フォンブリンYR)の粘度は1400Pa・sであった。すなわち、実施例1では、ノズルの吐出口の温度は、せん断速度1/sでのコア材料及びクラッド材料の粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定されていた。
 冷却管の温度は、5℃~15℃に設定されていた。また、冷却管における風量は、5mL/minに設定されていた。
 得られたPOFにおいて、コアの外径は35μm、第1のクラッド層の外径は50μm、第2のクラッド層の外径は60μm、被覆層の外径(すなわちPOFの外径)は230μmであった。
 [熱処理によるファイバー構造体の収縮率の測定]
 作製されたPOFから被覆層を取り除き、コア及びクラッド(第1クラッド層および第2クラッド層)からなるファイバー構造体を得た。被覆層は、POFをクロロホルムに浸漬し、被覆層のみを溶解させる方法で取り除かれた。得られたファイバー構造体を20cm(長さD1)の長さに切断し、このファイバー構造体の一端を金属棒にテープで貼って、他端を垂らした状態(すなわち、無張力)で、オーブンを用いて90℃で加熱した。24時間経過後、ファイバー構造体の長さD2を測定した。上記の数式(I)を用いてファイバー構造体の収縮率を算出した。実施例1のファイバー構造体の収縮率は、4.6%であった。
 [伝送損失の測定]
 作製されたPOFの伝送損失を測定した。次に、POFを、60℃、85%RHの雰囲気下に500時間置いた後、POFの伝送損失を再度測定した。伝送損失の測定は、JIS C6823:2010に準拠して行われた。測定波長は850nmであった。60℃、85%RHの雰囲気下に置く前のPOFの伝送損失に対し、60℃、85%RHの雰囲気下に置いた後のPOFの伝送損失は、+9dB/kmであった。すなわち、実施例1のPOFは、60℃、85%RHの雰囲気下に500h曝されたことによって、伝送損失が9dB/km増加した。
 (実施例2)
 [POFの作製]
 ノズルの吐出口の設定温度を260℃に変更した点以外は、実施例1と同様の方法でPOFを作製した。なお、260℃において、せん断速度1/sでのコア材料(第1含フッ素樹脂+屈折率調整剤)の粘度は40Pa・sであり、クラッド材料(第2含フッ素樹脂A)の粘度は600Pa・sであり、ダブルクラッド材料(テフロン(登録商標)AF1600+フォンブリンYR)の粘度は600Pa・sであった。すなわち、実施例2では、ノズルの吐出口の温度は、せん断速度1/sでのコア材料及びクラッド材料の粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定されていた。得られたPOFにおいて、コアの外径は35μm、第1のクラッド層の外径は50μm、第2のクラッド層の外径は60μm、被覆層の外径(すなわちPOFの外径)は230μmであった。
 [熱処理によるファイバー構造体の収縮率の測定]
 実施例1と同様の方法でファイバー構造体の収縮率を測定した。実施例2のファイバー構造体の収縮率は、0.9%であった。
 [伝送損失の測定]
 実施例1と同様の方法でPOFの伝送損失を測定した。60℃、85%RHの雰囲気下に置く前のPOFの伝送損失に対し、60℃、85%RHの雰囲気下に置いた後のPOFの伝送損失は、-33dB/kmであった。すなわち、実施例2のPOFは、60℃、85%RHの雰囲気下に500h曝されたことによって、伝送損失が33dB/km低減した。なお、実施例2では、高温高湿の雰囲気下に置かれた後のPOFの伝送損失が、高温高湿の雰囲気下に置かれる前のPOFの伝送損失よりも低減している。このことは、高温高湿の雰囲気下に置かれたことによって第2のクラッド層の屈折率が低下したためであると考えられる。実施例2においては、高温高湿の雰囲気下に置かれた後のPOFのファイバー構造体における空隙の発生が抑制されたことに加え、さらに第2のクラッド層の屈折率が低下されたため、伝送損失が低減したと考えられる。
 (実施例3)
 [POFの作製]
 ノズルの吐出口の設定温度を270℃に変更した点以外は、実施例1と同様の方法でPOFを作製した。なお、270℃において、せん断速度1/sでのコア材料(第1含フッ素樹脂+屈折率調整剤)の粘度は20Pa・sであり、クラッド材料(第2含フッ素樹脂A)の粘度は300Pa・sであり、ダブルクラッド材料(テフロン(登録商標)AF1600+フォンブリンYR)の粘度は400Pa・sであった。すなわち、実施例3では、ノズルの吐出口の温度は、せん断速度1/sでのコア材料及びクラッド材料の粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定されていた。得られたPOFにおいて、コアの外径は35μm、第1のクラッド層の外径は50μm、第2のクラッド層の外径は60μm、被覆層の外径(すなわちPOFの外径)は230μmであった。
 [熱処理によるファイバー構造体の収縮率の測定]
 実施例1と同様の方法でファイバー構造体の収縮率を測定した。実施例3のファイバー構造体13の収縮率は、0.3%であった。
 [伝送損失の測定]
 実施例1と同様の方法でPOFの伝送損失を測定した。60℃、85%RHの雰囲気下に置く前のPOFの伝送損失に対し、60℃、85%RHの雰囲気下に置いた後のPOFの伝送損失は、-50dB/kmであった。すなわち、実施例3のPOFは、60℃、85%RHの雰囲気下に500h曝されたことによって、伝送損失が50dB/km低減した。なお、実施例3では、高温高湿の雰囲気下に置かれた後のPOFの伝送損失が、高温高湿の雰囲気下に置かれる前のPOFの伝送損失よりも低減している。このことは、高温高湿の雰囲気下に置かれたことによって第2のクラッド層の屈折率が低下したためであると考えられる。実施例3においては、高温高湿の雰囲気下に置かれた後のPOFのファイバー構造体における空隙の発生が抑制されたことに加え、さらに第2のクラッド層の屈折率が低下されたため、伝送損失が低減したと考えられる。また、実施例3においては、高温高湿の雰囲気下に置かれた後のPOFのファイバー構造体における空隙の発生が、実施例2の場合よりもさらに抑制されたと考えられる。これにより、実施例3のPOFは、実施例2のPOFよりも、伝送損失がより低減したと考えられる。
 (比較例1)
 [POFの作製]
 ノズルの吐出口の設定温度を235℃に変更した点以外は、実施例1と同様の方法でPOFを作製した。なお、235℃において、せん断速度1/sでのコア材料(第1含フッ素樹脂+屈折率調整剤)の粘度は200Pa・sであり、クラッド材料(第2含フッ素樹脂A)の粘度は4300Pa・sであり、ダブルクラッド材料(テフロン(登録商標)AF1600+フォンブリンYR)の粘度は2000Pa・sであった。すなわち、比較例1では、ノズルの吐出口は、クラッド材料の粘度が10Pa・s以上3700Pa・s以下の範囲外となる温度設定されていた。得られたPOFにおいて、コアの外径は35μm、第1のクラッド層の外径は50μm、第2のクラッド層の外径は60μm、被覆層の外径(すなわちPOFの外径)は230μmであった。
 [熱処理によるファイバー構造体の収縮率の測定]
 実施例1と同様の方法でファイバー構造体の収縮率を測定した。比較例1のファイバー構造体13の収縮率は、5.5%であった。
 [伝送損失の測定]
 実施例1と同様の方法でPOFの伝送損失を測定した。60℃、85%RHの雰囲気下に置く前のPOFの伝送損失に対し、60℃、85%RHの雰囲気下に置いた後のPOFの伝送損失は、41dB/kmであった。すなわち、比較例1のPOFは、60℃、85%RHの雰囲気下に500h曝されたことによって、伝送損失が41dB/km増加した。
Figure JPOXMLDOC01-appb-T000022
 実施例1~3のPOFは、90℃で24時間加熱された場合の収縮率が5%以下であるファイバー構造体を備えている。この構成により、実施例1~3のPOFは、高温高湿の環境に曝された場合でも、伝送損失の経時的な増加を小さく抑えることができた。これに対し、90℃で24時間加熱された場合の収縮率が5%を超えているファイバー構造体を備えている比較例1のPOFは、高温高湿の環境に曝された場合、伝送損失の増加が大きかった。
 本発明のPOFは、高速通信のPOFに適している。
 

