WO2022210810A1 - プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル - Google Patents
プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル Download PDFInfo
- Publication number
- WO2022210810A1 WO2022210810A1 PCT/JP2022/015739 JP2022015739W WO2022210810A1 WO 2022210810 A1 WO2022210810 A1 WO 2022210810A1 JP 2022015739 W JP2022015739 W JP 2022015739W WO 2022210810 A1 WO2022210810 A1 WO 2022210810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- optical fiber
- plastic optical
- core
- pof
- Prior art date
Links
- 239000013308 plastic optical fiber Substances 0.000 title claims abstract description 182
- 230000003287 optical effect Effects 0.000 title claims description 15
- 239000011347 resin Substances 0.000 claims abstract description 136
- 229920005989 resin Polymers 0.000 claims abstract description 136
- 230000009477 glass transition Effects 0.000 claims abstract description 52
- 125000001153 fluoro group Chemical group F* 0.000 claims description 45
- 229920002313 fluoropolymer Polymers 0.000 claims description 45
- 239000004811 fluoropolymer Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 42
- 230000003014 reinforcing effect Effects 0.000 claims description 35
- 229910052731 fluorine Inorganic materials 0.000 claims description 34
- 239000000835 fiber Substances 0.000 claims description 30
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 28
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 24
- 239000011737 fluorine Substances 0.000 claims description 24
- 125000005843 halogen group Chemical group 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 238000005253 cladding Methods 0.000 claims description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 8
- 229920001774 Perfluoroether Chemical group 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 125000001033 ether group Chemical group 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 125000003709 fluoroalkyl group Chemical group 0.000 claims 1
- 239000013309 porous organic framework Substances 0.000 description 132
- 239000011162 core material Substances 0.000 description 120
- 238000009792 diffusion process Methods 0.000 description 21
- 239000003607 modifier Substances 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 238000001125 extrusion Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- RFJVDJWCXSPUBY-UHFFFAOYSA-N 2-(difluoromethylidene)-4,4,5-trifluoro-5-(trifluoromethyl)-1,3-dioxolane Chemical compound FC(F)=C1OC(F)(F)C(F)(C(F)(F)F)O1 RFJVDJWCXSPUBY-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- -1 perfluoromethoxymethyl group Chemical group 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000003682 fluorination reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PPVPVKZXQJZBRA-UHFFFAOYSA-N (2,3,4,5,6-pentafluorobenzoyl) 2,3,4,5,6-pentafluorobenzenecarboperoxoate Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(=O)OOC(=O)C1=C(F)C(F)=C(F)C(F)=C1F PPVPVKZXQJZBRA-UHFFFAOYSA-N 0.000 description 2
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 2
- JWKJOADJHWZCLL-UHFFFAOYSA-N 1,2,3,4,5,5,6,6,6-nonafluoro-1-(1,2,3,4,5,5,6,6,6-nonafluorohexa-1,3-dienoxy)hexa-1,3-diene Chemical compound FC(OC(F)=C(F)C(F)=C(F)C(F)(F)C(F)(F)F)=C(F)C(F)=C(F)C(F)(F)C(F)(F)F JWKJOADJHWZCLL-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RKIMETXDACNTIE-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorocyclohexane Chemical group FC1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F RKIMETXDACNTIE-UHFFFAOYSA-N 0.000 description 1
- PWMJXZJISGDARB-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5-decafluorocyclopentane Chemical group FC1(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F PWMJXZJISGDARB-UHFFFAOYSA-N 0.000 description 1
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical compound FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 1
- UVJSKKCWUVDYOA-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-[2,4,6-trifluoro-3,5-bis(2,3,4,5,6-pentafluorophenyl)phenyl]benzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(C=2C(=C(F)C(F)=C(F)C=2F)F)=C(F)C(C=2C(=C(F)C(F)=C(F)C=2F)F)=C1F UVJSKKCWUVDYOA-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- YYTSGNJTASLUOY-UHFFFAOYSA-N 1-chloropropan-2-ol Chemical compound CC(O)CCl YYTSGNJTASLUOY-UHFFFAOYSA-N 0.000 description 1
- 238000004293 19F NMR spectroscopy Methods 0.000 description 1
- UEOZRAZSBQVQKG-UHFFFAOYSA-N 2,2,3,3,4,4,5,5-octafluorooxolane Chemical group FC1(F)OC(F)(F)C(F)(F)C1(F)F UEOZRAZSBQVQKG-UHFFFAOYSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- VZIQXGLTRZLBEX-UHFFFAOYSA-N 2-chloro-1-propanol Chemical compound CC(Cl)CO VZIQXGLTRZLBEX-UHFFFAOYSA-N 0.000 description 1
- SIJLTAVFEHEPTJ-UHFFFAOYSA-N 4,4,5-trifluoro-2,5-bis(trifluoromethyl)-1,3-dioxolane-2-carboxylic acid Chemical compound OC(=O)C1(C(F)(F)F)OC(F)(F)C(F)(C(F)(F)F)O1 SIJLTAVFEHEPTJ-UHFFFAOYSA-N 0.000 description 1
- JIUOLPMEUGECKL-UHFFFAOYSA-N 4-methyl-2-methylidene-1,3-dioxolane Chemical compound CC1COC(=C)O1 JIUOLPMEUGECKL-UHFFFAOYSA-N 0.000 description 1
- 125000006519 CCH3 Chemical group 0.000 description 1
- 241001600451 Chromis Species 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000006343 heptafluoro propyl group Chemical group 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- XGLLQDIWQRQROJ-UHFFFAOYSA-N methyl 3,3,3-trifluoro-2-oxopropanoate Chemical compound COC(=O)C(=O)C(F)(F)F XGLLQDIWQRQROJ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- FYJQJMIEZVMYSD-UHFFFAOYSA-N perfluoro-2-butyltetrahydrofuran Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)OC(F)(F)C(F)(F)C1(F)F FYJQJMIEZVMYSD-UHFFFAOYSA-N 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- RXPRRQLKFXBCSJ-GIVPXCGWSA-N vincamine Chemical compound C1=CC=C2C(CCN3CCC4)=C5[C@@H]3[C@]4(CC)C[C@](O)(C(=O)OC)N5C2=C1 RXPRRQLKFXBCSJ-GIVPXCGWSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02033—Core or cladding made from organic material, e.g. polymeric material
- G02B6/02038—Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02033—Core or cladding made from organic material, e.g. polymeric material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00663—Production of light guides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F124/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D137/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Coating compositions based on derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/444—Systems or boxes with surplus lengths
- G02B6/44528—Patch-cords; Connector arrangements in the system or in the box
Definitions
- the present invention relates to plastic optical fibers, hybrid cables, patch cords, and active optical cables.
- a plastic optical fiber has a central core and a clad that covers the outer circumference of the core as the part that transmits light.
- the core is made of a resin material having a high refractive index.
- the clad is made of a resin material having a lower refractive index than the resin material of the core in order to confine light within the core.
- Patent Document 1 discloses that an amorphous fluoropolymer (a) having substantially no C—H bonds is used in an inner layer corresponding to a core as a plastic optical fiber having excellent heat resistance
- a cladding discloses a plastic optical fiber in which a fluoropolymer (c) having a lower refractive index than the fluoropolymer (a) and having affinity with the fluoropolymer (a) is used for the outer layer corresponding to .
- plastic optical fibers are required to have both heat resistance and flexibility.
