WO2014133013A1 - ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機 - Google Patents

ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機 Download PDF

Info

Publication number
WO2014133013A1
WO2014133013A1 PCT/JP2014/054714 JP2014054714W WO2014133013A1 WO 2014133013 A1 WO2014133013 A1 WO 2014133013A1 JP 2014054714 W JP2014054714 W JP 2014054714W WO 2014133013 A1 WO2014133013 A1 WO 2014133013A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber laser
laser
modules
processing machine
laser processing
Prior art date
Application number
PCT/JP2014/054714
Other languages
English (en)
French (fr)
Inventor
清一 林
Original Assignee
コマツ産機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ産機株式会社 filed Critical コマツ産機株式会社
Priority to KR1020157018537A priority Critical patent/KR101733334B1/ko
Priority to US14/767,070 priority patent/US9815140B2/en
Priority to JP2014526721A priority patent/JP5816370B2/ja
Publication of WO2014133013A1 publication Critical patent/WO2014133013A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to an output control method for a fiber laser processing machine and a fiber laser processing machine.
  • a fiber laser processing machine is an apparatus that cuts a workpiece by irradiating a laser beam generated from a fiber laser oscillator having a plurality of fiber laser modules that generate laser beams with a laser processing head (eg, JP 2012-27241 (Patent Document 1)).
  • the intensity of the laser light oscillated from each fiber laser module is substantially constant with respect to the required output, that is, The output of the laser light oscillated from each fiber laser module is controlled to be substantially constant.
  • an output of 1600 W is obtained by oscillating each fiber laser module so that the output of each fiber laser module is 400 W in response to a required output of 1600 W. It was.
  • the necessary cutting groove width (kerf width) is determined according to the plate thickness, and as shown in FIG. 10, it is necessary to increase the cutting groove width as the plate thickness increases. is there. If the assist gas is blown in a state narrower than the necessary cutting groove width, the molten material blows up on the material surface side (laser beam irradiation side), and the molten material cannot flow to the back side, thus performing good cutting. I can't. Especially when cutting a thick plate (for example, a plate thickness of about 9 mm or more), widen the cutting groove width and set the assist gas pressure to a low pressure (assist gas pressure of about 0.05 to 0.1 MPa). is required.
  • the spot diameter ⁇ that determines the cutting groove width is expressed by the following equation (1).
  • 1.27 ⁇ ( ⁇ ⁇ f / D) ⁇ M 2 (1)
  • is the wavelength of the laser
  • f is the focal length of the condenser lens
  • D is the diameter of the incident beam to the condenser lens
  • M 2 is a value representing the beam quality called the M square value (hereinafter referred to as M 2 value).
  • the M 2 value is an index for determining the spot diameter ⁇ .
  • the M 2 value of the oscillated laser light has always been the same. That is, since the M 2 value always shows the same value, in order to change the spot diameter ⁇ that determines the cutting groove width, it is necessary to replace the condenser lens in order to change the focal length f of the condenser lens.
  • a f 200 mm condensing lens is used when cutting a 12 mm thick workpiece
  • an f 125 mm condensing lens is used when cutting a 3.2 mm thick workpiece.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an output control method for a fiber laser processing machine and a fiber laser processing machine capable of improving workability.
  • the present inventor examined the use state of the fiber laser processing machine and the deterioration state of the fiber laser module. As a result, the deterioration state of the fiber laser module in 20000 hours (equivalent to use for about 10 years after 2000 hours of operation) The present invention has been found out that it is not as large as conventionally considered and hardly affects the workpiece to be machined.
  • An output control method of a fiber laser processing machine includes a fiber laser oscillator having a plurality of fiber laser modules each generating laser light, and a laser processing head for emitting laser light generated from the fiber laser oscillator Output control of a fiber laser processing machine provided between the workpiece and the laser processing head, and a condenser lens having a predetermined focal length that irradiates the workpiece with a spot diameter according to the laser beam from the laser processing head Is the method.
  • the beam quality from the laser processing head is adjusted by adjusting the number of oscillations of the plurality of fiber laser modules so that the spot diameter corresponds to the workpiece.
  • the M 2 value of the laser beam oscillated can be changed by controlling the number of fiber laser modules, and the spot diameter ⁇ can be adjusted accordingly, it is conventionally necessary. It is possible to reduce the number of replacement of the existing condenser lens or to eliminate the replacement, and to improve workability.
  • the number of fiber laser modules that oscillate when cutting a workpiece having a plate thickness thinner than the predetermined plate thickness is smaller than the number of fiber laser modules that oscillate when cutting a workpiece having a predetermined plate thickness.
  • the cutting groove width at which the maximum cutting speed can be obtained becomes narrow, so the spot diameter can be reduced by reducing the number of oscillating fiber laser modules, High-precision processing can be performed.
  • the number of fiber laser modules that oscillate when cutting at a speed higher than the predetermined speed is reduced relative to the number of fiber laser modules that oscillate when cutting at a predetermined speed.
  • the power density when it is desired to increase the cutting speed, can be increased by reducing the spot diameter even if the output is the same by reducing the number of fiber laser modules that oscillate.
  • the speed can be increased and high-precision machining can be performed.
  • the number of fiber laser modules that oscillate is limited.
  • the output becomes unstable due to the small output of each fiber laser module by limiting the number of fiber laser modules that oscillate. Can be avoided, and stable machining can be realized.
  • the outputs of the plurality of fiber laser modules are made different from each other. According to the aspect described above, the degree of freedom in setting the output of the fiber laser module is improved.
  • a fiber laser processing machine includes a fiber laser oscillator having a plurality of fiber laser modules each generating laser light, a laser processing head for emitting laser light generated from the fiber laser oscillator, and a workpiece.
  • Laser processing according to the number of oscillations of a plurality of fiber laser modules and a condensing lens of a predetermined focal length that is provided between the laser processing head and irradiates the workpiece with a spot diameter according to the laser beam from the laser processing head
  • a control device capable of adjusting the beam quality from the head. The control device adjusts the number of oscillations of the plurality of fiber laser modules so as to have a spot diameter corresponding to the workpiece.
  • the M 2 value of the laser beam oscillated can be changed by controlling the number of fiber laser modules, and the spot diameter ⁇ can be adjusted accordingly, it is conventionally necessary. It is possible to reduce the number of replacement of the existing condenser lens or to eliminate the replacement, and to improve workability.
  • control device is a fiber laser module that oscillates when cutting a workpiece having a plate thickness thinner than the predetermined plate thickness with respect to the number of fiber laser modules that oscillate when cutting a workpiece having a predetermined plate thickness.
  • the cutting groove width at which the maximum cutting speed can be obtained becomes narrow, so the spot diameter can be reduced by reducing the number of oscillating fiber laser modules, High-precision processing can be performed.
  • control device reduces the number of fiber laser modules that oscillate when cutting at a speed higher than the predetermined speed relative to the number of fiber laser modules that oscillate when cutting at a predetermined speed.
  • the power density when it is desired to increase the cutting speed, can be increased by reducing the spot diameter even if the output is the same by reducing the number of fiber laser modules that oscillate.
  • the speed can be increased and high-precision machining can be performed.
  • control device limits the number of oscillating fiber laser modules when the total laser command output is equal to or less than a predetermined output.
