WO2013125446A1 - 研磨剤、研磨剤セット及び基体の研磨方法 - Google Patents

研磨剤、研磨剤セット及び基体の研磨方法 Download PDF

Info

Publication number
WO2013125446A1
WO2013125446A1 PCT/JP2013/053559 JP2013053559W WO2013125446A1 WO 2013125446 A1 WO2013125446 A1 WO 2013125446A1 JP 2013053559 W JP2013053559 W JP 2013053559W WO 2013125446 A1 WO2013125446 A1 WO 2013125446A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
mass
insulating material
less
Prior art date
Application number
PCT/JP2013/053559
Other languages
English (en)
French (fr)
Inventor
利明 阿久津
久貴 南
友洋 岩野
耕司 藤崎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to SG11201405091TA priority Critical patent/SG11201405091TA/en
Priority to US14/379,954 priority patent/US10557058B2/en
Priority to JP2014500686A priority patent/JP6044630B2/ja
Priority to CN201380010364.1A priority patent/CN104137232A/zh
Priority to CN201810916995.4A priority patent/CN108831830B/zh
Priority to KR1020147024760A priority patent/KR102005132B1/ko
Publication of WO2013125446A1 publication Critical patent/WO2013125446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Definitions

  • the present invention relates to an abrasive, an abrasive set, and a method for polishing a substrate using the abrasive or the abrasive set.
  • the present invention relates to an abrasive used in a planarization process of a substrate surface, a polishing agent set, and a polishing method for a substrate using the polishing agent or the polishing agent set, which is a manufacturing technique of a semiconductor element.
  • the present invention relates to a polishing agent and a polishing agent set used in a planarization process of a shallow trench isolation (shallow trench isolation, hereinafter referred to as “STI”) insulating material, premetal insulating material, interlayer insulating material, and the like. Further, the present invention relates to a method for polishing a substrate using the abrasive or the abrasive set.
  • STI shallow trench isolation
  • CMP Chemical Mechanical Polishing
  • CMP abrasive The most frequently used CMP abrasive is a silica-based CMP abrasive containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • silica silica
  • silica silica particles
  • fumed silica fumed silica
  • colloidal silica as abrasive grains.
  • Silica-based CMP abrasives are characterized by high versatility, and polishing a wide variety of materials regardless of insulating materials or conductive materials by appropriately selecting the abrasive content, pH, additives, etc. Can do.
  • CMP abrasives containing cerium compound particles as abrasive grains mainly for insulating materials such as silicon oxide is also expanding.
  • a cerium oxide-based CMP abrasive containing cerium oxide (ceria) particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than silica-based CMP abrasives (for example, Patent Documents 1 and 2 below) reference).
  • JP-A-10-106994 Japanese Patent Application Laid-Open No. 08-022970 International Publication No. 2002/067309 JP 2006-249129 A JP 2010-153781 A International Publication No. 2010/143579
  • an insulating material such as silicon oxide is polished using silicon nitride, polysilicon or the like as a stopper material (a constituent material of the polishing stopper layer).
  • the polishing selectivity of the insulating material with respect to the stopper material polishing speed ratio: polishing speed of the insulating material / stopper
  • An abrasive having a high material polishing rate is required.
  • the present invention is intended to solve such a technical problem, and an object of the present invention is to provide an abrasive, an abrasive set and a polishing method capable of improving the polishing selectivity of an insulating material with respect to a stopper material.
  • the abrasive according to the present invention is from the group consisting of water, abrasive grains containing a hydroxide of a tetravalent metal element, polyalkylene glycol, allylamine polymer, diallylamine polymer, vinylamine polymer, and ethyleneimine polymer. And at least one cationic polymer selected.
  • the polishing agent according to the present invention can improve the polishing selectivity of the insulating material with respect to the stopper material. Thereby, a highly flat surface can be obtained.
  • these insulating materials can be highly planarized, particularly in CMP technology for planarizing STI insulating materials, premetal insulating materials, interlayer insulating materials, and the like.
  • an insulating material can also be grind
  • over polishing For example, continuing polishing for the same length of time A as polishing the insulating material until the stopper is exposed (a time corresponding to 100% of time A) is referred to as “100% overpolishing”. The amount of overpolishing (how much overpolishing is determined) varies depending on the shape of the substrate to be polished.
  • Patent Document 5 has excellent flatness by combining an abrasive containing a hydroxide particle of a tetravalent metal element and a water-soluble polymer and a polishing pad having a Shore D hardness of 70 or more. It is disclosed that it can be obtained. However, when a polishing pad with high hardness is used, polishing scratches may occur in the material to be polished. Therefore, it is required that excellent flatness can be obtained even when a low-hardness polishing pad that is generally used and has high versatility is used.
  • the abrasive according to the present invention it is possible to suppress the progress of dishing when overpolishing is performed, and the flatness after polishing can be improved.
  • the polishing agent of the present invention it is possible to suppress the progress of dishing even when a polishing pad having a low hardness (for example, Shore D hardness of 65 or less) is used.
  • the flatness of the film can be improved.
  • the ratio of the content of the cationic polymer to the content of the polyalkylene glycol is preferably 0.0005 or more and 0.03 or less by mass ratio. . Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • Patent Document 6 discloses that polysilicon is used by using an abrasive containing hydroxide particles of a tetravalent metal element and polyvinyl alcohol having a saponification degree of 95 mol% or less. It is disclosed that a high polishing rate ratio of the insulating material with respect to can be obtained.
  • the abrasive according to the present invention may not contain polyvinyl alcohol, and even in such a case, the polishing selectivity of the insulating material with respect to the stopper material can be improved.
  • the polyalkylene glycol is preferably at least one selected from the group consisting of polyethylene glycol and polypropylene glycol. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the content of polyalkylene glycol is preferably 0.01% by mass or more based on the total mass of the abrasive. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the tetravalent metal element hydroxide is preferably at least one selected from the group consisting of rare earth metal hydroxides and zirconium hydroxides. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the average particle size of the abrasive grains is preferably 1 nm or more and 300 nm or less. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the content of abrasive grains is preferably 0.005% by mass or more and 20% by mass or less based on the total mass of the abrasive. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the pH of the abrasive according to the present invention is preferably 3.0 or more and 12.0 or less. Accordingly, it is possible to suppress the progress of dishing and the generation of polishing flaws on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • one aspect of the present invention relates to the use of the abrasive in a polishing method for polishing a surface to be polished containing silicon oxide. That is, the abrasive according to the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
  • the constituents of the abrasive are stored separately in a plurality of liquids, the first liquid contains abrasive grains, and the second liquid is composed of a polyalkylene glycol and a cationic polymer. Including at least one selected from the group. According to the abrasive set according to the present invention, the progress of dishing can be suppressed while improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the substrate polishing method of the first embodiment of the present invention may comprise a step of polishing a surface to be polished of the substrate using the abrasive, and the first liquid and the second liquid in the abrasive set.
  • You may provide the process of grind
  • polishing methods by using the above-mentioned abrasive or abrasive set, it is possible to suppress the progress of dishing while improving the polishing selectivity of the insulating material with respect to the stopper material as compared with the case of using the conventional abrasive. can do.
  • the substrate polishing method according to the second embodiment of the present invention is a method for polishing a substrate having an insulating material and polysilicon, wherein the insulating material is selectively polished with respect to polysilicon using the abrasive.
  • According to these polishing methods by using the above-mentioned polishing agent or polishing agent set, it is possible to suppress the progress of dishing while improving the polishing selectivity of the insulating material with respect to polysilicon as compared with the case of using the conventional polishing agent. can do.
  • the present invention it is possible to provide a polishing agent, a polishing agent set and a polishing method capable of suppressing the progress of dishing while improving the polishing selectivity of the insulating material with respect to the stopper material.
  • a polishing agent capable of suppressing the progress of dishing while improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the progress of dishing is suppressed while improving the polishing selectivity of the insulating material with respect to the stopper material.
  • An abrasive, an abrasive set and a polishing method can be provided.
  • the insulating material can be polished with low polishing scratches while the insulating material is highly planarized.
  • the abrasive according to this embodiment is a composition that touches the surface to be polished during polishing, and is, for example, a CMP abrasive.
  • the abrasive according to this embodiment includes water, abrasive grains containing a hydroxide of a tetravalent metal element, polyalkylene glycol, allylamine polymer, diallylamine polymer, vinylamine polymer, and ethyleneimine. And at least one cationic polymer selected from the group consisting of polymers.
  • essential components and components that can be optionally added will be described.
  • the abrasive grains are characterized by containing a hydroxide of a tetravalent metal element.
  • the “tetravalent metal element hydroxide” is a compound including a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ) in the present specification.
  • the hydroxide of the tetravalent metal element may contain anions other than hydroxide ions (for example, nitrate ions NO 3 ⁇ and sulfate ions SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may contain an anion (for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • an anion for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇
  • Abrasive grains containing tetravalent metal element hydroxide are more reactive with insulating materials (eg, silicon oxide) than conventional abrasive grains made of silica, ceria, etc. Can be polished.
  • insulating materials eg, silicon oxide
  • polishing agent which concerns on this embodiment, in addition to the abrasive grain containing the hydroxide of a tetravalent metal element, you may use another abrasive grain together. Examples of such other abrasive grains include particles of silica, alumina, ceria, and the like.
  • composite particles containing a tetravalent metal element hydroxide and silica can be used as the abrasive grains containing a tetravalent metal element hydroxide and silica can be used.
  • the content of the tetravalent metal element hydroxide is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 98% by mass or more based on the whole abrasive grain. Is particularly preferable, and 99% by mass or more is extremely preferable.
  • the abrasive grains are composed of hydroxides of tetravalent metal elements (100% by mass of the abrasive grains are hydroxide particles of tetravalent metal elements). Most preferred).
  • the tetravalent metal element hydroxide is preferably at least one selected from the group consisting of rare earth metal hydroxides and zirconium hydroxides.
  • a rare earth metal element hydroxide is preferable from the viewpoint of further improving the polishing rate of the insulating material.
  • the rare earth metal element capable of taking tetravalence include lanthanoids such as cerium, praseodymium, and terbium. Among them, lanthanoids are preferable and cerium is more preferable in terms of further improving the polishing rate of the insulating material.
  • a rare earth metal hydroxide and a zirconium hydroxide may be used in combination, or two or more rare earth metal hydroxides may be selected and used.
  • the lower limit of the abrasive or the average particle size of the abrasive grains in the slurry in the abrasive set described later is preferably 1 nm or more, more preferably 2 nm or more, and 3 nm or more. Further preferred.
  • the upper limit of the average particle size of the abrasive grains is preferably 300 nm or less, more preferably 250 nm or less, further preferably 200 nm or less, particularly preferably 100 nm or less, and particularly preferably 50 nm or less, from the viewpoint of further suppressing the surface to be polished from being scratched. Is very preferred.
  • the average grain size of the abrasive grains is more preferably 1 nm or more and 300 nm or less.
  • the “average particle diameter” of the abrasive grains means the average secondary particle diameter of the abrasive grains.
  • the average particle size of the abrasive grains is, for example, a light diffraction scattering type particle size distribution meter (for example, manufactured by Beckman Coulter, Inc., trade name: N5 or manufactured by Malvern Instruments Co., Ltd.) for a slurry in a polishing agent or a polishing agent set described later. , Trade name: Zetasizer 3000HSA).
  • the hydroxide of the tetravalent metal element has a great influence on the polishing characteristics. Therefore, by adjusting the content of the hydroxide of the tetravalent metal element, the chemical interaction between the abrasive grains and the surface to be polished can be improved, and the polishing rate can be further improved. From this, the content of the hydroxide of the tetravalent metal element is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and more preferably 0.05% by mass or more based on the total mass of the abrasive. preferable.
  • the hydroxide content of the tetravalent metal element makes it easy to avoid agglomeration of the abrasive grains and improves the chemical interaction with the surface to be polished, effectively utilizing the characteristics of the abrasive grains. From the standpoint of possible, it is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, particularly preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. 0.3 mass% or less is very preferable.
  • the lower limit of the abrasive content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving the polishing rate of the insulating material.
  • 02 mass% or more is still more preferable, 0.04 mass% or more is especially preferable, and 0.05 mass% or more is very preferable.
  • the upper limit of the abrasive content is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, based on the total mass of the abrasive, from the viewpoint of increasing the storage stability of the abrasive. preferable.
  • the content of the abrasive grains is more preferably 0.005% by mass or more and 20% by mass or less based on the total mass of the abrasive.
  • the cost and polishing scratches can be further reduced by further reducing the content of abrasive grains.
  • the content of abrasive grains decreases, the polishing rate of insulating materials and the like also tends to decrease.
  • abrasive grains containing a hydroxide of a tetravalent metal element can obtain a predetermined polishing rate even with a small amount, so that the balance between the polishing rate and the advantage of reducing the content of abrasive grains is balanced. Further, the content of abrasive grains can be further reduced.
  • the content of the abrasive grains is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, particularly preferably 0.5% by mass or less, and 0.3% by mass. % Or less is very preferable.
  • the abrasive preferably contains a hydroxide of a tetravalent metal element and satisfies at least one of the following conditions (a) and (b).
  • the “aqueous dispersion” in which the content of abrasive grains is adjusted to a predetermined amount means a liquid containing a predetermined amount of abrasive grains and water.
  • Abrasive grains give an absorbance of 1.00 or more to light having a wavelength of 400 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%.
  • the abrasive gives an absorbance of 1.000 or more to light having a wavelength of 290 nm in an aqueous dispersion in which the content of the abrasive is adjusted to 0.0065% by mass.
  • the polishing rate is further improved by using abrasive grains that give an absorbance of 1.00 or more with respect to light having a wavelength of 400 nm in an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0 mass%. be able to. Although this reason is not necessarily clear, this inventor thinks as follows.
  • the tetravalent metal (M 4+ ), 1 to 3 hydroxide ions (OH ⁇ ), and 1 to 3 anions (X c- ) containing M (OH) a X b (wherein a + b ⁇ c 4) is considered to be produced as part of the abrasive grains.
  • the electron-withdrawing anion (X c ⁇ ) acts to improve the reactivity of hydroxide ions, and the amount of M (OH) a X b increases.
  • polishing rate is improved along with this.
  • grains containing M (OH) a Xb absorb the light of wavelength 400nm, since the abundance of M (OH) a Xb increases and the light absorbency with respect to the light of wavelength 400nm becomes high, polishing rate Is thought to improve.
  • abrasive grains containing a tetravalent metal element hydroxide may contain not only M (OH) a Xb but also M (OH) 4 , MO 2 and the like.
  • examples of the anion (X c ⁇ ) include NO 3 ⁇ and SO 4 2 ⁇ .
  • the abrasive grains containing tetravalent metal element hydroxides contain M (OH) a Xb after the abrasive grains are thoroughly washed with pure water and then subjected to the FT-IR ATR (Fourier transform Infrared Spectrometer Attenuated Total).
  • FT-IR ATR Fullier transform Infrared Spectrometer Attenuated Total
  • This can be confirmed by a method of detecting a peak corresponding to an anion (X c ⁇ ) by a reflection method or a Fourier transform infrared spectrophotometer total reflection measurement method.
  • the presence of anions (X c ⁇ ) can also be confirmed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).
  • the absorption peak at a wavelength of 400 nm of M (OH) a X b (for example, M (OH) 3 X) is much smaller than the absorption peak at a wavelength of 290 nm described later.
  • the present inventor examined the magnitude of the absorbance using an aqueous dispersion having an abrasive content of 1.0% by mass, which has a relatively large abrasive content and is easily detected with a large absorbance. It has been found that when an abrasive that gives an absorbance of 1.00 or more with respect to light having a wavelength of 400 nm is used in an aqueous dispersion, the effect of improving the polishing rate is excellent.
  • the light absorbency with respect to the light of wavelength 400nm originates in an abrasive grain as above-mentioned, it replaces with the abrasive grain which gives the light absorbency 1.00 or more with respect to the light of wavelength 400nm, and with respect to the light of wavelength 400nm.
  • polishing agent containing the substance (for example, pigment component which exhibits yellow) which gives the light absorbency of 1.00 or more it is difficult to obtain the said improvement effect of polishing rate.
  • the polishing rate is further improved by using abrasive grains that give an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm in an aqueous dispersion in which the content of abrasive grains is adjusted to 0.0065% by mass. be able to.
  • a particle containing M (OH) a X b (for example, M (OH) 3 X) generated according to the production conditions of a tetravalent metal element hydroxide has an absorption peak near the wavelength of 290 nm.
  • particles made of Ce 4+ (OH ⁇ ) 3 NO 3 ⁇ have an absorption peak at a wavelength of 290 nm. Therefore, it is considered that the polishing rate is improved as the abundance of M (OH) a Xb increases and the absorbance to light having a wavelength of 290 nm increases.
  • the absorbance with respect to light having a wavelength near 290 nm tends to be detected as it exceeds the measurement limit.
  • the present inventors examined the magnitude of absorbance using an aqueous dispersion having an abrasive content of 0.0065% by mass with a relatively small abrasive content and a low absorbance that is easily detected. It has been found that when an abrasive that gives an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm is used in the aqueous dispersion, the effect of improving the polishing rate is excellent.
  • the present inventor has found that the higher the absorbance of abrasive grains with respect to light near a wavelength of 290 nm, the higher the absorbance of the abrasive grains is, apart from light near a wavelength of 400 nm, where the light-absorbing material tends to exhibit a yellow color. It has been found that the yellowishness of the abrasive and the slurry using the abrasive grains becomes darker, and the polishing rate is improved as the yellowishness of the abrasive and the slurry becomes darker.
  • the lower limit of the absorbance with respect to light having a wavelength of 290 nm is preferably 1.000 or more, more preferably 1.050 or more, still more preferably 1.100 or more, and 1.130 from the viewpoint of polishing the insulating material at a further excellent polishing rate.
  • the above is particularly preferable, and 1.150 or more is very preferable.
  • the upper limit of absorbance for light having a wavelength of 290 nm is not particularly limited, but is preferably 10.00, for example.
  • hydroxides of tetravalent metal elements tend not to absorb light with a wavelength of 450 nm or more, particularly 450 to 600 nm. Therefore, from the viewpoint of polishing the insulating material at an excellent polishing rate by suppressing the adverse effect on polishing due to the inclusion of impurities, the abrasive grains have a content of 0.0065% by mass ( In an aqueous dispersion adjusted to 65 ppm, an absorbance of 0.010 or less is preferably given to light having a wavelength of 450 to 600 nm.
  • the absorbance with respect to all light in the wavelength range of 450 to 600 nm does not exceed 0.010 in the aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass.
  • the upper limit of the absorbance with respect to light having a wavelength of 450 to 600 nm is more preferably 0.005 or less, and further preferably 0.001 or less.
