WO2022210810A1 - プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル - Google Patents

プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル Download PDF

Info

Publication number
WO2022210810A1
WO2022210810A1 PCT/JP2022/015739 JP2022015739W WO2022210810A1 WO 2022210810 A1 WO2022210810 A1 WO 2022210810A1 JP 2022015739 W JP2022015739 W JP 2022015739W WO 2022210810 A1 WO2022210810 A1 WO 2022210810A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
optical fiber
plastic optical
core
pof
Prior art date
Application number
PCT/JP2022/015739
Other languages
English (en)
French (fr)
Inventor
享 清水
紘司 大村
武士 斉藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to DE112022001820.8T priority Critical patent/DE112022001820T5/de
Priority to US18/553,090 priority patent/US20240210615A1/en
Priority to JP2023511444A priority patent/JPWO2022210810A1/ja
Priority to CN202280025320.5A priority patent/CN117099028A/zh
Publication of WO2022210810A1 publication Critical patent/WO2022210810A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F124/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D137/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/44528Patch-cords; Connector arrangements in the system or in the box

Definitions

  • the present invention relates to plastic optical fibers, hybrid cables, patch cords, and active optical cables.
  • a plastic optical fiber has a central core and a clad that covers the outer circumference of the core as the part that transmits light.
  • the core is made of a resin material having a high refractive index.
  • the clad is made of a resin material having a lower refractive index than the resin material of the core in order to confine light within the core.
  • Patent Document 1 discloses that an amorphous fluoropolymer (a) having substantially no C—H bonds is used in an inner layer corresponding to a core as a plastic optical fiber having excellent heat resistance
  • a cladding discloses a plastic optical fiber in which a fluoropolymer (c) having a lower refractive index than the fluoropolymer (a) and having affinity with the fluoropolymer (a) is used for the outer layer corresponding to .
  • plastic optical fibers are required to have both heat resistance and flexibility.
  • the materials for the core and clad are selected with only the improvement of heat resistance taken into consideration, the flexibility may decrease.
  • an object of the present invention is to provide a plastic optical fiber with improved heat resistance while ensuring good flexibility.
  • a further object of the present invention is to provide hybrid cables, patch cords, and active optical cables comprising plastic optical fibers that are both flexible and heat resistant.
  • a first aspect of the present invention is A plastic optical fiber comprising a core and a clad disposed around the core,
  • the core includes a first resin
  • the clad includes a second resin
  • the first glass transition temperature Tg1 of the first resin is 120° C. or higher
  • the second glass transition temperature Tg2 of the second resin is 120°C or higher
  • the minimum value of the curvature radius R that does not cause cracks in the bent portion of the plastic optical fiber when the plastic optical fiber is bent once at 25° C. with a curvature radius R of 180 degrees is 5 mm or less.
  • the Company provides plastic optical fiber.
  • a second aspect of the present invention is A plastic optical fiber comprising a core and a clad disposed around the core,
  • the core includes a first resin
  • the clad includes a second resin
  • the first glass transition temperature Tg1 of the first resin is 120° C. or higher
  • the second glass transition temperature Tg2 of the second resin is 120°C or higher
  • a fiber structure composed of the core and the cladding has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more.
  • the Company provides plastic optical fiber.
  • a third aspect of the present invention provides a hybrid cable comprising the plastic optical fiber according to the first aspect.
  • a fourth aspect of the present invention is a cable housing the plastic optical fiber according to the first aspect; a connector attached to at least one end of the cable; Provide patch cords with
  • a fifth aspect of the present invention is a cable housing the plastic optical fiber according to the first aspect; a first connector attached to the first end of the cable and comprising a first conversion portion for converting an electrical signal to an optical signal; a second connector attached to the second end of the cable and comprising a second conversion portion for converting an optical signal into an electrical signal;
  • the present invention it is possible to provide a plastic optical fiber with improved heat resistance while ensuring good flexibility. Further, according to the present invention, it is possible to provide hybrid cables, patch cords and active optical cables with plastic optical fibers that are both flexible and heat resistant.
  • FIG. 1 is a schematic diagram showing an example of the cross-sectional structure of a plastic optical fiber according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the plastic optical fiber according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of a hybrid cable according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram showing an example of a patch cord according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram showing an example of an active optical cable according to an embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used to manufacture plastic optical fibers according to embodiments of the present invention.
  • the POF of this embodiment includes a core and a clad arranged around the core.
  • the POF of this embodiment is, for example, a gradient index (GI) type POF.
  • FIG. 1 shows an example of the cross-sectional structure of the POF of this embodiment.
  • the POF 10 shown in FIG. 1 includes a core 11 and a clad 12 arranged around the outer periphery of the core 11.
  • the core 11 contains the first resin.
  • the glass transition temperature (first glass transition temperature Tg 1 ) of the first resin is 120° C. or higher.
  • the clad 12 contains a second resin.
  • the glass transition temperature (second glass transition temperature Tg 2 ) of the second resin is 120° C. or higher.
  • the glass transition temperature means the midpoint glass transition temperature (T mg ) determined according to JIS K7121:1987.
  • the POF 10 of the present embodiment can improve heat resistance while ensuring good flexibility. That is, the POF 10 of this embodiment can improve heat resistance while ensuring flexibility within a practical range.
  • the first glass transition temperature Tg 1 of the first resin contained in the core 11 and the second glass transition temperature Tg 2 of the second resin contained in the clad 12 are both 120° C. or higher.
  • the POF 10 of the embodiment can improve heat resistance.
  • the POF 10 of the present embodiment can suppress the dimensional change to be small even when exposed to a high temperature of about 105°C.
  • the first glass transition temperature Tg1 and the second glass transition temperature Tg2 are preferably 125°C or higher, more preferably 130°C or higher.
  • the POF 10 of the present embodiment has excellent flexibility such that the minimum radius of curvature, that is, the radius of curvature at which cracks occur when bent 180 degrees, can be reduced to 5 mm or less. Therefore, the POF 10 of this embodiment can be used in applications requiring heat resistance while ensuring the flexibility required of the POF.
  • the method for obtaining the above minimum radius of curvature for the POF 10 of this embodiment is, for example, to bend the POF 10 by 180 degrees with the curvature radius R to be measured, bend the POF 10 once, and then release the bend. After that, the bent portion of the POF 10 is observed under a microscope to check for cracks.
  • Such a 180-degree bending test is performed once at each curvature radius R by changing the curvature radius R.
  • the minimum radius of curvature of the POF can be qualified as less than 2.5 mm.
  • the 180-degree bending of the POF 10 can be performed, for example, by preparing a test instrument provided with a groove having a radius of curvature R to be measured, inserting the POF 10 into the groove, and bending the POF 10. Such a 180-degree bend test may be performed multiple times with different radii of curvature R as described above to determine the minimum radius of curvature.
  • the radius of curvature R in 180-degree bending is the inner diameter of the POF 10 (that is, the radius of curvature measured along the inner surface of the POF 10).
  • both the first resin contained in the core 11 and the second resin contained in the clad 12 have a high glass transition temperature of 120° C. or higher and a minimum radius of curvature of 5 mm or less. Flexibility is realized. Such excellent flexibility can be realized, for example, by increasing the orientation of the first resin and the second resin in the core 11 and the clad 12 .
  • the orientation of the first resin in the core 11 and the orientation of the second resin in the clad 12 can be indicated by birefringence.
  • the birefringence of the fiber structure composed of the core 11 and the clad 12 is preferably 2.0 ⁇ 10 ⁇ 4 or more, more preferably 2.5 ⁇ 10 ⁇ 4 or more. It is more preferably 7 ⁇ 10 ⁇ 4 or more, further preferably 3.0 ⁇ 10 ⁇ 4 or more, further preferably 4.0 ⁇ 10 ⁇ 4 or more, further preferably 5.0 ⁇ 10 ⁇ 4 or more. It is more preferably 6.0 ⁇ 10 ⁇ 4 or more, more preferably 6.0 ⁇ 10 ⁇ 4 or more.
  • the fiber structure composed of core 11 and cladding 12 is POF 10 in the case of POF 10 having the configuration shown in FIG.
  • the portion constituted by the core 11 and the clad 12 excluding the other layer is the above fiber becomes a structure. Since the fiber structure has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more, the molecular chains of the first resin and the second resin are highly aligned in the fiber axis direction, and the flexibility of the fiber structure is improved. . Therefore, the POF 10 of this embodiment can have excellent flexibility.
  • the POF 10 of this embodiment may have the following configuration as another form:
  • the POF 10 includes a core 11 and a clad 12 arranged around the core 11,
  • the core 11 contains a first resin
  • the clad 12 contains a second resin
  • the first glass transition temperature Tg 1 of the first resin is 120° C. or higher
  • the second glass transition temperature Tg2 of the second resin is 120°C or higher
  • a fiber structure composed of the core 11 and the clad 12 has a birefringence of 2.0 ⁇ 10 ⁇ 4 or more.
  • the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber. Excellent flexibility can be achieved, such that it can be made as small as 5 mm or less. That is, the POF 10 having such a structure can also improve heat resistance while ensuring good flexibility.
  • the birefringence of the fiber structure is preferably 2.5 ⁇ 10 ⁇ 4 or more, more preferably 2.7 ⁇ 10 ⁇ 4 or more, and more preferably 3.0 ⁇ 10 ⁇ 4 or more. is more preferably 4.0 ⁇ 10 ⁇ 4 or more, more preferably 5.0 ⁇ 10 ⁇ 4 or more, further preferably 6.0 ⁇ 10 ⁇ 4 or more preferable.
  • orientation i.e. the birefringence value of the fiber structure composed of the core 11 and the clad 12 was divided by the radius of the outer diameter of the clad (unit: m).
  • the value (orientation ⁇ (cladding outer diameter radius (unit: m)) (core + clad birefringence) ⁇ (cladding outer diameter radius (unit: m)) is preferably 4.0 or more, 6.0 or more is more preferable, and 8.0 or more is even more preferable.
  • At least one selected from the group consisting of the first resin and the second resin may be a fluorine-containing resin.
  • both the first resin and the second resin are fluorine-containing resins.
  • a fluorine-containing resin can achieve low transmission loss over a wide wavelength range. Therefore, the fluororesin is preferably used as the resin forming the core 11 and the clad 12 .
  • Core 11 is a region that transmits light. Core 11 has a higher refractive index than clad 12 . With this configuration, the light that has entered the core 11 is confined inside the core 11 by the clad 12 and propagates through the POF 10 .
  • the core 11 may contain the first resin as a main component.
  • that the core 11 contains the first resin as a main component means that in the core 11, the first resin is the component that is contained in the largest amount in terms of mass ratio.
  • the core 11 may contain the first resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the core 11 may further contain additives in addition to the first resin.
  • Additives are, for example, refractive index modifiers. That is, the core 11 may be made of a resin composition containing a first resin and an additive such as a refractive index adjuster.
  • the refractive index modifier for example, a known refractive index modifier used for the material of the core 11 of the POF 10 can be used.
  • the material of the core 11 may contain additives other than the refractive index modifier.
  • the glass transition temperature of the material of the core 11, that is, the material constituting the core 11 is preferably 105°C or higher.
  • the material of the core 11 is a resin composition composed of the first resin and these additives when the core 11 further contains an additive such as a refractive index adjuster in addition to the first resin. is.
  • the mixture (resin composition) of the first resin and the refractive index adjuster preferably has a glass transition temperature of 105° C. or higher.
  • the core 11 has a refractive index distribution in which the refractive index changes in the radial direction.
  • a refractive index distribution can be formed, for example, by adding a refractive index modifier to the first resin and diffusing (for example, thermal diffusion) the refractive index modifier in the first resin.
  • the first resin contained in the core 11 is not particularly limited as long as it has high transparency.
  • the first resin include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
  • fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • the first resin of the core 11 is preferably a fluororesin containing a fluoropolymer.
  • the fluororesin contained in the core 11 will be referred to as the first fluororesin
  • the fluoropolymer contained in the first fluororesin will be referred to as the first fluoropolymer.