  • the output becomes unstable due to the small output of each fiber laser module by limiting the number of fiber laser modules that oscillate. Can be avoided, and stable machining can be realized.
  • control device performs control so that the outputs of the plurality of fiber laser modules are different from each other.
  • the degree of freedom in setting the output of the fiber laser module is improved.
  • FIG. 1 is a schematic plan view of a laser beam machine according to an embodiment of the present invention. It is a schematic side view of the laser processing machine shown in FIG. It is a perspective view by the side of the right side of the laser beam machine shown in FIG. It is a perspective view which shows the state which opened the door of the laser oscillator and pulled out the combiner table and the fusion
  • a fiber laser processing machine 10 (hereinafter referred to as a laser processing machine) includes a processing machine main body 20 and a fiber laser oscillator 21 (hereinafter referred to as a laser oscillator) connected to the processing machine main body 20. And a control device 22, a pallet changer 23 connected to the processing machine main body 20, a booster compressor 24 and an air compressor 25 used for separating nitrogen gas in the air, or An assist gas supply unit 27 including an oxygen gas cylinder 26, a chiller unit 28 for supplying cooling water for cooling the laser oscillator 21 and a laser processing head 40 (hereinafter referred to as a processing head), dust generated during processing, and the like. Mainly equipped with a dust collector 29 to be excluded.
  • the front indicates a direction closer to the processing machine main body 20 in the arrangement direction of the processing machine main body 20 and the pallet changer 23 (the X direction in FIGS. 1 to 3), and the rear indicates the alignment direction. Represents the direction toward the pallet changer 23. Further, the left side and the right side are represented by directions when the front is viewed from the rear in the direction orthogonal to the arrangement direction (Y direction in FIGS. 1 and 3).
  • a processing head 40 that irradiates a laser beam for processing the workpiece W mounted on the pallet 31 and a processing head drive mechanism 49 that drives the processing head 40 are accommodated.
  • the machining head 40 indicated by the solid line in FIG. 1 and the dotted line in FIG. 2 represents a state that is located in the foremost position in the X direction (the installation position when the pallet 31 is processed), and is indicated by the one-dot chain line in FIGS.
  • the head 40 represents a state that is located most rearward in the X direction.
  • the processing head 40 is provided in the processing machine body 20 and can be moved in the X direction, the width direction of the cabin 30 (Y direction), and the vertical direction of the cabin 30 (Z direction) by a processing head drive mechanism 49.
  • a collimator lens 51 for collimating the laser beam emitted from the exit end of the process fiber cable 3 and the collimated laser beam are collected in the processing head 40.
  • a condensing lens 52 is disposed.
  • a cooling pipe supplied from the chiller unit 28 a gas supply pipe for supplying an assist gas of nitrogen gas or oxygen gas from the assist gas supply unit 27, and the vicinity of the laser nozzle of the processing head 40.
  • a gas supply pipe connected to a side nozzle for blowing an assist gas of nitrogen gas or oxygen gas is provided.
  • the processing head 40 When the processing head 40 operates the laser oscillator 21, the laser light is collimated by the collimator lens 51 via the process fiber cable 3, and the collimated laser light is incident on the condenser lens 52 and collected.
  • the workpiece W is processed by being irradiated and irradiated from the laser nozzle to the processing portion of the workpiece W.
  • the assist gas supplied from the assist gas supply unit 27 is ejected from the laser nozzle or the side nozzle toward the processing unit of the workpiece W, and blows away the molten metal generated during processing.
  • the cabin 30 is provided with a gull wing 38 that is an open / close door on the front face 30F, and a back-and-forth side 30B that is opposite to the front face 30F is provided with a loading / unloading port (non-removal) Are provided corresponding to the pallet changer 23.
  • the pallet changer 23 is arranged to face the back surface 30B of the cabin 30 provided with the loading / unloading port, and two pallets 31 can be arranged in two stages up and down. When processing a large lot product, the pallet 31 on which the workpiece W is placed is loaded / unloaded via the loading / unloading port by the pallet changer 23.
  • Reference numeral 75 is an operation panel for inputting processing conditions and the like by the user
  • reference numeral 76 is a foot switch for controlling opening and closing of the gull wing 38
  • reference numeral 70 is an operation panel for mainly operating the pallet changer 23.
  • a concave oscillator housing portion 30 a that houses the laser oscillator 21 is disposed at a substantially central portion.
  • the laser oscillator 21 disposed in the oscillator housing 30a includes a plurality of (four in the present embodiment) fiber laser modules LM1 that generate laser light in a box-shaped housing 80.
  • LM4 are stacked and stored vertically, and a combiner 83 to which the output cable 82 from each of the fiber laser modules LM1 to LM4 is connected is stored.
  • a fusion box 84 connected to the combiner 83 by the feeding fiber cable 2 is accommodated above the combiner 83.
  • the process fiber cable 3 connected to the processing head 40 is introduced on the side opposite to the side where the feeding fiber cable 2 is introduced, and the feeding fiber cable 2 and the process fiber cable 3 are fused. Yes.
  • the combiner 83 and the fusion box 84 are arranged on a combiner table 85 and a fusion table 86 that can be pulled out from the housing 80, respectively.
  • the output cables 82 of the plurality of fiber laser modules LM1 to LM4 are bundled by the combiner 83, and the laser light is guided to the machining head 40 by the feeding fiber cable 2 and the process fiber cable 3.
  • the control device 22 disposed adjacent to the laser oscillator 21 controls the entire fiber laser processing machine 10.
  • FIG. 6 is a diagram illustrating functional blocks of the fiber laser processing machine 10 based on the present embodiment.
  • the fiber laser processing machine 10 mainly includes a processing machine main body 20, a fiber laser oscillator 21, and a control device 22.
  • the processing machine body 20 includes a processing head 40.
  • the fiber laser oscillator 21 includes a plurality of fiber laser modules LM1 to LM4, output control units LMC1 to LMC4 provided corresponding to the plurality of fiber laser modules LM1 to LM4, a combiner 83, and a fusion box 84, respectively. .
  • the output control units LMC1 to LMC4 control the outputs of the corresponding fiber laser modules LM1 to LM4 in accordance with instructions from the control device 22.
  • the combiner 83 combines a plurality of laser beams output from the fiber laser modules LM1 to LM4 and outputs the combined light to the feeding fiber cable 2.
  • the feeding fiber cable 2 and the process fiber cable 3 are fused, and the combined laser light is guided to the processing head 40 of the processing machine body 20 through the process fiber cable 3.
  • the control device 22 includes a laser oscillator control unit 46 and a processing machine control unit 45.
  • the processing machine control unit 45 When the processing machine control unit 45 receives an input of processing conditions such as a plate thickness, a material, and a speed of a workpiece to be processed on the operation panel 75 from the user, the processing machine control unit 45 controls the processing machine body 20 based on the input. Further, the processing machine control unit 45 outputs a command value such as an optimum laser command output to the laser oscillator control unit 46 based on the input.
  • the laser oscillator control unit 46 controls the output of the laser light generated from the laser oscillator 21 by controlling the oscillation of each of the fiber laser modules LM1 to LM4 based on the command value from the processing machine control unit 45. .
  • control device 22 of the present invention can control the number of oscillating fiber laser modules LM1 to LM4. It is also possible to control so that an output difference occurs between the fiber laser modules LM1 to LM4.
  • FIG. 7 is a diagram for explaining the relationship between the number of fiber laser modules and the M 2 value of the laser beam.
  • Figure M 2 value of the laser beam of each of the single mode fiber laser module LM1 ⁇ LM4 as shown in 7 is about 1, four fiber laser module LM1 ⁇ laser beam of M 2 value of the multimode LM4 Is about 5.
  • the M 2 value of the multimode laser light is a value between about 1 and about 5.
