WO2014126051A1 - 研磨用組成物、研磨用組成物製造方法および研磨物製造方法 - Google Patents

研磨用組成物、研磨用組成物製造方法および研磨物製造方法 Download PDF

Info

Publication number
WO2014126051A1
WO2014126051A1 PCT/JP2014/053065 JP2014053065W WO2014126051A1 WO 2014126051 A1 WO2014126051 A1 WO 2014126051A1 JP 2014053065 W JP2014053065 W JP 2014053065W WO 2014126051 A1 WO2014126051 A1 WO 2014126051A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
water
polishing composition
soluble polymer
abrasive grains
Prior art date
Application number
PCT/JP2014/053065
Other languages
English (en)
French (fr)
Inventor
公亮 土屋
久典 丹所
真希 浅田
祐介 須賀
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to US14/767,494 priority Critical patent/US20150376464A1/en
Priority to EP14751996.1A priority patent/EP2957613B1/en
Priority to CN201480008802.5A priority patent/CN104995277B/zh
Priority to KR1020157024572A priority patent/KR102226441B1/ko
Priority to JP2015500230A priority patent/JP5897200B2/ja
Priority to SG11201506001VA priority patent/SG11201506001VA/en
Publication of WO2014126051A1 publication Critical patent/WO2014126051A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Definitions