  • the first fluoropolymer contained in the first fluororesin preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and does not bind to carbon atoms. It is particularly preferred that all hydrogen atoms in the group are replaced by fluorine atoms. In other words, the first fluoropolymer preferably contains substantially no hydrogen atoms and is fully fluorinated. In the present specification, the fact that the fluoropolymer does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the fluoropolymer is 1 mol % or less.
  • the first fluoropolymer preferably has a fluoroalicyclic structure.
  • the fluorinated alicyclic structure may be contained in the main chain of the fluoropolymer, or may be contained in the side chain of the first fluoropolymer.
  • the first fluoropolymer has, for example, a structural unit (A) represented by the following structural formula (1).
  • R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
  • R ff1 and R ff2 may combine to form a ring.
  • Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1.
  • a perfluoroalkyl group may be linear or branched.
  • the perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
  • the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a perfluoroalkyl ether group may be linear or branched.
  • a perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
  • the ring may be a 5-membered ring or a 6-membered ring.
  • This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
  • structural unit (A) include structural units represented by the following formulas (A1) to (A8).
  • the structural unit (A) is preferably a structural unit (A2), ie, a structural unit represented by the following formula (5).
  • the first fluoropolymer may contain one or more of the structural units (A).
  • the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the first fluoropolymer tends to have higher heat resistance.
  • the structural unit (A) is contained in an amount of 40 mol % or more, the first fluoropolymer tends to have higher transparency and higher mechanical strength in addition to high heat resistance.
  • the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
  • the structural unit (A) is derived from, for example, a compound represented by the following formula (6).
  • R ff 1 to R ff 4 are the same as in formula (1).
  • the compound represented by formula (6) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
  • Specific examples of the compound represented by the formula (6) include compounds represented by the following formulas (M1) to (M8).
  • the fluoropolymer may further contain other structural units in addition to the structural unit (A).
  • Other structural units include the following structural units (B) to (D).
  • the structural unit (B) is represented by the following formula (2).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (B).
  • the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (B) is derived from, for example, a compound represented by the following formula (7).
  • R 1 to R 4 are the same as in formula (2).
  • the compound represented by formula (7) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
  • the structural unit (C) is represented by the following formula (3).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (C).
  • the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (C) is derived from, for example, a compound represented by the following formula (8).
  • R 5 to R 8 are the same as in formula (3).
  • Compounds represented by formula (8) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
  • the structural unit (D) is represented by the following formula (4).
  • Z represents an oxygen atom, a single bond, or —OC(R 19 R 20 )O—
  • each of R 9 to R 20 independently represents a fluorine atom or perfluoro having 1 to 5 carbon atoms. It represents an alkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • s and t each independently represent an integer of 0 to 5 and s+t is an integer of 1 to 6 (provided that s+t may be 0 when Z is -OC(R 19 R 20 )O-).
  • the structural unit (D) is preferably represented by the following formula (9).
  • the structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (4).
  • R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. .
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (D).
  • the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units.
  • the content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
  • the structural unit (D) is derived, for example, from a compound represented by the following formula (10).
  • Z, R 9 -R 18 , s and t are the same as in formula (4).
  • the compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
  • Structural unit (D) is preferably derived from a compound represented by the following formula (11).
  • R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
  • the first fluoropolymer may further contain structural units other than the structural units (A) to (D), but substantially other structural units other than the structural units (A) to (D) preferably does not contain It should be noted that the fact that the fluoropolymer does not substantially contain other structural units other than the structural units (A) to (D) means that the structural units (A) to It means that the total of (D) is 95 mol % or more, preferably 98 mol % or more.
  • the polymerization method for the first fluoropolymer is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used.
  • the polymerization initiator for polymerizing the fluoropolymer may be a fully fluorinated compound.
  • the first fluoropolymer constitutes the first fluororesin used as the first resin.
  • the first glass transition temperature Tg1 of the first resin is 120°C or higher. Therefore, the glass transition temperature of the first fluoropolymer is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher.
  • the refractive index of the core 11 is not particularly limited as long as it is higher than the refractive index of the clad 12 .
  • the difference between the refractive indices of core 11 and cladding 12 be larger for the wavelength of light used.
  • the refractive index of the core 11 can be 1.340 or more, or 1.360 or more, for the wavelength of light used (for example, a wavelength of 850 nm).
  • the upper limit of the refractive index of the core is not particularly limited, it is, for example, 1.4000 or less.
  • the clad 12 contains the second resin.
  • the clad 12 may contain the second resin as a main component.
  • the fact that the clad 12 contains the second resin as a main component means that the second resin is the component that is contained in the clad 12 at the highest mass ratio.
  • the clad 12 may contain the second resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the clad 12 may be composed only of the second resin.
  • the clad 12 may further contain additives in addition to the second resin.
  • the second resin contained in the clad 12 is not particularly limited as long as it has high transparency.
  • the second resin include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
  • fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • the second resin of the clad 12 is preferably a fluorine-containing resin containing a fluorine-containing polymer.
  • the fluororesin contained in the clad 12 will be referred to as the second fluororesin
  • the fluoropolymer contained in the second fluororesin will be referred to as the second fluoropolymer.
  • fluororesin that can be used as the second fluororesin are the same as those exemplified as the fluororesin that can be used as the first fluororesin. That is, examples of the fluoropolymer that can be used as the second fluoropolymer are the same as those exemplified as the fluoropolymer that can be used as the first fluoropolymer.
  • the second fluoropolymer constitutes the second fluororesin used as the second resin.
  • the second glass transition temperature Tg2 of the second resin is 120°C or higher. Therefore, the glass transition temperature of the second fluoropolymer is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher.
  • the second resin may be a resin different from the first resin, but preferably has affinity with the first resin.
  • the second resin may contain the same polymerized units as the polymerized units contained in the first resin, or may be the same as the first resin. As a result, separation is less likely to occur at the interface between the core 11 and the clad 12, and transmission loss, for example, can be kept low.
  • the refractive index of the cladding 12 is not particularly limited as long as it is designed according to the refractive index of the core 11 .
  • the clad 12 may have a refractive index of, for example, 1.310 or less, or may have a refractive index of 1.300 or less at the wavelength of light used (eg, wavelength of 850 nm).
  • FIG. 2 shows a modification of the POF of this embodiment.
  • the POF 20 shown in FIG. 2 has a configuration in which a reinforcing layer 21 arranged around the outer circumference of the clad 12 is further provided in the POF 10 .
  • Reinforcing layer 21 is provided to improve the mechanical strength of POF 10 .
  • materials and structures used as reinforcement layers in known POFs can be applied.
  • materials for the reinforcing layer 21 include various engineering plastics such as polycarbonate, polyester, cycloolefin polymer, cycloolefin copolymer, polytetrafluoroethylene (PTFE), modified PTFE, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer. (PFA), or copolymers and mixtures thereof.
  • the POF 20 of this embodiment provided with the reinforcing layer 21 can have a dimensional retention rate of 95% or more after being held at 105°C for 250 hours, for example. Further, the POF 20 of the present embodiment can have a dimensional retention rate of 96% or more, or 98% or more, after being held at 105° C. for 250 hours, for example.
  • the dimension retention ratio is the ratio of the length of the POF 20 after being held at 105° C. for 250 hours to the length of the POF 20 before being held at 105° C. for 250 hours.
  • POF of this embodiment can have both heat resistance and flexibility, it can be applied to applications that require high heat resistance and flexibility.
  • POFs of the present embodiments may also be suitable for hybrid cables, patch cords, active optical cables, and the like, for example.
  • FIG. 3 is a cross-sectional view showing an example of a hybrid cable provided with the POF 20 of this embodiment.
  • a hybrid cable 30 shown in FIG. 3 includes the POF 20 of this embodiment, a plurality of conductors 31 arranged around the POF 20 , and a covering layer 32 covering the POF 20 and the conductors 31 .
  • FIG. 4 is a schematic diagram showing an example of a patch cord provided with the POF 20 of this embodiment.
  • the patch cord 40 shown in FIG. 4 includes a cable 41 accommodating the POF 20 of this embodiment and a connector 42 attached to at least one end of the cable 41 .
  • FIG. 5 is a schematic diagram showing an example of an active optical cable equipped with the POF 20 of this embodiment.
  • the active optical cable 50 shown in FIG. 5 includes a cable 51 accommodating the POF 20 of the present embodiment, and a first converter ( (not shown) and a second connector 53 having a second converter (not shown) attached to the second end 51b of the cable 51 for converting an optical signal into an electrical signal. And prepare.
  • the POF of this embodiment is manufactured using, for example, a melt spinning method. That is, an example of the method for manufacturing the POF of this embodiment is Melting a core material and extruding it into a fiber shape to produce a fiber-like molded body made of the core material; Melting the clad material and extruding it so as to cover the surface of the molded body to produce a laminate in which the core material and the clad material are concentrically laminated; drawing down the laminate while heating it to a predetermined temperature to spin the laminate; including.
  • the core material comprises a first resin and the cladding material comprises a second resin.
  • the POF of the present embodiment is excellent in that both the first resin contained in the core and the second resin contained in the clad have a high glass transition temperature of 120° C. or higher and, for example, a minimum radius of curvature of 5 mm or less. It also has flexibility. In order to achieve such excellent flexibility using a resin having a high glass transition temperature, for example, it is preferable that the first resin and the second resin have high orientation in the core and clad.
  • the temperature at which the core material and the clad material are concentrically laminated to each other is reduced to The temperature is set such that the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber.
  • the drawdown temperature of the laminate is usually determined by considering the glass transition temperatures of the core and cladding materials.
  • the temperature at which the laminate is pulled down is lower than the glass transition temperatures of the core material and the clad material so that the molecular chains of the first resin and the second resin are highly aligned in the axial direction of the fiber. It is preferably set lower than the conventional general withdrawal temperature determined.
  • the temperature at which the laminate is pulled down should be determined in consideration of the glass transition temperatures of the first and second resins used, and the content of additives such as refractive index modifiers contained in the core material. Although it is not particularly limited, it is desirable that the POF to be produced is as low as possible so as not to cause breakage.
  • the temperature at which the laminate is pulled down is preferably in the range of Tg 1 +50° C. to Tg 1 +150° C., more preferably in the range of Tg 1 +70° C. to Tg 1 +140° C. with respect to the first glass transition temperature Tg 1 of the first resin. more preferred.
  • the temperature at which the laminate is pulled down is preferably in the range of Tg 2 +50° C. to Tg 2 +150° C., more preferably in the range of Tg 1 +70° C. to Tg 1 +140° C. relative to the second glass transition temperature Tg 2 of the second resin. is more preferred.
  • the draw-down temperature is relative to the glass transition temperature Tg1a of this resin composition.
