JP5890583B2 - 研磨用組成物および研磨物製造方法 - Google Patents

研磨用組成物および研磨物製造方法 Download PDF

Info

Publication number
JP5890583B2
JP5890583B2 JP2015501431A JP2015501431A JP5890583B2 JP 5890583 B2 JP5890583 B2 JP 5890583B2 JP 2015501431 A JP2015501431 A JP 2015501431A JP 2015501431 A JP2015501431 A JP 2015501431A JP 5890583 B2 JP5890583 B2 JP 5890583B2
Authority
JP
Japan
Prior art keywords
polymer
polishing
mass
polishing composition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015501431A
Other languages
English (en)
Other versions
JPWO2014129408A1 (ja
Inventor
公亮 土屋
公亮 土屋
久典 丹所
久典 丹所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2015501431A priority Critical patent/JP5890583B2/ja
Application granted granted Critical
Publication of JP5890583B2 publication Critical patent/JP5890583B2/ja
Publication of JPWO2014129408A1 publication Critical patent/JPWO2014129408A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、研磨対象物の研磨に用いられる研磨用組成物に関する。詳しくは、主にシリコンウエハ等の半導体基板その他の基板の研磨に用いられる研磨用組成物に関する。
本出願は、2013年2月21日に出願された日本国特許出願2013−032464に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
半導体装置の構成要素等として用いられるシリコンウエハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、1次ポリシング工程(1次研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。シリコンウエハ等の半導体基板を研磨する用途で主に使用される研磨用組成物に関する技術文献として、特許文献1〜4が挙げられる。
国際公開第2012/043418号 日本国特許出願公開2004−128089号公報 日本国特許出願公開昭49−76470号公報 日本国特許出願公開平8−113772号公報
シリコンウエハ等の半導体基板その他の基板を研磨するための研磨用組成物(特に精密研磨用の研磨用組成物)には、研磨後においてヘイズが低くかつ微小パーティクル(Light Point Defect;LPD)数の少ない表面を実現し得る性能が求められる。かかる用途向けの研磨用組成物には、水および砥粒のほかに、研磨対象物表面の保護や濡れ性向上等の目的で水溶性ポリマーを含有させたものが多い。なかでも汎用の水溶性ポリマーとしてヒドロキシエチルセルロースが挙げられる。
しかし、ヒドロキシエチルセルロース(HEC)は天然物(セルロース)に由来するポリマーであるため、人工的にモノマーを重合させて得られるポリマー(以下、合成ポリマーともいう。)に比べて化学構造や純度の制御性に限界がある。例えば、合成ポリマーに比べて構造制御が困難であることから、市場において容易に入手し得るHECの重量平均分子量や分子量分布(数平均分子量(Mn)に対する重量平均分子量(Mw)の比)の範囲は限られている。また、天然物を原料とするため、表面欠陥を生じる原因となり得る異物やポリマー構造の局所的な乱れ(ミクロな凝集等)等を高度に低減することは困難であり、そのような異物等の量や程度もばらつきやすい。今後、研磨後の表面品位に対する要求がますます厳しくなると見込まれるなか、HECを必須成分としない組成においてLPD数やヘイズの低減効果に優れた研磨用組成物が提供されれば有益である。
かかる事情に鑑み、本発明は、LPD数やヘイズの低減効果に優れた研磨用組成物を提供することを目的とする。関連する他の発明は、かかる研磨用組成物を用いて研磨物を製造する方法を提供することである。
この明細書により提供される研磨用組成物は、砥粒と水溶性ポリマーと水とを含む。その研磨用組成物は、上記水溶性ポリマーとして、以下の吸着比測定に基づく吸着比が5%未満であるポリマーAと、該吸着比測定に基づく吸着比が5%以上95%未満であるポリマーBとを含む。ここで、上記ポリマーBは、ヒドロキシエチルセルロース以外のポリマーから選択される。
[吸着比測定]
(1)測定対象ポリマー0.018質量%およびアンモニア0.01質量%を含み、残部が水からなる試験液L0を用意する。
(2)上記砥粒を0.18質量%、上記測定対象ポリマーを0.018質量%およびアンモニアを0.01質量%の濃度で含み、残部が水からなる試験液L1を用意する。
(3)上記試験液L1に対して遠心分離処理を行って上記砥粒を沈降させる。
(4)上記試験液L0に含まれる上記測定対象ポリマーの質量W0と、上記試験液L1に上記遠心分離処理を施した後の上澄み液に含まれる上記測定対象ポリマーの質量W1とから、以下の式により上記測定対象ポリマーの吸着比を算出する。
吸着比(%)=[(W0−W1)/W0]×100
かかる研磨用組成物によると、砥粒に対してそれぞれ上記所定の吸着比を示すポリマーAとポリマーBとを組み合わせて用いることにより、研磨用組成物の性能(例えば、LPD数の低減、ヘイズの低減等の性能)が効果的に改善され得る。
上記ポリマーBとしては、数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn;以下「分子量分布」ともいう。)が5.0以下であるものを好ましく採用し得る。このように分子量分布の狭いポリマーBを用いることにより、研磨用組成物における凝集物の発生防止、研磨後の表面における微小パーティクル(Light Point Defect;LPD)数の低減等の効果が実現され得る。
また、上記ポリマーBとしては、Mwが1×10以上25×10未満のものを好ましく採用し得る。かかるMwを満たすポリマーBは、該ポリマーBを含む研磨用組成物の濾過性や洗浄性(研磨後の表面からの除去性)等の観点から好ましい。
上記ポリマーBとしては、砥粒や研磨対象物に対して適度な吸着性を示し、かつ吸着性が高すぎることに起因する凝集物の発生や洗浄性の低下を起こしにくい等の観点から、ノニオン性のポリマーを好ましく採用し得る。
また、上記ポリマーBとしては、研磨性能改善の観点から、窒素原子を含むポリマー(例えば、アミド結合を有するペンダント基を含むポリマー)を好ましく採用し得る。ここに開示される技術におけるポリマーBの好適例として、窒素原子を含むノニオン性ポリマーが挙げられる。
上記ポリマーAとして好ましく使用し得るポリマーの一例として、ポリビニルアルコールが挙げられる。水溶性ポリマーとしてポリビニルアルコールと上記ポリマーBとを組み合わせて用いることにより、研磨用組成物の性能(例えば、LPD数の低減、ヘイズの低減等の性能)が効果的に改善され得る。
ここに開示される研磨用組成物は、砥粒、水溶性ポリマーおよび水に加えて、さらに塩基性化合物を含む態様で好ましく実施され得る。かかる態様の研磨用組成物によると、塩基性化合物の作用によって研磨効率を向上させることができる。
ここに開示される研磨用組成物は、シリコンウエハの研磨に好ましく用いることができる。上記ポリマーAと上記ポリマーBとを組み合わせて含む研磨用組成物によると、より高品位のシリコンウエハ表面が実現され得る。
この明細書によると、また、ここに開示されるいずれかの研磨用組成物を用いて研磨物(例えばシリコンウエハ)を製造する方法が提供される。その方法は、研磨対象物に研磨液(ここで「液」とは、スラリーを含む意味である。)を供給することを含む。また、上記研磨対象物の表面を上記研磨液で研磨することを含む。かかる製造方法によると、高品位の研磨物(例えば、LPD数が少なくヘイズの低い研磨物)が製造され得る。
ここに開示される技術は、シリコンウエハの研磨、例えばラッピングを経たシリコンウエハのポリシングに好ましく適用することができる。特に好ましい適用対象として、シリコンウエハのファイナルポリシングが例示される。
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、本明細書において、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。
<砥粒>
ここに開示される研磨用組成物に含まれる砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において使用し得る砥粒の好適例としてシリカ粒子が挙げられる。例えば、ここに開示される技術をシリコンウエハの研磨に使用され得る研磨用組成物に適用する場合、砥粒としてシリカ粒子を用いることが特に好ましい。その理由は、研磨対象物がシリコンウエハである場合、研磨対象物と同じ元素と酸素原子とからなるシリカ粒子を砥粒として使用すれば研磨後にシリコンとは異なる金属または半金属の残留物が発生せず、シリコンウエハ表面の汚染や研磨対象物内部にシリコンとは異なる金属または半金属が拡散することによるシリコンウエハとしての電気特性の劣化などの虞がなくなるからである。かかる観点から好ましい研磨用組成物の一形態として、砥粒としてシリカ粒子のみを含有する研磨用組成物が例示される。また、シリカは高純度のものが得られやすいという性質を有する。このことも砥粒としてシリカ粒子が好ましい理由として挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。例えば、シリコンウエハのポリシング(特に、ファイナルポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。
シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、研磨対象物(例えばシリコンウエハ)を研磨する際に、研磨速度(単位時間当たりに研磨対象物の表面を除去する量)が向上し得る。研磨対象物の表面(研磨面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。
ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が凝集した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。
砥粒の平均一次粒子径DP1は特に制限されないが、研磨効率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、平均一次粒子径DP1は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、より平滑性の高い表面が得られやすいという観点から、砥粒の平均一次粒子径DP1は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。ここに開示される技術は、より高品位の表面(例えば、LPDやPID(Polishing Induced Defect)等の欠陥が低減された表面)を得やすい等の観点から、平均一次粒子径DP1が35nm以下(より好ましくは32nm以下、例えば30nm未満)の砥粒を用いる態様でも好ましく実施され得る。
なお、ここに開示される技術において、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積S(m/g)から平均一次粒子径DP1(nm)=2720/Sの式により算出することができる。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