  • the present invention relates to a polishing composition used for polishing a polishing object. Specifically, the present invention relates to a polishing composition used mainly for polishing semiconductor substrates such as silicon wafers and other substrates.
  • This application claims priority based on Japanese Patent Application No. 2013-026020 filed on Feb. 13, 2013, the entire contents of which are incorporated herein by reference.
  • the surface of a silicon wafer used as a component of a semiconductor device is generally finished into a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a primary polishing process (primary polishing process) and a final polishing process (final polishing process).
  • Patent Documents 1 to 3 are listed as technical documents relating to a polishing composition mainly used for polishing a semiconductor substrate such as a silicon wafer.
  • Patent Document 1 describes a technique for improving the haze of a silicon wafer by using a polishing composition containing hydroxyethyl cellulose and / or polyvinyl alcohol and a block-type polyether.
  • Patent Document 2 describes a technique for reducing haze on the surface of a semiconductor wafer by using a polishing composition containing colloidal silica or fumed silica having an average primary particle size of 5 to 30 nm and a water-soluble polymer compound. ing.
  • colloidal silica or fumed silica having an average primary particle size of 5 to 30 nm and a water-soluble polymer compound.
  • Patent Document 3 by using a low-viscosity water-soluble polymer compound as a semiconductor wetting agent, foreign substances that can cause micro defects can be easily removed by filtration, thereby suppressing the generation of micro defects.
  • an object of the present invention is to provide a polishing composition capable of reducing the number of detected micro defects as described above on the surface after polishing. Another object of the present invention is to provide a method for producing such a polishing composition. Another related object is to provide a method of manufacturing an abrasive (eg, a substrate) having a surface with few microdefects.
  • an abrasive eg, a substrate
  • the water-soluble polymer may be contained in the polishing composition.
  • Adsorbing with the abrasive grains the abrasive grains may be present in the polishing composition as granules larger than their own size. Such a granule behaves like a particle in the polishing composition, and the behavior can affect the mechanical action during polishing.
  • the inventors pay attention to the size of the particles in consideration of the presence of the above-mentioned granules as a physical property value different from the size of the abrasive grains themselves. did. That is, when the water-soluble polymer is adsorbed to the abrasive grains, the unit exhibiting particle-like behavior in the polishing composition is regarded as particles, and the size is considered as the size of the particles contained in the polishing composition.
  • the present invention has been completed by finding the particle size that can be effectively reduced.
  • the polishing composition provided by this specification contains an abrasive grain, a water-soluble polymer, and water.
  • the polishing composition comprises particles in the polishing composition measured by a dynamic light scattering method at a concentration at which the abrasive grain content is 0.2% by mass (abrasive grains alone, around the abrasive grains).
  • the volume average particle diameter D A of the adsorbed water-soluble polymer, the aggregate of abrasive grains and water-soluble polymer, etc.) is 20 nm to 60 nm.
  • volume average particle diameter D A of the particles is limited to a predetermined range, micro-defects (in particular, commonly referred to as PID (Polishing Induced Effect), due to the polishing process Generation of surface defects) can be effectively suppressed.
  • PID Policy Induced Effect
  • the average primary particle diameter D P1 may be preferably used those in the range of approximately 15 nm ⁇ 30 nm. According to the polishing composition containing such abrasive grains, both the reduction of minute defects and the reduction of haze can be achieved at a higher level.
  • the average secondary particle diameter D P2 can be preferably adopted as in the range of approximately 20 nm ⁇ 50 nm. According to the polishing composition containing such abrasive grains, both the reduction of minute defects and the reduction of haze can be achieved at a higher level.
  • water-soluble polymer those having a weight average molecular weight (Mw) of 80 ⁇ 10 4 or less (for example, 1 ⁇ 10 3 to 80 ⁇ 10 4 , typically 1 ⁇ 10 4 to 80 ⁇ 10 4 ) are preferably employed. Can do. Such water-soluble polymer having an Mw is preferred since suitable for forming particles having the preferred volume average particle diameter D A which is disclosed herein.
  • the polishing composition disclosed herein can be preferably implemented in an embodiment that further contains a basic compound in addition to the abrasive grains, the water-soluble polymer and water. According to the polishing composition of this embodiment, the polishing efficiency can be improved by the action of the basic compound.
  • the manufacturing method of the polishing composition containing an abrasive grain, a water-soluble polymer, a basic compound, and water is also provided.
  • the method includes preparing a dispersion liquid containing the abrasive grains, the basic compound, and water (can be prepared, purchased, received, etc.).
  • preparing the aqueous solution containing the said water-soluble polymer and water may be included.
  • it may include adding and mixing the aqueous solution to the dispersion.
  • Such a production method comprises particles in a polishing composition (abrasive alone, a water-soluble polymer around the abrasive grains) measured by a dynamic light scattering method at a concentration at which the abrasive grain content is 0.2% by mass. those There adsorbed, is suitable as a method for producing abrasive grains and may be in the form of aggregates such as water-soluble polymers.) the polishing composition volume average particle diameter D a of a 20 nm ⁇ 60 nm.
  • the polishing liquid (here, “liquid” means that the slurry is included) is supplied to the polishing object, and the surface of the polishing object is polished with the polishing liquid.
  • a method for producing a polished article In the polishing object manufacturing method, a polishing liquid containing abrasive grains, a water-soluble polymer and water is used as the polishing liquid supplied to the polishing object.
  • the polishing liquid As the particles, the above-mentioned abrasive grains and the particles on which the abrasive grains are adsorbed with the water-soluble polymer are contained.
  • the polishing liquid has a volume average particle diameter D A of the particles as measured by dynamic light scattering method is 20 nm ⁇ 60 nm.
  • the volume average particle diameter D A of the particles in the polishing liquid is limited to a predetermined range, it is possible to effectively suppress the occurrence of minute defects. Therefore, an abrasive having a surface with fewer micro defects can be provided.
  • the technique disclosed herein can be preferably applied to polishing of a silicon wafer after polishing of the silicon wafer, for example, lapping.
  • a particularly preferable application target is final polishing of a silicon wafer.
  • ⁇ Abrasive grains> The material and properties of the abrasive grains contained in the polishing composition disclosed herein are not particularly limited, and can be appropriately selected according to the purpose of use and usage of the polishing composition.
  • Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid
  • polyacrylonitrile particles Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • abrasive inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable.
  • Particularly preferred abrasive grains include silica particles.
  • Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are unlikely to occur on the surface of the object to be polished and a surface having a lower haze can be realized. Of these, colloidal silica is preferred.
  • colloidal silica can be preferably employed as abrasive grains of a polishing composition used for polishing (particularly final polishing) of a silicon wafer.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the polishing rate (amount for removing the surface of the polishing object per unit time) can be improved when polishing the polishing object (for example, a silicon wafer).
  • silica particles having a true specific gravity of 2.2 or less are preferable.
  • a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the abrasive grains contained in the polishing composition may be in the form of primary particles or in the form of secondary particles in which a plurality of primary particles are aggregated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least a part of the abrasive grains is contained in the polishing composition in the form of secondary particles.
  • the average primary particle diameter D P1 of the abrasive grains may be a value particle size distribution of particles in the polishing composition can satisfy a predetermined condition are not particularly limited.
  • the average primary particle diameter D P1 of the abrasive grains is at 5nm or more, and more preferably 10nm or more.
  • Higher polishing rates can be achieved by increasing the average primary particle size of the abrasive grains.
  • Higher polishing effect e.g., reduced haze, effects such as removal of defects
  • from the viewpoint of obtaining an average primary particle diameter D P1 is preferably at least 15 nm, more 20nm (e.g. 20nm greater) are more preferred.
  • the average primary particle diameter D P1 is preferably less than 35 nm, more preferably 32nm or less More preferably, it is 30 nm or less (for example, less than 30 nm).
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
  • the average secondary particle diameter D P2 of the abrasive grains should be a value that allows the particle size distribution of the particles in the polishing composition to satisfy a predetermined condition.
  • the average secondary particle diameter DP2 is 10 nm or more, more preferably 20 nm or more.
  • the average secondary particle diameter D P2 is suitably less than 60 nm, it is 55nm or less Preferably, it is 50 nm or less (for example, less than 50 nm).
  • the measurement sample an aqueous dispersion of abrasive grains of interest (containing no water-soluble polymer.), For example, manufactured by Nikkiso Co., Ltd. of the type to "UPA-UT151" It can be measured by the dynamic light scattering method.
  • the average secondary particle diameter D P2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D P1 of the abrasive grains (D P2 / D P1 ⁇ 1) and is typically larger than D P1 (D P2 / D P1 > 1).
  • the D P2 / D P1 of the abrasive grains is usually in the range of 1.2 to 3. A range of 5 to 2.5 is preferable, and a range of 1.7 to 2.3 (for example, more than 1.9 and 2.2 or less) is more preferable.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape.
  • abrasive grains in which most of the abrasive grains have a peanut shape can be preferably employed.
  • the average value of the major axis / minor axis ratio (average aspect ratio) of the primary particles of the abrasive grains is preferably 1.0 or more, more preferably 1.05 or more, and still more preferably 1. .1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • an electron microscope As a specific procedure, for example, with a scanning electron microscope (SEM), for a predetermined number (for example, 200 particles) of abrasive particles capable of recognizing the shape of independent particles, the minimum circumscribed size of each particle image is used.
  • SEM scanning electron microscope
  • Draw a rectangle For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • Water-soluble polymer The kind of water-soluble polymer contained in the polishing composition disclosed here is not particularly limited.
  • water-soluble polymers known in the field of polishing compositions can be selected so that particles of a desired size can be formed in a polishing composition having an abrasive concentration of 0.2% by mass.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule.
  • the water-soluble polymer may have, for example, a hydroxyl group, a carboxy group, an acyloxy group, a sulfo group, a quaternary nitrogen structure, a heterocyclic structure, a vinyl structure, or a polyoxyalkylene structure in the molecule.
  • water-soluble polymers examples include cellulose derivatives, polymers containing oxyalkylene units, and N-vinyl types such as N-vinyl lactam and N-vinyl chain amide. And a polymer containing a monomer unit, an imine derivative, a polymer containing an N- (meth) acryloyl type monomer unit, a vinyl alcohol polymer such as polyvinyl alcohol and its derivatives, pullulan and the like.
  • cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, and the like. Of these, hydroxyethyl cellulose is preferred.
  • the polymer containing an oxyalkylene unit (hereinafter also referred to as “water-soluble polymer PB”) is an oxyalkylene unit having 2 to 6 carbon atoms (typically a structural unit represented by —C n H 2n O—, where And n is an integer of 2 to 6.), or a polymer containing one or more thereof.
  • a polymer in which the oxyalkylene unit has 2 to 3 carbon atoms is preferred. Examples of such a polymer include polyethylene oxide, a block copolymer of ethylene oxide (EO) and propylene oxide (PO), a random copolymer of EO and PO, and the like.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like containing a polyethylene oxide block (PEO) and a polypropylene oxide block (PPO).
  • the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body.
  • PEO-PPO-PEO type triblock body is more preferable.
  • a polymer represented by the following general formula (1) can be preferably used as the PEO-PPO-PEO type triblock body.
  • EO represents an oxyethylene unit (—CH 2 CH 2 O—)
  • PO represents an oxypropylene unit (—CH 2 CH (CH 3 ) O—) group
  • a, b and c Each represents an integer of 1 or more (typically 2 or more).
  • the sum of a and c is preferably in the range of 2 to 1000, more preferably in the range of 5 to 500, and still more preferably in the range of 10 to 200.
  • b is preferably in the range of 2 to 200, more preferably in the range of 5 to 100, and still more preferably in the range of 10 to 50.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
  • polymers containing N-vinyl type monomer units include homopolymers and copolymers of N-vinyl lactam type monomers (for example, N-vinyl lactam type monomers). Copolymer having a copolymerization ratio of more than 50% by weight), homopolymers of N-vinyl chain amides and copolymers (for example, copolymers having a copolymerization ratio of N-vinyl chain amides exceeding 50% by weight) Merged) and the like.
  • N-vinyl lactam type monomers for example, N-vinyl lactam type monomers.
  • copolymer refers to various copolymers such as a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer unless otherwise specified.
  • N-vinyl lactam monomers include N-vinyl pyrrolidone (VP), N-vinyl piperidone, N-vinyl morpholinone, N-vinyl caprolactam (VC), N-vinyl-1,3-oxazine-2- ON, N-vinyl-3,5-morpholinedione and the like.
  • polymers containing monomer units of the N-vinyl lactam type include polyvinyl pyrrolidone, polyvinyl caprolactam, random copolymers of VP and VC, one or both of VP and VC and other vinyl monomers (for example, acrylic type Monomers, vinyl ester monomers, etc.), block copolymers and graft copolymers containing polymer segments containing one or both of VP and VC (for example, graft copolymer obtained by grafting polyvinylpyrrolidone to polyvinyl alcohol) Polymer) and the like.
  • a vinylpyrrolidone polymer PVP
  • PVP vinylpyrrolidone polymer
  • the vinylpyrrolidone-based polymer means a VP homopolymer and a VP copolymer (for example, a copolymer having a VP copolymerization ratio of more than 50% by weight).
  • the ratio of the number of moles of VP units to the number of moles of all repeating units is usually 50% or more, and 80% or more (for example, 90% or more, typically 95% or more). Is appropriate.
  • All repeating units of the water-soluble polymer may be substantially composed of VP units.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • Examples of the imine derivative include homopolymers and copolymers of N-acylalkyleneimine monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine, N-caproylethyleneimine, N-benzoylethyleneimine, N-acetylpropyleneimine, N-butyrylethyleneimine Etc.
  • As the homopolymer of the N-acylalkyleneimine monomer poly (N-acylalkylenimine) or the like can be used.
  • copolymers of N-acylalkyleneimine monomers include copolymers of two or more N-acylalkyleneimine monomers, one or more N-acylalkylenimine monomers and other Copolymers with monomers are included.
  • Examples of polymers containing N- (meth) acryloyl type monomer units include homopolymers and copolymers of N- (meth) acryloyl type monomers (typically Includes a copolymer in which the copolymerization ratio of the N- (meth) acryloyl monomer exceeds 50% by weight.
  • Examples of the N- (meth) acryloyl type monomer include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group.
  • chain amides having an N- (meth) acryloyl group include acrylamide; N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-isopropylacrylamide, N-butylacrylamide, N-isobutylacrylamide, N N-monoalkylacrylamides such as tert-butylacrylamide, N-heptylacrylamide, N-octylacrylamide, N-tert-octylacrylamide, N-dodecylacrylamide, N-octadecylacrylamide; N- (2-hydroxyethyl) acrylamide, N- (1,1-dimethyl-2-hydroxyethyl) acrylamide, N- (1-ethyl-hydroxyethyl) acrylamide, N- (2-chloroethyl) acrylamide, N (2,2,2-trichloro-1-hydroxyethyl) acrylamide, N- (2-dimethylamin
  • Examples of cyclic amides having an N- (meth) acryloyl group include N-acryloylmorpholine, N-acryloylthiomorpholine, N-acryloylpiperidine, N-acryloylpyrrolidine, N-methacryloylmorpholine, N-methacryloylpiperidine, N-methacryloyl Examples include pyrrolidine.
  • An example of a polymer containing a cyclic amide having an N- (meth) acryloyl group as a monomer unit is an acryloylmorpholine-based polymer (PACMO).
  • Typical examples of the acryloylmorpholine-based polymer include a homopolymer of N-acryloylmorpholine (ACMO) and a copolymer of ACMO (for example, a copolymer in which the copolymerization ratio of ACMO exceeds 50% by weight).
  • ACMO N-acryloylmorpholine
  • the ratio of the number of moles of ACMO units to the number of moles of all repeating units is usually 50% or more, and 80% or more (for example, 90% or more, typically 95% or more). Is appropriate. All the repeating units of the water-soluble polymer may be substantially composed of ACMO units.
  • the vinyl alcohol polymer (hereinafter also referred to as “water-soluble polymer PF”) is typically a polymer (PVA) containing a vinyl alcohol unit (VA unit) as a main repeating unit.
  • PVA polymer
  • VA unit vinyl alcohol unit
  • All repeating units may consist essentially of VA units.
  • the type of repeating unit other than the VA unit is not particularly limited, and examples thereof include a vinyl acetate unit, a vinyl propionate unit, and a vinyl hexanoate unit.
  • the degree of saponification of PVA is usually 50 mol% or more, preferably 65 mol% or more, more preferably 70 mol% or more, for example, 75 mol% or more.
  • the saponification degree of PVA is 100 mol% or less in principle.
  • the polishing composition disclosed herein can be preferably implemented, for example, in an embodiment containing at least a water-soluble polymer PA and / or a water-soluble polymer PF as a water-soluble polymer.
  • a preferred embodiment includes an embodiment containing at least a water-soluble polymer PA (typically hydroxyethyl cellulose) as the water-soluble polymer.
  • the aspect containing water-soluble polymer PA independently, the aspect containing water-soluble polymer PA and water-soluble polymer PC, the aspect containing water-soluble polymer PA and water-soluble polymer PE, etc. can be employ
  • a preferred example of such a polishing composition is a polishing composition in which the main component of the water-soluble polymer (typically a component exceeding 50% by mass) is hydroxyethyl cellulose.
  • the main component of the water-soluble polymer typically a component exceeding 50% by mass
  • Another preferred embodiment includes an embodiment containing at least a water-soluble polymer PF as a water-soluble polymer.
  • the aspect containing water-soluble polymer PF independently, the aspect containing water-soluble polymer PF and water-soluble polymer PC, the aspect containing water-soluble polymer PF and water-soluble polymer PA, etc. can be employ
  • an embodiment containing a water-soluble polymer PE alone as a water-soluble polymer can be mentioned.
  • the molecular weight of the water-soluble polymer is not particularly limited.
  • a water-soluble polymer having a weight average molecular weight (Mw) of 200 ⁇ 10 4 or less typically 1 ⁇ 10 3 to 200 ⁇ 10 4 , for example, 1 ⁇ 10 3 to 150 ⁇ 10 4
  • Mw is less than 100 ⁇ 10 4 (more preferably 80 ⁇ 10 4 or less, further preferably 50 ⁇ 10 4 or less, typically Is preferably 40 ⁇ 10 4 or less) water-soluble polymer.
  • a water-soluble polymer having Mw of 30 ⁇ 10 4 or less (typically less than 30 ⁇ 10 4 ) can be preferably used.
  • Mw of the water-soluble polymer increases, the haze reduction effect tends to increase. From such a viewpoint, it is usually appropriate to use a water-soluble polymer having an Mw of 1 ⁇ 10 3 or more.
  • a water-soluble polymer having an Mw of 1 ⁇ 10 4 or more can be preferably used.
  • the more preferable range of Mw may vary depending on the type of water-soluble polymer.
  • the Mw of the water-soluble polymer PA is typically less than 100 ⁇ 10 4 , preferably 80 ⁇ 10 4 or less, more preferably 50 ⁇ 10 4 or less, and even more preferably 30 ⁇ 10 4 or less (typically Less than 30 ⁇ 10 4 ).
  • the Mw of the water-soluble polymer PA is typically 1 ⁇ 10 4 or more, preferably 2 ⁇ 10 4 or more, more preferably 3 ⁇ 10 4 or more, and even more preferably 5 ⁇ 10 4 or more (for example, 7 ⁇ 10 4 4 or more).
  • the Mw of the water-soluble polymer PB is preferably 50 ⁇ 10 4 or less, more preferably 30 ⁇ 10 4 or less, and still more preferably 20 ⁇ 10 4 or less.
  • the Mw of the water-soluble polymer PB is typically 1 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer PC is typically 15 ⁇ 10 4 or less, preferably 10 ⁇ 10 4 or less, more preferably 8 ⁇ 10 4 or less.
  • a water-soluble polymer PC having Mw of 5 ⁇ 10 4 or less (for example, 3 ⁇ 10 4 or less) may be used.
  • the Mw of the water-soluble polymer PC is typically 1 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer PD is preferably 30 ⁇ 10 4 or less, more preferably 20 ⁇ 10 4 or less, and further preferably 10 ⁇ 10 4 or less (for example, 5 ⁇ 10 4 or less).
  • the Mw of the water-soluble polymer PD is typically 1 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer PE is typically 40 ⁇ 10 4 or less, preferably 20 ⁇ 10 4 or less, more preferably 10 ⁇ 10 4 or less.
  • the Mw of the water-soluble polymer PE is typically 1 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer PF is typically 6 ⁇ 10 4 or less, preferably 5.5 ⁇ 10 4 or less, more preferably 3 ⁇ 10 4 or less (for example, 2 ⁇ 10 4 or less). It is.
  • the Mw of the water-soluble polymer PF is typically 1 ⁇ 10 3 or more, preferably 3 ⁇ 10 3 or more, for example 4 ⁇ 10 3 or more.
  • a water-soluble polymer PF having an Mw of 1 ⁇ 10 4 or more may be used.
  • the relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer is not particularly limited.
  • those in which the relationship between Mw and Mn satisfies the following formula: Mw / Mn ⁇ 5.0 can be preferably used.
  • the Mw / Mn of the water-soluble polymer is preferably 4.8 or less, more preferably 4.6 or less.
  • Mw / Mn is 1.0 or more.
  • values based on GPC aqueous system: converted to polyethylene oxide
  • the more preferable range of Mw / Mn may vary depending on the type of water-soluble polymer.
  • the Mw / Mn of the water-soluble polymer PA is preferably 4.8 or less, more preferably 4.6 or less.
  • the Mw / Mn of the water-soluble polymer PB is preferably 4.0 or less, more preferably 3.5 or less, and still more preferably 3.0 or less.
  • the Mw / Mn of the water-soluble polymer PC is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the Mw / Mn of the water-soluble polymer PD is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the Mw / Mn of the water-soluble polymer PE is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the Mw / Mn of the water-soluble polymer PA is preferably 2.0 or more, more preferably 3.0 or more.
  • the Mw / Mn of the water-soluble polymer PB is preferably 1.05 or more.
  • the Mw / Mn of the water-soluble polymer PC is preferably 1.05 or more.
  • the Mw / Mn of the water-soluble polymer PD is preferably 1.05 or more.
  • the Mw / Mn of the water-soluble polymer PE is preferably 1.05 or more.
  • the Mw / Mn of the water-soluble polymer PF is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less. Further, the Mw / Mn of the water-soluble polymer PF is preferably 1.05 or more.
  • Mw and Mn of the water-soluble polymer values based on aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
  • content of a water-soluble polymer can be 0.01 mass part or more with respect to 100 mass parts of abrasive grains.
  • the content of the water-soluble polymer with respect to 100 parts by mass of the abrasive is suitably 0.05 parts by mass or more, preferably 0.1 parts by mass from the viewpoint of improving the surface smoothness after polishing (for example, reducing haze and defects).
  • the content of the water-soluble polymer with respect to 100 parts by mass of the abrasive grains can be, for example, 40 parts by mass or less from the viewpoint of polishing rate, detergency, etc., and usually 20 parts by mass or less is suitable, 15 parts by mass or less, more preferably 10 parts by mass or less.
  • ion-exchanged water deionized water
  • pure water ultrapure water, distilled water, or the like
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • the polishing composition disclosed herein (typically a slurry-like composition) has, for example, a solid content (non-volatile content; NV) of 0.01% by mass to 50% by mass, and the balance Is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • NV non-volatile content
  • the balance is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • NV non-volatile content
  • the balance is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • the polishing composition disclosed herein typically contains a basic compound in addition to the abrasive grains, the water-soluble polymer and water.
  • the basic compound refers to a compound having a function of increasing the pH of the composition when added to the polishing composition.
  • the basic compound serves to chemically polish the surface to be polished, and can contribute to an improvement in the polishing rate.
  • the basic compound can be useful for improving the dispersion stability of the polishing composition.
  • an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, various carbonates or hydrogencarbonates, and the like can be used.
  • alkali metal hydroxide, quaternary ammonium hydroxide or a salt thereof, ammonia, amine and the like can be mentioned.
  • Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • quaternary ammonium hydroxide or a salt thereof examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • Such basic compounds can be used singly or in combination of two or more.
  • Preferred basic compounds from the viewpoint of improving the polishing rate include ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, hydrogen carbonate.
  • Sodium and sodium carbonate are mentioned. Of these, preferred are ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide. More preferred are ammonia and tetramethylammonium hydroxide.
  • a particularly preferred basic compound is ammonia.
  • the polishing composition disclosed herein is preferably practiced in a mode including a surfactant (typically a water-soluble organic compound having a molecular weight of less than 1 ⁇ 10 4 ) in addition to abrasive grains, a water-soluble polymer and water. Can be done.
  • a surfactant typically a water-soluble organic compound having a molecular weight of less than 1 ⁇ 10 4
  • the dispersion stability of the polishing composition can be improved.
  • it can be easy to reduce the haze of the polished surface.
  • Surfactant can be used individually by 1 type or in combination of 2 or more types.
  • an anionic or nonionic surfactant can be preferably used. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid
  • Nonionic surfactants such as polyoxyalkylene adducts such as esters and polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done.
  • nonionic activators include block copolymers of EO and PO (diblock bodies, PEO-PPO-PEO triblock bodies, PPO-PEO-PPO triblock bodies, etc.), EO and PO Random copolymer, polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, poly Oxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether Polyoxyethylene stearyl ether, polyoxyethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene EO
  • preferable surfactants include block copolymers of EO and PO (particularly, PEO-PPO-PEO type triblock), random copolymers of EO and PO, and polyoxyethylene alkyl ethers (for example, polyoxyethylene alkyl ethers). Oxyethylene decyl ether).
  • the molecular weight of the surfactant is typically less than 1 ⁇ 10 4 and is preferably 9500 or less from the viewpoints of filterability of the polishing composition, cleanability of the object to be polished, and the like.
  • the molecular weight of the surfactant is typically 200 or more, preferably 250 or more, and more preferably 300 or more (for example, 500 or more) from the viewpoint of the haze reduction effect and the like.
  • the molecular weight of the surfactant may be a weight average molecular weight (Mw) determined by GPC (aqueous, polyethylene glycol equivalent) or a molecular weight calculated from a chemical formula.
  • Mw weight average molecular weight
  • the more preferable range of the molecular weight of the surfactant may vary depending on the type of the surfactant. For example, when a block copolymer of EO and PO is used as the surfactant, the Mw is preferably 1000 or more, more preferably 2000 or more, and even more preferably 5000 or more.
  • the content of the surfactant with respect to 100 parts by mass of the abrasive is 20 parts by mass or less, preferably 15 parts by mass or less, and 10 parts by mass or less (for example, 6 parts by mass). Part or less) is more preferable.
  • the surfactant content relative to 100 parts by mass of the abrasive is suitably 0.001 parts by mass or more, preferably 0.005 parts by mass or more, 0.01 More preferred is at least part by mass (eg, at least 0.05 part by mass, typically at least 0.1 part by mass).
  • the mass ratio (W1 / W2) between the content W1 of the water-soluble polymer and the content W2 of the surfactant is not particularly limited, but is usually in the range of 0.01 to 200.
  • a range of 0.1 to 100 is preferable.
  • (W1 / W2) can be, for example, in the range of 0.01 to 20, preferably in the range of 0.05 to 15, and more preferably in the range of 0.1 to 10.
  • the polishing composition disclosed herein is a polishing agent such as a chelating agent, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, and an antifungal agent, as long as the effects of the present invention are not significantly hindered.
  • a known additive that can be used in a composition for polishing may be further contained as necessary.
  • Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic) Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphospho Nosuccinic acid is included.
  • organic phosphonic acid-based chelating agents are more preferable, and ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable.
  • a particularly preferred chelating agent is ethylenediaminetetrakis (methylenephosphonic acid).
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids.
  • An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
  • antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
  • the polishing composition disclosed herein can be applied to polishing a polishing object having various materials and shapes.
  • the material of the polishing object is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; glass such as quartz glass, aluminosilicate glass, glassy carbon, etc.
  • a ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, and gallium arsenide; a resin material such as polyimide resin; Of these, a polishing object composed of a plurality of materials may be used. Especially, it is suitable for grinding
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition disclosed herein can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
  • the polishing composition disclosed herein can be preferably used for final polishing of an object to be polished. Therefore, according to this specification, a method for producing a polished article (for example, a method for producing a silicon wafer) including a final polishing step using the polishing composition is provided.
  • final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step).
  • the polishing composition disclosed herein also refers to a polishing step upstream of final polishing (a step between a rough polishing step and a final polishing step.
  • the polishing composition includes at least a primary polishing step; Secondary polishing, tertiary polishing, etc. may be included.), For example, it may be used in a polishing process performed immediately before final polishing.
  • the polishing composition disclosed herein can be particularly preferably used for polishing silicon wafers.
  • it is suitable as a polishing composition used for final polishing of a silicon wafer or a polishing process upstream thereof.
  • application to polishing (typically final polishing or polishing immediately before) of a silicon wafer prepared to have a surface roughness of 0.01 nm to 100 nm by an upstream process is effective.
  • Application to final polishing is particularly preferable.
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
  • the content of the abrasive grains in the polishing liquid is not particularly limited, but is typically 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, for example, It is 0.15 mass% or more. By increasing the abrasive content, higher polishing rates can be achieved. From the viewpoint of realizing a surface having a lower haze, usually, the content is suitably 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, For example, it is 1 mass% or less.
  • the content of the water-soluble polymer in the polishing liquid is not particularly limited, and can be, for example, 1 ⁇ 10 ⁇ 4 mass% or more. From the viewpoint of haze reduction or the like, the preferable content is 5 ⁇ 10 ⁇ 4 mass% or more, more preferably 1 ⁇ 10 ⁇ 3 mass% or more, for example, 2 ⁇ 10 ⁇ 3 mass% or more. Further, from the viewpoint of easily forming particles of a preferred size disclosed herein, the content is preferably 0.2% by mass or less, and 0.1% by mass or less (for example, 0.05% by mass or less). More preferably.
  • the content of the surfactant in the polishing liquid is not particularly limited. Usually, it is appropriate that the content is 1 ⁇ 10 ⁇ 5 mass% or more (for example, 1 ⁇ 10 ⁇ 4 mass% or more). From the viewpoint of haze reduction or the like, the preferable content is 5 ⁇ 10 ⁇ 5 mass% or more (for example, 5 ⁇ 10 ⁇ 4 mass% or more), more preferably 1 ⁇ 10 ⁇ 3 mass% or more, for example 2 ⁇ 10 ⁇ 3 % by mass or more. Further, from the viewpoint of detergency and polishing rate, the content is preferably 0.2% by mass or less, and more preferably 0.1% by mass or less (for example, 0.05% by mass or less).
