JPWO2013125446A1 - 研磨剤、研磨剤セット及び基体の研磨方法 - Google Patents

研磨剤、研磨剤セット及び基体の研磨方法 Download PDF

Info

Publication number
JPWO2013125446A1
JPWO2013125446A1 JP2014500686A JP2014500686A JPWO2013125446A1 JP WO2013125446 A1 JPWO2013125446 A1 JP WO2013125446A1 JP 2014500686 A JP2014500686 A JP 2014500686A JP 2014500686 A JP2014500686 A JP 2014500686A JP WO2013125446 A1 JPWO2013125446 A1 JP WO2013125446A1
Authority
JP
Japan
Prior art keywords
abrasive
polishing
mass
less
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014500686A
Other languages
English (en)
Other versions
JP6044630B2 (ja
Inventor
利明 阿久津
利明 阿久津
久貴 南
久貴 南
友洋 岩野
友洋 岩野
耕司 藤崎
耕司 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2013125446A1 publication Critical patent/JPWO2013125446A1/ja
Application granted granted Critical
Publication of JP6044630B2 publication Critical patent/JP6044630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本発明に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する。

Description

本発明は、研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。特に、本発明は、半導体素子の製造技術である、基体表面の平坦化工程に用いられる研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。さらに詳しくは、本発明は、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程において用いられる研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法に関する。
近年の半導体素子の製造工程では、高密度化・微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、STIの形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。
CMP研磨剤として最も多用されているのは、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系CMP研磨剤である。シリカ系CMP研磨剤は汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料又は導電材料を問わず幅広い種類の材料を研磨することができる。
一方で、主に酸化珪素等の絶縁材料を対象とした、砥粒としてセリウム化合物粒子を含むCMP研磨剤の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系CMP研磨剤は、シリカ系CMP研磨剤よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。
ところで、近年、半導体素子の製造工程では、更なる配線の微細化を達成することが求められており、研磨時に発生する研磨傷が問題となっている。すなわち、従来の酸化セリウム系研磨剤を用いて研磨を行った際に、微小な研磨傷が発生しても、この研磨傷の大きさが従来の配線幅より小さいものであれば問題にならなかったが、更なる配線の微細化を達成しようとする場合には、研磨傷が微小であっても問題となってしまう。
この問題に対し、4価金属元素の水酸化物粒子を用いた研磨剤が検討されている(例えば、下記特許文献3参照)。また、4価金属元素の水酸化物粒子の製造方法についても検討されている(例えば、下記特許文献4参照)。これらの技術は、4価金属元素の水酸化物粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、粒子による研磨傷を低減しようとするものである。
特開平10−106994号公報 特開平08−022970号公報 国際公開第2002/067309号 特開2006−249129号公報 特開2010−153781号公報 国際公開第2010/143579号
分散技術大全集、株式会社情報機構、2005年7月、第三章「各種分散機の最新開発動向と選定基準」
