WO2022210812A1 - プラスチック光ファイバーの製造方法 - Google Patents

プラスチック光ファイバーの製造方法 Download PDF

Info

Publication number
WO2022210812A1
WO2022210812A1 PCT/JP2022/015742 JP2022015742W WO2022210812A1 WO 2022210812 A1 WO2022210812 A1 WO 2022210812A1 JP 2022015742 W JP2022015742 W JP 2022015742W WO 2022210812 A1 WO2022210812 A1 WO 2022210812A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin material
core
clad
fluorine
Prior art date
Application number
PCT/JP2022/015742
Other languages
English (en)
French (fr)
Inventor
紘司 大村
享 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022210812A1 publication Critical patent/WO2022210812A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to a method for manufacturing a plastic optical fiber.
  • a plastic optical fiber has a central core and a clad that covers the outer circumference of the core as the part that transmits light.
  • the core is made of a resin material having a high refractive index.
  • the clad is made of a resin material having a lower refractive index than the resin material of the core in order to confine light within the core.
  • a fluorine-containing resin is used from the viewpoint of reducing the transmission loss of a plastic optical fiber (for example, Patent Document 1).
  • a plastic optical fiber for example, further comprises a coating layer arranged around the outer circumference of the clad.
  • the coating layer can improve the mechanical strength of the plastic optical fiber.
  • a plastic optical fiber provided with a layer formed of a fluororesin (hereinafter referred to as a "fluororesin-containing layer”)
  • the fluororesin-containing layer changes over time.
  • interfacial delamination causes microbending, which is a slight deviation of the central axis of the core, which can increase the transmission loss of the plastic optical fiber.
  • an object of the present invention is to provide a method for manufacturing a plastic optical fiber that can suppress interfacial peeling that occurs between a fluorine-containing resin-containing layer and a layer adjacent thereto due to aging.
  • the present invention A method for manufacturing a plastic optical fiber comprising a first layer made of a first resin material containing a fluorine-containing resin and a second layer made of a second resin material and in contact with the first layer, the method comprising:
  • the manufacturing method is (A) the linear body including the first layer and the second layer disposed in contact with the first layer is formed to have a first glass transition temperature Tg1 or lower of the first resin material and the second glass transition temperature Tg1 or lower; heat treatment at a temperature not higher than the glass transition temperature Tg 2 of the resin material; including The first resin material and the second resin material have a peel strength of 1 kN/m or more,
  • a method for manufacturing a plastic optical fiber is provided.
  • the peel strength refers to a laminate obtained by superimposing a first sheet of 50 ⁇ m thickness made of the first resin material and a second sheet of 50 ⁇ m thickness made of the second resin material.
  • pressure is applied with a hand roller in the lamination direction of the laminate to produce a joined body of the first sheet and the second sheet, and the joined body is measured by Surface And Interfacial Cutting Analysis System (SAICAS). is the peel strength of the second sheet to the first sheet.
  • SAICAS Surface And Interfacial Cutting Analysis System
  • the present invention it is possible to provide a method for manufacturing a plastic optical fiber that can suppress interfacial peeling that occurs between a fluorine-containing resin-containing layer and a layer adjacent thereto due to changes over time.
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of a plastic optical fiber manufactured by a manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the plastic optical fiber manufactured by the manufacturing method according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used to manufacture plastic optical fibers.
  • the manufacturing method of the present embodiment is a POF comprising a first layer made of a first resin material containing a fluorine-containing resin, and a second layer made of a second resin material and in contact with the first layer.
  • manufacturing method. The manufacturing method of this embodiment is (A) the linear body including the first layer and the second layer disposed in contact with the first layer is formed to have a first glass transition temperature Tg1 or lower of the first resin material and the second glass transition temperature Tg1 or lower; heat treatment at a temperature not higher than the glass transition temperature Tg 2 of the resin material; including.
  • the first resin material and the second resin material have a peel strength of 1 kN/m or more.
  • the peel strength of the first resin material and the second resin material is the peel strength measured using a joined body of the first sheet made of the first resin material and the second sheet made of the second resin material. is. Specifically, the peel strength is 270 ⁇ m for a laminate in which a first sheet made of a first resin material and having a thickness of 50 ⁇ m and a second sheet made of a second resin material and having a thickness of 50 ⁇ m are superimposed on each other. °C, pressure is applied with a hand roller in the stacking direction of the laminate to create a first and second sheet conjugate, and the peel strength. The pressure applied to the laminate by the hand roller is, for example, 5 to 20 kPa.
  • the first sheet made of the first resin material and the second sheet made of the second resin material are each produced by the following method.
  • the first sheet is formed by heating the first resin material in the range of the glass transition temperature Tg 1 +80 to Tg 1 +150° C. of the first resin material and applying pressure of 2 to 20 MPa to form a sheet with a thickness of 50 ⁇ m. do.
  • the second sheet is formed by heating the second resin material in the range of the glass transition temperature Tg 2 +80 to Tg 2 +150° C. of the second resin material and applying pressure of 2 to 20 MPa to form a sheet with a thickness of 50 ⁇ m. do.
  • the peel strength is determined, for example, by the following formula (1).
  • the measurement mode of SAICAS is constant speed mode.
  • the cutting speed is 10 ⁇ m/sec.
  • P is the peel strength [kN/m].
  • FH is the horizontal cutting stress [N] when a diamond cutting edge of SAICAS (manufactured by Daipla Co., Ltd., rake angle: 40°) is moved horizontally at the interface between the first layer and the second layer.
  • W is the blade width [m] of the cutting edge of SAICAS.
  • SAICAS is a registered trademark of Daipla Corporation.
  • P FH/W (1)
  • the fluororesin-containing layer and its adjacent layers change over time. (equivalent to the second layer in )) tends to cause interfacial peeling.
  • the manufacturing method of the present embodiment uses a first resin material and a second resin material having a peel strength of 1 kN/m or more for forming the first layer and the second layer, respectively.
  • the heat treatment of (A) prevents the occurrence of interfacial peeling between the first layer and the second layer due to aging. can be suppressed.
  • the first resin material and the second resin material have a peeling strength of 1.5 kN/m or more. It preferably has strength, and more preferably has a peel strength of 2 kN/m or more.
  • the upper limit of the peel strength of the first resin material and the second resin material is not particularly limited.
  • the peel strength of the first resin material and the second resin material may be, for example, 20 kN/m or less, 10 kN/m or less, or 5 kN/m. or less, 2.5 kN/m or less, or 2.3 kN/m or less.
  • the linear body to be subjected to the heat treatment of (A) above is obtained, for example, by a melt spinning method, that is, obtained by heating and melting the first resin material and the second resin material and molding them into a fiber shape. It may be obtained by cooling and solidifying the formed body.
  • a linear body obtained by such a method usually has residual stress when solidified by cooling. Therefore, by subjecting such a linear body to the heat treatment of (A) above, the residual stress of the linear body is effectively relaxed, and the first layer and the second layer generated due to aging change are effectively relieved. It is possible to effectively suppress interfacial peeling between.
  • the first resin material and the second resin material are heated and melted to be molded into a fiber shape, and the obtained molded body is cooled and solidified to form the first resin material. obtaining a linear body comprising a layer and a second layer.
  • the filamentous body subjected to the heat treatment of (A) above may be stretched. Residual stress is usually generated in a drawn linear body. Therefore, by subjecting such a linear body to the above heat treatment (A), the residual stress of the linear body is effectively relaxed, and interfacial peeling that occurs due to aging is effectively suppressed. can do.
  • the manufacturing method of the present embodiment may include, for example, stretching the linear body including the first layer and the second layer before the above (A).
  • the temperature T of the heat treatment of the linear body in (A) above is, as described above, the first glass transition temperature Tg1 or lower of the first resin material and the glass transition temperature Tg2 or lower of the second resin material.
  • the above heat treatment (A) can suppress interfacial peeling between the first layer and the second layer due to aging while maintaining the strength and flexibility of the POF, which are improved by the orientation of the resin material. .
  • the temperature T of the heat treatment in (A) above is preferably Tg 1 ⁇ 65° C. or higher and Tg 2 ⁇ 65° C. or higher.
  • Tg 1 -65° C. or higher and Tg 2 ⁇ 65° C. or higher By heat-treating the linear body at a temperature of Tg 1 -65° C. or more and Tg 2 -65° C. or more, the residual stress of the linear body can be relaxed efficiently and effectively.
  • the temperature T of the heat treatment in the above (A) is preferably Tg 1 ⁇ 45° C. or higher and Tg 2 ⁇ 45° C. or higher. more preferred.
  • the temperature T for the heat treatment of the linear body in (A) above preferably satisfies Tg 1 -65° C. ⁇ T ⁇ Tg 1 and Tg 2 ⁇ 65° C. ⁇ T ⁇ Tg 2 .
  • a more preferable temperature T for the heat treatment of the linear body satisfies Tg 1 -45°C ⁇ T ⁇ Tg 1 °C and Tg 2 -45°C ⁇ T ⁇ Tg 2 °C.
  • the glass transition temperature means the midpoint glass transition temperature (T mg ) determined according to JIS K7121:1987.
  • the heat treatment time in (A) above is preferably 10 minutes or longer, more preferably 1 hour or longer.
  • the heat treatment time in (A) above may be, for example, 75 hours or less, 24 hours or less, 18 hours or less, or 12 hours or less.
  • the heat treatment in (A) can sufficiently relax the residual stress of the linear body in 75 hours or less, and can more reliably suppress interfacial peeling that occurs due to aging.
  • the method for performing the heat treatment of (A) above is not particularly limited, and any method can be used as long as the linear body including the first layer and the second layer can be exposed to a desired temperature range for a desired time. Either method can be used.
  • the above-described heat treatment (A) may be performed on the linear body wound on a bobbin, or the linear body may be placed on a belt conveyor, for example, and continuously passed through a heating furnace. may be heat treated.
  • the heating means used during the heat treatment is not particularly limited, either, and known heating means such as a heater can be used.
  • the POF manufactured by the manufacturing method of the present embodiment includes a core 11, a clad 12 arranged on the outer circumference of the core, and a coating layer 13 arranged on the outer circumference of the clad.
  • the POF 10 may be used.
  • clad 12 is in contact with core 11 and coating layer 13 is in contact with clad 12 .
  • any one of the core 11, the clad 12, and the coating layer 13 is the first layer, and is in contact with the first layer.
  • a structure having a peel strength of 1 kN/m or more is the second layer.
  • core 11 or clad 12 may be the first layer.
  • the core 11 is the first layer
  • the core 11 is made of the first resin material containing the fluorine-containing resin
  • the clad 12 is the second layer made of the second resin material.
  • the resin contained in the second resin material is not particularly limited as long as it has high transparency.
  • Examples of resins contained in the second resin material include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins. Among these, fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • the clad 12 is the first layer
  • the clad 12 is made of the first resin material containing fluorine-containing resin
  • the core 11 or the coating layer 13 is the second layer made of the second resin material.
  • examples of resins contained in the second resin material include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
  • the fluorine-containing resin is suitable for use as the resin contained in the core 11 because it can achieve low transmission loss over a wide wavelength range.
  • the resin contained in the second resin material includes various engineering plastics such as polycarbonate, cycloolefin polymers, cycloolefin copolymers, polyesters, polyolefins, and monomers forming these polymers. copolymer, polytetrafluoroethylene (PTFE), modified PTFE, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • fluorine-containing resins do not have high adhesion to resins other than fluorine-containing resins, such as polycarbonate. Therefore, when the coating layer 13 is formed of the second resin material that does not contain a fluorine-containing resin, interfacial peeling due to aging occurs between the coating layer 13 and the clad 12 that is formed of the first resin material that contains a fluorine-containing resin. more likely to occur.
  • the manufacturing method of the present embodiment by performing the heat treatment of (A) above, it occurs between the clad 12 and the coating layer 13 due to aging. Therefore, the increase in transmission loss can be suppressed.
  • the clad may be composed of a plurality of layers.
  • the POF manufactured by the manufacturing method of the present embodiment has a core 11, a clad 22 arranged around the core, and a clad 22 arranged around the clad, like the modification shown in FIG. It may be a POF 20 with a coating layer 13 .
  • the clad 22 is composed of two layers, a first clad layer 221 arranged in contact with the core 11 and a second clad layer 222 arranged on the outer peripheral side of the first clad layer 221. structure, that is, a double clad structure.