砥粒の平均二次粒子径DP2は特に限定されないが、研磨速度等の観点から、好ましくは10nm以上、より好ましくは20nm以上である。より高い研磨効果を得る観点から、平均二次粒子径DP2は、30nm以上であることが好ましく、35nm以上であることがより好ましく、40nm以上(例えば40nm超)であることがさらに好ましい。また、より平滑性の高い表面を得るという観点から、砥粒の平均二次粒子径DP2は、200nm以下が適当であり、好ましくは150nm以下、より好ましくは100nm以下である。ここに開示される技術は、より高品位の表面(例えば、LPDやPID等の欠陥が低減された表面)を得やすい等の観点から、平均二次粒子径DP2が60nm未満(より好ましくは55nm以下、例えば50nm未満)の砥粒を用いる態様でも好ましく実施され得る。
砥粒の平均二次粒子径DP2は、対象とする砥粒の水分散液を測定サンプルとして、例えば、日機装株式会社製の型式「UPA−UT151」を用いた動的光散乱法により測定することができる。
砥粒の平均二次粒子径DP2は、一般に砥粒の平均一次粒子径DP1と同等以上(DP2/DP1≧1)であり、典型的にはDP1よりも大きい(DP2/DP1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のDP2/DP1は、通常は1.2〜3の範囲にあることが適当であり、1.5〜2.5の範囲が好ましく、1.7〜2.3(例えば1.9を超えて2.2以下)の範囲がより好ましい。
砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、砥粒の多くがピーナッツ形状をした砥粒を好ましく採用し得る。
特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、好ましくは1.0以上であり、より好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨速度が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。
上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
<水溶性ポリマー>
ここに開示される研磨用組成物は、水溶性ポリマーを含有する。水溶性ポリマーの種類は特に制限されず、研磨用組成物の分野において公知の水溶性ポリマーのなかから適宜選択することができる。
上記水溶性ポリマーは、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記水溶性ポリマーは、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、アミド構造、第四級窒素構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。
ここに開示される研磨用組成物における水溶性ポリマーとして好ましく採用し得るポリマーとして、ポリビニルアルコールやその誘導体等のビニルアルコール系ポリマー、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー等が例示される。
ビニルアルコール系ポリマーは、典型的には、主たる繰返し単位としてビニルアルコール単位(VA単位)を含むポリマー(PVA)である。当該ポリマーにおいて、全繰返し単位のモル数に占めるVA単位のモル数の割合は、通常は50%以上であり、好ましくは65%以上、より好ましくは70%以上、例えば75%以上である。全繰返し単位が実質的にVA単位から構成されていてもよい。このようなビニルアルコール系ポリマーにおいて、VA単位以外の繰返し単位の種類は特に限定されず、例えば酢酸ビニル単位、プロピオン酸ビニル単位、ヘキサン酸ビニル単位等であり得る。
水溶性ポリマーとしてビニルアルコール系ポリマー(PVA)を用いる場合、そのけん化度は、通常は50モル%以上が適当であり、典型的には65モル%以上、好ましくは75モル%以上、例えば80モル%以上である。好ましい一態様において、PVAのけん化度は、90モル%以上であり得る。研磨用組成物の性能安定性の観点から、けん化度が95モル%以上(典型的には95モル%超、例えば98モル%超)のPVAが特に好ましい。なお、PVAのけん化度は、原理上、100モル%以下である。
なお、PVAとしては、金属イオンの含有量の少ないものを用いることが好ましい。金属イオン含有量の少ないPVAは、例えば、金属イオンの含有量の少ない原料を用いてPVAを製造する、製造後のPVAをイオン交換処理する、等の方法により得ることができる。金属イオンのなかでも、アルカリ金属イオンの含有量の少ないPVAが好ましい。ナトリウムイオンを実質的に含有しないPVAが特に好ましい。このようなPVAを用いることは、研磨後の表面欠陥を低減する観点から有利である。例えば、後述する研磨液(ワーキングスラリー)中のナトリウムイオン濃度が10ppb以下となる程度にナトリウムイオンの含有量が抑えられたPVAを好ましく使用し得る。
オキシアルキレン単位を含むポリマーは、炭素原子数2〜6のオキシアルキレン単位(典型的には−C2nO−で表される構造単位。ここでnは2〜6の整数である。)の1種または2種以上を含むポリマーであり得る。上記オキシアルキレン単位の炭素原子数が2〜3であるポリマーが好ましい。そのようなポリマーの例として、ポリエチレンオキサイド(PEO)、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体、EOとPOとのランダム共重合体等が挙げられる。
EOとPOとのブロック共重合体は、ポリエチレンオキサイド(PEO)ブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO−PPO−PEO型トリブロック体およびPPO−PEO−PPO型トリブロック体が含まれる。通常は、PEO−PPO−PEO型トリブロック体がより好ましい。
PEO−PPO−PEO型トリブロック体としては、下記一般式(1)で表されるポリマーを好ましく使用し得る。
HO−(EO)−(PO)−(EO)−H ・・・(1)
一般式(1)中のEOはオキシエチレン単位(−CHCHO−)を示し、POはオキシプロピレン単位(−CHCH(CH)O−)を示し、a、bおよびcはそれぞれ1以上(典型的には2以上)の整数を示す。
一般式(1)において、aとcとの合計は、2〜1000の範囲であることが好ましく、より好ましくは5〜500の範囲であり、さらに好ましくは10〜200の範囲である。一般式(1)中のbは、2〜200の範囲であることが好ましく、より好ましくは5〜100の範囲であり、さらに好ましくは10〜50の範囲である。
EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。
主鎖に窒素原子を含有するポリマーの例としては、N−アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N−アシルアルキレンイミン型モノマーの具体例としては、N−アセチルエチレンイミン、N−プロピオニルエチレンイミン、N−カプロイルエチレンイミン、N−ベンゾイルエチレンイミン、N−アセチルプロピレンイミン、N−ブチリルエチレンイミン等が挙げられる。N−アシルアルキレンイミン型モノマーの単独重合体としては、ポリ(N−アセチルエチレンイミン)、ポリ(N−プロピオニルエチレンイミン)、ポリ(N−カプロイルエチレンイミン)、ポリ(N−ベンゾイルエチレンイミン)、ポリ(N−アセチルプロピレンイミン)、ポリ(N−ブチリルエチレンイミン)等が挙げられる。N−アシルアルキレンイミン型モノマーの共重合体の例には、2種以上のN−アシルアルキレンイミン型モノマーの共重合体と、1種または2種以上のN−アシルアルキレンイミン型モノマーと他のモノマーとの共重合体が含まれる。
なお、本明細書中において共重合体とは、特記しない場合、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体を包括的に指す意味である。
ペンダント基に窒素原子を有するポリマーとしては、例えばN−(メタ)アクリロイル型のモノマー単位を含むポリマー、N−ビニル型のモノマー単位を含むポリマー等が挙げられる。ここで「(メタ)アクリロイル」とは、アクリルおよびメタクリルを包括的に指す意味である。
N−(メタ)アクリロイル型のモノマー単位を含むポリマーの例には、N−(メタ)アクリロイル型モノマーの単独重合体および共重合体(典型的には、N−(メタ)アクリロイル型モノマーの共重合割合が50質量%を超える共重合体)が含まれる。N−(メタ)アクリロイル型モノマーの例には、N−(メタ)アクリロイル基を有する鎖状アミドおよびN−(メタ)アクリロイル基を有する環状アミドが含まれる。
N−(メタ)アクリロイル基を有する鎖状アミドの例としては、アクリルアミド;N−メチルアクリルアミド、N−エチルアクリルアミド、N−プロピルアクリルアミド、N−イソプロピルアクリルアミド、N−ブチルアクリルアミド、N−イソブチルアクリルアミド、N−tert−ブチルアクリルアミド、N−ヘプチルアクリルアミド、N−オクチルアクリルアミド、N−tert−オクチルアクリルアミド、N−ドデシルアクリルアミド、N−オクタデシルアクリルアミド等のN−モノアルキルアクリルアミド;N−(2−ヒドロキシエチル)アクリルアミド、N−(1,1−ジメチル−2−ヒドロキシエチル)アクリルアミド、N−(1−エチル−ヒドロキシエチル)アクリルアミド、N−(2−クロロエチル)アクリルアミド、N−(2,2,2−トリクロロ−1−ヒドロキシエチル)アクリルアミド、N−(2−ジメチルアミノエチル)アクリルアミド、N−(3−ジメチルアミノプロピル)アクリルアミド、N−[3−ビス(2−ヒドロキシエチル)アミノプロピル]アクリルアミド、N−(1,1−ジメチル−2−ジメチルアミノエチル)アクリルアミド、N−(2−メチル−2−フェニル−3−ジメチルアミノプロピル)アクリルアミド、N−(2,2−ジメチル−3−ジメチルアミノプロピル)アクリルアミド、N−(2−モルホリノエチル)アクリルアミド、N−(2−アミノ−1,2−ジシアノエチル)アクリルアミド等の置換N−モノアルキルアクリルアミド;N−アリルアクリルアミド等のN−モノアルケニルアクリルアミド;N−(1,1−ジメチルプロピニル)アクリルアミド等のN−モノアルキニルアクリルアミド;N−フェニルアクリルアミド、N−ベンジルアクリルアミド、N−[4−(フェニルアミノ)フェニル]アクリルアミド等の芳香族基含有アクリルアミド;N−メチロールアクリルアミド、N−エチロールアクリルアミド、N−プロピロールアクリルアミド等のN−モノアルキロールアクリルアミド;N−メトキシメチルアクリルアミド、N−エトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミド、N−イソブトキシメチルアクリルアミド等のN−アルコキシアルキルアクリルアミド;N−メトキシアクリルアミド、N−エトキシアクリルアミド、N−プロポキシアクリルアミド、N−ブトキシアクリルアミド等のN−アルコキシアクリルアミド;N−アセチルアクリルアミド;N−ジアセトンアクリルアミド;メタクリルアミド;N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−プロピルメタクリルアミド、N−イソプロピルメタクリルアミド、N−ブチルメタクリルアミド、N−イソブチルメタクリルアミド、N−tert−ブチルメタクリルアミド、N−ヘプチルメタクリルアミド、N−オクチルメタクリルアミド、N−tert−オクチルメタクリルアミド、N−ドデシルメタクリルアミド、N−オクタデシルメタクリルアミド等のN−モノアルキルメタクリルアミド;N−(2−ヒドロキシエチル)メタクリルアミド、N−(1,1−ジメチル−2−ヒドロキシエチル)メタクリルアミド、N−(1−エチル−ヒドロキシエチル)メタクリルアミド、N−(2−クロロエチル)メタクリルアミド、N−(2,2,2−トリクロロ−1−ヒドロキシエチル)メタクリルアミド、N−(2−ジメチルアミノエチル)メタクリルアミド、N−(3−ジメチルアミノプロピル)メタクリルアミド、N−[3−ビス(2−ヒドロキシエチル)アミノプロピル]メタクリルアミド、N−(1,1−ジメチル−2−ジメチルアミノエチル)メタクリルアミド、N−(2−メチル−2−フェニル−3−ジメチルアミノプロピル)メタクリルアミド、N−(2,2−ジメチル−3−ジメチルアミノプロピル)メタクリルアミド、N−(2−モルホリノエチル)メタクリルアミド、N−(2−アミノ−1,2−ジシアノエチル)メタクリルアミド等の置換N−モノアルキルメタクリルアミド;N−アリルメタクリルアミド等のN−モノアルケニルメタクリルアミド;N−(1,1−ジメチルプロピニル)メタクリルアミド等のN−モノアルキニルメタクリルアミド;N−フェニルメタクリルアミド、N−ベンジルメタクリルアミド、N−[4−(フェニルアミノ)フェニル]メタクリルアミド等の芳香族基含有メタクリルアミド;N−メチロールメタクリルアミド、N−エチロールメタクリルアミド、N−プロピロールメタクリルアミド等のN−モノアルキロールメタクリルアミド;N−メトキシメチルメタクリルアミド、N−エトキシメチルメタクリルアミド、N−ブトキシメチルメタクリルアミド、N−イソブトキシメチルメタクリルアミド等のN−アルコキシアルキルメタクリルアミド;N−メトキシメタクリルアミド、N−エトキシメタクリルアミド、N−プロポキシメタクリルアミド、N−ブトキシメタクリルアミド等のN−アルコキシメタクリルアミド;N−アセチルメタクリルアミド;N−ジアセトンメタクリルアミド;N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジイソプロピルアクリルアミド、N,N−ジブチルアクリルアミド、N,N−ジイソブチルアクリルアミド、N,N−ジ−tert−ブチルアクリルアミド、N,N−ジヘプチルアクリルアミド、N,N−ジオクチルアクリルアミド、N,N−ジ−tert−オクチルアクリルアミド、N,N−ジドデシルアクリルアミド、N,N−ジオクタデシルアクリルアミド等のN,N−ジアルキルアクリルアミド;N,N−ジメチルアミノエチルアクリルアミド、N,N−ジエチルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミド等のN,N−ジアルキルアミノアルキルアクリルアミド;N,N−ビス(2−ヒドロキシエチル)アクリルアミド、N,N−ビス(2−シアノエチル)アクリルアミド等の置換N,N−ジアルキルアクリルアミド;N,N−ジアリルアクリルアミド等のN,N−ジアルケニルアクリルアミド;N,N−ジフェニルアクリルアミド、N,N−ジベンジルアクリルアミド等の芳香族基含有アクリルアミド;N,N−ジメチロールアクリルアミド、N,N−ジエチロールアクリルアミド、N,N−ジプロピロールアクリルアミド等のN,N−ジアルキロールアクリルアミド;N−メチル−N−メトキシアクリルアミド、N−メチル−N−エトキシアクリルアミド、N−メチル−N−プロポキシアクリルアミド、N−メチル−N−ブトキシアクリルアミド、N−エチル−N−メトキシアクリルアミド、N−エチル−N−エトキシアクリルアミド、N−エチル−N−ブトキシアクリルアミド、N−プロピル−N−メトキシアクリルアミド、N−プロピル−N−エトキシアクリルアミド、N−ブチル−N−メトキシアクリルアミド、N−ブチル−N−エトキシアクリルアミド等のN−アルコキシ−N−アルキルアクリルアミド;N,N−ジアセチルアクリルアミド;N,N−ジアセトンアクリルアミド;N,N−ジメチルメタクリルアミド、N,N−ジエチルメタクリルアミド、N,N−ジプロピルメタクリルアミド、N,N−ジイソプロピルメタクリルアミド、N,N−ジブチルメタクリルアミド、N,N−ジイソブチルメタクリルアミド、N,N−ジ−tert−ブチルメタクリルアミド、N,N−ジヘプチルメタクリルアミド、N,N−ジオクチルメタクリルアミド、N,N−ジ−tert−オクチルメタクリルアミド、N,N−ジドデシルメタクリルアミド、N,N−ジオクタデシルメタクリルアミド等のN,N−ジアルキルメタクリルアミド;N,N−ジメチルアミノエチルメタクリルアミド、N,N−ジエチルアミノエチルメタクリルアミド、N,N−ジメチルアミノプロピルメタクリルアミド、N,N−ジエチルアミノプロピルメタクリルアミド等のN,N−ジアルキルアミノアルキルメタクリルアミド;N,N−ビス(2−ヒドロキシエチル)メタクリルアミド、N,N−ビス(2−シアノエチル)メタクリルアミド等の置換N,N−ジアルキルメタクリルアミド;N,N−ジアリルメタクリルアミド等のN−ジアルケニルメタクリルアミド;N,N−ジフェニルメタクリルアミド、N,N−ジベンジルメタクリルアミド等の芳香族基含有メタクリルアミド;N,N−ジメチロールメタクリルアミド、N,N−ジエチロールメタクリルアミド、N,N−ジプロピロールメタクリルアミド等のN,N−ジアルキロールメタクリルアミド;N−メチル−N−メトキシメタクリルアミド、N−メチル−N−エトキシメタクリルアミド、N−メチル−N−プロポキシメタクリルアミド、N−メチル−N−ブトキシメタクリルアミド、N−エチル−N−メトキシメタクリルアミド、N−エチル−N−エトキシメタクリルアミド、N−エチル−N−ブトキシメタクリルアミド、N−プロピル−N−メトキシメタクリルアミド、N−プロピル−N−エトキシメタクリルアミド、N−ブチル−N−メトキシメタクリルアミド、N−ブチル−N−エトキシメタクリルアミド等のN−アルコキシ−N−アルキルメタクリルアミド;N,N−ジアセチルメタクリルアミド;N,N−ジアセトンメタクリルアミド;等が挙げられる。
N−(メタ)アクリロイル基を有する鎖状アミドをモノマー単位として含むポリマーの例として、N−イソプロピルアクリルアミドの単独重合体およびN−イソプロピルアクリルアミドの共重合体(例えば、N−イソプロピルアクリルアミドの共重合割合が50質量%を超える共重合体)、N−ヒドロキシエチルアクリルアミドの単独重合体およびN−ヒドロキシエチルアクリルアミドの共重合体(例えば、N−ヒドロキシエチルアクリルアミドの共重合割合が50質量%を超える共重合体)等が挙げられる。
N−(メタ)アクリロイル基を有する環状アミドの例としては、N−アクリロイルモルホリン、N−アクリロイルチオモルホリン、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N−メタクリロイルモルホリン、N−メタクリロイルピペリジン、N−メタクリロイルピロリジン等が挙げられる。N−(メタ)アクリロイル基を有する環状アミドをモノマー単位として含むポリマーの例として、アクリロイルモルホリン系ポリマー(PACMO)が挙げられる。アクリロイルモルホリン系ポリマーの典型例として、N−アクリロイルモルホリン(ACMO)の単独重合体およびACMOの共重合体(例えば、ACMOの共重合割合が50質量%を超える共重合体)が挙げられる。アクリロイルモルホリン系ポリマーにおいて、全繰返し単位のモル数に占めるACMO単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性ポリマーの全繰返し単位が実質的にACMO単位から構成されていてもよい。
N−ビニル型のモノマー単位を含むポリマーの例には、N−ビニルラクタム型モノマーの単独重合体および共重合体(例えば、N−ビニルラクタム型モノマーの共重合割合が50質量%を超える共重合体)、N−ビニル鎖状アミドの単独重合体および共重合体(例えば、N−ビニル鎖状アミドの共重合割合が50質量%を超える共重合体)が含まれる。
N−ビニルラクタム型モノマーの具体例としては、N−ビニルピロリドン(VP)、N−ビニルピペリドン、N−ビニルモルホリノン、N−ビニルカプロラクタム(VC)、N−ビニル−1,3−オキサジン−2−オン、N−ビニル−3,5−モルホリンジオン等が挙げられる。N−ビニルラクタム型のモノマー単位を含むポリマーの具体例としては、ポリビニルピロリドン(PVP)、ポリビニルカプロラクタム、VPとVCとのランダム共重合体、VPおよびVCの一方または両方と他のビニルモノマー(例えば、アクリル系モノマー、ビニルエステル系モノマー等)とのランダム共重合体、VPおよびVCの一方または両方を含むポリマーセグメントを含むブロック共重合体やグラフト共重合体(例えば、ポリビニルアルコールにポリビニルピロリドンがグラフトしたグラフト共重合体)等が挙げられる。なかでも好ましいものとして、ビニルピロリドン系ポリマー(PVP)が挙げられる。ここでビニルピロリドン系ポリマーとは、VPの単独重合体およびVPの共重合体(例えば、VPの共重合割合が50重量%を超える共重合体)をいう。ビニルピロリドン系ポリマーにおいて、全繰返し単位のモル数に占めるVP単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性ポリマーの全繰返し単位が実質的にVP単位から構成されていてもよい。
N−ビニル鎖状アミドの具体例としては、N−ビニルアセトアミド、N−ビニルプロピオン酸アミド、N−ビニル酪酸アミド等が挙げられる。
N−ビニル鎖状アミドの具体例としては、N−ビニルアセトアミド、N−ビニルプロピオン酸アミド、N−ビニル酪酸アミド等が挙げられる。
ペンダント基に窒素原子を有するポリマーの他の例として、アミノエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート等の、アミノ基を有するビニルモノマー(例えば、(メタ)アクリロイル基を有するモノマー)の単独重合体および共重合体が挙げられる。
ここに開示される研磨用組成物に含有させ得る水溶性ポリマーの他の例として、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体およびプルランが挙げられる。
ここに開示される研磨用組成物に含まれる水溶性ポリマーの分子量は特に限定されない。例えば重量平均分子量(Mw)が200×10以下(典型的には1×10〜200×10、例えば1×10〜150×10)の水溶性ポリマーを用いることができる。凝集物の発生をよりよく防止する観点から、通常は、Mwが100×10未満(より好ましくは80×10以下、さらに好ましくは50×10以下、典型的には40×10以下、例えば30×10以下)の水溶性ポリマーの使用が好ましい。また、研磨用組成物の濾過性や洗浄性等の観点から、Mwが25×10以下(より好ましくは20×10以下、さらに好ましくは15×10以下、例えば10×10以下)の水溶性ポリマーを好ましく使用し得る。一方、一般に水溶性ポリマーのMwが大きくなるとヘイズ低減効果は高くなる傾向にある。かかる観点から、通常は、Mwが1×10以上の水溶性ポリマーを用いることが適当であり、例えば、Mwが1×10以上の水溶性ポリマーを好ましく採用し得る。
より好ましいMwの範囲は、水溶性ポリマーの種類によっても異なり得る。例えば、水溶性ポリマーとしてのビニルアルコール系ポリマー(PVA)のMwは、典型的には30×10以下、好ましくは25×10以下、より好ましくは20×10以下、さらに好ましくは10×10以下(例えば5×10以下、さらには2×10以下)である。PVAのMwは、典型的には1×10以上、好ましくは2×10以上、例えば3×10以上である。Mwが1×10以上のPVAを用いてもよい。
また、オキシアルキレン単位を含む水溶性ポリマーのMwは、好ましくは50×10以下、より好ましくは30×10以下、さらに好ましくは25×10以下(例えば10×10以下)である。オキシアルキレン単位を含む水溶性ポリマーのMwは、典型的には1×10以上である。
また、例えば窒素原子を含有する水溶性ポリマーのMwは、典型的には50×10以下、好ましくは40×10以下、より好ましくは30×10以下、さらに好ましくは10×10以下(例えば7×10以下)である。窒素原子を含有する水溶性ポリマーのMwの下限は特に限定されない。窒素原子を含有する水溶性ポリマーのMwは、例えば1×10以上、典型的には1×10以上であり、ヘイズ低減等の観点から好ましくは2×10以上、より好ましくは3×10以上である。
特に限定するものではないが、窒素原子を含有する水溶性ポリマーのうち、N−(メタ)アクリロイル基を有する鎖状アミドをモノマー単位として含むポリマーとしては、Mwが比較的小さいものを好ましく採用することができる。例えば、LPD等の表面欠陥を低減する観点から、Mwが5×10未満のものが有利であり、4×10以下のものが好ましく、3×10以下のものがさらに好ましい。好ましい一態様において、上記ポリマーとしてMwが1×10以下のものを使用してもよい。上記ポリマーのMwの下限は特に限定されないが、通常は1×10以上であり、好ましくは2×10以上、より好ましくは3×10以上である。
特に限定するものではないが、窒素原子を含有する水溶性ポリマーのうち、N−(メタ)アクリロイル基を有する環状アミド(例えば、N−アクリロイルモルホリン)をモノマー単位として含むポリマーとしては、ヘイズ低減や表面欠陥低減等の観点から、Mwが40×10以下のものが好ましく、20×10以下のものが好ましく、10×10以下のものがさらに好ましい。上記ポリマーのMwの下限は特に制限されない。ヘイズ低減の観点からは、Mwが1×10以上であることが有利であり、1×10以上であることが好ましく、2×10以上であることがより好ましい。また、表面欠陥低減の観点からは、Mwが1×10以上であることが有利であり、5×10以上であることが好ましく、10×10以上であることがより好ましい。また、研磨速度の低下を押さえて表面品位を改善する観点から、上記ポリマーのMwは、好ましくは1×10以上40×10以下、より好ましくは1×10以上40×10以下であり、20×10以上40×10以下(例えば30×10以上40×10以下)であることがさらに好ましい。