ところで、STIを形成するためのCMP工程においては、ストッパ材料(研磨停止層の構成材料)として窒化珪素、ポリシリコン等を用いて酸化珪素等の絶縁材料が研磨されている。この場合、平坦性を向上させること、エロージョン(ストッパ材料の過研磨)を抑制すること等の目的のために、ストッパ材料に対する絶縁材料の研磨選択性(研磨速度比:絶縁材料の研磨速度/ストッパ材料の研磨速度)が高い研磨剤が求められる。
本発明は、このような技術的課題を解決しようとするものであり、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することを目的とする。
本発明に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する。
本発明に係る研磨剤によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。これにより、高度な平坦面を得ることができる。また、本発明に係る研磨剤によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、これらの絶縁材料を高度に平坦化することができる。さらに、本発明に係る研磨剤によれば、絶縁材料を高度に平坦化しつつ、絶縁材料を低研磨傷で研磨することもできる。
ところで、STIを形成するためのCMP工程等においては、酸化珪素等の絶縁材料を研磨してストッパが露出した段階で研磨を停止させた後、ストッパ上に絶縁材料が残存することを避けるため、ストッパが露出した後も余分に研磨を行うことがある。この余分な研磨は、「オーバー研磨」と呼ばれている。例えば、絶縁材料を研磨してストッパが露出するまでの時間Aと同じ長さの時間(時間Aの100%に相当する時間)研磨を続行することを「100%のオーバー研磨」という。オーバー研磨の量(何%のオーバー研磨とするか)は、研磨する基板の形状等により異なる。
オーバー研磨を行う場合において、単に、ストッパ材料に対する絶縁材料の研磨選択性が高い研磨剤を用いると、ストッパ上に位置する絶縁材料以外の絶縁材料までもが余分に研磨される。これにより、ディッシング(素子分離層等としての絶縁材料に凹み(段差)が生じる現象)が進行してしまい、研磨後の平坦性が劣る場合がある。そのため、STIを形成するためのCMP工程等においては、ストッパ材料に対する絶縁材料の研磨選択性を高めるだけでなく、ストッパが露出した際に、ストッパ上に位置する絶縁材料以外の絶縁材料が余分に研磨されてしまうことを抑制する必要がある場合がある。
この課題に対し、特許文献5には、4価金属元素の水酸化物粒子及び水溶性重合体を含む研磨剤と、ショアD硬度が70以上の研磨パッドとを組み合わせることで優れた平坦性が得られることが開示されている。しかしながら、硬度の高い研磨パッドを用いると、被研磨材料に研磨傷が発生する場合がある。そのため、現在一般的に使用されており汎用性の高い低硬度な研磨パッドを用いた場合であっても優れた平坦性が得られることが求められている。
これらに対し、本発明に係る研磨剤によれば、オーバー研磨を行ったときのディッシングの進行を抑制することが可能であり、研磨後の平坦性を向上させることができる。特に、本発明に係る研磨剤によれば、低硬度(例えば、ショアD硬度が65以下)の研磨パッドを用いた場合であっても、ディッシングの進行を抑制することが可能であり、研磨後の平坦性を向上させることができる。
ポリアルキレングリコールの含有量に対する陽イオン性ポリマの含有量の比率(陽イオン性ポリマの含有量/ポリアルキレングリコールの含有量)は、質量比で0.0005以上0.03以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
ところで、研磨選択性に関する前記課題に対し、特許文献6には、4価金属元素の水酸化物粒子と、ケン化度95モル%以下のポリビニルアルコールとを含む研磨剤を用いることで、ポリシリコンに対する絶縁材料の高い研磨速度比を得られることが開示されている。一方、本発明に係る研磨剤は、ポリビニルアルコールを含有していなくてもよく、このような場合であっても、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。
ポリアルキレングリコールは、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
ポリアルキレングリコールの含有量は、研磨剤の全質量を基準として0.01質量%以上であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
砥粒の平均粒径は、1nm以上300nm以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
砥粒の含有量は、研磨剤の全質量を基準として0.005質量%以上20質量%以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
本発明に係る研磨剤のpHは、3.0以上12.0以下であることが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を抑制することができる。
また、本発明の一側面は、酸化珪素を含む被研磨面を研磨する研磨方法への前記研磨剤の使用に関する。すなわち、本発明に係る研磨剤は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