- the materials for the core and clad are selected with only the improvement of heat resistance taken into consideration, the flexibility may decrease.
- an object of the present invention is to provide a plastic optical fiber with improved heat resistance while ensuring good flexibility.
- a further object of the present invention is to provide hybrid cables, patch cords, and active optical cables comprising plastic optical fibers that are both flexible and heat resistant.
- a first aspect of the present invention is A plastic optical fiber comprising a core and a clad disposed around the core,
- the core includes a first resin
- the clad includes a second resin
- the first glass transition temperature Tg1 of the first resin is 120° C. or higher
- the second glass transition temperature Tg2 of the second resin is 120°C or higher
- the minimum value of the curvature radius R that does not cause cracks in the bent portion of the plastic optical fiber when the plastic optical fiber is bent once at 25° C. with a curvature radius R of 180 degrees is 5 mm or less.
- the Company provides plastic optical fiber.
- a second aspect of the present invention is A plastic optical fiber comprising a core and a clad disposed around the core,
- the core includes a first resin
- the clad includes a second resin
- the first glass transition temperature Tg1 of the first resin is 120° C. or higher
- the second glass transition temperature Tg2 of the second resin is 120°C or higher
- a fiber structure composed of the core and the cladding has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more.
- the Company provides plastic optical fiber.
- a third aspect of the present invention provides a hybrid cable comprising the plastic optical fiber according to the first aspect.
- a fourth aspect of the present invention is a cable housing the plastic optical fiber according to the first aspect; a connector attached to at least one end of the cable; Provide patch cords with
- a fifth aspect of the present invention is a cable housing the plastic optical fiber according to the first aspect; a first connector attached to the first end of the cable and comprising a first conversion portion for converting an electrical signal to an optical signal; a second connector attached to the second end of the cable and comprising a second conversion portion for converting an optical signal into an electrical signal;
- the present invention it is possible to provide a plastic optical fiber with improved heat resistance while ensuring good flexibility. Further, according to the present invention, it is possible to provide hybrid cables, patch cords and active optical cables with plastic optical fibers that are both flexible and heat resistant.
- FIG. 1 is a schematic diagram showing an example of the cross-sectional structure of a plastic optical fiber according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the plastic optical fiber according to the embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing an example of a hybrid cable according to an embodiment of the invention.
- FIG. 4 is a schematic diagram showing an example of a patch cord according to an embodiment of the invention.
- FIG. 5 is a schematic diagram showing an example of an active optical cable according to an embodiment of the invention.
- FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used to manufacture plastic optical fibers according to embodiments of the present invention.
- the POF of this embodiment includes a core and a clad arranged around the core.
- the POF of this embodiment is, for example, a gradient index (GI) type POF.
- FIG. 1 shows an example of the cross-sectional structure of the POF of this embodiment.
- the POF 10 shown in FIG. 1 includes a core 11 and a clad 12 arranged around the outer periphery of the core 11.
- the core 11 contains the first resin.
- the glass transition temperature (first glass transition temperature Tg 1 ) of the first resin is 120° C. or higher.
- the clad 12 contains a second resin.
- the glass transition temperature (second glass transition temperature Tg 2 ) of the second resin is 120° C. or higher.
- the glass transition temperature means the midpoint glass transition temperature (T mg ) determined according to JIS K7121:1987.
- the POF 10 of the present embodiment can improve heat resistance while ensuring good flexibility. That is, the POF 10 of this embodiment can improve heat resistance while ensuring flexibility within a practical range.
- the first glass transition temperature Tg 1 of the first resin contained in the core 11 and the second glass transition temperature Tg 2 of the second resin contained in the clad 12 are both 120° C. or higher.
- the POF 10 of the embodiment can improve heat resistance.
- the POF 10 of the present embodiment can suppress the dimensional change to be small even when exposed to a high temperature of about 105°C.
- the first glass transition temperature Tg1 and the second glass transition temperature Tg2 are preferably 125°C or higher, more preferably 130°C or higher.
- the POF 10 of the present embodiment has excellent flexibility such that the minimum radius of curvature, that is, the radius of curvature at which cracks occur when bent 180 degrees, can be reduced to 5 mm or less. Therefore, the POF 10 of this embodiment can be used in applications requiring heat resistance while ensuring the flexibility required of the POF.
- the method for obtaining the above minimum radius of curvature for the POF 10 of this embodiment is, for example, to bend the POF 10 by 180 degrees with the curvature radius R to be measured, bend the POF 10 once, and then release the bend. After that, the bent portion of the POF 10 is observed under a microscope to check for cracks.
- Such a 180-degree bending test is performed once at each curvature radius R by changing the curvature radius R.
- the minimum radius of curvature of the POF can be qualified as less than 2.5 mm.
- the 180-degree bending of the POF 10 can be performed, for example, by preparing a test instrument provided with a groove having a radius of curvature R to be measured, inserting the POF 10 into the groove, and bending the POF 10. Such a 180-degree bend test may be performed multiple times with different radii of curvature R as described above to determine the minimum radius of curvature.
- the radius of curvature R in 180-degree bending is the inner diameter of the POF 10 (that is, the radius of curvature measured along the inner surface of the POF 10).
- both the first resin contained in the core 11 and the second resin contained in the clad 12 have a high glass transition temperature of 120° C. or higher and a minimum radius of curvature of 5 mm or less. Flexibility is realized. Such excellent flexibility can be realized, for example, by increasing the orientation of the first resin and the second resin in the core 11 and the clad 12 .
- the orientation of the first resin in the core 11 and the orientation of the second resin in the clad 12 can be indicated by birefringence.
- the birefringence of the fiber structure composed of the core 11 and the clad 12 is preferably 2.0 ⁇ 10 ⁇ 4 or more, more preferably 2.5 ⁇ 10 ⁇ 4 or more. It is more preferably 7 ⁇ 10 ⁇ 4 or more, further preferably 3.0 ⁇ 10 ⁇ 4 or more, further preferably 4.0 ⁇ 10 ⁇ 4 or more, further preferably 5.0 ⁇ 10 ⁇ 4 or more. It is more preferably 6.0 ⁇ 10 ⁇ 4 or more, more preferably 6.0 ⁇ 10 ⁇ 4 or more.
- the fiber structure composed of core 11 and cladding 12 is POF 10 in the case of POF 10 having the configuration shown in FIG.
- the portion constituted by the core 11 and the clad 12 excluding the other layer is the above fiber becomes a structure. Since the fiber structure has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more, the molecular chains of the first resin and the second resin are highly aligned in the fiber axis direction, and the flexibility of the fiber structure is improved. . Therefore, the POF 10 of this embodiment can have excellent flexibility.
- the POF 10 of this embodiment may have the following configuration as another form:
- the POF 10 includes a core 11 and a clad 12 arranged around the core 11,
- the core 11 contains a first resin
- the clad 12 contains a second resin
- the first glass transition temperature Tg 1 of the first resin is 120° C. or higher
- the second glass transition temperature Tg2 of the second resin is 120°C or higher
- a fiber structure composed of the core 11 and the clad 12 has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more.
- the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber. Excellent flexibility can be achieved, such that it can be made as small as 5 mm or less. That is, the POF 10 having such a structure can also improve heat resistance while ensuring good flexibility.