  • coating layer 13 is in contact with second clad 222 .
  • FIG. 2 shows an example in which the clad 22 has a two-layer structure, the number of layers included in the clad 22 is not limited to this, and may include three or more layers.
  • any one of the core 11, the first clad layer 221, the second clad layer 222, and the coating layer 13 is the first layer.
  • the second layer is in contact with the layer and has a peel strength of 1 kN/m or more with respect to the first layer.
  • the core 11, the first clad 221, or the second clad 222 may be the first layer.
  • the core 11 is the first layer
  • the core 11 is made of the first resin material containing the fluorine-containing resin
  • the first clad 221 is the second layer made of the second resin material.
  • the core 11 or the second clad 222 is the second layer made of the second resin material.
  • the first clad 221 or the coating layer 13 is the second layer made of the second resin material.
  • the resin contained in the second resin material is not particularly limited as long as it has high transparency.
  • the resin contained in the second resin material in these cases include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins. Among these, fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • examples of the resin contained in the second resin material include various engineering plastics such as polycarbonate, cycloolefin polymers, PTFE, modified PTFE, and PFA, as in the case of the POF 10. be done.
  • the second resin material does not have to contain the fluorine-containing resin.
  • the heat treatment of (A) is performed according to the manufacturing method of the present embodiment. As a result, interfacial peeling that occurs between the second clad 222 and the coating layer 13 due to aging can be suppressed, thereby suppressing an increase in transmission loss.
  • the POF manufactured by the manufacturing method of the present embodiment is, for example, a gradient index (GI) type POF.
  • GI gradient index
  • Core 11 is a region that transmits light. Core 11 has a higher refractive index than clad 12 . With this configuration, the light that has entered the core 11 is confined inside the core 11 by the clad 12 and propagates through the POF 10 .
  • the core 11 contains resin.
  • the resin used for the core 11 is not particularly limited as long as it has high transparency.
  • resins used for the core 11 include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins. Among these, fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • the core 11 preferably contains a fluorine-containing resin.
  • the core 11 may contain a fluorine-containing resin as a main component.
  • that the core 11 contains the fluororesin as a main component means that the fluororesin is the component that is contained in the core 11 at the highest mass ratio.
  • the core 11 may contain the fluorine-containing resin in an amount of 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the core 11 may further contain additives in addition to the resin.
  • Additives are, for example, refractive index modifiers. That is, the core 11 may be made of a resin composition containing a resin and an additive such as a refractive index adjuster.
  • the refractive index modifier for example, a known refractive index modifier used for the material of the core 11 of the POF 10 can be used.
  • the material of the core 11 may contain additives other than the refractive index modifier.
  • the core 11 has a refractive index distribution in which the refractive index changes in the radial direction.
  • a refractive index distribution can be formed, for example, by adding a refractive index modifier to a resin and diffusing (for example, thermal diffusion) the refractive index modifier in the resin.
  • the resin constituting the core 11 is preferably a fluororesin containing a fluoropolymer.
  • the fluororesin contained in the core 11 will be referred to as the first fluororesin
  • the fluoropolymer contained in the first fluororesin will be referred to as the first fluoropolymer.
  • the first fluoropolymer contained in the first fluororesin preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and does not bind to carbon atoms. It is particularly preferred that all hydrogen atoms in the group are replaced by fluorine atoms. In other words, the first fluoropolymer preferably contains substantially no hydrogen atoms and is fully fluorinated. In the present specification, the fact that the fluoropolymer does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the fluoropolymer is 1 mol % or less.
  • the first fluoropolymer preferably has a fluoroalicyclic structure.
  • the fluorinated alicyclic structure may be contained in the main chain of the fluoropolymer, or may be contained in the side chain of the first fluoropolymer.
  • the first fluoropolymer has, for example, a structural unit (A) represented by the following structural formula (1).
  • R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
  • R ff1 and R ff2 may combine to form a ring.
  • Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1.
  • a perfluoroalkyl group may be linear or branched.
  • the perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
  • the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a perfluoroalkyl ether group may be linear or branched.
  • a perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
  • the ring may be a 5-membered ring or a 6-membered ring.
  • This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
  • structural unit (A) include structural units represented by the following formulas (A1) to (A8).
  • the structural unit (A) is preferably a structural unit (A2), that is, a structural unit represented by the following formula (2).
  • the first fluoropolymer may contain one or more of the structural units (A).
  • the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the first fluoropolymer tends to have higher heat resistance.
  • the structural unit (A) is contained in an amount of 40 mol % or more, the first fluoropolymer tends to have higher transparency and higher mechanical strength in addition to high heat resistance.
  • the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
  • the structural unit (A) is derived from, for example, a compound represented by the following formula (3).
  • R ff 1 to R ff 4 are the same as in formula (1).
  • the compound represented by formula (3) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
  • Specific examples of the compound represented by the formula (3) include compounds represented by the following formulas (M1) to (M8).
  • the fluoropolymer may further contain other structural units in addition to the structural unit (A).
  • Other structural units include the following structural units (B) to (D).
  • the structural unit (B) is represented by the following formula (4).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (B).
  • the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (B) is derived, for example, from a compound represented by the following formula (5).
  • R 1 to R 4 are the same as in formula (4).
  • the compound represented by formula (5) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
  • the structural unit (C) is represented by the following formula (6).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (C).
  • the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (C) is derived from, for example, a compound represented by the following formula (7).
  • R 5 to R 8 are the same as in formula (6).
  • Compounds represented by formula (7) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
  • the structural unit (D) is represented by the following formula (8).
  • Z represents an oxygen atom, a single bond, or —OC(R 19 R 20 )O—
  • each of R 9 to R 20 independently represents a fluorine atom or perfluoro having 1 to 5 carbon atoms. It represents an alkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • s and t each independently represent an integer of 0 to 5 and s+t is an integer of 1 to 6 (provided that s+t may be 0 when Z is -OC(R 19 R 20 )O-).
  • the structural unit (D) is preferably represented by the following formula (9).
  • the structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (8).
  • R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. .
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • the fluoropolymer may contain one or more of the structural units (D).
  • the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units.
  • the content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
  • the structural unit (D) is derived, for example, from a compound represented by the following formula (10).
  • Z, R 9 -R 18 , s and t are the same as in formula (4).
  • the compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
  • Structural unit (D) is preferably derived from a compound represented by the following formula (11).
  • R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
  • the first fluoropolymer may further contain structural units other than the structural units (A) to (D), but substantially other structural units other than the structural units (A) to (D) preferably does not contain It should be noted that the fact that the fluoropolymer does not substantially contain other structural units other than the structural units (A) to (D) means that the structural units (A) to It means that the total of (D) is 95 mol % or more, preferably 98 mol % or more.
  • the polymerization method for the first fluoropolymer is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used.
  • the polymerization initiator for polymerizing the fluoropolymer may be a fully fluorinated compound.
  • the first fluoropolymer constitutes the first fluororesin used as the resin constituting the core 11 .
  • the glass transition temperature of the first fluorine-containing resin is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • the refractive index of the core 11 is not particularly limited as long as it is higher than the refractive index of the clad 12 .
  • the difference between the refractive indices of core 11 and cladding 12 be larger for the wavelength of light used.
  • the refractive index of the core 11 can be 1.340 or more, or 1.360 or more, for the wavelength of light used (for example, a wavelength of 850 nm).
  • the upper limit of the refractive index of the core is not particularly limited, it is, for example, 1.4000 or less.
  • the clad 12 contains resin.
  • the resin used for the clad 12 is not particularly limited as long as it has high transparency.
  • resins used for the rad 12 include fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins. Among these, fluorine-containing resins are preferably used because they can achieve low transmission loss over a wide wavelength range.
  • the clad 12 preferably contains a fluorine-containing resin.
  • the clad 12 may contain a fluorine-containing resin as a main component.
  • the fact that the clad 12 contains the fluorine-containing resin as a main component means that the component contained in the clad 12 in the largest amount in terms of mass ratio is the fluorine-containing resin.
  • the clad 12 may contain 80% by mass or more of the fluorine-containing resin, 90% by mass or more, or 95% by mass or more.
  • the clad 12 may be composed only of a fluorine-containing resin.
  • the clad 12 may further contain additives in addition to the resin.
  • the resin forming the clad 12 is preferably a fluorine-containing resin containing a fluorine-containing polymer.
  • the fluororesin contained in the clad 12 will be referred to as the second fluororesin, and the fluoropolymer contained in the second fluororesin will be referred to as the second fluoropolymer.
  • fluororesin that can be used as the second fluororesin are the same as those exemplified as the fluororesin that can be used as the first fluororesin. That is, examples of the fluoropolymer that can be used as the second fluoropolymer are the same as those exemplified as the fluoropolymer that can be used as the first fluoropolymer.
  • the second fluoropolymer constitutes the second fluororesin used as the resin constituting the clad 12 .
  • the glass transition temperature of the second fluorine-containing resin is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • the resin forming the clad 12 may be a resin different from the resin forming the core 11, but preferably has affinity with the resin forming the core 11.
  • the resin forming the clad 12 may contain the same polymerized units as those contained in the resin forming the core 11 , or may be the same as the resin forming the core 11 . As a result, separation is less likely to occur at the interface between the core 11 and the clad 12, and transmission loss, for example, can be kept low.
  • the refractive index of the cladding 12 is not particularly limited as long as it is designed according to the refractive index of the core 11 .
  • the clad 12 may have a refractive index of, for example, 1.310 or less, or may have a refractive index of 1.300 or less at the wavelength of light used (eg, wavelength of 850 nm).
  • Coating layer 13 is provided to improve the mechanical strength of POF 10 .
  • materials and structures used as coating layers in known POFs can be applied.
  • materials for the coating layer 13 include various engineering plastics such as polycarbonate, cycloolefin polymers, cycloolefin copolymers, polyesters, polyolefins, copolymers of monomers forming these polymers, PTFE, modified PTFE, and PFA. etc.
  • the glass transition temperature of the material forming the coating layer 13 is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • POF 10 is manufactured using, for example, a melt spinning method. That is, an example of the method for manufacturing the POF 10 is Melting a core material and extruding it into a fiber shape to produce a fiber-like molded body made of the core material; Melting a clad material and extruding it so as to cover the surface of the molded body to produce a first laminate in which the core material and the clad material are concentrically laminated; The coating layer material is melted and extruded so as to cover the surface of the second molded body, thereby forming a second laminate in which the core material, the clad material, and the coating material are concentrically laminated. to fabricate cooling and solidifying the second laminate to obtain a linear body including a core, a clad and a coating layer, and subjecting the linear body to the heat treatment of (A) above; including.
  • FIG. 3 is a schematic cross-sectional view showing an example of a manufacturing apparatus that can be used to manufacture the POF 10 described above. An example of a method for manufacturing the POF 10 using this manufacturing apparatus will be described below.