本発明に係る研磨剤セットは、前記研磨剤の構成成分が複数の液に分けて保存され、第一の液が砥粒を含み、第二の液がポリアルキレングリコール及び陽イオン性ポリマからなる群より選択される少なくとも一種を含む。本発明に係る研磨剤セットによれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
本発明の第一の実施態様の基体の研磨方法は、前記研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよく、前記研磨剤セットにおける第一の液と第二の液とを混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨剤又は研磨剤セットを用いることにより、従来の研磨剤を用いた場合よりも、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
また、本発明の第二の実施態様の基体の研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であって、前記研磨剤を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよく、前記研磨剤セットにおける第一の液と第二の液とを混合して得られる研磨剤を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨剤又は研磨剤セットを用いることにより、従来の研磨剤を用いた場合よりも、ポリシリコンに対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる。
本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる研磨剤、研磨剤セット及び研磨方法を提供することができる。また、本発明によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパ材料に対する絶縁材料の研磨選択性を向上させつつ、ディッシングの進行を抑制することができる研磨剤、研磨剤セット及び研磨方法を提供することができる。さらに、本発明によれば、絶縁材料を高度に平坦化しつつ、絶縁材料を低研磨傷で研磨することもできる。
添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 実施例で用いたパターンウエハを示す模式断面図である。
以下、本発明の実施形態に係る研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法について詳細に説明する。
本実施形態に係る研磨剤は、研磨時に被研磨面に触れる組成物であり、例えばCMP研磨剤である。具体的には、本実施形態に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を少なくとも含有する。以下、必須成分、及び任意に添加できる成分について説明する。
(砥粒)
砥粒は、4価金属元素の水酸化物を含むことを特徴とする。「4価金属元素の水酸化物」とは、本明細書において、4価の金属(M4+)と、少なくとも一つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば硝酸イオンNO 及び硫酸イオンSO 2−)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 、硫酸イオンSO 2−)を含んでいてもよい。
4価金属元素の水酸化物を含む砥粒は、シリカ、セリア等からなる従来の砥粒と比較して、絶縁材料(例えば酸化珪素)との反応性が高く、絶縁材料を高い研磨速度で研磨することができる。本実施形態に係る研磨剤においては、4価金属元素の水酸化物を含む砥粒に加え、他の砥粒を併用してもよい。このような他の砥粒としては、例えば、シリカ、アルミナ、セリア等の粒子が挙げられる。また、4価金属元素の水酸化物を含む砥粒として、4価金属元素の水酸化物とシリカとを含む複合粒子等を用いることもできる。
砥粒において、4価金属元素の水酸化物の含有量は、砥粒全体を基準として80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましく、99質量%以上が極めて好ましい。研磨剤の調製が容易であると共に研磨特性にも更に優れる観点から、砥粒が4価金属元素の水酸化物からなる(砥粒の100質量%が4価金属元素の水酸化物の粒子である)ことが最も好ましい。
4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種であることが好ましい。4価金属元素の水酸化物としては、絶縁材料の研磨速度を更に向上させる観点から、希土類金属元素の水酸化物が好ましい。4価を取りうる希土類金属元素としては、セリウム、プラセオジム、テルビウム等のランタノイドなどが挙げられ、中でも、絶縁材料の研磨速度に更に優れる点で、ランタノイドが好ましく、セリウムがより好ましい。希土類金属元素の水酸化物とジルコニウムの水酸化物とを併用してもよく、希土類金属元素の水酸化物から二種以上を選択して使用することもできる。
研磨剤、又は、後述する研磨剤セットにおけるスラリ中の砥粒の平均粒径の下限は、絶縁材料の研磨速度を更に向上させる観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことを更に抑制する観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましく、100nm以下が特に好ましく、50nm以下が極めて好ましい。上記観点から、砥粒の平均粒径は、1nm以上300nm以下であることがより好ましい。