  • the content of the basic compound in the polishing liquid is not particularly limited. From the standpoint of improving the polishing rate, the content is usually preferably 0.001% by mass or more, more preferably 0.005% by mass or more of the polishing liquid. Further, from the viewpoint of haze reduction or the like, the content is preferably less than 0.4% by mass, and more preferably less than 0.25% by mass.
  • the pH of the polishing liquid is not particularly limited.
  • the pH is preferably 8.0 to 12.0, and more preferably 9.0 to 11.0. It is preferable to contain a basic compound so as to obtain a polishing liquid having such a pH.
  • the pH can be preferably applied to, for example, a polishing liquid used for polishing a silicon wafer (for example, a polishing liquid for final polishing).
  • the polishing composition disclosed herein may include, as particles, a single abrasive particle or a particle formed by adsorbing an abrasive and a water-soluble polymer.
  • the particles are, for example, abrasive particles, a form in which one or more molecules of polymer are adsorbed on the surface of one abrasive particle, and a form in which two or more abrasive particles are adsorbed to one molecule of polymer.
  • a polishing composition used for polishing a polishing object it is generally considered that particles of a plurality of forms as exemplified above are mixed.
  • the presence of particles formed by adsorbing the abrasive grains and the water-soluble polymer in the polishing composition means that when the average particle diameter of the particles in the polishing composition is measured, the value is the average of the abrasive grains. It can be grasped by becoming larger than the value of the particle diameter.
  • the size of the particles in the polishing liquid (working slurry) supplied to the object to be polished can be grasped, for example, by measuring the particle diameter based on the dynamic light scattering method using this polishing liquid as a measurement sample. .
  • This particle size measurement can be performed, for example, using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • D A polishing volume average particle diameter
  • the polishing volume average particle diameter D A which is obtained by the particle size measurement is below a predetermined value (60 nm or less specifically)
  • more D A large polishing Compared with the case where a liquid is used, the number of micro defects (for example, the number of micro defects detected by micro defect inspection described in Examples described later) can be significantly reduced.
  • the lower limit of the volume average particle diameter D A is not particularly limited in terms of number of minute defects reduced. Polishing effect (e.g., reduced haze, effects such as removal of the defect) is from the viewpoint of, D A is suitably more than 20 nm, more preferably 30 nm. From the viewpoint of satisfying both reduction and polishing effects of minute defects at a higher level, D A is preferably at least 35 nm, more preferably at least 40 nm, more 45nm is more preferable.
  • a preferred embodiment of the technology disclosed herein includes an embodiment in which DA is 50 nm or more (typically more than 50 nm). According to the polishing liquid satisfying such D A, polished surface reduction and haze reduction of the micro-defects are both especially at high levels can be achieved efficiently.
  • the volume average particle diameter D A is, for example, selection of abrasive grains (size (D P1 , D P2, etc.), shape, particle size distribution, etc.), selection of water-soluble polymer (composition, Mw, Mw / Mn, molecular structure, etc.) ),
  • the use amount of the water-soluble polymer with respect to the abrasive grains, the presence / absence of the use of the surfactant, and the type and amount in the case of use can be adjusted so as to be within a desired numerical range. The same applies to the particle size distribution of particles to be described later.
  • the measurement sample has a pH that is not significantly different from the pH of the polishing composition (polishing liquid) that is actually supplied to the object to be polished.
  • pH 8.0 ⁇ 12.0 more preferably pH 9.0 ⁇ 11.0, typically about pH 10.0 ⁇ 10.5 it is preferable to measure the D A measurement sample.
  • the above pH range can be preferably applied to, for example, a polishing composition for final polishing of a silicon wafer.
  • the size of the particles contained in the polishing composition (abrasive grains alone, those in which a water-soluble polymer is adsorbed around the abrasive grains, or aggregates of abrasive grains and a water-soluble polymer, etc.) can be further increased.
  • the damage given to the surface to be polished becomes larger, so that defects tend to occur easily.
  • the presence of coarse particles can cause non-uniform polishing, which can impair the smoothness of the surface.
  • coarse particles tend to be in contact with or close to the surface of the object to be polished (that is, where the two are likely to interact with each other). It tends to remain on the surface of the polished object later. Residual particles can be removed by cleaning, but during the period from the start of cleaning until the particles are removed, the portion of the polished surface where the particles are attached is less susceptible to etching by the cleaning liquid than the other portions. Therefore, the location where the particles are attached on the cleaned surface remains as a location (projection) higher than the surroundings, and this can be detected as a micro defect (PID).
  • PID micro defect
  • the size of the particles in the polishing liquid on the basis of the above volume-average particle diameter D A is limited so as not excessive, the residual particles on the surface after polishing can be suppressed Alternatively, the remaining particles are easily removed earlier in the cleaning process (thus, before the difference in etching amount from the surroundings becomes large). This is considered to contribute to the reduction of minute defects.
  • abrasive grains smaller in size than conventional general abrasive grains for example, the average primary particle diameter D P1 is less than 35 ⁇ m (particularly 30 nm or less) or the average secondary particle diameter D P2 is 65 ⁇ m or less (particularly 60 ⁇ m or less).
  • the abrasive grains can be more advantageous than conventional abrasive grains, but the behavior of the abrasive grains in the polishing liquid is easily influenced by the water-soluble polymer adsorbed on the grains. Therefore, it is particularly meaningful to apply the techniques disclosed herein to limit the size of the particles.
  • D A / D P2 The relationship between the volume average particle diameter D A of the particles in the polishing composition and the average secondary particle diameter D P2 of the abrasive grains satisfies, in principle, D A / D P2 ⁇ 1, typically D A / D P2 > 1. From the viewpoint of reducing minute defects better, D A / D P2 is preferably 2.00 or less, more preferably 1.50 or less, and even more preferably 1.30 or less.
  • D A / D P1 is preferably 1.30 or more and more preferably 1.50 or more from the viewpoint of haze reduction or the like.
  • D A / DP 1 is preferably 5.00 or less, more preferably 3.00 or less, and even more preferably 2.50 or less.
  • the polishing composition has a volume-based particle size distribution of the particles measured by a dynamic light scattering method at a concentration at which the abrasive grain content is 0.2% by mass.
  • the ratio of 95% cumulative diameter D95 to 50% cumulative diameter D50 (D95 / D50) is preferably 3.00 or less, and more preferably 2.00 or less (eg, 1.80 or less).
  • Such a polishing composition is less likely to cause defects because it has few coarse particles.
  • there is little variation in the size of the particles there is little variation in the cleaning properties of the particles remaining on the polished surface. For this reason, the residue on the surface can be cleaned and removed with higher accuracy without excessively strict cleaning conditions. This can achieve a higher quality surface.
  • the lower limit of D95 / D50 is 1 in principle. From the viewpoint of dispersion stability and ease of preparation of the polishing composition, D95 / D50 is suitably 1.20 or more, preferably 1.30 or more, more preferably 1.40 or more (for example, 1.45 or more). preferable.
  • the polishing composition disclosed herein is an embodiment in which the ratio D95 / D10 of D95 (95% cumulative diameter) to D10 (10% cumulative diameter) of the particles is 4.00 or less. Can be preferably implemented. D95 / D10 is preferably 3.00 or less, and more preferably 2.50 or less. The lower limit of D95 / D10 is 1 in principle. From the viewpoints of dispersion stability and ease of preparation of the polishing composition, D95 / D10 is suitably 1.50 or more, preferably 1.80 or more (for example, 2.00 or more).
  • grains in the said polishing composition should just be what can implement
  • D10, D50, and D95 have a relationship of D10 ⁇ D50 ⁇ D95 in principle.
  • D50 is preferably more than 10 nm, more preferably more than 20 nm.
  • D50 is preferably 30 nm or more, and more preferably 35 nm or more.
  • D50 is suitably 90 nm or less, preferably 80 nm or less, and more preferably 70 nm or less.
  • D95 is preferably 50 nm or more, and more preferably 60 nm or more (for example, 65 nm or more).
  • D95 is suitably 120 nm or less, preferably 110 nm or less, and more preferably 100 nm or less.
  • D10 is typically 10 nm or more, and 20 nm or more is appropriate from the viewpoint of polishing efficiency and the like. In light of ease of preparation of the polishing composition, D10 is suitably less than 60 nm, and preferably less than 50 nm.
  • the polishing compositions disclosed herein are preferably in a manner that the difference between the volume average particle diameter D A and the average abrasive grain of the secondary particle diameter D P2 of the particles is 20nm or less Can be implemented. It is more preferable that D A -D P2 is 15 nm or less (typically 0 to 15 nm). D A -D P2 is small (that is, the volume average particle diameter due to adsorption of abrasive grains and water-soluble polymer) A polishing composition that does not change excessively is preferred because it tends to have a small amount of coarse particles. According to such a polishing composition, a higher-quality polished surface can be realized.
  • the polishing compositions disclosed herein the ratio of particles having a volume average particle diameter D A for 50% cumulative diameter D50 of the particles (D A / D50) is 1.40 or less (For example, 1.20 or less) is preferable.
  • a polishing composition having a small ratio (D A / D50) is preferred because it tends to have few coarse particles.
  • the lower limit of D A / D50 is 1 in principle.
  • Polishing composition disclosed herein can be prepared by an appropriate method capable of obtaining a polishing composition which satisfies the desired D A.
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition of the composition containing a basic compound prepared from the viewpoint of stably producing (good reproducibility), for example, following the polishing composition satisfying the desired D A
  • the method can be preferably adopted.
  • the polishing composition that is the manufacturing object includes abrasive grains, a water-soluble polymer, a basic compound, and water, and the polishing composition includes abrasive grains as particles.
  • D a can be preferably applied to the production of the polishing composition is 20 nm ⁇ 60 nm.
  • a dispersion containing abrasive grains for example, silica particles
  • a basic compound for example, silica particles
  • water hereinafter, also referred to as “basic abrasive dispersion”
  • the basic abrasive dispersion and water-soluble are prepared.
  • a functional polymer for example, silica particles, a basic compound, and water
  • the basic abrasive dispersion in which the abrasive grains and the basic compound coexist in this way does not contain a basic compound because the electrostatic repulsion of the abrasive grains is enhanced by the basic compound (typical)
  • the dispersion stability of the abrasive grains is higher than that of a substantially neutral abrasive dispersion. For this reason, compared with the aspect which adds a basic compound after adding a water-soluble polymer to a neutral abrasive grain dispersion liquid, and the aspect which mixes a neutral abrasive grain dispersion liquid, a water-soluble polymer, and a basic compound at once. Thus, local aggregation of the abrasive grains is difficult to occur.
  • the water-soluble polymer is preferably mixed with the basic abrasive dispersion in the form of an aqueous solution previously dissolved in water (hereinafter also referred to as “polymer aqueous solution”).
  • polymer aqueous solution aqueous solution previously dissolved in water
  • aqueous polymer solution it is preferable to add the aqueous polymer solution to the basic abrasive dispersion.
  • a mixing method for example, compared with a mixing method in which a basic abrasive dispersion is added to an aqueous polymer solution, the adsorption of the abrasive grains and the water-soluble polymer can proceed more uniformly.
  • the abrasive grains are silica particles (for example, colloidal silica particles)
  • the basic abrasive dispersion is composed of at least a part of the abrasive grains and at least a part of the basic compound among the abrasive grains, the water-soluble polymer, the basic compound and the water constituting the polishing composition as the production objective. And at least a portion of water.
  • the above-mentioned abrasive dispersion contains all of the abrasive grains constituting the polishing composition, at least a part of the basic compound, and at least a part of water can be preferably employed.
  • the content of the basic compound in the basic abrasive dispersion is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more.
  • the content of the basic compound in the basic abrasive dispersion is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. By reducing the content of the basic compound, the content of the basic compound in the polishing composition can be easily adjusted.
  • the pH of the basic abrasive dispersion is preferably 8 or more, more preferably 9 or more. Due to the increase in pH, when a water-soluble polymer or an aqueous solution thereof is added to this basic abrasive dispersion, the occurrence of local aggregation tends to be better suppressed. Therefore, it is possible to proceed more uniformly adsorption of the abrasive grains and the water-soluble polymer, to produce more stable the polishing composition satisfying the desired D A.
  • the pH of the basic abrasive dispersion is preferably 12 or less, more preferably 11.5 or less, and further preferably 10.5 or less.
  • the pH of the basic abrasive dispersion By setting the pH of the basic abrasive dispersion lower on the basic side, the amount of the basic compound necessary for the preparation of the dispersion is reduced, so the content of the basic compound in the polishing composition The adjustment becomes easier.
  • the abrasive grains are silica particles, it is advantageous from the viewpoint of suppressing the dissolution of silica that the pH is not too high.
  • the pH of the mixture can be adjusted by the blending amount of the basic compound.
  • Such a basic abrasive dispersion can be prepared by mixing abrasive grains, a basic compound and water.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer can be used.
  • the aspect which mixes each component contained in a basic abrasive dispersion liquid is not specifically limited, For example, all the components may be mixed at once and you may mix in the order set suitably.
  • a substantially neutral dispersion containing abrasive grains and water and a basic compound or an aqueous solution thereof are mixed.
  • the content of the water-soluble polymer in the polymer aqueous solution is preferably 0.02% by mass or more, more preferably 0. 0.05% by mass or more, more preferably 0.1% by mass or more.
  • the content of the water-soluble polymer in the polymer aqueous solution is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the aqueous polymer solution is preferably adjusted from near neutral to near basic, more preferably basic. More specifically, the pH of the polymer aqueous solution is preferably 8 or more, more preferably 9 or more.
  • the pH adjustment can be typically performed using a part of the basic compound constituting the polishing composition.
  • the aqueous polymer solution is added to the basic abrasive dispersion by increasing the pH of the aqueous polymer solution, local agglomeration of the abrasive particles can be better suppressed. This makes it possible to then proceed more uniformly adsorption of the abrasive grains and the water-soluble polymer, to produce more stable the polishing composition satisfying the desired D A.
  • the pH of the aqueous polymer solution is preferably 12 or less, more preferably 10.5 or less.
  • the pH of the aqueous polymer solution is lowered on the basic side, the amount of the basic compound necessary for the preparation of the aqueous polymer solution is reduced, so that the content of the basic compound in the polishing composition can be easily adjusted.
  • the abrasive grains are silica particles, it is advantageous from the viewpoint of suppressing the dissolution of silica that the pH is not too high.
  • the rate at which the aqueous polymer solution is charged into the basic abrasive dispersion is preferably 500 mL / min or less, more preferably 100 mL / min or less, and even more preferably 1 L of the dispersion. Is 50 mL / min or less.
  • the aqueous polymer solution can be filtered before being added to the basic abrasive dispersion.
  • the amount of foreign matters and aggregates contained in the polymer aqueous solution can be reduced. This makes it possible to then proceed more uniformly adsorption of the abrasive grains and the water-soluble polymer, to produce more stable the polishing composition satisfying the desired D A.
  • the filtration method is not particularly limited, and for example, known filtration methods such as suction filtration, pressure filtration, and centrifugal filtration can be appropriately employed in addition to natural filtration performed at normal pressure.
  • the filter used for filtration is preferably selected on the basis of the opening. From the viewpoint of production efficiency of the polishing composition, the opening of the filter is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.2 ⁇ m. Further, from the viewpoint of enhancing the effect of removing foreign substances and aggregates, the aperture of the filter is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the material and structure of the filter are not particularly limited.
  • Examples of the filter material include cellulose, nylon, polysulfone, polyethersulfone, polypropylene, polytetrafluoroethylene (PTFE), polycarbonate, and glass.
  • Examples of the filter structure include depth, pleats, and membranes.
  • a polishing composition obtained by mixing a basic abrasive dispersion and a water-soluble polymer or an aqueous solution thereof is a polishing liquid (working slurry) or substantially the same NV as this.
  • the present invention can be applied to a concentrated liquid described later. Even when a basic abrasive dispersion and a water-soluble polymer or an aqueous solution thereof are mixed to obtain a concentrated liquid, and the concentrated liquid is diluted to prepare a polishing liquid, the above-described procedure in the preparation of the concentrated liquid is performed.
  • a basic abrasive dispersion containing abrasive grains and a basic compound is prepared, and a procedure in which a water-soluble polymer or an aqueous solution thereof is mixed) is applied to the abrasive grains and the water-soluble polymer. Can be uniformly promoted. By diluting the thus concentrated solution was prepared, by stabilizing the polishing liquid satisfy the desired D A (good reproducibility) can be produced.
  • polishing composition disclosed herein can be suitably used for polishing a polishing object, for example, in an embodiment including the following operations.
  • a polishing liquid typically a slurry-like polishing liquid, sometimes referred to as a polishing slurry
  • Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition as described above. Or you may use polishing composition as polishing liquid as it is.
  • the polishing liquid is supplied to the object to be polished and polished by a conventional method.
  • the silicon wafer that has undergone the lapping process and the primary polishing process is set in a general polishing apparatus, and the surface of the silicon wafer (surface to be polished) is passed through the polishing pad of the polishing apparatus.
  • the polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two. The polishing of the object to be polished is completed through this polishing step.
  • the polishing step as described above may be a part of a manufacturing process of a polished object (for example, a substrate such as a silicon wafer). Therefore, according to this specification, a method for producing a polished article (preferably a method for producing a silicon wafer) including the above polishing step is provided.
  • the polishing liquid supplied to the object to be polished in the polishing step includes abrasive grains, a water-soluble polymer, and water, and the polishing liquid is abrasive grains as particles. and it includes abrasive grains and grains such as comprising a water-soluble polymer can be a volume average particle diameter D a of the particles as measured by dynamic light scattering method is preferably used a polishing liquid is 20 nm ⁇ 60 nm .
  • the abrasive concentration of the polishing liquid is not particularly limited, and may be, for example, about 0.05 to 5% by mass.
  • the polishing material producing method disclosed herein the volume average particle diameter D A which is measured for a polishing liquid supplied to actually polished object may be preferably carried out in a manner which is in the range.
  • a polished product for example, a silicon wafer
  • generation of minute defects is particularly effectively suppressed can be manufactured.
  • polishing pad used in the polishing process using the polishing liquid containing the polishing composition disclosed herein is not particularly limited.
  • any of non-woven fabric type, suede type, those containing abrasive grains, those not containing abrasive grains, etc. may be used.
  • a polished article polished with the polishing composition disclosed herein is typically washed after polishing. This washing can be performed using an appropriate washing solution.
  • the cleaning liquid to be used is not particularly limited.
  • an SC-1 cleaning liquid ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), and the like that are common in the field of semiconductors and the like.
  • SC-1 cleaning cleaning with the SC-1 cleaning solution
  • SC-2 cleaning solution mixed solution of HCl, H 2 O 2 and H 2 O
  • the temperature of the cleaning liquid can be, for example, about room temperature to 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 to 85 ° C. can be preferably used.
  • the polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration rate can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times is appropriate.
  • the concentration ratio of the polishing composition according to a preferred embodiment is 10 to 30 times, for example, 15 to 25 times.
  • the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • the NV of the concentrated liquid can be set to 50% by mass or less, for example.
  • the NV of the concentrated liquid is usually suitably 40% by mass or less, and 30% by mass or less. More preferably, it is 20 mass% or less, for example, 15 mass% or less.
  • the NV of the concentrate is suitably 0.5% by mass or more, preferably 1% by mass or more, more preferably Is 3% by mass or more, for example, 5% by mass or more.
  • the content of abrasive grains in the concentrated liquid can be, for example, 50% by mass or less.
  • the content is preferably 45% by mass or less, more preferably 40% by mass or less, from the viewpoints of stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability.
  • the abrasive content may be 30% by mass or less, or 20% by mass or less (for example, 15% by mass or less).
  • the content of the abrasive grains can be, for example, 0.5% by mass or more, preferably 1% by mass or more, and more preferably. Is 3% by mass or more (for example, 5% by mass or more).
  • the content of the water-soluble polymer in the concentrated liquid can be, for example, 3% by mass or less.
  • the content is preferably 1% by mass or less, more preferably 0.5% by mass or less, from the viewpoints of filterability and detergency of the polishing composition.
  • the content, manufacturing, distribution, in terms of convenience and cost reduction, etc. at the time of such storage typically is suitably to be at 1 ⁇ 10 -3 wt% or more, preferably 5 ⁇ 10 - It is 3 % by mass or more, more preferably 1 ⁇ 10 ⁇ 2 % by mass or more.
  • the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • the liquid A containing a part of the constituents of the polishing composition typically, components other than the aqueous solvent
  • the liquid B containing the remaining components are mixed to form a polishing object.
  • You may be comprised so that it may be used for grinding
  • the technique disclosed here can be preferably implemented, for example, in the form of a one-pack type polishing composition.
  • Example 1 A colloidal silica dispersion liquid was prepared which was adjusted to pH 9.0 by adding ammonia water containing colloidal silica as abrasive grains at a concentration of 20% and ammonia (NH 3 ) as a basic compound at a concentration of 29%.
  • the colloidal silica had an average primary particle size of 23 nm and an average secondary particle size of 45 nm.
  • the average primary particle size was measured using a surface area measuring device manufactured by Micromeritex, Inc., trade name “Flow Sorb II 2300”, and the average secondary particle size was measured using the colloidal silica dispersion.
  • Aqueous ammonia was further added to the colloidal silica dispersion to prepare a basic dispersion having a pH of 10.3.
  • a polymer aqueous solution containing hydroxyethyl cellulose (Mw 25 ⁇ 10 4 ; hereinafter sometimes referred to as “HEC-A”) at a concentration of 1.5% and adjusted to pH 9.0 with ammonia was prepared.
  • HEC-A hydroxyethyl cellulose
  • This concentrated solution was diluted with ultrapure water so that the abrasive concentration was 0.2% to prepare a polishing solution having the composition shown in Table 1.
  • the water-soluble polymer and the aqueous ammonia are used in an amount of 0.010% for the water-soluble polymer and 0.005% for the ammonia in the polishing liquid (5 parts and 2. 5 parts).
  • the resulting polishing liquid had a pH of 10.1.
  • the polishing liquid thus obtained (abrasive grain concentration of 0.2%) as a measurement sample
  • particle diameter measurement based on a dynamic light scattering method was performed using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the volume average particle diameter D A of the particles contained in the measurement sample was 56 nm.
  • Table 1 together with the composition of the polishing liquid, abrasive grains having an average primary particle diameter D P1, the measurement of the volume average particle diameter D A of the particles contained in the abrasive grains having an average secondary particle diameter D P2 and the measurement sample (Same in the following examples).
  • Example 2 instead of the polymer aqueous solution of Example 1, an aqueous polymer solution containing HEC-A at a concentration of 1.5% and adjusted to pH 9.0 with ammonia and an aqueous surfactant solution were used.
  • a surfactant a PEO-PPO-PEO block copolymer (Mw9000) was used, and the amount used was 0.001% in the polishing liquid (0.5 part with respect to 100 parts of abrasive grains). It adjusted so that it might become. Otherwise in the same manner as in Example 1, a polishing liquid having the composition shown in Table 1 was prepared. The volume average particle diameter D A of the particles were measured in the same manner as in Example 1 was 57 nm.
  • Example 3 In Example 2, the concentration of HEC-A contained in the polymer aqueous solution used was changed to 0.5 times. Otherwise in the same manner as in Example 2, a polishing liquid having the composition shown in Table 1 was prepared. The volume average particle diameter D A of the particles were measured in the same manner as in Example 1 was 57 nm.
  • Example 4 In Example 2, the concentration of HEC-A contained in the aqueous polymer solution used was changed to 1.5 times. Otherwise in the same manner as in Example 2, a polishing liquid having the composition shown in Table 1 was prepared. The volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 58 nm.
  • Example 5 a polymer containing polyvinyl alcohol (Mw 1.3 ⁇ 10 4 , saponification degree of 95 mol% or more; hereinafter sometimes referred to as “PVA-1”) at a concentration of 2% instead of HEC-A An aqueous solution was used. Otherwise in the same manner as in Example 2, a polishing liquid having the composition shown in Table 1 was prepared. The volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 46 nm.
  • PVA-1 polyvinyl alcohol
  • a basic dispersion liquid having a pH of 10.3 was prepared by adding ammonia water at a concentration of 1 to 10.
  • An aqueous polymer solution containing HEC-A at a concentration of 1.5% and adjusted to pH 9.0 with ammonia was prepared, and this aqueous polymer solution was added to the basic dispersion and mixed. Further, ultrapure water was added to prepare a polishing composition concentrate having an abrasive concentration of 9.2%.
  • This concentrated solution was diluted with ultrapure water so that the abrasive concentration was 0.5% to prepare a polishing solution having the composition shown in Table 1.
  • the amount of the water-soluble polymer and aqueous ammonia used is adjusted so that the content of the water-soluble polymer and ammonia per surface area of the abrasive grains contained in the unit volume of polishing liquid is approximately the same as that of the polishing liquid of Example 1. did. Specifically, the content (concentration) in the polishing liquid was adjusted to 0.020% and 0.010%, respectively.
  • Comparative Example 2 instead of the polymer aqueous solution of Comparative Example 1, a polymer aqueous solution containing HEC-A at a concentration of 1.5% and adjusted to pH 9.0 with ammonia and a surfactant aqueous solution were used.
  • a surfactant a PEO-PPO-PEO block copolymer (Mw9000) was used, and the amount used was adjusted so that the content in the polishing liquid was 0.002%.
  • the other points were the same as in Comparative Example 1, and a polishing liquid having the composition shown in Table 1 was prepared.
  • the volume average particle diameter D A of the particles were measured in the same manner as in Comparative Example 1 was 72 nm.
  • a PEO-PPO-PEO block copolymer (Mw9000) was used as the surfactant. Further, ultrapure water was added to prepare a polishing composition concentrate having an abrasive concentration of 3.5%. This concentrated solution was diluted with ultrapure water so that the abrasive concentration was 0.2% to prepare a polishing solution having the composition shown in Table 1.
  • the volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 65 nm.
  • Example 4 HEC-B was used instead of HEC-A. Otherwise in the same manner as in Example 2, a polishing liquid having the composition shown in Table 1 was prepared. The volume average particle diameter D A of the particles were measured in the same manner as in Example 1 was 71 nm.
  • a basic dispersion liquid having a pH of 10.3 was prepared by adding ammonia water at a concentration of 1 to 10.
  • an aqueous polymer solution having a pH of 7.0 containing HEC-B at a concentration of 1% and an aqueous solution of a surfactant were added.
  • a PEO-PPO-PEO block copolymer (Mw9000) was used.
  • Example 6 A polishing liquid having the composition shown in Table 2 in the same manner as in Example 2 except that polyacryloylmorpholine (hereinafter sometimes referred to as “PACMO-1”) having an Mw of 7 ⁇ 10 4 was used as the water-soluble polymer. was prepared. The volume average particle diameter D A of the particles were measured in the same manner as in Example 1 was 48 nm.
  • PACMO-1 polyacryloylmorpholine
  • Example 7 Other than using polyvinyl alcohol having a Mw of 1.3 ⁇ 10 4 as the water-soluble polymer (80 mol% vinyl alcohol unit, 20 mol% vinyl hexanoate unit; hereinafter sometimes referred to as “PVA-2”).
  • a polishing liquid having the composition shown in Table 2 was prepared in the same manner as in Example 2.
  • the volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 46 nm.
  • Example 8 Other than using polyvinyl alcohol having a Mw of 0.5 ⁇ 10 4 as a water-soluble polymer (80 mol% vinyl alcohol unit, 20 mol% vinyl hexanoate unit; hereinafter sometimes referred to as “PVA-3”).
  • a polishing liquid having the composition shown in Table 2 was prepared in the same manner as in Example 2.
  • the volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 46 nm.
  • Example 9 A polishing liquid having the composition shown in Table 2 was prepared in the same manner as in Example 2 except that PVA-3 and polyvinylpyrrolidone (PVP) having an Mw of 6 ⁇ 10 4 were used as the water-soluble polymer.
  • the volume average particle diameter D A of the particles measured in the same manner as in Example 1 was 46 nm.
  • Example 10 Table 2 shows the same procedures as in Example 2 except that HEC-A and polyacryloylmorpholine (hereinafter sometimes referred to as “PACMO-2”) having an Mw of 8 ⁇ 10 4 were used as the water-soluble polymer.
  • a polishing liquid having a composition was prepared.
  • the volume average particle diameter D A of the particles as measured in the same manner as in Comparative Example 1 for the measurement sample which had been adjusted to an abrasive concentration of 0.2% by adjusting the dilution rate was 51 nm.
  • Example 11 A polishing liquid having the composition shown in Table 2 was prepared in the same manner as in Example 2 except that HEC-A and PVP were used as the water-soluble polymer.
  • the volume average particle diameter D A of the particles as measured in the same manner as in Comparative Example 1 for the measurement sample which had been adjusted to an abrasive concentration of 0.2% by adjusting the dilution rate was 50nm.
  • ⁇ Polishing of silicon wafer> The surface of the silicon wafer was polished under the following conditions using the polishing liquid according to each example.
  • a silicon wafer having a diameter of 300 mm, a conductivity type of P type, a crystal orientation of ⁇ 100>, and a resistivity of 0.1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm is a polishing slurry (manufactured by Fujimi Incorporated, The surface roughness was adjusted to 0.1 nm to 10 nm by performing preliminary polishing using a trade name “GLANZOX 2100”).
  • Polishing machine Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B” Polishing table: Final polishing 1st stage and 2nd stage after preliminary polishing were carried out using 2 tables at the back stage among the 3 tables of the polishing machine. (The following conditions are the same for each table.) Polishing load: 15 kPa Plate rotation speed: 30 rpm Head rotation speed: 30rpm Polishing time: 2 minutes Polishing liquid temperature: 20 ° C Polishing liquid supply rate: 2.0 l / min
  • ⁇ Haze measurement> The surface of the cleaned silicon wafer was measured for haze (ppm) in the DWO mode using a wafer inspection device manufactured by KLA-Tencor Corporation, trade name “Surfscan SP2.” The measurement results are shown in Tables 1 and 2 in the following three stages. A: Less than 0.10 ppm B: 0.10 ppm or more and less than 0.12 ppm C: 0.12 ppm or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 砥粒と水溶性ポリマーと水とを含む研磨用組成物が提供される。上記研磨用組成物は、上記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される上記研磨用組成物中に含まれる粒子の体積平均粒子径Dが20nm~60nmである。