  • the apparatus 100 shown in FIG. 3 includes a first extrusion device 101a for core formation, a second extrusion device 101b for clad formation, and a third extrusion device 101c for coating layer formation.
  • Device 100 further comprises first chamber 110 and second chamber 120 .
  • the first chamber 110 and the second chamber 120 are arranged vertically downward in this order.
  • the first extrusion device 101a has a first storage section 102a that stores the core material 1a, and a first extrusion section 103a that extrudes the core material 1a stored in the first storage section 102a from the first storage section 102a.
  • a heater or the like is provided in the first extrusion device 101a so that the core material 1a can be melted in the first housing portion 102a and the melted core material 1a can be kept in a molten state until it is molded.
  • a heating unit (not shown) may be further provided. In this case, for example, a rod-shaped core material (preform) 1a is inserted into the first accommodation portion 102a through the upper opening of the first accommodation portion 102a and heated in the first accommodation portion 102a. melted by
  • the core material 1a is extruded, for example by gas extrusion, out of the first receiving portion 102a via the first extrusion portion 103a to form the core 2.
  • the core material 1a extruded to form the core 2 through the first extruding portion 103a then moves vertically downward and is supplied to each of the first chamber 110 and the second chamber 120 in this order. .
  • the second extrusion device 101b has a second storage section 102b that stores the clad material 1b, and a second extrusion section 103b that pushes out the clad material 1b stored in the second storage section 102b from the second storage section 102b.
  • the second extrusion device 101b extrudes the melted clad material 1b so as to cover the outer circumference of the core 2 formed of the core material 1a extruded from the first extrusion device 102a.
  • the clad material 1 b extruded from the second extrusion device 101 b is supplied to the first chamber 110 .
  • the clad 3 covering the outer periphery of the core 2 can be formed.
  • a laminate formed of the core 2 and the clad 3 covering the outer periphery of the core 2 moves from the first chamber 110 to the second chamber 120 .
  • the third extrusion device 101c includes, for example, a third container 102c containing the coating layer material 1c, a screw 104 arranged in the third container 102c, and a hopper 105 connected to the third container 102c. ing.
  • the pellet-shaped coating layer material 1c is supplied through the hopper 105 to the third container 102c.
  • the coating layer material 1c supplied to the third container 102c is softened and becomes fluid by being kneaded by the screw 104 while being heated, for example.
  • the softened coating layer material 1c is extruded from the third accommodating portion 102c by the screw 104. As shown in FIG.
  • the coating layer material 1c extruded from the third extrusion device 101c is supplied to the second chamber 120.
  • the surface of the laminate formed of the core 2 and the clad 3 is covered with the coating layer material 1c, so that the coating layer 4 covering the outer periphery of the clad 3 can be formed.
  • the laminate 5 in which the core 2 , the clad 3 , and the coating layer 4 are concentrically laminated moves from the second chamber 120 to the diffusion tube 130 arranged vertically below the second chamber 120 .
  • Diffusion tube 130 may be provided with, for example, a heater (not shown) for heating this laminate.
  • the temperature and viscosity of the laminate 5 passing through the interior are appropriately adjusted.
  • the diffusion tube 130 can diffuse a dopant such as a refractive index adjuster contained in the laminate 5 passing through the diffusion tube 130 in the laminate 5 .
  • the diffusion tube 130 is connected to the internal channel of the nozzle 140 . That is, the lower opening of the diffusion tube 130 is connected to the inlet of the nozzle 140 , and the laminate 5 that has passed through the diffusion tube 130 flows into the internal flow path through the inlet of the nozzle 140 .
  • the laminated body 5 passes through the internal flow path, is reduced in diameter, and is discharged from the discharge port of the nozzle 140 in the form of a fiber.
  • the positional relationship between the second chamber 120 and the diffusion tube 130 may be switched. Namely.
  • the device configuration may be such that the diffusion pipe 130 is arranged under the first chamber 110, the second chamber 120 is arranged below it, and the nozzle 140 is installed further below the second chamber.
  • the laminated body 5 discharged in the form of fibers from the discharge port of the nozzle 140 flows, for example, into the internal space 151 of the cooling pipe 150, is cooled while passing through the internal space 151, and is discharged from the opening of the cooling pipe 150. released to the outside.
  • the laminate 5 released from the cooling pipe 150 passes, for example, between the two rolls 161 and 162 of the nip roll 160, and further via the guide rolls 163 to 165, including the core, the clad, and the coating layer.
  • the linear body 6 is taken up by the take-up roll 166 .
  • a displacement meter 170 that measures the outer diameter of the linear body 6 near the winding roll 166 , for example, between the guide roll 165 and the winding roll 166 may be provided.
  • the heat treatment of (A) above is performed on the linear body 6 including the core, the clad, and the coating layer.
  • the heat treatment of the linear body 6 may be performed, for example, by winding the linear body 6 around a bobbin (not shown) for heat treatment, and then performing the linear body 6 wound around the bobbin.
  • the linear body 6 pulled out from the take-up roll 166 may be placed on, for example, a belt conveyor (not shown), and the linear body 6 may be continuously passed through a heating furnace.
  • the conditions such as the temperature of the heat treatment (A) at this time are as described above.
  • Example 1 [Preparation of fluorine-containing resin used for core and clad]
  • a polymer of perfluoro-4-methyl-2-methylene-1,3-dioxolane (compound of the above formula (M2), “PFMMD”) was prepared as the fluorine-containing resin used for the core and clad.
  • Perfluoro-4-methyl-2-methylene-1,3-dioxolane is obtained by first synthesizing 2-carbomethyl-2-trifluoromethyl-4-methyl-1,3-dioxolane and fluorinating it. Synthesized by decarboxylation separation of the carboxylate.
  • Perfluorobenzoyl peroxide was used as a polymerization initiator for the polymerization of perfluoro-4-methyl-2-methylene-1,3-dioxolane.
  • the obtained transparent rod was dissolved in Fluorinert FC-75 (manufactured by Sumitomo 3M), and the resulting solution was poured onto a glass plate to obtain a polymer thin film.
  • the obtained polymer had a glass transition temperature of 117° C. and was completely amorphous.
  • the product was purified by dissolving the transparent rod in hexafluorobenzene and adding chloroform to precipitate.
  • the glass transition temperature of the purified polymer was about 131°C. This polymer was used as the fluororesin used for the core and clad.
  • Refractive index adjuster A chlorotrifluoroethylene low polymer (manufactured by Daikin Co., Ltd.) was used as the refractive index adjuster.
  • Coating layer material Xylex7200 (manufactured by SABIC, glass transition temperature: 113° C.) was used as a coating layer material.
  • a POF having the same structure as the POF 10 shown in FIG. 1 was fabricated by melt spinning using the core material, clad material, and coating layer material prepared by the above method.
  • a manufacturing apparatus 100 shown in FIG. 3 was used for manufacturing a linear body including a core, a clad, and a coating layer.
  • the melting temperature of the core material was 250°C
  • the melting temperature of the clad material was 255°C
  • the melting temperature of the covering layer material was 220°C.
  • the heat treatment of the linear body including the core, the clad and the coating layer is carried out by winding the linear body on a bobbin for heat treatment and heating the linear body wound on the bobbin at 90° C. for 1 hour. 12 hours or 24 hours.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 100 ⁇ m
  • the outer diameter of the coating layer (that is, the outer diameter of the POF) was 470 ⁇ m.
  • the clad corresponds to the first layer
  • the coating layer corresponds to the second layer
  • a 50 ⁇ m thick first sheet made of PFMMD polymer and a 50 ⁇ m thick second sheet made of Xylex7200 were prepared.
  • the first sheet was produced by heating the PFMMD polymer at 220° C. for 7 minutes, pressing it at 220° C. under a pressure of 10 MPa for 5 minutes, and further pressing it at 220° C. under a pressure of 20 MPa for 5 minutes.
  • a second sheet was produced by heating pellets of Xylex 7200 at 225° C. for 5 minutes, pressing them at 225° C. at a pressure of 2 MPa for 2 minutes, and further pressing them at 225° C. at a pressure of 10 MPa for 2 minutes.
  • first sheet and second sheet are superimposed on each other, and pressure is applied to the obtained laminate with a hand roller in the lamination direction of the laminate at 270° C. to separate the first sheet and the second sheet.
  • Two sheets of zygote were made. This joined body was used as a test piece.
  • Example 1 A POF was produced in the same manner as in Example 1, except that the linear body including the core, clad, and coating layer was not heat-treated.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 100 ⁇ m
  • the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 470 ⁇ m.
  • the clad corresponds to the first layer
  • the coating layer corresponds to the second layer.
  • Example 1 The measured value of Example 1 was used as the peel strength between the PFMMD polymer produced by the above method, which is the fluorine-containing resin of the clad material, and Xylex 7200, which is the coating layer material.
  • Example 2 [Production of POF] DURABIO T-7450 (manufactured by Mitsubishi Chemical Corporation, glass transition temperature: 129°C) was used as the coating layer material, and the melting temperature of the coating layer material was 220°C. No heat treatment was performed.
  • a POF was produced in the same manner as in Example 1 except for these points.
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 100 ⁇ m
  • the outer diameter of the reinforcing layer that is, the outer diameter of the POF
  • the clad corresponds to the first layer
  • the coating layer corresponds to the second layer.
  • the second sheet was produced by heating pellets of DURABIO T-7450 at 210°C for 3 minutes, pressing the pellets at 210°C at a pressure of 2 MPa for 2 minutes, and then pressing at a pressure of 10 MPa at 210°C for 2 minutes. rice field.
  • the produced first sheet and second sheet are superimposed on each other, and pressure is applied to the obtained laminate with a hand roller in the lamination direction of the laminate at 270° C. to separate the first sheet and the second sheet.
  • Two sheets of zygote were made. Using this joined body as a test piece, the peel strength was measured by SAICAS.
  • the measurement procedure and measurement conditions by SAICAS were the same as in Example 1. Table 1 shows the results.
  • Example 4 [Production of POF] A POF was produced in the same manner as in Example 1, except for the following points. - Polymethyl methacrylate (PMMA (glass transition temperature: about 102°C)) was used as the core and clad resin instead of the PFMMD polymer. - The melting temperature of the core material was set to 240°C. - The melting temperature of the clad material was set to 240°C. - The linear body including the core, clad, and coating layer was not heat-treated.
  • PMMA glass transition temperature: about 102°C
  • the outer diameter of the core was 80 ⁇ m
  • the outer diameter of the clad was 100 ⁇ m
  • the outer diameter of the reinforcing layer (that is, the outer diameter of the POF) was 470 ⁇ m.
  • the clad corresponds to the first layer
  • the coating layer corresponds to the second layer
  • the peel strength between the clad material PMMA and the coating layer material Xylex 7200 was measured by SAICAS.
  • a first sheet made of PMMA and having a thickness of 50 ⁇ m and a second sheet made of Xylex7200 and having a thickness of 50 ⁇ m were prepared.
  • the first sheet was produced by heating PMMA at 220° C. for 5 minutes, pressing the same at 220° C. under a pressure of 2 MPa for 2 minutes, and further pressing at a pressure of 10 MPa at 220° C. for 2 minutes.
  • a second sheet was produced by heating pellets of Xylex 7200 at 225° C. for 5 minutes, pressing them at 225° C.
  • the clad material (corresponding to the first resin material) and the coating layer material (corresponding to the second resin material) had a peel strength of 1 kN/m or more.
  • a POF having a cladding and a coating layer formed from such a combination of materials exhibited interfacial delamination in Comparative Example 1, in which the heat treatment at 90°C was not performed, but was treated at 90°C for 1 h, 12 h, and 24 hours. In Example 1 in which the heat treatment was performed, the occurrence of interfacial peeling was suppressed.
  • the peel strength of the clad material (corresponding to the first resin material) and the coating layer material (corresponding to the second resin material) was less than 1 kN/m.
  • a POF having a cladding and a coating layer formed of such a combination of materials exhibited interfacial delamination in Comparative Example 3, in which heat treatment at 90°C was not performed, and heat treatment at 90°C for 1 h, 12 h, and 24 hours. Occurrence of interfacial peeling was also confirmed in Comparative Example 2 in which That is, when the peel strength is less than 1 kN/m, interfacial peeling could not be suppressed by heat treatment at 90°C.
  • the clad material (corresponding to the first resin material) and the coating layer material (corresponding to the second resin material) had a large peel strength exceeding 20 kN/m. In this case, since the adhesion between the clad and the coating layer is large, no interfacial peeling occurred even when the heat treatment at 90° C. was not performed. However, in the POF of Comparative Example 4, no fluorine-containing resin was used as the resin constituting the core and clad. Therefore, it is considered that the POF of Comparative Example 4 has a larger transmission loss on the long wavelength side than the POFs of Example 1 and Comparative Examples 1 to 3, in which the fluorine-containing resin is used.
  • the POF manufacturing method of the present invention is suitable for manufacturing POF for high-speed communication.