  • Tg 1a +60° C. to Tg 1a +170° C., and more preferably Tg 1a +80° C. to Tg 1a +160° C. It is determined from the first glass transition temperature Tg 1 of the first resin used, the glass transition temperature Tg 1a of the resin composition containing the first resin and the refractive index modifier, and the second glass transition temperature Tg 2 of the second resin. It is desirable to select an appropriate temperature from the above preferred temperature range and determine it as the withdrawal temperature.
  • the first resin and the second resin are arranged in the fiber axial direction such that the birefringence of the fiber structure composed of the core and the clad satisfies 2.0 ⁇ 10 -4 or more.
  • highly oriented POF can be produced.
  • FIG. 6 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used for manufacturing the POF 20 of this embodiment.
  • the apparatus 100 shown in FIG. 6 includes a first extrusion device 101a for forming a core, a second extrusion device 101b for forming a clad, and a third extrusion device 101c for forming a reinforcing layer.
  • Device 100 further comprises first chamber 110 and second chamber 120 .
  • the first chamber 110 and the second chamber 120 are arranged vertically downward in this order.
  • the first extrusion device 101a has a first storage section 102a that stores the core material 1a, and a first extrusion section 103a that extrudes the core material 1a stored in the first storage section 102a from the first storage section 102a.
  • a heater or the like is provided in the first extrusion device 101a so that the core material 1a can be melted in the first housing portion 102a and the melted core material 1a can be kept in a molten state until it is molded.
  • a heating unit (not shown) may be further provided. In this case, for example, a rod-shaped core material (preform) 1a is inserted into the first accommodation portion 102a through the upper opening of the first accommodation portion 102a and heated in the first accommodation portion 102a. melted by
  • the core material 1a is extruded, for example by gas extrusion, out of the first receiving portion 102a via the first extrusion portion 103a to form the core 2.
  • the core material 1a extruded to form the core 2 through the first extruding portion 103a then moves vertically downward and is supplied to each of the first chamber 110 and the second chamber 120 in this order. .
  • the second extrusion device 101b has a second storage section 102b that stores the clad material 1b, and a second extrusion section 103b that pushes out the clad material 1b stored in the second storage section 102b from the second storage section 102b.
  • the second extrusion device 101b extrudes the melted clad material 1b so as to cover the outer circumference of the core 2 formed of the core material 1a extruded from the first extrusion device 102a.
  • the clad material 1 b extruded from the second extrusion device 101 b is supplied to the first chamber 110 .
  • the clad 3 covering the outer periphery of the core 2 can be formed.
  • a laminate formed of the core 2 and the clad 3 covering the outer periphery of the core 2 moves from the first chamber 110 to the second chamber 120 .
  • the third extrusion device 101c includes, for example, a third container 102c containing the reinforcing layer material 1c, a screw 104 arranged in the third container 102c, and a hopper 105 connected to the third container 102c. ing.
  • a pellet-shaped reinforcing layer material 1c is supplied through a hopper 105 to the third container 102c.
  • the reinforcing layer material 1c supplied to the third container 102c is, for example, kneaded by the screw 104 while being heated, thereby softening and becoming fluid.
  • the softened reinforcing layer material 1c is pushed out from the third accommodating portion 102c by the screw 104. As shown in FIG.
  • the reinforcing layer material 1c extruded from the third extruder 101c is supplied to the second chamber 120.
  • the reinforcement 4 covering the outer circumference of the clad 3 can be formed.
  • the laminate 5 in which the core 2 , the clad 3 , and the reinforcing layer 4 are concentrically laminated moves from the second chamber 120 to the diffusion tube 130 arranged vertically below the second chamber 120 .
  • Diffusion tube 130 may be provided with, for example, a heater (not shown) for heating this laminate.
  • the temperature and viscosity of the laminate 5 passing through the interior are appropriately adjusted.
  • the temperature at which the layered body 5 is drawn down when passing through the diffusion tube 130 is desirably set within the temperature range described above. That is, the temperature at which the laminate 5 is pulled down in the diffusion tube 130 is preferably in the range of Tg 1 +50° C. to Tg 1 +150° C.
  • the temperature at which the laminated body 5 is pulled down is preferably in the range of Tg 2 +50° C. to Tg 2 +150° C. with respect to the second glass transition temperature Tg 2 of the second resin constituting the clad material, and Tg 1 +70° C. to Tg 1 +70° C. A range of Tg 1 +140° C. is more preferred.
  • the temperature at which the laminated body 5 is pulled down is preferably in the range of Tg 1a +60° C. to Tg 1a +170° C.
  • the diffusion tube 130 can diffuse a dopant such as a refractive index adjuster contained in the laminate 5 passing through the diffusion tube 130 in the laminate 5 .
  • the diffusion tube 130 is connected to the internal channel of the nozzle 140 . That is, the lower opening of the diffusion tube 130 is connected to the inlet of the nozzle 140 , and the laminate 5 that has passed through the diffusion tube 130 flows into the internal flow path through the inlet of the nozzle 140 .
  • the laminated body 5 passes through the internal flow path, is reduced in diameter, and is discharged from the discharge port of the nozzle 140 in the form of a fiber.
  • the positional relationship between the second chamber 120 and the diffusion tube 130 may be switched. Namely.
  • the device configuration may be such that the diffusion pipe 130 is arranged under the first chamber 110, the second chamber 120 is arranged below it, and the nozzle 140 is installed further below the second chamber.
  • the laminated body 5 discharged in the form of fibers from the discharge port of the nozzle 140 flows, for example, into the internal space 151 of the cooling pipe 150, is cooled while passing through the internal space 151, and is discharged from the opening of the cooling pipe 150. released to the outside.
  • the layered product 5 released from the cooling pipe 150 passes, for example, between two rolls 161 and 162 of a nip roll 160, further passes through guide rolls 163 to 165, and is wound up on a take-up roll 166 as POF 20. be done.
  • a displacement gauge 170 for measuring the outer diameter of the POF 20 in the vicinity of the take-up roll 166, for example, between the guide roll 165 and the take-up roll 166 may be provided.
  • Example 1 [Preparation of first fluorine-containing resin and second fluorine-containing resin]
  • a polymer of perfluoro-4-methyl-2-methylene-1,3-dioxolane (compound of formula (M2) above, “PFMMD”) was prepared as the first fluororesin and the second fluororesin.
  • Perfluoro-4-methyl-2-methylene-1,3-dioxolane is obtained by first synthesizing 2-carbomethyl-2-trifluoromethyl-4-methyl-1,3-dioxolane and fluorinating it. Synthesized by decarboxylation separation of the carboxylate.
  • Perfluorobenzoyl peroxide was used as a polymerization initiator for the polymerization of perfluoro-4-methyl-2-methylene-1,3-dioxolane.
  • the obtained transparent rod was dissolved in Fluorinert FC-75 (manufactured by Sumitomo 3M), and the resulting solution was poured onto a glass plate to obtain a polymer thin film.
  • the obtained polymer had a glass transition temperature of 117° C. and was completely amorphous.
  • the product was purified by dissolving the transparent rod in hexafluorobenzene and adding chloroform to precipitate. The glass transition temperature of the purified polymer was about 131°C. This polymer was used as the first fluorine-containing resin and the second fluorine-containing resin.
  • Refractive index adjuster A chlorotrifluoroethylene oligomer (molecular weight: 585) was used as the refractive index adjuster. Specifically, “Daifloil #10" manufactured by Daikin Industries, Ltd. was distilled, and only the component with a molecular weight of 585 was fractionated and used.
  • the first fluorine-containing resin prepared by the above method and the refractive index modifier were melt-mixed at 260° C. to prepare a resin composition.
  • the concentration of the refractive index modifier in the resin composition was 3% by mass. This resin composition was used as a core material.
  • a POF having a configuration similar to that of the POF 20 shown in FIG. 2 was fabricated.
  • a POF having the same configuration as the POF 20 shown in FIG. 2 was fabricated by melt spinning.
  • a manufacturing apparatus 100 shown in FIG. 6 was used to manufacture the POF.
  • the melting temperature of the core material was 250°C
  • the melting temperature of the clad material was 255°C
  • the melting temperature of the reinforcing layer material was 240°C.
  • the temperature of the diffusion tube was set at 220°C. That is, the draw-down temperature of the laminate consisting of the core, clad, and reinforcing layer was 220°C.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer was 490 ⁇ m.
  • Example 2 The temperature of the diffusion tube was set to 230° C. in fabricating the POF.
  • a POF was produced in the same manner as in Example 1 except for this point.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer was 490 ⁇ m.
  • the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 The temperature of the diffusion tube was set at 260° C. in fabricating the POF. Also, the concentration of the refractive index modifier in the core material was set to 8% by mass. Also, the POF was manufactured so that the outer diameter of the core was 52 ⁇ m, the outer diameter of the clad was 55 ⁇ m, and the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 232 ⁇ m. A POF was produced in the same manner as in Example 1 except for these points. Also, the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 4 The temperature of the diffusion tube was set at 260° C. in fabricating the POF.
  • the concentration of the refractive index modifier in the core material was set to 12% by mass.
  • the POF was manufactured so that the outer diameter of the core was 47 ⁇ m, the outer diameter of the clad was 49 ⁇ m, and the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 232 ⁇ m.
  • a POF was produced in the same manner as in Example 1 except for these points. Also, the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Comparative example 1 As the POF of Comparative Example 1, "Giga-POF62SR" manufactured by Chromis Fiberoptics Co., Ltd. was used to evaluate flexibility and heat resistance.
  • the outer diameter of the core was 62.5 ⁇ m
  • the outer diameter of the clad was 90 ⁇ m
  • the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
  • the resins used as the first fluorine-containing resin and the second fluorine-containing resin were perfluorobutenyl vinyl ether (PBVE) polymer.
  • PBVE perfluorobutenyl vinyl ether
  • the refractive index adjuster used was perfluoro-1,3,5-triphenylbenzene.
  • the reinforcing layer material was Xylex (manufactured by SABIC, glass transition temperature: 113° C.).
  • Example 2 The temperature of the diffusion tube was set to 250° C. in fabricating the POF.
  • a POF was produced in the same manner as in Example 1 except for this point.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer was 490 ⁇ m.
  • the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 The concentration of the refractive index modifier in the core material was set to 10% by mass, and the temperature of the diffusion tube was set to 230° C. in the fabrication of the POF.
  • a POF was produced in the same manner as in Example 1 except for these points.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer was 490 ⁇ m.
  • the properties of the obtained POF were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 4 A POF was produced in the same manner as in Example 1, except for the following points. - The concentration of the refractive index modifier in the core material was set to 10% by mass. ⁇ DURABIO T-7450 (manufactured by Mitsubishi Chemical Corporation, glass transition temperature: 129° C.) was used as a reinforcing layer material. - The melting temperature of the reinforcing layer material was 230°C. - In the production of POF, the temperature of the diffusion tube was set to 230°C.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
  • Example 5 A POF was produced in the same manner as in Example 1, except for the following points. - The concentration of the refractive index modifier in the core material was set to 10% by mass. ⁇ DURABIO T-7450 (manufactured by Mitsubishi Chemical Corporation, glass transition temperature: 129° C.) was used as a reinforcing layer material. - The melting temperature of the reinforcing layer material was 230°C. - In the production of POF, the temperature of the diffusion tube was set to 240°C.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 125 ⁇ m
  • the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 490 ⁇ m.
  • the POFs of Examples 1-4 achieve greater than 95% dimensional stability when exposed to 105.degree.
  • the birefringence of the fiber structure consisting of the core and clad is 2.2 ⁇ 10 ⁇ 4 or more, and the resin is highly oriented in the fiber axis direction. It is believed that such a structure enabled the POFs of Examples 1 to 4 to have improved heat resistance while ensuring good flexibility.
  • the POF of Comparative Example 1 had excellent flexibility, but the glass transition temperature of the resin used for the core and clad was lower than 120°C, so when exposed to 105°C for a long time, The dimensional retention was less than 95%, and the heat resistance could not be improved.
  • the POFs of Comparative Examples 2 to 5 used the same resins as those of Examples 1 and 2 for the core and clad, so excellent heat resistance was achieved, but a minimum radius of curvature of 5 mm or less could not be ensured.
  • the POF of the present invention is suitable for applications requiring heat resistance and flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本発明のプラスチック光ファイバー(10)は、コア(11)と、コア(11)の外周に配置されたクラッド(12)と、を備える。コア(11)は、第1樹脂を含み、クラッド(12)は、第2樹脂を含む。前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上である。前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上である。プラスチック光ファイバー(10)が、25℃において曲率半径Rで180度に1回曲げられたときに、プラスチック光ファイバー(10)の屈曲部分にクラックが生じない前記曲率半径Rの最小値が、5mm以下である。