- the birefringence of the fiber structure is preferably 2.5 ⁇ 10 ⁇ 4 or more, more preferably 2.7 ⁇ 10 ⁇ 4 or more, and more preferably 3.0 ⁇ 10 ⁇ 4 or more. is more preferably 4.0 ⁇ 10 ⁇ 4 or more, more preferably 5.0 ⁇ 10 ⁇ 4 or more, further preferably 6.0 ⁇ 10 ⁇ 4 or more preferable.
- orientation i.e. the birefringence value of the fiber structure composed of the core 11 and the clad 12 was divided by the radius of the outer diameter of the clad (unit: m).
- the value (orientation ⁇ (cladding outer diameter radius (unit: m)) (core + clad birefringence) ⁇ (cladding outer diameter radius (unit: m)) is preferably 4.0 or more, 6.0 or more is more preferable, and 8.0 or more is even more preferable.
- At least one selected from the group consisting of the first resin and the second resin may be a fluorine-containing resin.
- both the first resin and the second resin are fluorine-containing resins.
- a fluorine-containing resin can achieve low transmission loss over a wide wavelength range. Therefore, the fluororesin is preferably used as the resin forming the core 11 and the clad 12 .
- Core 11 is a region that transmits light. Core 11 has a higher refractive index than clad 12 . With this configuration, the light that has entered the core 11 is confined inside the core 11 by the clad 12 and propagates through the POF 10 .
- the core 11 may contain the first resin as a main component.
- that the core 11 contains the first resin as a main component means that in the core 11, the first resin is the component that is contained in the largest amount in terms of mass ratio.
- the core 11 may contain the first resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
- the core 11 may further contain additives in addition to the first resin.
- Additives are, for example, refractive index modifiers. That is, the core 11 may be made of a resin composition containing a first resin and an additive such as a refractive index adjuster.
- the refractive index modifier for example, a known refractive index modifier used for the material of the core 11 of the POF 10 can be used.
- the material of the core 11 may contain additives other than the refractive index modifier.
- the glass transition temperature of the material of the core 11, that is, the material constituting the core 11 is preferably 105°C or higher.
- the material of the core 11 is a resin composition composed of the first resin and these additives when the core 11 further contains an additive such as a refractive index adjuster in addition to the first resin. is.
- the mixture (resin composition) of the first resin and the refractive index adjuster preferably has a glass transition temperature of 105° C. or higher.
- the core 11 has a refractive index distribution in which the refractive index changes in the radial direction.
- a refractive index distribution can be formed, for example, by adding a refractive index modifier to the first resin and diffusing (for example, thermal diffusion) the refractive index modifier in the first resin.
- the first resin contained in the core 11 is not particularly limited as long as it has high transparency.
- the first resin include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
- fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
- the first resin of the core 11 is preferably a fluororesin containing a fluoropolymer.
- the fluororesin contained in the core 11 will be referred to as the first fluororesin
- the fluoropolymer contained in the first fluororesin will be referred to as the first fluoropolymer.
- the first fluoropolymer contained in the first fluororesin preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and does not bind to carbon atoms. It is particularly preferred that all hydrogen atoms in the group are replaced by fluorine atoms. In other words, the first fluoropolymer preferably contains substantially no hydrogen atoms and is fully fluorinated. In the present specification, the fact that the fluoropolymer does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the fluoropolymer is 1 mol % or less.
- the first fluoropolymer preferably has a fluoroalicyclic structure.
- the fluorinated alicyclic structure may be contained in the main chain of the fluoropolymer, or may be contained in the side chain of the first fluoropolymer.
- the first fluoropolymer has, for example, a structural unit (A) represented by the following structural formula (1).
- R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
- R ff1 and R ff2 may combine to form a ring.
- Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
- the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1.
- a perfluoroalkyl group may be linear or branched.
- the perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
- the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
- a perfluoroalkyl ether group may be linear or branched.
- a perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
- the ring may be a 5-membered ring or a 6-membered ring.
- This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
- structural unit (A) include structural units represented by the following formulas (A1) to (A8).
- the structural unit (A) is preferably a structural unit (A2), ie, a structural unit represented by the following formula (5).
- the first fluoropolymer may contain one or more of the structural units (A).
- the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the first fluoropolymer tends to have higher heat resistance.
- the structural unit (A) is contained in an amount of 40 mol % or more, the first fluoropolymer tends to have higher transparency and higher mechanical strength in addition to high heat resistance.
- the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
- the structural unit (A) is derived from, for example, a compound represented by the following formula (6).
- R ff 1 to R ff 4 are the same as in formula (1).
- the compound represented by formula (6) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
- Specific examples of the compound represented by the formula (6) include compounds represented by the following formulas (M1) to (M8).
- the fluoropolymer may further contain other structural units in addition to the structural unit (A).
- Other structural units include the following structural units (B) to (D).
- the structural unit (B) is represented by the following formula (2).
- R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
- R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
- a perfluoroalkyl group may have a ring structure.
- a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
- Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
- the fluoropolymer may contain one or more of the structural units (B).
- the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units.
- the content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
- the structural unit (B) is derived from, for example, a compound represented by the following formula (7).
- R 1 to R 4 are the same as in formula (2).
- the compound represented by formula (7) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
- the structural unit (C) is represented by the following formula (3).
- R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
- a perfluoroalkyl group may have a ring structure.
- a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
- Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
- the fluoropolymer may contain one or more of the structural units (C).
- the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units.
- the content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
- the structural unit (C) is derived from, for example, a compound represented by the following formula (8).
- R 5 to R 8 are the same as in formula (3).
- Compounds represented by formula (8) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
- the structural unit (D) is represented by the following formula (4).
- Z represents an oxygen atom, a single bond, or —OC(R 19 R 20 )O—
- each of R 9 to R 20 independently represents a fluorine atom or perfluoro having 1 to 5 carbon atoms. It represents an alkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
- fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
- s and t each independently represent an integer of 0 to 5 and s+t is an integer of 1 to 6 (provided that s+t may be 0 when Z is -OC(R 19 R 20 )O-).
- the structural unit (D) is preferably represented by the following formula (9).
- the structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (4).
- R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. .
- a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
- Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
- Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
- the fluoropolymer may contain one or more of the structural units (D).
- the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units.
- the content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
- the structural unit (D) is derived, for example, from a compound represented by the following formula (10).
- Z, R 9 -R 18 , s and t are the same as in formula (4).
- the compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
- Structural unit (D) is preferably derived from a compound represented by the following formula (11).
- R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
- the first fluoropolymer may further contain structural units other than the structural units (A) to (D), but substantially other structural units other than the structural units (A) to (D) preferably does not contain It should be noted that the fact that the fluoropolymer does not substantially contain other structural units other than the structural units (A) to (D) means that the structural units (A) to It means that the total of (D) is 95 mol % or more, preferably 98 mol % or more.
- the polymerization method for the first fluoropolymer is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used.
- the polymerization initiator for polymerizing the fluoropolymer may be a fully fluorinated compound.
- the first fluoropolymer constitutes the first fluororesin used as the first resin.
- the first glass transition temperature Tg1 of the first resin is 120°C or higher. Therefore, the glass transition temperature of the first fluoropolymer is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher.
- the refractive index of the core 11 is not particularly limited as long as it is higher than the refractive index of the clad 12 .
- the difference between the refractive indices of core 11 and cladding 12 be larger for the wavelength of light used.
- the refractive index of the core 11 can be 1.340 or more, or 1.360 or more, for the wavelength of light used (for example, a wavelength of 850 nm).