Abstract

本発明の製造方法は、含フッ素樹脂を含む第1樹脂材料によって形成された第1層と、第2樹脂材料によって形成され、かつ第1層に接する第2層と、を備えたプラスチック光ファイバーの製造方法である。本発明の製造方法は、(A)第1層と、第1層に接して配置された第2層とを含む線状体を、第1樹脂材料の第1ガラス転移温度Tg1以下、かつ第2樹脂材料のガラス転移温度Tg2以下の温度で熱処理すること、を含む。第1樹脂材料及び第2樹脂材料は、1kN/m以上の剥離強度を有する。ここで、剥離強度とは、第1樹脂材料からなる第1シートと、第2樹脂材料からなる第2シートとの接合体について、SAICASによって測定される第2シートの第1シートに対する剥離強度である。

Description

プラスチック光ファイバーの製造方法
 本発明は、プラスチック光ファイバーの製造方法に関する。
 プラスチック光ファイバーは、光を伝送する部分として、中心部のコアと、当該コアの外周を覆うクラッドとを備えている。コアは、高屈折率を有する樹脂材料によって形成されている。クラッドは、光をコア内に留めるために、コアの樹脂材料よりも低い屈折率を有する樹脂材料によって形成されている。コア及びクラッドの樹脂材料としては、例えば、プラスチック光ファイバーの伝送損失を低減する観点から、含フッ素樹脂が利用される(例えば、特許文献1)。
 プラスチック光ファイバーは、例えば、クラッドの外周に配置された被覆層をさらに備えている。被覆層によれば、プラスチック光ファイバーの機械的強度を向上させることができる。
特開2001-302935号公報
 本発明者らの検討によると、含フッ素樹脂によって形成されている層(以下、「含フッ素樹脂含有層」と記載する)を備えたプラスチック光ファイバーにおいては、経時変化によって、含フッ素樹脂含有層とそれに隣接する層との間で界面剥離が生じる傾向がある。界面剥離が生じると、コアの中心軸がわずかにずれるマイクロベンディングが生じ、これにより、プラスチック光ファイバーの伝送損失が増加しうる。
 そこで、本発明は、経時変化によって含フッ素樹脂含有層とそれに隣接する層との間で生じる界面剥離を抑制できるプラスチック光ファイバーの製造方法を提供することを目的とする。
 本発明は、
 含フッ素樹脂を含む第1樹脂材料によって形成された第1層と、第2樹脂材料によって形成され、かつ前記第1層に接する第2層と、を備えたプラスチック光ファイバーの製造方法であって、
 前記製造方法は、
 (A)前記第1層と、前記第1層に接して配置された前記第2層とを含む線状体を、前記第1樹脂材料の第1ガラス転移温度Tg1以下、かつ前記第2樹脂材料のガラス転移温度Tg2以下の温度で熱処理すること、
を含み、
 前記第1樹脂材料及び前記第2樹脂材料は、1kN/m以上の剥離強度を有する、
プラスチック光ファイバーの製造方法を提供する。
 ここで、前記剥離強度とは、前記第1樹脂材料からなる厚さ50μmの第1シートと、前記第2樹脂材料からなる厚さ50μmの第2シートとを互いに重ね合わせた積層体に対し、270℃で、前記積層体の積層方向にハンドローラーで圧力を印加して前記第1シート及び前記第2シートの接合体を作製し、前記接合体についてSurface And Interfacial Cutting Analysis System(SAICAS)によって測定される前記第2シートの前記第1シートに対する剥離強度である。
 本発明によれば、経時変化によって含フッ素樹脂含有層とそれに隣接する層との間で生じる界面剥離を抑制できるプラスチック光ファイバーの製造方法を提供できる。
図1は、本発明の実施形態による製造方法によって製造されるプラスチック光ファイバーの断面構造の一例を示す模式図である。 図2は、本発明の実施形態による製造方法によって製造されるプラスチック光ファイバーの断面構造の別の例を示す模式図である。 図3は、プラスチック光ファイバーの製造に使用できる製造装置の一例を示す概略断面図である。
 以下、本発明のプラスチック光ファイバー(以下、「POF」と記載する)の製造方法の実施形態について説明する。以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。
 本実施形態の製造方法は、含フッ素樹脂を含む第1樹脂材料によって形成された第1層と、第2樹脂材料によって形成され、かつ前記第1層に接する第2層と、を備えるPOFの製造方法である。本実施形態の製造方法は、
 (A)前記第1層と、前記第1層に接して配置された前記第2層とを含む線状体を、前記第1樹脂材料の第1ガラス転移温度Tg1以下、かつ前記第2樹脂材料のガラス転移温度Tg2以下の温度で熱処理すること、
を含む。本実施形態の製造方法において、第1樹脂材料及び第2樹脂材料は、1kN/m以上の剥離強度を有する。
 ここで、第1樹脂材料及び第2樹脂材料の剥離強度とは、第1樹脂材料からなる第1シートと、第2樹脂材料からなる第2シートとの接合体を用いて測定される剥離強度である。具体的には、上記剥離強度は、第1樹脂材料からなる厚さ50μmの第1シートと、第2樹脂材料からなる厚さ50μmの第2シートとを互いに重ね合わせた積層体に対し、270℃で、当該積層体の積層方向にハンドローラーで圧力を印加して第1シート及び第2シートの接合体を作製し、この接合体についてSAICASによって測定される、第2シートの第1シートに対する剥離強度である。なお、ハンドローラーで積層体に印加される圧力は、例えば5~20kPaである。
 第1樹脂材料からなる第1シート及び第2樹脂材料からなる第2シートは、それぞれ、次のような方法で作製される。第1シートは、第1樹脂材料を、第1樹脂材料のガラス転移温度Tg1+80~Tg1+150℃の範囲で加熱して、2~20MPaの圧力を印加して厚さ50μmのシートに成形する。第2シートは、第2樹脂材料を、第2樹脂材料のガラス転移温度Tg2+80~Tg2+150℃の範囲で加熱して、2~20MPaの圧力を印加して厚さ50μmのシートに成形する。
 上記剥離強度は、例えば、以下の数式(1)によって決定される。SAICASの測定モードは、定速度モードである。切削速度は、10μm/秒である。数式(1)において、Pは、剥離強度[kN/m]である。FHは、第1層と第2層との界面においてSAICASのダイヤモンド製の切刃(ダイプラ社製、すくい角:40°)を水平に移動させた場合の水平切削応力[N]である。Wは、SAICASの切刃の刃幅[m]である。なお、SAICASは、ダイプラ株式会社の登録商標である。
 P=FH/W …(1)
 含フッ素樹脂含有層(すなわち、本実施形態の製造方法における第1層に相当)を備えたPOFでは、経時変化によって、含フッ素樹脂含有層とそれに隣接する層(すなわち、本実施形態の製造方法における第2層に相当)との間で界面剥離が生じる傾向がある。これに対し、本実施形態の製造方法は、1kN/m以上の剥離強度を有する第1樹脂材料及び第2樹脂材料が、それぞれ、第1層及び第2層の形成に用いられているPOFの製造に際し、上記(A)の熱処理を実施することにより、経時変化による第1層と第2層との間の界面剥離の発生を抑制することができる。これは、第1層と、第1層に接して配置された第2層とを含む線状体に対して上記(A)の熱処理が実施されることにより、上記線状体を作製する過程(例えば、溶融状態の線状体を冷却固化するための冷却過程、及び、線状体の延伸過程等)で線状体に発生した残留応力が緩和される。このような残留応力の緩和によって、第1層と第2層との接着強度が維持されつつ、経時変化によって第1層と第2層との界面で発生する剥離が抑制されると考えられる。
 第1樹脂材料及び第2樹脂材料が1kN/m以上の剥離強度を有していれば、上記(A)の熱処理によって経時変化による第1層と第2層との間の界面剥離の発生を抑制することができる。本実施形態の製造方法によって第1層と第2層との間の界面剥離の発生をより確実に抑制するために、第1樹脂材料及び第2樹脂材料は、1.5kN/m以上の剥離強度を有していることが好ましく、2kN/m以上の剥離強度を有していることがより好ましい。第1樹脂材料及び第2樹脂材料の剥離強度の上限は、特には限定されない。しかし、第1樹脂材料及び第2樹脂材料の剥離強度が高い場合、経時変化による第1層と第2層との間の界面剥離が生じにくいことから、上記(A)の熱処理による界面剥離抑制の効果をより効果的に発揮させるために、第1樹脂材料及び第2樹脂材料の剥離強度は、例えば20kN/m以下であってもよく、10kN/m以下であってもよく、5kN/m以下であってもよく、2.5kN/m以下であってもよく、2.3kN/m以下であってもよい。
 上記(A)の熱処理が実施される線状体は、例えば、溶融紡糸法によって得られたもの、すなわち、第1樹脂材料及び第2樹脂材料を加熱溶融してファイバー状に成形し、得られた成形体を冷却固化して得られたものであってよい。このような方法で得られた線状体は、通常、冷却固化時に残留応力が発生する。したがって、このような線状体に対して上記(A)の熱処理が実施されることにより、線状体の残留応力が効果的に緩和されて、経時変化によって発生する第1層と第2層との間の界面剥離を効果的に抑制することができる。本実施形態の製造方法は、例えば、上記(A)の前に、第1樹脂材料及び第2樹脂材料を加熱溶融してファイバー状に成形し、得られた成形体を冷却固化して第1層及び第2層を含む線状体を得ること、を含んでいてもよい。
 また、上記(A)の熱処理が実施される線状体は、延伸されていてもよい。延伸されている線状体には、通常、残留応力が発生している。したがって、このような線状体に対して上記(A)の熱処理が実施されることにより、線状体の残留応力が効果的に緩和されて、経時変化によって発生する界面剥離を効果的に抑制することができる。本実施形態の製造方法は、例えば、上記(A)の前に、第1層及び第2層を含む線状体を延伸すること、を含んでいてもよい。
 上記(A)における線状体の熱処理の温度Tは、上述のとおり、第1樹脂材料の第1ガラス転移温度Tg1以下、かつ第2樹脂材料のガラス転移温度Tg2以下である。Tg1以下及びTg2以下の温度で線状体を熱処理することにより、例えば、第1層と第2層との接着強度を維持しつつ、線状体の残留応力を緩和することができる。したがって、上記(A)の熱処理により、経時変化によって発生する第1層と第2層との間の界面剥離を効果的に抑制することができる。また、例えば線状体が延伸されている場合、Tg1以下及びTg2以下の温度で線状体を熱処理することにより、延伸時に生じさせた樹脂材料の延伸方向への配向を維持しながら、残留応力を緩和することができる。したがって、上記(A)の熱処理は、樹脂材料の配向によって向上したPOFの強度及び柔軟性を維持しつつ、経時変化による第1層と第2層との間の界面剥離を抑制することができる。
 上記(A)における熱処理の温度Tは、Tg1-65℃以上、かつTg2-65℃以上であることが好ましい。Tg1-65℃以上、かつTg2-65℃以上の温度で線状体を熱処理することにより、線状体の残留応力を効率良く、かつ効果的に緩和させることができる。線状体の残留応力をより効率良く、かつより効果的に緩和させるために、上記(A)における熱処理の温度Tは、Tg1-45℃以上、かつTg2-45℃以上であることがより好ましい。
 以上の理由から、上記(A)における線状体の熱処理の温度Tは、Tg1-65℃≦T≦Tg1、及び、Tg2-65℃≦T≦Tg2を満たすことが好ましい。より好ましい線状体の熱処理の温度Tは、Tg1-45℃≦T≦Tg1℃、及び、Tg2-45℃≦T≦Tg2℃を満たすことである。
 本明細書において、ガラス転移温度は、JIS K7121:1987の規定に準拠して求められる中間点ガラス転移温度 (Tmg)を意味する。
 上記(A)における熱処理の時間は、10分以上が好ましく、1時間以上がより好ましい。熱処理の時間を10分以上とすることにより、線状体の残留応力を十分に緩和させて、経時変化によって発生する界面剥離をより確実に抑制することができる。
 上記(A)における熱処理の時間は、例えば75時間以下であってもよく、24時間以下であってもよく、18時間以下であってもよく、12時間以下であってもよい。上記(A)における熱処理は、75時間以下で線状体の残留応力を十分に緩和させて、経時変化によって発生する界面剥離をより確実に抑制することができる。
 上記(A)の熱処理が実施される方法は、特には限定されず、第1層及び第2層を含む線状体が所望の温度範囲に所望の時間曝されることができる方法であればいずれの方法でも使用可能である。例えば、ボビンに巻き取られた状態の上記線状体に対して上記(A)の熱処理が実施されてもよいし、線状体を例えばベルトコンベアに載せて加熱炉内を通過させながら連続的に熱処理を施してもよい。熱処理時に用いられる加熱手段も特には限定されず、ヒーター等の公知の加熱手段が利用できる。
 本実施形態の製造方法によって製造されるPOFは、例えば、図1に示すように、コア11と、コアの外周に配置されたクラッド12と、クラッドの外周に配置された被覆層13とを備えたPOF10であってもよい。POF10において、クラッド12はコア11に接しており、被覆層13はクラッド12に接している。