  • the lower limit of the absorbance with respect to light having a wavelength of 450 to 600 nm is preferably 0.
  • the absorbance in the aqueous dispersion can be measured using, for example, a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd. Specifically, for example, an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0 mass% or 0.0065 mass% is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the cell is set in the apparatus. Next, the absorbance is measured in the wavelength range of 200 to 600 nm, and the absorbance is judged from the obtained chart.
  • a spectrophotometer device name: U3310
  • the absorbance is 1.00 or more when the absorbance for light with a wavelength of 400 nm is measured after being diluted excessively so that the content of the abrasive is less than 1.0% by mass, the content of the abrasive is The absorbance may be screened on the assumption that the absorbance is 1.00 or more even when the content is 1.0 mass%. If the absorbance is 1.000 or more when the absorbance for light having a wavelength of 290 nm is measured after being diluted excessively so that the content of the abrasive is less than 0.0065% by mass, the content of the abrasive is Even when the amount is 0.0065% by mass, the absorbance may be screened on the assumption that the absorbance is 1.000 or more.
  • the absorbance is 0.010 or less when the absorbance with respect to light having a wavelength of 450 to 600 nm is measured by diluting so that the abrasive content is more than 0.0065% by mass, Even when the amount is 0.0065% by mass, the absorbance may be screened on the assumption that the absorbance is 0.010 or less.
  • polishing agent which concerns on this embodiment has high transparency with respect to visible light (it is transparent or close to transparency visually).
  • the abrasive contained in the abrasive according to the present embodiment has a light transmittance of 50% with respect to light having a wavelength of 500 nm in an aqueous dispersion in which the content of the abrasive is adjusted to 1.0 mass%. / Cm or more is preferable. Thereby, since the fall of the grinding
  • the lower limit of the light transmittance is more preferably 60% / cm or more, further preferably 70% / cm or more, particularly preferably 80% / cm or more, extremely preferably 90% / cm or more, 92% / Cm or more is very preferable.
  • the upper limit of the light transmittance is 100% / cm.
  • the abrasive grains present in the aqueous dispersion are particles having a large particle diameter (hereinafter referred to as “coarse particles”). It is considered that there are relatively many.
  • an additive for example, polyvinyl alcohol (PVA)
  • PVA polyvinyl alcohol
  • the number of abrasive grains acting on the surface to be polished per unit area (the number of effective abrasive grains) is reduced, and the specific surface area of the abrasive grains in contact with the surface to be polished is reduced. Conceivable.
  • the abrasive grains present in the aqueous dispersion are in a state of less “coarse particles”.
  • an additive for example, polyvinyl alcohol
  • the number of abrasive grains (number of effective abrasive grains) acting on the surface to be polished per unit area is maintained, and the specific surface area of the abrasive grains in contact with the surface to be polished is maintained. It is considered to be.
  • the light transmittance is a transmittance for light having a wavelength of 500 nm.
  • the light transmittance can be measured with a spectrophotometer. Specifically, for example, it can be measured by a spectrophotometer U3310 manufactured by Hitachi, Ltd. (device name).
  • an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0% by mass is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the measurement is performed after setting the cell in the apparatus.
  • the content of the abrasive grains is 50% / cm or more in an aqueous dispersion having a content of greater than 1.0% by mass
  • the light transmittance is also obtained when this is diluted to 1.0% by mass. Is apparently 50% / cm or more. Therefore, the light transmittance can be screened by a simple method by using an aqueous dispersion having an abrasive content greater than 1.0% by mass.
  • the absorbance and light transmittance that the abrasive grains contained in the abrasive give in the aqueous dispersion are obtained by removing the solid components other than abrasive grains and the liquid components other than water, and then removing the aqueous dispersion having a predetermined abrasive grain content. It can be prepared and measured using the aqueous dispersion. Although it depends on the components contained in the abrasive, the solid component or the liquid component is removed by, for example, centrifugation using a centrifuge capable of applying a gravitational acceleration of several thousand G or less, or applying a gravitational acceleration of tens of thousands G or more.
  • a compound having a weight average molecular weight of tens of thousands or more for example, 50,000 or more
  • a chromatography method, a filtration method and the like can be mentioned, and among them, gel permeation chromatography and ultrafiltration are preferable.
  • the abrasive grains contained in the abrasive can be passed through the filter by setting appropriate conditions.
  • examples thereof include a chromatography method, a filtration method, and a distillation method, and gel permeation chromatography, ultrafiltration, and vacuum distillation are preferable.
  • abrasive grains When multiple types of abrasive grains are included, filtration methods, centrifugal separation methods, etc. can be mentioned. In the case of filtration, in the filtrate, in the liquid phase, abrasive grains containing a hydroxide of a tetravalent metal element are included. More included.
  • the abrasive grain components can be fractionated and / or other components can be fractionated under the following conditions.
  • Sample solution 100 ⁇ L of abrasive Detector: UV-VIS detector manufactured by Hitachi, Ltd., trade name “L-4200”, wavelength: 400 nm Integrator: Hitachi, Ltd. GPC integrator, product name “D-2500” Pump: Hitachi, Ltd., trade name “L-7100” Column: Hitachi Chemical Co., Ltd. water-based HPLC packed column, trade name “GL-W550S” Eluent: Deionized water Measurement temperature: 23 ° C Flow rate: 1 mL / min (pressure is about 40-50 kg / cm 2 ) Measurement time: 60 minutes
  • a deaeration device it is preferable to deaerate the eluent using a deaeration device before performing chromatography.
  • the deaerator cannot be used, it is preferable to deaerate the eluent in advance with ultrasonic waves or the like.
  • the abrasive components may not be collected even under the above conditions, but in that case, by optimizing the sample solution amount, column type, eluent type, measurement temperature, flow rate, etc. Can be separated.
  • the distillation time of components contained in the abrasive may be adjusted and separated from the abrasive grains. If the abrasive is insoluble component, optionally, filtration, it is preferable to remove the insoluble components by centrifugation or the like.
  • a hydroxide of a tetravalent metal element can be produced by reacting a salt of a tetravalent metal element (metal salt) with an alkali source (base).
  • the hydroxide of the tetravalent metal element is preferably prepared by mixing a salt of the tetravalent metal element and an alkali solution (for example, an alkaline aqueous solution).
  • an alkali solution for example, an alkaline aqueous solution.
  • a hydroxide of a tetravalent metal element can be obtained by mixing a metal salt solution of a salt of a tetravalent metal element (for example, an aqueous metal salt solution) and an alkali solution.
  • a metal salt solution of a salt of a tetravalent metal element for example, an aqueous metal salt solution
  • an alkali solution for example, an alkali solution
  • the means to stir a liquid mixture is not limited.
  • a method of stirring a mixed solution using a bar-like, plate-like or propeller-like stirrer or a stirring blade that rotates around a rotation axis, a magnetic stirrer that transmits power from the outside of a container, and a rotating magnetic field examples include a method of stirring the mixed solution by rotating a stirrer, a method of stirring the mixed solution with a pump installed outside the tank, and a method of stirring the mixed liquid by pressurizing the outside air and blowing it into the tank vigorously.
  • a salt of a tetravalent metal element a conventionally known salt can be used without particular limitation, and M (NO 3 ) 4 , M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4). ) 4 (SO 4 ) 4 (M represents a rare earth metal element), Zr (SO 4 ) 2 .4H 2 O, and the like. M is preferably chemically active cerium (Ce).
  • the means for adjusting the absorbance and light transmittance, and a optimization of the method for producing a hydroxide of tetravalent metal elements include selection of an alkali source in an alkali solution, adjustment of a raw material concentration in the metal salt solution and the alkali solution, and metal salt Adjustment of the mixing speed of a solution and an alkali liquid adjustment of the liquid temperature of the liquid mixture obtained by mixing the salt of a tetravalent metal element and an alkali source is mentioned.
  • the method for producing a hydroxide of a tetravalent metal element is made more “gradual”. It is preferable.
  • “slow” means that the increase in pH when the pH of the reaction system increases as the reaction proceeds is moderated (slowed).
  • the method for producing a hydroxide of a tetravalent metal element is more “violently”.
  • violently means that the increase in pH when the pH of the reaction system increases as the reaction progresses is increased (accelerated).
  • a method for controlling absorbance and light transmittance will be described in more detail.
  • alkali source examples include organic bases and inorganic bases.
  • Organic bases include nitrogen-containing organic bases such as guanidine, triethylamine and chitosan; nitrogen-containing heterocyclic organic bases such as pyridine, piperidine, pyrrolidine and imidazole; ammonium carbonate, ammonium hydrogen carbonate, tetramethylammonium hydroxide (TMAH), water
  • TMAH tetramethylammonium hydroxide
  • ammonium salts such as tetraethylammonium oxide, tetramethylammonium chloride, and tetraethylammonium chloride.
  • inorganic bases include inorganic salts of alkali metals such as ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • alkali metals such as ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • An alkali source can be used individually by 1 type or in combination of 2 or more types.
  • the alkali source ammonia and imidazole are preferable, and imidazole is more preferable from the viewpoint of further improving the polishing rate of the insulating material.
  • an alkali source exhibiting weak basicity as the alkali source.
  • nitrogen-containing heterocyclic organic bases are preferable, pyridine, piperidine, pyrrolidine, and imidazole are more preferable, pyridine and imidazole are further preferable, and imidazole is particularly preferable.
  • the absorbance with respect to light having a wavelength of 400 nm, the absorbance with respect to light with a wavelength of 290 nm, and the light transmittance with respect to light with a wavelength of 500 nm can be changed.
  • the absorbance tends to increase by increasing the metal salt concentration of the metal salt solution, and the absorbance tends to increase by decreasing the alkali concentration (base concentration, alkali source concentration) of the alkali solution.
  • the light transmittance tends to increase by increasing the metal salt concentration, and the light transmittance tends to increase by decreasing the alkali concentration.
  • the upper limit of the metal salt concentration in the metal salt solution is preferably 1.000 mol / L or less on the basis of the entire metal salt solution, in that it is easy to achieve both excellent polishing rate and excellent abrasive stability. More preferable is 500 mol / L or less, still more preferable is 0.300 mol / L or less, and particularly preferable is 0.200 mol / L or less.
  • the lower limit of the metal salt concentration can suppress the rapid reaction (can moderate the rise in pH), absorbs light with a wavelength of 400 nm, absorbs light with a wavelength of 290 nm, and transmits light with a wavelength of 500 nm. In terms of increasing the rate, it is preferably 0.010 mol / L or more, more preferably 0.020 mol / L or more, and further preferably 0.030 mol / L or more, based on the entire metal salt solution.
  • the upper limit of the alkali concentration in the alkali solution is preferably 15.0 mol / L or less, more preferably 12.0 mol / L or less, and more preferably 10.0 mol based on the whole alkali solution in terms of suppressing the rapid reaction. / L or less is more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but from the viewpoint of productivity, 0.001 mol / L or more is preferable based on the entire alkali solution.
  • the alkali concentration in the alkali solution is preferably adjusted as appropriate depending on the alkali source selected.
  • the upper limit of the alkali concentration is 0.10 mol / L or less based on the whole of the alkali solution in terms of suppressing a rapid reaction. Is preferable, and 0.05 mol / L or less is more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.001 mol / L or more based on the total amount of the alkali solution in terms of suppressing the use amount of the solution used for obtaining a predetermined amount of tetravalent metal element hydroxide. preferable.
  • the upper limit of the alkali concentration is 1.0 mol / L or less on the basis of the entire alkali solution in terms of suppressing a rapid reaction. Is preferable, and 0.50 mol / L or less is more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.01 mol / L or more based on the total amount of the alkali solution in terms of suppressing the amount of the solution used for obtaining a predetermined amount of tetravalent metal element hydroxide. preferable.
  • the upper limit of the alkali concentration is preferably 15.0 mol / L or less on the basis of the entire alkali solution, in order to suppress rapid reaction. 10.0 mol / L or less is more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.10 mol / L or more based on the total amount of the alkali solution in terms of suppressing the amount of the solution used for obtaining a predetermined amount of the tetravalent metal element hydroxide. preferable.
  • Examples of the alkali source in which the pKa of the conjugate acid of the alkali source is 20 or more include 1,8-diazabicyclo [5.4.0] undec-7-ene (pKa: 25).
  • Examples of the alkali source in which the pKa of the conjugate acid of the alkali source is 12 or more and less than 20 include potassium hydroxide (pKa: 16) and sodium hydroxide (pKa: 13).
  • Examples of the alkali source in which the pKa of the conjugate acid of the alkali source is less than 12 include ammonia (pKa: 9) and imidazole (pKa: 7).
  • the pKa value of the conjugate acid of the alkali source used is not particularly limited as long as the alkali concentration is appropriately adjusted, but the pKa of the conjugate acid of the alkali source is preferably less than 20, preferably less than 12. Is more preferably less than 10, and particularly preferably less than 8.
  • the absorbance with respect to light with a wavelength of 400 nm, the absorbance with respect to light with a wavelength of 290 nm, and the light transmittance with respect to light with a wavelength of 500 nm can be changed.
  • the absorbance and the light transmittance are increased by making the increase in pH gentle (slow). More specifically, the absorbance tends to increase by reducing the mixing speed, and the absorbance tends to decrease by increasing the mixing speed.
  • the light transmittance to become high by making a mixing speed slow, and there exists a tendency for the light transmittance to become low by making a mixing speed fast.
  • the upper limit of the mixing speed is preferably 5.00 ⁇ 10 ⁇ 3 m 3 / min (5 L / min) or less from the viewpoint of further suppressing rapid progress of the reaction and further suppressing local reaction bias. 1.00 ⁇ 10 ⁇ 3 m 3 / min (1 L / min) or less, more preferably 5.00 ⁇ 10 ⁇ 4 m 3 / min (500 mL / min) or less, and 1.00 ⁇ 10 ⁇ 4 m 3 / min (100 mL / min) or less is particularly preferable.
  • the lower limit of the mixing speed is not particularly limited, but is preferably 1.00 ⁇ 10 ⁇ 7 m 3 / min (0.1 mL / min) or more from the viewpoint of productivity.
  • the light transmittance with respect to light having a wavelength of 500 nm can be changed. Specifically, the light transmittance tends to increase by increasing the stirring speed, and the light transmittance tends to decrease by decreasing the stirring speed.
  • the lower limit of the stirring speed can further suppress the deviation of the response in the local, and, from the viewpoint of excellent mixing efficiency, preferably 30min -1 or more, more preferably 50min -1 or more, 80min -1 or more is more preferable.
  • the upper limit of the stirring speed is not particularly limited and needs to be adjusted as appropriate depending on the size and shape of the stirring blade, but is preferably 1000 min ⁇ 1 or less from the viewpoint of suppressing liquid splashing.
  • the absorbance for light with a wavelength of 400 nm, the absorbance for light with a wavelength of 290 nm, and the light transmittance for light with a wavelength of 500 nm are obtained.
  • Abrasive grains that can be changed and can achieve a desired polishing rate and storage stability can be obtained.
  • the absorbance tends to increase by lowering the liquid temperature, and the absorbance tends to decrease by increasing the liquid temperature.
  • the light transmittance tends to increase by lowering the liquid temperature, and the light transmittance tends to decrease by increasing the liquid temperature.
  • the liquid temperature is, for example, the temperature in the liquid mixture that can be read by installing a thermometer in the liquid mixture, and is preferably 0 to 100 ° C.
  • the upper limit of the liquid temperature is preferably 100 ° C. or less, more preferably 60 ° C. or less, still more preferably 55 ° C. or less, particularly preferably 50 ° C. or less, and particularly preferably 45 ° C. or less in that rapid reaction can be suppressed. preferable.
  • the lower limit of the liquid temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and still more preferably 20 ° C. or higher in that the reaction can be easily advanced.
  • the tetravalent metal element hydroxide synthesized by the above method may contain impurities (for example, metal impurities), but the impurities can be removed by washing.
  • impurities for example, metal impurities
  • a method of repeating solid-liquid separation several times by centrifugation or the like can be used. Further, it can be washed by centrifugation, dialysis, ultrafiltration, removal of ions by an ion exchange resin or the like. By removing impurities, the absorbance with respect to light having a wavelength of 450 to 600 nm can be adjusted.
  • the abrasive grains obtained above are agglomerated, they can be dispersed in water by an appropriate method.
  • a method for dispersing abrasive grains in water which is the main dispersion medium, mechanical dispersion treatment using a homogenizer, an ultrasonic disperser, a wet ball mill, or the like may be used in addition to the dispersion treatment using a stirrer.
  • the dispersion method and the particle size control method for example, the method described in Non-Patent Document 1 can be used.
  • the dispersibility of the abrasive grains can also be improved by performing the above-described cleaning treatment to lower the electrical conductivity of the dispersion liquid containing abrasive grains (for example, 500 mS / m or less). Therefore, the cleaning process may be applied as a dispersion process, and the cleaning process and the dispersion process may be used in combination.
  • polishing agent which concerns on this embodiment contains an additive.
  • the “additive” refers to a polishing agent other than water and abrasive grains in order to adjust polishing characteristics such as polishing rate and polishing selectivity; abrasive characteristics such as abrasive dispersibility and storage stability. Refers to the substance added to
  • polishing agent which concerns on this embodiment contains polyalkylene glycol as a 1st additive.
  • the first additive has an effect of suppressing an excessive increase in the polishing rate of the stopper material. Further, by using the first additive, high flatness can be obtained by suppressing polishing of the insulating material after the stopper is exposed. It is estimated that when the first additive covers the insulating material and the stopper, the progress of polishing by the abrasive grains is alleviated and the polishing rate is prevented from becoming excessively high.
  • polyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polybutylene glycol, etc. Among them, at least one selected from the group consisting of polyethylene glycol and polypropylene glycol is preferable, and polyethylene glycol is more preferable.
  • the first additive may be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity or flatness.
  • the weight average molecular weight of the first additive is not particularly limited.
  • the upper limit of the weight average molecular weight of the first additive is preferably 100 ⁇ 10 3 or less, more preferably 50 ⁇ 10 3 or less, still more preferably 10 ⁇ 10 3 or less, from the viewpoint of workability and foamability. ⁇ 10 3 or less is particularly preferable, and 6 ⁇ 10 3 or less is extremely preferable.
  • the lower limit of the weight average molecular weight of the first additive is preferably 200 or more, more preferably 300 or more, and still more preferably 400 or more, from the viewpoint of further improving polishing selectivity and flatness. From the above viewpoint, the weight average molecular weight of the first additive is more preferably 200 or more and 100 ⁇ 10 3 or less.
  • a weight average molecular weight can be measured on condition of the following by the gel permeation chromatography method (GPC) using the calibration curve of a standard polystyrene, for example.
  • Equipment used Hitachi L-6000 (made by Hitachi, Ltd.) Column: Gel Pack GL-R420 + Gel Pack GL-R430 + Gel Pack GL-R440 [Hitachi Chemical Co., Ltd., trade name, 3 in total]
  • Eluent Tetrahydrofuran Measurement temperature: 40 ° C
  • Flow rate 1.75 mL / min
  • Detector L-3300RI [manufactured by Hitachi, Ltd.]
  • the lower limit of the content of the first additive is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving polishing selectivity and flatness. Preferably, 0.3 mass% or more is more preferable.
  • the upper limit of the content of the first additive is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less, based on the total mass of the abrasive, from the viewpoint of obtaining an appropriate polishing rate. preferable. From the above viewpoint, the content of the first additive is more preferably 0.01% by mass or more and 5% by mass or less based on the total mass of the abrasive. In addition, when using a some compound as a 1st additive, it is preferable that the sum total of content of each compound satisfy