  • control method of the present invention differs from the conventional control method by taking as an example the case of a 2000 W laser oscillator equipped with four 500 W fiber laser modules LM1 to LM4.
  • each fiber laser module LM1 to LM4 has the same output of 30 W as shown in Table 1. , 150W, 300W, 450W laser command output. In other words, it can operate only in the multimode in which all the fiber laser modules LM1 to LM4 are oscillated, and the M 2 value of the laser light is about 5 and is a constant value.
  • the control method of the present invention can limit the number of fiber laser modules LM1 to LM4 that oscillate, for example, when the total laser command output is below a predetermined output.
  • a predetermined output For example, as shown in Table 2, when the total laser command output is 50 W to 500 W, the number of oscillating fiber laser modules LM1 to LM4 is one, for example, only the fiber laser module LM1 is oscillated.
  • the total laser command output is 500 W to 1000 W
  • the number of oscillating fiber laser modules LM1 to LM4 for example, only the fiber laser modules LM1 and LM2 is oscillated.
  • the number of fiber laser modules LM1 to LM4 to be oscillated is three, for example, only the fiber laser modules LM1 to LM3 are oscillated.
  • the number of oscillating fiber laser modules LM1 to LM4 is four, that is, all the fiber laser modules LM1 to LM4 are oscillated.
  • the operation in the single mode and the operation in the multimode are possible, and the number of the fiber laser modules LM1 to LM4 that oscillate even in the operation in the multimode can be controlled. it can.
  • Table 2 shows an example of output setting when the total laser command output is 120 W, 600 W, 1200 W, and 1800 W in the control method of the present invention.
  • N means stop.
  • the laser command output shown in Table 3 is an example, and the oscillating fiber laser modules LM1 to LM4 may be changed.
  • the output may be the same among the oscillating fiber laser modules LM1 to LM4.
  • the output may be distributed so as to be a numerical value. As described above, since the output can be made different between the oscillating fiber laser modules LM1 to LM4, the degree of freedom in setting the output is improved.
  • the beam quality called the M 2 value can be changed, and therefore the spot diameter ⁇ can be changed. That is, by oscillating only one of the fiber laser modules LM1 to LM4, the M 2 value of the laser light becomes about 1, and by oscillating the four fiber laser modules LM1 to LM4, the M 2 value of the laser light is The M 2 value of the laser light becomes a value between about 1 and about 5 by oscillating two or three of the four fiber laser modules LM1 to LM4. In the conventional control method, since the M 2 value is always a constant value, it is necessary to change the condenser lens in order to change the spot diameter ⁇ .
  • the spot is obtained by changing the M 2 value. Since the diameter ⁇ can be changed, the work of changing the condenser lens in order to change the spot diameter ⁇ can be omitted. Further, by limiting the number of fiber laser modules LM1 to LM4 to oscillate when the total laser command output is less than a predetermined output, the output becomes unstable due to the small output of each fiber laser module LM1 to LM4. Can be avoided, and stable machining can be realized.
  • FIG. 8 is a flowchart for explaining the control process of the fiber laser oscillator 21 in the control device 22 of the present invention. This process is mainly executed in the processing machine control unit 45.
  • processing conditions are acquired (step S1). Specifically, the processing machine control unit 45 receives an input of processing conditions for the operation panel 75 and acquires the processing condition information.
  • the processing machine control unit 45 calculates a laser command output P in the fiber laser oscillator 21 based on the acquired processing condition information (step S2).
  • the laser command output P can be calculated based on a predetermined arithmetic expression in accordance with processing conditions such as plate thickness, material, and speed of the workpiece to be processed.
  • processing machine control part 45 judges whether the laser command output P is 500 or less (step S3).
  • step S3 when it is determined that the laser command output P is 500 or less (YES in step S3), the processing machine control unit 45 outputs a command to oscillate and output laser light to the fiber laser module LM1. (Step S4).
  • processing machine control part 45 calculates and outputs the output command value of the fiber laser module LM1 (step S5).
  • step S3 when it is determined that the laser command output P is not 500 or less (NO in step S3), the processing machine control unit 45 determines whether or not the laser command output P is 1000 or less (step S6). ).
  • step S6 when it is determined that the laser command output P is 1000 or less (YES in step S6), the processing machine control unit 45 oscillates and outputs laser light to the fiber laser modules LM1 and LM2. A command is output (step S7).
  • processing machine control part 45 calculates and outputs the output command value of the fiber laser modules LM1, LM2 (step S8).
  • step S6 when it is determined that the laser command output P is not 1000 or less (NO in step S6), the processing machine control unit 45 determines whether or not the laser command output P is 1500 or less (step S9). ).
  • step S9 when it is determined that the laser command output P is 1500 or less (YES in step S9), the processing machine control unit 45 oscillates and outputs laser light to the fiber laser modules LM1 to LM3. A command is output (step S10).
  • the processing machine control unit 45 calculates and outputs output command values of the fiber laser modules LM1 to LM3 (step S11).
  • step S9 when it is determined that the laser command output P is not 1500 or less (NO in step S9), the processing machine control unit 45 determines whether or not the laser command output P is 2000 or less (step S12). ).
  • step S12 when it is determined that the laser command output P is 2000 or less (YES in step S12), the processing machine control unit 45 oscillates and outputs laser light to the fiber laser modules LM1 to LM4. A command is output (step S13).
  • the processing machine control unit 45 calculates and outputs the output command values of the fiber laser modules LM1 to LM4 (step S14).
  • step S12 when it is determined that the laser command output P is not 2000 or less (NO in step S12), the processing machine control unit 45 ends the process because the output limit value is exceeded (end).
  • FIG. 9 is a graph showing the output distribution of the incident beam to the condensing lens when the laser module oscillates alone with the same output and when it oscillates plurally.
  • the power density can be increased by reducing the number of fiber laser modules LM1 to LM4 that oscillate, and reducing the spot diameter even if the output is the same.
  • the cutting speed can be increased and high-precision machining can be performed. Therefore, the optimum machining can be performed by selecting an optimum M 2 value according to the machining shape of the workpiece to be machined, for example, an acute angle portion, a curved portion, a straight portion, or the like.
  • the cutting groove width at which the maximum cutting speed can be obtained becomes narrow. Therefore, the number of oscillating fiber laser modules LM1 to LM4 is reduced to reduce the spot diameter. By reducing ⁇ , it becomes possible to perform machining with higher accuracy than in the past.
  • the focal length of the condenser lens was changed to switch between thin plate cutting (1.6 mm) and thick plate cutting (12 mm).
  • the cutting speed F is high. It has become. Therefore, when cutting a workpiece having the same plate thickness of 1.6 mm, the output P is as low as 1/4 from 2000 W to 500 W, and the power consumption of the oscillator is also reduced to 1/4. Further, the cutting speed F can be cut at a speed twice as high as 4000 mm / min to 8000 mm / min, and the cutting time is 1 ⁇ 2 of the conventional cutting time. Therefore, when combined with the result of the low output of the oscillator, the running cost becomes 1/8 of the conventional one.
  • the beam quality called M 2 value can be changed by controlling the number of oscillating fiber laser modules LM1 to LM4. Can be changed. Thereby, the number of times of exchanging the condensing lens, which has conventionally been necessary, can be reduced or eliminated, and workability can be improved. In addition, the output of the oscillator can be reduced, the cutting time can be shortened by increasing the cutting speed, and the running cost can be reduced.
  • the number of fiber laser modules included in the laser oscillator 21 is not limited to four, and may be at least two.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