- the upper limit of the refractive index of the core is not particularly limited, it is, for example, 1.4000 or less.
- the clad 12 contains the second resin.
- the clad 12 may contain the second resin as a main component.
- the fact that the clad 12 contains the second resin as a main component means that the second resin is the component that is contained in the clad 12 at the highest mass ratio.
- the clad 12 may contain the second resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
- the clad 12 may be composed only of the second resin.
- the clad 12 may further contain additives in addition to the second resin.
- the second resin contained in the clad 12 is not particularly limited as long as it has high transparency.
- the second resin include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
- fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
- the second resin of the clad 12 is preferably a fluorine-containing resin containing a fluorine-containing polymer.
- the fluororesin contained in the clad 12 will be referred to as the second fluororesin
- the fluoropolymer contained in the second fluororesin will be referred to as the second fluoropolymer.
- fluororesin that can be used as the second fluororesin are the same as those exemplified as the fluororesin that can be used as the first fluororesin. That is, examples of the fluoropolymer that can be used as the second fluoropolymer are the same as those exemplified as the fluoropolymer that can be used as the first fluoropolymer.
- the second fluoropolymer constitutes the second fluororesin used as the second resin.
- the second glass transition temperature Tg2 of the second resin is 120°C or higher. Therefore, the glass transition temperature of the second fluoropolymer is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher.
- the second resin may be a resin different from the first resin, but preferably has affinity with the first resin.
- the second resin may contain the same polymerized units as the polymerized units contained in the first resin, or may be the same as the first resin. As a result, separation is less likely to occur at the interface between the core 11 and the clad 12, and transmission loss, for example, can be kept low.
- the refractive index of the cladding 12 is not particularly limited as long as it is designed according to the refractive index of the core 11 .
- the clad 12 may have a refractive index of, for example, 1.310 or less, or may have a refractive index of 1.300 or less at the wavelength of light used (eg, wavelength of 850 nm).
- FIG. 2 shows a modification of the POF of this embodiment.
- the POF 20 shown in FIG. 2 has a configuration in which a reinforcing layer 21 arranged around the outer circumference of the clad 12 is further provided in the POF 10 .
- Reinforcing layer 21 is provided to improve the mechanical strength of POF 10 .
- materials and structures used as reinforcement layers in known POFs can be applied.
- materials for the reinforcing layer 21 include various engineering plastics such as polycarbonate, polyester, cycloolefin polymer, cycloolefin copolymer, polytetrafluoroethylene (PTFE), modified PTFE, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer. (PFA), or copolymers and mixtures thereof.
- the POF 20 of this embodiment provided with the reinforcing layer 21 can have a dimensional retention rate of 95% or more after being held at 105°C for 250 hours, for example. Further, the POF 20 of the present embodiment can have a dimensional retention rate of 96% or more, or 98% or more, after being held at 105° C. for 250 hours, for example.
- the dimension retention ratio is the ratio of the length of the POF 20 after being held at 105° C. for 250 hours to the length of the POF 20 before being held at 105° C. for 250 hours.
- POF of this embodiment can have both heat resistance and flexibility, it can be applied to applications that require high heat resistance and flexibility.
- POFs of the present embodiments may also be suitable for hybrid cables, patch cords, active optical cables, and the like, for example.
- FIG. 3 is a cross-sectional view showing an example of a hybrid cable provided with the POF 20 of this embodiment.
- a hybrid cable 30 shown in FIG. 3 includes the POF 20 of this embodiment, a plurality of conductors 31 arranged around the POF 20 , and a covering layer 32 covering the POF 20 and the conductors 31 .
- FIG. 4 is a schematic diagram showing an example of a patch cord provided with the POF 20 of this embodiment.
- the patch cord 40 shown in FIG. 4 includes a cable 41 accommodating the POF 20 of this embodiment and a connector 42 attached to at least one end of the cable 41 .
- FIG. 5 is a schematic diagram showing an example of an active optical cable equipped with the POF 20 of this embodiment.
- the active optical cable 50 shown in FIG. 5 includes a cable 51 accommodating the POF 20 of the present embodiment, and a first converter ( (not shown) and a second connector 53 having a second converter (not shown) attached to the second end 51b of the cable 51 for converting an optical signal into an electrical signal. And prepare.
- the POF of this embodiment is manufactured using, for example, a melt spinning method. That is, an example of the method for manufacturing the POF of this embodiment is Melting a core material and extruding it into a fiber shape to produce a fiber-like molded body made of the core material; Melting the clad material and extruding it so as to cover the surface of the molded body to produce a laminate in which the core material and the clad material are concentrically laminated; drawing down the laminate while heating it to a predetermined temperature to spin the laminate; including.
- the core material comprises a first resin and the cladding material comprises a second resin.
- the POF of the present embodiment is excellent in that both the first resin contained in the core and the second resin contained in the clad have a high glass transition temperature of 120° C. or higher and, for example, a minimum radius of curvature of 5 mm or less. It also has flexibility. In order to achieve such excellent flexibility using a resin having a high glass transition temperature, for example, it is preferable that the first resin and the second resin have high orientation in the core and clad.
- the temperature at which the core material and the clad material are concentrically laminated to each other is reduced to The temperature is set such that the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber.
- the drawdown temperature of the laminate is usually determined by considering the glass transition temperatures of the core and cladding materials.
- the temperature at which the laminate is pulled down is lower than the glass transition temperatures of the core material and the clad material so that the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber. It is preferably set lower than the conventional general withdrawal temperature determined.
- the temperature at which the laminate is pulled down should be determined in consideration of the glass transition temperatures of the first and second resins used, and the content of additives such as refractive index modifiers contained in the core material. Although it is not particularly limited, it is desirable that the POF to be produced is as low as possible so as not to cause breakage.
- the temperature at which the laminate is pulled down is preferably in the range of Tg 1 +50° C. to Tg 1 +150° C., more preferably in the range of Tg 1 +70° C. to Tg 1 +140° C. with respect to the first glass transition temperature Tg 1 of the first resin. more preferred.
- the temperature at which the laminate is pulled down is preferably in the range of Tg 2 +50° C. to Tg 2 +150° C., more preferably in the range of Tg 1 +70° C. to Tg 1 +140° C. relative to the second glass transition temperature Tg 2 of the second resin. is more preferred.
- the draw-down temperature is relative to the glass transition temperature Tg1a of this resin composition.
- Tg 1a +60° C. to Tg 1a +170° C., and more preferably Tg 1a +80° C. to Tg 1a +160° C. It is determined from the first glass transition temperature Tg 1 of the first resin used, the glass transition temperature Tg 1a of the resin composition containing the first resin and the refractive index modifier, and the second glass transition temperature Tg 2 of the second resin. It is desirable to select an appropriate temperature from the above preferred temperature range and determine it as the withdrawal temperature.
- the first resin and the second resin are arranged in the fiber axial direction such that the birefringence of the fiber structure composed of the core and the clad satisfies 2.0 ⁇ 10 -4 or more.
- highly oriented POF can be produced.
- FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used for manufacturing the POF 20 of this embodiment.
- the apparatus 100 shown in FIG. 6 includes a first extrusion device 101a for forming a core, a second extrusion device 101b for forming a clad, and a third extrusion device 101c for forming a reinforcing layer.
- Device 100 further comprises first chamber 110 and second chamber 120 .
- the first chamber 110 and the second chamber 120 are arranged vertically downward in this order.