砥粒の「平均粒径」とは、砥粒の平均二次粒子径を意味する。砥粒の平均粒径は、例えば、研磨剤、又は、後述する研磨剤セットにおけるスラリについて、光回折散乱式粒度分布計(例えば、ベックマンコールター社製、商品名:N5、又は、マルバーンインスツルメンツ社製、商品名:ゼータサイザー3000HSA)を用いて測定することができる。
本実施形態に係る研磨剤の構成成分中において、4価金属元素の水酸化物は研磨特性に与える影響が大きいものと考えられる。そのため、4価金属元素の水酸化物の含有量を調整することにより、砥粒と被研磨面との化学的な相互作用が向上し、研磨速度を更に向上させることができる。このことから、4価金属元素の水酸化物の含有量は、研磨剤全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、4価金属元素の水酸化物の含有量は、砥粒の凝集を避けることが容易になると共に、被研磨面との化学的な相互作用が良好となり、砥粒の特性を有効に活用できる点で、研磨剤全質量基準で8質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.5質量%以下が極めて好ましく、0.3質量%以下が非常に好ましい。
砥粒の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、研磨剤の全質量を基準として0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.04質量%以上が特に好ましく、0.05質量%以上が極めて好ましい。砥粒の含有量の上限は、研磨剤の保存安定性を高くする観点から、研磨剤の全質量を基準として20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい。上記観点から、砥粒の含有量は、研磨剤の全質量を基準として0.005質量%以上20質量%以下であることがより好ましい。
また、砥粒の含有量を更に少なくすることにより、コスト及び研磨傷を更に低減できる点で好ましい。砥粒の含有量が少なくなると、絶縁材料等の研磨速度も低下する傾向がある。一方、4価金属元素の水酸化物を含む砥粒は、少量でも所定の研磨速度を得ることができるため、研磨速度と、砥粒の含有量を少なくすることによる利点とのバランスをとりつつ、砥粒の含有量を更に低減することができる。このような観点から、砥粒の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。
[吸光度]
砥粒は、4価金属元素の水酸化物を含み、且つ、下記条件(a)及び(b)の少なくとも一方の条件を満たすことが好ましい。なお、砥粒の含有量を所定量に調整した「水分散液」とは、所定量の砥粒と水とを含む液を意味する。
(a)砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上を与える。
(b)砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える。
前記条件(a)に関して、砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対する吸光度1.00以上を与える砥粒を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて、4価の金属(M4+)、1〜3個の水酸化物イオン(OH)及び1〜3個の陰イオン(Xc−)からなるM(OH)(式中、a+b×c=4である)を含む粒子が砥粒の一部として生成するものと考えられる(なお、このような粒子も「4価金属元素の水酸化物を含む砥粒」である)。M(OH)では、電子吸引性の陰イオン(Xc−)が作用して水酸化物イオンの反応性が向上しており、M(OH)の存在量が増加するに伴い研磨速度が向上するものと考えられる。そして、M(OH)を含む粒子が波長400nmの光を吸光するため、M(OH)の存在量が増加して波長400nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
4価金属元素の水酸化物を含む砥粒は、M(OH)だけでなく、M(OH)、MO等も含み得ると考えられる。陰イオン(Xc−)としては、例えばNO 、SO 2−が挙げられる。
なお、4価金属元素の水酸化物を含む砥粒がM(OH)を含むことは、砥粒を純水でよく洗浄した後にFT−IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で陰イオン(Xc−)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc−)の存在を確認することもできる。
ここで、M(OH)(例えばM(OH)X)の波長400nmの吸収ピークは、後述する波長290nmの吸収ピークよりもはるかに小さいことが確認されている。これに対し、本発明者は、砥粒含有量が比較的多く、吸光度が大きく検出されやすい砥粒含有量1.0質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長400nmの光に対する吸光度1.00以上を与える砥粒を用いる場合に、研磨速度の向上効果に優れることを見出した。なお、前記の通り波長400nmの光に対する吸光度は砥粒に由来するものと考えられるため、波長400nmの光に対して吸光度1.00以上を与える砥粒に代えて、波長400nmの光に対して1.00以上の吸光度を与える物質(例えば黄色を呈する色素成分)を含む研磨剤では、研磨速度の前記向上効果が得られ難い。