  • polishing agent which concerns on this embodiment contains a cationic polymer as a 2nd additive other than a 1st additive.
  • the “cationic polymer” is a polymer having a cationic group or a group that can be ionized into a cationic group in a main chain or a side chain.
  • the second additive is used by selecting at least one selected from the group consisting of allylamine polymers, diallylamine polymers, vinylamine polymers, and ethyleneimine polymers.
  • the second additive has the effect of suppressing an excessive increase in the polishing rate of the stopper material when used in combination with the first additive. Since the second additive is more easily adsorbed to the insulating material, the excess first additive that cannot be adsorbed due to the second additive adsorbing is thickly adsorbed on the surface of the stopper material. This is probably because the material is further suppressed from being polished.
  • the second additive has an effect of improving the polishing rate of the insulating material. It is considered that the second additive interacts with the first additive to prevent the first additive from excessively covering the insulating material and reducing the polishing rate of the insulating material. It is done. Thus, according to the polishing compound of the present embodiment, it is possible to improve the polishing selectivity of the insulating material to the stopper material.
  • the second additive also has the effect of increasing the polishing rate of the insulating material without deteriorating the flatness. In order to suppress the polishing rate for the concave portion of the insulating material while improving the polishing rate for the convex portion of the insulating material by appropriately covering the insulating material by the presence of the second additive. It is considered that high flatness can be maintained.
  • the second additive can be obtained by polymerizing at least one monomer component selected from the group consisting of allylamine, diallylamine, vinylamine, ethyleneimine, and derivatives thereof.
  • the second additive may have structural units derived from monomer components other than allylamine, diallylamine, vinylamine, ethyleneimine, and derivatives thereof, such as acrylamide, dimethylacrylamide, diethylacrylamide, hydroxyethylacrylamide, acrylic It may have a structural unit derived from acid, methyl acrylate, methacrylic acid, maleic acid, sulfur dioxide and the like.
  • the second additive may be an allylamine, diallylamine, vinylamine, ethyleneimine homopolymer (polyallylamine, polydiallylamine, polyvinylamine, polyethyleneimine), allylamine, diallylamine, vinylamine, ethyleneimine or derivatives thereof. It may be a copolymer having a derived structural unit. In the copolymer, the arrangement of structural units is arbitrary. For example, (a) a form of block copolymer in which the same type of structural units are continuous, (b) a form of random copolymerization in which the structural units A and B are particularly ordered, (c) structural units A and structural units It can take any form, including alternating copolymerization forms in which B are arranged alternately.
  • the allylamine polymer is a polymer obtained by polymerizing allylamine and its derivatives.
  • the allylamine derivative include alkoxycarbonylated allylamine, methylcarbonylated allylamine, aminocarbonylated allylamine, ureated allylamine and the like.
  • the diallylamine polymer is a polymer obtained by polymerizing diallylamine and its derivatives.
  • diallylamine derivatives include methyl diallylamine, diallyldimethylammonium salt, diallylmethylethylammonium salt, acylated diallylamine, aminocarbonylated diallylamine, alkoxycarbonylated diallylamine, aminothiocarbonylated diallylamine, hydroxyalkylated diallylamine, and the like.
  • ammonium salts include ammonium chloride.
  • the vinylamine polymer is a polymer obtained by polymerizing vinylamine and its derivatives.
  • the vinylamine derivative include alkylated vinylamine, amidated vinylamine, ethylene oxideated vinylamine, propylene oxided vinylamine, alkoxylated vinylamine, carboxymethylated vinylamine, acylated vinylamine, and ureaated vinylamine.
  • the ethyleneimine polymer is a polymer obtained by polymerizing ethyleneimine and its derivatives.
  • the ethyleneimine derivative include aminoethylated acrylic polymer, alkylated ethyleneimine, ureaated ethyleneimine, propylene oxideated ethyleneimine and the like.
  • the second additive is polyallylamine, polyethyleneimine, from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material and further suppressing the progress of dishing and the generation of polishing flaws on the surface to be polished.
  • Diallyldimethylammonium chloride / acrylamide copolymer and diallyldimethylammonium chloride / acrylic acid copolymer are preferable.
  • the second additive includes polyallylamine, diallyldimethylammonium chloride / acrylamide copolymer from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material and further improving the polishing rate of the insulating material. Coalescence is preferred.
  • the second additive can be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity and flatness.
  • the weight average molecular weight of the second additive is preferably 100 or more, more preferably 300 or more, still more preferably 500 or more, and 1.0 ⁇ 10 3 from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the above is particularly preferable.
  • the weight average molecular weight of the second additive is preferably 1000 ⁇ 10 3 or less, more preferably 800 ⁇ 10 3 or less, and more preferably 600 ⁇ 10 3 or less from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material. More preferred is 400 ⁇ 10 3 or less. From the above viewpoint, the weight average molecular weight of the second additive is more preferably 100 or more and 1000 ⁇ 10 3 or less.
  • the weight average molecular weight of the second additive can be measured by the same method as the weight average molecular weight of the first additive.
  • the lower limit of the content of the second additive is preferably 0.0001% by mass or more, more preferably 0.00015% by mass or more, based on the total mass of the abrasive.
  • 0.0002 mass% or more is further more preferable, and 0.0005 mass% or more is particularly preferable.
  • the upper limit of the content of the second additive is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less, based on the total mass of the abrasive, from the viewpoint of further excellent polishing selectivity.
  • the content of the second additive is more preferably 0.0001% by mass or more and 5% by mass or less based on the total mass of the abrasive.
  • the sum total of content of each compound satisfy
  • the content of the second additive depends on the method for producing the insulating material (type, material application conditions) from the viewpoint of further improving the polishing speed of the insulating material, the polishing selectivity of the insulating material with respect to the stopper material, and the flatness. It is preferable to adjust accordingly.
  • the ratio of the content of the second additive to the content of the first additive is preferably 0.0005 or more and more preferably 0.001 or more in terms of mass ratio from the viewpoint of further improving polishing selectivity and flatness.
  • 0.0015 or more is more preferable, and 0.002 or more is particularly preferable.
  • the ratio of the content of the second additive to the content of the first additive is preferably 0.03 or less, more preferably 0.025 or less in terms of mass ratio from the viewpoint of further excellent polishing selectivity. 02 or less is more preferable, and 0.015 or less is particularly preferable. From the above viewpoint, the content ratio is more preferably 0.0005 or more and 0.03 or less.
  • the abrasive according to the present embodiment may contain a cationic polymer other than the second additive.
  • a cationic polymer include acrylic polymers such as cationically modified polyacrylamide and cationically modified polydimethylacrylamide; polysaccharides such as chitosan, chitosan derivatives, cationically modified cellulose, and cationically modified dextran; and these compounds And a copolymer obtained by polymerizing a monomer derived from the structural unit constituting the.
  • a cationic polymer can be used individually by 1 type or in combination of 2 or more types in order to adjust polishing characteristics, such as polishing selectivity and flatness.
  • the lower limit of the content of the cationic polymer containing the second additive is preferably 0.0001% by mass or more based on the total mass of the abrasive from the viewpoint of further improving the polishing selectivity and flatness. It is more preferably at least 00015% by mass, even more preferably at least 0.0002% by mass, particularly preferably at least 0.0005% by mass.
  • the upper limit of the content of the cationic polymer containing the second additive is preferably 5% by mass or less, more preferably 3% by mass or less, based on the total mass of the abrasive, from the viewpoint of further excellent polishing selectivity.
  • the content of the cationic polymer including the second additive is more preferably 0.0001% by mass or more and 5% by mass or less based on the total mass of the abrasive.
  • the abrasive according to the present embodiment includes the first additive and the second additive for the purpose of adjusting polishing characteristics such as polishing rate; abrasive characteristics such as abrasive dispersibility and storage stability.
  • a third additive may be further contained.
  • Examples of the third additive include carboxylic acid and amino acid. These can be used individually by 1 type or in combination of 2 or more types. Among these, carboxylic acids and amino acids are preferred from the viewpoint of excellent balance between abrasive dispersibility and polishing characteristics.
  • Carboxylic acid has the effect of stabilizing the pH and further improving the polishing rate of the insulating material.
  • the carboxylic acid formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, lactic acid, and the like.
  • Amino acids have the effect of improving the dispersibility of abrasive grains containing a hydroxide of a tetravalent metal element and further improving the polishing rate of the insulating material.
  • Amino acids include arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, alanine, ⁇ -alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine, etc. Can be mentioned.
  • an amino acid has a carboxyl group, it shall differ from carboxylic acid.
  • the content of the third additive is 0.01 based on the total mass of the abrasive from the viewpoint of obtaining the additive effect while suppressing the sedimentation of the abrasive grains.
  • the range of 10% by mass or more is preferable.
  • the polishing agent according to this embodiment has flatness, in-plane uniformity, polishing selectivity of silicon oxide with respect to silicon nitride (silicon oxide polishing rate / silicon nitride polishing rate), and polishing selectivity of silicon oxide with respect to polysilicon (
  • a water-soluble polymer may be contained for the purpose of adjusting polishing characteristics such as (silicon oxide polishing rate / polysilicon polishing rate).
  • the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water.
  • the cationic polymer such as the first additive and the second additive is not included in the “water-soluble polymer”.
  • the water-soluble polymer is not particularly limited.
  • Specific examples of water-soluble polymers include acrylic polymers such as polyacrylamide and polydimethylacrylamide; polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan, dextrin, cyclodextrin, and pullulan; polyvinyl alcohol And vinyl polymers such as polyvinylpyrrolidone and polyacrolein; glycerin polymers such as polyglycerol and polyglycerol derivatives.
  • polishing agent which concerns on this embodiment does not need to contain polyvinyl alcohol.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the content of the water-soluble polymer is 0.0001 on the basis of the total mass of the abrasive from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. % By mass or more is preferable, 0.001% by mass or more is more preferable, and 0.01% by mass or more is more preferable.
  • the content of the water-soluble polymer is preferably 5% by mass or less, preferably 1% by mass or less, based on the total mass of the abrasive, from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. More preferred is 0.5% by mass or less.
  • the content of the water-soluble polymer is more preferably 0.0001% by mass or more and 5% by mass or less based on the total mass of the abrasive.
  • the sum total of content of each compound satisfy
  • the weight average molecular weight of the water-soluble polymer is not particularly limited, but is preferably 100 or more and 300 ⁇ 10 3 or less.
  • the weight average molecular weight of the water-soluble polymer can be measured by the same method as the weight average molecular weight of the first additive.
  • the lower limit of the pH (25 ° C.) of the abrasive according to this embodiment is preferably 3.0 or more, more preferably 4.0 or more, and further 4.5 or more.
  • 5.0 or more is particularly preferable.
  • the upper limit of the pH is preferably 12.0 or less, more preferably 11.0 or less, still more preferably 10.0 or less, and particularly preferably 9.0 or less, from the viewpoint of further improving the polishing rate of the insulating material. 8.0 or less is very preferable.
  • the pH of the abrasive is more preferably from 3.0 to 12.0.
  • the pH of the polishing agent can be adjusted by an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), or imidazole.
  • a buffer may be added to stabilize the pH.
  • you may add a buffer as a buffer (liquid containing a buffer). Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the abrasive according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH 4.01) and a neutral phosphate pH buffer solution (pH 6.86) as standard buffers, The value is measured after the electrode is placed in an abrasive and stabilized after 2 minutes or more. At this time, the liquid temperature of the standard buffer and the abrasive is both 25 ° C.
  • a pH meter for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.
  • the abrasive according to this embodiment may be stored as a one-component abrasive containing at least abrasive grains, a first additive, a second additive, and water.
  • additive liquid second liquid
  • the slurry includes at least abrasive grains, for example.
  • the additive liquid contains, for example, at least one selected from the group consisting of a first additive and a second additive.
  • the first additive, the second additive, the third additive, the water-soluble polymer, and the buffering agent are included in the additive liquid among the slurry and the additive liquid.
  • the constituents of the abrasive may be stored as an abrasive set divided into three or more liquids.
  • the constituents of the abrasive are stored separately in a slurry containing abrasive grains and water, an additive liquid containing a first additive and water, and an additive liquid containing a second additive and water. Also good.
  • the slurry and additive liquid are mixed immediately before or during polishing to produce an abrasive.
  • the one-component abrasive is stored as an abrasive storage solution with a reduced water content, and may be diluted with water during polishing.
  • the multi-liquid type abrasive set may be stored as a slurry storage solution or an additive storage solution with a reduced water content, and may be diluted with water during polishing.
  • a method of supplying the abrasive onto the polishing surface plate a method of feeding and supplying the abrasive directly; a storage solution for abrasive and water are sent through separate pipes, A method in which these are combined, mixed and supplied; a method in which an abrasive stock solution and water are mixed and supplied in advance can be used.
  • the polishing rate can be adjusted by arbitrarily changing the composition of these liquids.
  • methods for supplying the abrasive onto the polishing surface plate include the following methods. For example, the slurry and the additive liquid are sent through separate pipes, and these pipes are combined, mixed and supplied; the slurry storage liquid, the additive liquid storage liquid and water are sent through separate pipes, A method of supplying these by merging and mixing them; a method of supplying a mixture of slurry and additive solution in advance; a method of supplying a mixture of slurry storage solution, storage solution for additive solution and water in advance, etc. Can do.
  • polishing agent set on a polishing surface plate can also be used.
  • the polished surface is polished by using a polishing agent slurry and the additive liquid in a polishing platen is obtained are mixed.
  • the substrate polishing method according to the present embodiment may include a polishing step of polishing the surface to be polished of the substrate using the one-part polishing agent, and the slurry and additive liquid in the polishing agent set are mixed. You may provide the grinding
  • the one-part abrasive or the slurry and additive liquid in the abrasive set And a polishing step of selectively polishing the insulating material with respect to polysilicon using a polishing agent obtained by mixing the above.
  • the base may have, for example, a member containing an insulating material and a member containing polysilicon.
  • “selectively polishing material A with respect to material B” means that the polishing rate of material A is higher than the polishing rate of material B under the same polishing conditions. More specifically, for example, the material A is polished at a polishing rate ratio of the polishing rate of the material A to the polishing rate of the material B of 250 or more.
  • the abrasive is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate.
  • the surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing surface plate.
  • at least a part of the material to be polished is removed by polishing.
  • the substrate to be polished examples include a substrate.
  • a material to be polished is formed on a substrate for manufacturing a semiconductor element (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed).
  • a substrate is mentioned.
  • the polished material an insulating material such as silicon oxide; polysilicon, and the like stopper material such as silicon nitride.
  • the material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished.
  • the material to be polished may be in the form of a film, and may be a silicon oxide film, a polysilicon film, a silicon nitride film, or the like.
  • the material to be polished (such as an insulating material such as silicon oxide) formed on such a substrate is polished with the above-described abrasive and the excess portion is removed, so that the unevenness of the surface of the material to be polished is eliminated and the material to be polished is removed. It can be a smooth surface over the entire surface of the abrasive material.
  • the abrasive according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • the stopper material constituting the stopper is a material whose polishing rate is lower than that of the insulating material, and polysilicon, silicon nitride and the like are preferable.
  • the polishing is stopped when the stopper is exposed, the insulating material can be prevented from being excessively polished, and thus the flatness of the insulating material after polishing can be improved.
  • Examples of a method for producing a material to be polished to be polished by the abrasive according to this embodiment include a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, and other CVD methods; Etc.
  • Silicon oxide can be obtained, for example, by thermally reacting monosilane (SiH 4 ) and oxygen (O 2 ) using a low pressure CVD method. Silicon oxide can be obtained, for example, by thermally reacting tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and ozone (O 3 ) using a quasi-atmospheric pressure CVD method. As another example, silicon oxide is similarly obtained by causing plasma reaction between tetraethoxysilane and oxygen.
  • Silicon oxide is obtained by applying a liquid raw material containing, for example, inorganic polysilazane, inorganic siloxane, etc. on a substrate using a spin coating method, and performing a thermosetting reaction in a furnace body or the like.
  • Examples of methods for producing polysilicon include a low-pressure CVD method in which monosilane is thermally reacted, a plasma CVD method in which monosilane is plasma-reacted, and the like.
  • silicon nitride for example, a low pressure CVD method in which dichlorosilane and ammonia are reacted by heat, a plasma CVD method in which monosilane, ammonia and nitrogen are subjected to plasma reaction, and the like can be given.
  • the silicon nitride obtained by the above method may contain elements other than silicon and nitrogen, such as carbon and hydrogen, in order to adjust the material.
  • heat treatment may be performed at a temperature of 200 to 1000 ° C. as necessary.
  • the silicon oxide obtained by the above method may contain a small amount of boron (B), phosphorus (P), carbon (C) or the like in order to improve the embedding property.
  • polishing method for a semiconductor substrate on which an insulating material is formed.
  • a polishing apparatus a general polishing apparatus having a holder capable of holding a substrate such as a semiconductor substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached. Can be used.
  • Each of the holder and the polishing surface plate is provided with a motor capable of changing the rotation speed.
  • a polishing apparatus for example, a polishing apparatus: Reflexion manufactured by APPLIED MATERIALS can be used.
  • polishing pad general nonwoven fabric, foam, non-foam, etc.
  • material of the polishing pad include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name) and Aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like can be used.
  • the material of the polishing pad in particular, foamed polyurethane and non-foamed polyurethane are preferable from the viewpoint of polishing speed and flatness. It is preferable that the polishing pad is grooved so as to collect the abrasive.
  • the rotation speed of the polishing platen is preferably 200 min ⁇ 1 or less so that the semiconductor substrate does not pop out, and the polishing pressure (processing load) applied to the semiconductor substrate is such that polishing flaws occur. From the viewpoint of sufficiently suppressing, 100 kPa or less is preferable.
  • the surface of a polishing pad is always covered with the abrasive
  • the semiconductor substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used in combination to increase cleaning efficiency.
  • a spin dryer or the like.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can be suitably used for forming STI.
  • the polishing rate ratio of the insulating material (for example, silicon oxide) to the stopper material (for example, polysilicon) is preferably 250 or more, and more preferably 300 or more. If the polishing rate ratio is less than 250, the polishing rate of the insulating material with respect to the polishing rate of the stopper material is small, and it tends to be difficult to stop polishing at a predetermined position when forming the STI. On the other hand, if the polishing rate ratio is 250 or more, it is easy to stop polishing, which is more suitable for formation of STI.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can also be used for polishing a premetal insulating material.