 本実施形態の製造方法によってPOF10が製造される場合、コア11、クラッド12、及び被覆層13のうちのいずれかが第1層であり、その第1層に接し、かつ第1層に対して1kN/m以上の剥離強度を有する構成が第2層となる。例えば、コア11又はクラッド12が第1層であってもよい。コア11が第1層である場合、コア11が含フッ素樹脂を含む第1樹脂材料で形成され、クラッド12が第2樹脂材料で形成された第2層となる。この場合、第2樹脂材料に含まれる樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。第2樹脂材料に含まれる樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。クラッド12が第1層である場合、クラッド12が含フッ素樹脂を含む第1樹脂材料で形成され、コア11又は被覆層13が第2樹脂材料で形成された第2層となる。コア11が第2層である場合、第2樹脂材料に含まれる樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。上述のとおり、含フッ素樹脂は広い波長領域で低い伝送損失を実現可能であることから、コア11に含まれる樹脂として好適に用いられる。被覆層13が第2層である場合、第2樹脂材料に含まれる樹脂としては、ポリカーボネート等の各種エンジニアリングプラスチック、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリエステル、ポリオレフィン、及び、これらのポリマーを形成するモノマーの共重合体、ポリテトラフルオロエチレン(PTFE)、変性PTFE、及びテトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)等が挙げられる。被覆層13が第2層である場合、第2樹脂材料は含フッ素樹脂を含んでいなくてもよい。一般に、含フッ素樹脂は、ポリカーボネート等の含フッ素樹脂以外の樹脂との密着性が高くない。したがって、被覆層13が含フッ素樹脂を含まない第2樹脂材料によって形成されている場合、含フッ素樹脂を含む第1樹脂材料によって形成されているクラッド12との間で、経時変化による界面剥離が生じやすくなる。しかし、このような樹脂の組み合わせであっても、本実施形態の製造方法によれば、上記(A)の熱処理が実施されることにより、経時変化によってクラッド12と被覆層13との間に発生する界面剥離を抑制できるので、伝送損失の増加が抑制される。
 本実施形態の製造方法によって製造されるPOFは、例えば、クラッドが複数の層によって構成されていてもよい。例えば、本実施形態の製造方法によって製造されるPOFは、図2に示されている変形例のような、コア11と、コアの外周に配置されたクラッド22と、クラッドの外周に配置された被覆層13とを備えたPOF20であってもよい。POF20において、クラッド22は、コア11に接して配置されている第1のクラッド層221と、第1のクラッド層221よりも外周側に配置されている第2のクラッド層222とからなる2層構造、すなわちダブルクラッド構造を有している。POF20において、被覆層13は第2のクラッド222に接している。なお、図2では、クラッド22が2層構造である例が示されているが、クラッド22に含まれる層数はこれに限定されず、3層以上が含まれていてもよい。
 本実施形態の製造方法によってPOF20が製造される場合、コア11、第1のクラッド層221、第2のクラッド層222、及び被覆層13のうちのいずれかが第1層であり、その第1層に接し、かつ第1層に対して1kN/m以上の剥離強度を有する構成が第2層となる。例えば、コア11、第1のクラッド221、又は第2のクラッド222が第1層であってもよい。コア11が第1層である場合、コア11が含フッ素樹脂を含む第1樹脂材料で形成され、第1のクラッド221が第2樹脂材料で形成された第2層となる。第1のクラッド221が第1層である場合、コア11又は第2のクラッド222が第2樹脂材料で形成された第2層となる。第2のクラッド222が第1層である場合、第1のクラッド221又は被覆層13が第2樹脂材料で形成された第2層となる。第2層がコア11、第1のクラッド221、又は第2のクラッド222である場合、第2樹脂材料に含まれる樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。これらの場合に第2樹脂材料に含まれる樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。被覆層13が第2層である場合、第2樹脂材料に含まれる樹脂としては、POF10の場合と同様に、ポリカーボネート等の各種エンジニアリングプラスチック、シクロオレフィンポリマー、PTFE、変性PTFE、及びPFA等が挙げられる。被覆層13が第2層である場合、第2樹脂材料は含フッ素樹脂を含んでいなくてもよい。上述のとおり、被覆層13が含フッ素樹脂を含まない第2樹脂材料によって形成されている場合であっても、本実施形態の製造方法によれば、上記(A)の熱処理が実施されることにより、経時変化によって第2のクラッド222と被覆層13との間に発生する界面剥離を抑制できるので、伝送損失の増加が抑制される。
 本実施形態の製造方法によって製造されるPOFは、例えば、屈折率分布(GI)型のPOFである。
 以下、本実施形態の製造方法によってPOF10が製造される場合を例に挙げ、POF10の各構成についてより詳しく説明する。
 (コア11)
 コア11は、光を伝送する領域である。コア11は、クラッド12よりも高い屈折率を有している。この構成により、コア11内に入射した光は、クラッド12によってコア11内部に閉じ込められて、POF10内を伝搬する。
 コア11は、樹脂を含む。コア11に用いられる樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。コア11に用いられる樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。
 コア11は、含フッ素樹脂を含むことが好ましい。コア11は、含フッ素樹脂を主成分として含んでいてもよい。ここで、コア11が含フッ素樹脂を主成分として含むとは、コア11において、質量比で最も多く含まれる成分が含フッ素樹脂であることである。コア11は、含フッ素樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。
 コア11は、樹脂の他に、添加物をさらに含んでいてもよい。添加物は、例えば屈折率調整剤である。すなわち、コア11は、樹脂と、屈折率調整剤等の添加剤とを含む樹脂組成物によって形成されていてもよい。屈折率調整剤として、例えば、POF10のコア11の材料に用いられる公知の屈折率調整剤が用いられ得る。コア11の材料は、屈折率調整剤以外の他の添加物を含んでいてもよい。
 本実施形態のPOF10が例えばGI型である場合、コア11は、径方向に対して屈折率が変化する屈折率分布を有する。このような屈折率分布は、例えば、樹脂に屈折率調整剤を添加し、屈折率調整剤を樹脂中で拡散(例えば、熱拡散)させることによって、形成され得る。
 上述のとおり、コア11を構成する樹脂は、含フッ素重合体を含む含フッ素樹脂であることが好ましい。以下、コア11に含まれる含フッ素樹脂を第1含フッ素樹脂と記載し、第1含フッ素樹脂に含まれる含フッ素重合体を第1含フッ素重合体と記載する。
 第1含フッ素樹脂に含まれる第1含フッ素重合体は、C-H結合の伸縮エネルギーによる光吸収を抑制する観点から、実質的に水素原子を含んでいないことが好ましく、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることが特に好ましい。すなわち、第1含フッ素重合体は、実質的に水素原子を含まず、かつ全フッ素化されていることが好ましい。本明細書において、含フッ素重合体が実質的に水素原子を含んでいないとは、含フッ素重合体における水素原子の含有率が1モル%以下であることを意味する。
 第1含フッ素重合体は、含フッ素脂肪族環構造を有することが好ましい。含フッ素脂肪族環構造は、含フッ素重合体の主鎖に含まれていてもよく、第1含フッ素重合体の側鎖に含まれていてもよい。第1含フッ素重合体は、例えば、下記構造式(1)で表される構成単位(A)を有する。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は、連結して環を形成してもよい。「パーフルオロ」は、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることを意味する。式(1)において、パーフルオロアルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1であることがさらに好ましい。パーフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが挙げられる。
 式(1)において、パーフルオロアルキルエーテル基の炭素数は、1~5が好ましく、1~3がより好ましい。パーフルオロアルキルエーテル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキルエーテル基としては、パーフルオロメトキシメチル基などが挙げられる。
 Rff 1及びRff 2が連結して環を形成している場合、当該環は、5員環であってもよく、6員環であってもよい。この環としては、パーフルオロテトラヒドロフラン環、パーフルオロシクロペンタン環、パーフルオロシクロヘキサン環などが挙げられる。
 構成単位(A)の具体例としては、例えば、下記式(A1)~(A8)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 構成単位(A)は、上記式(A1)~(A8)で表される構成単位のうち、構成単位(A2)、すなわち下記式(2)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 第1含フッ素重合体は、構成単位(A)を1種又は2種以上含んでいてもよい。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、20モル%以上であることが好ましく、40モル%以上であることがより好ましい。構成単位(A)が20モル%以上含まれることにより、第1含フッ素重合体は、より高い耐熱性を有する傾向がある。構成単位(A)が40モル%以上含まれる場合、第1含フッ素重合体は、高い耐熱性に加えて、より高い透明性及び高い機械的強度も有する傾向がある。第1含フッ素重合体において、構成単位(A)の含有量は、全構成単位の合計に対し、95モル%以下であることが好ましく、70モル%以下であることがより好ましい。
 構成単位(A)は、例えば、下記式(3)で表される化合物に由来する。式(3)において、Rff 1~Rff 4は、式(1)と同じである。なお、式(3)で表される化合物は、例えば特表2007-504125号公報に開示された製造方法をはじめ、すでに公知である製造方法によって得ることができる。
Figure JPOXMLDOC01-appb-C000006
 上記式(3)で表される化合物の具体例としては、例えば、下記式(M1)~(M8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 含フッ素重合体は、構成単位(A)以外に、他の構成単位をさらに含んでいてもよい。他の構成単位としては、以下の構成単位(B)~(D)が挙げられる。
 構成単位(B)は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(B)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(B)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(B)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(B)は、例えば、下記式(5)で表される化合物に由来する。式(5)において、R1~R4は、式(4)と同じである。式(5)で表される化合物は、パーフルオロビニルエーテル等の含フッ素ビニルエーテルである。
Figure JPOXMLDOC01-appb-C000009
 構成単位(C)は、下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(6)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(C)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(C)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(C)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。
 構成単位(C)は、例えば、下記式(7)で表される化合物に由来する。式(7)において、R5~R8は、式(6)と同じである。式(7)で表される化合物は、テトラフルオロエチレン及びクロロトリフルオロエチレン等の含フッ素オレフィンである。
Figure JPOXMLDOC01-appb-C000011
 構成単位(D)は、下記式(8)で表される。
Figure JPOXMLDOC01-appb-C000012
 式(8)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5でかつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。
 構成単位(D)は、好ましくは下記式(9)で表される。なお、下記式(9)で表される構成単位は、上記式(8)においてZが酸素原子、sが0、かつtが2の場合である。
Figure JPOXMLDOC01-appb-C000013
 式(9)中、R141、R142、R151、及びR152は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。
 含フッ素重合体は、構成単位(D)を1種又は2種以上含んでいてもよい。含フッ素重合体において、構成単位(D)の含有量は、全構成単位の合計に対し、30~67モル%が好ましい。構成単位(D)の含有量は、例えば35モル%以上であり、60モル%以下であってもよく、55モル%以下であってもよい。
 構成単位(D)は、例えば、下記式(10)で表される化合物に由来する。式(10)において、Z、R9~R18、s及びtは、式(4)と同じである。式(10)で表される化合物は、2個以上の重合性二重結合を有し、かつ環化重合し得る含フッ素化合物である。
Figure JPOXMLDOC01-appb-C000014
 構成単位(D)は、好ましくは下記式(11)で表される化合物に由来する。式(11)において、R141、R142、R151、及びR152は、式(9)と同じである。
Figure JPOXMLDOC01-appb-C000015