ここに開示される技術において、水溶性ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布(Mw/Mn)が5.0以下であるものを好ましく用いることができる。研磨用組成物の性能安定性等の観点から、水溶性ポリマーのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下(例えば2.5以下)である。
なお、原理上、Mw/Mnは1.0以上である。原料の入手容易性や合成容易性の観点から、通常は、Mw/Mnが1.05以上の水溶性ポリマーを好ましく使用し得る。
なお、水溶性ポリマーのMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。
<吸着比>
ここに開示される研磨用組成物は、以下の吸着比測定における吸着比が互いに異なる2種類の水溶性ポリマーを含むことによって特徴づけられる。具体的には、ここに開示される研磨用組成物は、吸着比が5%未満であるポリマーAと、吸着比が5%以上95%未満であるポリマーB(ただし、ヒドロキシエチルセルロースを除く。)とを含有する。ポリマーAとしては、上記吸着比を満たす水溶性ポリマーを単独でまたは2種以上組み合わせて用いることができる。ポリマーBについても同様に、上記吸着比を満たす水溶性ポリマーを単独でまたは2種以上組み合わせて用いることができる。
上記吸着比測定は、以下のようにして行われる。より詳しくは、例えば、後述する実施例に記載の吸着比測定と同様にして、各水溶性ポリマーの吸着比を求めることができる。
[吸着比測定]
(1)測定対象ポリマー0.018質量%およびアンモニア0.01質量%を含み、残部が水からなる試験液L0を用意する。
(2)砥粒を0.18質量%、上記測定対象ポリマーを0.018質量%およびアンモニアを0.01質量%の濃度で含み、残部が水からなる試験液L1を用意する。
(3)上記試験液L1に対して遠心分離処理を行って上記砥粒を沈降させる。
(4)上記試験液L0に含まれる上記測定対象ポリマーの質量W0と、上記試験液L1に上記遠心分離処理を施した後の上澄み液に含まれる上記測定対象ポリマーの質量W1とから、以下の式により上記測定対象ポリマーの吸着比を算出する。
吸着比(%)=[(W0−W1)/W0]×100
上記遠心分離処理は、例えば、ベックマン・コールター社製の遠心分離器、型式「Avanti HP−30I」を用いて20000rpmの回転数で30分間遠心分離する条件で行うことができる。また、上記試験液L0に含まれる上記測定対象ポリマーの質量W0および上記試験液L1に上記遠心分離処理を施した後の上澄み液に含まれる上記測定対象ポリマーの質量W1は、上記試験液L1および上記上澄み液の全有機炭素量(TOC)を測定することにより求めることができる。TOCの測定は、例えば島津製作所社製の全有機体炭素計(燃焼触媒酸化方式、型式「TOC−5000A」)またはその相当品を用いて行うことができる。
測定対象ポリマーの吸着比測定に使用する砥粒としては、その測定対象ポリマーを含む研磨用組成物の砥粒と同じ砥粒(例えば、材質、粒子径および粒子形状が同じ砥粒)を用いることが望ましい。もっとも、実用上の便宜を考慮して、上記研磨用組成物用の砥粒を用いて吸着比測定を行う場合と比較して吸着比に大きな差がない範囲で(例えば、いずれの砥粒を用いても測定対象ポリマーの吸着比が5%より明らかに大きい、あるいは明らかに小さいといえる範囲で)、研磨用組成物用の砥粒とは異なる砥粒を用いて吸着比測定を行ってもよい。例えば、研磨用組成物用の砥粒と材質が同じであって粒子のサイズや形状(例えば、平均一次粒子径、平均二次粒子径、粒子径分布、アスペクト比、比表面積等のうち1または2以上の特性値)がやや異なる砥粒を用いてもよい。通常は、研磨用組成物用の砥粒と同種の材質であって比表面積が概ね同じ(例えば、研磨用組成物を構成する砥粒との比表面積の相違が±10%以内の)砥粒を用いて吸着比測定を行うことが適当である。
なお、特に限定するものではないが、ここに開示される技術は、比表面積が凡そ20〜200mm/g(典型的には50〜150mm/g)の砥粒を使用する研磨用組成物に好ましく適用され得る。
ここに開示される技術におけるポリマーAは、上記吸着比測定における吸着比が5%未満の水溶性ポリマーであればよく、特に制限されない。凝集物低減や洗浄性向上等の観点から、ポリマーAとしてノニオン性のポリマーを好ましく採用し得る。
ポリマーBと組み合わせて使用することの効果(例えば、ポリマーA、ポリマーBの各々の単独使用に比べて研磨性能を向上させる効果)をよりよく発揮させる観点から、ポリマーAの吸着比は、好ましくは3%未満、より好ましくは1%未満であり、実質的に0%であってもよい。
ポリマーAの一好適例としてビニルアルコール系ポリマー(PVA)が挙げられる。例えば、けん化度が75モル%以上、より好ましくは80モル%以上のPVAを、ポリマーAとして好ましく採用し得る。また、けん化度が90モル%以上、より好ましくは95モル%以上(典型的には95モル%超、例えば98%モル超)のPVAを、ポリマーAとして好ましく採用し得る。PVAのMwは、1×10以上が好ましく、より好ましくは2×10以上、例えば3×10以上である。好ましい一態様において、PVAのMwは、1×10以上であって15×10以下が好ましく、10×10以下がより好ましく、5×10以下(典型的には3×10以下)がさらに好ましい。
ポリマーAの他の好適例として、オキシアルキレン単位を含むポリマーであって上記吸着比を満たすものが挙げられる。かかるポリマーの具体例としてポリエチレンオキサイドが挙げられる。他の例として、吸着比が5%未満となる範囲でエチレンオキサイドと他のアルキレンオキサイドとが共重合されたポリアルキレンオキサイドが挙げられる。ポリマーAとしてのオキシアルキレン単位を含むポリマーのMwは、1×10以上であって30×10以下が好ましく、25×10以下がより好ましく、20×10以下(例えば10×10以下)がさらに好ましい。
ポリマーAは、1種を単独でまたは2種以上を組み合わせて用いることができる。ここに開示される研磨用組成物は、ポリマーAとして少なくともPVAを含む態様(例えば、ポリマーAとして1種または2種以上のPVAのみを含む態様)で好ましく実施され得る。
ここに開示される技術におけるポリマーBは、上記吸着比測定における吸着比が5%以上95%未満の水溶性ポリマーであればよく、特に制限されない。凝集物低減や洗浄性向上等の観点から、ポリマーBとしてノニオン性のポリマーを好ましく採用し得る。
ポリマーAと組み合わせて使用することの効果(例えば、ポリマーA、ポリマーBの各々の単独使用に比べて研磨性能を向上させる効果)をよりよく発揮する観点から、ポリマーBの吸着比は、8%以上が好ましく、10%以上がより好ましく、12%以上がさらに好ましい。また、同様の理由から、ポリマーBの吸着比PからポリマーAの吸着比Pを減じた値(P−P)は、5%以上が好ましく、7%以上がより好ましく、10%以上がさらに好ましい。また、ポリマーA,Bの吸着比の差が大きすぎても両者の併用効果が減少傾向となることがあり得る。かかる観点から、好ましい一態様において、上記吸着比の差(P−P)は、80%以下とすることができ、70%以下(例えば60%以下)とすることがより好ましい。
ポリマーBの例としては、上述したオキシアルキレン単位を含むポリマーおよび窒素原子を含有するポリマーのうち吸着比が5%以上95%未満のものを適宜採用することができる。特に限定するものではないが、N−ビニル型のモノマー単位を含むポリマーBの好適例として、N−ビニルラクタム型モノマーの単独重合体および共重合体(例えば、ポリビニルピロリドン)が挙げられる。また、N−(メタ)アクリロイル型のモノマー単位を含むポリマーBの好適例として、N−アルキル(メタ)アクリルアミドの単独重合体および共重合体(例えば、ポリイソプロピルアクリルアミド))、N−ヒドロキシアルキル(メタ)アクリルアミドの単独重合体および共重合体(例えば、ポリヒドロキシエチルアクリルアミド、N−(メタ)アクリロイル基を有する環状アミドの単独重合体および共重合体(例えば、ポリアクリロイルモルホリン)が挙げられる。
ポリマーBのMwとしては、1×10以上であって50×10以下であることが好ましく、濾過性の観点から25×10以下がより好ましく、20×10以下(例えば10×10以下)がさらに好ましい。また、ポリマーBのMwは、ヘイズ低減の観点から、1.5×10以上が有利であり、2.0×10以上が好ましく、3.0×10以上がより好ましく、3.5×10以上がさらに好ましい。
特に限定するものではないが、ここに開示される技術は、ポリマーBのMw(Mw)とポリマーAのMw(Mw)とが数値的に極端に離れていない範囲、具体的にはMwとMwのオーダーが揃っている態様で好ましく実施することができる。
ここに開示される技術において、ポリマーAとポリマーBとの使用量の比(研磨用組成物中における含有量の比としても把握され得る。)は特に限定されない。ポリマーAとポリマーBとを組み合わせて使用することの効果をよりよく発揮させる観点から、これらの使用量比(A:B)を質量基準で5:95〜95:5とすることが適当であり、10:90〜90:10(例えば20:80〜80:20)とすることが好ましい。
ここに開示される研磨用組成物は、水溶性ポリマー(典型的には、Mwが1×10以上、例えば1×10以上のポリマー)としてポリマーAおよびポリマーBのみを用いる態様で好ましく実施することができる。あるいは、ポリマーAおよびポリマーB以外の水溶性ポリマーをさらに含む態様で実施されてもよい。その場合、ポリマーAおよびポリマーB以外の水溶性ポリマー(ポリマーC)の使用量は特に限定されない。ポリマーAとポリマーBとを組み合わせて使用することの効果をよりよく発揮させる観点から、ポリマーAとポリマーBとの合計量が水溶性ポリマー全体に占める割合は、60質量%以上が好ましく、75質量%以上がより好ましく、90質量%以上(例えば95質量%以上)がさらに好ましい。
ここに開示される研磨用組成物が水溶性ポリマーCとしてセルロース誘導体を含む場合、その使用量は、該研磨用組成物に含まれる水溶性ポリマー全体の40質量%以下に抑えることが好ましく、25質量%以下とすることがより好ましく、10質量%以下(典型的には5質量%以下)とすることがさらに好ましい。このことによって、天然物に由来するセルロース誘導体の使用に起因する異物の混入や凝集の発生をより高度に抑制することができる。ここに開示される研磨用組成物は、例えば、水溶性ポリマーCとしてのセルロース誘導体を実質的に含有しない態様で好ましく実施され得る。
特に限定するものではないが、水溶性ポリマーの含有量(ポリマーA、ポリマーBおよび必要に応じて用いられ得るポリマーCの合計量)は、砥粒100質量部に対して例えば0.01質量部以上とすることができる。砥粒100質量部に対する水溶性ポリマーの含有量は、研磨後の表面平滑性向上(例えばヘイズや欠陥の低減)の観点から0.05質量部以上が適当であり、好ましくは0.1質量部以上、より好ましくは0.5質量部以上(例えば1質量部以上)である。また、砥粒100質量部に対する水溶性ポリマーの含有量は、研磨速度や洗浄性等の観点から、例えば40質量部以下とすることができ、通常は20質量部以下が適当であり、好ましくは15質量部以下、より好ましくは10質量部以下である。
<水>
ここに開示される研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99〜100体積%)が水であることがより好ましい。
ここに開示される研磨用組成物(典型的にはスラリー状の組成物)は、例えば、その固形分含量(non-volatile content;NV)が0.01質量%〜50質量%であり、残部が水系溶媒(水または水と上記有機溶剤との混合溶媒)である形態、または残部が水系溶媒および揮発性化合物(例えばアンモニア)である形態で好ましく実施され得る。上記NVが0.05質量〜40質量%である形態がより好ましい。なお、上記固形分含量(NV)とは、研磨用組成物を105℃で24時間乾燥させた後における残留物が上記研磨用組成物に占める質量の割合を指す。
<塩基性化合物>
ここに開示される研磨用組成物は、典型的には、砥粒、水溶性ポリマーおよび水の他に、塩基性化合物を含有する。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象となる面を化学的に研磨する働きをし、研磨速度の向上に寄与し得る。また、塩基性化合物は、研磨用組成物の分散安定性の向上に役立ち得る。
塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。水酸化第四級アンモニウムまたはその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N−(β−アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
研磨速度向上等の観点から好ましい塩基性化合物として、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウムおよび水酸化テトラエチルアンモニウムが例示される。より好ましいものとしてアンモニアおよび水酸化テトラメチルアンモニウムが挙げられる。特に好ましい塩基性化合物としてアンモニアが挙げられる。
<界面活性剤>
ここに開示される研磨用組成物は、砥粒、水溶性ポリマーおよび水の他に、界面活性剤(典型的には、分子量1×10未満の水溶性有機化合物)を含む態様で好ましく実施され得る。界面活性剤の使用により、研磨用組成物の分散安定性が向上し得る。また、研磨面のヘイズを低減することが容易となり得る。界面活性剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン性界面活性剤が挙げられる。
ノニオン性界面活性剤の具体例としては、EOとPOとのブロック共重合体(ジブロック体、PEO−PPO−PEO型トリブロック体、PPO−PEO−PPO型トリブロック体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン−2−エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO−PPO−PEO型のトリブロック体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。
界面活性剤の分子量は、典型的には1×10未満であり、研磨用組成物の濾過性や研磨対象物の洗浄性等の観点から9500以下が好ましい。また、界面活性剤の分子量は、典型的には200以上であり、ヘイズ低減効果等の観点から250以上が好ましく、300以上(例えば500以上)がより好ましい。なお、界面活性剤の分子量としては、GPCにより求められる重量平均分子量(Mw)(水系、ポリエチレングリコール換算)または化学式から算出される分子量を採用することができる。
界面活性剤の分子量のより好ましい範囲は、界面活性剤の種類によっても異なり得る。例えば、界面活性剤としてEOとPOとのブロック共重合体を用いる場合には、Mwが1000以上のものが好ましく、2000以上のものがより好ましく、5000以上のものがさらに好ましい。
なお、ここに開示される技術における界面活性剤として、上述したいずれかの水溶性ポリマーと同様の化学構造であってMwが1×10未満のものを使用することも可能である。したがって、ここに開示される研磨用組成物は、例えば水溶性ポリマーAとしてポリビニルアルコールを用いる場合、水溶性ポリマーAとしてのMw1×10以上のポリビニルアルコールと、界面活性剤としてのMw1×10未満のポリビニルアルコールとを併用し、さらにMw1×10以上の水溶性ポリマーBを含む態様で実施されてもよい。
ここに開示される研磨用組成物が界面活性剤を含む場合、その含有量は、本発明の効果を著しく阻害しない範囲であれば特に制限はない。通常は、洗浄性等の観点から、砥粒100質量部に対する界面活性剤の含有量を20質量部以下とすることが適当であり、15質量部以下が好ましく、10質量部以下(例えば6質量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100質量部に対する界面活性剤含有量は、0.001質量部以上が適当であり、0.005質量部以上が好ましく、0.01質量部以上(例えば0.05質量部以上、典型的には0.1質量部以上)がより好ましい。
また、水溶性ポリマーの含有量W1と界面活性剤の含有量W2との質量比(W1/W2)は特に制限されないが、通常、0.01〜200の範囲とすることが適当であり、例えば0.1〜100の範囲とすることが好ましい。好ましい一態様において、(W1/W2)は、例えば0.01〜20の範囲とすることができ、0.05〜15の範囲が好ましく、0.1〜10の範囲がより好ましい。
<その他の成分>
ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウエハのファイナルポリシングに用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸およびα−メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてエチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。
有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
<用途>
ここに開示される研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。なかでも、シリコンからなる表面を備えた研磨対象物の研磨に好適である。ここに開示される技術は、例えば、砥粒としてシリカ粒子を含む研磨用組成物(典型的には、砥粒としてシリカ粒子のみを含む研磨用組成物)であって、研磨対象物がシリコンである研磨用組成物に対して特に好ましく適用され得る。
研磨対象物の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。
ここに開示される研磨用組成物は、研磨対象物のファイナルポリシングに好ましく使用され得る。したがって、この明細書によると、上記研磨用組成物を用いたファイナルポリシング工程を含む研磨物の製造方法(例えば、シリコンウエハの製造方法)が提供される。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、ファイナルポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えばファイナルポリシングの直前に行われるポリシング工程に用いられてもよい。
ここに開示される研磨用組成物は、シリコンウエハの研磨に特に好ましく使用され得る。例えば、シリコンウエハのファイナルポリシングまたはそれよりも上流のポリシング工程に用いられる研磨用組成物として好適である。例えば、上流の工程によって表面粗さ0.01nm〜100nmの表面状態に調製されたシリコンウエハのポリシング(典型的にはファイナルポリシングまたはその直前のポリシング)への適用が効果的である。ファイナルポリシングへの適用が特に好ましい。
<研磨液>
ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
研磨液における砥粒の含有量は特に制限されないが、典型的には0.01質量%以上であり、0.05質量%以上であることが好ましく、より好ましくは0.1質量%以上、例えば0.15質量%以上である。砥粒の含有量の増大によって、より高い研磨速度が実現され得る。よりヘイズの低い表面を実現する観点から、通常は、上記含有量は10質量%以下が適当であり、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、例えば1質量%以下である。
研磨液における水溶性ポリマーの含有量は特に制限されず、例えば1×10−4質量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5×10−4質量%以上であり、より好ましくは1×10−3質量%以上、例えば2×10−3質量%以上である。また、研磨速度等の観点から、上記含有量を0.2質量%以下とすることが好ましく、0.1質量%以下(例えば0.05質量%以下)とすることがより好ましい。
界面活性剤を使用する場合、研磨液における界面活性剤の含有量は特に制限されない。通常は、上記含有量を1×10−5質量%以上(例えば1×10−4質量%以上)とすることが適当である。ヘイズ低減等の観点から、好ましい含有量は5×10−5質量%以上(例えば5×10−4質量%以上)であり、より好ましくは1×10−3質量%以上、例えば2×10−3質量%以上である。また、洗浄性や研磨速度等の観点から、上記含有量は0.2質量%以下が好ましく、0.1質量%以下(例えば0.05質量%以下)がより好ましい。
塩基性化合物を使用する場合、研磨液における塩基性化合物の含有量は特に制限されない。研磨速度向上等の観点から、通常は、その含有量を研磨液の0.001質量%以上とすることが好ましく、0.005質量%以上とすることがより好ましい。また、ヘイズ低減等の観点から、上記含有量を0.4質量%未満とすることが好ましく、0.25質量%未満とすることがより好ましい。
研磨液のpHは特に制限されない。例えば、pH8.0〜12.0が好ましく、9.0〜11.0がより好ましい。かかるpHの研磨液となるように塩基性化合物を含有させることが好ましい。上記pHは、例えば、シリコンウエハの研磨に用いられる研磨液(例えばファイナルポリシング用の研磨液)に好ましく適用され得る。
<研磨用組成物の調製>
ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
特に限定するものではないが、塩基性化合物を含む組成の研磨用組成物については、より凝集の少ない研磨用組成物を安定して(再現性よく)製造する観点から、例えば、砥粒(例えばシリカ粒子)と塩基性化合物と水とを含む分散液(以下「塩基性砥粒分散液」ともいう。)を用意し、この塩基性砥粒分散液と水溶性ポリマーとを混合する製造方法を好ましく採用することができる。
このように砥粒と塩基性化合物とが共存している塩基性砥粒分散液は、上記塩基性化合物により上記砥粒の静電反撥が強められているので、塩基性化合物を含まない(典型的にはほぼ中性の)砥粒分散液に比べて砥粒の分散安定性が高い。このため、中性の砥粒分散液に水溶性ポリマーを加えた後に塩基性化合物を加える態様や、中性の砥粒分散液と水溶性ポリマーと塩基性化合物とを一度に混合する態様に比べて、砥粒の局所的な凝集が生じにくい。このことは、研磨用組成物の濾過性向上や研磨後の表面における欠陥低減等の観点から好ましい。
なお、上記水溶性ポリマーは、あらかじめ水に溶解した水溶液(以下「ポリマー水溶液」ともいう。)の形態で塩基性砥粒分散液と混合することが好ましい。このことによって、砥粒の局所的な凝集がよりよく抑制され得る。
塩基性砥粒分散液とポリマー水溶液とを混合する際には、塩基性砥粒分散液に対してポリマー水溶液を添加することが好ましい。かかる混合方法によると、例えばポリマー水溶液に対して塩基性砥粒分散液を添加する混合方法に比べて、砥粒の局所的な凝集をよりよく防止することができる。砥粒がシリカ粒子(例えばコロイダルシリカ粒子)である場合には、上記のように塩基性砥粒分散液に対してポリマー水溶液を添加する混合方法を採用することが特に有意義である。
上記塩基性砥粒分散液は、製造目的たる研磨用組成物を構成する砥粒、水溶性ポリマー、塩基性化合物および水のうち、砥粒の少なくとも一部と、塩基性化合物の少なくとも一部と、水の少なくとも一部とを含有する。例えば、上記砥粒分散液が、研磨用組成物を構成する砥粒の全部と、塩基性化合物の少なくとも一部と、水の少なくとも一部とを含有する態様を好ましく採用し得る。
塩基性砥粒分散液中における塩基性化合物の含有量は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。塩基性化合物の含有量の増加によって、研磨用組成物の調製時における局所的な凝集の発生がよりよく抑制される傾向となる。また、塩基性砥粒分散液中における塩基性化合物の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。塩基性化合物の含有量の低下によって、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。
塩基性砥粒分散液のpHは、8以上が好ましく、より好ましくは9以上である。pHの上昇によって、この塩基性砥粒分散液に水溶性ポリマーまたはその水溶液を添加した場合に、局所的な凝集の発生がよりよく抑制される傾向となる。塩基性砥粒分散液のpHは、12以下が好ましく、より好ましくは11.5以下であり、さらに好ましくは10.5以下である。塩基性砥粒分散液のpHを塩基性側においてより低く設定することにより、該分散液の調製に必要な塩基性化合物の量が少なくなるので、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。また、例えば砥粒がシリカ粒子である場合、pHが高すぎないことはシリカの溶解を抑制する観点からも有利である。混合物のpHは、塩基性化合物の配合量等により調整することができる。