前記条件(b)に関して、砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて生成するM(OH)(例えばM(OH)X)を含む粒子は、計算上、波長290nm付近に吸収のピークを有し、例えばCe4+(OHNO からなる粒子は波長290nmに吸収のピークを有する。そのため、M(OH)の存在量が増加して波長290nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
ここで、波長290nm付近の光に対する吸光度は、測定限界を超えるほど大きく検出される傾向がある。これに対し、本発明者は、砥粒の含有量が比較的少なく、吸光度が小さく検出されやすい砥粒含有量0.0065質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いる場合に、研磨速度の向上効果に優れることを見出した。また、本発明者は、吸光物質に吸収されると当該吸光物質が黄色を呈する傾向のある波長400nm付近の光とは別に、波長290nm付近の光に対する砥粒の吸光度が高いほど、このような砥粒を用いた研磨剤及びスラリの黄色味が濃くなることを見出し、研磨剤及びスラリの黄色味が濃くなるほど研磨速度が向上することを見出した。そして、本発明者は、砥粒含有量0.0065質量%の水分散液における波長290nmの光に対する吸光度と、砥粒含有量1.0質量%の水分散液における波長400nmの光に対する吸光度とが相関することを見出した。
波長290nmの光に対する吸光度の下限は、更に優れた研磨速度で絶縁材料を研磨する観点から、1.000以上が好ましく、1.050以上がより好ましく、1.100以上が更に好ましく、1.130以上が特に好ましく、1.150以上が極めて好ましい。波長290nmの光に対する吸光度の上限は、特に制限はないが、例えば10.00が好ましい。
波長400nmの光に対する吸光度1.00以上を与える砥粒が、砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える場合には、更に優れた研磨速度で絶縁材料を研磨することができる。
また、4価金属元素の水酸化物(例えばM(OH))は、波長450nm以上、特に波長450〜600nmの光に対して吸光を有していない傾向がある。従って、不純物を含むことにより研磨に対して悪影響が生じることを抑制して更に優れた研磨速度で絶縁材料を研磨する観点から、砥粒は、該砥粒の含有量を0.0065質量%(65ppm)に調整した水分散液において波長450〜600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。すなわち、砥粒の含有量を0.0065質量%に調整した水分散液において波長450〜600nmの範囲における全ての光に対する吸光度が0.010を超えないことが好ましい。波長450〜600nmの光に対する吸光度の上限は、0.005以下がより好ましく、0.001以下が更に好ましい。波長450〜600nmの光に対する吸光度の下限は、0が好ましい。
水分散液における吸光度は、例えば、株式会社日立製作所製の分光光度計(装置名:U3310)を用いて測定できる。具体的には例えば、砥粒の含有量を1.0質量%又は0.0065質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルを設置する。次に、波長200〜600nmの範囲で吸光度測定を行い、得られたチャートから吸光度を判断する。
砥粒の含有量が1.0質量%より少なくなるよう過度に希釈して波長400nmの光に対する吸光度を測定した場合に、吸光度が1.00以上を示すようであれば、砥粒の含有量を1.0質量%とした場合にも吸光度が1.00以上であるとして吸光度をスクリーニングしてもよい。砥粒の含有量が0.0065質量%より少なくなるよう過度に希釈して波長290nmの光に対する吸光度を測定した場合に、吸光度が1.000以上を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が1.000以上であるとして吸光度をスクリーニングしてもよい。砥粒の含有量が0.0065質量%より多くなるように希釈して波長450〜600nmの光に対する吸光度を測定した場合に、吸光度が0.010以下を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が0.010以下であるとして吸光度をスクリーニングしてもよい。
[光透過率]
本実施形態に係る研磨剤は、可視光に対する透明度が高い(目視で透明又は透明に近い)ことが好ましい。具体的には、本実施形態に係る研磨剤に含まれる砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましい。これにより、添加剤の添加に起因する研磨速度の低下を更に抑制することができるため、研磨速度を維持しつつ他の特性を得ることが容易になる。この観点から、前記光透過率の下限は、60%/cm以上がより好ましく、70%/cm以上が更に好ましく、80%/cm以上が特に好ましく、90%/cm以上が極めて好ましく、92%/cm以上が非常に好ましい。光透過率の上限は100%/cmである。