 各々がレーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器と、ファイバレーザ発振器から生成されるレーザ光を出射するレーザ加工ヘッドと、ワークとレーザ加工ヘッドとの間に設けられ、レーザ加工ヘッドからのレーザ光に従うスポット径によりワークに対して照射する所定の焦点距離の集光レンズと、を備えたファイバレーザ加工機の出力制御方法であって、ワークに応じたスポット径となるように複数のファイバレーザモジュールの発振個数を調整することによりレーザ加工ヘッドからのビーム品質を調整する。

Description

ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機
 本発明は、ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機に関する。
 ファイバレーザ加工機は、レーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器から生成されるレーザ光をレーザ加工ヘッドにより照射することでワークの切断等を行う装置である(例えば、特開2012-27241号公報(特許文献1))。
特開2012-27241号公報
 従来のファイバレーザ加工機では、ファイバレーザ発振器の各ファイバレーザモジュールの劣化状態の差をなくすため、要求出力に対し、各ファイバレーザモジュールから発振するレーザ光の強度がほぼ一定となるように、即ち、各ファイバレーザモジュールから発振するレーザ光の出力がほぼ一定となるように制御していた。
 例えば、500Wのファイバレーザモジュールを4台搭載した2000Wのファイバレーザ発振器であれば、1600Wの要求出力に対し、各ファイバレーザモジュールの出力が400Wとなるように発振させることで、1600Wの出力を得ていた。
 ところで、レーザ加工機で鋼板を切断する場合、レーザビームの照射で溶融した金属をアシストガス(一般的には、酸素ガスを使用。)の噴流で吹き飛ばす必要がある。アシストガスで溶融物を吹き飛ばすためには、板厚に応じて必要な切断溝幅(カーフ幅)が決まっており、図10に示すように、板厚が厚くなるほど切断溝幅を広くする必要がある。必要な切断溝幅よりも狭い状態でアシストガスを吹き付けると、材料表面側(レーザビーム照射側)で溶融物が吹き上がってしまい、溶融物が裏側に流れることができず、良好な切断を行うことができない。特に厚板(例えば、板厚が9mm程度以上)を切断する場合には、切断溝幅を広くして、アシストガス圧力を低圧(アシストガス圧0.05~0.1MPa程度)に設定することが必要である。
 ここで、切断溝幅を決めるスポット径ωは、下記(1)式で表される。
  ω=1.27・(λ・f/D)・M2    (1)
 ただし、λはレーザの波長、fは集光レンズの焦点距離、Dは集光レンズへの入射ビーム径、M2はエムスクエア値(以下、M2値)と呼ばれるビーム品質を表す値である。
 (1)式から明らかなように、M2値は、スポット径ωを決める指標となっている。従来のファイバレーザ加工機においては、常時、4台のファイバレーザモジュールを発振させているため、発振されるレーザ光のM2値は常に同じであった。即ち、M2値は常に同じ値を示すため、切断溝幅を決めるスポット径ωを変えるためには集光レンズの焦点距離fを変えるべく集光レンズを交換する必要があった。
 従って、従来のファイバレーザ加工機においては、板厚、材料等に応じて切断溝幅を変えるためには、集光レンズの交換が必要であり、作業性の低下の原因となっていた。
 具体的には、例えば板厚12mmのワークを切断する場合にはf=200mmの集光レンズを使用し、板厚3.2mmのワークを切断する場合にはf=125mmの集光レンズを使用していた。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、作業性を向上させることができるファイバレーザ加工機の出力制御方法及びファイバレーザ加工機を提供することにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本発明者は、ファイバレーザ加工機の使用態様、ファイバレーザモジュールの劣化状態を精査したところ、20000時間(年間2000時間の稼動で約10年の使用に相当)におけるファイバレーザモジュールの劣化状態は、従来考えられていたほど大きくなく、加工するワークにほとんど影響を与えないことを見出し本発明に至ったものである。
 本発明は、以下の態様を提供するものである。
 本発明のある局面に従うファイバレーザ加工機の出力制御方法は、各々がレーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器と、ファイバレーザ発振器から生成されるレーザ光を出射するレーザ加工ヘッドと、ワークとレーザ加工ヘッドとの間に設けられ、レーザ加工ヘッドからのレーザ光に従うスポット径によりワークに対して照射する所定の焦点距離の集光レンズと、を備えるファイバレーザ加工機の出力制御方法である。ワークに応じたスポット径となるように複数のファイバレーザモジュールの発振個数を調整することによりレーザ加工ヘッドからのビーム品質を調整する。
 上記に記載の態様によれば、ファイバレーザモジュールの数を制御することで発振されるレーザ光のM2値を変えることができ、それによりスポット径ωを調整することができるので、従来必要であった集光レンズの交換回数を減らす、又は交換をなくすことができ、作業性を向上させることができる。
 好ましくは、所定の板厚を有するワークを切断する際に発振するファイバレーザモジュールの数に対し、所定の板厚より薄い板厚を有するワークを切断する際に発振するファイバレーザモジュールの数を少なくする。
 上記に記載の態様によれば、板厚が薄い場合には最大切断速度が得られる切断溝幅は狭くなるので、発振するファイバレーザモジュールの数を減らすことでスポット径を小さくすることができ、高精度な加工を行うことができる。
 好ましくは、所定の速度で切断する際に発振するファイバレーザモジュールの数に対し、所定の速度よりも早い速度で切断する際に発振するファイバレーザモジュールの数を少なくする。
 上記に記載の態様によれば、切断速度を早くしたい場合には発振するファイバレーザモジュールの数を減らすことで同一出力であってもスポット径を小さくすることでパワー密度を上げることができ、切断速度の高速化を実現できるとともに高精度な加工を行うことができる。
 好ましくは、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールの数を制限する。
 上記に記載の態様によれば、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールの数を制限することで、各ファイバレーザモジュールの出力が小さいことにより出力が不安定となるのを回避することができ、安定した加工を実現できる。
 好ましくは、複数のファイバレーザモジュールの出力をそれぞれ異ならせる。
 上記に記載の態様によれば、ファイバレーザモジュールの出力設定の自由度が向上する。
 本発明のある局面に従うファイバレーザ加工機は、各々がレーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器と、ファイバレーザ発振器から生成されるレーザ光を出射するレーザ加工ヘッドと、ワークとレーザ加工ヘッドとの間に設けられ、レーザ加工ヘッドからのレーザ光に従うスポット径によりワークに対して照射する所定の焦点距離の集光レンズと、複数のファイバレーザモジュールの発振個数に応じてレーザ加工ヘッドからのビーム品質を調整することが可能な制御装置とを備える。制御装置は、ワークに応じたスポット径となるように複数のファイバレーザモジュールの発振個数を調整する。
 上記に記載の態様によれば、ファイバレーザモジュールの数を制御することで発振されるレーザ光のM2値を変えることができ、それによりスポット径ωを調整することができるので、従来必要であった集光レンズの交換回数を減らす、又は交換をなくすことができ、作業性を向上させることができる。
 好ましくは、制御装置は、所定の板厚を有するワークを切断する際に発振するファイバレーザモジュールの数に対し、所定の板厚より薄い板厚を有するワークを切断する際に発振するファイバレーザモジュールの数を少なくする。
 上記に記載の態様によれば、板厚が薄い場合には最大切断速度が得られる切断溝幅は狭くなるので、発振するファイバレーザモジュールの数を減らすことでスポット径を小さくすることができ、高精度な加工を行うことができる。
 好ましくは、制御装置は、所定の速度で切断する際に発振するファイバレーザモジュールの数に対し、所定の速度よりも早い速度で切断する際に発振するファイバレーザモジュールの数を少なくする。
 上記に記載の態様によれば、切断速度を早くしたい場合には発振するファイバレーザモジュールの数を減らすことで同一出力であってもスポット径を小さくすることでパワー密度を上げることができ、切断速度の高速化を実現できるとともに高精度な加工を行うことができる。
 好ましくは、制御装置は、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールの数を制限する。
 上記に記載の態様によれば、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールの数を制限することで、各ファイバレーザモジュールの出力が小さいことにより出力が不安定となるのを回避することができ、安定した加工を実現できる。
 好ましくは、制御装置は、複数のファイバレーザモジュールの出力をそれぞれ異ならせるように制御する。
 上記に記載の態様によれば、ファイバレーザモジュールの出力設定の自由度が向上する。
 ファイバレーザ加工機の作業性を向上させることが可能である。
本発明の一実施形態に係るレーザ加工機の概略平面図である。 図1に示すレーザ加工機の概略側面図である。 図1に示すレーザ加工機の右側面側の斜視図である。 レーザ発振器の扉を開いてコンバイナテーブル及び融着テーブルを引き出した状態を示す斜視図である。 外部光学系を模式的に示した模式図である。 本実施形態に基づくファイバレーザ加工機10の機能ブロックを説明する図である。 ファイバレーザモジュールの個数とレーザ光のM2値との関係を説明する図である。 本発明の制御装置22におけるファイバレーザ発振器21の制御処理について説明するフロー図である。 同じ出力でレーザモジュールを単独で発振した場合と、複数で発振した場合の集光レンズへの入射ビームの出力分布を示すグラフである。 切断可能な切断溝幅(カーフ幅)と板厚との関係を示すグラフである。
 以下、本発明の実施形態について図に基づいて説明する。