- the first extrusion device 101a has a first storage section 102a that stores the core material 1a, and a first extrusion section 103a that extrudes the core material 1a stored in the first storage section 102a from the first storage section 102a.
- a heater or the like is provided in the first extrusion device 101a so that the core material 1a can be melted in the first housing portion 102a and the melted core material 1a can be kept in a molten state until it is molded.
- a heating unit (not shown) may be further provided. In this case, for example, a rod-shaped core material (preform) 1a is inserted into the first accommodation portion 102a through the upper opening of the first accommodation portion 102a and heated in the first accommodation portion 102a. melted by
- the core material 1a is extruded, for example by gas extrusion, out of the first receiving portion 102a via the first extrusion portion 103a to form the core 2.
- the core material 1a extruded to form the core 2 through the first extruding portion 103a then moves vertically downward and is supplied to each of the first chamber 110 and the second chamber 120 in this order. .
- the second extrusion device 101b has a second storage section 102b that stores the clad material 1b, and a second extrusion section 103b that pushes out the clad material 1b stored in the second storage section 102b from the second storage section 102b.
- the second extrusion device 101b extrudes the melted clad material 1b so as to cover the outer circumference of the core 2 formed of the core material 1a extruded from the first extrusion device 102a.
- the clad material 1 b extruded from the second extrusion device 101 b is supplied to the first chamber 110 .
- the clad 3 covering the outer periphery of the core 2 can be formed.
- a laminate formed of the core 2 and the clad 3 covering the outer periphery of the core 2 moves from the first chamber 110 to the second chamber 120 .
- the third extrusion device 101c includes, for example, a third container 102c containing the reinforcing layer material 1c, a screw 104 arranged in the third container 102c, and a hopper 105 connected to the third container 102c. ing.
- a pellet-shaped reinforcing layer material 1c is supplied through a hopper 105 to the third container 102c.
- the reinforcing layer material 1c supplied to the third container 102c is, for example, kneaded by the screw 104 while being heated, thereby softening and becoming fluid.
- the softened reinforcing layer material 1c is pushed out from the third accommodating portion 102c by the screw 104. As shown in FIG.
- the reinforcing layer material 1c extruded from the third extruder 101c is supplied to the second chamber 120.
- the reinforcement 4 covering the outer circumference of the clad 3 can be formed.
- the laminate 5 in which the core 2 , the clad 3 , and the reinforcing layer 4 are concentrically laminated moves from the second chamber 120 to the diffusion tube 130 arranged vertically below the second chamber 120 .
- Diffusion tube 130 may be provided with, for example, a heater (not shown) for heating this laminate.
- the temperature and viscosity of the laminate 5 passing through the interior are appropriately adjusted.
- the temperature at which the layered body 5 is drawn down when passing through the diffusion tube 130 is desirably set within the temperature range described above. That is, the temperature at which the laminate 5 is pulled down in the diffusion tube 130 is preferably in the range of Tg 1 +50° C. to Tg 1 +150° C.
- the temperature at which the laminated body 5 is pulled down is preferably in the range of Tg 2 +50° C. to Tg 2 +150° C. with respect to the second glass transition temperature Tg 2 of the second resin constituting the clad material, and Tg 1 +70° C. to Tg 1 +70° C. A range of Tg 1 +140° C. is more preferred.
- the temperature at which the laminated body 5 is pulled down is preferably in the range of Tg 1a +60° C. to Tg 1a +170° C.
- the diffusion tube 130 can diffuse a dopant such as a refractive index adjuster contained in the laminate 5 passing through the diffusion tube 130 in the laminate 5 .
- the diffusion tube 130 is connected to the internal channel of the nozzle 140 . That is, the lower opening of the diffusion tube 130 is connected to the inlet of the nozzle 140 , and the laminate 5 that has passed through the diffusion tube 130 flows into the internal flow path through the inlet of the nozzle 140 .
- the laminated body 5 passes through the internal flow path, is reduced in diameter, and is discharged from the discharge port of the nozzle 140 in the form of a fiber.
- the positional relationship between the second chamber 120 and the diffusion tube 130 may be switched. Namely.
- the device configuration may be such that the diffusion pipe 130 is arranged under the first chamber 110, the second chamber 120 is arranged below it, and the nozzle 140 is installed further below the second chamber.
- the laminated body 5 discharged in the form of fibers from the discharge port of the nozzle 140 flows, for example, into the internal space 151 of the cooling pipe 150, is cooled while passing through the internal space 151, and is discharged from the opening of the cooling pipe 150. released to the outside.
- the layered product 5 released from the cooling pipe 150 passes, for example, between two rolls 161 and 162 of a nip roll 160, further passes through guide rolls 163 to 165, and is wound up on a take-up roll 166 as POF 20. be done.
- a displacement gauge 170 for measuring the outer diameter of the POF 20 in the vicinity of the take-up roll 166, for example, between the guide roll 165 and the take-up roll 166 may be provided.
- Example 1 [Preparation of first fluorine-containing resin and second fluorine-containing resin]
- a polymer of perfluoro-4-methyl-2-methylene-1,3-dioxolane (compound of formula (M2) above, “PFMMD”) was prepared as the first fluororesin and the second fluororesin.
- Perfluoro-4-methyl-2-methylene-1,3-dioxolane is obtained by first synthesizing 2-carbomethyl-2-trifluoromethyl-4-methyl-1,3-dioxolane and fluorinating it. Synthesized by decarboxylation separation of the carboxylate.
- Perfluorobenzoyl peroxide was used as a polymerization initiator for the polymerization of perfluoro-4-methyl-2-methylene-1,3-dioxolane.
- the obtained transparent rod was dissolved in Fluorinert FC-75 (manufactured by Sumitomo 3M), and the resulting solution was poured onto a glass plate to obtain a polymer thin film.
- the obtained polymer had a glass transition temperature of 117° C. and was completely amorphous.
- the product was purified by dissolving the transparent rod in hexafluorobenzene and adding chloroform to precipitate. The glass transition temperature of the purified polymer was about 131°C. This polymer was used as the first fluorine-containing resin and the second fluorine-containing resin.
- Refractive index adjuster A chlorotrifluoroethylene oligomer (molecular weight: 585) was used as the refractive index adjuster. Specifically, “Daifloil #10" manufactured by Daikin Industries, Ltd. was distilled, and only the component with a molecular weight of 585 was fractionated and used.
- the first fluorine-containing resin prepared by the above method and the refractive index modifier were melt-mixed at 260° C. to prepare a resin composition.
- the concentration of the refractive index modifier in the resin composition was 3% by mass. This resin composition was used as a core material.
- a POF having a configuration similar to that of the POF 20 shown in FIG. 2 was fabricated.
- a POF having the same configuration as the POF 20 shown in FIG. 2 was fabricated by melt spinning.
- a manufacturing apparatus 100 shown in FIG. 6 was used to manufacture the POF.
- the melting temperature of the core material was 250°C
- the melting temperature of the clad material was 255°C
- the melting temperature of the reinforcing layer material was 240°C.
- the temperature of the diffusion tube was set at 220°C. That is, the draw-down temperature of the laminate consisting of the core, clad, and reinforcing layer was 220°C.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer was 490 ⁇ m.
- Example 2 The temperature of the diffusion tube was set to 230° C. in fabricating the POF.
- a POF was produced in the same manner as in Example 1 except for this point.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer was 490 ⁇ m.