 式(10)又は式(11)で表される化合物の具体例としては、下記の化合物が挙げられる。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF32OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
 第1含フッ素重合体は、構成単位(A)~(D)以外の他の構成単位をさらに含んでいてもよいが、実質的に構成単位(A)~(D)以外の他の構成単位を含まないことが好ましい。なお、含フッ素重合体が実質的に構成単位(A)~(D)以外の他の構成単位を含まないとは、含フッ素重合体における全構成単位の合計に対し、構成単位(A)~(D)の合計が95モル%以上、好ましくは98モル%以上であることを意味する。
 第1含フッ素重合体の重合方法は、特に限定されず、例えば、ラジカル重合などの一般的な重合方法を利用できる。含フッ素重合体を重合するための重合開始剤は、全フッ素化された化合物であってもよい。
 第1含フッ素重合体は、コア11を構成する樹脂として用いられる第1含フッ素樹脂を構成する。第1含フッ素樹脂のガラス転移温度は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。
 コア11の屈折率は、クラッド12の屈折率よりも高ければよいため、特には限定されない。POF10において高い開口数を実現するためには、使用される光の波長について、コア11の屈折率とクラッド12の屈折率との差がより大きいことが好ましい。例えば、使用される光の波長(例えば、波長850nm)について、コア11の屈折率は、1.340以上とすることができ、1.360以上とすることもできる。コアの屈折率の上限は、特には限定されないが、例えば1.4000以下である。
 (クラッド12)
 クラッド12は、樹脂を含む。クラッド12に用いられる樹脂は、高い透明性を有する樹脂であればよく、特には限定されない。ラッド12に用いられる樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。
 クラッド12は、含フッ素樹脂を含むことが好ましい。クラッド12は、含フッ素樹脂を主成分として含んでいてもよい。ここで、クラッド12が含フッ素樹脂を主成分として含むとは、クラッド12において、質量比で最も多く含まれる成分が含フッ素樹脂であることである。クラッド12は、含フッ素樹脂を80質量%以上含んでいてもよく、90質量%以上含んでいてもよく、95質量%以上含んでいてもよい。クラッド12は、含フッ素樹脂のみから構成されていてもよい。クラッド12は、樹脂の他に、添加物をさらに含んでいてもよい。
 上述のとおり、クラッド12を構成する樹脂は、含フッ素重合体を含む含フッ素樹脂であることが好ましい。以下、クラッド12に含まれる含フッ素樹脂を第2含フッ素樹脂と記載し、第2含フッ素樹脂に含まれる含フッ素重合体を第2含フッ素重合体と記載する。
 第2含フッ素樹脂として用いることができる含フッ素樹脂の例は、第1含フッ素樹脂として用いることができる含フッ素樹脂して例示したものと同じである。すなわち、第2含フッ素重合体として用いることができる含フッ素重合体の例は、第1含フッ素重合体として用いることができる含フッ素重合体として例示したものと同じである。
 第2含フッ素重合体は、クラッド12を構成する樹脂として用いられる第2含フッ素樹脂を構成する。第2含フッ素樹脂のガラス転移温度は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。
 クラッド12を構成する樹脂は、コア11を構成する樹脂と異なる樹脂であってもよいが、コア11を構成する樹脂と親和性を有することが好ましい。例えば、クラッド12を構成する樹脂は、コア11を構成する樹脂に含まれる重合単位と同じ重合単位を含んでいてもよいし、コア11を構成する樹脂と同じであってもよい。これにより、コア11とクラッド12との界面で剥離が生じにくくなり、例えば伝送損失を低く抑えることができる。
 クラッド12の屈折率は、コア11の屈折率に応じて設計されればよいため、特には限定されない。クラッド12は、使用される光の波長(例えば、波長850nm)において、例えば1.310以下の屈折率を有してもよく、1.300以下の屈折率を有してもよい。
 (被覆層13)
 被覆層13は、POF10の機械的強度を向上させるために設けられる。被覆層13には、例えば、公知のPOFにおいて被覆層して用いられている材料及び構成が適用され得る。被覆層13の材料としては、例えば、ポリカーボネート等の各種エンジニアリングプラスチック、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリエステル、ポリオレフィン、及び、これらのポリマーを形成するモノマーの共重合体、PTFE、変性PTFE、及びPFA等が挙げられる。
 被覆層13を構成する材料のガラス転移温度は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。
 次に、POF10を製造する方法の一例について説明する。
 POF10は、例えば溶融紡糸法を用いて製造される。すなわち、POF10の製造方法の一例は、
 コア材料を溶融させてファイバー状に押出成形して、前記コア材料からなるファイバー状の成形体を作製すること、
 クラッド材料を溶融させて、前記成形体の表面を被覆するように押出成形して、前記コア材料及び前記クラッド材料が同心円状に積層した第1の積層体を作製すること、
 被覆層材料を溶融させて、前記第2の成形体の表面を被覆するように押出成形して、前記コア材料、前記クラッド材料、及び前記被覆材料が同心円状に積層した第2の積層体を作製すること、
 前記第2の積層体を冷却固化して、コア、クラッド、及び被覆層を含む線状体を得ること、及び
 前記線状体に対し、上記(A)の熱処理を行うこと、
を含む。
 図3は、上記のPOF10の製造に使用できる製造装置の一例を示す概略断面図である。以下に、この製造装置を使用したPOF10の製造方法の一例について説明する。
 図3に示された装置100は、コア形成用の第1押出装置101a、クラッド形成用の第2押出装置101b、及び被覆層形成用の第3押出装置101cを備える。装置100は、第1室110及び第2室120をさらに備えている。第1室110及び第2室120は、鉛直方向下方にこの順で並んでいる。
 第1押出装置101aは、コア材料1aを収容する第1収容部102aと、第1収容部102aに収容されているコア材料1aを第1収容部102aから押し出す第1押出部103aとを有する。第1押出装置101aには、第1収容部102aでコア材料1aを溶融させることができるように、さらに溶融されたコア材料1aが成形されるまで溶融状態を保つことができるように、ヒーター等の加熱部(図示せず)がさらに設けられていてもよい。この場合、例えば、ロッド状のコア材料(プリフォーム)1aが、第1収容部102aの上方の開口部を通じて第1収容部102a内に挿入されて、第1収容部102a内で加熱されることによって溶融される。
 第1押出装置101aにおいては、コア材料1aは、例えばガス押出によって、第1押出部103aを介して第1収容部102aからコア2を形成するように外に押し出される。第1押出部103aを介してコア2を形成するように押し出されたコア材料1aは、その後鉛直方向下方に移動し、第1室110及び第2室120のそれぞれに、この順で供給される。
 第2押出装置101bは、クラッド材料1bを収容する第2収容部102bと、第2収容部102bに収容されているクラッド材料1bを第2収容部102bから押し出す第2押出部103bとを有する。第2押出装置101bは、溶融したクラッド材料1bを、第1押出装置102aから押し出されたコア材料1aで形成されたコア2の外周を被覆するように押し出す。具体的には、第2押出装置101bから押し出されたクラッド材料1bは、第1室110に供給される。第1室110内において、コア材料1aで形成されるコア2をクラッド材料1bで被覆することによって、コア2の外周を覆うクラッド3を形成することができる。コア2と、コア2の外周を被覆するクラッド3とで形成された積層体は、第1室110から第2室120に移動する。
 第3押出装置101cは、例えば、被覆層材料1cを収容する第3収容部102c、第3収容部102c内に配置されたスクリュー104、及び、第3収容部102cに接続されたホッパー105を備えている。第3押出装置101cでは、例えばペレット状の被覆層材料1cが、ホッパー105を通じて、第3収容部102cに供給される。第3収容部102cに供給された被覆層材料1cは、例えば、加熱されながらスクリュー104によって混錬されることによって、軟化して流動可能となる。軟化した被覆層材料1cは、スクリュー104によって第3収容部102cから押し出される。
 第3押出装置101cから押し出された被覆層材料1cは、第2室120に供給される。第2室120内において、コア2及びクラッド3で形成された積層体の表面を被覆層材料1cで被覆することによって、クラッド3の外周を覆う被覆層4を形成することができる。
 コア2、クラッド3、及び被覆層4が同心円状に積層された積層体5は、第2室120から、第2室120の鉛直方向下方に配置された拡散管130に移動する。拡散管130には、例えば、この積層体を加熱するためのヒーター(図示せず)が配置されていてもよい。拡散管130において、例えば、内部を通過する積層体5の温度及び粘度が適切に調整される。拡散管130は、拡散管130の内部を通過する積層体5に含まれる屈折率調整剤等のドーパントを、積層体5において拡散させることができる。
 拡散管130は、ノズル140の内部流路に連結している。すなわち、拡散管130の下方の開口部は、ノズル140の流入口と連結しており、拡散管130を通過した積層体5が、ノズル140の流入口を介して内部流路に流入する。積層体5は、内部流路を通過して縮径されて、ノズル140の吐出口からファイバー状に吐出される。
 第2室120と拡散管130の位置関係は、入れ替わっていてもよい。すなわち。第1室110の下に拡散管130が配置され、その下方に第2室120が配置され、第2室のさらに下方にノズル140が設置される装置構成であってもよい。
 ノズル140の吐出口からファイバー状に吐出された積層体5は、例えば、冷却管150の内部空間151内に流入し、内部空間151内を通過しながら冷却されて、開口部から冷却管150の外へ放出される。冷却管150から放出された積層体5は、例えば、ニップロール160が有する2つのロール161及び162の間を通過し、さらにガイドロール163~165を経由して、コア、クラッド、及び被覆層を含む線状体6として巻き取りロール166に巻き取られる。巻き取りロール166の近傍、例えばガイドロール165と巻き取りロール166との間、において線状体6の外径を測定する変位計170をさらに備えていてもよい。
 コア、クラッド、及び被覆層を含む線状体6について、上記(A)の熱処理が実施される。線状体6の熱処理は、例えば、線状体6を熱処理用のボビン(図示せず)に巻き取り、ボビンに巻き取られた状態の線状体6に対して行われてもよいし、巻き取りロール166から引き出した線状体6を例えばベルトコンベア(図示せず)に載せて、線状体6を加熱炉内に通過させながら連続的に行われてもよい。このときの上記(A)の熱処理の温度等の条件は、上述のとおりである。
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
 (実施例1)
 [コア及びクラッドに用いられる含フッ素樹脂の作製]
 コア及びクラッドに用いられる含フッ素樹脂として、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン(上記式(M2)の化合物、「PFMMD」)の重合体を準備した。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランは、まず2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを合成し、これをフッ素化し、得られたカルボン酸塩を脱炭酸分離することによって合成された。パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合には、重合開始剤として、パーフルオロ過酸化ベンゾイルが用いられた。
 以下に、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成、及びパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合について、詳細を説明する。
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの合成>
 水冷冷却器を備えた3L三口フラスコ、温度計、マグネチックスターラー、及び等圧滴下漏斗を準備し、2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとの混合物を139.4g(計1.4モル)をフラスコに投入した。フラスコは0℃に冷やし、その中にトリフルオロピルビン酸メチルをゆっくりと加え、さらに2時間攪拌した。そこに100mLのジメチルスルホキシド(DMSO)と194gの炭酸カリウムとを1時間かけて加えた後、さらに続けて8時間攪拌し、反応混合物を得た。この生成した反応混合物を1Lの水と混合し、その水相をわけ、これを更にジクロロメチレンで抽出後、このジクロロメチレン溶液を有機反応混合物相と混合し、その溶液を硫酸マグネシウムで乾燥した。溶媒を除去した後、245.5gの粗製物が得られた。この粗製物を減圧下(12Torr)で分留し、2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を230.9g得た。精製物の沸点は、77~78℃で、収率は77%であった。なお、得られた精製物が2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランであることは、HNMR及び19FNMRによって確認された。