  • a premetal insulating material for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used in addition to silicon oxide, and silicon oxyfluoride, fluorinated amorphous carbon, or the like can also be used.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can be applied to materials other than insulating materials such as silicon oxide.
  • materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; Polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
  • the polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only film-like objects to be polished, but also various types composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, or the like. It can also be applied to substrates.
  • the polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only for manufacturing semiconductor elements, but also for image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators Optical elements such as optical switching elements and optical waveguides; light emitting elements such as solid lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • the obtained dispersion of cerium hydroxide particles was subjected to solid-liquid separation by centrifugation (4000 min ⁇ 1 , 5 minutes), and a precipitate having a solid content of about 10% was taken out.
  • the precipitate obtained by solid-liquid separation is mixed with water so that the cerium hydroxide content is 1.0% by mass, and the particles are dispersed in water using an ultrasonic cleaning machine.
  • a stock slurry was prepared.
  • the measuring method is as follows. First, about 1 mL of a measurement sample (aqueous dispersion) containing 1.0% by mass of cerium hydroxide particles was placed in a 1 cm square cell, and the cell was placed in N5. The refractive index of the measurement sample was adjusted to 1.333, the viscosity of the measurement sample was adjusted to 0.887 mPa ⁇ s, the measurement was carried out at 25 ° C., and the value displayed as Unimodal Size Mean was read.
  • the abrasive grains contained in the cerium hydroxide slurry stock solution contained at least some particles having nitrate ions bonded to the cerium element.
  • the abrasive grains contained cerium hydroxide because they contained at least part of particles having hydroxide ions bonded to cerium element.
  • a cerium hydroxide slurry storage solution (particle content: 1.0 mass%) is placed in a 1 cm square cell, and the cell is placed in a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd. did.
  • Absorbance was measured in the wavelength range of 200 to 600 nm, and the absorbance with respect to light with a wavelength of 400 nm and the light transmittance with respect to light with a wavelength of 500 nm were measured.
  • Absorbance with respect to light with a wavelength of 400 nm was 2.25, and light transmittance with respect to light with a wavelength of 500 nm was 92% / cm.
  • Example 1 100 g of stock solution for additive solution containing 5% by mass of polyethylene glycol [PEG # 600 manufactured by Lion Corporation, weight average molecular weight: 600], 0.08% by mass of imidazole, 0.05% by mass of acetic acid, and 94.87% by mass of water. 50 g of cerium hydroxide slurry storage solution, 840 g of water, and 10 g of an aqueous solution containing 0.1% by weight polyallylamine [PAA-01, weight average molecular weight 1600 manufactured by Nitteau Medical Co., Ltd.] as a cationic polymer. was mixed to prepare a CMP abrasive having a pH of 6.2 containing 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol, and 0.001% by mass of polyallylamine.
  • Example 2 Except for the compounding amount of polyallylamine, the same procedure as in Example 1 was carried out, and the pH was 6.3 containing 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol and 0.0015% by mass of polyallylamine. A CMP abrasive was prepared.
  • Example 3 A pH of 6.4 containing 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol, and 0.002% by mass of polyallylamine in the same manner as in Example 1 except for the blending amount of polyallylamine. A CMP abrasive was prepared.
  • Example 4 100 g of stock solution for additive solution containing 5% by mass of polyethylene glycol [PEG # 4000 manufactured by Lion Corporation, weight average molecular weight: 4000], 0.08% by mass of imidazole, 0.05% by mass of acetic acid and 94.87% by mass of water.
  • a cerium hydroxide slurry stock solution 50 g, water 820 g, and 0.1% by weight diallyldimethylammonium chloride / acrylamide copolymer as a cationic polymer [PAS-J-81, manufactured by Nitto Bo Medical Co., Ltd., weight average And 30 g of an aqueous solution containing a molecular weight of 200000], 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol, and 0.003% of diallyldimethylammonium chloride / acrylamide copolymer.
  • PAS-J-81 manufactured by Nitto Bo Medical Co., Ltd., weight average And 30 g of an aqueous solution containing a molecular weight of 200000]
  • 0.05% by mass of cerium hydroxide particles 0.5% by mass of polyethylene glycol
  • 0.003% of diallyldimethylammonium chloride / acrylamide copolymer Prepare CMP abrasive with
  • Example 5 Except for the kind and blending amount of the cationic polymer and the blending amount of imidazole, 0.05 mass% of cerium hydroxide particles, 0.5 mass% of polyethylene glycol, diallyldimethylammonium chloride, A CMP abrasive having a pH of 5.0 containing 0.003% by mass of an acrylamide copolymer [PAS-J-81 manufactured by Nitto Bo Medical Co., Ltd., weight average molecular weight: 200000] was prepared.
  • PAS-J-81 manufactured by Nitto Bo Medical Co., Ltd., weight average molecular weight: 200000
  • Example 6 Except for the kind and blending amount of the cationic polymer, the same procedure as in Example 1 was carried out, except that 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol, and diallyldimethylammonium chloride / acrylamide copolymer [ A CMP abrasive having a pH of 5.8 containing 0.003 mass% of PAS-J-81 manufactured by Nitto Bo Medical Co., Ltd., weight average molecular weight: 200000] was prepared.
  • Example 7 Except for the kind and blending amount of the cationic polymer and the blending amount of imidazole, 0.05 mass% of cerium hydroxide particles, 0.5 mass% of polyethylene glycol, diallyldimethylammonium chloride, A CMP abrasive having a pH of 6.7 containing 0.003% by mass of an acrylamide copolymer [PAS-J-81, weight average molecular weight: 200000, manufactured by Nitto Bo Medical Co., Ltd.] was prepared.
  • PAS-J-81 weight average molecular weight: 200000, manufactured by Nitto Bo Medical Co., Ltd.
  • Example 8 Except for the type of cationic polymer, the same procedure as in Example 6 was carried out, except that 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyethylene glycol, polyethyleneimine [Epomin P-1000, Nippon Shokubai Co., Ltd., A CMP abrasive having a pH of 6.4 containing 0.003% by mass of a weight average molecular weight of 70,000] was prepared.
  • Example 9 Addition containing 5% by mass of polypropylene glycol [polypropylene glycol diol type 400 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 400], 0.08% by mass of imidazole, 0.05% by mass of acetic acid and 94.87% by mass of water 100 g of liquid storage solution, 50 g of cerium hydroxide slurry storage solution, 820 g of water, 0.1% by weight diallyldimethylammonium chloride / acrylamide copolymer as a cationic polymer [PAS-J manufactured by Nitto Bo Medical Co., Ltd.
  • a CMP abrasive having a pH of 5.9 and containing 0.05% by mass of cerium hydroxide particles was prepared by mixing 50 g of a cerium hydroxide slurry storage solution, 940 g of water, and 10 g of a 1% by mass imidazole aqueous solution.
  • Comparative Example 6 Except for the blending amount of polyallylamine, the same procedure as in Comparative Example 5 was carried out, and the pH was 6.0 containing 0.05% by mass of cerium hydroxide particles, 0.5% by mass of polyvinyl alcohol and 0.001% by mass of polyallylamine. A CMP abrasive was prepared.
  • PAA-08 weight average molecular weight: 8000] ] 100 g of additive liquid storage solution containing 0.008% by mass, 0.08% by mass of imidazole, 0.05% by mass of acetic acid and 89.862% by mass of water, 50 g of storage solution for cerium hydroxide slurry, and water 850 g was mixed to prepare a CMP abrasive having a pH of 6.0 containing 0.05% by mass of cerium hydroxide particles, 1% by mass of polyvinyl alcohol, and 0.0008% by mass of polyallylamine.
  • a polymer of N, N-dimethylaminopropylacrylamide was prepared by the following procedure. First, 15 g of N, N-dimethylaminopropylacrylamide (manufactured by Kojin Co., Ltd. DMAPAA) and 281 g of water were introduced into a round bottom flask, and nitrogen gas was introduced. While heating to 80 ° C. and stirring, an aqueous solution consisting of 696 mg of 2,2′-azobis (2-methylpropionamidine) dihydrochloride and 4 g of water was added. After stirring with heating at 80 ° C. for 2 hours, the mixture was cooled to room temperature (25 ° C.) to obtain a polymer of N, N-dimethylaminopropyl acrylamide having a concentration of 5% by mass.
  • PH Measurement temperature: 25 ⁇ 5 ° C
  • Measuring device manufactured by Electrochemical Instrument Co., Ltd., model number PHL-40 Measurement method: After calibrating two points using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)), The electrode was placed in a CMP abrasive and the pH after the passage of 2 minutes or more and stabilized was measured with the measuring device.
  • a standard buffer phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)
  • the average particle diameter of the cerium hydroxide particles in the CMP abrasive was measured using a product name: N5 manufactured by Beckman Coulter.
  • the measuring method is as follows. First, about 1 mL of CMP abrasive was placed in a 1 cm square cell, and the cell was placed in N5. The refractive index of the measurement sample was adjusted to 1.333, the viscosity of the measurement sample was adjusted to 0.887 mPa ⁇ s, the measurement was carried out at 25 ° C., and the value displayed as Unimodal Size Mean was read.
  • the substrate to be polished was polished under the following polishing conditions using a CMP abrasive. However, in Comparative Examples 1 and 2, the pattern wafer was not polished.
  • Polishing device Reflexion (manufactured by APPLIED MATERIALS) ⁇ CMP abrasive flow rate: 200 mL / min ⁇ Polished substrate: (Unpatterned wafer)
  • a substrate was used.
  • attern wafer A 764 wafer (trade name, diameter: 300 mm) manufactured by SEMATECH was used as a pattern wafer on which a simulated pattern was formed.
  • a trench is formed in an exposure process, and a silicon oxide as an insulating film is formed on the silicon substrate and the polysilicon film so as to fill the polysilicon film and the trench.
  • a silicon oxide film was formed by HDP (High Density Plasma) method.
  • Polishing pad foamed polyurethane resin with closed cells (Rohm and Haas Japan, model number IC1010), Shore D hardness: 60 Polishing pressure: 16.5 kPa (2.4 psi) -Relative speed between the substrate and the polishing platen: 85 m / min-Polishing time: The blanket wafer was polished for 1 minute. The pattern wafer was polished until the polysilicon film as a stopper film was exposed. Further, the progress of dishing was confirmed by further grinding for the same time as the polishing time taken until the polysilicon film was exposed. -Cleaning: After CMP treatment, cleaning with ultrasonic water was performed, followed by drying with a spin dryer.
  • a wafer having a line (convex portion) & space (concave portion) width of 1000 ⁇ m pitch, 200 ⁇ m pitch, 100 ⁇ m pitch and a convex pattern density of 50% was used.
  • the line & space is a simulated pattern in which an active portion masked with a polysilicon film that is a convex portion and a trench portion in which a groove that is a concave portion is formed are alternately arranged.
  • the line and space has a pitch of 100 ⁇ m means that the total width of the line portion and the space portion is 100 ⁇ m.
  • the line and space is 100 ⁇ m pitch and the convex pattern density is 50%” means a pattern in which convex widths: 50 ⁇ m and concave widths: 50 ⁇ m are alternately arranged.
  • the film thickness of the silicon oxide film was 600 nm on both the silicon substrate and the polysilicon film. Specifically, as shown in FIG. 3, the thickness of the polysilicon film 2 on the silicon substrate 1 is 150 nm, the thickness of the convex portion of the silicon oxide film 3 is 600 nm, and the concave portion of the silicon oxide film 3 is formed. The thickness of the concave portion of the silicon oxide film 3 was 500 nm (trench depth 350 nm + polysilicon film thickness 150 nm).
  • the remaining step is 100 nm or less by polishing the wafer using a known CMP abrasive having self-stopping properties (the polishing rate decreases when the remaining step of the simulated pattern is reduced)
  • the resulting wafer was used. Specifically, using an abrasive in which HS-8005-D4 manufactured by Hitachi Chemical Co., Ltd., HS-7303GP manufactured by Hitachi Chemical Co., Ltd., and water are mixed at a ratio of 2: 1.2: 6.8, A wafer in which the silicon oxide film thickness of the protrusions in the 50 ⁇ m density pattern of 1000 ⁇ m pitch was polished to 130 nm was used.
  • the polishing rate (silicon oxide polishing rate: SiO 2 RR, polysilicon polishing rate: p-SiRR) of the film to be polished (silicon oxide film, polysilicon film) polished and cleaned under the above conditions was determined from the following equation.
  • the film thickness difference of the film to be polished before and after polishing was determined using an optical interference film thickness apparatus (manufactured by Filmetrics, trade name: F80).
  • (Polishing rate: RR) (Thickness difference of the film to be polished before and after polishing (nm)) / (Polishing time (min))
  • the amount of remaining step (dishing) is obtained from the following equation: Asked.
  • the film thickness of the film to be polished before and after polishing was determined using an optical interference film thickness apparatus (manufactured by Nanometrics, trade name: Nanospec AFT-5100).
  • Residual step (dishing) (350 + polysilicon film thickness (nm)) ⁇ (residual film thickness of recessed silicon oxide film (nm))
  • the substrate to be polished (blanket wafer substrate having a silicon oxide film) polished and cleaned under the above conditions was immersed in an aqueous solution of 0.5% by mass of hydrogen fluoride for 15 seconds, and then washed with water for 60 seconds. Subsequently, the surface of the film to be polished was washed for 1 minute while supplying water using a polyvinyl alcohol brush, and then dried. A defect of 0.2 ⁇ m or more on the surface of the film to be polished was detected using Complis made by APPLIED MATERIALS.
  • the number of polishing scratches of 0.2 ⁇ m or more on the surface of the film to be polished was In any of the comparative examples, it was about 0 to 3 (pieces / wafer), and the generation of polishing scratches was sufficiently suppressed.
  • Tables 1 and 2 show the measurement results obtained in Examples 1 to 9 and Comparative Examples 1 to 10, respectively.
  • compounds A to E represent the following compounds.
  • Compound A Polyallylamine
  • Compound B Diallyldimethylammonium chloride / acrylamide copolymer
  • Compound C Polyethyleneimine
  • Compound D Chitosan
  • Compound E N, N-dimethylaminopropylacrylamide polymer
  • Example 1 the SiO 2 RR is 263 nm / min, the p-SiRR is 0.3 nm / min, the polishing rate ratio is 877, the SiO 2 RR is higher than the comparative example, and the p-SiRR is higher than the comparative example. A small value was shown, and the polishing rate ratio was higher than that of the comparative example.
  • the remaining steps when the polysilicon film is exposed are 90 nm (1000 ⁇ m pitch), 30 nm (200 ⁇ m pitch), and 6 nm (100 ⁇ m pitch), respectively.
  • the results were 92 nm, 31 nm, and 6 nm, respectively, and the results of suppressing the progress of dishing while showing a high polishing rate ratio were obtained.
  • Example 2 SiO 2 RR was 268 nm / min, p-SiRR was 0.3 nm / min, and the polishing rate ratio was 893. SiO 2 RR and p-SiRR showed the same values as in Example 1, and polishing was performed. The speed ratio was higher than that of the comparative example. In the pattern wafer evaluation, the remaining steps when the polysilicon film is exposed are 38 nm, 8 nm, and 0 nm, respectively, and the remaining steps are 38 nm, 10 nm, and 0 nm, respectively, even if they are further etched for 30 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 3 the SiO 2 RR was 265 nm / min, the p-SiRR was 0.3 nm / min, and the polishing rate ratio was 883, and the SiO 2 RR and p-SiRR showed the same values as in Example 1, The speed ratio was higher than that of the comparative example.
  • the remaining steps when the polysilicon film is exposed are 30 nm, 7 nm, and 0 nm, respectively, and the remaining steps are 30 nm, 7 nm, and 0 nm even if they are further etched for 30 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 4 the SiO 2 RR was 299 nm / min, the p-SiRR was 0.2 nm / min, and the polishing rate ratio was 1495.
  • the SiO 2 RR and the p-SiRR showed the same values as in Example 1, and the polishing was performed.
  • the speed ratio was higher than that of the comparative example.
  • the remaining steps when the polysilicon film is exposed are 45 nm, 22 nm, and 6 nm, respectively, and the remaining steps are 57 nm, 31 nm, and 14 nm, respectively, even if they are further etched for 30 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 5 the SiO 2 RR was 192 nm / min, the p-SiRR was 0.2 nm / min, and the polishing rate ratio was 960, and the SiO 2 RR and p-SiRR showed the same values as in Example 1, The speed ratio was higher than that of the comparative example. Further, in the pattern wafer evaluation, the remaining steps when the polysilicon film is exposed are 33 nm, 12 nm, and 0 nm, respectively, and even if they are further etched for 28 seconds, the remaining steps are 72 nm, 29 nm, and 14 nm, respectively. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 6 the SiO 2 RR was 363 nm / min, the p-SiRR was 0.1 nm / min, and the polishing rate ratio was 3630.
  • the SiO 2 RR and the p-SiRR showed the same values as in Example 1, and the polishing was performed.
  • the speed ratio was higher than that of the comparative example.
  • the remaining steps when the polysilicon film is exposed are 56 nm, 17 nm, and 2 nm, respectively, and the remaining steps are 64 nm, 22 nm, and 5 nm, respectively, even if they are further etched for 17 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 7 SiO 2 RR was 233 nm / min, p-SiRR was 0.3 nm / min, and the polishing rate ratio was 777, and SiO 2 RR and p-SiRR showed the same values as in Example 1, The speed ratio was higher than that of the comparative example.
  • the remaining steps when the polysilicon film is exposed are 33 nm, 10 nm, and 0 nm, respectively, and the remaining steps are 37 nm, 10 nm, and 0 nm, respectively, even if they are further etched for 30 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 8 SiO 2 RR was 434 nm / min, p-SiRR was 0.2 nm / min, and the polishing rate ratio was 2170. SiO 2 RR and p-SiRR showed values equivalent to those in Example 1, and polishing was performed. The speed ratio was higher than that of the comparative example. Further, in the pattern wafer evaluation, the remaining steps when the polysilicon film is exposed are 44 nm, 15 nm, and 1 nm, respectively, and even if they are further polished for 27 seconds, the remaining steps are 44 nm, 16 nm, and 1 nm, respectively. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • Example 9 SiO 2 RR was 333 nm / min, p-SiRR was 0.3 nm / min, and the polishing rate ratio was 1110. SiO 2 RR and p-SiRR showed the same values as in Example 1, and the polishing was performed. The speed ratio was higher than that of the comparative example. Further, in the pattern wafer evaluation, the remaining steps when the polysilicon film is exposed are 59 nm, 36 nm, and 15 nm, respectively, and the remaining steps are 72 nm, 42 nm, and 19 nm, respectively, even if they are further etched for 37 seconds. While the ratio was shown, the result of the progress of dishing being suppressed was obtained.
  • the SiO 2 RR was 163 nm / min
  • the p-SiRR was 62 nm / min
  • the polishing rate ratio was 3.
  • the SiO 2 RR was 50 nm / min
  • the p-SiRR was 95 nm / min
  • the polishing rate ratio was 0.5.
  • the SiO 2 RR was 94 nm / min
  • the p-SiRR was 4 nm / min
  • the polishing rate ratio was 24.
  • the remaining steps when the polysilicon film was exposed were 21 nm, 13 nm, and 2 nm, respectively. Further, the remaining steps at the time of further cutting for 30 seconds were 60 nm, 46 nm, and 34 nm, respectively.
  • the SiO 2 RR was 180 nm / min
  • the p-SiRR was 12 nm / min
  • the polishing rate ratio was 15.
  • the remaining steps when the polysilicon film was exposed were 72 nm, 55 nm, and 40 nm, respectively. Further, the remaining steps at the time of further cutting for 30 seconds were 140 nm, 108 nm, and 84 nm, respectively.
  • the SiO 2 RR was 192 nm / min
  • the p-SiRR was 1 nm / min
  • the polishing rate ratio was 192. Further, in the pattern wafer evaluation, the silicon oxide film on the convex portion could not be removed in 30 seconds.
  • the SiO 2 RR was 195 nm / min
  • the p-SiRR was 0.8 nm / min
  • the polishing rate ratio was 244. Further, in the pattern wafer evaluation, the silicon oxide film at the convex portion could not be removed in 30 seconds.
  • the SiO 2 RR was 205 nm / min
  • the p-SiRR was 0.9 nm / min
  • the polishing rate ratio was 228.
  • the remaining steps when the polysilicon film was exposed were 70 nm, 54 nm, and 42 nm, respectively. Further, the remaining steps at the time of further cutting for 21 seconds were 140 nm, 104 nm, and 82 nm, respectively.
  • the SiO 2 RR was 182 nm / min
  • the p-SiRR was 0.8 nm / min
  • the polishing rate ratio was 228.
  • the remaining steps when the polysilicon film was exposed were 54 nm, 37 nm, and 23 nm, respectively. Further, the remaining steps at the time of further cutting for 24 seconds were 94 nm, 67 nm, and 53 nm, respectively.
  • the SiO 2 RR was 376 nm / min
  • the p-SiRR was 13 nm / min
  • the polishing rate ratio was 29.
  • the remaining steps when the polysilicon film was exposed were 132 nm, 95 nm, and 81 nm, respectively. Further, the remaining steps at the time of further cutting for 33 seconds were 217 nm, 162 nm, and 140 nm, respectively.
  • the SiO 2 RR was 170 nm / min
  • the p-SiRR was 6 nm / min
  • the polishing rate ratio was 28.
  • the remaining steps when the polysilicon film was exposed were 68 nm, 43 nm, and 29 nm, respectively. Further, the remaining steps at the time of further cutting for 30 seconds were 128 nm, 102 nm, and 72 nm, respectively.
  • a polishing agent capable of improving the polishing selectivity of the insulating material with respect to the stopper material.
  • a polishing agent set capable of improving the polishing selectivity of the insulating material with respect to the stopper material.
  • an abrasive that can improve the polishing selectivity of the insulating material with respect to the stopper material, polishing An agent set and a polishing method can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する。