 以下、本発明に係るファイバレーザ加工機の一実施形態を図面に基づいて詳細に説明する。
 図1及び図2に示すように、ファイバレーザ加工機10(以下、レーザ加工機と呼ぶ。)は、加工機本体20と、加工機本体20に接続されるファイバレーザ発振器21(以下、レーザ発振器と呼ぶ。)及び制御装置22と、加工機本体20に接続して配設されるパレットチェンジャ23と、空気中の窒素ガスを分離するために使用されるブースターコンプレッサ24やエアコンプレッサ25、又は、酸素ガスボンベ26などを備えるアシストガス供給部27と、レーザ発振器21及びレーザ加工ヘッド40(以下、加工ヘッドと呼ぶ。)を冷却する冷却水を供給するチラーユニット28、及び加工時に発生する塵埃などを排除する集塵機29などを主に備える。
 なお、本実施形態において、前方とは、加工機本体20とパレットチェンジャ23の並び方向(図1~3のX方向)において加工機本体20寄りの方向を表わし、後方とは、該並び方向において、パレットチェンジャ23寄りの方向を表わす。また、左方及び右方は、該並び方向に直交する方向(図1、3のY方向)において、後方から前方を見たときの方向で表わされる。
 加工機本体20の一部をなし、加工機本体20の外形を形成するキャビン30内には、パレット31を所定の方向であるキャビン30の長手方向(X方向)に駆動するパレット駆動機構32と、パレット31に搭載されたワークWを加工するためのレーザ光を照射する加工ヘッド40と、加工ヘッド40を駆動する加工ヘッド駆動機構49と、が収容されている。なお、図1の実線及び図2の点線で示す加工ヘッド40は、X方向で最も前方に位置した状態(パレット31の加工時設置位置)を表わし、図1及び図2の一点鎖線で示す加工ヘッド40は、X方向で最も後方に位置した状態を表わしている。
 加工ヘッド40は、加工機本体20に設けられ、加工ヘッド駆動機構49によって、X方向、キャビン30の幅方向(Y方向)及びキャビン30の上下方向(Z方向)に移動可能である。図5も参照して、加工ヘッド40内には、プロセスファイバケーブル3の出射端から出射されたレーザ光を平行光線化するためのコリメータレンズ51と、平行光線化されたレーザ光を集光するための集光レンズ52と、が配置されている。
 また、加工ヘッド40の周囲には、チラーユニット28から供給される冷却管及びアシストガス供給部27から窒素ガス、或いは酸素ガスのアシストガスを供給するガス供給管や、加工ヘッド40のレーザノズル近傍に向けて、窒素ガス、或いは酸素ガスのアシストガスを吹き付けるサイドノズルに接続されるガス供給管が設けられている。
 加工ヘッド40は、レーザ発振器21を作動させると、レーザ光がプロセスファイバケーブル3を介してコリメータレンズ51で平行光線化され、更に平行光線化されたレーザ光が集光レンズ52に入射して集光し、レーザノズルからワークWの加工部に照射されてワークWを加工する。加工に際して、アシストガス供給部27から供給されるアシストガスは、レーザノズルやサイドノズルからワークWの加工部に向けて噴出して、加工時に生じた溶融した金属を吹き飛ばす。
 図3に示すように、キャビン30には、正面30Fに開閉扉であるガルウィング38が設けられ、正面30Fに対して反対側となる背面30Bには、横長スリット状に形成された搬入出口(不図示)が、パレットチェンジャ23に対応して設けられている。パレットチェンジャ23は、搬入出口が設けられたキャビン30の背面30Bに対向して配置され2台のパレット31を上下に2段配置することができる。大ロット製品の加工時には、ワークWを載置するパレット31をパレットチェンジャ23によって搬入出口を介して搬入出し、小ロット製品の加工時には、ガルウィング38からワークWを搬入出し、ロットの大きさに対応した搬入出作業を行うことができる。なお、符号75はユーザーを加工条件等を入力する操作盤であり、符号76はガルウィング38の開閉を制御するフートスイッチ、符号70は主としてパレットチェンジャ23の操作を行う操作盤である。
 キャビン30の右側面30Rには、レーザ発振器21を収納する凹状の発振器収納部30aが略中央部に配置されている。この発振器収納部30aに配置されるレーザ発振器21は、図4に示すように、箱型の筐体80内に、レーザ光を生成する複数(本実施形態では、4つ)のファイバレーザモジュールLM1~LM4が縦に積み重ねて収容され、その上方に、各ファイバレーザモジュールLM1~LM4からの出力ケーブル82が接続されるコンバイナ83が収容されている。さらに、コンバイナ83の上方には、コンバイナ83とフィーディングファイバケーブル2で接続される融着ボックス84が収容されている。融着ボックス84内では、フィーディングファイバケーブル2が導入される側と反対側に、加工ヘッド40に繋がるプロセスファイバケーブル3が導入され、フィーディングファイバケーブル2とプロセスファイバケーブル3が融着されている。コンバイナ83及び融着ボックス84は、それぞれ筐体80から引き出し可能なコンバイナテーブル85及び融着テーブル86上に配置されている。このように、レーザ発振器21では、複数のファイバレーザモジュールLM1~LM4の出力ケーブル82がコンバイナ83で束ねられて、フィーディングファイバケーブル2とプロセスファイバケーブル3でレーザ光が加工ヘッド40に導かれる。
 レーザ発振器21に隣接して配置される制御装置22は、ファイバレーザ加工機10全体を制御する。
 <機能ブロック図>
 図6は、本実施形態に基づくファイバレーザ加工機10の機能ブロックを説明する図である。
 図6に示されるように、ファイバレーザ加工機10は、主に加工機本体20と、ファイバレーザ発振器21と、制御装置22とを含む。
 加工機本体20は、加工ヘッド40を含む。
 ファイバレーザ発振器21は、複数のファイバレーザモジュールLM1~LM4と、複数のファイバレーザモジュールLM1~LM4にそれぞれ対応して設けられる出力制御部LMC1~LMC4と、コンバイナ83と、融着ボックス84とを含む。
 出力制御部LMC1~LMC4は、制御装置22からの指示に従って対応するファイバレーザモジュールLM1~LM4の出力を制御する。
 コンバイナ83は、ファイバレーザモジュールLM1~LM4で出力された複数のレーザ光を合波しフィーディングファイバケーブル2に出力する。
 融着ボックス84では、フィーディングファイバケーブル2とプロセスファイバケーブル3とが融着されており、合波したレーザ光がプロセスファイバケーブル3を介して加工機本体20の加工ヘッド40に導かれる。
 制御装置22は、レーザ発振器制御部46と、加工機制御部45とを含む。
 加工機制御部45は、ユーザーからの操作盤75に対する加工するワークの板厚、材質、速度等の加工条件の入力を受け付けると、当該入力に基づいて加工機本体20を制御する。また、加工機制御部45は、当該入力に基づいて、最適なレーザ指令出力等の指令値をレーザ発振器制御部46に出力する。
 レーザ発振器制御部46は、加工機制御部45からの指令値に基づいて各ファイバレーザモジュールLM1~LM4の発振を制御することでレーザ発振器21から生成されるレーザ光の出力を制御するものである。
 ここで、本発明の制御装置22は、従来の制御方法とは異なり、発振するファイバレーザモジュールLM1~LM4の数を制御することができる。また、ファイバレーザモジュールLM1~LM4間で出力差が生じるように制御することもできる。
 図7は、ファイバレーザモジュールの個数とレーザ光のM2値との関係を説明する図である。
 図7に示されるようにそれぞれのファイバレーザモジュールLM1~LM4のシングルモードのレーザ光のM2値は約1であり、4台のファイバレーザモジュールLM1~LM4のマルチモードのレーザ光のM2値は約5である。4台のファイバレーザモジュールLM1~LM4のうち2台又は3台を発振させた場合のマルチモードのレーザ光のM2値は約1~約5の間の値となる。
 例えば、500WのファイバレーザモジュールLM1~LM4を4台搭載した2000Wのレーザ発振器の場合を例に本発明の制御方法と従来の制御方法の違いについて説明する。
 従来の制御方法であれば、合計のレーザ指令出力が120W,600W,1200W,1800Wの場合、表1に示すように、全てのファイバレーザモジュールLM1~LM4で同じ出力となるように、それぞれを30W,150W,300W,450Wのレーザ指令出力としていた。言い換えると、全てのファイバレーザモジュールLM1~LM4を発振させたマルチモードでしか作動できず、レーザ光のM2値は約5で一定値であった。
Figure JPOXMLDOC01-appb-T000001
 これに対し、本発明の制御方法は、例えば、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールLM1~LM4の数を制限することができる。例えば、表2に示すように、合計のレーザ指令出力が50W~500Wの場合、発振するファイバレーザモジュールLM1~LM4の数を1つ、例えばファイバレーザモジュールLM1のみを発振させる。合計のレーザ指令出力が500W~1000Wの場合、発振するファイバレーザモジュールLM1~LM4の数を2つ、例えばファイバレーザモジュールLM1、LM2のみを発振させる。合計のレーザ指令出力が1000W~1500Wの場合、発振するファイバレーザモジュールLM1~LM4の数を3つ、例えばファイバレーザモジュールLM1~LM3のみを発振させる。合計のレーザ指令出力が1500~2000Wの場合、発振するファイバレーザモジュールLM1~LM4の数を4つ、即ち、全部のファイバレーザモジュールLM1~LM4を発振させる。このように、本発明の制御方法では、シングルモードでの作動とマルチモードでの作動が可能であり、さらにマルチモードでの作動においても発振するファイバレーザモジュールLM1~LM4の数を制御することができる。
Figure JPOXMLDOC01-appb-T000002
 なお、表2中、Yは発振を意味し、Nは停止を意味している。
 表3は、本発明の制御方法における、合計のレーザ指令出力が120W,600W,1200W,1800Wの場合の出力設定の一例を示すものである。
Figure JPOXMLDOC01-appb-T000003
 なお、表3中、Nは停止を意味している。
 表3に示すレーザ指令出力は一例であり、発振するファイバレーザモジュールLM1~LM4を変えてもよく、発振するファイバレーザモジュールLM1~LM4間で出力を同じにしてもよく、また表3とは異なる数値になるように出力を振り分けてもよい。このように、発振するファイバレーザモジュールLM1~LM4間で出力を異ならせることができるので、出力設定の自由度が向上する。