かかる塩基性砥粒分散液は、砥粒と塩基性化合物と水とを混合することにより調製することができる。上記混合には、例えば翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いることができる。塩基性砥粒分散液に含まれる各成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。好ましい一態様の一例として、砥粒と水とを含むほぼ中性の分散液と、塩基性化合物またはその水溶液とを混合する態様が挙げられる。
上記水溶性ポリマーを塩基性砥粒分散液に水溶液(ポリマー水溶液)の形態で混合する場合、そのポリマー水溶液中における水溶性ポリマーの含有量は、好ましくは0.02質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。水溶性ポリマーの含有量の増加によって、研磨用組成物中における水溶性ポリマーの含有量の調整が容易となる。ポリマー水溶液中における水溶性ポリマーの含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。水溶性ポリマーの含有量の減少によって、このポリマー水溶液を塩基性砥粒分散液と混合する際に、砥粒の局所的な凝集がよりよく抑制される傾向となる。
上記ポリマー水溶液のpHは特に限定されず、例えばpH2〜11に調整され得る。上記ポリマー水溶液は、好ましくは中性付近から塩基性付近の液性に調整され、より好ましくは塩基性に調整される。より具体的には、ポリマー水溶液のpHは、8以上が好ましく、より好ましくは9以上である。pH調整は、典型的には、研磨用組成物を構成する塩基性化合物の一部を用いて行うことができる。ポリマー水溶液のpHの上昇によって、塩基性砥粒分散液にポリマー水溶液を添加した場合に、砥粒の局所的な凝集がよりよく抑制され得る。ポリマー水溶液のpHは、12以下が好ましく、より好ましくは10.5以下である。ポリマー水溶液のpHが塩基性側において低くなると、該ポリマー水溶液の調製に必要な塩基性化合物の量が少なくなるため、研磨用組成物中における塩基性化合物の含有量の調整が容易となる。また、例えば砥粒がシリカ粒子である場合、pHが高すぎないことはシリカの溶解を抑制する観点からも有利である。
塩基性砥粒分散液にポリマー水溶液を投入する際の速度(供給レート)は、該分散液1Lに対してポリマー水溶液500mL/分以下とすることが好ましく、より好ましくは100mL/分以下、さらに好ましくは50mL/分以下である。投入速度の減少によって、砥粒の局所的な凝集をよりよく抑制することができる。
好ましい一態様において、ポリマー水溶液は、塩基性砥粒分散液に投入する前に濾過することができる。ポリマー水溶液を濾過することにより、該ポリマー水溶液中に含まれる異物や凝集物の量をさらに低減することができる。
濾過の方法は特に限定されず、例えば、常圧で行う自然濾過の他、吸引濾過、加圧濾過、遠心濾過等の公知の濾過方法を適宜採用することができる。濾過に用いるフィルタは、目開きを基準に選択されることが好ましい。研磨用組成物の生産効率の観点から、フィルタの目開きは、0.05μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは0.2μmである。また、異物や凝集物の除去効果を高める観点から、フィルタの目開きは、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは50μm以下である。フィルタの材質や構造は特に限定されない。フィルタの材質としては、例えば、セルロース、ナイロン、ポリスルホン、ポリエーテルスルホン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリカーボネート、ガラス等が挙げられる。フィルタの構造としては、例えばデプス、プリーツ、メンブレン等が挙げられる。
上記で説明した研磨用組成物製造方法は、塩基性砥粒分散液と水溶性ポリマーまたはその水溶液とを混合して得られる研磨用組成物が研磨液(ワーキングスラリー)またはこれとほぼ同じNVである場合にも、後述する濃縮液である場合にも好ましく適用され得る。
<研磨>
ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に好適に使用することができる。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(典型的にはスラリー状の研磨液であり、研磨スラリーと称されることもある。)を用意する。上記研磨液を用意することには、上述のように、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。
次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウエハのファイナルポリシングを行う場合には、ラッピング工程および1次ポリシング工程を経たシリコンウエハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウエハの表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウエハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
上述のような研磨工程は、研磨物(例えば、シリコンウエハ等の基板)の製造プロセスの一部であり得る。したがって、この明細書によると、上記研磨工程を含む研磨物の製造方法(好適には、シリコンウエハの製造方法)が提供される。
なお、ここに開示される研磨用組成物を含む研磨液を用いた研磨工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
<洗浄>
ここに開示される研磨用組成物を用いて研磨された研磨物は、典型的には、研磨後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC−1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液。以下、SC−1洗浄液を用いて洗浄することを「SC−1洗浄」という。)、SC−2洗浄液(HClとHとHOとの混合液。)等を用いることができる。洗浄液の温度は、例えば常温〜90℃程度とすることができる。洗浄効果を向上させる観点から、50℃〜85℃程度の洗浄液を好ましく使用し得る。
<濃縮液>
ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍〜100倍程度とすることができ、通常は5倍〜50倍程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍〜40倍であり、例えば15倍〜25倍である。
このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えてもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。
上記濃縮液のNVは、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、濃縮液のNVは、40質量%以下とすることが適当であり、30質量%以下が好ましく、より好ましくは20質量%以下、例えば15質量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液のNVは、0.5質量%以上とすることが適当であり、好ましくは1質量%以上、より好ましくは3質量%以上、例えば5質量%以上である。
上記濃縮液における砥粒の含有量は、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。好ましい一態様において、砥粒の含有量を30質量%以下としてもよく、20質量%以下(例えば15質量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5質量%以上とすることができ、好ましくは1質量%以上、より好ましくは3質量%以上(例えば5質量%以上)である。
上記濃縮液における水溶性ポリマーの含有量は、例えば3質量%以下とすることができる。研磨用組成物の濾過性や洗浄性等の観点から、通常、上記含有量は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。また、上記含有量は、製造、流通、保存等の際における利便性やコスト低減等の観点から、通常は1×10−3質量%以上であることが適当であり、好ましくは5×10−3質量%以上、より好ましくは1×10−2質量%以上である。
ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、水系溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。ここに開示される技術は、例えば、一剤型の研磨用組成物の形態で好ましく実施され得る。
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
<吸着比の測定(1)>
重量平均分子量(Mw)が1.3×10のポリビニルアルコール(けん化度95モル%以上;以下「PVA−A」と表記)、アンモニア水(濃度29%)および脱イオン水を混合して、PVA−Aを0.018%、アンモニア(NH)を0.01%の濃度で含み、残部が水からなる試験液L0を調製した。その試験液L0について、島津製作所社製の全有機体炭素計(燃焼触媒酸化方式、型式「TOC−5000A」)を用いて全有機炭素量(TOC)を測定した。
一方、後述する実施例1〜8,11,12および比較例1〜4で用いたものと同じ砥粒、PVA−A、アンモニア水(濃度29%)および脱イオン水を混合して、上記砥粒を0.18%、PVA−Aを0.018%、アンモニア(NH)を0.01%の濃度で含み、残部が水からなる試験液L1を調製した。その試験液L1に対し、ベックマン・コールター社製の遠心分離器、型式「Avanti HP−30I」を用いて20000rpmの回転数で30分間の遠心分離処理を行った。上記遠心分離処理後の上澄み液を回収し、その上澄み液のTOCを上記全有機体炭素計を用いて計測した。上記試験液L0のTOC値および上記試験液L1の上澄み液のTOC値からPVA−Aの吸着比を算出したところ、ほぼ0%であった。
PVA−Aに代えて、Mwが2.2×10のポリビニルアルコール(けん化度95モル%以上;以下「PVA−B」と表記)、Mwが7.5×10のポリビニルアルコール(けん化度95モル%以上;以下「PVA−C」と表記)およびMwが1.3×10のポリビニルアルコール(ビニルアルコール単位80モル%、ヘキサン酸ビニル単位20モル%;以下「PVA−D」と表記)をそれぞれ使用して、同様に吸着比を算出した。その結果、PVA−B、PVA−CおよびPVA−Dのいずれについても吸着比はほぼ0%であった。
PVA−Aに代えて、Mwが4.5×10のポリアクリロイルモルホリン(以下「PACMO−A」と表記)、Mwが15×10のポリアクリロイルモルホリン(以下「PACMO−B」と表記)、Mwが35×10のポリアクリロイルモルホリン(以下「PACMO−C」と表記)、Mwが6.0×10のポリイソプロピルアクリルアミド(以下「PNIPAM」と表記)、Mwが4.5×10のポリビニルピロリドン(以下「PVP−A」と表記)およびMwが6.0×10のポリビニルピロリドン(以下「PVP−B」と表記)をそれぞれ使用して、同様に吸着比を算出した。その結果、PACMO−Aの吸着比は15%、PACMO−Bの吸着比は20%、PACMO−Cの吸着比は30%、PNIPAMの吸着率は35%、PVP−Aの吸着比は90%、PVP−Bの吸着比は90%であった。
<吸着比の測定(2)>
試験液L1の調製において後述する実施例9,10で用いたものと同じ砥粒を使用した他は上記吸着比の測定(1)と同様にして、PVA−D,Mwが0.3×10のポリビニルアルコール(ビニルアルコール単位80モル%、ヘキサン酸ビニル単位20モル%;以下「PVA−E」と表記)およびPVP−Aの吸着比を測定した。その結果、PVA−DおよびPVA−Eの吸着比はほぼ0%であり、PVP−Aの吸着比は90%であった。
<研磨用組成物の調製>
(実施例1)
砥粒、水溶性ポリマー、アンモニア水(濃度29%)および脱イオン水を混合して、研磨用組成物の濃縮液を得た。この濃縮液を脱イオン水で20倍に希釈して、実施例1に係る研磨用組成物を調製した。