Description

プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル
 本発明は、プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブルに関する。
 プラスチック光ファイバーは、光を伝送する部分として、中心部のコアと、当該コアの外周を覆うクラッドとを備えている。コアは、高屈折率を有する樹脂材料によって形成されている。クラッドは、光をコア内に留めるために、コアの樹脂材料よりも低い屈折率を有する樹脂材料によって形成されている。
 プラスチック光ファイバーには、高い耐熱性が求められることが多い。従来、プラスチック光ファイバーについて、耐熱性の向上を実現するための様々な構成が提案されている。例えば、特許文献1は、耐熱性に優れたプラスチック光ファイバーとして、コアに相当する内層に実質的にC-H結合を有しない非結晶性の含フッ素重合体(a)が用いられ、かつ、クラッドに相当する外層に、含フッ素重合体(a)よりも低屈折率でかつ含フッ素重合体(a)と親和性を有する含フッ素重合体(c)が用いられたプラスチック光ファイバーを開示している。
特開2002-71972号公報
 近年、プラスチック光ファイバーには、耐熱性及び柔軟性の両方を備えることが求められている。しかし、耐熱性の向上のみを考慮してコア及びクラッドの材料を選択した場合、柔軟性が低下する場合がある。
 そこで、本発明は、良好な柔軟性を確保しつつ、耐熱性が向上したプラスチック光ファイバーを提供することを目的とする。さらに、本発明は、そのような柔軟性及び耐熱性の両方を備えたプラスチック光ファイバーを備えたハイブリッドケーブル、パッチコード、及びアクティブ光ケーブルを提供することも目的とする。
 本発明の第1の態様は、
 コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
 前記コアは、第1樹脂を含み、
 前記クラッドは、第2樹脂を含み、
 前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
 前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
 前記プラスチック光ファイバーが、25℃において曲率半径Rで180度に1回曲げられたときに、前記プラスチック光ファイバーの屈曲部分にクラックが生じない前記曲率半径Rの最小値が、5mm以下である、
プラスチック光ファイバーを提供する。
 本発明の第2の態様は、
 コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
 前記コアは、第1樹脂を含み、
 前記クラッドは、第2樹脂を含み、
 前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
 前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
 前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
プラスチック光ファイバーを提供する。
 本発明の第3の態様は、上記第1の態様に係るプラスチック光ファイバーを備えたハイブリッドケーブルを提供する。
 本発明の第4の態様は、上記第1の態様に係るプラスチック光ファイバーが収容されたケーブルと、
 前記ケーブルの少なくとも一方の端部に取り付けられたコネクタと、
を備えた、パッチコードを提供する。
 本発明の第5の態様は、上記第1の態様に係るプラスチック光ファイバーが収容されたケーブルと、
 前記ケーブルの第1端部に取り付けられた、電気信号を光信号に変換する第1変換部を備えた第1コネクタと、
 前記ケーブルの第2端部に取り付けられた、光信号を電気信号に変換する第2変換部を備えた第2コネクタと、
を備えた、アクティブ光ケーブルを提供する。
 本発明によれば、良好な柔軟性を確保しつつ、耐熱性が向上したプラスチック光ファイバーを提供することができる。さらに、本発明によれば、柔軟性及び耐熱性の両方を備えたプラスチック光ファイバーを備えたハイブリッドケーブル、パッチコード、及びアクティブ光ケーブルを提供することができる。
図1は、本発明の実施形態によるプラスチック光ファイバーの断面構造の一例を示す模式図である。 図2は、本発明の実施形態によるプラスチック光ファイバーの断面構造の別の例を示す模式図である。 図3は、本発明の実施形態によるハイブリッドケーブルの一例を示す断面図である。 図4は、本発明の実施形態によるパッチコードの一例を示す模式図である。 図5は、本発明の実施形態によるアクティブ光ケーブルの一例を示す模式図である。 図6は、本発明の実施形態によるプラスチック光ファイバーの製造に使用できる製造装置の一例を示す概略断面図である。
 本発明のプラスチック光ファイバー(以下、「POF」と記載する)の実施形態について説明する。本実施形態のPOFは、コアと、コアの外周に配置されたクラッドとを備える。本実施形態のPOFは、例えば、屈折率分布(GI)型のPOFである。
 図1は、本実施形態のPOFの断面構造の一例を示す。
 図1に示されたPOF10は、コア11と、コア11の外周に配置されたクラッド12と、を備えている。
 本実施形態のPOF10において、コア11は、第1樹脂を含む。第1樹脂のガラス転移温度(第1ガラス転移温度Tg1)は、120℃以上である。また、クラッド12は、第2樹脂を含む。第2樹脂のガラス転移温度(第2ガラス転移温度Tg2)は、120℃以上である。本実施形態のPOF10が、25℃において曲率半径Rで180度に1回曲げられたときに、POF10の屈曲部分にクラックが生じない上記曲率半径Rの最小値が、5mm以下である。なお、以下、屈曲部分にクラックが生じない曲率半径Rの最小値を「最小曲率半径」と記載する。最小曲率半径は、5mm未満であることが好ましい。
 本明細書において、ガラス転移温度は、JIS K7121:1987の規定に準拠して求められる中間点ガラス転移温度 (Tmg)を意味する。
 本実施形態のPOF10は、上記構成を有することにより、良好な柔軟性を確保しつつ、耐熱性を向上させることができる。すなわち、本実施形態のPOF10は、実用的な範囲の柔軟性を確保しつつ、耐熱性を向上させることができる。具体的には、コア11に含まれる第1樹脂の第1ガラス転移温度Tg1及びクラッド12に含まれる第2樹脂の第2ガラス転移温度Tg2が、共に120℃以上であることにより、本実施形態のPOF10は、耐熱性を向上させることができる。本実施形態のPOF10は、例えば105℃程度の高温に曝された場合でも、生じる寸法変化を小さく抑えることができる。耐熱性をさらに向上させるために、第1ガラス転移温度Tg1及び第2ガラス転移温度Tg2は、125℃以上であることが好ましく、130℃以上であることがより好ましい。また、本実施形態のPOF10は、上記の最小曲率半径、すなわち180度に曲げられたときにクラックが入る曲率半径を5mm以下にまで小さくできるような、優れた柔軟性を有する。したがって、本実施形態のPOF10は、POFに求められる柔軟性を確保しながら、耐熱性が要求される用途に使用できる。
 ここで、本実施形態のPOF10について上記の最小曲率半径を求める方法は、例えば、測定目的の曲率半径RでPOF10に180度曲げを加えてPOF10を1回屈曲させ、次に曲げを開放して元に戻し、その後、POF10の屈曲部分を顕微鏡で観察してクラックの有無を確認する。このような180度曲げ試験を、曲率半径Rを変更して、それぞれの曲率半径Rで1回ずつ行う。複数の曲率半径Rでの180度曲げ試験の結果を用いて、クラックが生じない最小曲率半径が決定され得る。例えば、曲率半径R=10mm、5mm、2.5mm、2mm、及び1mmで、180度曲げ試験を行う。このとき、例えば、曲率半径R=10mm、5mm、及び2.5mmのときの180度曲げ試験ではクラックが発生せず、曲率半径R=2mmのときの180度曲げ試験でクラックが発生した場合は、そのPOFの最小曲率半径は2.5mm未満と認定され得る。なお、POF10の180度曲げは、例えば、測定目的の曲率半径Rを有する溝が設けられた試験器具を準備し、その溝内にPOF10を入れて屈曲させることによって、実施することができる。このような180度曲げ試験は、最小曲率半径を求めるために上述のように曲率半径Rを変えて複数回実施されてもよいし、最小曲率半径が5mm未満であることを確認する場合は、曲率半径R=5mmで180度曲げ試験を行い、POF10の屈曲部分にクラックが生じないことが確認された場合に最小曲率半径が5mm未満であると認定してもよい。
 180度曲げにおける曲率半径Rは、POF10の内径(すなわち、POF10の内側面に沿って測定した曲率半径)である。
 一般に、高いガラス転移温度を有する樹脂は、耐熱性を向上させることはできるが、同時に優れた柔軟性を実現することが困難な場合がある。本実施形態のPOF10では、コア11に含まれる第1樹脂及びクラッド12に含まれる第2樹脂が共に120℃以上の高いガラス転移温度を有しており、かつ最小曲率半径が5mm以下である優れた柔軟性が実現されている。このような優れた柔軟性は、例えば、コア11及びクラッド12において、第1樹脂及び第2樹脂の配向性が高められていることによって実現できる。本実施形態において、コア11における第1樹脂の配向性及びクラッド12における第2樹脂の配向性は、複屈折によって示されることができる。例えば、コア11及びクラッド12で構成されたファイバー構造体の複屈折が、2.0×10-4以上であることが好ましく、2.5×10-4以上であることがより好ましく、2.7×10-4以上であることがさらに好ましく、3.0×10-4以上であることがさらに好ましく、4.0×10-4以上であることがさらに好ましく、5.0×10-4以上であることがさらに好ましく、6.0×10-4以上であることがさらに好ましい。コア11及びクラッド12で構成されたファイバー構造体は、図1に示された構成を有するPOF10の場合は、POF10のことである。また、クラッド12の外周に別の層(例えば、後述の補強層21)がさらに設けられている場合は、その別の層を除いたコア11及びクラッド12で構成された部分が、上記のファイバー構造体となる。ファイバー構造体が2.0×10-4以上の複屈折を有することにより、第1樹脂及び第2樹脂の分子鎖がファイバー軸方向に高度に配列して、ファイバー構造体の柔軟性が向上する。したがって、本実施形態のPOF10は、優れた柔軟性を有することができる。
 上述のとおり、ファイバー構造体が2.0×10-4以上の複屈折を有することにより、第1樹脂及び第2樹脂の分子鎖がファイバー軸方向に高度に配列してファイバー構造体の柔軟性が向上し、POF10の柔軟性が向上する。したがって、本実施形態のPOF10は、別の形態として、以下の構成を有するものであってもよい:
 POF10は、コア11と、コア11の外周に配置されたクラッド12と、を備え、
 コア11は、第1樹脂を含み、
 クラッド12は、第2樹脂を含み、
 第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
 第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
 コア11及びクラッド12で構成されたファイバー構造体の複屈折が、2.0×10-4以上である。
 POF10が以上のような構成を有する場合、第1樹脂及び第2樹脂の分子鎖がファイバー軸方向に高度に配列するので、POF10は、例えば180度に曲げられたときにクラックが入る曲率半径を5mm以下にまで小さくできるような、優れた柔軟性を実現することができる。すなわち、このような構成を有するPOF10も、良好な柔軟性を確保しつつ、耐熱性を向上させることができる。なお、この場合、ファイバー構造体の複屈折は、2.5×10-4以上であることが好ましく、2.7×10-4以上であることがより好ましく、3.0×10-4以上であることがさらに好ましく、4.0×10-4以上であることがさらに好ましく、5.0×10-4以上であることがさらに好ましく、6.0×10-4以上であることがさらに好ましい。
 POF10のより良好な柔軟性を確保するために、配向性、すなわちコア11及びクラッド12で構成されたファイバー構造体の複屈折の値を、クラッドの外径の半径(単位:m)で除した値(配向性÷(クラッドの外径の半径(単位:m))=(コア+クラッドの複屈折)÷(クラッドの外径の半径(単位:m))は、4.0以上が好ましく、6.0以上がより好ましく、8.0以上がさらに好ましい。
 上記第1樹脂及び第2樹脂からなる群より選択される少なくとも1つが、含フッ素樹脂であってもよい。好ましくは、第1樹脂及び第2樹脂の両方が、含フッ素樹脂であることである。含フッ素樹脂は、広い波長領域で低い伝送損失を実現可能である。したがって、含フッ素樹脂は、コア11及びクラッド12を構成する樹脂として好適に用いられる。
 以下に、本実施形態のPOF10の各構成について、より詳しく説明する。
 (コア11)
 コア11は、光を伝送する領域である。コア11は、クラッド12よりも高い屈折率を有している。この構成により、コア11内に入射した光は、クラッド12によってコア11内部に閉じ込められて、POF10内を伝搬する。