Description

研磨用組成物、研磨用組成物製造方法および研磨物製造方法
 本発明は、研磨対象物の研磨に用いられる研磨用組成物に関する。詳しくは、主にシリコンウエハ等の半導体基板その他の基板の研磨に用いられる研磨用組成物に関する。
 本出願は、2013年2月13日に出願された日本国特許出願2013-026020に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 半導体装置の構成要素等として用いられるシリコンウエハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て、高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、1次ポリシング工程(1次研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。シリコンウエハ等の半導体基板を研磨する用途で主に使用される研磨用組成物に関する技術文献として、特許文献1~3が挙げられる。
日本国特許出願公開2005-085858号公報 日本国特許出願公開2004-128070号公報 日本国特許出願公開2010-034509号公報
 近年、シリコンウエハ等の半導体基板その他の基板について、より高品位の表面が要求されるようになってきている。また、基板表面の検査精度も向上しており、例えば深さ数十nmのスクラッチや高さ数十nmの突起等の微細な欠陥を検出し得る表面検査装置が開発されている。このような装置で計測されるような微細な欠陥を低減することができれば、より高品位な表面を実現することができる。
 特許文献1には、ヒドロキシエチルセルロースおよび/またはポリビニルアルコールとブロック型ポリエーテルとを含む研磨用組成物を用いることによりシリコンウエハのヘイズを改善する技術が記載されている。特許文献2には、平均一次粒子径が5~30nmであるコロイダルシリカまたはヒュームドシリカと水溶性高分子化合物とを含む研磨用組成物を用いて半導体ウエハ表面のヘイズを低減する技術が記載されている。しかし、ヘイズの低減に着目するのみでは上述のような微細な欠陥(微小欠陥)を効果的に低減することはできない。また、特許文献3には、半導体濡れ剤として低粘度の水溶性高分子化合物を用いることにより、微小欠陥の原因となり得る異物等を濾過により除去しやすくし、これにより微小欠陥の発生を抑制する技術が記載されているが、かかる技術を適用しても近年の微小欠陥低減の要求レベルには充分に対応できない場合があった。
 そこで本発明は、研磨後の表面において上記のような微小欠陥の検出数を低減し得る研磨用組成物を提供することを目的とする。本発明の他の目的は、かかる研磨用組成物の製造方法を提供することである。関連する他の目的は、微小欠陥の少ない表面を備えた研磨物(例えば基板)を製造する方法を提供することである。
 水中に砥粒および水溶性ポリマー(水溶性高分子化合物)を含む研磨用組成物を用いて研磨対象物を研磨する場合、水溶性ポリマーの種類によっては該水溶性ポリマーが研磨用組成物中の砥粒と吸着し、これにより砥粒が研磨用組成物中においてそれ自体のサイズよりも大きな粒体として存在することがある。このような粒体は、研磨用組成物中において粒子のように振る舞い、その挙動が研磨時のメカニカル作用に影響を及ぼし得る。本発明者らは、水中に砥粒および水溶性ポリマーを含む研磨用組成物において、砥粒自体のサイズとは異なる物性値として、上記粒体の存在を考慮した上での粒子のサイズに着目した。つまり、水溶性ポリマーが砥粒に吸着する場合には、研磨用組成物中において粒子様の挙動を示す単位を粒子として捉え、そのサイズを研磨用組成物に含まれる粒子のサイズとして考えた。そして、この粒子のサイズを的確に把握し得る手法として動的光散乱法を採用し、上記粒子のサイズと研磨後の表面における微小欠陥との関係につき鋭意検討を行った結果、上記微小欠陥を効果的に低減し得る粒子のサイズを見出して本発明を完成した。
 この明細書により提供される研磨用組成物は、砥粒と水溶性ポリマーと水とを含む。上記研磨用組成物は、上記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される該研磨用組成物中の粒子(砥粒単体、砥粒の周囲に水溶性ポリマーが吸着したもの、砥粒と水溶性ポリマーの会合体等の形態であり得る。)の体積平均粒子径Dが20nm~60nmである。かかる研磨用組成物によると、上記粒子の体積平均粒子径Dが所定の範囲に制限されていることにより、微小欠陥(特に、一般にPID(Polishing Induced Effect)と称される、研磨プロセスに起因する表面欠陥)の発生を効果的に抑制することができる。
 上記砥粒としては、平均一次粒子径DP1が凡そ15nm~30nmの範囲にあるものを好ましく採用し得る。このような砥粒を含む研磨用組成物によると、微小欠陥の低減とヘイズの低減とがより高度に両立され得る。
 上記砥粒としては、平均二次粒子径DP2が凡そ20nm~50nmの範囲にあるものを好ましく採用し得る。このような砥粒を含む研磨用組成物によると、微小欠陥の低減とヘイズの低減とがより高度に両立され得る。
 上記水溶性ポリマーとしては、重量平均分子量(Mw)が80×10以下(例えば1×10~80×10、典型的には1×10~80×10)のものを好ましく採用し得る。このようなMwを有する水溶性ポリマーは、ここに開示される好ましい体積平均粒子径Dを有する粒子を形成するのに適しているので好ましい。
 ここに開示される研磨用組成物は、砥粒、水溶性ポリマーおよび水に加えて、さらに塩基性化合物を含む態様で好ましく実施され得る。かかる態様の研磨用組成物によると、塩基性化合物の作用により研磨効率を向上させることができる。
 この明細書によると、また、砥粒と水溶性ポリマーと塩基性化合物と水とを含む研磨用組成物の製造方法が提供される。その方法は、上記砥粒と上記塩基性化合物と水とを含む分散液を用意(調製、購入、受入等であり得る。)することを含む。また、上記水溶性ポリマーと水とを含む水溶液を用意することを含み得る。また、上記分散液に対して上記水溶液を添加して混合することを含み得る。かかる製造方法は、上記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される研磨用組成物中の粒子(砥粒単体、砥粒の周囲に水溶性ポリマーが吸着したもの、砥粒と水溶性ポリマーの会合体等の形態であり得る。)の体積平均粒子径Dが20nm~60nmである研磨用組成物を製造する方法として好適である。
 この明細書によると、また、研磨対象物に研磨液(ここで「液」とは、スラリーを含む意味である。)を供給することと、上記研磨対象物の表面を上記研磨液で研磨することとを包含する研磨物製造方法が提供される。その研磨物製造方法では、上記研磨対象物に供給される研磨液として、砥粒と水溶性ポリマーと水とを含む研磨液を使用する。その研磨液中には、粒子として、上記砥粒や該砥粒が上記水溶性ポリマーと吸着した粒体等が含まれている。上記研磨液は、動的光散乱法により測定される上記粒子の体積平均粒子径Dが20nm~60nmである。かかる製造方法によると、研磨液中における上記粒子の体積平均粒子径Dが所定の範囲に制限されていることにより、微小欠陥の発生を効果的に抑制することができる。したがって、より微小欠陥の少ない表面を備えた研磨物が提供され得る。
 ここに開示される技術は、シリコンウエハの研磨、例えばラッピングを経たシリコンウエハのポリシングに好ましく適用することができる。特に好ましい適用対象として、シリコンウエハのファイナルポリシングが例示される。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、本明細書において、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。
 <砥粒>
 ここに開示される研磨用組成物に含まれる砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。特に好ましい砥粒としてシリカ粒子が挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物の表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。例えば、シリコンウエハのポリシング(特に、ファイナルポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、研磨対象物(例えばシリコンウエハ)を研磨する際に、研磨速度(単位時間当たりに研磨対象物の表面を除去する量)が向上し得る。研磨対象物の表面(研磨面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。
 ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が凝集した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。
 ここに開示される技術において、砥粒の平均一次粒子径DP1は、上記研磨用組成物中の粒子の粒子径分布が所定の条件を満たし得る値であればよく、特に制限されない。好ましい一態様において、砥粒の平均一次粒子径DP1は5nm以上であり、より好ましくは10nm以上である。砥粒の平均一次粒子径の増大によって、より高い研磨速度が実現され得る。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、平均一次粒子径DP1は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、微小欠陥の低減に適したサイズの粒子として研磨用組成物中に存在しやすいという観点から、平均一次粒子径DP1は、35nm未満であることが好ましく、32nm以下であることがより好ましく、30nm以下(例えば30nm未満)であることがさらに好ましい。
 なお、ここに開示される技術において、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積S(m/g)から、DP1=2720/S(nm)の式により算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
 砥粒の平均二次粒子径DP2(当該砥粒自体の体積平均二次粒子径を指す。)は、上記研磨用組成物中の粒子の粒子径分布が所定の条件を満たし得る値であればよく、特に制限されない。好ましい一態様において、平均二次粒子径DP2は10nm以上であり、より好ましくは20nm以上である。砥粒の平均二次粒子径DP2の増大によって、より高い研磨速度が実現され得る。より高い研磨効果を得る観点から、平均二次粒子径DP2は、30nm以上であることが好ましく、35nm以上であることがより好ましく、40nm以上(例えば40nm超)であることがさらに好ましい。また、微小欠陥の低減に適したサイズの粒子として研磨用組成物に存在しやすいという観点から、平均二次粒子径DP2は、60nm未満であることが適当であり、55nm以下であることが好ましく、50nm以下(例えば50nm未満)であることがより好ましい。
 砥粒の平均二次粒子径DP2は、対象とする砥粒の水分散液(水溶性ポリマーを含有しない。)を測定サンプルとして、例えば、日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により測定することができる。
 砥粒の平均二次粒子径DP2は、一般に砥粒の平均一次粒子径DP1と同等以上(DP2/DP1≧1)であり、典型的にはDP1よりも大きい(DP2/DP1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のDP2/DP1は、通常は1.2~3の範囲にあることが適当であり、1.5~2.5の範囲が好ましく、1.7~2.3(例えば1.9を超えて2.2以下)の範囲がより好ましい。
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、砥粒の多くがピーナッツ形状をした砥粒を好ましく採用し得る。
 特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、好ましくは1.0以上であり、より好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨速度が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。
 上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
 <水溶性ポリマー>
 ここに開示される研磨用組成物に含まれる水溶性ポリマーの種類は特に制限されない。例えば、研磨用組成物の分野において公知の水溶性ポリマーのなかから、砥粒濃度0.2質量%の研磨用組成物中において所望のサイズの粒子を形成し得るように選択することができる。水溶性ポリマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記水溶性ポリマーは、分子中に、カチオン基、アニオン基およびノニオン基から選ばれる少なくとも一種の官能基を有するものであり得る。上記水溶性ポリマーは、例えば、分子中に水酸基、カルボキシ基、アシルオキシ基、スルホ基、第四級窒素構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。
 ここに開示される研磨用組成物に好ましく使用し得る水溶性ポリマーの例として、セルロース誘導体、オキシアルキレン単位を含むポリマー、N-ビニルラクタムやN-ビニル鎖状アミド等のようなN-ビニル型のモノマー単位を含むポリマー、イミン誘導体、N-(メタ)アクリロイル型のモノマー単位を含むポリマー、ポリビニルアルコールやその誘導体等のビニルアルコール系ポリマー、プルラン等が挙げられる。
 セルロース誘導体(以下「水溶性ポリマーPA」ともいう。)の具体例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもヒドロキシエチルセルロースが好ましい。
 オキシアルキレン単位を含むポリマー(以下「水溶性ポリマーPB」ともいう。)は、炭素原子数2~6のオキシアルキレン単位(典型的には-C2nO-で表される構造単位。ここでnは2~6の整数である。)の1種または2種以上を含むポリマーであり得る。上記オキシアルキレン単位の炭素原子数が2~3であるポリマーが好ましい。そのようなポリマーの例として、ポリエチレンオキサイド、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体、EOとPOとのランダム共重合体等が挙げられる。
 EOとPOとのブロック共重合体は、ポリエチレンオキサイドブロック(PEO)とポリプロピレンオキサイドブロック(PPO)とを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。
 PEO-PPO-PEO型トリブロック体としては、下記一般式(1)で表されるポリマーを好ましく使用し得る。
   HO-(EO)-(PO)-(EO)-H ・・・(1)
 一般式(1)中のEOはオキシエチレン単位(-CHCHO-)を示し、POはオキシプロピレン単位(-CHCH(CH)O-)基を示し、a、bおよびcはそれぞれ1以上(典型的には2以上)の整数を示す。
 一般式(1)において、aとcとの合計は、2~1000の範囲であることが好ましく、より好ましくは5~500の範囲であり、さらに好ましくは10~200の範囲である。一般式(1)中のbは、2~200の範囲であることが好ましく、より好ましくは5~100の範囲であり、さらに好ましくは10~50の範囲である。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
 N-ビニル型のモノマー単位を含むポリマー(以下「水溶性ポリマーPC」ともいう。)の例には、N-ビニルラクタム型モノマーの単独重合体および共重合体(例えば、N-ビニルラクタム型モノマーの共重合割合が50重量%を超える共重合体)、N-ビニル鎖状アミドの単独重合体および共重合体(例えば、N-ビニル鎖状アミドの共重合割合が50重量%を超える共重合体)等が含まれる。
 なお、本明細書中において共重合体とは、特記しない場合、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体を包括的に指す意味である。
 N-ビニルラクタム型モノマーの具体例としては、N-ビニルピロリドン(VP)、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム(VC)、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニルラクタム型のモノマー単位を含むポリマーの具体例としては、ポリビニルピロリドン、ポリビニルカプロラクタム、VPとVCとのランダム共重合体、VPおよびVCの一方または両方と他のビニルモノマー(例えば、アクリル系モノマー、ビニルエステル系モノマー等)とのランダム共重合体、VPおよびVCの一方または両方を含むポリマーセグメントを含むブロック共重合体やグラフト共重合体(例えば、ポリビニルアルコールにポリビニルピロリドンがグラフトしたグラフト共重合体)等が挙げられる。なかでも好ましいものとして、ビニルピロリドン系ポリマー(PVP)が挙げられる。ここでビニルピロリドン系ポリマーとは、VPの単独重合体およびVPの共重合体(例えば、VPの共重合割合が50重量%を超える共重合体)をいう。ビニルピロリドン系ポリマーにおいて、全繰返し単位のモル数に占めるVP単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性ポリマーの全繰返し単位が実質的にVP単位から構成されていてもよい。
 N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。
 イミン誘導体(以下「水溶性ポリマーPD」ともいう。)としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン、N-カプロイルエチレンイミン、N-ベンゾイルエチレンイミン、N-アセチルプロピレンイミン、N-ブチリルエチレンイミン等が挙げられる。N-アシルアルキレンイミン型モノマーの単独重合体としては、ポリ(N-アシルアルキレンイミン)等を用いることができる。具体例としては、ポリ(N-アセチルエチレンイミン)、ポリ(N-プロピオニルエチレンイミン)、ポリ(N-カプロイルエチレンイミン)、ポリ(N-ベンゾイルエチレンイミン)、ポリ(N-アセチルプロピレンイミン)、ポリ(N-ブチリルエチレンイミン)等が挙げられる。N-アシルアルキレンイミン型モノマーの共重合体の例には、2種以上のN-アシルアルキレンイミン型モノマーの共重合体や、1種または2種以上のN-アシルアルキレンイミン型モノマーと他のモノマーとの共重合体が含まれる。
 N-(メタ)アクリロイル型のモノマー単位を含むポリマー(以下「水溶性ポリマーPE」ともいう。)の例には、N-(メタ)アクリロイル型モノマーの単独重合体および共重合体(典型的には、N-(メタ)アクリロイル型モノマーの共重合割合が50重量%を超える共重合体)が含まれる。N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。
 N-(メタ)アクリロイル基を有する鎖状アミドの例としては、アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N-プロピルアクリルアミド、N-イソプロピルアクリルアミド、N-ブチルアクリルアミド、N-イソブチルアクリルアミド、N-tert-ブチルアクリルアミド、N-ヘプチルアクリルアミド、N-オクチルアクリルアミド、N-tert-オクチルアクリルアミド、N-ドデシルアクリルアミド、N-オクタデシルアクリルアミド等のN-モノアルキルアクリルアミド;N-(2-ヒドロキシエチル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシエチル)アクリルアミド、N-(1-エチル-ヒドロキシエチル)アクリルアミド、N-(2-クロロエチル)アクリルアミド、N-(2,2,2-トリクロロ-1-ヒドロキシエチル)アクリルアミド、N-(2-ジメチルアミノエチル)アクリルアミド、N-(3-ジメチルアミノプロピル)アクリルアミド、N-[3-ビス(2-ヒドロキシエチル)アミノプロピル]アクリルアミド、N-(1,1-ジメチル-2-ジメチルアミノエチル)アクリルアミド、N-(2-メチル-2-フェニル-3-ジメチルアミノプロピル)アクリルアミド、N-(2,2-ジメチル-3-ジメチルアミノプロピル)アクリルアミド、N-(2-モルホリノエチル)アクリルアミド、N-(2-アミノ-1,2-ジシアノエチル)アクリルアミド等の置換N-モノアルキルアクリルアミド;N-アリルアクリルアミド等のN-モノアルケニルアクリルアミド;N-(1,1-ジメチルプロピニル)アクリルアミド等のN-モノアルキニルアクリルアミド;N-フェニルアクリルアミド、N-ベンジルアクリルアミド、N-[4-(フェニルアミノ)フェニル]アクリルアミド等の芳香族基含有アクリルアミド;N-メチロールアクリルアミド、N-エチロールアクリルアミド、N-プロピロールアクリルアミド等のN-モノアルキロールアクリルアミド;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド等のN-アルコキシアルキルアクリルアミド;N-メトキシアクリルアミド、N-エトキシアクリルアミド、N-プロポキシアクリルアミド、N-ブトキシアクリルアミド等のN-アルコキシアクリルアミド;N-アセチルアクリルアミド;N-ジアセトンアクリルアミド;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-プロピルメタクリルアミド、N-イソプロピルメタクリルアミド、N-ブチルメタクリルアミド、N-イソブチルメタクリルアミド、N-tert-ブチルメタクリルアミド、N-ヘプチルメタクリルアミド、N-オクチルメタクリルアミド、N-tert-オクチルメタクリルアミド、N-ドデシルメタクリルアミド、N-オクタデシルメタクリルアミド等のN-モノアルキルメタクリルアミド;N-(2-ヒドロキシエチル)メタクリルアミド、N-(1,1-ジメチル-2-ヒドロキシエチル)メタクリルアミド、N-(1-エチル-ヒドロキシエチル)メタクリルアミド、N-(2-クロロエチル)メタクリルアミド、N-(2,2,2-トリクロロ-1-ヒドロキシエチル)メタクリルアミド、N-(2-ジメチルアミノエチル)メタクリルアミド、N-(3-ジメチルアミノプロピル)メタクリルアミド、N-[3-ビス(2-ヒドロキシエチル)アミノプロピル]メタクリルアミド、N-(1,1-ジメチル-2-ジメチルアミノエチル)メタクリルアミド、N-(2-メチル-2-フェニル-3-ジメチルアミノプロピル)メタクリルアミド、N-(2,2-ジメチル-3-ジメチルアミノプロピル)メタクリルアミド、N-(2-モルホリノエチル)メタクリルアミド、N-(2-アミノ-1,2-ジシアノエチル)メタクリルアミド等の置換N-モノアルキルメタクリルアミド;N-アリルメタクリルアミド等のN-モノアルケニルメタクリルアミド;N-(1,1-ジメチルプロピニル)メタクリルアミド等のN-モノアルキニルメタクリルアミド;N-フェニルメタクリルアミド、N-ベンジルメタクリルアミド、N-[4-(フェニルアミノ)フェニル]メタクリルアミド等の芳香族基含有メタクリルアミド;N-メチロールメタクリルアミド、N-エチロールメタクリルアミド、N-プロピロールメタクリルアミド等のN-モノアルキロールメタクリルアミド;N-メトキシメチルメタクリルアミド、N-エトキシメチルメタクリルアミド、N-ブトキシメチルメタクリルアミド、N-イソブトキシメチルメタクリルアミド等のN-アルコキシアルキルメタクリルアミド;N-メトキシメタクリルアミド、N-エトキシメタクリルアミド、N-プロポキシメタクリルアミド、N-ブトキシメタクリルアミド等のN-アルコキシメタクリルアミド;N-アセチルメタクリルアミド;N-ジアセトンメタクリルアミド;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジプロピルアクリルアミド、N,N-ジイソプロピルアクリルアミド、N,N-ジブチルアクリルアミド、N,N-ジイソブチルアクリルアミド、N,N-ジ-tert-ブチルアクリルアミド、N,N-ジヘプチルアクリルアミド、N,N-ジオクチルアクリルアミド、N,N-ジ-tert-オクチルアクリルアミド、N,N-ジドデシルアクリルアミド、N,N-ジオクタデシルアクリルアミド等のN,N-ジアルキルアクリルアミド;N,N-ジメチルアミノエチルアクリルアミド、N,N-ジエチルアミノエチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミド等のN,N-ジアルキルアミノアルキルアクリルアミド;N,N-ビス(2-ヒドロキシエチル)アクリルアミド、N,N-ビス(2-シアノエチル)アクリルアミド等の置換N,N-ジアルキルアクリルアミド;N,N-ジアリルアクリルアミド等のN,N-ジアルケニルアクリルアミド;N,N-ジフェニルアクリルアミド、N,N-ジベンジルアクリルアミド等の芳香族基含有アクリルアミド;N,N-ジメチロールアクリルアミド、N,N-ジエチロールアクリルアミド、N,N-ジプロピロールアクリルアミド等のN,N-ジアルキロールアクリルアミド;N-メチル-N-メトキシアクリルアミド、N-メチル-N-エトキシアクリルアミド、N-メチル-N-プロポキシアクリルアミド、N-メチル-N-ブトキシアクリルアミド、N-エチル-N-メトキシアクリルアミド、N-エチル-N-エトキシアクリルアミド、N-エチル-N-ブトキシアクリルアミド、N-プロピル-N-メトキシアクリルアミド、N-プロピル-N-エトキシアクリルアミド、N-ブチル-N-メトキシアクリルアミド、N-ブチル-N-エトキシアクリルアミド等のN-アルコキシ-N-アルキルアクリルアミド;N,N-ジアセチルアクリルアミド;N,N-ジアセトンアクリルアミド;N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジプロピルメタクリルアミド、N,N-ジイソプロピルメタクリルアミド、N,N-ジブチルメタクリルアミド、N,N-ジイソブチルメタクリルアミド、N,N-ジ-tert-ブチルメタクリルアミド、N,N-ジヘプチルメタクリルアミド、N,N-ジオクチルメタクリルアミド、N,N-ジ-tert-オクチルメタクリルアミド、N,N-ジドデシルメタクリルアミド、N,N-ジオクタデシルメタクリルアミド等のN,N-ジアルキルメタクリルアミド;N,N-ジメチルアミノエチルメタクリルアミド、N,N-ジエチルアミノエチルメタクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジエチルアミノプロピルメタクリルアミド等のN,N-ジアルキルアミノアルキルメタクリルアミド;N,N-ビス(2-ヒドロキシエチル)メタクリルアミド、N,N-ビス(2-シアノエチル)メタクリルアミド等の置換N,N-ジアルキルメタクリルアミド;N,N-ジアリルメタクリルアミド等のN-ジアルケニルメタクリルアミド;N,N-ジフェニルメタクリルアミド、N,N-ジベンジルメタクリルアミド等の芳香族基含有メタクリルアミド;N,N-ジメチロールメタクリルアミド、N,N-ジエチロールメタクリルアミド、N,N-ジプロピロールメタクリルアミド等のN,N-ジアルキロールメタクリルアミド;N-メチル-N-メトキシメタクリルアミド、N-メチル-N-エトキシメタクリルアミド、N-メチル-N-プロポキシメタクリルアミド、N-メチル-N-ブトキシメタクリルアミド、N-エチル-N-メトキシメタクリルアミド、N-エチル-N-エトキシメタクリルアミド、N-エチル-N-ブトキシメタクリルアミド、N-プロピル-N-メトキシメタクリルアミド、N-プロピル-N-エトキシメタクリルアミド、N-ブチル-N-メトキシメタクリルアミド、N-ブチル-N-エトキシメタクリルアミド等のN-アルコキシ-N-アルキルメタクリルアミド;N,N-ジアセチルメタクリルアミド;N,N-ジアセトンメタクリルアミド;等が挙げられる。
 N-(メタ)アクリロイル基を有する鎖状アミドをモノマー単位として含むポリマーの例として、N-イソプロピルアクリルアミドの単独重合体およびN-イソプロピルアクリルアミドの共重合体(例えば、N-イソプロピルアクリルアミドの共重合割合が50重量%を超える共重合体)が挙げられる。