- the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 3 The temperature of the diffusion tube was set at 260° C. in fabricating the POF. Also, the concentration of the refractive index modifier in the core material was set to 8% by mass. Also, the POF was manufactured so that the outer diameter of the core was 52 ⁇ m, the outer diameter of the clad was 55 ⁇ m, and the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 232 ⁇ m. A POF was produced in the same manner as in Example 1 except for these points. Also, the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 4 The temperature of the diffusion tube was set at 260° C. in fabricating the POF.
- the concentration of the refractive index modifier in the core material was set to 12% by mass.
- the POF was manufactured so that the outer diameter of the core was 47 ⁇ m, the outer diameter of the clad was 49 ⁇ m, and the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 232 ⁇ m.
- a POF was produced in the same manner as in Example 1 except for these points. Also, the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
- Comparative example 1 As the POF of Comparative Example 1, "Giga-POF62SR" manufactured by Chromis Fiberoptics Co., Ltd. was used to evaluate flexibility and heat resistance.
- the outer diameter of the core was 62.5 ⁇ m
- the outer diameter of the clad was 90 ⁇ m
- the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
- the resins used as the first fluorine-containing resin and the second fluorine-containing resin were perfluorobutenyl vinyl ether (PBVE) polymer.
- PBVE perfluorobutenyl vinyl ether
- the refractive index adjuster used was perfluoro-1,3,5-triphenylbenzene.
- the reinforcing layer material was Xylex (manufactured by SABIC, glass transition temperature: 113° C.).
- Example 2 The temperature of the diffusion tube was set to 250° C. in fabricating the POF.
- a POF was produced in the same manner as in Example 1 except for this point.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer was 490 ⁇ m.
- the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 3 The concentration of the refractive index modifier in the core material was set to 10% by mass, and the temperature of the diffusion tube was set to 230° C. in the fabrication of the POF.
- a POF was produced in the same manner as in Example 1 except for these points.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer was 490 ⁇ m.
- the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 4 A POF was produced in the same manner as in Example 1, except for the following points. - The concentration of the refractive index modifier in the core material was set to 10% by mass. ⁇ DURABIO T-7450 (manufactured by Mitsubishi Chemical Corporation, glass transition temperature: 129° C.) was used as a reinforcing layer material. - The melting temperature of the reinforcing layer material was 230°C. - In the production of POF, the temperature of the diffusion tube was set to 230°C.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
- Example 5 A POF was produced in the same manner as in Example 1, except for the following points. - The concentration of the refractive index modifier in the core material was set to 10% by mass. ⁇ DURABIO T-7450 (manufactured by Mitsubishi Chemical Corporation, glass transition temperature: 129° C.) was used as a reinforcing layer material. - The melting temperature of the reinforcing layer material was 230°C. - In the production of POF, the temperature of the diffusion tube was set to 240°C.
- the outer diameter of the core was 80 ⁇ m
- the outer diameter of the clad was 125 ⁇ m
- the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
- the POFs of Examples 1-4 achieve greater than 95% dimensional stability when exposed to 105.degree.
- the birefringence of the fiber structure consisting of the core and clad is 2.2 ⁇ 10 ⁇ 4 or more, and the resin is highly oriented in the fiber axis direction. It is believed that such a structure enabled the POFs of Examples 1 to 4 to have improved heat resistance while ensuring good flexibility.
- the POF of Comparative Example 1 had excellent flexibility, but the glass transition temperature of the resin used for the core and clad was lower than 120°C, so when exposed to 105°C for a long time, The dimensional retention was less than 95%, and the heat resistance could not be improved.
- the POFs of Comparative Examples 2 to 5 used the same resins as those of Examples 1 and 2 for the core and clad, so excellent heat resistance was achieved, but a minimum radius of curvature of 5 mm or less could not be ensured.
- the POF of the present invention is suitable for applications requiring heat resistance and flexibility.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Ophthalmology & Optometry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
前記コアは、第1樹脂を含み、
前記クラッドは、第2樹脂を含み、
前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
前記プラスチック光ファイバーが、25℃において曲率半径Rで180度に1回曲げられたときに、前記プラスチック光ファイバーの屈曲部分にクラックが生じない前記曲率半径Rの最小値が、5mm以下である、
プラスチック光ファイバーを提供する。
コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
前記コアは、第1樹脂を含み、
前記クラッドは、第2樹脂を含み、
前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
プラスチック光ファイバーを提供する。
前記ケーブルの少なくとも一方の端部に取り付けられたコネクタと、
を備えた、パッチコードを提供する。
前記ケーブルの第1端部に取り付けられた、電気信号を光信号に変換する第1変換部を備えた第1コネクタと、
前記ケーブルの第2端部に取り付けられた、光信号を電気信号に変換する第2変換部を備えた第2コネクタと、
を備えた、アクティブ光ケーブルを提供する。
POF10は、コア11と、コア11の外周に配置されたクラッド12と、を備え、
コア11は、第1樹脂を含み、
クラッド12は、第2樹脂を含み、
第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
コア11及びクラッド12で構成されたファイバー構造体の複屈折が、2.0×10-4以上である。
コア11は、光を伝送する領域である。コア11は、クラッド12よりも高い屈折率を有している。この構成により、コア11内に入射した光は、クラッド12によってコア11内部に閉じ込められて、POF10内を伝搬する。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF3)2OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
上述したとおり、本実施形態のPOF10において、クラッド12は、第2樹脂を含む。クラッド12は、第2樹脂を主成分として含んでいてもよい。ここで、クラッド12が第2樹脂を主成分として含むとは、クラッド12において、質量比で最も多く含まれる成分が第2樹脂であることである。クラッド12は、第2樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。クラッド12は、第2樹脂のみから構成されていてもよい。クラッド12は、第2樹脂の他に、添加物をさらに含んでいてもよい。
本実施形態のPOFは、例えば溶融紡糸法を用いて製造される。すなわち、本実施形態のPOFの製造方法の一例は、
コア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
クラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
前記積層体を所定の温度に加熱しながら引き落として、前記積層体を紡糸すること、
を含む。上記コア材料は第1樹脂を含み、上記クラッド材料は第2樹脂を含む。
[第1含フッ素樹脂及び第2含フッ素樹脂の作製]
第1含フッ素樹脂及び第2含フッ素樹脂として、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン(上記式(M2)の化合物、「PFMMD」)の重合体を準備した。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランは、まず2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを合成し、これをフッ素化し、得られたカルボン酸塩を脱炭酸分離することによって合成された。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合には、重合開始剤として、パーフルオロ過酸化ベンゾイルが用いられた。
水冷冷却器を備えた3L三口フラスコ、温度計、マグネチックスターラー、及び等圧滴下漏斗を準備し、2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとの混合物を139.4g(計1.4モル)をフラスコに投入した。フラスコは0℃に冷やし、その中にトリフルオロピルビン酸メチルをゆっくりと加え、さらに2時間攪拌した。そこに100mLのジメチルスルホキシド(DMSO)と194gの炭酸カリウムとを1時間かけて加えた後、さらに続けて8時間攪拌し、反応混合物を得た。この生成した反応混合物を1Lの水と混合し、その水相をわけ、これを更にジクロロメチレンで抽出後、このジクロロメチレン溶液を有機反応混合物相と混合し、その溶液を硫酸マグネシウムで乾燥した。溶媒を除去した後、245.5gの粗製物が得られた。この粗製物を減圧下(12Torr)で分留し、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を230.9g得た。精製物の沸点は、77~78℃で、収率は77%であった。なお、得られた精製物が2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランであることは、HNMR及び19FNMRによって確認された。
19FNMR(ppm):-81.3(CF3,s,3F)
10Lの攪拌反応槽に4Lの1,1,2-トリクロロトリフルオロエタンを注入した。攪拌反応槽で、窒素を1340cc/minの流速で流し、フッ素を580cc/minの流速で流し、窒素/フッ素の雰囲気下とした。5分後、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの290gを750mLの1,1,2-トリクロロトリフルオロエタン溶液に溶かし、この溶液を反応槽に0.5ml/分の速度で加えた。反応槽は0℃に冷却した。全てのジオキソランを24時間で加えた後、フッ素ガス流を止めた。窒素ガスをパージした後、水酸化カリウム水溶液を弱アルカリ性になるまで加えた。
上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得た。このカリウム塩を1日間70℃で真空乾燥した。250℃~280℃で、かつ窒素又はアルゴン雰囲気下で、塩を分解した。-78℃に冷やした冷却トラップで凝縮させ、収率82%でパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得た。生成物の沸点は45℃/760mmHgであった。19FNMRとGC-MSを用いて生成物を同定した。
GC-MS:m/e244(Molecular ion)225,197,169,150,131,100,75,50.