 コア11は、第1樹脂を主成分として含んでいてもよい。ここで、コア11が第1樹脂を主成分として含むとは、コア11において、質量比で最も多く含まれる成分が第1樹脂であることである。コア11は、第1樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。
 コア11は、第1樹脂の他に、添加物をさらに含んでいてもよい。添加物は、例えば屈折率調整剤である。すなわち、コア11は、第1樹脂と、屈折率調整剤等の添加剤とを含む樹脂組成物によって形成されていてもよい。屈折率調整剤として、例えば、POF10のコア11の材料に用いられる公知の屈折率調整剤が用いられ得る。コア11の材料は、屈折率調整剤以外の他の添加物を含んでいてもよい。
 コア11の材料、すなわちコア11を構成している材料のガラス転移温度は、105℃以上であることが好ましい。ここで、コア11の材料とは、コア11が第1樹脂の他に屈折率調整剤等の添加剤をさらに含む場合は、第1樹脂とそれら添加剤とで構成された樹脂組成物のことである。例えば、コア11が、第1樹脂と屈折率調整剤とからなる場合は、第1樹脂と屈折率調整剤との混合物(樹脂組成物)のガラス転移温度が105℃以上であることが好ましい。
 本実施形態のPOF10が例えばGI型である場合、コア11は、径方向に対して屈折率が変化する屈折率分布を有する。このような屈折率分布は、例えば、第1樹脂に屈折率調整剤を添加し、屈折率調整剤を第1樹脂中で拡散(例えば、熱拡散)させることによって、形成され得る。
 コア11に含まれる第1樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。第1樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。
 コア11の第1樹脂は、含フッ素重合体を含む含フッ素樹脂であることが好ましい。以下、コア11に含まれる含フッ素樹脂を第1含フッ素樹脂と記載し、第1含フッ素樹脂に含まれる含フッ素重合体を第1含フッ素重合体と記載する。
 第1含フッ素樹脂に含まれる第1含フッ素重合体は、C-H結合の伸縮エネルギーによる光吸収を抑制する観点から、実質的に水素原子を含んでいないことが好ましく、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることが特に好ましい。すなわち、第1含フッ素重合体は、実質的に水素原子を含まず、かつ全フッ素化されていることが好ましい。本明細書において、含フッ素重合体が実質的に水素原子を含んでいないとは、含フッ素重合体における水素原子の含有率が1モル%以下であることを意味する。
 第1含フッ素重合体は、含フッ素脂肪族環構造を有することが好ましい。含フッ素脂肪族環構造は、含フッ素重合体の主鎖に含まれていてもよく、第1含フッ素重合体の側鎖に含まれていてもよい。第1含フッ素重合体は、例えば、下記構造式(1)で表される構成単位(A)を有する。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は、連結して環を形成してもよい。「パーフルオロ」は、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることを意味する。式(1)において、パーフルオロアルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1であることがさらに好ましい。パーフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが挙げられる。
 式(1)において、パーフルオロアルキルエーテル基の炭素数は、1~5が好ましく、1~3がより好ましい。パーフルオロアルキルエーテル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキルエーテル基としては、パーフルオロメトキシメチル基などが挙げられる。
 Rff 1及びRff 2が連結して環を形成している場合、当該環は、5員環であってもよく、6員環であってもよい。この環としては、パーフルオロテトラヒドロフラン環、パーフルオロシクロペンタン環、パーフルオロシクロヘキサン環などが挙げられる。
 構成単位(A)の具体例としては、例えば、下記式(A1)~(A8)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 構成単位(A)は、上記式(A1)~(A8)で表される構成単位のうち、構成単位(A2)、すなわち下記式(5)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 第1含フッ素重合体は、構成単位(A)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、20モル%以上であることが好ましく、40モル%以上であることがより好ましい。構成単位(A)が20モル%以上含まれることにより、第1含フッ素重合体は、より高い耐熱性を有する傾向がある。構成単位(A)が40モル%以上含まれる場合、第1含フッ素重合体は、高い耐熱性に加えて、より高い透明性及び高い機械的強度も有する傾向がある。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、95モル%以下であることが好ましく、70モル%以下であることがより好ましい。
 構成単位(A)は、例えば、下記式(6)で表される化合物に由来する。式(6)において、Rff 1~Rff 4は、式(1)と同じである。なお、式(6)で表される化合物は、例えば特表2007-504125号公報に開示された製造方法をはじめ、すでに公知である製造方法によって得ることができる。
Figure JPOXMLDOC01-appb-C000008
 上記式(6)で表される化合物の具体例としては、例えば、下記式(M1)~(M8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 含フッ素重合体は、構成単位(A)以外に、他の構成単位をさらに含んでいてもよい。他の構成単位としては、以下の構成単位(B)~(D)が挙げられる。
 構成単位(B)は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(B)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(B)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(B)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(B)は、例えば、下記式(7)で表される化合物に由来する。式(7)において、R1~R4は、式(2)と同じである。式(7)で表される化合物は、パーフルオロビニルエーテル等の含フッ素ビニルエーテルである。
Figure JPOXMLDOC01-appb-C000011
 構成単位(C)は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000012
 式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(C)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(C)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(C)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(C)は、例えば、下記式(8)で表される化合物に由来する。式(8)において、R5~R8は、式(3)と同じである。式(8)で表される化合物は、テトラフルオロエチレン及びクロロトリフルオロエチレン等の含フッ素オレフィンである。
Figure JPOXMLDOC01-appb-C000013
 構成単位(D)は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000014
 式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5でかつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。
 構成単位(D)は、好ましくは下記式(9)で表される。なお、下記式(9)で表される構成単位は、上記式(4)においてZが酸素原子、sが0、かつtが2の場合である。
Figure JPOXMLDOC01-appb-C000015
 式(9)中、R141、R142、R151、及びR152は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(D)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(D)の含有量は、全構成単位の合計に対し、30~67モル%が好ましい。構成単位(D)の含有量は、例えば35モル%以上であり、60モル%以下であってもよく、55モル%以下であってもよい。
 構成単位(D)は、例えば、下記式(10)で表される化合物に由来する。式(10)において、Z、R9~R18、s及びtは、式(4)と同じである。式(10)で表される化合物は、2個以上の重合性二重結合を有し、かつ環化重合し得る含フッ素化合物である。
Figure JPOXMLDOC01-appb-C000016
 構成単位(D)は、好ましくは下記式(11)で表される化合物に由来する。式(11)において、R141、R142、R151、及びR152は、式(9)と同じである。
Figure JPOXMLDOC01-appb-C000017
 式(10)又は式(11)で表される化合物の具体例としては、下記の化合物が挙げられる。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF32OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
 第1含フッ素重合体は、構成単位(A)~(D)以外の他の構成単位をさらに含んでいてもよいが、実質的に構成単位(A)~(D)以外の他の構成単位を含まないことが好ましい。なお、含フッ素重合体が実質的に構成単位(A)~(D)以外の他の構成単位を含まないとは、含フッ素重合体における全構成単位の合計に対し、構成単位(A)~(D)の合計が95モル%以上、好ましくは98モル%以上であることを意味する。
 第1含フッ素重合体の重合方法は、特に限定されず、例えば、ラジカル重合などの一般的な重合方法を利用できる。含フッ素重合体を重合するための重合開始剤は、全フッ素化された化合物であってもよい。
 第1含フッ素重合体は、第1樹脂として用いられる第1含フッ素樹脂を構成する。上述のとおり、第1樹脂の第1ガラス転移温度Tg1は、120℃以上である。したがって、第1含フッ素重合体のガラス転移温度は、120℃以上であることが好ましく、125℃以上であることがより好ましく、130℃以上であることがさらに好ましい。
 コア11の屈折率は、クラッド12の屈折率よりも高ければよいため、特には限定されない。POF10において高い開口数を実現するためには、使用される光の波長について、コア11の屈折率とクラッド12の屈折率との差がより大きいことが好ましい。例えば、使用される光の波長(例えば、波長850nm)について、コア11の屈折率は、1.340以上とすることができ、1.360以上とすることもできる。コアの屈折率の上限は、特には限定されないが、例えば1.4000以下である。
 (クラッド12)
 上述したとおり、本実施形態のPOF10において、クラッド12は、第2樹脂を含む。クラッド12は、第2樹脂を主成分として含んでいてもよい。ここで、クラッド12が第2樹脂を主成分として含むとは、クラッド12において、質量比で最も多く含まれる成分が第2樹脂であることである。クラッド12は、第2樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。クラッド12は、第2樹脂のみから構成されていてもよい。クラッド12は、第2樹脂の他に、添加物をさらに含んでいてもよい。
 クラッド12に含まれる第2樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。第2樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。
 クラッド12の第2樹脂は、含フッ素重合体を含む含フッ素樹脂であることが好ましい。以下、クラッド12に含まれる含フッ素樹脂を第2含フッ素樹脂と記載し、第2含フッ素樹脂に含まれる含フッ素重合体を第2含フッ素重合体と記載する。
 第2含フッ素樹脂として用いることができる含フッ素樹脂の例は、第1含フッ素樹脂として用いることができる含フッ素樹脂として例示したものと同じである。すなわち、第2含フッ素重合体として用いることができる含フッ素重合体の例は、第1含フッ素重合体として用いることができる含フッ素重合体として例示したものと同じである。
 第2含フッ素重合体は、第2樹脂として用いられる第2含フッ素樹脂を構成する。上述のとおり、第2樹脂の第2ガラス転移温度Tg2は、120℃以上である。したがって、第2含フッ素重合体のガラス転移温度は、120℃以上であることが好ましく、125℃以上であることがより好ましく、130℃以上であることがさらに好ましい。