 N-(メタ)アクリロイル基を有する環状アミドの例としては、N-アクリロイルモルホリン、N-アクリロイルチオモルホリン、N-アクリロイルピペリジン、N-アクリロイルピロリジン、N-メタクリロイルモルホリン、N-メタクリロイルピペリジン、N-メタクリロイルピロリジン等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドをモノマー単位として含むポリマーの例として、アクリロイルモルホリン系ポリマー(PACMO)が挙げられる。アクリロイルモルホリン系ポリマーの典型例として、N-アクリロイルモルホリン(ACMO)の単独重合体およびACMOの共重合体(例えば、ACMOの共重合割合が50重量%を超える共重合体)が挙げられる。アクリロイルモルホリン系ポリマーにおいて、全繰返し単位のモル数に占めるACMO単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性ポリマーの全繰返し単位が実質的にACMO単位から構成されていてもよい。
 ビニルアルコール系ポリマー(以下「水溶性ポリマーPF」ともいう。)は、典型的には、主たる繰返し単位としてビニルアルコール単位(VA単位)を含むポリマー(PVA)である。当該ポリマーにおいて、全繰返し単位のモル数に占めるVA単位のモル数の割合は、通常は50%以上であり、好ましくは65%以上、より好ましくは70%以上、例えば75%以上である。全繰返し単位が実質的にVA単位から構成されていてもよい。水溶性ポリマーPFにおいて、VA単位以外の繰返し単位の種類は特に限定されず、例えば酢酸ビニル単位、プロピオン酸ビニル単位、ヘキサン酸ビニル単位等が挙げられる。
 PVAのけん化度は、通常は50モル%以上であり、好ましくは65モル%以上、より好ましくは70モル%以上、例えば75モル%以上である。なお、PVAのけん化度は、原理上、100モル%以下である。
 ここに開示される研磨用組成物は、例えば、水溶性ポリマーとして少なくとも水溶性ポリマーPAおよび/または水溶性ポリマーPFを含む態様で好ましく実施され得る。好ましい一態様として、水溶性ポリマーとして少なくとも水溶性ポリマーPA(典型的にはヒドロキシエチルセルロース)を含む態様が挙げられる。例えば、水溶性ポリマーPAを単独で含む態様、水溶性ポリマーPAと水溶性ポリマーPCとを含む態様、水溶性ポリマーPAと水溶性ポリマーPEとを含む態様等を採用し得る。かかる研磨用組成物の好適例として、水溶性ポリマーの主成分(典型的には50質量%を超える成分)がヒドロキシエチルセルロースである研磨用組成物が挙げられる。水溶性ポリマーの60質量%以上、例えば80質量%以上、より好ましくは90質量%以上がヒドロキシエチルセルロースであってもよく、水溶性ポリマーの100質量%がヒドロキシエチルセルロースであってもよい。好ましい他の一態様として、水溶性ポリマーとして少なくとも水溶性ポリマーPFを含む態様が挙げられる。例えば、水溶性ポリマーPFを単独で含む態様、水溶性ポリマーPFと水溶性ポリマーPCとを含む態様、水溶性ポリマーPFと水溶性ポリマーPAとを含む態様等を採用し得る。ここに開示される研磨用組成物の他の好ましい態様として、水溶性ポリマーとして水溶性ポリマーPEを単独で含む態様が挙げられる。
 ここに開示される研磨用組成物において、水溶性ポリマーの分子量は特に限定されない。例えば重量平均分子量(Mw)が200×10以下(典型的には1×10~200×10、例えば1×10~150×10)の水溶性ポリマーを用いることができる。ここに開示される好適なサイズの粒子を形成しやすいという観点から、通常は、Mwが100×10未満(より好ましくは80×10以下、さらに好ましくは50×10以下、典型的には40×10以下)の水溶性ポリマーの使用が好ましい。また、研磨用組成物の濾過性や洗浄性等の観点から、Mwが30×10以下(典型的には30×10未満)の水溶性ポリマーを好ましく使用し得る。一方、一般に水溶性ポリマーのMwが大きくなるとヘイズ低減効果は高くなる傾向にある。かかる観点から、通常は、Mwが1×10以上の水溶性ポリマーを用いることが適当であり、例えば、Mwが1×10以上の水溶性ポリマーを好ましく採用し得る。
 より好ましいMwの範囲は、水溶性ポリマーの種類によっても異なり得る。例えば、水溶性ポリマーPAのMwは、典型的には100×10未満、好ましくは80×10以下、より好ましくは50×10以下、さらに好ましくは30×10以下(典型的には30×10未満)である。水溶性ポリマーPAのMwは、典型的には1×10以上、好ましくは2×10以上であり、より好ましくは3×10以上、さらに好ましくは5×10以上(例えば7×10以上)である。また、例えば水溶性ポリマーPBのMwは、好ましくは50×10以下、より好ましくは30×10以下、さらに好ましくは20×10以下である。水溶性ポリマーPBのMwは、典型的には1×10以上である。また、例えば水溶性ポリマーPCのMwは、典型的には15×10以下、好ましくは10×10以下、より好ましくは8×10以下である。Mwが5×10以下(例えば3×10以下)の水溶性ポリマーPCを用いてもよい。水溶性ポリマーPCのMwは、典型的には1×10以上である。また、例えば水溶性ポリマーPDのMwは、好ましくは30×10以下、より好ましくは20×10以下、さらに好ましくは10×10以下(例えば5×10以下)である。水溶性ポリマーPDのMwは、典型的には1×10以上である。また、例えば水溶性ポリマーPEのMwは、典型的には40×10以下、好ましくは20×10以下、より好ましくは10×10以下である。水溶性ポリマーPEのMwは、典型的には1×10以上である。また、例えば水溶性ポリマーPF(PVA)のMwは、典型的には6×10以下、好ましくは5.5×10以下、より好ましくは3×10以下(例えば2×10以下)である。水溶性ポリマーPFのMwは、典型的には1×10以上、好ましくは3×10以上、例えば4×10以上である。Mwが1×10以上の水溶性ポリマーPFを用いてもよい。
 ここに開示される技術において、水溶性ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。例えば、MwとMnとの関係が次式:Mw/Mn≦5.0;を満たすものを好ましく用いることができる。研磨用組成物の性能安定性等の観点から、水溶性ポリマーのMw/Mnは、好ましくは4.8以下、より好ましくは4.6以下である。なお、原理上、Mw/Mnは1.0以上である。水溶性ポリマーのMwおよびMnとしては、GPC(水系:ポリエチレンオキサイド換算)に基づく値を採用することができる。
 より好ましいMw/Mnの範囲は、水溶性ポリマーの種類によっても異なり得る。例えば、水溶性ポリマーPAのMw/Mnは、好ましくは4.8以下、より好ましくは4.6以下である。また、例えば水溶性ポリマーPBのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下である。また、例えば水溶性ポリマーPCのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下である。また、例えば水溶性ポリマーPDのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下である。また、例えば水溶性ポリマーPEのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下である。
 一方、例えば、水溶性ポリマーPAのMw/Mnは、好ましくは2.0以上、より好ましくは3.0以上である。また、例えば水溶性ポリマーPBのMw/Mnは、好ましくは1.05以上である。また、例えば水溶性ポリマーPCのMw/Mnは、好ましくは1.05以上である。また、例えば水溶性ポリマーPDのMw/Mnは、好ましくは1.05以上である。また、例えば水溶性ポリマーPEのMw/Mnは、好ましくは1.05以上である。
 また、水溶性ポリマーPFのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下である。また、水溶性ポリマーPFのMw/Mnは、好ましくは1.05以上である。
 なお、水溶性ポリマーのMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。
 特に限定するものではないが、水溶性ポリマーの含有量は、砥粒100質量部に対して例えば0.01質量部以上とすることができる。砥粒100質量部に対する水溶性ポリマーの含有量は、研磨後の表面平滑性向上(例えばヘイズや欠陥の低減)の観点から0.05質量部以上が適当であり、好ましくは0.1質量部以上、より好ましくは0.5質量部以上(例えば1質量部以上)である。また、砥粒100質量部に対する水溶性ポリマーの含有量は、研磨速度や洗浄性等の観点から、例えば40質量部以下とすることができ、通常は20質量部以下が適当であり、好ましくは15質量部以下、より好ましくは10質量部以下である。
 <水>
 ここに開示される研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
 ここに開示される研磨用組成物(典型的にはスラリー状の組成物)は、例えば、その固形分含量(non-volatile content;NV)が0.01質量%~50質量%であり、残部が水系溶媒(水または水と上記有機溶剤との混合溶媒)である形態、または残部が水系溶媒および揮発性化合物(例えばアンモニア)である形態で好ましく実施され得る。上記NVが0.05質量%~40質量%である形態がより好ましい。なお、上記固形分含量(NV)とは、研磨用組成物を105℃で24時間乾燥させた後における残留物が上記研磨用組成物に占める質量の割合を指す。
 <塩基性化合物>
 ここに開示される研磨用組成物は、典型的には、砥粒、水溶性ポリマーおよび水の他に、塩基性化合物を含有する。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象となる面を化学的に研磨する働きをし、研磨速度の向上に寄与し得る。また、塩基性化合物は、研磨用組成物の分散安定性の向上に役立ち得る。
 塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。水酸化第四級アンモニウムまたはその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 研磨速度向上等の観点から好ましい塩基性化合物として、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウムおよび水酸化テトラエチルアンモニウムが例示される。より好ましいものとしてアンモニアおよび水酸化テトラメチルアンモニウムが挙げられる。特に好ましい塩基性化合物としてアンモニアが挙げられる。
 <界面活性剤>
 ここに開示される研磨用組成物は、砥粒、水溶性ポリマーおよび水の他に、界面活性剤(典型的には、分子量1×10未満の水溶性有機化合物)を含む態様で好ましく実施され得る。界面活性剤の使用により、研磨用組成物の分散安定性が向上し得る。また、研磨面のヘイズを低減することが容易となり得る。界面活性剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン系界面活性剤が挙げられる。
 ノニオン系活性剤の具体例としては、EOとPOとのブロック共重合体(ジブロック体、PEO-PPO-PEO型トリブロック体、PPO-PEO-PPO型トリブロック体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO-PPO-PEO型のトリブロック体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。
 界面活性剤の分子量は、典型的には1×10未満であり、研磨用組成物の濾過性や研磨対象物の洗浄性等の観点から9500以下が好ましい。また、界面活性剤の分子量は、典型的には200以上であり、ヘイズ低減効果等の観点から250以上が好ましく、300以上(例えば500以上)がより好ましい。なお、界面活性剤の分子量としては、GPCにより求められる重量平均分子量(Mw)(水系、ポリエチレングリコール換算)または化学式から算出される分子量を採用することができる。
 界面活性剤の分子量のより好ましい範囲は、界面活性剤の種類によっても異なり得る。例えば、界面活性剤としてEOとPOとのブロック共重合体を用いる場合には、Mwが1000以上のものが好ましく、2000以上のものがより好ましく、5000以上のものがさらに好ましい。
 ここに開示される研磨用組成物が界面活性剤を含む場合、その含有量は、本発明の効果を著しく阻害しない範囲であれば特に制限はない。通常は、洗浄性等の観点から、砥粒100質量部に対する界面活性剤の含有量を20質量部以下とすることが適当であり、15質量部以下が好ましく、10質量部以下(例えば6質量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100質量部に対する界面活性剤含有量は、0.001質量部以上が適当であり、0.005質量部以上が好ましく、0.01質量部以上(例えば0.05質量部以上、典型的には0.1質量部以上)がより好ましい。
 また、水溶性ポリマーの含有量W1と界面活性剤の含有量W2との質量比(W1/W2)は特に制限されないが、通常、0.01~200の範囲とすることが適当であり、例えば0.1~100の範囲とすることが好ましい。好ましい一態様において、(W1/W2)は、例えば0.01~20の範囲とすることができ、0.05~15の範囲が好ましく、0.1~10の範囲がより好ましい。
  <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウエハのファイナルポリシングに用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
 キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてエチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。
 有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
 <用途>
 ここに開示される研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。なかでも、シリコンからなる表面を備えた研磨対象物の研磨に好適である。
 研磨対象物の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。
 ここに開示される研磨用組成物は、研磨対象物のファイナルポリシングに好ましく使用され得る。したがって、この明細書によると、上記研磨用組成物を用いたファイナルポリシング工程を含む研磨物の製造方法(例えば、シリコンウエハの製造方法)が提供される。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、ファイナルポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えばファイナルポリシングの直前に行われるポリシング工程に用いられてもよい。
 ここに開示される研磨用組成物は、シリコンウエハの研磨に特に好ましく使用され得る。例えば、シリコンウエハのファイナルポリシングまたはそれよりも上流のポリシング工程に用いられる研磨用組成物として好適である。例えば、上流の工程によって表面粗さ0.01nm~100nmの表面状態に調製されたシリコンウエハのポリシング(典型的にはファイナルポリシングまたはその直前のポリシング)への適用が効果的である。ファイナルポリシングへの適用が特に好ましい。
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
 研磨液における砥粒の含有量は特に制限されないが、典型的には0.01質量%以上であり、0.05質量%以上であることが好ましく、より好ましくは0.1質量%以上、例えば0.15質量%以上である。砥粒の含有量の増大によって、より高い研磨速度が実現され得る。よりヘイズの低い表面を実現する観点から、通常は、上記含有量は10質量%以下が適当であり、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、例えば1質量%以下である。
 研磨液における水溶性ポリマーの含有量は特に制限されず、例えば1×10-4質量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5×10-4質量%以上であり、より好ましくは1×10-3質量%以上、例えば2×10-3質量%以上である。また、ここに開示される好ましいサイズの粒子を形成しやすいという観点から、上記含有量を0.2質量%以下とすることが好ましく、0.1質量%以下(例えば0.05質量%以下)とすることがより好ましい。
 界面活性剤を使用する場合、研磨液における界面活性剤の含有量は特に制限されない。通常は、上記含有量を1×10-5質量%以上(例えば1×10-4質量%以上)とすることが適当である。ヘイズ低減等の観点から、好ましい含有量は5×10-5質量%以上(例えば5×10-4質量%以上)であり、より好ましくは1×10-3質量%以上、例えば2×10-3質量%以上である。また、洗浄性や研磨速度等の観点から、上記含有量は0.2質量%以下が好ましく、0.1質量%以下(例えば0.05質量%以下)がより好ましい。
 塩基性化合物を使用する場合、研磨液における塩基性化合物の含有量は特に制限されない。研磨速度向上等の観点から、通常は、その含有量を研磨液の0.001質量%以上とすることが好ましく、0.005質量%以上とすることがより好ましい。また、ヘイズ低減等の観点から、上記含有量を0.4質量%未満とすることが好ましく、0.25質量%未満とすることがより好ましい。
 研磨液のpHは特に制限されない。例えば、pH8.0~12.0が好ましく、9.0~11.0がより好ましい。かかるpHの研磨液となるように塩基性化合物を含有させることが好ましい。上記pHは、例えば、シリコンウエハの研磨に用いられる研磨液(例えばファイナルポリシング用の研磨液)に好ましく適用され得る。
 <研磨用組成物中に含まれる粒子>
 ここに開示される研磨用組成物には、粒子として、砥粒単体のものや、砥粒と水溶性ポリマーとが吸着してなるもの等が含まれ得る。上記粒子は、例えば、砥粒粒子や、1個の砥粒粒子の表面にポリマーの1分子または複数分子が吸着した形態、1分子のポリマーに2個以上の砥粒粒子が吸着した形態、2個以上の砥粒粒子と2分子以上のポリマーとが吸着した形態、砥粒および水溶性ポリマーに研磨用組成物中の他の成分(例えば界面活性剤)がさらに吸着した形態、等であり得る。研磨対象物の研磨に用いられる研磨用組成物中には、一般に、上記で例示したような複数の形態の粒子が混在していると考えられる。砥粒と水溶性ポリマーとが吸着してなる粒子が研磨用組成物中に存在することは、該研磨用組成物中の粒子の平均粒子径を測定した場合、その値が砥粒粒子の平均粒子径の値より大きくなることによって把握され得る。
 研磨対象物に供給される研磨液(ワーキングスラリー)中における粒子のサイズは、例えば、この研磨液を測定サンプルに用いて動的光散乱法に基づく粒子径測定を行うことによって把握することができる。この粒子径測定は、例えば、日機装株式会社製の型式「UPA-UT151」を用いて行うことができる。本発明者らの検討によれば、上記粒子径測定により得られる体積平均粒子径Dが所定値以下(具体的には60nm以下)である研磨液を用いることにより、よりDが大きい研磨液を用いた場合に比べて、微小欠陥の数(例えば、後述する実施例に記載の微小欠陥検査により検出される微小欠陥の数)を顕著に低減することができる。
 上記体積平均粒子径Dの下限は、微小欠陥数低減の観点からは特に制限されない。研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)等の観点からは、Dは20nm以上が適当であり、30nm以上が好ましい。微小欠陥の低減と研磨効果とをより高レベルで両立させる観点から、Dは35nm以上が好ましく、40nm以上がより好ましく、45nm以上がさらに好ましい。ここに開示される技術の好ましい一態様として、Dが50nm以上(典型的には50nm超)である態様が挙げられる。かかるDを満たす研磨液によると、微小欠陥の低減とヘイズの低減とが特に高レベルで両立された研磨面が効率よく実現され得る。
 この体積平均粒子径Dは、例えば砥粒の選択(サイズ(DP1、DP2等)、形状、粒子径分布等)、水溶性ポリマーの選択(組成、Mw、Mw/Mn、分子構造等)、砥粒に対する水溶性ポリマーの使用量、界面活性剤の使用の有無および使用する場合における種類や量等の選択により、所望の数値範囲となるように調節することができる。後述する粒子の粒子径分布についても同様である。
 Dの測定は、上述のように、実際に研磨対象物に供給される濃度の研磨用組成物を測定サンプルとして行うことができる。また、概して、各成分の比率を維持したままNVを0.05~5質量%程度の範囲で異ならせてもDの値はそれほど変動しないため、実用上は、例えば砥粒の含有量が0.2質量%となる濃度において測定されるDの値(すなわち、上記濃度の研磨用組成物を測定サンプルに用いて得られるDの値)を上記範囲とすることにより、この研磨用組成物を砥粒濃度0.2質量%の研磨液として研磨に用いる場合に限らず、該研磨用組成物を他の砥粒濃度(例えば、0.05~5質量%程度の範囲であって0.2質量%とは異なる濃度)で用いる場合にも上述の効果を得ることができる。
 測定サンプルのpHは、実際に研磨対象物に供給される研磨用組成物(研磨液)のpHと著しく異ならないpHとすることが望ましい。例えば、pH8.0~12.0(より好ましくはpH9.0~11.0、典型的にはpH10.0~10.5程度)の測定サンプルについてDを測定することが好ましい。上記pHの範囲は、例えば、シリコンウエハのファイナルポリシング用の研磨用組成物に好ましく適用され得る。
 ここに開示される技術を実施するにあたり、上記Dを満たすことにより上述の課題が解決される理由を明らかにする必要はないが、例えば以下のことが考えられる。すなわち、研磨用組成物中に含まれる粒子(砥粒単体、砥粒の周囲に水溶性ポリマーが吸着したもの、砥粒と水溶性ポリマーの会合体等の形態であり得る。)のサイズがより大きくなると、研磨対象面に与えるダメージが大きくなるため、欠陥が発生しやすくなる傾向にある。また粗大な粒子の存在は不均一な研磨を招き、表面の平滑性を損なう要因となり得る。さらに、粗大な粒子は研磨対象物の表面と接触または近接する箇所(すなわち、両者が相互作用しやすい箇所)が多いため、研磨対象物表面における滞留時間が長くなりがちであり、このため研磨終了後の研磨物表面に残留しやすい。残留した粒子は洗浄により除去することができるが、洗浄開始から粒子が除去されるまでの間、研磨物表面のうち粒子が付着している箇所はそれ以外の箇所よりも洗浄液によるエッチングを受けにくいため、洗浄後の表面において粒子が付着していた箇所が周囲よりも高い箇所(突起)となって残り、これが微小欠陥(PID)として検出され得る。
 ここに開示される技術によると、上記体積平均粒子径Dを基準にして研磨液中における粒子のサイズが過大とならないように制限することにより、研磨後の表面への粒子の残留が抑制され、あるいは残留した粒子が洗浄過程のより早い時期で(したがって、周囲とのエッチング量の差異が大きくならないうちに)除去されやすくなる。このことが微小欠陥の低減に寄与しているものと考えられる。特に、従来の一般的な砥粒よりもサイズの小さい砥粒(例えば、平均一次粒子径DP1が35μm未満(特に30nm以下)あるいは平均二次次粒子径DP2が65μm以下(特に60μm以下)の砥粒)は、ヘイズを低減する観点からは従来サイズの砥粒よりも有利となり得る一方、研磨液中における砥粒粒子の挙動が該粒子に吸着した水溶性ポリマーの影響を受けやすい。したがって、ここに開示される技術を適用して粒子のサイズを制限することが特に有意義である。
 研磨用組成物中の粒子の体積平均粒子径Dと砥粒の平均二次粒子径DP2との関係は、原理的にD/DP2≧1を満たし、典型的にはD/DP2>1である。微小欠陥をよりよく低減する観点から、D/DP2は2.00以下が好ましく、1.50以下がより好ましく、1.30以下がさらに好ましい。
 研磨用組成物中の粒子の体積平均粒子径Dと砥粒の平均一次粒子径DP1との関係は、原理的にD/DP1≧1を満たし、典型的にはD/DP1>1である。特に制限するものではないが、ヘイズ低減等の観点から、D/DP1は1.30以上が好ましく、1.50以上がより好ましい。また、ヘイズ低減等の観点から、D/DP1は5.00以下が好ましく、3.00以下がより好ましく、2.50以下がさらに好ましい。
 特に限定するものではないが、上記研磨用組成物は、砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される上記粒子の体積基準の粒子径分布において、50%累積径D50に対する95%累積径D95の比(D95/D50)が3.00以下であることが好ましく、2.00以下(例えば1.80以下)であることがより好ましい。かかる研磨用組成物は、粗大な粒子が少ないので欠陥を生じにくい。また、上記粒子のサイズのばらつきが少ないので、研磨後の表面に残留した粒子の洗浄性のばらつきが少ない。このため、洗浄条件を過度に厳しくすることなく該表面の残留物をより高精度に洗浄除去し得る。このことによって、より高品位な表面が実現され得る。D95/D50の下限は、原理上1である。研磨用組成物の分散安定性や調製容易性等の観点から、D95/D50は1.20以上が適当であり、1.30以上が好ましく、1.40以上(例えば1.45以上)がより好ましい。
 特に限定するものではないが、ここに開示される研磨用組成物は、上記粒子のD10(10%累積径)に対するD95(95%累積径)の比D95/D10が4.00以下である態様で好ましく実施され得る。D95/D10は、3.00以下であることが好ましく、2.50以下であることがより好ましい。D95/D10の下限は、原理上1である。研磨用組成物の分散安定性や調製容易性等の観点から、D95/D10は1.50以上が適当であり、1.80以上(例えば2.00以上)が好ましい。
 上記研磨用組成物中の粒子のD50,D95およびD10の各々は、ここに開示される好ましい粒子径分布を実現し得るものであればよく、特に限定されない。なお、D10,D50およびD95は、原理上、D10≦D50≦D95の関係にある。
 研磨速度の観点から、D50は10nm超であることが好ましく、より好ましくは20nm超である。より高い研磨効果を得る観点から、D50は30nm以上が好ましく、35nm以上がより好ましいい。また、より平滑性の高い表面(例えば、よりヘイズの低い表面)を実現しやすい等の観点から、D50は、90nm以下が適当であり、80nm以下が好ましく、70nm以下がより好ましい。
 研磨速度等の観点から、D95は50nm以上が好ましく、60nm以上(例えば65nm以上)がより好ましい。また、スクラッチ低減等の観点から、D95は120nm以下が適当であり、110nm以下が好ましく、100nm以下がより好ましい。
 D10は、典型的には10nm以上であり、研磨効率等の観点から20nm以上が適当である。研磨用組成物の調製容易性等の観点から、D10は60nm未満が適当であり、50nm未満が好ましい。
 特に限定するものではないが、ここに開示される研磨用組成物は、上記粒子の体積平均粒子径Dと砥粒の平均二次粒子径DP2との差が20nm以下となる態様で好ましく実施され得る。D-DP2が15nm以下(典型的には0~15nm)であることがより好ましいD-DP2が小さい(すなわち、砥粒と水溶性ポリマーとが吸着することによる体積平均粒子径の変化が過大ではない)研磨用組成物は、粗大な粒子の存在量が少ない傾向にあるので好ましい。かかる研磨用組成物によると、より高品位な研磨面が実現され得る。
 特に限定するものではないが、ここに開示される研磨用組成物は、上記粒子の50%累積径D50に対する該粒子の体積平均粒子径Dの比(D/D50)が1.40以下(例えば1.20以下)であることが好ましい。上記比(D/D50)が小さい研磨用組成物は、粗大な粒子が少ない傾向にあるので好ましい。なお、D/D50の下限は、原理上1である。
 <研磨用組成物の調製>