HNMR(ppm):4.2-4.6,3.8-3.6(CHCH2,muliplet,3H),3.85-3.88(COOCH3,multiplet,3H),1.36-1.43(CCH3,multiplet,3H)
19FNMR(ppm):-81.3(CF3,s,3F)
<2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランのフッ素化>
 10Lの攪拌反応槽に4Lの1,1,2-トリクロロトリフルオロエタンを注入した。攪拌反応槽で、窒素を1340cc/minの流速で流し、フッ素を580cc/minの流速で流し、窒素/フッ素の雰囲気下とした。5分後、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの290gを750mLの1,1,2-トリクロロトリフルオロエタン溶液に溶かし、この溶液を反応槽に0.5ml/分の速度で加えた。反応槽は0℃に冷却した。全てのジオキソランを24時間で加えた後、フッ素ガス流を止めた。窒素ガスをパージした後、水酸化カリウム水溶液を弱アルカリ性になるまで加えた。
 減圧下で揮発物質を除去した後、反応槽の周囲を冷却し、その後48時間70℃の減圧下で乾燥して、固体の反応生成物を得た。固形の反応生成物は、500mLの水に溶解させ、過剰の塩酸を添加して、有機相と水相とに分離させた。有機相を分離して減圧下で蒸留し、パーフルオロ-2,4-ジメチル-1,3-ジオキソラン-2-カルボン酸を得た。主蒸留物の沸点は103℃-106℃/100mmHgであった。フッ素化の収率は、85%であった。
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成>
 上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得た。このカリウム塩を1日間70℃で真空乾燥した。250℃~280℃で、かつ窒素又はアルゴン雰囲気下で、塩を分解した。-78℃に冷やした冷却トラップで凝縮させ、収率82%でパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得た。生成物の沸点は45℃/760mmHgであった。19FNMRとGC-MSを用いて生成物を同定した。
19FNMR:-84ppm(3F,CF3),-129ppm(2F,=CF2
GC-MS:m/e244(Molecular ion)225,197,169,150,131,100,75,50. 
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの重合>
 上記方法で得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソラン100gと、パーフルオロ過酸化ベンゾイル1gとをガラスチューブに封入した。このガラスチューブは、凍結脱気法によって系中の酸素が除去された後にアルゴンが再充填されて、50℃で数時間加熱された。内容物は固体となったが、さらに70℃で一晩加熱すると、100gの透明な棒状物が得られた。
 得られた透明棒状物をFluorinert FC-75(住友スリーエム社製)に溶かし、得られた溶液をガラス板に注ぎ、重合体の薄膜を得た。得られた重合体のガラス転移温度は117℃で、完全な非晶質であった。透明棒状物をヘキサフルオロベンゼンに溶かし、これにクロロホルムを加え沈殿させることで、生成物を精製させた。精製された重合体のガラス転移温度は、約131℃であった。この重合体を、コア及びクラッドに用いられる含フッ素樹脂とした。
 [屈折率調整剤]
 屈折率調整剤には、クロロトリフルオロエチレン低重合体(ダイキン株式会社製)が用いられた。
 [コア材料]
 上記の方法で作製した含フッ素樹脂と、上記の屈折率調整剤とを、260℃にて溶融混合して樹脂組成物を作製した。樹脂組成物における屈折率調整剤の濃度は、12質量%であった。この樹脂組成物をコア材料として用いた。
 [クラッド材料]
 上記の方法で作製した含フッ素樹脂をクラッド材料として用いた。
 [被覆層材料]
 被覆層材料として、Xylex7200(SABIC社製、ガラス転移温度:113℃)を用いた。
 [POFの作製]
 上記の方法で準備したコア材料、クラッド材料、及び被覆層材料を用い、溶融紡糸法によって、図1に示されたPOF10と同様の構成を有するPOFを作製した。コア、クラッド、及び被覆層を含む線状体の作製には、図3に示した製造装置100が用いられた。コア材料の溶融温度は250℃、クラッド材料の溶融温度は255℃、被覆層材料の溶融温度は220℃であった。コア、クラッド、及び被覆層を含む線状体の熱処理は、線状体を熱処理用のボビンに巻き取り、ボビンに巻き取られた状態の線状体に対して、90℃で、1時間、12時間、又は24時間で行われた。
 得られたPOFにおいて、コアの外径は80μm、クラッドの外径は100μm、被覆層の外径(すなわちPOFの外径)は470μmであった。
 本実施例のPOFでは、クラッドが第1層に相当し、被覆層が第2層に相当する。
 [剥離強度の測定]
 クラッド材料の含フッ素樹脂である、上記の方法で作製されたPFMMDの重合体と、被覆層材料であるXylex7200との剥離強度を、SAICASによって測定した。
 まず、PFMMDの重合体からなる厚さ50μmの第1シートと、Xylex7200からなる厚さ50μmの第2シートとを作製した。第1シートは、PFMMDの重合体を220℃で7分加熱した後に、220℃のまま10MPaの圧力で5分間プレスし、さらに220℃で20MPaの圧力で5分プレスすることによって作製された。第2シートは、Xylex7200のペレットを225℃で5分加熱した後に、225℃のまま2MPaの圧力で2分間プレスし、さらに225℃で10MPaの圧力で2分間プレスすることによって作製された。次に、作製された第1シートと第2シートとを互いに重ね合わせ、得られた積層体に対し、270℃で、積層体の積層方向にハンドローラーで圧力を印加して第1シート及び第2シートの接合体を作製した。この接合体を試験片として用いた。
 SAICAS(ダイプラ社製、製品名:DN-20)において、試験片の第2シートの表面に所定のすくい角で切刃を押し当て、所定の荷重を切刃にかけながら切刃を水平方向に移動させて第2シートを切削した。その後、切刃が第2シートと第1シートとの界面に達してから、ダイヤモンド製の切刃(ダイプラ社製、すくい角:40°)を水平方向のみに移動させ、水平切削応力FHを測定した。この測定は、定速度モードで実施した。切削速度は、10μm/秒であった。この測定結果から、数式(1)に従い、剥離強度Pを決定した。結果を表1に示す。
 [界面剥離の評価]
 作製されたPOFを、23℃、50%RHの雰囲気下に30日間置いた後、POFを超音波顕微鏡(観察視野6mm×6mm)で観察し、クラッドと被覆層との間の剥離の有無を評価した。表1に、評価結果を示す。表1において、「〇」は界面剥離が観察されたことを表し、「×」は界面剥離が観察されなかったことを表す。
 (比較例1)
 [POFの作製]
 コア、クラッド、及び被覆層を含む線状体の熱処理を行わなかった点以外は、実施例1と同様の方法でPOFを作製した。作製されたPOFにおいて、コアの外径は80μm、クラッドの外径は100μm、補強層の外径(すなわちPOFの外径)は470μmであった。本比較例のPOFでは、クラッドが第1層に相当し、被覆層が第2層に相当する。
 [剥離強度の測定]
 クラッド材料の含フッ素樹脂である、上記の方法で作製されたPFMMDの重合体と、被覆層材料であるXylex7200との剥離強度として、実施例1の測定値を用いた。
 [界面剥離の評価]
 作製されたPOFについて、実施例1と同様の方法で界面剥離の評価を行った。表1に、評価結果を示す。
 (比較例2)
 [POFの作製]
 被覆層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用い、被覆層材料の溶融温度を220℃とし、コア、クラッド、及び被覆層を含む線状体の熱処理を行わなかった。これらの点以外は、実施例1と同様の方法でPOFを作製した。作製されたPOFにおいて、コアの外径は80μm、クラッドの外径は100μm、補強層の外径(すなわちPOFの外径)は470μmであった。本比較例のPOFでは、クラッドが第1層に相当し、被覆層が第2層に相当する。
 [剥離強度の測定]
 クラッド材料の含フッ素樹脂である、上記の方法で作製されたPFMMDの重合体と、被覆層材料であるDURABIO T-7450との剥離強度を、SAICASによって測定した。まず、PFMMDの重合体からなる厚さ50μmの第1シートと、DURABIO T-7450からなる厚さ50μmの第2シートとを作製した。第1シートは、PFMMDの重合体を220℃で7分加熱した後に、220℃のまま10MPaの圧力で5分間プレスし、さらに220℃で20MPaの圧力で5分プレスすることによって作製された。第2シートは、DURABIO T-7450のペレットを210℃で3分加熱した後に、210℃のまま2MPaの圧力で2分間プレスし、さらに210℃で10MPaの圧力で2分間プレスすることによって作製された。次に、作製された第1シートと第2シートとを互いに重ね合わせ、得られた積層体に対し、270℃で、積層体の積層方向にハンドローラーで圧力を印加して第1シート及び第2シートの接合体を作製した。この接合体を試験片として用い、SAICASによって剥離強度を測定した。SAICASによる測定手順及び測定条件は、実施例1と同じであった。結果を表1に示す。
 [界面剥離の評価]
 作製されたPOFについて、実施例1と同様の方法で界面剥離の評価を行った。表1に、評価結果を示す。
 (比較例3)
 [POFの作製]
 被覆層材料として、DURABIO T-7450(三菱ケミカル株式会社製、ガラス転移温度:129℃)を用い、被覆層材料の溶融温度を220℃とした。これらの点以外は、実施例1と同様の方法でPOFを作製した。作製されたPOFにおいて、コアの外径は80μm、クラッドの外径は100μm、補強層の外径(すなわちPOFの外径)は470μmであった。本比較例のPOFでは、クラッドが第1層に相当し、被覆層が第2層に相当する。
 [剥離強度の測定]
 クラッド材料の含フッ素樹脂である、上記の方法で作製されたPFMMDの重合体と、被覆層材料であるDURABIO T-7450との剥離強度として、比較例2の測定値を用いた。
 [界面剥離の評価]
 作製されたPOFについて、実施例1と同様の方法で界面剥離の評価を行った。表1に、評価結果を示す。
 (比較例4)
 [POFの作製]
 以下の点以外は、実施例1と同様の方法でPOFを作製した。
・コア及びクラッドの樹脂として、PFMMDの重合体に代えて、ポリメチルメタクリレート(PMMA(ガラス転移温度:約102℃))を用いた。
・コア材料の溶融温度を240℃とした。
・クラッド材料の溶融温度を240℃とした。
・コア、クラッド、及び被覆層を含む線状体の熱処理を行わなかった。
 作製されたPOFにおいて、コアの外径は80μm、クラッドの外径は100μm、補強層の外径(すなわちPOFの外径)は470μmであった。
 本比較例のPOFでは、クラッドが第1層に相当し、被覆層が第2層に相当する。
 [剥離強度の測定]
 クラッド材料のPMMAと、被覆層材料であるXylex7200との剥離強度を、SAICASによって測定した。まず、PMMAからなる厚さ50μmの第1シートと、Xylex7200からなる厚さ50μmの第2シートとを作製した。第1シートは、PMMAを220℃で5分加熱した後に、220℃のまま2MPaの圧力で2分間プレスし、さらに220℃で10MPaの圧力で2分プレスすることによって作製された。第2シートは、Xylex7200のペレットを225℃で5分加熱した後に、225℃のまま2MPaの圧力で2分間プレスし、さらに225℃で10MPaの圧力で2分間プレスすることによって作製された。次に、作製された第1シートと第2シートとを互いに重ね合わせ、得られた積層体に対し、270℃で、積層体の積層方向にハンドローラーで圧力を印加して第1シート及び第2シートの接合体を作製した。この接合体を試験片として用い、SAICASによって剥離強度を測定した。SAICASによる測定手順及び測定条件は、実施例1と同じであった。結果を表1に示す。
 [界面剥離の評価]
 作製されたPOFについて、実施例1と同様の方法で界面剥離の評価を行った。表1に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000016
 実施例1及び比較例1のPOFは、クラッド材料(第1樹脂材料に相当)及び被覆層材料(第2樹脂材料に相当)が、1kN/m以上の剥離強度を有していた。このような材料の組み合わせで形成されたクラッド及び被覆層を備えたPOFは、90℃の熱処理が実施されなかった比較例1では界面剥離が生じたが、90℃で1h、12h、及び24時間の熱処理が実施された実施例1では、界面剥離の発生が抑制された。
 比較例2及び3のPOFは、クラッド材料(第1樹脂材料に相当)及び被覆層材料(第2樹脂材料に相当)の剥離強度が、1kN/m未満であった。このような材料の組み合わせで形成されたクラッド及び被覆層を備えたPOFは、90℃の熱処理が実施されなかった比較例3で界面剥離が生じ、90℃で1h、12h、及び24時間の熱処理が実施された比較例2でも、界面剥離の発生が確認された。すなわち、剥離強度が1kN/m未満の場合、90℃での熱処理によって界面剥離を抑制することができなかった。
 比較例4のPOFは、クラッド材料(第1樹脂材料に相当)及び被覆層材料(第2樹脂材料に相当)が、20kN/mを超える大きい剥離強度を有していた。この場合、クラッドと被覆層との密着力が大きいため、90℃での熱処理を行わない場合でも界面剥離が生じなかった。ただし、比較例4のPOFは、コア及びクラッドを構成する樹脂として含フッ素樹脂が用いられていない。したがって、比較例4のPOFは、含フッ素樹脂が用いられている実施例1及び比較例1~3のPOFと比較して、長波長側の伝送損失が大きいと考えられる。
 本発明のPOFの製造方法は、高速通信のPOFの製造に適している。