 本発明の制御方法では、発振するファイバレーザモジュールLM1~LM4の数を変えることで、M2値と呼ばれるビーム品質を変えることができ、それゆえスポット径ωを変えることができる。即ち、ファイバレーザモジュールLM1~LM4のうち一台のみを発振させることでレーザ光のM2値は約1となり、4台のファイバレーザモジュールLM1~LM4を発振させることでレーザ光のM2値は約5となり、4台のファイバレーザモジュールLM1~LM4のうち2台又は3台を発振させることで、レーザ光のM2値は約1~約5の間の値となる。従来の制御方法では、M2値は常に一定値であるためスポット径ωを変えるためには集光レンズを換える必要があったが、本発明の制御方法では、M2値を変えることでスポット径ωを変えることができるので、スポット径ωを変えるために集光レンズを換える作業を省略することができる。また、合計のレーザ指令出力が所定の出力以下で、発振するファイバレーザモジュールLM1~LM4の数を制限することで、各ファイバレーザモジュールLM1~LM4の出力が小さいことにより出力が不安定となるのを回避することができ、安定した加工を実現できる。
 <フロー図>
 上記処理を実現するフロー図について説明する。
 図8は、本発明の制御装置22におけるファイバレーザ発振器21の制御処理について説明するフロー図である。当該処理は、主に加工機制御部45において実行される。
 図8を参照して、加工条件を取得する(ステップS1)。具体的には、加工機制御部45は、操作盤75に対する加工条件の入力を受け付けて当該加工条件情報を取得する。
 次に、加工機制御部45は、取得した加工条件情報に基づいてファイバレーザ発振器21におけるレーザ指令出力Pを算出する(ステップS2)。
 当該レーザ指令出力Pは、加工するワークの板厚、材質、速度等の加工条件等に従って所定の演算式に基づいて算出することが可能である。
 そして、加工機制御部45は、レーザ指令出力Pが500以下であるか否かを判断する(ステップS3)。
 ステップS3において、加工機制御部45は、レーザ指令出力Pが500以下であると判断した場合(ステップS3においてYES)には、ファイバレーザモジュールLM1に対してレーザ光を発振出力するように指令出力する(ステップS4)。
 そして、加工機制御部45は、ファイバレーザモジュールLM1の出力指令値を算出して出力する(ステップS5)。
 そして、処理を終了する(終了)。
 ステップS3において、加工機制御部45は、レーザ指令出力Pが500以下でないと判断した場合(ステップS3においてNO)には、レーザ指令出力Pが1000以下であるか否かを判断する(ステップS6)。
 ステップS6において、加工機制御部45は、レーザ指令出力Pが1000以下であると判断した場合(ステップS6においてYES)には、ファイバレーザモジュールLM1,LM2に対してレーザ光を発振出力するように指令出力する(ステップS7)。
 そして、加工機制御部45は、ファイバレーザモジュールLM1,LM2の出力指令値を算出して出力する(ステップS8)。
 そして、処理を終了する(終了)。
 ステップS6において、加工機制御部45は、レーザ指令出力Pが1000以下でないと判断した場合(ステップS6においてNO)には、レーザ指令出力Pが1500以下であるか否かを判断する(ステップS9)。
 ステップS9において、加工機制御部45は、レーザ指令出力Pが1500以下であると判断した場合(ステップS9においてYES)には、ファイバレーザモジュールLM1~LM3に対してレーザ光を発振出力するように指令出力する(ステップS10)。
 そして、加工機制御部45は、ファイバレーザモジュールLM1~LM3の出力指令値を算出して出力する(ステップS11)。
 そして、処理を終了する(終了)。
 ステップS9において、加工機制御部45は、レーザ指令出力Pが1500以下でないと判断した場合(ステップS9においてNO)には、レーザ指令出力Pが2000以下であるか否かを判断する(ステップS12)。
 ステップS12において、加工機制御部45は、レーザ指令出力Pが2000以下であると判断した場合(ステップS12においてYES)には、ファイバレーザモジュールLM1~LM4に対してレーザ光を発振出力するように指令出力する(ステップS13)。
 そして、加工機制御部45は、ファイバレーザモジュールLM1~LM4の出力指令値を算出して出力する(ステップS14)。
 そして、処理を終了する(終了)。
 一方、ステップS12において、加工機制御部45は、レーザ指令出力Pが2000以下でないと判断した場合(ステップS12においてNO)には、出力制限値を超えるため処理を終了する(終了)。
 当該処理により、例えば、合計のレーザ指令出力が所定の出力以下では、発振するファイバレーザモジュールLM1~LM4の数を制限することが可能である。
 図9は、同じ出力でレーザモジュールを単独で発振した場合と、複数で発振した場合の集光レンズへの入射ビームの出力分布を示すグラフである。
 図9に示すように、レーザモジュールを単独で発振した場合にはビームはシングルモードになり、レーザモジュールを複数で発振した場合にはビームはマルチモードになることが分かる。
 この性質を利用して、切断速度を早くしたい場合には発振するファイバレーザモジュールLM1~LM4の数を減らすことで同一出力であってもスポット径を小さくすることでパワー密度を上げることができ、切断速度の高速化を実現できるとともに高精度な加工を行うことができる。従って、加工するワークの加工形状、例えば鋭角部分、曲線部分、直線部分等に応じて最適なM2値を選択することで最適な加工を行うことができる。また、図7で説明したように加工するワークWの板厚が薄い場合には最大切断速度が得られる切断溝幅は狭くなるので、発振するファイバレーザモジュールLM1~LM4の数を減らしてスポット径ωを小さくすることで、従来に比べて、高精度な加工が可能になる。
 さらに、例えばケガキ加工(材料の表面に彫りこみをする)の場合、小出力で加工する必要がある。従来の制御方法のようにマルチモードで作動する場合、小出力で発振が安定せず高精度で加工することが難しいが、本発明の制御方法ではシングルモードで作動させることができるので小出力でも一つのレーザモジュールの出力はそれほど小さくないので、安定した加工を実現できる。
 以下、本発明の効果について実施例と比較例を挙げて説明する。
 本発明の2kWのレーザ加工機(実施例)と従来の2kWのレーザ加工機(比較例)で板厚12mmの軟鋼と、板厚1.6mmの軟鋼をレーザ切断する場合におけるそれぞれの設定について以下に示す。
(実施例)
(a)軟鋼 板厚12mm
 レーザの波長:λ=1.06μm
 ビーム品質:M2=5
 集光レンズの焦点距離:f=200mm
 入射ビーム径:D=15mm
 スポット径:ω=90μm
 出力:P=2000W
 パワー密度:PD=(2000×4)/(90×90×π)=0.314W/μm2
 切断速度:F=900mm/min
(b)軟鋼 板厚1.6mm
 レーザの波長:λ=1.06μm
 ビーム品質:M2=1.1
 集光レンズの焦点距離:f=200mm
 入射ビーム径:D=15mm
 スポット径:ω=19.7μm
 出力:P=500W
 パワー密度:PD=(500×4)/(19.7×19.7×π)=1.64W/μm2
 切断速度:F=8000mm/min
(比較例)
(a)軟鋼 板厚12mm
 レーザの波長:λ=1.06μm
 ビーム品質:M2=5
 集光レンズの焦点距離:f=200mm
 入射ビーム径:D=15mm
 スポット径:ω=90μm
 出力:P=2000W
 パワー密度:PD=(2000×4)/(90×90×π)=0.314W/μm2
 切断速度:F=900mm/min
(b)軟鋼 板厚1.6mm
 レーザの波長:λ=1.06μm
 ビーム品質:M2=5
 集光レンズの焦点距離:f=125mm
 入射ビーム径:D=15mm
 スポット径:ω=56μm
 出力:P=2000W
 パワー密度:PD=(2000×4)/(56×56×π)=0.812W/μm2
 切断速度:F=4000mm/min
 従来の2kWのレーザ加工機を用いた比較例の設定では、集光レンズの焦点距離を変更して、薄板切断(1.6mm)と厚板切断(12mm)を切り替えていた。これに対し、本発明の2kWのレーザ加工機を用いた実施例の設定では、集光レンズの焦点距離を固定(ここでは、f=200mm)し、厚板切断(12mm)時には従来と同様に500W×4=2000Wで切断を行うが、薄板切断(1.6mm)時には500Wの単体モジュールで切断を行う。
 これにより、薄板切断(1.6mm)時には、単体モジュールを使用するためビーム品質が良く、出力が500Wと従来よりも低いにもかかわらず、パワー密度PDが高くなり、結果として切断速度Fが速くなっている。従って、同じ板厚1.6mmのワークを切断する場合、出力Pが2000Wから500Wと1/4の低出力となり、発振器の消費電力も1/4となる。また、切断速度Fも4000mm/minから8000mm/minと2倍の速度で切断することが可能であり、切削時間は従来の1/2となる。従って、発振器の低出力の結果と合わせるとランニングコストは、従来の1/8となる。
 以上説明したように、本発明の制御方法によれば、発振するファイバレーザモジュールLM1~LM4の数を制御することにより、M2値と呼ばれるビーム品質を変えることができ、それゆえスポット径ωを変えることができる。それにより、従来必要であった集光レンズの交換回数を減らす、又は交換をなくすことができ、作業性を向上させることができる。また、発振器の低出力化、切断速度の高速化による切削時間の短縮、ランニングコストの低減が可能となる。
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、レーザ発振器21に含まれるファイバレーザモジュールの数は、4つに限定されるものではなく、少なくとも2以上であればよい。
 以上、本発明の実施形態について説明したが、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 2 フィーディングファイバケーブル、3 プロセスファイバケーブル、10 ファイバレーザ加工機、20 加工機本体、21 ファイバレーザ発振器、22 制御装置、23 パレットチェンジャ、24 ブースターコンプレッサ、25 エアコンプレッサ、26 酸素ガスボンベ、27 アシストガス供給部、28 チラーユニット、29 集塵機、30 キャビン、30B 背面、30F 正面、30R 右側面、30a 発振器収納部、31 パレット、32 パレット駆動機構、38 ガルウィング、40 レーザ加工ヘッド、45 加工機制御部、46 レーザ発振器制御部、49 加工ヘッド駆動機構、51 コリメータレンズ、52 集光レンズ、70,75 操作盤、76 フートスイッチ、80 筺体、82 出力ケーブル、83 コンバイナ、84 融着ボックス、85 コンバイナテーブル、86 融着テーブル。