 ここに開示される研磨用組成物は、所望のDを満たす研磨用組成物を得ることのできる適宜の方法により製造することができる。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
 特に限定するものではないが、塩基性化合物を含む組成の研磨用組成物については、所望のDを満たす研磨用組成物を安定して(再現性よく)製造する観点から、例えば以下の製造方法を好ましく採用することができる。
 ここに開示される研磨用組成物製造方法は、その製造目的たる研磨用組成物が砥粒と水溶性ポリマーと塩基性化合物と水とを含み、該研磨用組成物は、粒子として、砥粒や砥粒および水溶性高分子からなる粒体等を含んでおり、上記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される上記粒子の体積平均粒子径Dが20nm~60nmである研磨用組成物の製造に好ましく適用され得る。その製造方法では、砥粒(例えばシリカ粒子)と塩基性化合物と水とを含む分散液(以下「塩基性砥粒分散液」ともいう。)を用意し、この塩基性砥粒分散液と水溶性ポリマーとを混合する。
 このように砥粒と塩基性化合物とが共存している塩基性砥粒分散液は、上記塩基性化合物により上記砥粒の静電反撥が強められているので、塩基性化合物を含まない(典型的にはほぼ中性の)砥粒分散液に比べて砥粒の分散安定性が高い。このため、中性の砥粒分散液に水溶性ポリマーを加えた後に塩基性化合物を加える態様や、中性の砥粒分散液と水溶性ポリマーと塩基性化合物とを一度に混合する態様に比べて、砥粒の局所的な凝集が生じにくい。したがって、塩基性砥粒分散液に水溶性ポリマーを混合する上記方法によると、砥粒と水溶性ポリマーとの吸着を均一に進行させることができ、所望のDを満たす研磨用組成物を安定して(再現性よく)製造することができる。
 なお、上記水溶性ポリマーは、あらかじめ水に溶解した水溶液(以下「ポリマー水溶液」ともいう。)の形態で塩基性砥粒分散液と混合することが好ましい。このことによって、砥粒の局所的な凝集がよりよく抑制され、砥粒と水溶性ポリマーとの吸着をより均一に進行させることができる。
 塩基性砥粒分散液とポリマー水溶液とを混合する際には、塩基性砥粒分散液に対してポリマー水溶液を添加することが好ましい。かかる混合方法によると、例えばポリマー水溶液に対して塩基性砥粒分散液を添加する混合方法に比べて、砥粒と水溶性ポリマーとの吸着をより均一に進行させることができる。砥粒がシリカ粒子(例えばコロイダルシリカ粒子)である場合には、上記のように塩基性砥粒分散液に対してポリマー水溶液を添加する混合方法を採用することが特に有意義である。
 上記塩基性砥粒分散液は、製造目的たる研磨用組成物を構成する砥粒、水溶性ポリマー、塩基性化合物および水のうち、砥粒の少なくとも一部と、塩基性化合物の少なくとも一部と、水の少なくとも一部とを含有する。例えば、上記砥粒分散液が、研磨用組成物を構成する砥粒の全部と、塩基性化合物の少なくとも一部と、水の少なくとも一部とを含有する態様を好ましく採用し得る。
 塩基性砥粒分散液中における塩基性化合物の含有量は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。塩基性化合物の含有量の増加によって、研磨用組成物の調製時における局所的な凝集の発生がよりよく抑制される傾向となる。また、塩基性砥粒分散液中における塩基性化合物の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。塩基性化合物の含有量の低下によって、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。
 塩基性砥粒分散液のpHは、8以上が好ましく、より好ましくは9以上である。pHの上昇によって、この塩基性砥粒分散液に水溶性ポリマーまたはその水溶液を添加した場合に、局所的な凝集の発生がよりよく抑制される傾向となる。したがって、砥粒と水溶性ポリマーとの吸着をより均一に進行させ、所望のDを満たす研磨用組成物をより安定して製造することができる。塩基性砥粒分散液のpHは、12以下が好ましく、より好ましくは11.5以下であり、さらに好ましくは10.5以下である。塩基性砥粒分散液のpHを塩基性側においてより低く設定することにより、該分散液の調製に必要な塩基性化合物の量が少なくなるので、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。また、例えば砥粒がシリカ粒子である場合、pHが高すぎないことはシリカの溶解を抑制する観点からも有利である。混合物のpHは、塩基性化合物の配合量等により調整することができる。
 かかる塩基性砥粒分散液は、砥粒と塩基性化合物と水とを混合することにより調製することができる。上記混合には、例えば翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いることができる。塩基性砥粒分散液に含まれる各成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。好ましい一態様の一例として、砥粒と水とを含むほぼ中性の分散液と、塩基性化合物またはその水溶液とを混合する態様が挙げられる。
 上記水溶性ポリマーを塩基性砥粒分散液に水溶液(ポリマー水溶液)の形態で混合する場合、そのポリマー水溶液中における水溶性ポリマーの含有量は、好ましくは0.02質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。水溶性ポリマーの含有量の増加によって、研磨用組成物中における水溶性ポリマーの含有量の調整が容易となる。ポリマー水溶液中における水溶性ポリマーの含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。水溶性ポリマーの含有量の減少によって、このポリマー水溶液を塩基性砥粒分散液と混合する際に、砥粒の局所的な凝集がよりよく抑制される傾向となる。
 上記ポリマー水溶液は、好ましくは中性付近から塩基性付近の液性に調整され、より好ましくは塩基性に調整される。より具体的には、ポリマー水溶液のpHは、8以上が好ましく、より好ましくは9以上である。pH調整は、典型的には、研磨用組成物を構成する塩基性化合物の一部を用いて行うことができる。ポリマー水溶液のpHの上昇によって、塩基性砥粒分散液にポリマー水溶液を添加した場合に、砥粒の局所的な凝集がよりよく抑制され得る。このことによって、砥粒と水溶性ポリマーとの吸着をより均一に進行させ、所望のDを満たす研磨用組成物をより安定して製造することができる。ポリマー水溶液のpHは、12以下が好ましく、より好ましくは10.5以下である。ポリマー水溶液のpHが塩基性側において低くなると、該ポリマー水溶液の調製に必要な塩基性化合物の量が少なくなるため、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。また、例えば砥粒がシリカ粒子である場合、pHが高すぎないことはシリカの溶解を抑制する観点からも有利である。
 塩基性砥粒分散液にポリマー水溶液を投入する際の速度(供給レート)は、該分散液1Lに対してポリマー水溶液500mL/分以下とすることが好ましく、より好ましくは100mL/分以下、さらに好ましくは50mL/分以下である。投入速度の減少によって、砥粒の局所的な凝集をよりよく抑制することができる。
 好ましい一態様において、ポリマー水溶液は、塩基性砥粒分散液に投入する前に濾過することができる。ポリマー水溶液を濾過することにより、該ポリマー水溶液中に含まれる異物や凝集物の量を低減することができる。このことによって、砥粒と水溶性ポリマーとの吸着をより均一に進行させ、所望のDを満たす研磨用組成物をより安定して製造することができる。
 濾過の方法は特に限定されず、例えば、常圧で行う自然濾過の他、吸引濾過、加圧濾過、遠心濾過等の公知の濾過方法を適宜採用することができる。濾過に用いるフィルタは、目開きを基準に選択されることが好ましい。研磨用組成物の生産効率の観点から、フィルタの目開きは、0.05μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは0.2μmである。また、異物や凝集物の除去効果を高める観点から、フィルタの目開きは、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは50μm以下である。フィルタの材質や構造は特に限定されない。フィルタの材質としては、例えば、セルロース、ナイロン、ポリスルホン、ポリエーテルスルホン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリカーボネート、ガラス等が挙げられる。フィルタの構造としては、例えばデプス、プリーツ、メンブレン等が挙げられる。
 上記で説明した研磨用組成物製造方法は、塩基性砥粒分散液と水溶性ポリマーまたはその水溶液とを混合して得られる研磨用組成物が研磨液(ワーキングスラリー)またはこれとほぼ同じNVである場合にも、後述する濃縮液である場合にも適用され得る。塩基性砥粒分散液と水溶性ポリマーまたはその水溶液とを混合して濃縮液を得、その濃縮液を希釈して研磨液を調製する場合であっても、上記濃縮液の調製において上述の手順(すなわち、まず砥粒と塩基性化合物とを含む塩基性砥粒分散液を用意し、これに水溶性ポリマーまたはその水溶液を混合するという手順)を適用することにより、砥粒と水溶性ポリマーとの吸着を均一に進行させることができる。このようにして調製された濃縮液を希釈することにより、所望のDを満たす研磨液を安定して(再現性よく)製造することができる。
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に好適に使用することができる。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(典型的にはスラリー状の研磨液であり、研磨スラリーと称されることもある。)を用意する。上記研磨液を用意することには、上述のように、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。
 次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウエハのファイナルポリシングを行う場合には、ラッピング工程および1次ポリシング工程を経たシリコンウエハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウエハの表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウエハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
 上述のような研磨工程は、研磨物(例えば、シリコンウエハ等の基板)の製造プロセスの一部であり得る。したがって、この明細書によると、上記研磨工程を含む研磨物の製造方法(好適には、シリコンウエハの製造方法)が提供される。
 ここに開示される研磨物製造方法の好ましい一態様において、上記研磨工程において研磨対象物に供給される研磨液として、砥粒と水溶性ポリマーと水とを含み、該研磨液は粒子として砥粒や砥粒および水溶性ポリマーからなる粒体等を含んでおり、動的光散乱法により測定される上記粒子の体積平均粒子径Dが20nm~60nmである研磨液を好ましく使用することができる。この研磨液の砥粒濃度は特に限定されず、例えば0.05~5質量%程度であり得る。すなわち、ここに開示される研磨物製造方法は、実際に研磨対象物に供給される研磨液について測定される体積平均粒子径Dが上記範囲にある態様で好ましく実施され得る。かかる態様によると、微小欠陥の発生が特に効果的に抑制された研磨物(例えばシリコンウエハ)が製造され得る。
 なお、ここに開示される研磨用組成物を含む研磨液を用いた研磨工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
 <洗浄>
 ここに開示される研磨用組成物を用いて研磨された研磨物は、典型的には、研磨後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液。以下、SC-1洗浄液を用いて洗浄することを「SC-1洗浄」という。)、SC-2洗浄液(HClとHとHOとの混合液。)等を用いることができる。洗浄液の温度は、例えば常温~90℃程度とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
 <濃縮液>
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍~30倍であり、例えば15倍~25倍である。
 このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。
 上記濃縮液のNVは、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、濃縮液のNVは、40質量%以下とすることが適当であり、30質量%以下が好ましく、より好ましくは20質量%以下、例えば15質量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液のNVは、0.5質量%以上とすることが適当であり、好ましくは1質量%以上、より好ましくは3質量%以上、例えば5質量%以上である。
 上記濃縮液における砥粒の含有量は、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。好ましい一態様において、砥粒の含有量を30質量%以下としてもよく、20質量%以下(例えば15質量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5質量%以上とすることができ、好ましくは1質量%以上、より好ましくは3質量%以上(例えば5質量%以上)である。
 上記濃縮液における水溶性ポリマーの含有量は、例えば3質量%以下とすることができる。研磨用組成物の濾過性や洗浄性等の観点から、通常、上記含有量は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。また、上記含有量は、製造、流通、保存等の際における利便性やコスト低減等の観点から、通常は1×10-3質量%以上であることが適当であり、好ましくは5×10-3質量%以上、より好ましくは1×10-2質量%以上である。
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、水系溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。ここに開示される技術は、例えば、一剤型の研磨用組成物の形態で好ましく実施され得る。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
 <研磨用組成物の調製>
  (実施例1)
 砥粒としてのコロイダルシリカを20%の濃度で含み、塩基性化合物としてのアンモニア(NH)を29%の濃度で含むアンモニア水を加えてpH9.0に調整したコロイダルシリカ分散液を用意した。上記コロイダルシリカの平均一次粒子径は23nmであり、平均二次粒子径は45nmであった。上記平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたものであり、上記平均二次粒子径は、上記コロイダルシリカ分散液を測定サンプルとして、日機装株式会社製の型式「UPA-UT151」を用いて測定された体積平均二次粒子径である(以下の例において同じ。)。
 上記コロイダルシリカ分散液にさらにアンモニア水を加えて、pH10.3の塩基性分散液を調製した。ヒドロキシエチルセルロース(Mw25×10;以下「HEC-A」と表記することがある。)を1.5%の濃度で含みアンモニアでpH9.0に調整したポリマー水溶液を用意し、このポリマー水溶液を上記塩基性分散液に添加して混合した。さらに超純水を加えて、砥粒濃度3.5%の研磨用組成物濃縮液を調製した。この濃縮液を、砥粒濃度が0.2%となるように超純水で希釈して、表1に示す組成の研磨液を調製した。水溶性ポリマーおよびアンモニア水の使用量は、研磨液中における水溶性ポリマーの含有量が0.010%、アンモニアの含有量が0.005%(砥粒100部に対してそれぞれ5部および2.5部)となるように調整した。得られた研磨液のpHは10.1であった。
 このようにして得られた研磨液(砥粒濃度0.2%)を測定サンプルとして、日機装株式会社製の型式「UPA-UT151」により動的光散乱法に基づく粒子径測定を行った。その結果、上記測定サンプルに含まれる粒子の体積平均粒子径Dは56nmであった。表1には、研磨液の組成とともに、砥粒の平均一次粒子径DP1、砥粒の平均二次粒子径DP2および上記測定サンプルに含まれる粒子の体積平均粒子径Dの測定値を示している(以下の例において同じ。)。
  (実施例2)
 実施例1のポリマー水溶液に代えて、HEC-Aを1.5%の濃度で含みアンモニアでpH9.0に調整したポリマー水溶液と、界面活性剤の水溶液とを使用した。界面活性剤としてはPEO-PPO-PEOブロック共重合体(Mw9000)を使用し、その使用量は研磨液中の含有量が0.001%(砥粒100部に対して0.5部)となるように調整した。その他の点は実施例1と同様にして、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは57nmであった。
  (実施例3)
 実施例2において、使用するポリマー水溶液に含まれるHEC-Aの濃度を0.5倍に変更した。その他の点は実施例2と同様にして、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは57nmであった。
  (実施例4)
 実施例2において、使用するポリマー水溶液に含まれるHEC-Aの濃度を1.5倍に変更した。その他の点は実施例2と同様にして、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは58nmであった。
  (実施例5)
 実施例2において、HEC-Aに代えてポリビニルアルコール(Mw1.3×10、けん化度95モル%以上;以下「PVA-1」と表記することがある。)を2%の濃度で含むポリマー水溶液を使用した。その他の点は実施例2と同様にして、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは46nmであった。
  (比較例1)
 砥粒としてのコロイダルシリカ(平均一次粒子径35nm、平均二次粒子径66nm)を20%の濃度で含むpH9.0のコロイダルシリカ分散液に、塩基性化合物としてのアンモニア(NH)を29%の濃度で含むアンモニア水を加えて、pH10.3の塩基性分散液を調製した。HEC-Aを1.5%の濃度で含みアンモニアでpH9.0に調整したポリマー水溶液を用意し、このポリマー水溶液を上記塩基性分散液に添加して混合した。さらに超純水を加えて、砥粒濃度9.2%の研磨用組成物濃縮液を調製した。この濃縮液を、砥粒濃度が0.5%となるように超純水で希釈して、表1に示す組成の研磨液を調製した。水溶性ポリマーおよびアンモニア水の使用量は、単位体積の研磨液中に含まれる砥粒の表面積当たりの水溶性ポリマーおよびアンモニアの含有量が実施例1の研磨液と概ね同程度となるように調整した。具体的には、研磨液中における含有量(濃度)がそれぞれ0.020%および0.010%となるように調整した。
 この研磨液を超純水でさらに希釈して砥粒濃度0.2%に調整したものを測定サンプルとして、日機装株式会社製の型式「UPA-UT151」により動的光散乱法に基づく粒子径測定を行った。その結果、上記測定サンプルに含まれる粒子の体積平均粒子径Dは80nmであった。
  (比較例2)
 比較例1のポリマー水溶液に代えて、HEC-Aを1.5%の濃度で含みアンモニアでpH9.0に調整したポリマー水溶液と、界面活性剤の水溶液とを使用した。界面活性剤としては、PEO-PPO-PEOブロック共重合体(Mw9000)を使用し、その使用量は研磨液中の含有量が0.002%となるように調整した。その他の点は比較例1と同様にして、表1に示す組成の研磨液を調製した。比較例1と同様にして測定した粒子の体積平均粒子径Dは72nmであった。
  (比較例3)
 砥粒としてのコロイダルシリカ(平均一次粒子径12nm、平均二次粒子径28nm)を20%の濃度で含むpH9.0のコロイダルシリカ分散液に、塩基性化合物としてのアンモニア(NH)を29%の濃度で含むアンモニア水を加えて、pH10.3の塩基性分散液を調製した。この塩基性分散液に、Mwが100×10のヒドロキシエチルセルロース(以下「HEC-B」と表記することがある。)を1%の濃度で含むpH7.0のポリマー水溶液と、界面活性剤の水溶液とを加えた。界面活性剤としては、PEO-PPO-PEOブロック共重合体(Mw9000)を使用した。さらに超純水を加えて、砥粒濃度3.5%の研磨用組成物濃縮液を調製した。この濃縮液を、砥粒濃度が0.2%となるように超純水で希釈して、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは65nmであった。
  (比較例4)
 実施例2において、HEC-Aに代えてHEC-Bを使用した。その他の点は実施例2と同様にして、表1に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは71nmであった。
  (比較例5)
 砥粒としてのコロイダルシリカ(平均一次粒子径35nm、平均二次粒子径66nm)を20%の濃度で含むpH9.0のコロイダルシリカ分散液に、塩基性化合物としてのアンモニア(NH)を29%の濃度で含むアンモニア水を加えて、pH10.3の塩基性分散液を調製した。この塩基性分散液に、HEC-Bを1%の濃度で含むpH7.0のポリマー水溶液と、界面活性剤の水溶液とを加えた。界面活性剤としては、PEO-PPO-PEOブロック共重合体(Mw9000)を使用した。さらに超純水を加えて、砥粒濃度9.2%の研磨用組成物濃縮液を調製した。この濃縮液を、砥粒濃度が0.5%となるように超純水で希釈して、表1に示す組成の研磨液を調製した。比較例1と同様にして測定した粒子の体積平均粒子径Dは90nmであった。
  (実施例6)
 水溶性ポリマーとしてMwが7×10のポリアクリロイルモルホリン(以下「PACMO-1」と表記することがある。)を使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは48nmであった。
  (実施例7)
 水溶性ポリマーとしてMwが1.3×10のポリビニルアルコール(ビニルアルコール単位80モル%、ヘキサン酸ビニル単位20モル%;以下「PVA-2」と表記することがある。)を使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは46nmであった。
  (実施例8)
 水溶性ポリマーとしてMwが0.5×10のポリビニルアルコール(ビニルアルコール単位80モル%、ヘキサン酸ビニル単位20モル%;以下「PVA-3」と表記することがある。)を使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは46nmであった。
  (実施例9)
 水溶性ポリマーとしてPVA-3およびMwが6×10のポリビニルピロリドン(PVP)を使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。実施例1と同様にして測定した粒子の体積平均粒子径Dは46nmであった。
  (実施例10)
 水溶性ポリマーとしてHEC-AおよびMwが8×10のポリアクリロイルモルホリン(以下「PACMO-2」と表記することがある。)を使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。希釈倍率を調節することにより砥粒濃度0.2%に調整した測定サンプルについて比較例1と同様に測定した粒子の体積平均粒子径Dは51nmであった。
  (実施例11)
 水溶性ポリマーとしてHEC-AおよびPVPを使用した他は実施例2と同様にして、表2に示す組成の研磨液を調製した。希釈倍率を調節することにより砥粒濃度0.2%に調整した測定サンプルについて比較例1と同様に測定した粒子の体積平均粒子径Dは50nmであった。
 <シリコンウエハの研磨>
 各例に係る研磨液を用いて、シリコンウエハの表面を下記の条件で研磨した。シリコンウエハとしては、直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であるものを、研磨スラリー(株式会社フジミインコーポレーテッド製、商品名「GLANZOX 2100」)を用いて予備研磨を行うことにより表面粗さ0.1nm~10nmに調整して使用した。
  [研磨条件]
 研磨機:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨テーブル:上記研磨機の有する3テーブルのうち後段の2テーブルを用いて、予備研磨後のファイナル研磨1段目および2段目を実施した。
 (以下の条件は各テーブル同一である。)
 研磨荷重:15kPa
 定盤回転数:30rpm
 ヘッド回転数:30rpm
 研磨時間:2分
 研磨液の温度:20℃
 研磨液の供給速度:2.0リットル/分(掛け流し使用)
 <洗浄>
 研磨後のシリコンウエハを、NHOH(29%):H(31%):脱イオン水(DIW)=1:3:30(体積比)の洗浄液を用いて洗浄した(SC-1洗浄)。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持し、研磨後のシリコンウエハを第1の洗浄槽に6分、その後超純水と超音波によるリンス槽を経て、第2の洗浄槽に6分、それぞれ上記超音波発振器を作動させた状態で浸漬した。
 <微小欠陥検査>
 洗浄後のシリコンウエハの表面を、レーザーテック社製のウエハ欠陥検査装置、商品名「MAGICS M5350」を用いて検査した。その結果を、直径300mmのシリコンウエハ表面において検出された微小欠陥の数に基づいて、以下の5段階で表1、表2に示した。
  A++:検出数100個未満
  A+:検出数100個以上150個未満
  A:検出数150個以上200個未満
  B:検出数200個以上500個未満
  C:検出数500個以上
 <ヘイズ測定>
 洗浄後のシリコンウエハ表面につき、ケーエルエー・テンコール社製のウエハ検査装置、商品名「Surfscan SP2」を用いて、DWOモードでヘイズ(ppm)を測定した。その測定結果を以下の3段階で表1、表2に示した。
  A:0.10ppm未満
  B:0.10ppm以上0.12ppm未満
  C:0.12ppm以上
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、研磨用組成物中に含まれる粒子のDが20nm~60nm(より具体的には35nm~60nm)の範囲にある実施例1~5の研磨液を用いることにより、よりDの大きな研磨液を用いた比較例1~5に比べて微小欠陥の検出数を有意に低減する効果が得られた。実施例1と2の比較からわかるように、界面活性剤(ここではMw9000のPEO-PPO-PEOブロック共重合体)の使用により、優れた微小欠陥低減効果を維持しつつヘイズを低減する効果が得られた。実施例2~4によると、微小欠陥の低減とヘイズの低減とを特に高レベルで両立させることができた。
 表2に示す実施例6~11においても、研磨用組成物中に含まれる粒子のDが20nm~60nm(より具体的には35nm~60nm)の範囲にある研磨液によると微小欠陥の検出数を有意に低減する効果が得られることが確認された。
 これに対して、Dが60nmよりも大きい研磨液を用いた比較例3~5は、ヘイズの点では実施例1,5と同等のレベルであるものの、実施例1~5に比べて微小欠陥の検出数が明らかに多かった。また、比較例1,2は、比較例3~5に比べて微小欠陥は少なかったが、実施例1~5に比べてヘイズが高く、微小欠陥の低減とヘイズの低減とを高度に両立させることはできかった。なお、比較例2,3において、砥粒の平均二次粒子径は実施例1~5と同程度またはより小さいにもかかわらず、研磨用組成物中に含まれる粒子のサイズ(D)が過大となった原因として、比較例2,3に使用した水溶性ポリマーのMwが大きかったことが考えられる。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (7)