砥粒としては、平均一次粒子径25nm、平均二次粒子径46nmのコロイダルシリカを使用した。上記平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたものである。また、上記平均二次粒子径は、日機装株式会社製の型式「UPA−UT151」を用いて測定された体積平均二次粒子径である(以下の例において同じ。)。
水溶性ポリマーとしてはPVA−AとPACMO−Aとを50:50の質量比で使用した。
砥粒、水溶性ポリマーおよびアンモニア水の使用量は、研磨用組成物中における砥粒の含有量が0.18%となり、水溶性ポリマーの含有量(PVA−AとPACMO−Aとの合計量)が0.018%となり、アンモニア(NH)の含有量が0.01%となる量とした。この研磨用組成物のpHは10.2であった。
(実施例2)
水溶性ポリマーとしてPVA−AとPACMO−Aとを30:70の質量比で使用した他は実施例1と同様にして、実施例2に係る研磨用組成物を調製した。
(実施例3)
水溶性ポリマーとしてPVA−AとPACMO−Aとを25:75の質量比で使用した他は実施例1と同様にして、実施例3に係る研磨用組成物を調製した。
(実施例4)
水溶性ポリマーとしてPVA−AとPACMO−Aとを75:25の質量比で使用した他は実施例1と同様にして、実施例4に係る研磨用組成物を調製した。
(実施例5)
水溶性ポリマーとしてPVA−BとPNIPAMとを50:50の質量比で使用した他は実施例1と同様にして、実施例5に係る研磨用組成物を調製した。
(実施例6)
本例では、砥粒、水溶性ポリマーおよびアンモニア水の使用量を、研磨用組成物中における砥粒の含有量が0.09%となり、水溶性ポリマーの含有量(PVA−AとPACMO−Aとの合計量)が0.010%となり、アンモニア(NH)の含有量が0.005%となる量とした。その他の点は実施例1と同様にして、実施例6に係る研磨用組成物を調製した。
(実施例7)
水溶性ポリマーとしてPVA−DとPACMO−Aとを50:50の質量比で使用した他は実施例6と同様にして、実施例7に係る研磨用組成物を調製した。
(実施例8)
水溶性ポリマーとしてPVA−DとPVP−Aとを50:50の質量比で使用した他は実施例6と同様にして、実施例8に係る研磨用組成物を調製した。
(実施例9)
本例では、砥粒として、平均一次粒子径35nm、平均二次粒子径66nmのコロイダルシリカを使用した。水溶性ポリマーとしては、PVA−DとPVP−Aとを30:70の質量比で使用した。砥粒、水溶性ポリマーおよびアンモニア水の使用量は、研磨用組成物中における砥粒の含有量が0.50%となり、水溶性ポリマーの含有量(PVA−DとPVP−Aとの合計量)が0.008%となり、アンモニア(NH)の含有量が0.01%となる量とした。その他の点は実施例1と同様にして、実施例9に係る研磨用組成物を調製した。
(実施例10)
水溶性ポリマーとしてPVA−EとPVP−Aとを30:70の質量比で使用した他は実施例9と同様にして、実施例10に係る研磨用組成物を調製した。
(実施例11)
水溶性ポリマーとしてPVA−AとPACMO−Bとを50:50の質量比で使用した他は実施例6と同様にして、実施例11に係る研磨用組成物を調製した。
(実施例12)
水溶性ポリマーとしてPVA−AとPACMO−Cとを50:50の質量比で使用した他は実施例6と同様にして、実施例12に係る研磨用組成物を調製した。
(比較例1)
水溶性ポリマーとしてPVA−Aを単独で使用した他は実施例1と同様にして、比較例1に係る研磨用組成物を調製した。
(比較例2)
水溶性ポリマーとしてPACMO−Aを単独で使用した他は実施例1と同様にして、比較例2に係る研磨用組成物を調製した。
(比較例3)
水溶性ポリマーとしてPVA−BとPVA−Cとを50:50の質量比で使用した他は実施例1と同様にして、比較例3に係る研磨用組成物を調製した。
(比較例4)
水溶性ポリマーとしてPACMO−AとPVP−Bとを50:50の質量比で使用した他は実施例1と同様にして、比較例4に係る研磨用組成物を調製した。
<シリコンウエハの研磨>
各例に係る研磨用組成物をそのまま研磨液として使用して、シリコンウエハの表面を下記の条件で研磨した。シリコンウエハとしては、直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であるものを、研磨スラリー(株式会社フジミインコーポレーテッド製、商品名「GLANZOX 2100」)を用いて予備研磨を行うことにより表面粗さ0.1nm〜10nmに調整して使用した。
[研磨条件]
研磨機:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX−332B」
研磨テーブル:上記研磨機の有する3テーブルのうち後段の2テーブルを用いて、予備研磨後のファイナル研磨1段目および2段目を実施した。
(以下の条件は各テーブル同一である。)
研磨荷重:15kPa
定盤回転数:30rpm
ヘッド回転数:30rpm
研磨時間:2分
研磨液の温度:20℃
研磨液の供給速度:2.0リットル/分(掛け流し使用)
<洗浄>
研磨後のシリコンウエハを、NHOH(29%):H(31%):脱イオン水(DIW)=1:3:30(体積比)の洗浄液を用いて洗浄した(SC−1洗浄)。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持し、研磨後のシリコンウエハを第1の洗浄槽に6分、その後超純水と超音波によるリンス槽を経て、第2の洗浄槽に6分、それぞれ上記超音波発振器を作動させた状態で浸漬した。
<微小パーティクル数評価>
ケーエルエー・テンコール社製のウエハ検査装置、商品名「Surfscan SP2」を用いて、洗浄後の直径300mmのシリコンウエハ表面に存在する37nm以上の大きさのパーティクルの個数(LPD数)をカウントした。得られた結果を、比較例1のLPD数を100%とする相対値に換算して表1に示した。
<ヘイズ測定>
洗浄後のシリコンウエハ表面につき、ケーエルエー・テンコール社製のウエハ検査装置、商品名「Surfscan SP2」を用いて、DWOモードでヘイズ(ppm)を測定した。得られた結果を、比較例1のヘイズ値を100%とする相対値に換算して表1に示した。
Figure 0005890583
表1に示されるように、水溶性ポリマーとしてポリマーAとポリマーBとを組み合わせて用いた実施例1〜12の研磨用組成物は、1種類のポリマーAを単独で使用した比較例1および1種類のポリマーBを単独で使用した比較例2に比べて、LPD数低減およびヘイズ低減のいずれの効果にも優れたものであった。ポリマーBのMwがポリマーAのMwの3倍以上である実施例1〜4および実施例6〜12の研磨用組成物では特に良好な結果が得られた。
これに対して、水溶性ポリマーとしてポリマーAに該当するもののみを2種組み合わせて用いた比較例3およびポリマーBに該当するもののみを2種組み合わせて用いた比較例4では、実施例1〜12とは異なり、水溶性ポリマーの組合せによるLPD数およびヘイズの低減効果は認められなかった。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (9)

  1. シリコンウエハの研磨に用いられる研磨用組成物であって、
    砥粒と水溶性ポリマーと水とを含み、
    前記砥粒としてシリカ粒子を含み、
    前記水溶性ポリマーとして、以下の吸着比測定:
    (1)測定対象ポリマー0.018質量%およびアンモニア0.01質量%を含み、残部が水からなる試験液L0を用意する;
    (2)前記砥粒を0.18質量%、前記測定対象ポリマーを0.018質量%およびアンモニアを0.01質量%の濃度で含み、残部が水からなる試験液L1を用意する;
    (3)前記試験液L1に対して遠心分離処理を行って前記砥粒を沈降させる;
    (4)前記試験液L0に含まれる前記測定対象ポリマーの質量W0と、前記試験液L1の前記遠心分離処理後の上澄み液に含まれる前記測定対象ポリマーの質量W1とから、次式:
    吸着比(%)=[(W0−W1)/W0]×100;
    により前記測定対象ポリマーの吸着比を算出する;
    に基づく吸着比が5%未満であるポリマーAと、
    前記吸着比測定に基づく吸着比が5%以上95%未満であるポリマーBとを含み、
    ここで、前記ポリマーBは、窒素原子を含有するノニオン性ポリマーであって、かつヒドロキシエチルセルロース以外のポリマーから選択され
    前記ポリマーAは、分子中に水酸基を有するポリマーおよび分子中にポリオキシアルキレン構造を有するポリマーから選択される、研磨用組成物。
  2. 前記ポリマーBは、数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)が5.0以下である、請求項1に記載の研磨用組成物。
  3. 前記ポリマーBの重量平均分子量(Mw)は1×10以上25×10未満である、請求項1または2に記載の研磨用組成物。
  4. 前記ポリマーBは、アミド結合を有するペンダント基を含む、請求項1からのいずれか一項に記載の研磨用組成物。
  5. 前記ポリマーAは、前記分子中に水酸基を有するポリマーから選択される、請求項1から4のいずれか一項に記載の研磨用組成物。
  6. 前記ポリマーAは、ビニルアルコール系ポリマーから選択される、請求項1から5のいずれか一項に記載の研磨用組成物。
  7. 前記ポリマーAはポリビニルアルコールである、請求項1からのいずれか一項に記載の研磨用組成物。
  8. さらに塩基性化合物を含む、請求項1からのいずれか一項に記載の研磨用組成物。
  9. 請求項1から8のいずれか一項に記載の研磨用組成物を含む研磨液を用意すること;
    前記研磨液を研磨対象物としてのシリコンウエハに供給すること;および、
    前記研磨対象物の表面を前記研磨液で研磨すること;
    を包含する、シリコンウエハ製造方法。
JP2015501431A 2013-02-21 2014-02-14 研磨用組成物および研磨物製造方法 Active JP5890583B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501431A JP5890583B2 (ja) 2013-02-21 2014-02-14 研磨用組成物および研磨物製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013032464 2013-02-21
JP2013032464 2013-02-21
PCT/JP2014/053540 WO2014129408A1 (ja) 2013-02-21 2014-02-14 研磨用組成物および研磨物製造方法
JP2015501431A JP5890583B2 (ja) 2013-02-21 2014-02-14 研磨用組成物および研磨物製造方法

Publications (2)

Publication Number Publication Date
JP5890583B2 true JP5890583B2 (ja) 2016-03-22
JPWO2014129408A1 JPWO2014129408A1 (ja) 2017-02-02

Family

ID=51391200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015501431A Active JP5890583B2 (ja) 2013-02-21 2014-02-14 研磨用組成物および研磨物製造方法

Country Status (8)

Country Link
US (1) US9566685B2 (ja)
EP (1) EP2960314A4 (ja)
JP (1) JP5890583B2 (ja)
KR (1) KR102226501B1 (ja)
CN (1) CN105073941B (ja)
SG (1) SG11201506296VA (ja)
TW (1) TWI624537B (ja)
WO (1) WO2014129408A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389629B2 (ja) * 2014-03-31 2018-09-12 ニッタ・ハース株式会社 研磨用組成物
JP6389630B2 (ja) * 2014-03-31 2018-09-12 ニッタ・ハース株式会社 研磨用組成物