Description

研磨剤、研磨剤セット及び基体の研磨方法
 本発明は、研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。特に、本発明は、半導体素子の製造技術である、基体表面の平坦化工程に用いられる研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。さらに詳しくは、本発明は、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程において用いられる研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。
 近年の半導体素子の製造工程では、高密度化・微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、STIの形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。
 CMP研磨剤として最も多用されているのは、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系CMP研磨剤である。シリカ系CMP研磨剤は汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料又は導電材料を問わず幅広い種類の材料を研磨することができる。
 一方で、主に酸化珪素等の絶縁材料を対象とした、砥粒としてセリウム化合物粒子を含むCMP研磨剤の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系CMP研磨剤は、シリカ系CMP研磨剤よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。
 ところで、近年、半導体素子の製造工程では、更なる配線の微細化を達成することが求められており、研磨時に発生する研磨傷が問題となっている。すなわち、従来の酸化セリウム系研磨剤を用いて研磨を行った際に、微小な研磨傷が発生しても、この研磨傷の大きさが従来の配線幅より小さいものであれば問題にならなかったが、更なる配線の微細化を達成しようとする場合には、研磨傷が微小であっても問題となってしまう。
 この問題に対し、4価金属元素の水酸化物粒子を用いた研磨剤が検討されている(例えば、下記特許文献3参照)。また、4価金属元素の水酸化物粒子の製造方法についても検討されている(例えば、下記特許文献4参照)。これらの技術は、4価金属元素の水酸化物粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、粒子による研磨傷を低減しようとするものである。
特開平10-106994号公報 特開平08-022970号公報 国際公開第2002/067309号 特開2006-249129号公報 特開2010-153781号公報 国際公開第2010/143579号
分散技術大全集、株式会社情報機構、2005年7月、第三章「各種分散機の最新開発動向と選定基準」
 ところで、STIを形成するためのCMP工程においては、ストッパ材料(研磨停止層の構成材料)として窒化珪素、ポリシリコン等を用いて酸化珪素等の絶縁材料が研磨されている。この場合、平坦性を向上させること、エロージョン(ストッパ材料の過研磨)を抑制すること等の目的のために、ストッパ材料に対する絶縁材料の研磨選択性(研磨速度比:絶縁材料の研磨速度/ストッパ材料の研磨速度)が高い研磨剤が求められる。
 本発明は、このような技術的課題を解決しようとするものであり、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することを目的とする。
 本発明に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する。
 本発明に係る研磨剤によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。これにより、高度な平坦面を得ることができる。また、本発明に係る研磨剤によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、これらの絶縁材料を高度に平坦化することができる。さらに、本発明に係る研磨剤によれば、絶縁材料を高度に平坦化しつつ、絶縁材料を低研磨傷で研磨することもできる。
 ところで、STIを形成するためのCMP工程等においては、酸化珪素等の絶縁材料を研磨してストッパが露出した段階で研磨を停止させた後、ストッパ上に絶縁材料が残存することを避けるため、ストッパが露出した後も余分に研磨を行うことがある。この余分な研磨は、「オーバー研磨」と呼ばれている。例えば、絶縁材料を研磨してストッパが露出するまでの時間Aと同じ長さの時間(時間Aの100%に相当する時間)研磨を続行することを「100%のオーバー研磨」という。オーバー研磨の量(何%のオーバー研磨とするか)は、研磨する基板の形状等により異なる。
 オーバー研磨を行う場合において、単に、ストッパ材料に対する絶縁材料の研磨選択性が高い研磨剤を用いると、ストッパ上に位置する絶縁材料以外の絶縁材料までもが余分に研磨される。これにより、ディッシング(素子分離層等としての絶縁材料に凹み(段差)が生じる現象)が進行してしまい、研磨後の平坦性が劣る場合がある。そのため、STIを形成するためのCMP工程等においては、ストッパ材料に対する絶縁材料の研磨選択性を高めるだけでなく、ストッパが露出した際に、ストッパ上に位置する絶縁材料以外の絶縁材料が余分に研磨されてしまうことを抑制する必要がある場合がある。
 この課題に対し、特許文献5には、4価金属元素の水酸化物粒子及び水溶性重合体を含む研磨剤と、ショアD硬度が70以上の研磨パッドとを組み合わせることで優れた平坦性が得られることが開示されている。しかしながら、硬度の高い研磨パッドを用いると、被研磨材料に研磨傷が発生する場合がある。そのため、現在一般的に使用されており汎用性の高い低硬度な研磨パッドを用いた場合であっても優れた平坦性が得られることが求められている。
 これらに対し、本発明に係る研磨剤によれば、オーバー研磨を行ったときのディッシングの進行を抑制することが可能であり、研磨後の平坦性を向上させることができる。特に、本発明に係る研磨剤によれば、低硬度(例えば、ショアD硬度が65以下)の研磨パッドを用いた場合であっても、ディッシングの進行を抑制することが可能であり、研磨後の平坦性を向上させることができる。
 ポリアルキレングリコールの含有量に対する陽イオン性ポリマの含有量の比率(陽イオン性ポリマの含有量/ポリアルキレングリコールの含有量)は、質量比で0.0005以上0.03以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 ところで、研磨選択性に関する前記課題に対し、特許文献6には、4価金属元素の水酸化物粒子と、ケン化度95モル%以下のポリビニルアルコールとを含む研磨剤を用いることで、ポリシリコンに対する絶縁材料の高い研磨速度比を得られることが開示されている。一方、本発明に係る研磨剤は、ポリビニルアルコールを含有していなくてもよく、このような場合であっても、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。
 ポリアルキレングリコールは、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 ポリアルキレングリコールの含有量は、研磨剤の全質量を基準として0.01質量%以上であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 砥粒の平均粒径は、1nm以上300nm以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 砥粒の含有量は、研磨剤の全質量を基準として0.005質量%以上20質量%以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 本発明に係る研磨剤のpHは、3.0以上12.0以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
 また、本発明の一側面は、酸化珪素を含む被研磨面を研磨する研磨方法への前記研磨剤の使用に関する。すなわち、本発明に係る研磨剤は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本発明に係る研磨剤セットは、前記研磨剤の構成成分が複数の液に分けて保存され、第一の液が砥粒を含み、第二の液がポリアルキレングリコール及び陽イオン性ポリマからなる群より選択される少なくとも一種を含む。本発明に係る研磨剤セットによれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
 本発明の第一の実施態様の基体の研磨方法は、前記研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよく、前記研磨剤セットにおける第一の液と第二の液とを混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨剤又は研磨剤セットを用いることにより、従来の研磨剤を用いた場合よりも、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
 また、本発明の第二の実施態様の基体の研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であって、前記研磨剤を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよく、前記研磨剤セットにおける第一の液と第二の液とを混合して得られる研磨剤を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨剤又は研磨剤セットを用いることにより、従来の研磨剤を用いた場合よりも、ポリシリコンに対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
 本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる研磨剤、研磨剤セット及び研磨方法を提供することができる。また、本発明によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる研磨剤、研磨剤セット及び研磨方法を提供することができる。さらに、本発明によれば、絶縁材料を高度に平坦化しつつ、絶縁材料を低研磨傷で研磨することもできる。
添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 実施例で用いたパターンウエハを示す模式断面図である。
 以下、本発明の実施形態に係る研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法について詳細に説明する。
 本実施形態に係る研磨剤は、研磨時に被研磨面に触れる組成物であり、例えばCMP研磨剤である。具体的には、本実施形態に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を少なくとも含有する。以下、必須成分、及び任意に添加できる成分について説明する。
(砥粒)
 砥粒は、4価金属元素の水酸化物を含むことを特徴とする。「4価金属元素の水酸化物」とは、本明細書において、4価の金属(M4+)と、少なくとも一つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 、硫酸イオンSO 2-)を含んでいてもよい。
 4価金属元素の水酸化物を含む砥粒は、シリカ、セリア等からなる従来の砥粒と比較して、絶縁材料(例えば酸化珪素)との反応性が高く、絶縁材料を高い研磨速度で研磨することができる。本実施形態に係る研磨剤においては、4価金属元素の水酸化物を含む砥粒に加え、他の砥粒を併用してもよい。このような他の砥粒としては、例えば、シリカ、アルミナ、セリア等の粒子が挙げられる。また、4価金属元素の水酸化物を含む砥粒として、4価金属元素の水酸化物とシリカとを含む複合粒子等を用いることもできる。
 砥粒において、4価金属元素の水酸化物の含有量は、砥粒全体を基準として80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましく、99質量%以上が極めて好ましい。研磨剤の調製が容易であると共に研磨特性にも更に優れる観点から、砥粒が4価金属元素の水酸化物からなる(砥粒の100質量%が4価金属元素の水酸化物の粒子である)ことが最も好ましい。
 4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種であることが好ましい。4価金属元素の水酸化物としては、絶縁材料の研磨速度を更に向上させる観点から、希土類金属元素の水酸化物が好ましい。4価を取りうる希土類金属元素としては、セリウム、プラセオジム、テルビウム等のランタノイドなどが挙げられ、中でも、絶縁材料の研磨速度に更に優れる点で、ランタノイドが好ましく、セリウムがより好ましい。希土類金属元素の水酸化物とジルコニウムの水酸化物とを併用してもよく、希土類金属元素の水酸化物から二種以上を選択して使用することもできる。
 研磨剤、又は、後述する研磨剤セットにおけるスラリ中の砥粒の平均粒径の下限は、絶縁材料の研磨速度を更に向上させる観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことを更に抑制する観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましく、100nm以下が特に好ましく、50nm以下が極めて好ましい。上記観点から、砥粒の平均粒径は、1nm以上300nm以下であることがより好ましい。
 砥粒の「平均粒径」とは、砥粒の平均二次粒子径を意味する。砥粒の平均粒径は、例えば、研磨剤、又は、後述する研磨剤セットにおけるスラリについて、光回折散乱式粒度分布計(例えば、ベックマンコールター社製、商品名:N5、又は、マルバーンインスツルメンツ社製、商品名:ゼータサイザー3000HSA)を用いて測定することができる。
 本実施形態に係る研磨剤の構成成分中において、4価金属元素の水酸化物は研磨特性に与える影響が大きいものと考えられる。そのため、4価金属元素の水酸化物の含有量を調整することにより、砥粒と被研磨面との化学的な相互作用が向上し、研磨速度を更に向上させることができる。このことから、4価金属元素の水酸化物の含有量は、研磨剤全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、4価金属元素の水酸化物の含有量は、砥粒の凝集を避けることが容易になると共に、被研磨面との化学的な相互作用が良好となり、砥粒の特性を有効に活用できる点で、研磨剤全質量基準で8質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.5質量%以下が極めて好ましく、0.3質量%以下が非常に好ましい。
 砥粒の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、研磨剤の全質量を基準として0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.04質量%以上が特に好ましく、0.05質量%以上が極めて好ましい。砥粒の含有量の上限は、研磨剤の保存安定性を高くする観点から、研磨剤の全質量を基準として20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい。上記観点から、砥粒の含有量は、研磨剤の全質量を基準として0.005質量%以上20質量%以下であることがより好ましい。
 また、砥粒の含有量を更に少なくすることにより、コスト及び研磨傷を更に低減できる点で好ましい。砥粒の含有量が少なくなると、絶縁材料等の研磨速度も低下する傾向がある。一方、4価金属元素の水酸化物を含む砥粒は、少量でも所定の研磨速度を得ることができるため、研磨速度と、砥粒の含有量を少なくすることによる利点とのバランスをとりつつ、砥粒の含有量を更に低減することができる。このような観点から、砥粒の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。
[吸光度]
 砥粒は、4価金属元素の水酸化物を含み、且つ、下記条件(a)及び(b)の少なくとも一方の条件を満たすことが好ましい。なお、砥粒の含有量を所定量に調整した「水分散液」とは、所定量の砥粒と水とを含む液を意味する。
 (a)砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上を与える。
 (b)砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える。
 前記条件(a)に関して、砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対する吸光度1.00以上を与える砥粒を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて、4価の金属(M4+)、1~3個の水酸化物イオン(OH)及び1~3個の陰イオン(Xc-)からなるM(OH)(式中、a+b×c=4である)を含む粒子が砥粒の一部として生成するものと考えられる(なお、このような粒子も「4価金属元素の水酸化物を含む砥粒」である)。M(OH)では、電子吸引性の陰イオン(Xc-)が作用して水酸化物イオンの反応性が向上しており、M(OH)の存在量が増加するに伴い研磨速度が向上するものと考えられる。そして、M(OH)を含む粒子が波長400nmの光を吸光するため、M(OH)の存在量が増加して波長400nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
 4価金属元素の水酸化物を含む砥粒は、M(OH)だけでなく、M(OH)、MO等も含み得ると考えられる。陰イオン(Xc-)としては、例えばNO 、SO 2-が挙げられる。
 なお、4価金属元素の水酸化物を含む砥粒がM(OH)を含むことは、砥粒を純水でよく洗浄した後にFT-IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で陰イオン(Xc-)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc-)の存在を確認することもできる。
 ここで、M(OH)(例えばM(OH)X)の波長400nmの吸収ピークは、後述する波長290nmの吸収ピークよりもはるかに小さいことが確認されている。これに対し、本発明者は、砥粒含有量が比較的多く、吸光度が大きく検出されやすい砥粒含有量1.0質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長400nmの光に対する吸光度1.00以上を与える砥粒を用いる場合に、研磨速度の向上効果に優れることを見出した。なお、前記の通り波長400nmの光に対する吸光度は砥粒に由来するものと考えられるため、波長400nmの光に対して吸光度1.00以上を与える砥粒に代えて、波長400nmの光に対して1.00以上の吸光度を与える物質(例えば黄色を呈する色素成分)を含む研磨剤では、研磨速度の前記向上効果が得られ難い。
 前記条件(b)に関して、砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて生成するM(OH)(例えばM(OH)X)を含む粒子は、計算上、波長290nm付近に吸収のピークを有し、例えばCe4+(OHNO からなる粒子は波長290nmに吸収のピークを有する。そのため、M(OH)の存在量が増加して波長290nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
 ここで、波長290nm付近の光に対する吸光度は、測定限界を超えるほど大きく検出される傾向がある。これに対し、本発明者は、砥粒の含有量が比較的少なく、吸光度が小さく検出されやすい砥粒含有量0.0065質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いる場合に、研磨速度の向上効果に優れることを見出した。また、本発明者は、吸光物質に吸収されると当該吸光物質が黄色を呈する傾向のある波長400nm付近の光とは別に、波長290nm付近の光に対する砥粒の吸光度が高いほど、このような砥粒を用いた研磨剤及びスラリの黄色味が濃くなることを見出し、研磨剤及びスラリの黄色味が濃くなるほど研磨速度が向上することを見出した。そして、本発明者は、砥粒含有量0.0065質量%の水分散液における波長290nmの光に対する吸光度と、砥粒含有量1.0質量%の水分散液における波長400nmの光に対する吸光度とが相関することを見出した。
 波長290nmの光に対する吸光度の下限は、更に優れた研磨速度で絶縁材料を研磨する観点から、1.000以上が好ましく、1.050以上がより好ましく、1.100以上が更に好ましく、1.130以上が特に好ましく、1.150以上が極めて好ましい。波長290nmの光に対する吸光度の上限は、特に制限はないが、例えば10.00が好ましい。
 波長400nmの光に対する吸光度1.00以上を与える砥粒が、砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える場合には、更に優れた研磨速度で絶縁材料を研磨することができる。
 また、4価金属元素の水酸化物(例えばM(OH))は、波長450nm以上、特に波長450~600nmの光に対して吸光を有していない傾向がある。従って、不純物を含むことにより研磨に対して悪影響が生じることを抑制して更に優れた研磨速度で絶縁材料を研磨する観点から、砥粒は、該砥粒の含有量を0.0065質量%(65ppm)に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。すなわち、砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの範囲における全ての光に対する吸光度が0.010を超えないことが好ましい。波長450~600nmの光に対する吸光度の上限は、0.005以下がより好ましく、0.001以下が更に好ましい。波長450~600nmの光に対する吸光度の下限は、0が好ましい。
 水分散液における吸光度は、例えば、株式会社日立製作所製の分光光度計(装置名:U3310)を用いて測定できる。具体的には例えば、砥粒の含有量を1.0質量%又は0.0065質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルを設置する。次に、波長200~600nmの範囲で吸光度測定を行い、得られたチャートから吸光度を判断する。
 砥粒の含有量が1.0質量%より少なくなるよう過度に希釈して波長400nmの光に対する吸光度を測定した場合に、吸光度が1.00以上を示すようであれば、砥粒の含有量を1.0質量%とした場合にも吸光度が1.00以上であるとして吸光度をスクリーニングしてもよい。砥粒の含有量が0.0065質量%より少なくなるよう過度に希釈して波長290nmの光に対する吸光度を測定した場合に、吸光度が1.000以上を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が1.000以上であるとして吸光度をスクリーニングしてもよい。砥粒の含有量が0.0065質量%より多くなるように希釈して波長450~600nmの光に対する吸光度を測定した場合に、吸光度が0.010以下を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が0.010以下であるとして吸光度をスクリーニングしてもよい。
[光透過率]
 本実施形態に係る研磨剤は、可視光に対する透明度が高い(目視で透明又は透明に近い)ことが好ましい。具体的には、本実施形態に係る研磨剤に含まれる砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましい。これにより、添加剤の添加に起因する研磨速度の低下を更に抑制することができるため、研磨速度を維持しつつ他の特性を得ることが容易になる。この観点から、前記光透過率の下限は、60%/cm以上がより好ましく、70%/cm以上が更に好ましく、80%/cm以上が特に好ましく、90%/cm以上が極めて好ましく、92%/cm以上が非常に好ましい。光透過率の上限は100%/cmである。
 このように砥粒の光透過率を調整することで研磨速度の低下を抑制することが可能な理由は詳しくは分かっていないが、本発明者は以下のように考えている。4価金属元素(セリウム等)の水酸化物を含む砥粒では、機械的作用よりも化学的作用の方が支配的になると考えられる。そのため、砥粒の大きさよりも砥粒の数の方が、より研磨速度に寄与すると考えられる。
 砥粒の含有量が1.0質量%である水分散液において光透過率が低い場合、その水分散液に存在する砥粒は、粒子径の大きい粒子(以下「粗大粒子」という。)が相対的に多く存在すると考えられる。このような砥粒を含む研磨剤に添加剤(例えばポリビニルアルコール(PVA))を添加すると、図1に示すように、粗大粒子を核として他の粒子が凝集する。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が減少し、被研磨面に接する砥粒の比表面積が減少するため、研磨速度の低下が引き起こされると考えられる。
 一方、砥粒の含有量が1.0質量%である水分散液において光透過率が高い場合、その水分散液に存在する砥粒は、「粗大粒子」が少ない状態であると考えられる。このように粗大粒子の存在量が少ない場合は、図2に示すように、研磨剤に添加剤(例えばポリビニルアルコール)を添加しても、凝集の核になるような粗大粒子が少ないため、砥粒同士の凝集が抑えられるか、又は、凝集粒子の大きさが図1に示す凝集粒子と比べて小さくなる。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が維持され、被研磨面に接する砥粒の比表面積が維持されるため、研磨速度の低下が生じ難くなると考えられる。
 本発明者の検討では、一般的な粒径測定装置において測定される粒子径が同じ研磨剤であっても、目視で透明である(光透過率の高い)もの、及び、目視で濁っている(光透過率の低い)ものがありえることがわかっている。このことから、前記のような作用を起こしうる粗大粒子は、一般的な粒径測定装置で検知できないほどのごくわずかの量でも、研磨速度の低下に寄与すると考えられる。
 また、粗大粒子を減らすためにろ過を複数回繰り返しても、添加剤により研磨速度が低下する現象はさほど改善せず、吸光度に起因する研磨速度の前記向上効果が充分に発揮されない場合があることがわかっている。そこで、本発明者は、砥粒の製造方法を工夫する等して、水分散液において光透過率の高い砥粒を使用することによって前記問題を解決できることを見出した。
 前記光透過率は、波長500nmの光に対する透過率である。前記光透過率は、分光光度計で測定することができる。具体的には例えば、株式会社日立製作所製の分光光度計U3310(装置名)で測定することができる。
 より具体的な測定方法としては、砥粒の含有量を1.0質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルをセットした後に測定を行う。なお、砥粒の含有量が1.0質量%より大きい水分散液において50%/cm以上の光透過率を有する場合は、これを希釈して1.0質量%とした場合も光透過率は50%/cm以上となることが明らかである。そのため、砥粒の含有量が1.0質量%より大きい水分散液を用いることにより、簡便な方法で光透過率をスクリーニングすることができる。
 研磨剤に含まれる砥粒が水分散液において与える吸光度及び光透過率は、砥粒以外の固体成分、及び、水以外の液体成分を除去した後、所定の砥粒含有量の水分散液を調製し、当該水分散液を用いて測定することができる。研磨剤に含まれる成分によっても異なるが、固体成分又は液体成分の除去には、例えば、数千G以下の重力加速度をかけられる遠心機を用いた遠心分離、数万G以上の重力加速度をかけられる超遠心機を用いた超遠心分離等の遠心分離法;分配クロマトグラフィー、吸着クロマトグラフィー、ゲル浸透クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィー法;自然ろ過、減圧ろ過、加圧ろ過、限外ろ過等のろ過法;減圧蒸留、常圧蒸留等の蒸留法を用いることができ、これらを適宜組み合わせてもよい。
 例えば、重量平均分子量が数万以上(例えば5万以上)の化合物を含む場合は、クロマトグラフィー法、ろ過法等が挙げられ、中でも、ゲル浸透クロマトグラフィー及び限外ろ過が好ましい。ろ過法を用いる場合、研磨剤に含まれる砥粒は、適切な条件の設定により、フィルタを通過させることができる。重量平均分子量が数万以下(例えば5万未満)の化合物を含む場合は、クロマトグラフィー法、ろ過法、蒸留法等が挙げられ、ゲル浸透クロマトグラフィー、限外ろ過及び減圧蒸留が好ましい。複数種類の砥粒が含まれる場合、ろ過法、遠心分離法等が挙げられ、ろ過の場合はろ液に、遠心分離の場合は液相に、4価金属元素の水酸化物を含む砥粒がより多く含まれる。
 クロマトグラフィー法で砥粒を分離する方法として、例えば、下記条件によって、砥粒成分を分取する、及び/又は、他成分を分取することができる。
 試料溶液:研磨剤100μL
 検出器:株式会社日立製作所製UV-VISディテクター、商品名「L-4200」、波長:400nm
 インテグレータ:株式会社日立製作所製GPCインテグレータ、商品名「D-2500」
 ポンプ:株式会社日立製作所製、商品名「L-7100」
 カラム:日立化成株式会社製水系HPLC用充填カラム、商品名「GL-W550S」
 溶離液:脱イオン水
 測定温度:23℃
 流速:1mL/分(圧力は40~50kg/cm程度)
 測定時間:60分
 なお、クロマトグラフィーを行う前に、脱気装置を用いて溶離液の脱気処理を行うことが好ましい。脱気装置を使用できない場合は、溶離液を事前に超音波等で脱気処理することが好ましい。
 研磨剤に含まれる成分によっては、上記条件でも砥粒成分を分取できない可能性があるが、その場合、試料溶液量、カラム種類、溶離液種類、測定温度、流速等を最適化することで分離することができる。また、研磨剤のpHを調整することで、研磨剤に含まれる成分の留出時間を調整し、砥粒と分離できる可能性がある。研磨剤に不溶成分がある場合、必要に応じ、ろ過、遠心分離等で不溶成分を除去することが好ましい。
[砥粒の作製方法]
 4価金属元素の水酸化物は、4価金属元素の塩(金属塩)と、アルカリ源(塩基)とを反応させることにより作製可能である。4価金属元素の水酸化物は、4価金属元素の塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、研磨傷の低減効果に更に優れた研磨剤を得ることができる。このような手法は、例えば、特許文献4に開示されている。4価金属元素の水酸化物は、4価金属元素の塩の金属塩溶液(例えば金属塩水溶液)とアルカリ液とを混合することにより得ることができる。なお、4価金属元素の塩及びアルカリ源の少なくとも一方を液体状態で反応系に供給する場合、混合液を撹拌する手段は限定されるものではない。例えば、回転軸回りに回転する棒状、板状又はプロペラ状の撹拌子又は撹拌羽根を用いて混合液を撹拌する方法、容器の外部から動力を伝達するマグネチックスターラーを用いて、回転する磁界で撹拌子を回転させて混合液を撹拌する方法、槽外に設置したポンプで混合液を撹拌する方法、外気を加圧して槽内に勢いよく吹き込むことで混合液を撹拌する方法が挙げられる。4価金属元素の塩としては、従来公知のものを特に制限なく使用でき、M(NO、M(SO、M(NH(NO、M(NH(SO(Mは希土類金属元素を示す。)、Zr(SO・4HO等が挙げられる。Mとしては、化学的に活性なセリウム(Ce)が好ましい。