Claims (10)

  1.  各々がレーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器と、前記ファイバレーザ発振器から生成されるレーザ光を出射するレーザ加工ヘッドと、ワークと前記レーザ加工ヘッドとの間に設けられ、前記レーザ加工ヘッドからのレーザ光に従うスポット径により前記ワークに対して照射する所定の焦点距離の集光レンズと、を備えたファイバレーザ加工機の出力制御方法であって、
     前記ワークに応じたスポット径となるように前記複数のファイバレーザモジュールの発振個数を調整することにより前記レーザ加工ヘッドからのビーム品質を調整する、ファイバレーザ加工機の出力制御方法。
  2.  所定の板厚を有するワークを切断する際に発振する前記ファイバレーザモジュールの数に対し、前記所定の板厚より薄い板厚を有するワークを切断する際に発振する前記ファイバレーザモジュールの数を少なくする、請求項1に記載のファイバレーザ加工機の出力制御方法。
  3.  所定の速度で切断する際に発振する前記ファイバレーザモジュールの数に対し、前記所定の速度よりも早い速度で切断する際に発振する前記ファイバレーザモジュールの数を少なくする、請求項1に記載のファイバレーザ加工機の出力制御方法。
  4.  合計のレーザ指令出力が所定の出力以下では、発振する前記ファイバレーザモジュールの数を制限する、請求項1~3のいずれか1項に記載のファイバレーザ加工機の出力制御方法。
  5.  前記複数のファイバレーザモジュールの出力をそれぞれ異ならせる、請求項1~4のいずれか1項に記載のファイバレーザ加工機の出力制御方法。
  6.  各々がレーザ光を生成する複数のファイバレーザモジュールを有するファイバレーザ発振器と、
     前記ファイバレーザ発振器から生成されるレーザ光を出射するレーザ加工ヘッドと、
     ワークと前記レーザ加工ヘッドとの間に設けられ、前記レーザ加工ヘッドからのレーザ光に従うスポット径により前記ワークに対して照射する所定の焦点距離の集光レンズと、
     前記複数のファイバレーザモジュールの発振個数に応じて前記レーザ加工ヘッドからのビーム品質を調整することが可能な制御装置とを備え、
     前記制御装置は、前記ワークに応じたスポット径となるように前記複数のファイバレーザモジュールの発振個数を調整する、ファイバレーザ加工機。
  7.  前記制御装置は、所定の板厚を有するワークを切断する際に発振する前記ファイバレーザモジュールの数に対し、前記所定の板厚より薄い板厚を有するワークを切断する際に発振する前記ファイバレーザモジュールの数を少なくする、請求項6に記載のファイバレーザ加工機。
  8.  前記制御装置は、所定の速度で切断する際に発振する前記ファイバレーザモジュールの数に対し、前記所定の速度よりも早い速度で切断する際に発振する前記ファイバレーザモジュールの数を少なくする、請求項6に記載のファイバレーザ加工機。
  9.  前記制御装置は、合計のレーザ指令出力が所定の出力以下では、発振する前記ファイバレーザモジュールの数を制限する、請求項6~8のいずれか1項に記載のファイバレーザ加工機。
  10.  前記制御装置は、前記複数のファイバレーザモジュールの出力をそれぞれ異ならせるように制御する、請求項6~9のいずれか1項に記載のファイバレーザ加工機。
     
PCT/JP2014/054714 2013-02-27 2014-02-26 ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機 WO2014133013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157018537A KR101733334B1 (ko) 2013-02-27 2014-02-26 파이버 레이저 가공기의 출력 제어 방법 및 파이버 레이저 가공기
US14/767,070 US9815140B2 (en) 2013-02-27 2014-02-26 Power control method for fiber laser processing machine, and fiber laser processing machine
JP2014526721A JP5816370B2 (ja) 2013-02-27 2014-02-26 ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013037639 2013-02-27
JP2013-037639 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014133013A1 true WO2014133013A1 (ja) 2014-09-04

Family

ID=51428275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054714 WO2014133013A1 (ja) 2013-02-27 2014-02-26 ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機

Country Status (4)