Claims (10)

  1.  第1含フッ素樹脂を主成分として含むコアと、
     前記コアの外周に配置され、第2含フッ素樹脂を主成分として含むクラッドと、
    を備え、
     前記コア及び前記クラッドからなるファイバー構造体が90℃で24時間加熱された場合に、前記ファイバー構造体の長さ方向における収縮率は5%以下であり、
     前記収縮率は、90℃で24時間加熱される前の前記ファイバー構造体の長さをD1、90℃で24時間加熱された後の前記ファイバー構造体の長さをD2としたときに、下記の数式(I)に基づいて算出される、
     収縮率(%)={(D1-D2)/D1}×100 ・・・(I)
    プラスチック光ファイバー。
  2.  前記第1含フッ素樹脂及び前記第2含フッ素樹脂からなる群より選択される少なくとも1つは、下記式(1)で表される構成単位(A)を含有する含フッ素重合体を含む、
    請求項1に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は連結して環を形成してもよい。)
  3.  前記含フッ素重合体は、下記式(2)で表される構成単位(B)をさらに含有する、
    請求項2に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
  4.  前記含フッ素重合体は、下記式(3)で表される構成単位(C)をさらに含有する、
    請求項2に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
  5.  前記含フッ素重合体は、下記式(4)で表される構成単位(D)をさらに含有する、
    請求項2に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5で、かつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。)
  6.  前記クラッドの外周に配置された被覆層をさらに含む、
    請求項1に記載のプラスチック光ファイバー。
  7.  請求項1~6のいずれか1項に記載のプラスチック光ファイバーの製造方法であって、
     前記製造方法は、
     (A)前記第1含フッ素樹脂を主成分として含むコア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
     (B)前記第2含フッ素樹脂を主成分として含むクラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
     (C)前記積層体を所定の温度に加熱しながらノズルから吐出すること、及び
     (D)吐出された前記積層体を冷却管に流入させて冷却しながら引き落とすこと、
    を含み、
     前記ノズルの吐出口の温度は、前記コア材料及び前記クラッド材料のせん断速度1/sでの粘度が10Pa・s以上3700Pa・s以下の範囲内となる温度に設定される、
    プラスチック光ファイバーの製造方法。
  8.  前記ノズルの前記吐出口の温度は、240℃以上280℃以下の範囲内に設定される、請求項7に記載の製造方法。
  9.  前記冷却管の温度が、5℃以上25℃以下に設定される、
    請求項7に記載の製造方法。
  10.  前記冷却管における送風量が、1mL/min以上10mL/min以下である、
    請求項7に記載の製造方法。
PCT/JP2022/035277 2021-09-30 2022-09-21 プラスチック光ファイバー及びその製造方法 WO2023054141A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162339 2021-09-30
JP2021-162339 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054141A1 true WO2023054141A1 (ja) 2023-04-06