上記方法で得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン100gと、パーフルオロ過酸化ベンゾイル1gとをガラスチューブに封入した。このガラスチューブは、凍結脱気法によって系中の酸素が除去された後にアルゴンが再充填されて、50℃で数時間加熱された。内容物は固体となったが、さらに70℃で一晩加熱すると、100gの透明な棒状物が得られた。
屈折率調整剤には、クロロトリフルオロエチレンオリゴマー(分子量585)を用いた。具体的には、ダイキン工業株式会社製「ダイフロイル#10」を蒸留し、分子量585の成分のみを分取して用いた。
上記の方法で作製した第1含フッ素樹脂と、上記の屈折率調整剤とを、260℃にて溶融混合して樹脂組成物を作製した。樹脂組成物における屈折率調整剤の濃度は、3質量%であった。この樹脂組成物をコア材料として用いた。
上記の方法で作製した第2含フッ素樹脂をクラッド材料として用いた。
補強層材料として、Xylex(SABIC社製、ガラス転移温度:113℃)を用いた。
図2に示されたPOF20と同様の構成を有するPOFを作製した。上記の方法で準備したコア材料、クラッド材料、及び補強層を用い、溶融紡糸法によって、図2に示されたPOF20と同様の構成を有するPOFを作製した。POFの作製には、図6に示した製造装置100が用いられた。コア材料の溶融温度は250℃、クラッド材料の溶融温度は255℃、補強層材料の溶融温度は240℃であった。また、拡散管の温度は220℃に設定された。すなわち、コア、クラッド、及び補強層からなる積層体の引き落としの温度は、220℃であった。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。
配向性の評価は、複屈折の測定によって行われた。作製されたPOFから補強層を取り除き、コア及びクラッドで構成されたファイバー構造体を得た。補強層は、POFを塩化メチレンに浸漬し、補強層のみを溶解させる方法で取り除かれた。ファイバー構造体の複屈折は、(株)フォトニックラティス製「WPA-micro」により、ファイバー構造体を側面から測定した。表1に、複屈折の測定結果を示す。
作製されたPOFについて、25℃において、曲率半径R=10mm、5mm、2.5mm、2mm、及び1mmで、180度曲げ試験を行った。曲率半径R=10mm、5mm、2.5mm、2mm、又は1mmを有する溝が設けられた試験器具を準備し、その溝内にPOFを入れて180度に屈曲させた後、元に戻し、その後、POFの屈曲部分を顕微鏡(倍率200)で観察してクラックの有無を確認した。それぞれの曲率半径についてPOFの屈曲は1回行われた。表1に、曲げ試験の結果を示す。表1において、「〇」はクラックが確認されなかったことを表し、「×」はクラックが確認されたことを表す。
作製されたPOFを1mの長さに切断し、105℃のオーブンに投入した。250時間経過後、POFを取り出し、長さを測定した。105℃で250時間保持される前のPOFの長さに対する、105℃で250時間保持された後の長さ割合を求めて、寸法保持率とした。表1に、寸法保持率を示す。
POFの作製において、拡散管の温度を230℃とした。この点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
POFの作製において、拡散管の温度を260℃とした。また、コア材料における屈折率調整剤の濃度を8質量%とした。また、コアの外径が52μm、クラッドの外径が55μm、補強層の外径(すなわちPOFの外径)が232μmとなるようにPOFを作製した。これらの点以外は、実施例1と同様の方法でPOFを作製した。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
POFの作製において、拡散管の温度を260℃とした。コア材料における屈折率調整剤の濃度を12質量%とした。また、コアの外径が47μm、クラッドの外径が49μm、補強層の外径(すなわちPOFの外径)が232μmとなるようにPOFを作製した。これらの点以外は、実施例1と同様の方法でPOFを作製した。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
比較例1のPOFとして、(株)Chromis Fiberoptics製の「Giga-POF62SR」を用いて、柔軟性および耐熱性の評価を行った。比較例1のPOFでは、コアの外径は62.5μm、クラッドの外径は90μm、補強層の外径(すなわちPOFの外径)は490μmであった。比較例1のPOFにおいて、第1含フッ素樹脂及び第2含フッ素樹脂として用いられていた樹脂は、パーフルオロブテニルビニルエーテル(PBVE)重合体であった。また、用いられていた屈折率調整剤は、パーフルオロ-1,3,5-トリフェニルベンゼンであった。補強層材料は、Xylex(SABIC社製、ガラス転移温度:113℃)であった。
各特性の評価は、実施例1と同様の方法で行われた。
POFの作製において、拡散管の温度を250℃とした。この点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
コア材料における屈折率調整剤の濃度を10質量%と、さらにPOFの作製において、拡散管の温度を230℃とした。これらの点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
以下の点以外は、実施例1と同様の方法でPOFを作製した。
・コア材料における屈折率調整剤の濃度を10質量%とした。
・補強層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用いた。
・補強層材料の溶融温度は230℃とした。
・POFの作製において、拡散管の温度を230℃とした。
以下の点以外は、実施例1と同様の方法でPOFを作製した。
・コア材料における屈折率調整剤の濃度を10質量%とした。
・補強層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用いた。
・補強層材料の溶融温度は230℃とした。
・POFの作製において、拡散管の温度を240℃とした。
Claims (15)
- コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
前記コアは、第1樹脂を含み、
前記クラッドは、第2樹脂を含み、
前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
前記プラスチック光ファイバーが、25℃において曲率半径Rで180度に1回曲げられたときに、前記プラスチック光ファイバーの屈曲部分にクラックが生じない前記曲率半径Rの最小値が、5mm以下である、
プラスチック光ファイバー。 - 前記曲率半径Rの前記最小値が、5mm未満である、
請求項1に記載のプラスチック光ファイバー。 - 前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
請求項1又は2に記載のプラスチック光ファイバー。 - コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
前記コアは、第1樹脂を含み、
前記クラッドは、第2樹脂を含み、
前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
プラスチック光ファイバー。 - 前記第1樹脂及び前記第2樹脂からなる群より選択される少なくとも1つが、含フッ素樹脂である、
請求項1~4のいずれか1項に記載のプラスチック光ファイバー。 - 前記含フッ素重合体は、下記式(4)で表される構成単位(D)をさらに含有する、
請求項6~8のいずれか一項に記載のプラスチック光ファイバー。
- 前記クラッドの外周に配置された補強層をさらに含む、
請求項1~9のいずれか1項に記載のプラスチック光ファイバー。 - 105℃で250時間保持された後の前記プラスチック光ファイバーの寸法保持率が、95%以上であり、
前記寸法保持率は、105℃で250時間保持される前の前記プラスチック光ファイバーの長さに対する、105℃で250時間保持された後の前記プラスチック光ファイバーの長さの割合である、
請求項10に記載のプラスチック光ファイバー。 - 前記コアの材料のガラス転移温度は、105℃以上である、
請求項1~11のいずれか1項に記載のプラスチック光ファイバー。 - 請求項1~12のいずれか1項に記載のプラスチック光ファイバーを備えた、ハイブリッドケーブル。
- 請求項1~12のいずれか1項に記載のプラスチック光ファイバーが収容されたケーブルと、
前記ケーブルの少なくとも一方の端部に取り付けられたコネクタと、
を備えた、パッチコード。 - 請求項1~12のいずれか一項に記載のプラスチック光ファイバーが収容されたケーブルと、
前記ケーブルの第1端部に取り付けられた、電気信号を光信号に変換する第1変換部を備えた第1コネクタと、
前記ケーブルの第2端部に取り付けられた、光信号を電気信号に変換する第2変換部を備えた第2コネクタと、
を備えた、アクティブ光ケーブル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022001820.8T DE112022001820T5 (de) | 2021-03-29 | 2022-03-29 | Optische Kunststofffaser, Hybridkabel, Patchkabel und aktives optisches Kabel |
US18/553,090 US20240210615A1 (en) | 2021-03-29 | 2022-03-29 | Plastic optical fiber, hybrid cable, patch cord, and active optical cable |