Claims (11)

  1.  含フッ素樹脂を含む第1樹脂材料によって形成された第1層と、第2樹脂材料によって形成され、かつ前記第1層に接する第2層と、を備えたプラスチック光ファイバーの製造方法であって、
     前記製造方法は、
     (A)前記第1層と、前記第1層に接して配置された前記第2層とを含む線状体を、前記第1樹脂材料の第1ガラス転移温度Tg1以下、かつ前記第2樹脂材料のガラス転移温度Tg2以下の温度で熱処理すること、
    を含み、
     前記第1樹脂材料及び前記第2樹脂材料は、1kN/m以上の剥離強度を有する、
    プラスチック光ファイバーの製造方法。
     ここで、前記剥離強度とは、前記第1樹脂材料からなる厚さ50μmの第1シートと、前記第2樹脂材料からなる厚さ50μmの第2シートとを互いに重ね合わせた積層体に対し、270℃で、前記積層体の積層方向にハンドローラーで圧力を印加して前記第1シート及び前記第2シートの接合体を作製し、前記接合体についてSurface And Interfacial Cutting Analysis System(SAICAS)によって測定される前記第2シートの前記第1シートに対する剥離強度である。
  2.  前記プラスチック光ファイバーは、
     コアと、
     前記コアの外周に配置されたクラッドと、
     前記クラッドの外周に配置された被覆層と、
    を備え、
     前記コア又は前記クラッドが、前記第1層である、
    請求項1に記載の製造方法。
  3.  前記クラッドが、前記第1層である、
    請求項2に記載の製造方法。
  4.  前記コアは、含フッ素樹脂を含む、
    請求項3に記載の製造方法。
  5.  前記被覆層が、前記第2層であり、
     前記第2樹脂材料が、含フッ素樹脂を含まない、
    請求項3又は4に記載の製造方法。
  6.  前記線状体は、前記第1樹脂材料及び前記第2樹脂材料を加熱溶融してファイバー状に成形し、得られた成形体を冷却固化して得られたものである、
    請求項1~5のいずれか1項に記載の製造方法。
  7.  前記線状体は、延伸されている、
    請求項1~6のいずれか1項に記載の製造方法。
  8.  前記(A)において、前記線状体の前記熱処理の温度Tは、
    Tg1-65℃≦T≦Tg1、及び
    Tg2-65℃≦T≦Tg2
    を満たす、
    請求項1~7のいずれか1項に記載の製造方法。
  9.  前記(A)において、前記線状体の前記熱処理の時間は、10分以上75時間以下である、
    請求項1~8のいずれか1項に記載の製造方法。
  10.  前記第1樹脂材料に含まれる前記含フッ素樹脂は、下記式(1)で表される構成単位を有する重合体を含む、
    請求項1~9のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は、連結して環を形成してもよい。)
  11.  前記構成単位が下記式(2)で表される、
    請求項10に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     
PCT/JP2022/015742 2021-03-31 2022-03-29 プラスチック光ファイバーの製造方法 WO2022210812A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062067 2021-03-31
JP2021062067 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210812A1 true WO2022210812A1 (ja) 2022-10-06

Family

ID=83456472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015742 WO2022210812A1 (ja) 2021-03-31 2022-03-29 プラスチック光ファイバーの製造方法

Country Status (2)

Country Link
TW (1) TW202247988A (ja)
WO (1) WO2022210812A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228343A (ja) * 2000-02-18 2001-08-24 Mitsubishi Rayon Co Ltd プラスチック光ファイバ、プラスチック光ファイバケーブル、及びプラグ付きプラスチック光ファイバケーブルの製造方法
JP2007052095A (ja) * 2005-08-16 2007-03-01 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
CN101109664A (zh) * 2007-08-21 2008-01-23 李亚滨 光纤温/湿度传感器及其制造方法和计量装置
WO2014042023A1 (ja) * 2012-09-11 2014-03-20 旭硝子株式会社 プラスチック光ファイバおよびその製造方法
WO2019050045A1 (ja) * 2017-09-11 2019-03-14 小池 康博 光ファイバケーブル
JP2020023688A (ja) * 2018-07-31 2020-02-13 日東電工株式会社 含フッ素重合体の製造方法及び含フッ素重合体の成形体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228343A (ja) * 2000-02-18 2001-08-24 Mitsubishi Rayon Co Ltd プラスチック光ファイバ、プラスチック光ファイバケーブル、及びプラグ付きプラスチック光ファイバケーブルの製造方法
JP2007052095A (ja) * 2005-08-16 2007-03-01 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブル
CN101109664A (zh) * 2007-08-21 2008-01-23 李亚滨 光纤温/湿度传感器及其制造方法和计量装置
WO2014042023A1 (ja) * 2012-09-11 2014-03-20 旭硝子株式会社 プラスチック光ファイバおよびその製造方法
WO2019050045A1 (ja) * 2017-09-11 2019-03-14 小池 康博 光ファイバケーブル
JP2020023688A (ja) * 2018-07-31 2020-02-13 日東電工株式会社 含フッ素重合体の製造方法及び含フッ素重合体の成形体の製造方法

Also Published As

Publication number Publication date
TW202247988A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US6750294B2 (en) Plastic optical fiber
US9304251B2 (en) Plastic optical fiber and method for its production
JP2002071972A (ja) プラスチック光ファイバ
WO2022210812A1 (ja) プラスチック光ファイバーの製造方法
WO2023054141A1 (ja) プラスチック光ファイバー及びその製造方法
JP2020023688A (ja) 含フッ素重合体の製造方法及び含フッ素重合体の成形体の製造方法
WO2022176864A1 (ja) プラスチック光ファイバー及びその製造方法
WO2022210810A1 (ja) プラスチック光ファイバー、ハイブリッドケーブル、パッチコード、及びアクティブ光ケーブル
WO2023190794A1 (ja) プラスチック光ファイバー
WO2022209921A1 (ja) プラスチック光ファイバー及びその製造方法
JP4886256B2 (ja) プラスチック光ファイバ
US7417172B2 (en) Perfluoroalkyl vinyl ether compound, process for preparing copolymer by using the compound, and optical plastic materials comprising copolymer prepared by the process
JP6859477B1 (ja) 樹脂ファイバー形成用ノズル、樹脂ファイバーの製造装置、及び樹脂ファイバーの製造方法
WO2022176863A1 (ja) 光学樹脂組成物及び光学樹脂成形体
EP4159396A1 (en) Optics-use resin molded body production method, resin fiber production method, and resin fiber production apparatus
JP2021162735A (ja) 光学用樹脂成形体の製造方法、樹脂製ファイバーの製造方法、及び樹脂製ファイバーの製造装置
WO2020203920A1 (ja) プラスチック光ファイバー
TW202340332A (zh) 氟樹脂之純化方法、經純化之氟樹脂之製造方法、氟樹脂、光學材料、電子材料及塑膠光纖
JP2022047080A (ja) ファイバーの製造方法
JP2011095762A (ja) プラスチック光ファイバ
JPH04362904A (ja) 低損失含フッ素光ファィバの製造方法
JP2004307530A (ja) 光学部材用重合性組成物、化合物、ならびにそれを用いた光学部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781023

Country of ref document: EP

Kind code of ref document: A1