Family

ID=85780695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035277 WO2023054141A1 (ja) 2021-09-30 2022-09-21 プラスチック光ファイバー及びその製造方法

Country Status (2)

Country Link
TW (1) TW202332572A (ja)
WO (1) WO2023054141A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062181A1 (en) * 2003-02-10 2005-03-24 Walker James K. Method and apparatus for manufacturing plastic optical transmission medium
JP2005321721A (ja) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd プラスチック光ファイバの製造装置及び製造方法
JP2006163031A (ja) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd プラスチック光学部材の製造方法及び製造装置
WO2006070824A1 (ja) * 2004-12-27 2006-07-06 Mitsubishi Rayon Co., Ltd. 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
JP2007052095A (ja) * 2005-08-16 2007-03-01 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
WO2019050045A1 (ja) * 2017-09-11 2019-03-14 小池 康博 光ファイバケーブル
JP6784862B1 (ja) * 2020-03-31 2020-11-11 日東電工株式会社 プラスチック光ファイバーの製造装置及びギヤポンプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062181A1 (en) * 2003-02-10 2005-03-24 Walker James K. Method and apparatus for manufacturing plastic optical transmission medium
JP2005321721A (ja) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd プラスチック光ファイバの製造装置及び製造方法
JP2006163031A (ja) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd プラスチック光学部材の製造方法及び製造装置
WO2006070824A1 (ja) * 2004-12-27 2006-07-06 Mitsubishi Rayon Co., Ltd. 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
JP2007052095A (ja) * 2005-08-16 2007-03-01 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
WO2019050045A1 (ja) * 2017-09-11 2019-03-14 小池 康博 光ファイバケーブル
JP6784862B1 (ja) * 2020-03-31 2020-11-11 日東電工株式会社 プラスチック光ファイバーの製造装置及びギヤポンプ

Also Published As

Publication number Publication date
TW202332572A (zh) 2023-08-16

Similar Documents

Publication Publication Date Title
KR100768020B1 (ko) 플라스틱 광학 섬유
JPH03259103A (ja) プラスチック光フアイバ及びその製法
KR102139038B1 (ko) 플라스틱 광 파이버 및 그 제조 방법
JP2002071972A (ja) プラスチック光ファイバ
US7459512B2 (en) Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer
WO2023054141A1 (ja) プラスチック光ファイバー及びその製造方法
WO2022210810A1 (ja) プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル
WO2022210812A1 (ja) プラスチック光ファイバーの製造方法
JP2020023688A (ja) 含フッ素重合体の製造方法及び含フッ素重合体の成形体の製造方法
WO2023190794A1 (ja) プラスチック光ファイバー
WO2022176864A1 (ja) プラスチック光ファイバー及びその製造方法
WO2022209921A1 (ja) プラスチック光ファイバー及びその製造方法
TW202100640A (zh) 塑膠光纖
JP4886256B2 (ja) プラスチック光ファイバ
JP6859477B1 (ja) 樹脂ファイバー形成用ノズル、樹脂ファイバーの製造装置、及び樹脂ファイバーの製造方法
WO2020203920A1 (ja) プラスチック光ファイバー
WO2023152926A1 (ja) プラスチック光ファイバーおよびその製造方法
WO2022176863A1 (ja) 光学樹脂組成物及び光学樹脂成形体
EP4159396A1 (en) Optics-use resin molded body production method, resin fiber production method, and resin fiber production apparatus
WO2023003031A1 (ja) プラスチック光ファイバの製造方法及びプラスチック光ファイバの製造装置
JP2021162735A (ja) 光学用樹脂成形体の製造方法、樹脂製ファイバーの製造方法、及び樹脂製ファイバーの製造装置
TW202340332A (zh) 氟樹脂之純化方法、經純化之氟樹脂之製造方法、氟樹脂、光學材料、電子材料及塑膠光纖
JP2003098365A (ja) プラスチック光ファイバとその製造方法
TW202239862A (zh) 塑膠光纖及其製造方法
JP2022047080A (ja) ファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876008

Country of ref document: EP

Kind code of ref document: A1