 第2樹脂は、第1樹脂と異なる樹脂であってもよいが、第1樹脂と親和性を有することが好ましい。例えば、第2樹脂は、第1樹脂に含まれる重合単位と同じ重合単位を含んでいてもよいし、第1樹脂と同じであってもよい。これにより、コア11とクラッド12との界面で剥離が生じにくくなり、例えば伝送損失を低く抑えることができる。
 クラッド12の屈折率は、コア11の屈折率に応じて設計されればよいため、特には限定されない。クラッド12は、使用される光の波長(例えば、波長850nm)において、例えば1.310以下の屈折率を有してもよく、1.300以下の屈折率を有してもよい。
 図2は、本実施形態のPOFの変形例を示す。図2に示すPOF20は、POF10に対して、クラッド12の外周に配置された補強層21がさらに設けられた構成を有する。補強層21は、POF10の機械的強度を向上させるために設けられる。補強層21には、例えば、公知のPOFにおいて補強層として用いられている材料及び構成が適用され得る。補強層21の材料としては、例えば、ポリカーボネート等の各種エンジニアリングプラスチック、ポリエステル、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリテトラフルオロエチレン(PTFE)、変性PTFE、及びテトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)、またはそれらの共重合体や混合体等が挙げられる。
 補強層21が設けられた本実施形態のPOF20は、例えば、105℃で250時間保持された後の寸法保持率を95%以上とすることができる。また、本実施形態のPOF20は、例えば、105℃で250時間保持された後の寸法保持率を96%以上とすることもでき、98%以上とすることもできる。ここで、寸法保持率とは、105℃で250時間保持される前のPOF20の長さに対する、105℃で250時間保持された後のPOF20の長さの割合である。
 本実施形態のPOFは、耐熱性及び柔軟性の両方を備えることができるので、高度な耐熱性及び柔軟性が求められる用途にも適用可能である。本実施形態のPOFは、例えば、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル等にも適当できる。
 図3は、本実施形態のPOF20を備えたハイブリッドケーブルの一例を示す断面図である。図3に示されたハイブリッドケーブル30は、本実施形態のPOF20と、POF20の周囲に配置された複数の導線31と、POF20及び導線31を被覆する被覆層32と、を備える。
 図4は、本実施形態のPOF20を備えたパッチコードの一例を示す模式図である。図4に示されたパッチコード40は、本実施形態のPOF20が収容されたケーブル41と、ケーブル41の少なくとも一方の端部に取り付けられたコネクタ42と、を備える。
 図5は、本実施形態のPOF20を備えたアクティブ光ケーブルの一例を示す模式図である。図5に示されたアクティブ光ケーブル50は、本実施形態のPOF20が収容されたケーブル51と、ケーブル51の第1端部51aに取り付けられた、電気信号を光信号に変換する第1変換部(図示せず)を備えた第1コネクタ52と、ケーブル51の第2端部51bに取り付けられた、光信号を電気信号に変換する第2変換部(図示せず)を備えた第2コネクタ53と、を備える。
 (POFの製造方法)
 本実施形態のPOFは、例えば溶融紡糸法を用いて製造される。すなわち、本実施形態のPOFの製造方法の一例は、
 コア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
 クラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した積層体を作製すること、
 前記積層体を所定の温度に加熱しながら引き落として、前記積層体を紡糸すること、
を含む。上記コア材料は第1樹脂を含み、上記クラッド材料は第2樹脂を含む。
 本実施形態のPOFは、コアに含まれる第1樹脂及びクラッドに含まれる第2樹脂が共に120℃以上の高いガラス転移温度を有しており、かつ例えば最小曲率半径が5mm以下であるという優れた柔軟性も有する。高いガラス転移温度を有する樹脂を用いて、このような優れた柔軟性を実現するために、例えば、コア及びクラッドにおいて第1樹脂及び第2樹脂が高い配向性を有することが好ましい。第1樹脂及び第2樹脂の分子鎖がファイバーの軸方向に高度に配列したコア及びクラッドを製造するために、例えば、コア材料及びクラッド材料が同心円状に積層した積層体の引き落としの温度が、第1樹脂及び第2樹脂の分子鎖がファイバーの軸方向に高度に配列するような温度に設定される。積層体の引き落としの温度は、通常、コア材料及びクラッド材料のガラス転移温度を考慮して決定される。これに対し、本実施形態では、第1樹脂及び第2樹脂の分子鎖がファイバーの軸方向に高度に配列するように、積層体の引き落としの温度が、コア材料及びクラッド材料のガラス転移温度から決定される従来の一般的な引き落としの温度よりも低く設定されることが好ましい。積層体の引き落としの温度は、使用される第1樹脂及び第2樹脂のガラス転移温度、並びに、コア材料に含まれる屈折率調整剤等の添加剤の含有割合等を考慮して決定されればよいため、特には限定されないが、製造されるPOFの破断が起こらない程度に低いことが望ましい。
 積層体の引き落としの温度は、第1樹脂の第1ガラス転移温度Tg1に対して、例えばTg1+50℃~Tg1+150℃の範囲が好ましく、Tg1+70℃~Tg1+140℃の範囲がより好ましい。また、積層体の引き落としの温度は、第2樹脂の第2ガラス転移温度Tg2に対して、Tg2+50℃~Tg2+150℃の範囲が好ましく、Tg1+70℃~Tg1+140℃の範囲がより好ましい。コア材料が屈折率調整剤を含んでおり、コア材料が第1樹脂及び屈折率調整剤を含む樹脂組成物である場合、引き落としの温度は、この樹脂組成物のガラス転移温度Tg1aに対して、Tg1a+60℃~Tg1a+170℃の範囲が好ましく、Tg1a+80℃~Tg1a+160℃の範囲がより好ましい。用いられる第1樹脂の第1ガラス転移温度Tg1、第1樹脂及び屈折率調整剤を含む樹脂組成物のガラス転移温度Tg1a、及び第2樹脂の第2ガラス転移温度Tg2から決定される上記の好ましい温度範囲の中から適切な温度を選択し、引き落とし温度として決定することが望ましい。このような引き落とし温度とすることにより、例えば、コア及びクラッドで構成されたファイバー構造体の複屈折が2.0×10-4以上を満たすような、第1樹脂及び第2樹脂がファイバー軸方向に高度に配向したPOFを製造することができる。
 図6は、本実施形態のPOF20の製造に使用できる製造装置の一例を示す概略断面図である。
 図6に示された装置100は、コア形成用の第1押出装置101a、クラッド形成用の第2押出装置101b、及び補強層形成用の第3押出装置101cを備える。装置100は、第1室110及び第2室120をさらに備えている。第1室110及び第2室120は、鉛直方向下方にこの順で並んでいる。
 第1押出装置101aは、コア材料1aを収容する第1収容部102aと、第1収容部102aに収容されているコア材料1aを第1収容部102aから押し出す第1押出部103aとを有する。第1押出装置101aには、第1収容部102aでコア材料1aを溶融させることができるように、さらに溶融されたコア材料1aが成形されるまで溶融状態を保つことができるように、ヒーター等の加熱部(図示せず)がさらに設けられていてもよい。この場合、例えば、ロッド状のコア材料(プリフォーム)1aが、第1収容部102aの上方の開口部を通じて第1収容部102a内に挿入されて、第1収容部102a内で加熱されることによって溶融される。
 第1押出装置101aにおいては、コア材料1aは、例えばガス押出によって、第1押出部103aを介して第1収容部102aからコア2を形成するように外に押し出される。第1押出部103aを介してコア2を形成するように押し出されたコア材料1aは、その後鉛直方向下方に移動し、第1室110及び第2室120のそれぞれに、この順で供給される。
 第2押出装置101bは、クラッド材料1bを収容する第2収容部102bと、第2収容部102bに収容されているクラッド材料1bを第2収容部102bから押し出す第2押出部103bとを有する。第2押出装置101bは、溶融したクラッド材料1bを、第1押出装置102aから押し出されたコア材料1aで形成されたコア2の外周を被覆するように押し出す。具体的には、第2押出装置101bから押し出されたクラッド材料1bは、第1室110に供給される。第1室110内において、コア材料1aで形成されるコア2をクラッド材料1bで被覆することによって、コア2の外周を覆うクラッド3を形成することができる。コア2と、コア2の外周を被覆するクラッド3とで形成された積層体は、第1室110から第2室120に移動する。
 第3押出装置101cは、例えば、補強層材料1cを収容する第3収容部102c、第3収容部102c内に配置されたスクリュー104、及び、第3収容部102cに接続されたホッパー105を備えている。第3押出装置101cでは、例えばペレット状の補強層材料1cが、ホッパー105を通じて、第3収容部102cに供給される。第3収容部102cに供給された補強層材料1cは、例えば、加熱されながらスクリュー104によって混錬されることによって、軟化して流動可能となる。軟化した補強層材料1cは、スクリュー104によって第3収容部102cから押し出される。
 第3押出装置101cから押し出された補強層材料1cは、第2室120に供給される。第2室120内において、コア2及びクラッド3で形成された積層体の表面を補強層材料1cで被覆することによって、クラッド3の外周を覆う補強用4を形成することができる。
 コア2、クラッド3、及び補強層4が同心円状に積層された積層体5は、第2室120から、第2室120の鉛直方向下方に配置された拡散管130に移動する。拡散管130には、例えば、この積層体を加熱するためのヒーター(図示せず)が配置されていてもよい。拡散管130において、例えば、内部を通過する積層体5の温度及び粘度が適切に調整される。拡散管130の内部を通過する際の積層体5の引き落としの温度は、上述した温度範囲に設定されることが望ましい。すなわち、拡散管130における積層体5の引き落としの温度は、コア材料1aを構成する第1樹脂の第1ガラス転移温度Tg1に対して、Tg1+50℃~Tg1+150℃の範囲が好ましく、Tg1+70℃~Tg1+140℃の範囲がより好ましい。また、積層体5の引き落としの温度は、クラッド材料を構成する第2樹脂の第2ガラス転移温度Tg2に対して、Tg2+50℃~Tg2+150℃の範囲が好ましく、Tg1+70℃~Tg1+140℃の範囲がより好ましい。また、積層体5の引き落としの温度は、コア材料1aである樹脂組成物のガラス転移温度Tg1aに対して、Tg1a+60℃~Tg1a+170℃の範囲が好ましく、Tg1a+80℃~Tg1a+160℃の範囲がより好ましい。拡散管130は、拡散管130の内部を通過する積層体5に含まれる屈折率調整剤等のドーパントを、積層体5において拡散させることができる。
 拡散管130は、ノズル140の内部流路に連結している。すなわち、拡散管130の下方の開口部は、ノズル140の流入口と連結しており、拡散管130を通過した積層体5が、ノズル140の流入口を介して内部流路に流入する。積層体5は、内部流路を通過して縮径されて、ノズル140の吐出口からファイバー状に吐出される。
 第2室120と拡散管130の位置関係は、入れ替わっていてもよい。すなわち。第1室110の下に拡散管130が配置され、その下方に第2室120が配置され、第2室のさらに下方にノズル140が設置される装置構成であってもよい。
 ノズル140の吐出口からファイバー状に吐出された積層体5は、例えば、冷却管150の内部空間151内に流入し、内部空間151内を通過しながら冷却されて、開口部から冷却管150の外へ放出される。冷却管150から放出された積層体5は、例えば、ニップロール160が有する2つのロール161及び162の間を通過し、さらにガイドロール163~165を経由して、POF20として巻き取りロール166に巻き取られる。巻き取りロール166の近傍、例えばガイドロール165と巻き取りロール166との間、においてPOF20の外径を測定する変位計170をさらに備えていてもよい。
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
 (実施例1)
 [第1含フッ素樹脂及び第2含フッ素樹脂の作製]
 第1含フッ素樹脂及び第2含フッ素樹脂として、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン(上記式(M2)の化合物、「PFMMD」)の重合体を準備した。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランは、まず2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを合成し、これをフッ素化し、得られたカルボン酸塩を脱炭酸分離することによって合成された。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合には、重合開始剤として、パーフルオロ過酸化ベンゾイルが用いられた。