Country Link
US (1) US9815140B2 (ja)
JP (1) JP5816370B2 (ja)
KR (1) KR101733334B1 (ja)
WO (1) WO2014133013A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879425B1 (ja) * 2014-12-12 2016-03-08 株式会社フジクラ ファイバレーザ装置および光ファイバ接続装置
WO2016060103A1 (ja) * 2014-10-15 2016-04-21 株式会社アマダホールディングス 半導体レーザ発振器
JP6101775B1 (ja) * 2015-11-17 2017-03-22 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
WO2017073609A1 (ja) * 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム、その耐反射性評価方法および耐反射性向上方法、ならびにファイバレーザ
JP2017191907A (ja) * 2016-04-15 2017-10-19 ファナック株式会社 ファイバレーザ発振器及びこれに搭載可能なクリーンベンチ
CN108695682A (zh) * 2017-04-06 2018-10-23 发那科株式会社 具备多个激光模块的激光装置
US10431953B2 (en) 2017-04-06 2019-10-01 Fanuc Corporation Laser apparatus including plurality of laser modules
JP2020013816A (ja) * 2018-07-13 2020-01-23 住友重機械工業株式会社 レーザ装置、レーザ装置増設キットおよびレーザ出力の変更方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919356B2 (ja) * 2014-10-15 2016-05-18 株式会社アマダホールディングス レーザ光による板金の加工方法及びこれを実行するレーザ加工装置
USD870166S1 (en) * 2016-08-31 2019-12-17 Trumpf Gmbh + Co. Kg Laser processing machine
CN109891693B (zh) * 2016-10-25 2020-10-20 三菱电机株式会社 激光加工机及激光加工机的运算装置
JP6918603B2 (ja) * 2017-06-28 2021-08-11 コマツ産機株式会社 三次元レーザ加工機および三次元レーザ加工機の制御方法
CN111149262B (zh) 2017-09-29 2021-09-28 株式会社藤仓 光纤激光系统及其控制方法
DE102017129790A1 (de) * 2017-12-13 2019-06-13 Osram Opto Semiconductors Gmbh Verfahren zum Betreiben einer Laservorrichtung und Laservorrichtung
DE112018007446B4 (de) * 2018-05-07 2022-02-24 Mitsubishi Electric Corporation Laservorrichtung, Laserbearbeitungsgerät und Verfahren zum Steuern der Ausgabe der Laservorrichtung
CN115958315A (zh) * 2022-12-21 2023-04-14 深圳市创想三维科技股份有限公司 激光器的驱动方法、激光器、计算机存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273724A (ja) * 1994-03-29 1995-10-20 Fujitsu Ltd 雑音光発生装置
JP2003285186A (ja) * 2002-03-26 2003-10-07 Nippon Steel Corp レーザ加工装置
US20050201429A1 (en) * 2004-03-15 2005-09-15 Rice Robert R. Laser source comprising amplifier and adaptive wavefront/polarization driver
WO2012099116A1 (ja) * 2011-01-18 2012-07-26 古河電気工業株式会社 ファイバレーザ装置およびレーザ光照射位置の位置決め方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291125B2 (ja) 1994-06-07 2002-06-10 株式会社アマダ レーザ加工機に対するアシストガス供給方法及び装置
JP3576240B2 (ja) 1995-02-08 2004-10-13 株式会社アマダ レーザ加工機のカバー装置
JP3640450B2 (ja) 1995-11-10 2005-04-20 株式会社小松製作所 レーザ加工機のアシストガス発生装置及びその制御方法
JPH11254160A (ja) * 1998-03-10 1999-09-21 Matsushita Electric Ind Co Ltd レーザ装置
JP2004105972A (ja) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd レーザ切断加工システム
JP4671697B2 (ja) 2005-01-12 2011-04-20 株式会社アマダ レーザ加工機用キャビン及びキャビン内のレーザ加工機への材料搬出入方法
JP4690967B2 (ja) * 2006-08-21 2011-06-01 新日本製鐵株式会社 加工深さを増加したレーザ加工装置
DE102008027231B4 (de) * 2008-06-06 2016-03-03 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Strahlformung
JP2012027241A (ja) 2010-07-23 2012-02-09 Amada Co Ltd ファイバレーザ加工機に用いられるファイバ接続方法及びファイバ接続構造
KR101771101B1 (ko) * 2010-09-29 2017-09-05 아이피지 포토닉스 코포레이션 아르곤 커버 가스를 사용하여 티타늄 용접하기 위해 광섬유 레이저를 사용하는 시스템 및 방법
DE102010047917A1 (de) * 2010-10-08 2012-04-12 Jenoptik Automatisierungstechnik Gmbh Vorrichtung zur simultanen Umfangsbearbeitung eines Werkstückes mit Laserstrahlen
JP5729107B2 (ja) * 2011-04-20 2015-06-03 村田機械株式会社 レーザ発振器制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273724A (ja) * 1994-03-29 1995-10-20 Fujitsu Ltd 雑音光発生装置
JP2003285186A (ja) * 2002-03-26 2003-10-07 Nippon Steel Corp レーザ加工装置
US20050201429A1 (en) * 2004-03-15 2005-09-15 Rice Robert R. Laser source comprising amplifier and adaptive wavefront/polarization driver
WO2012099116A1 (ja) * 2011-01-18 2012-07-26 古河電気工業株式会社 ファイバレーザ装置およびレーザ光照射位置の位置決め方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503966A (ja) * 2014-10-15 2018-02-08 ルーメンタム オペレーションズ エルエルシーLumentum Operations LLC レーザシステム、及び、レーザシステムの出力パワーを調整する方法
WO2016060103A1 (ja) * 2014-10-15 2016-04-21 株式会社アマダホールディングス 半導体レーザ発振器
WO2016060933A1 (en) 2014-10-15 2016-04-21 Lumentum Operations Llc Laser system and method of tuning the output power of the laser system
US10305252B2 (en) 2014-10-15 2019-05-28 Lumentum Operations Llc Laser system and method of tuning the output power of the laser system
JPWO2016060103A1 (ja) * 2014-10-15 2017-07-20 株式会社アマダホールディングス 半導体レーザ発振器
EP3207602A4 (en) * 2014-10-15 2018-06-20 Lumentum Operations LLC Laser system and method of tuning the output power of the laser system
US9917416B2 (en) 2014-10-15 2018-03-13 Amada Holdings Co., Ltd. Semiconductor laser oscillator
JP5879425B1 (ja) * 2014-12-12 2016-03-08 株式会社フジクラ ファイバレーザ装置および光ファイバ接続装置
US10530118B2 (en) 2015-10-30 2020-01-07 Fujikura Ltd. Fiber laser system, reflection resistance evaluation method and reflection resistance improvement method for same, and fiber laser
WO2017073609A1 (ja) * 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム、その耐反射性評価方法および耐反射性向上方法、ならびにファイバレーザ
JP2017092420A (ja) * 2015-11-17 2017-05-25 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
US10250009B2 (en) 2015-11-17 2019-04-02 Fujikura Ltd. Fiber laser system and method of outputting laser beam
WO2017086301A1 (ja) * 2015-11-17 2017-05-26 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
JP6101775B1 (ja) * 2015-11-17 2017-03-22 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
CN107302173A (zh) * 2016-04-15 2017-10-27 发那科株式会社 光纤激光振荡器以及在光纤激光振荡器可装载的净化台
JP2017191907A (ja) * 2016-04-15 2017-10-19 ファナック株式会社 ファイバレーザ発振器及びこれに搭載可能なクリーンベンチ
CN108695682A (zh) * 2017-04-06 2018-10-23 发那科株式会社 具备多个激光模块的激光装置
US10186830B2 (en) 2017-04-06 2019-01-22 Fanuc Corporation Laser apparatus including plurality of laser modules
US10431953B2 (en) 2017-04-06 2019-10-01 Fanuc Corporation Laser apparatus including plurality of laser modules
JP2020013816A (ja) * 2018-07-13 2020-01-23 住友重機械工業株式会社 レーザ装置、レーザ装置増設キットおよびレーザ出力の変更方法
JP7306801B2 (ja) 2018-07-13 2023-07-11 住友重機械工業株式会社 レーザ装置、増設用レーザ装置およびレーザ出力強度の変更方法

Also Published As

Publication number Publication date
JP5816370B2 (ja) 2015-11-18
US9815140B2 (en) 2017-11-14
KR101733334B1 (ko) 2017-05-08
KR20150092322A (ko) 2015-08-12
US20150375337A1 (en) 2015-12-31
JPWO2014133013A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5816370B2 (ja) ファイバレーザ加工機の出力制御方法及びファイバレーザ加工機
JP5985834B2 (ja) 切替え可能なレーザシステムを有するレーザ加工装置及びレーザ加工方法
US8461475B2 (en) System for the thermal processing of workpieces by a plasma jet or a laser beam
US10118256B2 (en) Sheet metal processing method using laser beams and direct diode laser processing device for carrying it out
EP2631030B1 (en) Laser cutting method
JP5639046B2 (ja) レーザ加工装置及びレーザ加工方法
JP2016112609A (ja) レーザ切断装置およびレーザ切断方法
WO2009016645A2 (en) Method and apparatus for sheet metal cutting by fiber laser with liner motor
JP6190855B2 (ja) レーザ加工方法およびレーザ加工装置
JP6251684B2 (ja) ファイバレーザ加工機、ファイバ接続方法及びファイバレーザ発振器
US11504802B2 (en) Multifunctional laser processing apparatus
JP6069280B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP6043773B2 (ja) ダイレクトダイオードレーザ光による板金の加工方法及びこれを実行するダイレクトダイオードレーザ加工装置
JP6895621B2 (ja) レーザ加工ヘッドおよびレーザ加工装置
US20220395930A1 (en) Laser cutting method and laser cutting device
EP3556509B1 (en) Combined processing machine with a laser beam splitter
JP2016221579A (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP6937865B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2016078043A (ja) レーザ加工機
WO2022065231A1 (ja) レーザ加工方法及びレーザ加工機
EP4219062A1 (en) Laser cutting method and machine
WO2024062542A1 (ja) レーザ加工装置及びレーザ加工方法
JP2016153143A (ja) ダイレクトダイオードレーザ光による板金の加工方法及びこれを実行するダイレクトダイオードレーザ加工装置
JP6503175B2 (ja) 半導体レーザ発振器及びレーザ加工機
JP2020009851A (ja) レーザ発振装置およびその制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526721

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018537

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756898

Country of ref document: EP

Kind code of ref document: A1