JP6185432B2 (ja) 2014-06-24 2017-08-23 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP2016056254A (ja) * 2014-09-08 2016-04-21 株式会社フジミインコーポレーテッド 研磨用組成物
US10179870B2 (en) 2014-12-05 2019-01-15 3M Innovative Properties Company Abrasive composition
JP6403324B2 (ja) * 2014-12-25 2018-10-10 花王株式会社 シリコンウェーハ用研磨液組成物
JP6367113B2 (ja) * 2014-12-25 2018-08-01 花王株式会社 シリコンウェーハ用研磨液組成物
JP2016213216A (ja) * 2015-04-28 2016-12-15 花王株式会社 シリコンウェーハ用研磨液組成物
JP6801964B2 (ja) * 2016-01-19 2020-12-16 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
CN108713242A (zh) * 2016-03-01 2018-10-26 福吉米株式会社 硅基板的研磨方法及研磨用组合物套组
WO2018131508A1 (ja) * 2017-01-16 2018-07-19 日揮触媒化成株式会社 研磨組成物
WO2018168206A1 (ja) * 2017-03-14 2018-09-20 株式会社フジミインコーポレーテッド 研磨用組成物、その製造方法ならびにこれを用いた研磨方法および基板の製造方法
US10319601B2 (en) * 2017-03-23 2019-06-11 Applied Materials, Inc. Slurry for polishing of integrated circuit packaging
CN106947396B (zh) * 2017-03-23 2019-02-26 河南联合精密材料股份有限公司 研磨液用悬浮体系、研磨液及其制备方法
JP6879798B2 (ja) * 2017-03-30 2021-06-02 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
CN110462797B (zh) * 2017-03-31 2023-09-22 福吉米株式会社 研磨用组合物
JP6951933B2 (ja) * 2017-10-10 2021-10-20 花王株式会社 シリコンウェーハ用仕上げ研磨液組成物
WO2019187969A1 (ja) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物
JP6929239B2 (ja) * 2018-03-30 2021-09-01 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352042A (ja) * 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物
JPWO2007088868A1 (ja) * 2006-01-31 2009-06-25 日立化成工業株式会社 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
JPWO2008044477A1 (ja) * 2006-10-06 2010-02-04 Jsr株式会社 化学機械研磨用水系分散体および半導体装置の化学機械研磨方法
JP2010028080A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2012079964A (ja) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd 半導体ウェーハ用研磨液組成物
WO2013125441A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2013125446A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034358A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034379A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536683A (en) * 1967-04-07 1970-10-27 Du Pont Process for isolating a fluorine-containing polymer
DE2247067C3 (de) 1972-09-26 1979-08-09 Wacker-Chemitronic Gesellschaft Fuer Elektronik-Grundstoffe Mbh, 8263 Burghausen Verwendung einer Poliersuspension zum schleierfreien Polieren von Halbleiteroberflächen
JPH08113772A (ja) 1994-10-18 1996-05-07 Asahi Denka Kogyo Kk シリコンウェハ研磨剤組成物及びシリコンウェハ研磨剤用組成物
US5860848A (en) * 1995-06-01 1999-01-19 Rodel, Inc. Polishing silicon wafers with improved polishing slurries
WO2000004757A1 (fr) * 1998-07-23 2000-02-03 Kao Corporation Milieux artificiels aqueux
CN1290162C (zh) * 2001-02-20 2006-12-13 日立化成工业株式会社 抛光剂及基片的抛光方法
JP4212861B2 (ja) 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
US20060135045A1 (en) * 2004-12-17 2006-06-22 Jinru Bian Polishing compositions for reducing erosion in semiconductor wafers
WO2006112519A1 (ja) * 2005-04-14 2006-10-26 Showa Denko K.K. 研磨組成物
JP2007105833A (ja) * 2005-10-14 2007-04-26 Kyocera Chemical Corp 研磨剤、その製造方法及び研磨方法
WO2008013226A1 (fr) * 2006-07-28 2008-01-31 Showa Denko K.K. Composition de polissage
JP5060755B2 (ja) * 2006-09-29 2012-10-31 Sumco Techxiv株式会社 半導体ウェハの粗研磨方法、及び半導体ウェハの研磨装置
US20110081780A1 (en) 2008-02-18 2011-04-07 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2011171689A (ja) * 2009-07-07 2011-09-01 Kao Corp シリコンウエハ用研磨液組成物
DE112011103232T5 (de) 2010-09-27 2013-06-27 Fujimi Incorporated Oberflächenbehandlungszusammensetzung und Oberflächenbehandlungsverfahren unter Verwendung derselben
WO2012090755A1 (ja) 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 記録媒体用ガラス基板を製造する方法
CN103403123B (zh) * 2011-01-26 2015-04-08 福吉米株式会社 研磨用组合物、使用其的研磨方法及基板的制造方法
KR102000304B1 (ko) * 2011-06-14 2019-07-15 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352042A (ja) * 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物
JPWO2007088868A1 (ja) * 2006-01-31 2009-06-25 日立化成工業株式会社 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
JPWO2008044477A1 (ja) * 2006-10-06 2010-02-04 Jsr株式会社 化学機械研磨用水系分散体および半導体装置の化学機械研磨方法
JP2010028080A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2012079964A (ja) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd 半導体ウェーハ用研磨液組成物
WO2013125441A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2013125446A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034358A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034379A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法

Also Published As

Publication number Publication date
WO2014129408A1 (ja) 2014-08-28
CN105073941B (zh) 2018-01-30
EP2960314A4 (en) 2016-11-23
TW201439296A (zh) 2014-10-16
SG11201506296VA (en) 2015-09-29
US9566685B2 (en) 2017-02-14
KR102226501B1 (ko) 2021-03-11
KR20150123265A (ko) 2015-11-03
US20160001416A1 (en) 2016-01-07
CN105073941A (zh) 2015-11-18
TWI624537B (zh) 2018-05-21
EP2960314A1 (en) 2015-12-30
JPWO2014129408A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5890583B2 (ja) 研磨用組成物および研磨物製造方法
JP6387032B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP6360108B2 (ja) シリコンウエハ研磨用組成物
JP6514653B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
JP5857310B2 (ja) 研磨用組成物およびその製造方法
JP6259723B2 (ja) シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
JP5892638B2 (ja) 研磨用組成物およびその製造方法
JP5920840B2 (ja) 研磨用組成物およびその製造方法
JP6691774B2 (ja) 研磨用組成物およびその製造方法
JP6255287B2 (ja) 研磨方法およびそれに用いられる研磨用組成物
KR101732331B1 (ko) 실리콘 웨이퍼 연마용 조성물
JP6246638B2 (ja) 研磨方法およびそれに用いられる研磨用組成物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R150 Certificate of patent or registration of utility model

Ref document number: 5890583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250