 以下に、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成、及びパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合について、詳細を説明する。
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成>
 水冷冷却器を備えた3L三口フラスコ、温度計、マグネチックスターラー、及び等圧滴下漏斗を準備し、2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとの混合物を139.4g(計1.4モル)をフラスコに投入した。フラスコは0℃に冷やし、その中にトリフルオロピルビン酸メチルをゆっくりと加え、さらに2時間攪拌した。そこに100mLのジメチルスルホキシド(DMSO)と194gの炭酸カリウムとを1時間かけて加えた後、さらに続けて8時間攪拌し、反応混合物を得た。この生成した反応混合物を1Lの水と混合し、その水相をわけ、これを更にジクロロメチレンで抽出後、このジクロロメチレン溶液を有機反応混合物相と混合し、その溶液を硫酸マグネシウムで乾燥した。溶媒を除去した後、245.5gの粗製物が得られた。この粗製物を減圧下(12Torr)で分留し、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を230.9g得た。精製物の沸点は、77~78℃で、収率は77%であった。なお、得られた精製物が2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランであることは、HNMR及び19FNMRによって確認された。
HNMR(ppm):4.2-4.6,3.8-3.6(CHCH2,muliplet,3H),3.85-3.88(COOCH3,multiplet,3H),1.36-1.43(CCH3,multiplet,3H)
19FNMR(ppm):-81.3(CF3,s,3F)
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化>
 10Lの攪拌反応槽に4Lの1,1,2-トリクロロトリフルオロエタンを注入した。攪拌反応槽で、窒素を1340cc/minの流速で流し、フッ素を580cc/minの流速で流し、窒素/フッ素の雰囲気下とした。5分後、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの290gを750mLの1,1,2-トリクロロトリフルオロエタン溶液に溶かし、この溶液を反応槽に0.5ml/分の速度で加えた。反応槽は0℃に冷却した。全てのジオキソランを24時間で加えた後、フッ素ガス流を止めた。窒素ガスをパージした後、水酸化カリウム水溶液を弱アルカリ性になるまで加えた。
 減圧下で揮発物質を除去した後、反応槽の周囲を冷却し、その後48時間70℃の減圧下で乾燥して、固体の反応生成物を得た。固形の反応生成物は、500mLの水に溶解させ、過剰の塩酸を添加して、有機相と水相とに分離させた。有機相を分離して減圧下で蒸留し、パーフルオロ-2,4-ジメチル-1,3-ジオキソラン-2-カルボン酸を得た。主蒸留物の沸点は103℃-106℃/100mmHgであった。フッ素化の収率は、85%であった。
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成>
 上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得た。このカリウム塩を1日間70℃で真空乾燥した。250℃~280℃で、かつ窒素又はアルゴン雰囲気下で、塩を分解した。-78℃に冷やした冷却トラップで凝縮させ、収率82%でパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得た。生成物の沸点は45℃/760mmHgであった。19FNMRとGC-MSを用いて生成物を同定した。
19FNMR:-84ppm(3F,CF3),-129ppm(2F,=CF2
GC-MS:m/e244(Molecular ion)225,197,169,150,131,100,75,50. 
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合>
 上記方法で得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン100gと、パーフルオロ過酸化ベンゾイル1gとをガラスチューブに封入した。このガラスチューブは、凍結脱気法によって系中の酸素が除去された後にアルゴンが再充填されて、50℃で数時間加熱された。内容物は固体となったが、さらに70℃で一晩加熱すると、100gの透明な棒状物が得られた。
 得られた透明棒状物をFluorinert FC-75(住友スリーエム社製)に溶かし、得られた溶液をガラス板に注ぎ、重合体の薄膜を得た。得られた重合体のガラス転移温度は117℃で、完全な非晶質であった。透明棒状物をヘキサフルオロベンゼンに溶かし、これにクロロホルムを加え沈殿させることで、生成物を精製させた。精製された重合体のガラス転移温度は、約131℃であった。この重合体を、第1含フッ素樹脂及び第2含フッ素樹脂とした。
 [屈折率調整剤]
 屈折率調整剤には、クロロトリフルオロエチレンオリゴマー(分子量585)を用いた。具体的には、ダイキン工業株式会社製「ダイフロイル#10」を蒸留し、分子量585の成分のみを分取して用いた。
 [コア材料]
 上記の方法で作製した第1含フッ素樹脂と、上記の屈折率調整剤とを、260℃にて溶融混合して樹脂組成物を作製した。樹脂組成物における屈折率調整剤の濃度は、3質量%であった。この樹脂組成物をコア材料として用いた。
 [クラッド材料]
 上記の方法で作製した第2含フッ素樹脂をクラッド材料として用いた。
 [補強層材料]
 補強層材料として、Xylex(SABIC社製、ガラス転移温度:113℃)を用いた。
 [POF]
 図2に示されたPOF20と同様の構成を有するPOFを作製した。上記の方法で準備したコア材料、クラッド材料、及び補強層を用い、溶融紡糸法によって、図2に示されたPOF20と同様の構成を有するPOFを作製した。POFの作製には、図6に示した製造装置100が用いられた。コア材料の溶融温度は250℃、クラッド材料の溶融温度は255℃、補強層材料の溶融温度は240℃であった。また、拡散管の温度は220℃に設定された。すなわち、コア、クラッド、及び補強層からなる積層体の引き落としの温度は、220℃であった。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。
 [コア及びクラッドで構成されたファイバー構造体の配向性の評価]
 配向性の評価は、複屈折の測定によって行われた。作製されたPOFから補強層を取り除き、コア及びクラッドで構成されたファイバー構造体を得た。補強層は、POFを塩化メチレンに浸漬し、補強層のみを溶解させる方法で取り除かれた。ファイバー構造体の複屈折は、(株)フォトニックラティス製「WPA-micro」により、ファイバー構造体を側面から測定した。表1に、複屈折の測定結果を示す。
 [柔軟性の評価]
 作製されたPOFについて、25℃において、曲率半径R=10mm、5mm、2.5mm、2mm、及び1mmで、180度曲げ試験を行った。曲率半径R=10mm、5mm、2.5mm、2mm、又は1mmを有する溝が設けられた試験器具を準備し、その溝内にPOFを入れて180度に屈曲させた後、元に戻し、その後、POFの屈曲部分を顕微鏡(倍率200)で観察してクラックの有無を確認した。それぞれの曲率半径についてPOFの屈曲は1回行われた。表1に、曲げ試験の結果を示す。表1において、「〇」はクラックが確認されなかったことを表し、「×」はクラックが確認されたことを表す。
 [耐熱性の評価]
 作製されたPOFを1mの長さに切断し、105℃のオーブンに投入した。250時間経過後、POFを取り出し、長さを測定した。105℃で250時間保持される前のPOFの長さに対する、105℃で250時間保持された後の長さ割合を求めて、寸法保持率とした。表1に、寸法保持率を示す。
 (実施例2)
 POFの作製において、拡散管の温度を230℃とした。この点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
 (実施例3)
 POFの作製において、拡散管の温度を260℃とした。また、コア材料における屈折率調整剤の濃度を8質量%とした。また、コアの外径が52μm、クラッドの外径が55μm、補強層の外径(すなわちPOFの外径)が232μmとなるようにPOFを作製した。これらの点以外は、実施例1と同様の方法でPOFを作製した。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
 (実施例4)
 POFの作製において、拡散管の温度を260℃とした。コア材料における屈折率調整剤の濃度を12質量%とした。また、コアの外径が47μm、クラッドの外径が49μm、補強層の外径(すなわちPOFの外径)が232μmとなるようにPOFを作製した。これらの点以外は、実施例1と同様の方法でPOFを作製した。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
 (比較例1)
 比較例1のPOFとして、(株)Chromis Fiberoptics製の「Giga-POF62SR」を用いて、柔軟性および耐熱性の評価を行った。比較例1のPOFでは、コアの外径は62.5μm、クラッドの外径は90μm、補強層の外径(すなわちPOFの外径)は490μmであった。比較例1のPOFにおいて、第1含フッ素樹脂及び第2含フッ素樹脂として用いられていた樹脂は、パーフルオロブテニルビニルエーテル(PBVE)重合体であった。また、用いられていた屈折率調整剤は、パーフルオロ-1,3,5-トリフェニルベンゼンであった。補強層材料は、Xylex(SABIC社製、ガラス転移温度:113℃)であった。
 [各特性の評価]
 各特性の評価は、実施例1と同様の方法で行われた。
 (比較例2)
 POFの作製において、拡散管の温度を250℃とした。この点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
 (比較例3)
 コア材料における屈折率調整剤の濃度を10質量%と、さらにPOFの作製において、拡散管の温度を230℃とした。これらの点以外は、実施例1と同様の方法でPOFを作製した。得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。また、得られたPOFについて、実施例1と同様の方法で各特性の評価を行った。表1に結果を示す。
 (比較例4)
 以下の点以外は、実施例1と同様の方法でPOFを作製した。
・コア材料における屈折率調整剤の濃度を10質量%とした。
・補強層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用いた。
・補強層材料の溶融温度は230℃とした。
・POFの作製において、拡散管の温度を230℃とした。
 得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。
 各特性の評価は、実施例1と同様の方法で行われた。表1に結果を示す。
 (比較例5)
 以下の点以外は、実施例1と同様の方法でPOFを作製した。
・コア材料における屈折率調整剤の濃度を10質量%とした。
・補強層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用いた。
・補強層材料の溶融温度は230℃とした。
・POFの作製において、拡散管の温度を240℃とした。
 得られたPOFにおいて、コアの外径は80μm、クラッドの外径は125μm、補強層の外径(すなわちPOFの外径)は490μmであった。
 各特性の評価は、実施例1と同様の方法で行われた。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 実施例1~4のPOFは、5mm未満の最小曲率半径を実現できる柔軟性を確保しつつ、105℃に長時間曝された場合に95%以上の寸法安定性を実現している。実施例1及び2のPOFは、コア及びクラッドからなるファイバー構造体の複屈折が2.2×10-4以上を有しており、ファイバー軸方向に樹脂が高度に配向している。このような構造により、実施例1~4のPOFは、良好な柔軟性を確保しつつ、耐熱性を向上させることができたと考えられる。一方、比較例1のPOFは、優れた柔軟性は有していたが、コア及びクラッドに用いられた樹脂のガラス転移温度が120℃未満であったため、105℃に長時間曝された場合に寸法保持率が95%未満となり、耐熱性を向上させることができなかった。比較例2~5のPOFは、コア及びクラッドに実施例1及び2と同じ樹脂を用いたため、優れた耐熱性は実現できたが、5mm以下の最小曲率半径を確保することができなかった。
 本発明のPOFは、耐熱性及び柔軟性が要求される用途に適している。