 吸光度及び光透過率を調整する手段としては、4価金属元素の水酸化物の製造方法の最適化等が挙げられる。波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を変化させる方法としては、具体的には例えば、アルカリ液中のアルカリ源の選択、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の調整が挙げられる。また、波長500nmの光に対する光透過率を変化させる方法としては、具体的には例えば、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、混合するときの撹拌速度の調整、混合液の液温の調整が挙げられる。
 波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を高くするためには、4価金属元素の水酸化物の製造方法を、より「緩やか」にすることが好ましい。ここで、「緩やか」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を穏やかにする(遅くする)ことを意味する。逆に、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を低くするためには、4価金属元素の水酸化物の製造方法を、より「激しく」することが好ましい。ここで、「激しく」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を激しくする(速くする)ことを意味する。これらの吸光度及び光透過率の値を所定範囲に調整するためには、前記傾向を参考にして、4価金属元素の水酸化物の製造方法を最適化することが好ましい。以下、吸光度及び光透過率の制御方法について更に詳しく説明する。
{アルカリ源}
 アルカリ液中のアルカリ源としては、従来公知のものを特に制限なく使用できる。アルカリ源としては、有機塩基、無機塩基等が挙げられる。有機塩基としては、グアニジン、トリエチルアミン、キトサン等の含窒素有機塩基;ピリジン、ピペリジン、ピロリジン、イミダゾール等の含窒素複素環有機塩基;炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム等のアンモニウム塩などが挙げられる。無機塩基としては、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の無機塩などが挙げられる。アルカリ源は、一種を単独で又は二種類以上を組み合わせて使用することができる。
 アルカリ源としては、絶縁材料の研磨速度を更に向上させる観点から、アンモニア及びイミダゾールが好ましく、イミダゾールが更に好ましい。波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を高くするためには、アルカリ源として、弱い塩基性を示すアルカリ源を使用することが好ましい。アルカリ源の中でも、含窒素複素環有機塩基が好ましく、ピリジン、ピペリジン、ピロリジン、イミダゾールがより好ましく、ピリジン及びイミダゾールが更に好ましく、イミダゾールが特に好ましい。
{濃度}
 金属塩溶液とアルカリ液とにおける原料濃度の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。具体的には、金属塩溶液の金属塩濃度を濃くすることで吸光度が高くなる傾向があり、アルカリ液のアルカリ濃度(塩基の濃度、アルカリ源の濃度)を薄くすることで吸光度が高くなる傾向がある。また、金属塩濃度を濃くすることで光透過率が高くなる傾向があり、アルカリ濃度を薄くすることで光透過率が高くなる傾向がある。
 金属塩溶液における金属塩濃度の上限は、優れた研磨速度と優れた砥粒の安定性とを両立しやすくなる点で、金属塩溶液の全体を基準として1.000mol/L以下が好ましく、0.500mol/L以下がより好ましく、0.300mol/L以下が更に好ましく、0.200mol/L以下が特に好ましい。金属塩濃度の下限は、急激に反応が起こることを抑制できる(pHの上昇を穏やかにできる)と共に、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率が高くなる点で、金属塩溶液の全体を基準として0.010mol/L以上が好ましく、0.020mol/L以上がより好ましく、0.030mol/L以上が更に好ましい。
 アルカリ液におけるアルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、12.0mol/L以下がより好ましく、10.0mol/L以下が更に好ましい。アルカリ濃度の下限は特に制限されないが、生産性の観点から、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
 アルカリ液におけるアルカリ濃度は、選択されるアルカリ源により適宜調整されることが好ましい。例えば、アルカリ源の共役酸のpKaが20以上であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として0.10mol/L以下が好ましく、0.05mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
 アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として1.0mol/L以下が好ましく、0.50mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.01mol/L以上が好ましい。
 アルカリ源の共役酸のpKaが12未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、10.0mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.10mol/L以上が好ましい。
 アルカリ源の共役酸のpKaが20以上であるアルカリ源としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(pKa:25)が挙げられる。アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源としては、例えば、水酸化カリウム(pKa:16)、水酸化ナトリウム(pKa:13)が挙げられる。アルカリ源の共役酸のpKaが12未満であるアルカリ源としては、例えば、アンモニア(pKa:9)、イミダゾール(pKa:7)が挙げられる。使用するアルカリ源の共役酸のpKa値は、アルカリ濃度が適切に調整される限り、特に限定されるものではないが、アルカリ源の共役酸のpKaは、20未満であることが好ましく、12未満であることがより好ましく、10未満であることが更に好ましく、8未満であることが特に好ましい。
{混合速度}
 金属塩溶液とアルカリ液との混合速度の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。傾向としては、pHの上昇が穏やかになる(遅くなる)ようにすることで吸光度及び光透過率がそれぞれ高くなる。より具体的には、混合速度を遅くすることで吸光度が高くなる傾向があり、混合速度を速くすることで吸光度が低くなる傾向がある。また、混合速度を遅くすることで光透過率が高くなる傾向があり、混合速度を速くすることで光透過率が低くなる傾向がある。
 混合速度の上限は、急激に反応が進行することを更に抑制すると共に、局所における反応の偏りを更に抑制する観点から、5.00×10-3/分(5L/分)以下が好ましく、1.00×10-3/分(1L/分)以下がより好ましく、5.00×10-4/分(500mL/分)以下が更に好ましく、1.00×10-4/分(100mL/分)以下が特に好ましい。混合速度の下限は、特に制限されないが、生産性の観点から、1.00×10-7/分(0.1mL/分)以上が好ましい。
{撹拌速度}
 金属塩溶液とアルカリ液とを混合するときの撹拌速度の制御により、波長500nmの光に対する光透過率を変化させることができる。具体的には、撹拌速度を速くすることで光透過率が高くなる傾向があり、撹拌速度を遅くすることで光透過率が低くなる傾向がある。
 撹拌速度の下限は、局所における反応の偏りを更に抑制でき、且つ、混合効率に優れる観点から、30min-1以上が好ましく、50min-1以上がより好ましく、80min-1以上が更に好ましい。撹拌速度の上限は、特に制限されず、また、撹拌羽根の大きさ、形状により適宜調整を要するが、液はねを抑制する観点から、1000min-1以下が好ましい。
{液温(合成温度)}
 4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることが可能であり、所望の研磨速度と保管安定性を達成可能な砥粒を得ることができる。具体的には、液温を低くすることで吸光度が高くなる傾向があり、液温を高くすることで吸光度が低くなる傾向がある。また、液温を低くすることで光透過率が高くなる傾向があり、液温を高くすることで光透過率が低くなる傾向がある。
 液温は、例えば混合液に温度計を設置して読み取れる混合液内の温度であり、0~100℃であることが好ましい。液温の上限は、急激な反応を抑制することができる点で、100℃以下が好ましく、60℃以下がより好ましく、55℃以下が更に好ましく、50℃以下が特に好ましく、45℃以下が極めて好ましい。液温の下限は、反応を容易に進行させることができる点で、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が更に好ましい。
 前記方法で合成された4価金属元素の水酸化物は、不純物(例えば金属不純物)を含むことがあるが、洗浄して不純物を除去できる。4価金属元素の水酸化物の洗浄は、遠心分離等で固液分離を数回繰り返す方法などが使用できる。また、遠心分離、透析、限外濾過、イオン交換樹脂等によるイオンの除去などにより洗浄することもできる。不純物を除去することにより、波長450~600nmの光に対する吸光度を調整することができる。
 前記で得られた砥粒が凝集している場合、適切な方法で水中に分散させることができる。主な分散媒である水に砥粒を分散させる方法としては、撹拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等による機械的な分散処理であってもよい。分散方法及び粒径制御方法については、例えば非特許文献1に記述されている方法を用いることができる。また、前記の洗浄処理を行って、砥粒を含む分散液の電気伝導度を下げる(例えば500mS/m以下)ことによっても、砥粒の分散性を高めることができる。そのため、前記洗浄処理を分散処理として適用してもよく、前記洗浄処理と分散処理とを併用してもよい。
(添加剤)
 本実施形態に係る研磨剤は、添加剤を含有する。ここで、「添加剤」とは、研磨速度、研磨選択性等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整するために、水及び砥粒以外に研磨剤に添加される物質を指す。
[第一の添加剤:ポリアルキレングリコール]
 本実施形態に係る研磨剤は、第一の添加剤として、ポリアルキレングリコールを含有する。第一の添加剤は、ストッパ材料の研磨速度が過度に高くなることを抑制する効果がある。また、第一の添加剤を用いることにより、ストッパ露出後の絶縁材料の研磨を抑制することで、高い平坦性を得ることもできる。第一の添加剤が絶縁材料及びストッパを被覆することにより、砥粒による研磨の進行が緩和されて研磨速度が過度に高くなることが抑制されるものと推測される。
 ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられ、中でも、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種が好ましく、ポリエチレングリコールがより好ましい。
 第一の添加剤は、研磨選択性又は平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
 第一の添加剤の重量平均分子量は、特に制限はない。第一の添加剤の重量平均分子量の上限は、作業性及び起泡性の観点から、100×10以下が好ましく、50×10以下がより好ましく、10×10以下が更に好ましく、8×10以下が特に好ましく、6×10以下が極めて好ましい。また、第一の添加剤の重量平均分子量の下限は、研磨選択性及び平坦性を更に向上させる観点から、200以上が好ましく、300以上がより好ましく、400以上が更に好ましい。上記の観点から、第一の添加剤の重量平均分子量は、200以上100×10以下がより好ましい。なお、重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
 使用機器:日立L-6000型〔株式会社日立製作所製〕
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440〔日立化成株式会社 商品名、計3本〕
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75mL/分
 検出器:L-3300RI〔株式会社日立製作所製〕
 第一の添加剤の含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましい。第一の添加剤の含有量の上限は、適度な研磨速度を得る観点から、研磨剤の全質量を基準として5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。上記の観点から、第一の添加剤の含有量は、研磨剤の全質量を基準として0.01質量%以上5質量%以下がより好ましい。なお、第一の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
[第二の添加剤:陽イオン性ポリマ]
 本実施形態に係る研磨剤は、第一の添加剤の他に、第二の添加剤として陽イオン性ポリマを含有する。「陽イオン性ポリマ」とは、陽イオン基、又は、陽イオン基にイオン化され得る基を、主鎖又は側鎖に有するポリマである。本実施形態において、第二の添加剤は、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種を選択して用いる。
 第二の添加剤は、第一の添加剤と併用することにより、ストッパ材料の研磨速度が過度に高くなることを抑制する効果がある。第二の添加剤の方が絶縁材料に吸着しやすいため、第二の添加剤が吸着していることで吸着できなくなった余剰な第一の添加剤がストッパ材料表面に厚く吸着することでストッパ材料が研磨されることが更に抑制されるためであると考えられる。また、第二の添加剤は、絶縁材料の研磨速度を向上させる効果がある。第二の添加剤が第一の添加剤と相互作用することにより、第一の添加剤が絶縁材料を過度に被覆して絶縁材料の研磨速度が小さくなることが抑制されるためであると考えられる。これにより、本実施形態に係る研磨剤によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。
 第二の添加剤は、平坦性を悪化させることなく絶縁材料の研磨速度を上昇させる効果もある。第二の添加剤が存在することにより第一の添加剤が適度に絶縁材料を被覆することで、絶縁材料の凸部に対する研磨速度を向上させつつ、絶縁材料の凹部に対する研磨速度を抑制するため、高い平坦性を維持することができると考えられる。
 第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体からなる群より選択される少なくとも一種の単量体成分を重合させることにより得ることができる。第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体以外の単量体成分由来の構造単位を有していてもよく、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、アクリル酸、アクリル酸メチル、メタクリル酸、マレイン酸、二酸化硫黄等に由来する構造単位を有していてもよい。
 第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミンの単独重合体(ポリアリルアミン、ポリジアリルアミン、ポリビニルアミン、ポリエチレンイミン)であってもよく、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン又はこれらの誘導体由来の構造単位を有する共重合体であってもよい。共重合体において構造単位の配列は任意である。例えば、(a)それぞれ同種の構造単位が連続したブロック共重合の形態、(b)構造単位A及び構造単位Bが特に秩序なく配列したランダム共重合の形態、(c)構造単位A及び構造単位Bが交互に配列した交互共重合の形態、等を含む任意の形態をとり得る。
 アリルアミン重合体は、アリルアミン及びその誘導体を重合させることにより得られる重合体である。アリルアミン誘導体としては、アルコキシカルボニル化アリルアミン、メチルカルボニル化アリルアミン、アミノカルボニル化アリルアミン、尿素化アリルアミン等が挙げられる。
 ジアリルアミン重合体は、ジアリルアミン及びその誘導体を重合させることにより得られる重合体である。ジアリルアミン誘導体としては、メチルジアリルアミン、ジアリルジメチルアンモニウム塩、ジアリルメチルエチルアンモニウム塩、アシル化ジアリルアミン、アミノカルボニル化ジアリルアミン、アルコキシカルボニル化ジアリルアミン、アミノチオカルボニル化ジアリルアミン、ヒドロキシアルキル化ジアリルアミン等が挙げられる。アンモニウム塩としては、アンモニウムクロリド等が挙げられる。
 ビニルアミン重合体は、ビニルアミン及びその誘導体を重合させることにより得られる重合体である。ビニルアミン誘導体としては、アルキル化ビニルアミン、アミド化ビニルアミン、エチレンオキサイド化ビニルアミン、プロピレンオキサイド化ビニルアミン、アルコキシ化ビニルアミン、カルボキシメチル化ビニルアミン、アシル化ビニルアミン、尿素化ビニルアミン等が挙げられる。
 エチレンイミン重合体は、エチレンイミン及びその誘導体を重合させることにより得られる重合体である。エチレンイミン誘導体としては、アミノエチル化アクリル重合体、アルキル化エチレンイミン、尿素化エチレンイミン、プロピレンオキサイド化エチレンイミン等が挙げられる。
 第二の添加剤としては、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を更に抑制することができる観点から、ポリアリルアミン、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、ジアリルジメチルアンモニウムクロリド・アクリル酸共重合体が好ましい。また、第二の添加剤としては、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点、及び、絶縁材料の研磨速度を更に向上させる観点から、ポリアリルアミン、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体が好ましい。第二の添加剤は、研磨選択性及び平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
 第二の添加剤の重量平均分子量は、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点から、100以上が好ましく、300以上がより好ましく、500以上が更に好ましく、1.0×10以上が特に好ましい。第二の添加剤の重量平均分子量は、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点から、1000×10以下が好ましく、800×10以下がより好ましく、600×10以下が更に好ましく、400×10以下が特に好ましい。上記の観点から、第二の添加剤の重量平均分子量は、100以上1000×10以下であることがより好ましい。なお、第二の添加剤の重量平均分子量は、第一の添加剤の重量平均分子量と同様の方法により測定することができる。
 第二の添加剤の含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.00015質量%以上がより好ましく、0.0002質量%以上が更に好ましく、0.0005質量%以上が特に好ましい。第二の添加剤の含有量の上限は、研磨選択性に更に優れる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が非常に好ましく、0.05質量%以下が極めて好ましい。上記の観点から、第二の添加剤の含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。なお、第二の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。第二の添加剤の含有量は、絶縁材料の研磨速度、ストッパ材料に対する絶縁材料の研磨選択性、及び、平坦性を更に向上させる観点から、絶縁材料の作製方法(種類、材料付け条件)に応じて適宜調整することが好ましい。
 第一の添加剤の含有量に対する第二の添加剤の含有量の比率は、研磨選択性及び平坦性を更に向上させる観点から、質量比で0.0005以上が好ましく、0.001以上がより好ましく、0.0015以上が更に好ましく、0.002以上が特に好ましい。第一の添加剤の含有量に対する第二の添加剤の含有量の比率は、研磨選択性が更に優れる観点から、質量比で0.03以下が好ましく、0.025以下がより好ましく、0.02以下が更に好ましく、0.015以下が特に好ましい。上記の観点から、前記含有量の比率は、0.0005以上0.03以下がより好ましい。
 本実施形態に係る研磨剤は、第二の添加剤以外の陽イオン性ポリマを含有していてもよい。このような陽イオン性ポリマとしては、カチオン変性したポリアクリルアミド、カチオン変性したポリジメチルアクリルアミド等のアクリル系ポリマ;キトサン、キトサン誘導体、カチオン変性したセルロース、カチオン変性したデキストラン等の多糖類;これらの化合物を構成する構成単位由来の単量体を重合させて得られる共重合体などが挙げられる。陽イオン性ポリマは、研磨選択性及び平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
 第二の添加剤を含む陽イオン性ポリマの含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.00015質量%以上がより好ましく、0.0002質量%以上が更に好ましく、0.0005質量%以上が特に好ましい。第二の添加剤を含む陽イオン性ポリマの含有量の上限は、研磨選択性に更に優れる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が非常に好ましく、0.05質量%以下が極めて好ましい。上記の観点から、第二の添加剤を含む陽イオン性ポリマの含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。
[第三の添加剤]
 本実施形態に係る研磨剤は、研磨速度等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整する目的で、第一の添加剤、及び、第二の添加剤等の陽イオン性ポリマの他に、第三の添加剤を更に含有していてもよい。
 第三の添加剤としては、カルボン酸、アミノ酸等が挙げられる。これらは、一種を単独で又は二種類以上を組み合わせて使用することができる。中でも、砥粒の分散性と研磨特性のバランスに優れる観点から、カルボン酸及びアミノ酸が好ましい。
 カルボン酸は、pHを安定化させると共に絶縁材料の研磨速度を更に向上させる効果がある。カルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸等が挙げられる。
 アミノ酸は、4価金属元素の水酸化物を含む砥粒の分散性を向上させ、絶縁材料の研磨速度を更に向上させる効果がある。アミノ酸としては、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、アラニン、β-アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。なお、アミノ酸はカルボキシル基を有するが、カルボン酸とは異なるものとする。
 第三の添加剤を使用する場合、第三の添加剤の含有量は、砥粒の沈降を抑制しつつ添加剤の添加効果が得られる観点から、研磨剤の全質量を基準として0.01質量%以上10質量%以下の範囲が好ましい。なお、第三の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
(水溶性高分子)
 本実施形態に係る研磨剤は、平坦性、面内均一性、窒化珪素に対する酸化珪素の研磨選択性(酸化珪素の研磨速度/窒化珪素の研磨速度)、ポリシリコンに対する酸化珪素の研磨選択性(酸化珪素の研磨速度/ポリシリコンの研磨速度)等の研磨特性を調整する目的で、水溶性高分子を含有していてもよい。ここで、「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。第一の添加剤、及び、第二の添加剤等の陽イオン性ポリマは、「水溶性高分子」に含まれないものとする。
 水溶性高分子としては、特に制限はない。水溶性高分子としては、具体的には、ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ;アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、デキストリン、シクロデキストリン、プルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;ポリグリセリン、ポリグリセリン誘導体等のグリセリン系ポリマなどが挙げられる。本実施形態に係る研磨剤は、ポリビニルアルコールを含有していなくてもよい。水溶性高分子は、一種を単独で又は二種類以上を組み合わせて使用することができる。
 水溶性高分子を使用する場合、水溶性高分子の含有量は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。上記の観点から、水溶性高分子の含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。水溶性高分子として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
 水溶性高分子の重量平均分子量は、特に制限はないが、100以上300×10以下であることが好ましい。なお、水溶性高分子の重量平均分子量は、第一の添加剤の重量平均分子量と同様の方法により測定することができる。
(研磨剤の特性)
 本実施形態に係る研磨剤のpH(25℃)の下限は、絶縁材料の研磨速度を更に向上させる観点から、3.0以上が好ましく、4.0以上がより好ましく、4.5以上が更に好ましく、5.0以上が特に好ましい。また、pHの上限は、絶縁材料の研磨速度を更に向上させる観点から、12.0以下が好ましく、11.0以下がより好ましく、10.0以下が更に好ましく、9.0以下が特に好ましく、8.0以下が極めて好ましい。上記の観点から、研磨剤のpHは、3.0以上12.0以下であることがより好ましい。
 研磨剤のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール等のアルカリ成分などによって調整可能である。また、pHを安定化させるため、緩衝剤を添加してもよい。また、緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
 本実施形態に係る研磨剤のpHは、pHメータ(例えば、電気化学計器株式会社製の型番PHL-40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨剤に入れて、2分以上経過して安定した後の値を測定する。このとき、標準緩衝液と研磨剤の液温は共に25℃とする。
 本実施形態に係る研磨剤は、砥粒と、第一の添加剤と、第二の添加剤と、水とを少なくとも含む一液式研磨剤として保存してもよく、スラリ(第一の液)と添加液(第二の液)とを混合して前記研磨剤となるように前記研磨剤の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨剤セットとして保存してもよい。スラリは、例えば、砥粒を少なくとも含む。添加液は、例えば、第一の添加剤及び第二の添加剤からなる群より選択される少なくとも一種を含む。第一の添加剤、第二の添加剤、第三の添加剤、水溶性高分子及び緩衝剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。なお、前記研磨剤の構成成分は、三液以上に分けた研磨剤セットとして保存してもよい。例えば、前記研磨剤の構成成分は、砥粒及び水を含むスラリと、第一の添加剤及び水を含む添加液と、第二の添加剤及び水を含む添加液とに分けて保存されてもよい。
 前記研磨剤セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨剤が作製される。また、一液式研磨剤は、水の含有量を減じた研磨剤用貯蔵液として保存されると共に、研磨時に水で希釈して用いられてもよい。複数液式の研磨剤セットは、水の含有量を減じたスラリ用貯蔵液、添加液用貯蔵液として保存されると共に、研磨時に水で希釈して用いられてもよい。
 一液式研磨剤の場合、研磨定盤上への研磨剤の供給方法としては、研磨剤を直接送液して供給する方法;研磨剤用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめ研磨剤用貯蔵液及び水を混合しておき供給する方法等を用いることができる。
 スラリと添加液とに分けた複数液式の研磨剤セットとして保存する場合、これらの液の配合を任意に変えることにより研磨速度の調整ができる。研磨剤セットを用いて研磨する場合、研磨定盤上への研磨剤の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめスラリ、添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び水を混合しておき供給する方法等を用いることができる。また、前記研磨剤セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨剤を用いて被研磨面が研磨される。
(基体の研磨方法)
 本実施形態に係る基体の研磨方法は、前記一液式研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよく、前記研磨剤セットにおけるスラリと添加液を混合して得られる研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよい。また、本実施形態に係る基体の研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であってもよく、例えば、前記一液式研磨剤、又は、前記研磨剤セットにおけるスラリと添加液とを混合して得られる研磨剤を用いて、絶縁材料をポリシリコンに対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、ポリシリコンを含む部材とを有していてもよい。なお、「材料Aを材料Bに対して選択的に研磨する」とは、同一研磨条件において、材料Aの研磨速度が、材料Bの研磨速度よりも高いことをいう。より具体的には、例えば、材料Bの研磨速度に対する材料Aの研磨速度の研磨速度比が250以上で材料Aを研磨することをいう。
 研磨工程では、例えば、被研磨材料を有する基体の該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨剤を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。
 研磨対象である基体としては、基板等が挙げられ、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基板が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料;ポリシリコン、窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状であってもよく、酸化珪素膜、ポリシリコン膜、窒化珪素膜等であってもよい。
 このような基板上に形成された被研磨材料(例えば酸化珪素等の絶縁材料)を前記研磨剤で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面とすることができる。本実施形態に係る研磨剤は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された半導体基板とを有する基体における絶縁材料を研磨することができる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料であり、ポリシリコン、窒化珪素等が好ましい。このような基体では、ストッパが露出した時に研磨を停止させることにより、絶縁材料が過剰に研磨されることを防止できるため、絶縁材料の研磨後の平坦性を向上させることができる。
 本実施形態に係る研磨剤により研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
 酸化珪素は、低圧CVD法を用いて、例えば、モノシラン(SiH)と酸素(O)を熱反応させることにより得られる。また、酸化珪素は、準常圧CVD法を用いて、例えば、テトラエトキシシラン(Si(OC)とオゾン(O)を熱反応させることにより得られる。その他の例として、テトラエトキシシランと酸素をプラズマ反応させることにより、同様に酸化珪素が得られる。
 酸化珪素は、回転塗布法を用いて、例えば、無機ポリシラザン、無機シロキサン等を含む液体原料を基板上に塗布し、炉体等で熱硬化反応させることにより得られる。
 ポリシリコンの作製方法としては、モノシランを熱反応させる低圧CVD法、モノシランをプラズマ反応させるプラズマCVD法等が挙げられる。
 窒化珪素の作製方法としては、例えば、ジクロルシランとアンモニアを熱反応させる低圧CVD法、モノシラン、アンモニア及び窒素をプラズマ反応させるプラズマCVD法等が挙げられる。以上のような方法で得られた窒化珪素には、材質を調整するために、炭素、水素等のように、シリコンと窒素以外の元素が含まれていてもよい。
 以上のような方法で得られた酸化珪素、ポリシリコン、窒化珪素等の材質を安定化させるために、必要に応じて200~1000℃の温度で熱処理をしてもよい。また、以上のような方法で得られた酸化珪素には、埋込み性を高めるために微量のホウ素(B)、リン(P)、炭素(C)等が含まれていてもよい。
 以下、絶縁材料が形成された半導体基板の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する半導体基板等の基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置:Reflexionを使用できる。
 研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性の観点から、発泡ポリウレタン及び非発泡ポリウレタンが好ましい。研磨パッドには、研磨剤がたまるような溝加工が施されていることが好ましい。
 研磨条件に制限はないが、研磨定盤の回転速度は、半導体基板が飛び出さないように200min-1以下が好ましく、半導体基板にかける研磨圧力(加工荷重)は、研磨傷が発生することを充分に抑制する観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的に研磨剤を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。
 研磨終了後の半導体基板は、流水中でよく洗浄して基板に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、半導体基板に付着した水滴を、スピンドライヤ等を用いて払い落としてから半導体基板を乾燥させることが好ましい。
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、STIの形成に好適に使用できる。STIを形成するためには、ストッパ材料(例えばポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨速度比は、250以上であることが好ましく、300以上であることがより好ましい。前記研磨速度比が250未満であると、ストッパ材料の研磨速度に対する絶縁材料の研磨速度の大きさが小さく、STIを形成する際に所定の位置で研磨を停止しにくくなる傾向がある。一方、前記研磨速度比が250以上であれば、研磨の停止が容易になり、STIの形成に更に好適である。
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素の他、例えば、リン-シリケートガラス、ボロン-リン-シリケートガラスが使用され、更に、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ又はプラスチック等から構成される各種基板にも適用できる。
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置の製造に用いることができる。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
<4価金属元素の水酸化物の合成>
 175gのCe(NH(NOを8000gの純水に溶解して溶液を得た。次いで、この溶液を攪拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/分の混合速度で滴下して、29gのセリウム水酸化物粒子を含む分散液(黄白色)を得た。セリウム水酸化物粒子の合成は、温度25℃、撹拌速度400min-1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
 得られたセリウム水酸化物粒子の分散液に対して、遠心分離(4000min-1、5分間)によって固液分離を施し、固形分含量約10%の沈殿物を取り出した。固液分離により得られた沈殿物に、セリウム水酸化物含有量が1.0質量%になるように水を混合し、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物スラリ用貯蔵液を調製した。
<平均粒径の測定>
 ベックマンコールター社製、商品名:N5を用いてセリウム水酸化物スラリ用貯蔵液におけるセリウム水酸化物粒子の平均粒径を測定したところ、25nmであった。測定法は下記のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(水分散液)を1cm角のセルに約1mL入れ、N5内にセルを設置した。測定サンプルの屈折率を1.333、測定サンプルの粘度を0.887mPa・sに調整し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
<砥粒の構造分析>
 セリウム水酸化物スラリ用貯蔵液を適量採取し、真空乾燥して砥粒を単離した後に、純水で充分に洗浄して試料を得た。得られた試料について、FT-IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N-XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物スラリ用貯蔵液に含まれる砥粒は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子を少なくとも一部含有することから、砥粒がセリウム水酸化物を含有することが確認された。
<吸光度及び光透過率の測定>
 セリウム水酸化物スラリ用貯蔵液を適量採取し、砥粒含有量が0.0065質量%(65ppm)となるように水で希釈して測定サンプル(水分散液)を得た。この測定サンプルを1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長290nmの光に対する吸光度と、波長450~600nmの光に対する吸光度とを測定した。波長290nmの光に対する吸光度は1.192であり、波長450~600nmの光に対する吸光度は0.010未満であった。
 セリウム水酸化物スラリ用貯蔵液(粒子の含有量:1.0質量%)を1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長400nmの光に対する吸光度と、波長500nmの光に対する光透過率とを測定した。波長400nmの光に対する吸光度は2.25であり、波長500nmの光に対する光透過率は92%/cmであった。
<CMP研磨剤の調製>
[実施例1]
 ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水840gと、陽イオン性ポリマとして0.1質量%ポリアリルアミン〔ニットーボーメディカル株式会社製PAA-01、重量平均分子量1600〕を含有する水溶液10gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.001質量%含有するpH6.2のCMP研磨剤を調製した。
[実施例2]
 ポリアリルアミンの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.0015質量%含有するpH6.3のCMP研磨剤を調製した。
[実施例3]
 ポリアリルアミンの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.002質量%含有するpH6.4のCMP研磨剤を調製した。
[実施例4]
 ポリエチレングリコール〔ライオン株式会社製PEG#4000、重量平均分子量:4000〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとして0.1質量%ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS-J-81、重量平均分子量:200000〕を含有する水溶液30gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体を0.003質量%含有するpH6.0のCMP研磨剤を調製した。
[実施例5]
 陽イオン性ポリマの種類と配合量、イミダゾールの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS-J-81、重量平均分子量:200000〕を0.003質量%含有するpH5.0のCMP研磨剤を調製した。
[実施例6]
 陽イオン性ポリマの種類と配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS-J-81、重量平均分子量:200000〕を0.003質量%含有するpH5.8のCMP研磨剤を調製した。
[実施例7]
 陽イオン性ポリマの種類と配合量、イミダゾールの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS-J-81、重量平均分子量:200000〕を0.003質量%含有するpH6.7のCMP研磨剤を調製した。
[実施例8]
 陽イオン性ポリマの種類以外は実施例6と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリエチレンイミン〔株式会社日本触媒製エポミンP-1000、重量平均分子量70000〕を0.003質量%含有するpH6.4のCMP研磨剤を調製した。
[実施例9]
 ポリプロピレングリコール〔和光純薬工業株式会社製ポリプロピレングリコール ジオール型 400、重量平均分子量:400〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとして0.1質量%ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS-J-81、重量平均分子量:200000〕を含有する水溶液30gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリプロピレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体を0.003質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例1]
 セリウム水酸化物スラリ用貯蔵液50gと、水940gと、1質量%イミダゾール水溶液10gとを混合し、セリウム水酸化物粒子を0.05質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例2]
 セリウム水酸化物スラリ用貯蔵液50gと、水927gと、1質量%イミダゾール水溶液8g、1質量%酢酸水溶液5gと、0.1質量%ポリアリルアミン〔ニットーボーメディカル株式会社製PAA-01、重量平均分子量:1600〕水溶液10gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリアリルアミンを0.001質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例3]
 ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%含有するpH6.2のCMP研磨剤を調製した。
[比較例4]
 ポリビニルアルコール〔株式会社クラレ製PVA-403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%含有するpH5.8のCMP研磨剤を調製した。
[比較例5]
 陽イオン性ポリマとしてポリアリルアミン〔ニットーボーメディカル株式会社製PAA-01、重量平均分子量:1600〕を加えた以外は比較例4と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.0001質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例6]
 ポリアリルアミンの配合量以外は比較例5と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.001質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例7]
 陽イオン性ポリマとしてポリアリルアミン〔ニットーボーメディカル株式会社製PAA-08、重量平均分子量:8000〕を加えた以外は比較例4と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.0008質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例8]
 ポリビニルアルコール〔株式会社クラレ製PVA-403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕10質量%、ポリアリルアミン〔ニットーボーメディカル株式会社製PAA-08、重量平均分子量:8000〕0.008質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水89.862質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを1質量%、ポリアリルアミンを0.0008質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例9]
 ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕0.07質量%、キトサン〔大日精化工業格式会社製ダイキトサン100D、脱アセチル化度:98%以上〕0.15質量%、イミダゾール0.2質量%、酢酸0.15質量%及び水99.43質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.007質量%、キトサンを0.015質量%含有するpH6.4のCMP研磨剤を調製した。
[比較例10]
 ポリビニルアルコール〔株式会社クラレ製PVA-403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕5質量%、N,N-ジメチルアミノプロピルアクリルアミドの重合体〔重量平均分子量:23000〕0.01質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、N,N-ジメチルアミノプロピルアクリルアミドの重合体を0.001質量%含有するpH6.1のCMP研磨剤を調製した。
 なお、N,N-ジメチルアミノプロピルアクリルアミドの重合体は、下記の手順により作製した。まず、丸底フラスコにN,N-ジメチルアミノプロピルアクリルアミド(株式会社興人製DMAPAA)15g、水281gを入れ、窒素ガスを導入した。80℃に加熱し、攪拌しながら、2,2´-アゾビス(2-メチルプロピオンアミジン)二塩酸塩696mg及び水4gからなる水溶液を加えた。80℃で2時間加熱攪拌後、室温(25℃)まで冷却して、濃度5質量%のN,N-ジメチルアミノプロピルアクリルアミドの重合体を得た。
<液状特性評価>
 CMP研磨剤のpH、及び、CMP研磨剤中のセリウム水酸化物粒子の平均粒径を下記の条件で評価した。
(pH)
 測定温度:25±5℃
 測定装置:電気化学計器株式会社製、型番PHL-40
 測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH6.86(25℃))を用いて2点校正した後、電極をCMP研磨剤に入れて、2分以上経過して安定した後のpHを前記測定装置により測定した。
(セリウム水酸化物粒子の平均粒径)
 ベックマンコールター社製、商品名:N5を用いてCMP研磨剤中のセリウム水酸化物粒子の平均粒径を測定した。測定法は下記のとおりである。まず、CMP研磨剤を1cm角のセルに約1mL入れ、N5内にセルを設置した。測定サンプルの屈折率を1.333、測定サンプルの粘度を0.887mPa・sに調整し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
<CMP評価>
 CMP研磨剤を用いて下記研磨条件で被研磨基板を研磨した。但し、比較例1及び2については、パターンウエハの研磨を行わなかった。
(CMP研磨条件)
・研磨装置:Reflexion(APPLIED MATERIALS社製)
・CMP研磨剤流量:200mL/分
・被研磨基板:
(パターンなしウエハ)
 パターンが形成されていないブランケットウエハとして、厚さ1μmの酸化珪素膜をシリコン基板上にプラズマCVD法で形成した基板と、厚さ0.2μmのポリシリコン膜をシリコン基板上にCVD法で形成した基板とを用いた。
(パターンウエハ)
 模擬パターンが形成されたパターンウエハとして、SEMATECH社製、764ウエハ(商品名、直径:300mm)を用いた。当該パターンウエハは、ストッパ膜としてポリシリコン膜をシリコン基板上に積層後、露光工程においてトレンチを形成し、ポリシリコン膜及びトレンチを埋めるようにシリコン基板及びポリシリコン膜の上に絶縁膜として酸化珪素膜(SiO膜)を積層することにより得られたウエハであった。酸化珪素膜は、HDP(High Density Plasma)法により成膜されたものであった。
・研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)、ショアD硬度:60
・研磨圧力:16.5kPa(2.4psi)
・基板と研磨定盤との相対速度:85m/分
・研磨時間:ブランケットウエハは、1分間研磨を行った。パターンウエハは、ストッパ膜であるポリシリコン膜が露出するまで研磨を行った。また、ポリシリコン膜が露出するまでにかかった研磨時間と同じ時間更に削り込むことにより、ディッシングの進行度合いの確認を行なった。
・洗浄:CMP処理後、超音波水による洗浄を行った後、スピンドライヤで乾燥させた。
 パターンウエハとして、ライン(凸部)&スペース(凹部)幅が1000μmピッチ、200μmピッチ、100μmピッチであり且つ凸部パターン密度が50%である部分を有するものを使用した。ライン&スペースとは、模擬的なパターンであり、凸部であるポリシリコン膜でマスクされたActive部と、凹部である溝が形成されたTrench部とが、交互に並んだパターンである。例えば、「ライン&スペースが100μmピッチ」とは、ライン部とスペ-ス部との幅の合計が100μmであることを意味する。また、例えば、「ライン&スペースが100μmピッチで、凸部パターン密度が50%」とは、凸部幅:50μmと、凹部幅:50μmとが、交互に並んだパターンを意味する。
 パターンウエハにおいて、酸化珪素膜の膜厚は、シリコン基板及びポリシリコン膜のいずれの上においても600nmであった。具体的には、図3に示すように、シリコン基板1上のポリシリコン膜2の膜厚は150nmであり、酸化珪素膜3の凸部の膜厚は600nmであり、酸化珪素膜3の凹部の膜厚は600nmであり、酸化珪素膜3の凹部深さは500nm(トレンチ深さ350nm+ポリシリコン膜厚150nm)であった。
 パターンウエハの研磨評価に際しては、セルフストップ性(模擬パターンの残段差が小さくなると研磨速度が低下する)を有する公知のCMP研磨剤を用いて前記ウエハを研磨することにより残段差が100nm以下の状態となったウエハを用いた。具体的には、日立化成株式会社製HS-8005-D4と、日立化成株式会社製HS-7303GPと、水とを2:1.2:6.8の比率で配合した研磨剤を用いて、1000μmピッチ50%密度パターンにおける凸部の酸化珪素膜厚を130nmまで研磨した状態のウエハを用いた。
<研磨品評価>
[ブランケットウエハ研磨速度]
 前記条件で研磨及び洗浄した被研磨膜(酸化珪素膜、ポリシリコン膜)の研磨速度(酸化珪素研磨速度:SiORR、ポリシリコン研磨速度:p-SiRR)を次式より求めた。なお、研磨前後での被研磨膜の膜厚差は、光干渉式膜厚装置(フィルメトリクス社製、商品名:F80)を用いて求めた。
 (研磨速度:RR)=(研磨前後での被研磨膜の膜厚差(nm))/(研磨時間(分))
[パターンウエハ評価]
 前記条件で研磨及び洗浄したパターンウエハの凸部のポリシリコン膜又は酸化珪素膜の残膜厚、及び、凹部の酸化珪素膜の残膜厚を測定して残段差量(ディッシング)を次式より求めた。なお、研磨前後での被研磨膜の膜厚は、光干渉式膜厚装置(ナノメトリクス社製、商品名:Nanospec AFT-5100)を用いて求めた。
 残段差(ディッシング)=(350+ポリシリコン膜厚(nm))-(凹部の酸化珪素膜の残膜厚(nm))
[研磨傷評価]
 前記条件で研磨及び洗浄した被研磨基板(酸化珪素膜を有するブランケットウエハ基板)を0.5質量%のフッ化水素の水溶液に15秒間浸漬した後に、60秒間水洗した。続いて、ポリビニルアルコールブラシを用いて、水を供給しながら被研磨膜表面を1分間洗浄した後に、乾燥させた。APPLIED MATERIALS社製Complusを用いて、被研磨膜表面の0.2μm以上の欠陥を検出した。さらに、Complusで得られた欠陥検出座標とAPPLIED MATERIALS社製SEM Visionとを用いて、被研磨膜表面を観測したところ、被研磨膜表面における0.2μm以上の研磨傷の個数は、実施例及び比較例のいずれにおいても0~3(個/ウエハ)程度であり、研磨傷の発生が充分に抑制されていた。
 実施例1~9及び比較例1~10で得られた各測定結果を表1及び表2に示す。なお、表中、化合物A~Eは下記化合物を示す。
 化合物A:ポリアリルアミン
 化合物B:ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体
 化合物C:ポリエチレンイミン
 化合物D:キトサン
 化合物E:N,N-ジメチルアミノプロピルアクリルアミドの重合体
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
*p-Si上のSiO膜厚(研磨残り有り)
 以下、表1及び表2に示す結果について詳しく説明する。
 実施例1において、SiORRは263nm/分、p-SiRRは0.3nm/分、研磨速度比は877であり、SiORRが比較例より高い値を示し、p-SiRRが比較例より小さい値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ90nm(1000μmピッチ)、30nm(200μmピッチ)、6nm(100μmピッチ)であり、更に30秒多く削り込んでも残段差がそれぞれ92nm、31nm、6nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例2において、SiORRは268nm/分、p-SiRRは0.3nm/分、研磨速度比は893であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ38nm、8nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ38nm、10nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例3において、SiORRは265nm/分、p-SiRRは0.3nm/分、研磨速度比は883であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ30nm、7nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ30nm、7nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例4において、SiORRは299nm/分、p-SiRRは0.2nm/分、研磨速度比は1495であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ45nm、22nm、6nmであり、更に30秒多く削り込んでも残段差がそれぞれ57nm、31nm、14nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例5において、SiORRは192nm/分、p-SiRRは0.2nm/分、研磨速度比は960であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ33nm、12nm、0nmであり、更に28秒多く削り込んでも残段差がそれぞれ72nm、29nm、14nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例6において、SiORRは363nm/分、p-SiRRは0.1nm/分、研磨速度比は3630であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ56nm、17nm、2nmであり、更に17秒多く削り込んでも残段差がそれぞれ64nm、22nm、5nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例7において、SiORRは233nm/分、p-SiRRは0.3nm/分、研磨速度比は777であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ33nm、10nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ37nm、10nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例8において、SiORRは434nm/分、p-SiRRは0.2nm/分、研磨速度比は2170であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ44nm、15nm、1nmであり、更に27秒多く削り込んでも残段差がそれぞれ44nm、16nm、1nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 実施例9において、SiORRは333nm/分、p-SiRRは0.3nm/分、研磨速度比は1110であり、SiORR及びp-SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ59nm、36nm、15nmであり、更に37秒多く削り込んでも残段差がそれぞれ72nm、42nm、19nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
 比較例1において、SiORRは163nm/分、p-SiRRは62nm/分、研磨速度比は3であった。
 比較例2において、SiORRは50nm/分、p-SiRRは95nm/分、研磨速度比は0.5であった。
 比較例3において、SiORRは94nm/分、p-SiRRは4nm/分、研磨速度比は24であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ21nm、13nm、2nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ60nm、46nm、34nmであった。
 比較例4において、SiORRは180nm/分、p-SiRRは12nm/分、研磨速度比は15であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ72nm、55nm、40nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ140nm、108nm、84nmであった。
 比較例5において、SiORRは192nm/分、p-SiRRは1nm/分、研磨速度比は192であった。また、パターンウエハ評価では、凸部の酸化珪素膜を30秒で除去することはできなかった。
 比較例6において、SiORRは195nm/分、p-SiRRは0.8nm/分、研磨速度比は244であった。また、パターンウエハ評価では、凸部の酸化珪素膜を30秒で除去することはできなかった。
 比較例7において、SiORRは205nm/分、p-SiRRは0.9nm/分、研磨速度比は228であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ70nm、54nm、42nmであった。また、更に21秒多く削り込んだ時点での残段差はそれぞれ140nm、104nm、82nmであった。
 比較例8において、SiORRは182nm/分、p-SiRRは0.8nm/分、研磨速度比は228であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ54nm、37nm、23nmであった。また、更に24秒多く削り込んだ時点での残段差はそれぞれ94nm、67nm、53nmであった。
 比較例9において、SiORRは376nm/分、p-SiRRは13nm/分、研磨速度比は29であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ132nm、95nm、81nmであった。また、更に33秒多く削り込んだ時点での残段差はそれぞれ217nm、162nm、140nmであった。
 比較例10において、SiORRは170nm/分、p-SiRRは6nm/分、研磨速度比は28であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ68nm、43nm、29nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ128nm、102nm、72nmであった。
 本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することができる。また、本発明によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することができる。
 1…シリコン基板、2…ポリシリコン膜、3…酸化珪素膜。