  1.  砥粒と水溶性ポリマーと水とを含む研磨用組成物であって、
     前記研磨用組成物は、前記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される前記研磨用組成物中に含まれる粒子の体積平均粒子径Dが20nm~60nmである、研磨用組成物。
  2.  前記砥粒の平均一次粒子径DP1は15nm~30nmである、請求項1に記載の研磨用組成物。
  3.  前記砥粒の平均二次粒子径DP2は20nm~50nmである、請求項1または2に記載の研磨用組成物。
  4.  前記水溶性ポリマーの重量平均分子量は1×10~80×10である、請求項1から3のいずれか1項に記載の研磨用組成物。
  5.  さらに塩基性化合物を含む、請求項1から4のいずれか一項に記載の研磨用組成物。
  6.  砥粒と水溶性ポリマーと塩基性化合物と水とを含む研磨用組成物の製造方法であって:
     前記砥粒と前記塩基性化合物と水を含む分散液を用意すること;
     前記水溶性ポリマーと水とを含む水溶液を用意すること;および
     前記分散液に対して前記水溶液を添加して混合すること;
    を包含し、
     ここで、前記研磨用組成物は、前記砥粒の含有量が0.2質量%となる濃度において動的光散乱法により測定される前記研磨用組成物中に含まれる粒子の体積平均粒子径Dが20nm~60nmである、研磨用組成物製造方法。
  7.  研磨対象物に研磨液を供給すること;および
     前記研磨対象物の表面を前記研磨液で研磨すること;
    を包含する研磨物製造方法であって、
     ここで、前記研磨対象物に供給される研磨液として、
     砥粒と水溶性ポリマーと水とを含み、
     動的光散乱法により測定される体積平均粒子径Dが20nm~60nmである粒子を含有する研磨液を使用する、研磨物製造方法。
PCT/JP2014/053065 2013-02-13 2014-02-10 研磨用組成物、研磨用組成物製造方法および研磨物製造方法 WO2014126051A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/767,494 US20150376464A1 (en) 2013-02-13 2014-02-10 Polishing composition, method for producing polishing composition and method for producing polished article
EP14751996.1A EP2957613B1 (en) 2013-02-13 2014-02-10 Polishing composition, method for producing polishing composition and method for producing polished article
CN201480008802.5A CN104995277B (zh) 2013-02-13 2014-02-10 研磨用组合物、研磨用组合物制造方法及研磨物制造方法
KR1020157024572A KR102226441B1 (ko) 2013-02-13 2014-02-10 연마용 조성물, 연마용 조성물 제조 방법 및 연마물 제조 방법
JP2015500230A JP5897200B2 (ja) 2013-02-13 2014-02-10 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
SG11201506001VA SG11201506001VA (en) 2013-02-13 2014-02-10 Polishing composition, method for producing polishing composition and method for producing polished article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-026020 2013-02-13
JP2013026020 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126051A1 true WO2014126051A1 (ja) 2014-08-21