Claims (15)

  1.  コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
     前記コアは、第1樹脂を含み、
     前記クラッドは、第2樹脂を含み、
     前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
     前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
     前記プラスチック光ファイバーが、25℃において曲率半径Rで180度に1回曲げられたときに、前記プラスチック光ファイバーの屈曲部分にクラックが生じない前記曲率半径Rの最小値が、5mm以下である、
    プラスチック光ファイバー。
  2.  前記曲率半径Rの前記最小値が、5mm未満である、
    請求項1に記載のプラスチック光ファイバー。
  3.  前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
    請求項1又は2に記載のプラスチック光ファイバー。
  4.  コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
     前記コアは、第1樹脂を含み、
     前記クラッドは、第2樹脂を含み、
     前記第1樹脂の第1ガラス転移温度Tg1は、120℃以上であり、
     前記第2樹脂の第2ガラス転移温度Tg2は、120℃以上であり、
     前記コア及び前記クラッドで構成されたファイバー構造体の複屈折が、2.0×10-4以上である、
    プラスチック光ファイバー。
  5.  前記第1樹脂及び前記第2樹脂からなる群より選択される少なくとも1つが、含フッ素樹脂である、
    請求項1~4のいずれか1項に記載のプラスチック光ファイバー。
  6.  前記含フッ素樹脂は、下記式(1)で表される構成単位(A)を含有する含フッ素重合体を含む、
    請求項5に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は連結して環を形成してもよい。)
  7.  前記含フッ素重合体は、下記式(2)で表される構成単位(B)をさらに含有する、
    請求項6に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
  8.  前記含フッ素重合体は、下記式(3)で表される構成単位(C)をさらに含有する、
    請求項6又は7に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
  9.  前記含フッ素重合体は、下記式(4)で表される構成単位(D)をさらに含有する、
    請求項6~8のいずれか一項に記載のプラスチック光ファイバー。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5で、かつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。)
  10.  前記クラッドの外周に配置された補強層をさらに含む、
    請求項1~9のいずれか1項に記載のプラスチック光ファイバー。
  11.  105℃で250時間保持された後の前記プラスチック光ファイバーの寸法保持率が、95%以上であり、
     前記寸法保持率は、105℃で250時間保持される前の前記プラスチック光ファイバーの長さに対する、105℃で250時間保持された後の前記プラスチック光ファイバーの長さの割合である、
    請求項10に記載のプラスチック光ファイバー。
  12.  前記コアの材料のガラス転移温度は、105℃以上である、
    請求項1~11のいずれか1項に記載のプラスチック光ファイバー。
  13.  請求項1~12のいずれか1項に記載のプラスチック光ファイバーを備えた、ハイブリッドケーブル。
  14.  請求項1~12のいずれか1項に記載のプラスチック光ファイバーが収容されたケーブルと、
     前記ケーブルの少なくとも一方の端部に取り付けられたコネクタと、
    を備えた、パッチコード。
  15.  請求項1~12のいずれか一項に記載のプラスチック光ファイバーが収容されたケーブルと、
     前記ケーブルの第1端部に取り付けられた、電気信号を光信号に変換する第1変換部を備えた第1コネクタと、
     前記ケーブルの第2端部に取り付けられた、光信号を電気信号に変換する第2変換部を備えた第2コネクタと、
    を備えた、アクティブ光ケーブル。
PCT/JP2022/015739 2021-03-29 2022-03-29 プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル WO2022210810A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022001820.8T DE112022001820T5 (de) 2021-03-29 2022-03-29 Optische Kunststofffaser, Hybridkabel, Patchkabel und aktives optisches Kabel
US18/553,090 US20240210615A1 (en) 2021-03-29 2022-03-29 Plastic optical fiber, hybrid cable, patch cord, and active optical cable
JP2023511444A JPWO2022210810A1 (ja) 2021-03-29 2022-03-29
CN202280025320.5A CN117099028A (zh) 2021-03-29 2022-03-29 塑料光纤、混合电缆、跳线及有源光缆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056221 2021-03-29
JP2021056221 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210810A1 true WO2022210810A1 (ja) 2022-10-06

Family

ID=83456469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015739 WO2022210810A1 (ja) 2021-03-29 2022-03-29 プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル

Country Status (6)

Country Link
US (1) US20240210615A1 (ja)
JP (1) JPWO2022210810A1 (ja)
CN (1) CN117099028A (ja)
DE (1) DE112022001820T5 (ja)
TW (1) TW202307024A (ja)
WO (1) WO2022210810A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276412A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 光コード
JP2007504125A (ja) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料
WO2014042023A1 (ja) * 2012-09-11 2014-03-20 旭硝子株式会社 プラスチック光ファイバおよびその製造方法
US20180224617A1 (en) * 2014-08-21 2018-08-09 Ls Cable & System Ltd. Optical and electrical composite multimedia cable
JP2020071432A (ja) * 2018-11-02 2020-05-07 三菱鉛筆株式会社 光コネクタ及び光ケーブル
WO2020230599A1 (ja) * 2019-05-13 2020-11-19 日東電工株式会社 プラスチック光ファイバおよびその製造方法、ならびに該プラスチック光ファイバを用いたプラスチック光ファイバコード

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071972A (ja) 2000-06-12 2002-03-12 Asahi Glass Co Ltd プラスチック光ファイバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504125A (ja) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 含フッ素1,3−ジオキソラン化合物の製造方法、含フッ素1,3−ジオキソラン化合物、含フッ素1,3−ジオキソラン化合物の含フッ素ポリマー、及び該ポリマーを用いた光学材料又は電気材料
JP2006276412A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 光コード
WO2014042023A1 (ja) * 2012-09-11 2014-03-20 旭硝子株式会社 プラスチック光ファイバおよびその製造方法
US20180224617A1 (en) * 2014-08-21 2018-08-09 Ls Cable & System Ltd. Optical and electrical composite multimedia cable
JP2020071432A (ja) * 2018-11-02 2020-05-07 三菱鉛筆株式会社 光コネクタ及び光ケーブル
WO2020230599A1 (ja) * 2019-05-13 2020-11-19 日東電工株式会社 プラスチック光ファイバおよびその製造方法、ならびに該プラスチック光ファイバを用いたプラスチック光ファイバコード

Also Published As

Publication number Publication date
DE112022001820T5 (de) 2024-01-11
TW202307024A (zh) 2023-02-16
JPWO2022210810A1 (ja) 2022-10-06
CN117099028A (zh) 2023-11-21
US20240210615A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
KR100768020B1 (ko) 플라스틱 광학 섬유
US5760139A (en) Graded-refractive-index optical plastic material and method for its production
US7459512B2 (en) Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer
JP2002071972A (ja) プラスチック光ファイバ
US9304251B2 (en) Plastic optical fiber and method for its production
WO2022210810A1 (ja) プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル
WO2023054141A1 (ja) プラスチック光ファイバー及びその製造方法
WO2022210812A1 (ja) プラスチック光ファイバーの製造方法
WO2023190794A1 (ja) プラスチック光ファイバー
WO2022176864A1 (ja) プラスチック光ファイバー及びその製造方法
US20240329296A1 (en) Plastic optical fiber, optical cord, and active optical cable
WO2022209921A1 (ja) プラスチック光ファイバー及びその製造方法
US20240329295A1 (en) Plastic optical fiber, optical cord, and active optical cable
JP4886256B2 (ja) プラスチック光ファイバ
CN118732148A (zh) 塑料光纤、光学缆线和有源光缆
JP2020166223A (ja) プラスチック光ファイバー
WO2023152926A1 (ja) プラスチック光ファイバーおよびその製造方法
JP2001302935A (ja) 光学樹脂組成物およびその用途
CN116917408A (zh) 光学树脂组合物及光学树脂成形体
JP2003098365A (ja) プラスチック光ファイバとその製造方法
JP2011095762A (ja) プラスチック光ファイバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511444

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280025320.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18553090

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001820

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781021

Country of ref document: EP

Kind code of ref document: A1