JP2023511444A JPWO2022210810A1 (ja) | 2021-03-29 | 2022-03-29 | |
CN202280025320.5A CN117099028A (zh) | 2021-03-29 | 2022-03-29 | 塑料光纤、混合电缆、跳线及有源光缆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-056221 | 2021-03-29 | ||
JP2021056221 | 2021-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210810A1 true WO2022210810A1 (ja) | 2022-10-06 |
Family
ID=83456469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015739 WO2022210810A1 (ja) | 2021-03-29 | 2022-03-29 | プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240210615A1 (ja) |
JP (1) | JPWO2022210810A1 (ja) |
CN (1) | CN117099028A (ja) |
DE (1) | DE112022001820T5 (ja) |
TW (1) | TW202307024A (ja) |
WO (1) | WO2022210810A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006276412A (ja) * | 2005-03-29 | 2006-10-12 | Kyocera Corp | 光コード |
JP2007504125A (ja) * | 2003-08-29 | 2007-03-01 | 独立行政法人科学技術振興機構 | 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料 |
WO2014042023A1 (ja) * | 2012-09-11 | 2014-03-20 | 旭硝子株式会社 | プラスチック光ファイバおよびその製造方法 |
US20180224617A1 (en) * | 2014-08-21 | 2018-08-09 | Ls Cable & System Ltd. | Optical and electrical composite multimedia cable |
JP2020071432A (ja) * | 2018-11-02 | 2020-05-07 | 三菱鉛筆株式会社 | 光コネクタ及び光ケーブル |
WO2020230599A1 (ja) * | 2019-05-13 | 2020-11-19 | 日東電工株式会社 | プラスチック光ファイバおよびその製造方法、ならびに該プラスチック光ファイバを用いたプラスチック光ファイバコード |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071972A (ja) | 2000-06-12 | 2002-03-12 | Asahi Glass Co Ltd | プラスチック光ファイバ |
-
2022
- 2022-03-29 WO PCT/JP2022/015739 patent/WO2022210810A1/ja active Application Filing
- 2022-03-29 US US18/553,090 patent/US20240210615A1/en active Pending
- 2022-03-29 TW TW111112058A patent/TW202307024A/zh unknown
- 2022-03-29 CN CN202280025320.5A patent/CN117099028A/zh active Pending
- 2022-03-29 DE DE112022001820.8T patent/DE112022001820T5/de active Pending
- 2022-03-29 JP JP2023511444A patent/JPWO2022210810A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504125A (ja) * | 2003-08-29 | 2007-03-01 | 独立行政法人科学技術振興機構 | 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料 |
JP2006276412A (ja) * | 2005-03-29 | 2006-10-12 | Kyocera Corp | 光コード |
WO2014042023A1 (ja) * | 2012-09-11 | 2014-03-20 | 旭硝子株式会社 | プラスチック光ファイバおよびその製造方法 |
US20180224617A1 (en) * | 2014-08-21 | 2018-08-09 | Ls Cable & System Ltd. | Optical and electrical composite multimedia cable |
JP2020071432A (ja) * | 2018-11-02 | 2020-05-07 | 三菱鉛筆株式会社 | 光コネクタ及び光ケーブル |
WO2020230599A1 (ja) * | 2019-05-13 | 2020-11-19 | 日東電工株式会社 | プラスチック光ファイバおよびその製造方法、ならびに該プラスチック光ファイバを用いたプラスチック光ファイバコード |
Also Published As
Publication number | Publication date |
---|---|
DE112022001820T5 (de) | 2024-01-11 |
TW202307024A (zh) | 2023-02-16 |
JPWO2022210810A1 (ja) | 2022-10-06 |
CN117099028A (zh) | 2023-11-21 |
US20240210615A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100768020B1 (ko) | 플라스틱 광학 섬유 | |
US5760139A (en) | Graded-refractive-index optical plastic material and method for its production | |
US7459512B2 (en) | Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer | |
JP2002071972A (ja) | プラスチック光ファイバ | |
US9304251B2 (en) | Plastic optical fiber and method for its production | |
WO2022210810A1 (ja) | プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル | |
WO2023054141A1 (ja) | プラスチック光ファイバー及びその製造方法 | |
WO2022210812A1 (ja) | プラスチック光ファイバーの製造方法 | |
WO2023190794A1 (ja) | プラスチック光ファイバー | |
WO2022176864A1 (ja) | プラスチック光ファイバー及びその製造方法 | |
US20240329296A1 (en) | Plastic optical fiber, optical cord, and active optical cable | |
WO2022209921A1 (ja) | プラスチック光ファイバー及びその製造方法 | |
US20240329295A1 (en) | Plastic optical fiber, optical cord, and active optical cable | |
JP4886256B2 (ja) | プラスチック光ファイバ | |
CN118732148A (zh) | 塑料光纤、光学缆线和有源光缆 | |
JP2020166223A (ja) | プラスチック光ファイバー | |
WO2023152926A1 (ja) | プラスチック光ファイバーおよびその製造方法 | |
JP2001302935A (ja) | 光学樹脂組成物およびその用途 | |
CN116917408A (zh) | 光学树脂组合物及光学树脂成形体 | |
JP2003098365A (ja) | プラスチック光ファイバとその製造方法 | |
JP2011095762A (ja) | プラスチック光ファイバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781021 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511444 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280025320.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18553090 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022001820 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22781021 Country of ref document: EP Kind code of ref document: A1 |