このように砥粒の光透過率を調整することで研磨速度の低下を抑制することが可能な理由は詳しくは分かっていないが、本発明者は以下のように考えている。4価金属元素(セリウム等)の水酸化物を含む砥粒では、機械的作用よりも化学的作用の方が支配的になると考えられる。そのため、砥粒の大きさよりも砥粒の数の方が、より研磨速度に寄与すると考えられる。
砥粒の含有量が1.0質量%である水分散液において光透過率が低い場合、その水分散液に存在する砥粒は、粒子径の大きい粒子(以下「粗大粒子」という。)が相対的に多く存在すると考えられる。このような砥粒を含む研磨剤に添加剤(例えばポリビニルアルコール(PVA))を添加すると、図1に示すように、粗大粒子を核として他の粒子が凝集する。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が減少し、被研磨面に接する砥粒の比表面積が減少するため、研磨速度の低下が引き起こされると考えられる。
一方、砥粒の含有量が1.0質量%である水分散液において光透過率が高い場合、その水分散液に存在する砥粒は、「粗大粒子」が少ない状態であると考えられる。このように粗大粒子の存在量が少ない場合は、図2に示すように、研磨剤に添加剤(例えばポリビニルアルコール)を添加しても、凝集の核になるような粗大粒子が少ないため、砥粒同士の凝集が抑えられるか、又は、凝集粒子の大きさが図1に示す凝集粒子と比べて小さくなる。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が維持され、被研磨面に接する砥粒の比表面積が維持されるため、研磨速度の低下が生じ難くなると考えられる。
本発明者の検討では、一般的な粒径測定装置において測定される粒子径が同じ研磨剤であっても、目視で透明である(光透過率の高い)もの、及び、目視で濁っている(光透過率の低い)ものがありえることがわかっている。このことから、前記のような作用を起こしうる粗大粒子は、一般的な粒径測定装置で検知できないほどのごくわずかの量でも、研磨速度の低下に寄与すると考えられる。
また、粗大粒子を減らすためにろ過を複数回繰り返しても、添加剤により研磨速度が低下する現象はさほど改善せず、吸光度に起因する研磨速度の前記向上効果が充分に発揮されない場合があることがわかっている。そこで、本発明者は、砥粒の製造方法を工夫する等して、水分散液において光透過率の高い砥粒を使用することによって前記問題を解決できることを見出した。
前記光透過率は、波長500nmの光に対する透過率である。前記光透過率は、分光光度計で測定することができる。具体的には例えば、株式会社日立製作所製の分光光度計U3310(装置名)で測定することができる。
より具体的な測定方法としては、砥粒の含有量を1.0質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルをセットした後に測定を行う。なお、砥粒の含有量が1.0質量%より大きい水分散液において50%/cm以上の光透過率を有する場合は、これを希釈して1.0質量%とした場合も光透過率は50%/cm以上となることが明らかである。そのため、砥粒の含有量が1.0質量%より大きい水分散液を用いることにより、簡便な方法で光透過率をスクリーニングすることができる。
研磨剤に含まれる砥粒が水分散液において与える吸光度及び光透過率は、砥粒以外の固体成分、及び、水以外の液体成分を除去した後、所定の砥粒含有量の水分散液を調製し、当該水分散液を用いて測定することができる。研磨剤に含まれる成分によっても異なるが、固体成分又は液体成分の除去には、例えば、数千G以下の重力加速度をかけられる遠心機を用いた遠心分離、数万G以上の重力加速度をかけられる超遠心機を用いた超遠心分離等の遠心分離法;分配クロマトグラフィー、吸着クロマトグラフィー、ゲル浸透クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィー法;自然ろ過、減圧ろ過、加圧ろ過、限外ろ過等のろ過法;減圧蒸留、常圧蒸留等の蒸留法を用いることができ、これらを適宜組み合わせてもよい。
例えば、重量平均分子量が数万以上(例えば5万以上)の化合物を含む場合は、クロマトグラフィー法、ろ過法等が挙げられ、中でも、ゲル浸透クロマトグラフィー及び限外ろ過が好ましい。ろ過法を用いる場合、研磨剤に含まれる砥粒は、適切な条件の設定により、フィルタを通過させることができる。重量平均分子量が数万以下(例えば5万未満)の化合物を含む場合は、クロマトグラフィー法、ろ過法、蒸留法等が挙げられ、ゲル浸透クロマトグラフィー、限外ろ過及び減圧蒸留が好ましい。複数種類の砥粒が含まれる場合、ろ過法、遠心分離法等が挙げられ、ろ過の場合はろ液に、遠心分離の場合は液相に、4価金属元素の水酸化物を含む砥粒がより多く含まれる。
クロマトグラフィー法で砥粒を分離する方法として、例えば、下記条件によって、砥粒成分を分取する、及び/又は、他成分を分取することができる。
試料溶液:研磨剤100μL
検出器:株式会社日立製作所製UV−VISディテクター、商品名「L−4200」、波長:400nm
インテグレータ:株式会社日立製作所製GPCインテグレータ、商品名「D−2500」
ポンプ:株式会社日立製作所製、商品名「L−7100」