Family

ID=51354053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053065 WO2014126051A1 (ja) 2013-02-13 2014-02-10 研磨用組成物、研磨用組成物製造方法および研磨物製造方法

Country Status (8)

Country Link
US (1) US20150376464A1 (ja)
EP (1) EP2957613B1 (ja)
JP (2) JP5897200B2 (ja)
KR (1) KR102226441B1 (ja)
CN (1) CN104995277B (ja)
SG (1) SG11201506001VA (ja)
TW (1) TWI624536B (ja)
WO (1) WO2014126051A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008198A (ja) * 2015-06-22 2017-01-12 日立化成株式会社 研磨液、貯蔵液及び研磨方法
CN107001916A (zh) * 2014-12-05 2017-08-01 3M创新有限公司 磨料组合物
CN107532067A (zh) * 2015-05-08 2018-01-02 福吉米株式会社 研磨用组合物
JP2018074049A (ja) * 2016-10-31 2018-05-10 花王株式会社 シリコンウェーハ用研磨液組成物
WO2018096991A1 (ja) * 2016-11-22 2018-05-31 株式会社フジミインコーポレーテッド 研磨用組成物
WO2018216733A1 (ja) * 2017-05-26 2018-11-29 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
US10344185B2 (en) 2014-06-24 2019-07-09 Fujimi Incorporated Composition for polishing silicon wafers
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
EP3819353A4 (en) * 2018-07-04 2022-03-30 Sumitomo Seika Chemicals Co., Ltd. POLISHING COMPOSITION
JP7246235B2 (ja) 2013-03-19 2023-03-27 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314019B2 (ja) * 2014-03-31 2018-04-18 ニッタ・ハース株式会社 半導体基板の研磨方法
WO2017002433A1 (ja) * 2015-07-01 2017-01-05 東亞合成株式会社 研磨用濡れ剤及び研磨液組成物
EP3448673B1 (en) 2016-04-28 2022-06-08 NatureWorks LLC Polymer foam insulation structure having a facing of a multi-layer sheet that contains a heat resistant polymer layer and a polylactide resin layer
CN110167879A (zh) * 2016-10-28 2019-08-23 株式会社德山 气相二氧化硅及其制备方法
KR102565682B1 (ko) * 2017-02-20 2023-08-11 가부시키가이샤 후지미인코퍼레이티드 실리콘 기판 중간 연마용 조성물 및 실리콘 기판 연마용 조성물 세트
JP7074525B2 (ja) 2017-03-30 2022-05-24 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP6879798B2 (ja) * 2017-03-30 2021-06-02 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
CH713822A2 (fr) * 2017-05-29 2018-11-30 Swatch Group Res & Dev Ltd Dispositif et procédé d'ajustement de marche et correction d'état d'une montre.
JP7227132B2 (ja) * 2017-07-21 2023-02-21 株式会社フジミインコーポレーテッド 基板の研磨方法および研磨用組成物セット
KR20220066438A (ko) * 2017-08-14 2022-05-24 쇼와덴코머티리얼즈가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
JP6929239B2 (ja) * 2018-03-30 2021-09-01 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP7424768B2 (ja) * 2019-08-08 2024-01-30 株式会社フジミインコーポレーテッド 研磨用添加剤含有液の濾過方法、研磨用添加剤含有液、研磨用組成物、研磨用組成物の製造方法およびフィルタ
EP3792327A1 (en) * 2019-09-11 2021-03-17 Fujimi Incorporated Polishing composition, polishing method and method for manufacturing semiconductor substrate
CN112175524B (zh) * 2020-09-21 2022-02-15 万华化学集团电子材料有限公司 一种蓝宝石抛光组合物及其应用
KR102492236B1 (ko) * 2020-12-17 2023-01-26 에스케이실트론 주식회사 연마장치 및 웨이퍼의 연마방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128070A (ja) 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2005085858A (ja) 2003-09-05 2005-03-31 Fujimi Inc 研磨用組成物
JP2005268664A (ja) * 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物
JP2006086462A (ja) * 2004-09-17 2006-03-30 Fujimi Inc 研磨用組成物およびそれを用いた配線構造体の製造法
JP2007073548A (ja) * 2005-09-02 2007-03-22 Fujimi Inc 研磨方法
JP2007095946A (ja) * 2005-09-28 2007-04-12 Fujifilm Corp 金属用研磨液及び研磨方法
JP2008053415A (ja) * 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
WO2009154164A1 (ja) * 2008-06-18 2009-12-23 株式会社 フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法
JP2010034509A (ja) 2008-07-03 2010-02-12 Fujimi Inc 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP2011119405A (ja) * 2009-12-02 2011-06-16 Shin Etsu Handotai Co Ltd シリコンウェーハ研磨用研磨剤およびシリコンウェーハの研磨方法
JP2012038960A (ja) * 2010-08-09 2012-02-23 Fujimi Inc 研磨用組成物および研磨方法
WO2014030570A1 (ja) * 2012-08-23 2014-02-27 株式会社 フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185516A (ja) * 1999-12-24 2001-07-06 Kao Corp 研磨助剤
JP2004051756A (ja) * 2002-07-19 2004-02-19 Sanyo Chem Ind Ltd Cmpプロセス用研磨組成物
JP4212861B2 (ja) * 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
US20070240366A1 (en) * 2004-05-19 2007-10-18 Nissan Chemical Industries, Ltd Composition for Polishing
US20060000808A1 (en) * 2004-07-01 2006-01-05 Fuji Photo Film Co., Ltd. Polishing solution of metal and chemical mechanical polishing method
JP4814502B2 (ja) * 2004-09-09 2011-11-16 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法
JP5026665B2 (ja) * 2004-10-15 2012-09-12 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法
JP4027929B2 (ja) * 2004-11-30 2007-12-26 花王株式会社 半導体基板用研磨液組成物
JP2006352043A (ja) * 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物
TW200734436A (en) * 2006-01-30 2007-09-16 Fujifilm Corp Metal-polishing liquid and chemical mechanical polishing method using the same
JP2007214205A (ja) * 2006-02-07 2007-08-23 Fujimi Inc 研磨用組成物
JP5335183B2 (ja) * 2006-08-24 2013-11-06 株式会社フジミインコーポレーテッド 研磨用組成物及び研磨方法
JP2008091524A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 金属用研磨液
JP5196819B2 (ja) * 2007-03-19 2013-05-15 ニッタ・ハース株式会社 研磨用組成物
KR101564676B1 (ko) * 2008-02-01 2015-11-02 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 이를 이용한 연마 방법
US9202709B2 (en) * 2008-03-19 2015-12-01 Fujifilm Corporation Polishing liquid for metal and polishing method using the same
JP2009231486A (ja) * 2008-03-21 2009-10-08 Kao Corp シリコンウエハ用研磨液組成物
JP5362319B2 (ja) * 2008-10-21 2013-12-11 花王株式会社 研磨液組成物
US20100164106A1 (en) * 2008-12-31 2010-07-01 Cheil Industries Inc. CMP Slurry Composition for Barrier Polishing for Manufacturing Copper Interconnects, Polishing Method Using the Composition, and Semiconductor Device Manufactured by the Method
JP2011171689A (ja) * 2009-07-07 2011-09-01 Kao Corp シリコンウエハ用研磨液組成物
JP5493528B2 (ja) * 2009-07-15 2014-05-14 日立化成株式会社 Cmp研磨液及びこのcmp研磨液を用いた研磨方法
JP5441578B2 (ja) * 2009-09-11 2014-03-12 花王株式会社 研磨液組成物
JP5492603B2 (ja) * 2010-03-02 2014-05-14 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法
JP2012079964A (ja) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd 半導体ウェーハ用研磨液組成物
WO2012102144A1 (ja) * 2011-01-26 2012-08-02 株式会社 フジミインコーポレーテッド 研磨用組成物、それを用いた研磨方法及び基板の製造方法
KR20140034231A (ko) * 2011-05-24 2014-03-19 가부시키가이샤 구라레 화학 기계 연마용 부식 방지제, 화학 기계 연마용 슬러리, 및 화학 기계 연마 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128070A (ja) 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2005085858A (ja) 2003-09-05 2005-03-31 Fujimi Inc 研磨用組成物
JP2005268664A (ja) * 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物
JP2006086462A (ja) * 2004-09-17 2006-03-30 Fujimi Inc 研磨用組成物およびそれを用いた配線構造体の製造法
JP2007073548A (ja) * 2005-09-02 2007-03-22 Fujimi Inc 研磨方法
JP2007095946A (ja) * 2005-09-28 2007-04-12 Fujifilm Corp 金属用研磨液及び研磨方法
JP2008053415A (ja) * 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
WO2009154164A1 (ja) * 2008-06-18 2009-12-23 株式会社 フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法
JP2010034509A (ja) 2008-07-03 2010-02-12 Fujimi Inc 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP2011119405A (ja) * 2009-12-02 2011-06-16 Shin Etsu Handotai Co Ltd シリコンウェーハ研磨用研磨剤およびシリコンウェーハの研磨方法
JP2012038960A (ja) * 2010-08-09 2012-02-23 Fujimi Inc 研磨用組成物および研磨方法
WO2014030570A1 (ja) * 2012-08-23 2014-02-27 株式会社 フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
JP7246235B2 (ja) 2013-03-19 2023-03-27 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
US10344185B2 (en) 2014-06-24 2019-07-09 Fujimi Incorporated Composition for polishing silicon wafers
EP3163600B1 (en) * 2014-06-24 2019-11-06 Fujimi Incorporated Composition for polishing silicon wafers
CN107001916A (zh) * 2014-12-05 2017-08-01 3M创新有限公司 磨料组合物
CN107001916B (zh) * 2014-12-05 2019-01-22 3M创新有限公司 磨料组合物
CN107532067A (zh) * 2015-05-08 2018-01-02 福吉米株式会社 研磨用组合物
CN107532067B (zh) * 2015-05-08 2021-02-23 福吉米株式会社 研磨用组合物
JP2017008198A (ja) * 2015-06-22 2017-01-12 日立化成株式会社 研磨液、貯蔵液及び研磨方法
JP2018074049A (ja) * 2016-10-31 2018-05-10 花王株式会社 シリコンウェーハ用研磨液組成物
WO2018096991A1 (ja) * 2016-11-22 2018-05-31 株式会社フジミインコーポレーテッド 研磨用組成物
JPWO2018096991A1 (ja) * 2016-11-22 2019-10-17 株式会社フジミインコーポレーテッド 研磨用組成物
US11130883B2 (en) 2016-11-22 2021-09-28 Fujimi Incorporated Polishing composition
JP7061965B2 (ja) 2016-11-22 2022-05-02 株式会社フジミインコーポレーテッド 研磨用組成物
TWI763743B (zh) * 2016-11-22 2022-05-11 日商福吉米股份有限公司 研磨用組成物
JPWO2018216733A1 (ja) * 2017-05-26 2020-04-23 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
JP7148506B2 (ja) 2017-05-26 2022-10-05 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
WO2018216733A1 (ja) * 2017-05-26 2018-11-29 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
EP3819353A4 (en) * 2018-07-04 2022-03-30 Sumitomo Seika Chemicals Co., Ltd. POLISHING COMPOSITION

Also Published As

Publication number Publication date
EP2957613B1 (en) 2020-11-18
CN104995277A (zh) 2015-10-21
SG11201506001VA (en) 2015-09-29
KR20150119062A (ko) 2015-10-23
EP2957613A4 (en) 2016-11-09
JP6387032B2 (ja) 2018-09-05
TW201443212A (zh) 2014-11-16
CN104995277B (zh) 2018-05-08
JP2016138278A (ja) 2016-08-04
US20150376464A1 (en) 2015-12-31
JPWO2014126051A1 (ja) 2017-02-02
KR102226441B1 (ko) 2021-03-12
EP2957613A1 (en) 2015-12-23
TWI624536B (zh) 2018-05-21
JP5897200B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6387032B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP5890583B2 (ja) 研磨用組成物および研磨物製造方法
JP6360108B2 (ja) シリコンウエハ研磨用組成物
JP6259723B2 (ja) シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
JP5857310B2 (ja) 研磨用組成物およびその製造方法
JP6110681B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
WO2015198561A1 (ja) シリコンウェーハ研磨用組成物
JP2017101248A (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
WO2015046163A1 (ja) 研磨用組成物およびその製造方法
JP5920840B2 (ja) 研磨用組成物およびその製造方法
JP6255287B2 (ja) 研磨方法およびそれに用いられる研磨用組成物
WO2015005433A1 (ja) 研磨用組成物およびその製造方法
KR101732331B1 (ko) 실리콘 웨이퍼 연마용 조성물
JP6246638B2 (ja) 研磨方法およびそれに用いられる研磨用組成物
KR101753022B1 (ko) 실리콘 웨이퍼 연마용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500230

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014751996

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157024572

Country of ref document: KR

Kind code of ref document: A