Claims (15)

  1.  水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する、研磨剤。
  2.  前記ポリアルキレングリコールの含有量に対する前記陽イオン性ポリマの含有量の比率が質量比で0.0005以上0.03以下である、請求項1に記載の研磨剤。
  3.  ポリビニルアルコールを含有していない、請求項1又は2に記載の研磨剤。
  4.  前記ポリアルキレングリコールが、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種である、請求項1~3のいずれか一項に記載の研磨剤。
  5.  前記ポリアルキレングリコールの含有量が、研磨剤の全質量を基準として0.01質量%以上である、請求項1~4のいずれか一項に記載の研磨剤。
  6.  前記4価金属元素の水酸化物が、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種である、請求項1~5のいずれか一項に記載の研磨剤。
  7.  前記砥粒の平均粒径が1nm以上300nm以下である、請求項1~6のいずれか一項に記載の研磨剤。
  8.  前記砥粒の含有量が、研磨剤の全質量を基準として0.005質量%以上20質量%以下である、請求項1~7のいずれか一項に記載の研磨剤。
  9.  pHが3.0以上12.0以下である、請求項1~8のいずれか一項に記載の研磨剤。
  10.  酸化珪素を含む被研磨面を研磨するために使用される、請求項1~9のいずれか一項に記載の研磨剤。
  11.  請求項1~10のいずれか一項に記載の研磨剤の構成成分が複数の液に分けて保存され、第一の液が前記砥粒を含み、第二の液が前記ポリアルキレングリコール及び前記陽イオン性ポリマからなる群より選択される少なくとも一種を含む、研磨剤セット。
  12.  請求項1~10のいずれか一項に記載の研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
  13.  請求項11に記載の研磨剤セットにおける前記第一の液と前記第二の液を混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
  14.  絶縁材料及びポリシリコンを有する基体の研磨方法であって、
     請求項1~10のいずれか一項に記載の研磨剤を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、基体の研磨方法。
  15.  絶縁材料及びポリシリコンを有する基体の研磨方法であって、
     請求項11に記載の研磨剤セットにおける前記第一の液と前記第二の液を混合して得られる研磨剤を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、基体の研磨方法。
PCT/JP2013/053559 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法 WO2013125446A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201405091TA SG11201405091TA (en) 2012-02-21 2013-02-14 Polishing agent, polishing agent set, and substrate polishing method
US14/379,954 US10557058B2 (en) 2012-02-21 2013-02-14 Polishing agent, polishing agent set, and substrate polishing method
JP2014500686A JP6044630B2 (ja) 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法
CN201380010364.1A CN104137232A (zh) 2012-02-21 2013-02-14 研磨剂、研磨剂组和基体的研磨方法
CN201810916995.4A CN108831830B (zh) 2012-02-21 2013-02-14 研磨剂、研磨剂组和基体的研磨方法
KR1020147024760A KR102005132B1 (ko) 2012-02-21 2013-02-14 연마제, 연마제 세트 및 기체의 연마 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-035432 2012-02-21
JP2012035432 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013125446A1 true WO2013125446A1 (ja) 2013-08-29

Family

ID=49005633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053559 WO2013125446A1 (ja) 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法

Country Status (7)

Country Link
US (1) US10557058B2 (ja)
JP (1) JP6044630B2 (ja)
KR (1) KR102005132B1 (ja)
CN (3) CN108831830B (ja)
SG (2) SG10201606827RA (ja)
TW (1) TWI550045B (ja)
WO (1) WO2013125446A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034358A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2014129408A1 (ja) * 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
WO2014148399A1 (ja) * 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
WO2015030009A1 (ja) * 2013-08-30 2015-03-05 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
WO2015037311A1 (ja) * 2013-09-10 2015-03-19 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
WO2015052988A1 (ja) * 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2015098197A1 (ja) * 2013-12-26 2015-07-02 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP2015189784A (ja) * 2014-03-27 2015-11-02 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
JP2015232083A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2016038771A1 (ja) * 2014-09-12 2016-03-17 信越化学工業株式会社 研磨組成物及び研磨方法
WO2016104611A1 (ja) * 2014-12-26 2016-06-30 花王株式会社 酸化珪素膜研磨用研磨液組成物
US9505952B2 (en) 2015-03-05 2016-11-29 Cabot Microelectronics Corporation Polishing composition containing ceria abrasive
US9758697B2 (en) 2015-03-05 2017-09-12 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
WO2018142516A1 (ja) * 2017-02-01 2018-08-09 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
US10414947B2 (en) 2015-03-05 2019-09-17 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
JP2019189812A (ja) * 2018-04-27 2019-10-31 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264647B (zh) * 2013-06-07 2018-01-09 福吉米株式会社 硅晶圆研磨用组合物
US20150160083A1 (en) 2013-08-01 2015-06-11 Mts Systems Corporation Platform Balance
US10591373B2 (en) 2013-08-01 2020-03-17 Mts Systems Corporation Load transducer having a biasing assembly
KR101405333B1 (ko) * 2013-09-12 2014-06-11 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 이를 이용한 반도체 소자의 제조 방법
US20160181435A1 (en) * 2014-12-22 2016-06-23 Wafertech, Llc Floating gate transistors and method for forming the same
TWI666308B (zh) * 2015-06-26 2019-07-21 日商日立化成股份有限公司 研磨劑、研磨劑用儲藏液及研磨方法
CN107949615B (zh) * 2015-09-09 2023-08-04 株式会社力森诺科 研磨液、研磨液套剂和基体的研磨方法
US10432461B2 (en) * 2015-12-04 2019-10-01 T-Mobile Usa, Inc. Peer-to-peer distribution of radio protocol data for software defined radio (SDR) updates
US11078380B2 (en) * 2017-07-10 2021-08-03 Entegris, Inc. Hard abrasive particle-free polishing of hard materials
US10316218B2 (en) * 2017-08-30 2019-06-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous silica slurry compositions for use in shallow trench isolation and methods of using them
US20210189176A1 (en) * 2017-09-29 2021-06-24 Hitachi Chemical Company, Ltd. Polishing solution, polishing solution set, and polishing method
CN114193328A (zh) * 2020-09-18 2022-03-18 中国科学院微电子研究所 研磨剂容器及研磨剂供应方法
WO2024073209A1 (en) * 2022-09-30 2024-04-04 Versum Materials Us, Llc Modified water-soluble polysaccharides having different cation types for slurries in chemical mechanical planarization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091524A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 金属用研磨液
JP2008112990A (ja) * 2006-10-04 2008-05-15 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
WO2009131133A1 (ja) * 2008-04-23 2009-10-29 日立化成工業株式会社 研磨剤及びこの研磨剤を用いた基板の研磨方法

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123452A (en) 1964-03-03 Glass polish and process of polishing
US3097083A (en) 1959-07-02 1963-07-09 American Potash & Chem Corp Polishing composition and process of forming same
BR9104844A (pt) 1991-11-06 1993-05-11 Solvay Processo para a extracao seletiva de cerio de uma solucao aquosa de elementos de terras raras
FR2684662B1 (fr) 1991-12-09 1994-05-06 Rhone Poulenc Chimie Composition a base d'oxyde cerique, preparation et utilisation.
FR2714370B1 (fr) 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
WO1997029510A1 (fr) 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Abrasif d'oxyde de cerium, microplaquette semi-conductrice, dispositif semi-conducteur, procede pour les produire et procede pour polir les substrats
JPH09270402A (ja) 1996-03-29 1997-10-14 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の製造法
JPH10154672A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JPH10106993A (ja) * 1996-09-30 1998-04-24 Hitachi Chem Co Ltd 基板の研磨法
EP1610367B1 (en) 1996-09-30 2010-03-17 Hitachi Chemical Co., Ltd. Cerium oxide abrasive and method of polishing substrates
US5759917A (en) 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
EP0992456B1 (en) 1997-03-03 2010-09-08 Nissan Chemical Industries, Ltd. Process for producing composite sols, coating composition, and optical member
JP2000160138A (ja) 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
JP3992402B2 (ja) 1999-05-25 2007-10-17 株式会社コーセー 金属酸化物固溶酸化セリウムからなる紫外線遮断剤並びにそれを配合した樹脂組成物及び化粧料
TW593674B (en) 1999-09-14 2004-06-21 Jsr Corp Cleaning agent for semiconductor parts and method for cleaning semiconductor parts
JP2002241739A (ja) 2001-02-20 2002-08-28 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
CN1746255B (zh) 2001-02-20 2010-11-10 日立化成工业株式会社 抛光剂及基片的抛光方法
JP2002329688A (ja) 2001-02-28 2002-11-15 Kyoeisha Chem Co Ltd 保湿剤を含有する研磨用懸濁液
JP4231632B2 (ja) 2001-04-27 2009-03-04 花王株式会社 研磨液組成物
US6599813B2 (en) * 2001-06-29 2003-07-29 International Business Machines Corporation Method of forming shallow trench isolation for thin silicon-on-insulator substrates
TW200300168A (en) 2001-10-31 2003-05-16 Hitachi Chemical Co Ltd Polishing fluid and polishing method
JP4083502B2 (ja) 2002-08-19 2008-04-30 株式会社フジミインコーポレーテッド 研磨方法及びそれに用いられる研磨用組成物
JP3782771B2 (ja) 2002-11-06 2006-06-07 ユシロ化学工業株式会社 研磨用砥粒及び研磨剤の製造方法
US7300601B2 (en) 2002-12-10 2007-11-27 Advanced Technology Materials, Inc. Passivative chemical mechanical polishing composition for copper film planarization
JPWO2004061925A1 (ja) 2002-12-31 2006-05-18 株式会社Sumco 化学的機械研磨用スラリー組成物、これを利用した半導体素子の表面平坦化方法及びスラリー組成物の選択比制御方法
KR100698396B1 (ko) 2003-05-28 2007-03-23 히다치 가세고교 가부시끼가이샤 연마제 및 연마 방법
US20050028450A1 (en) 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
WO2005026051A1 (ja) 2003-09-12 2005-03-24 Hitachi Chemical Co., Ltd. セリウム塩、その製造方法、酸化セリウム及びセリウム系研磨剤
US20050056810A1 (en) 2003-09-17 2005-03-17 Jinru Bian Polishing composition for semiconductor wafers
EP1670047B1 (en) 2003-09-30 2010-04-07 Fujimi Incorporated Polishing composition and polishing method
US7563383B2 (en) 2004-10-12 2009-07-21 Cabot Mircroelectronics Corporation CMP composition with a polymer additive for polishing noble metals
JP5013671B2 (ja) 2004-12-28 2012-08-29 日揮触媒化成株式会社 金属酸化物ゾルの製造方法および金属酸化物ゾル
JP2006249129A (ja) 2005-03-08 2006-09-21 Hitachi Chem Co Ltd 研磨剤の製造方法及び研磨剤
US20060278614A1 (en) 2005-06-08 2006-12-14 Cabot Microelectronics Corporation Polishing composition and method for defect improvement by reduced particle stiction on copper surface
US7803203B2 (en) 2005-09-26 2010-09-28 Cabot Microelectronics Corporation Compositions and methods for CMP of semiconductor materials
KR20070041330A (ko) 2005-10-14 2007-04-18 가오가부시끼가이샤 반도체 기판용 연마액 조성물
EP2410558A3 (en) * 2005-11-11 2012-04-18 Hitachi Chemical Co., Ltd. Polishing slurry for silicon oxide, additive liquid and polishing method
WO2007119775A1 (ja) 2006-04-14 2007-10-25 Showa Denko K.K. ガラス基板の加工方法及びガラス基板加工用リンス剤組成物
SG136886A1 (en) 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk
FR2906800B1 (fr) 2006-10-09 2008-11-28 Rhodia Recherches & Tech Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
US8821750B2 (en) 2007-02-27 2014-09-02 Hitachi Chemical Co., Ltd. Metal polishing slurry and polishing method
US8333815B2 (en) * 2007-05-03 2012-12-18 Lg Chem, Ltd. Cerium oxide powder for abrasive and CMP slurry comprising the same
JP5281758B2 (ja) 2007-05-24 2013-09-04 ユシロ化学工業株式会社 研磨用組成物
JP4294710B2 (ja) 2007-09-13 2009-07-15 三井金属鉱業株式会社 酸化セリウム及びその製造方法
JP2009099819A (ja) 2007-10-18 2009-05-07 Daicel Chem Ind Ltd Cmp用研磨組成物及び該cmp用研磨組成物を使用したデバイスウェハの製造方法
JP5444625B2 (ja) 2008-03-05 2014-03-19 日立化成株式会社 Cmp研磨液、基板の研磨方法及び電子部品
JP5287174B2 (ja) 2008-04-30 2013-09-11 日立化成株式会社 研磨剤及び研磨方法
US8383003B2 (en) 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
JP5403957B2 (ja) 2008-07-01 2014-01-29 花王株式会社 研磨液組成物
US20100107509A1 (en) 2008-11-04 2010-05-06 Guiselin Olivier L Coated abrasive article for polishing or lapping applications and system and method for producing the same.
JP5499556B2 (ja) 2008-11-11 2014-05-21 日立化成株式会社 スラリ及び研磨液セット並びにこれらから得られるcmp研磨液を用いた基板の研磨方法及び基板
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
JP2010153782A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
CN103333662A (zh) 2008-12-11 2013-10-02 日立化成工业株式会社 Cmp用研磨液以及使用该研磨液的研磨方法
JP5355099B2 (ja) 2009-01-08 2013-11-27 ニッタ・ハース株式会社 研磨組成物
KR20120023043A (ko) 2009-06-09 2012-03-12 히다치 가세고교 가부시끼가이샤 연마제, 연마제 세트 및 기판의 연마 방법
JP2011171689A (ja) * 2009-07-07 2011-09-01 Kao Corp シリコンウエハ用研磨液組成物
JP5781287B2 (ja) 2009-10-01 2015-09-16 ニッタ・ハース株式会社 研磨組成物
KR101172647B1 (ko) 2009-10-22 2012-08-08 히다치 가세고교 가부시끼가이샤 연마제, 농축 1액식 연마제, 2액식 연마제 및 기판의 연마 방법
JP2011142284A (ja) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
TWI472601B (zh) 2009-12-31 2015-02-11 Cheil Ind Inc 化學機械拋光漿體組成物及使用該組成物之拋光方法
KR20130136593A (ko) 2010-03-12 2013-12-12 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
JP5648567B2 (ja) 2010-05-07 2015-01-07 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法
SG190054A1 (en) 2010-11-22 2013-06-28 Hitachi Chemical Co Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
KR101243331B1 (ko) * 2010-12-17 2013-03-13 솔브레인 주식회사 화학 기계적 연마 슬러리 조성물 및 이를 이용하는 반도체 소자의 제조 방법
CN102408836A (zh) 2011-10-20 2012-04-11 天津理工大学 一种用于氧化钛薄膜化学机械平坦化的纳米抛光液及应用
WO2013125445A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP6060970B2 (ja) * 2012-05-22 2017-01-18 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
JP5943074B2 (ja) * 2012-05-22 2016-06-29 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
CN104321854B (zh) * 2012-05-22 2017-06-20 日立化成株式会社 悬浮液、研磨液套剂、研磨液、基体的研磨方法及基体
US9932497B2 (en) * 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
KR102245055B1 (ko) * 2013-08-30 2021-04-26 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
KR102361336B1 (ko) * 2013-09-10 2022-02-14 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091524A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 金属用研磨液
JP2008112990A (ja) * 2006-10-04 2008-05-15 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
WO2009131133A1 (ja) * 2008-04-23 2009-10-29 日立化成工業株式会社 研磨剤及びこの研磨剤を用いた基板の研磨方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034358A1 (ja) * 2012-08-30 2014-03-06 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
US9163162B2 (en) 2012-08-30 2015-10-20 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set and method for polishing base
WO2014129408A1 (ja) * 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
JP5890583B2 (ja) * 2013-02-21 2016-03-22 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
US9566685B2 (en) 2013-02-21 2017-02-14 Fujimi Incorporated Polishing composition and method for producing polished article
WO2014148399A1 (ja) * 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
US10351732B2 (en) 2013-03-19 2019-07-16 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
KR102245055B1 (ko) * 2013-08-30 2021-04-26 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
US10131819B2 (en) 2013-08-30 2018-11-20 Hitachi Chemical Company, Ltd Slurry, polishing solution set, polishing solution, and substrate polishing method
WO2015030009A1 (ja) * 2013-08-30 2015-03-05 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
CN105453235A (zh) * 2013-08-30 2016-03-30 日立化成株式会社 浆料、研磨液组、研磨液、基体的研磨方法以及基体
KR20160047461A (ko) * 2013-08-30 2016-05-02 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
TWI630064B (zh) * 2013-08-30 2018-07-21 日立化成股份有限公司 漿料、硏磨液套組、硏磨液、基體的硏磨方法與基體
JPWO2015030009A1 (ja) * 2013-08-30 2017-03-02 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
CN111378416A (zh) * 2013-09-10 2020-07-07 日立化成株式会社 悬浮液、研磨液套剂、研磨液、基体的研磨方法以及基体
US10752807B2 (en) 2013-09-10 2020-08-25 Hitachi Chemical Company, Ltd Slurry, polishing-liquid set, polishing liquid, method for polishing substrate, and substrate
KR102517248B1 (ko) * 2013-09-10 2023-04-03 가부시끼가이샤 레조낙 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
JPWO2015037311A1 (ja) * 2013-09-10 2017-03-02 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
US11578236B2 (en) 2013-09-10 2023-02-14 Showa Denko Materials Co., Ltd. Slurry, polishing-liquid set, polishing liquid, and polishing method for base
KR20220025104A (ko) * 2013-09-10 2022-03-03 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
KR102361336B1 (ko) * 2013-09-10 2022-02-14 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
TWI624522B (zh) * 2013-09-10 2018-05-21 日立化成股份有限公司 硏漿、硏磨液套組、硏磨液、基體的硏磨方法及基體
KR20210052582A (ko) * 2013-09-10 2021-05-10 쇼와덴코머티리얼즈가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
WO2015037311A1 (ja) * 2013-09-10 2015-03-19 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
JP2019149548A (ja) * 2013-09-10 2019-09-05 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
WO2015052988A1 (ja) * 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
KR20160102156A (ko) 2013-12-26 2016-08-29 히타치가세이가부시끼가이샤 연마제, 연마제 세트 및 기체의 연마 방법
JPWO2015098197A1 (ja) * 2013-12-26 2017-03-23 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2015098197A1 (ja) * 2013-12-26 2015-07-02 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
US10759968B2 (en) 2013-12-26 2020-09-01 Hitachi Chemical Company, Ltd. Abrasive, abrasive set, and method for polishing substrate
US10030172B2 (en) 2013-12-26 2018-07-24 Hitachi Chemical Company, Ltd. Abrasive, abrasive set, and method for polishing substrate
JP2015189784A (ja) * 2014-03-27 2015-11-02 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
JP2015232083A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2016038771A1 (ja) * 2014-09-12 2016-03-17 信越化学工業株式会社 研磨組成物及び研磨方法
WO2016104611A1 (ja) * 2014-12-26 2016-06-30 花王株式会社 酸化珪素膜研磨用研磨液組成物
JPWO2016104611A1 (ja) * 2014-12-26 2017-10-12 花王株式会社 酸化珪素膜研磨用研磨液組成物
US10414947B2 (en) 2015-03-05 2019-09-17 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
US9505952B2 (en) 2015-03-05 2016-11-29 Cabot Microelectronics Corporation Polishing composition containing ceria abrasive
US9758697B2 (en) 2015-03-05 2017-09-12 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
WO2018142516A1 (ja) * 2017-02-01 2018-08-09 日立化成株式会社 研磨液、研磨液セット及び研磨方法
JP7176225B2 (ja) 2018-04-27 2022-11-22 昭和電工マテリアルズ株式会社 研磨液、研磨液セット及び研磨方法
JP2019189812A (ja) * 2018-04-27 2019-10-31 日立化成株式会社 研磨液、研磨液セット及び研磨方法

Also Published As

Publication number Publication date
TW201343825A (zh) 2013-11-01
CN108831830B (zh) 2024-05-17
JPWO2013125446A1 (ja) 2015-07-30
CN108831830A (zh) 2018-11-16
KR20140129092A (ko) 2014-11-06
SG10201606827RA (en) 2016-10-28
KR102005132B1 (ko) 2019-07-29
US20150017806A1 (en) 2015-01-15
US10557058B2 (en) 2020-02-11
CN107617968A (zh) 2018-01-23
CN104137232A (zh) 2014-11-05
JP6044630B2 (ja) 2016-12-14
SG11201405091TA (en) 2014-09-26
TWI550045B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6044630B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6107826B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6044629B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2017043139A1 (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2013125441A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6256482B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6375623B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2014034379A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2017149798A (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2018179787A1 (ja) 研磨液、研磨液セット及び研磨方法
JP6569191B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2016003278A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6209845B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6724573B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2018142516A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179062A1 (ja) 研磨液、研磨液セット、添加液及び研磨方法
JP2016023224A (ja) 研磨剤、研磨剤セット及び基体の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024760

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13751983

Country of ref document: EP

Kind code of ref document: A1