カラム:日立化成株式会社製水系HPLC用充填カラム、商品名「GL−W550S」
溶離液:脱イオン水
測定温度:23℃
流速:1mL/分(圧力は40〜50kg/cm程度)
測定時間:60分
なお、クロマトグラフィーを行う前に、脱気装置を用いて溶離液の脱気処理を行うことが好ましい。脱気装置を使用できない場合は、溶離液を事前に超音波等で脱気処理することが好ましい。
研磨剤に含まれる成分によっては、上記条件でも砥粒成分を分取できない可能性があるが、その場合、試料溶液量、カラム種類、溶離液種類、測定温度、流速等を最適化することで分離することができる。また、研磨剤のpHを調整することで、研磨剤に含まれる成分の留出時間を調整し、砥粒と分離できる可能性がある。研磨剤に不溶成分がある場合、必要に応じ、ろ過、遠心分離等で不溶成分を除去することが好ましい。
[砥粒の作製方法]
4価金属元素の水酸化物は、4価金属元素の塩(金属塩)と、アルカリ源(塩基)とを反応させることにより作製可能である。4価金属元素の水酸化物は、4価金属元素の塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、研磨傷の低減効果に更に優れた研磨剤を得ることができる。このような手法は、例えば、特許文献4に開示されている。4価金属元素の水酸化物は、4価金属元素の塩の金属塩溶液(例えば金属塩水溶液)とアルカリ液とを混合することにより得ることができる。なお、4価金属元素の塩及びアルカリ源の少なくとも一方を液体状態で反応系に供給する場合、混合液を撹拌する手段は限定されるものではない。例えば、回転軸回りに回転する棒状、板状又はプロペラ状の撹拌子又は撹拌羽根を用いて混合液を撹拌する方法、容器の外部から動力を伝達するマグネチックスターラーを用いて、回転する磁界で撹拌子を回転させて混合液を撹拌する方法、槽外に設置したポンプで混合液を撹拌する方法、外気を加圧して槽内に勢いよく吹き込むことで混合液を撹拌する方法が挙げられる。4価金属元素の塩としては、従来公知のものを特に制限なく使用でき、M(NO、M(SO、M(NH(NO、M(NH(SO(Mは希土類金属元素を示す。)、Zr(SO・4HO等が挙げられる。Mとしては、化学的に活性なセリウム(Ce)が好ましい。
吸光度及び光透過率を調整する手段としては、4価金属元素の水酸化物の製造方法の最適化等が挙げられる。波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を変化させる方法としては、具体的には例えば、アルカリ液中のアルカリ源の選択、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の調整が挙げられる。また、波長500nmの光に対する光透過率を変化させる方法としては、具体的には例えば、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、混合するときの撹拌速度の調整、混合液の液温の調整が挙げられる。
波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を高くするためには、4価金属元素の水酸化物の製造方法を、より「緩やか」にすることが好ましい。ここで、「緩やか」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を穏やかにする(遅くする)ことを意味する。逆に、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を低くするためには、4価金属元素の水酸化物の製造方法を、より「激しく」することが好ましい。ここで、「激しく」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を激しくする(速くする)ことを意味する。これらの吸光度及び光透過率の値を所定範囲に調整するためには、前記傾向を参考にして、4価金属元素の水酸化物の製造方法を最適化することが好ましい。以下、吸光度及び光透過率の制御方法について更に詳しく説明する。
{アルカリ源}
アルカリ液中のアルカリ源としては、従来公知のものを特に制限なく使用できる。アルカリ源としては、有機塩基、無機塩基等が挙げられる。有機塩基としては、グアニジン、トリエチルアミン、キトサン等の含窒素有機塩基;ピリジン、ピペリジン、ピロリジン、イミダゾール等の含窒素複素環有機塩基;炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム等のアンモニウム塩などが挙げられる。無機塩基としては、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の無機塩などが挙げられる。アルカリ源は、一種を単独で又は二種類以上を組み合わせて使用することができる。
アルカリ源としては、絶縁材料の研磨速度を更に向上させる観点から、アンモニア及びイミダゾールが好ましく、イミダゾールが更に好ましい。波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を高くするためには、アルカリ源として、弱い塩基性を示すアルカリ源を使用することが好ましい。アルカリ源の中でも、含窒素複素環有機塩基が好ましく、ピリジン、ピペリジン、ピロリジン、イミダゾールがより好ましく、ピリジン及びイミダゾールが更に好ましく、イミダゾールが特に好ましい。
{濃度}
金属塩溶液とアルカリ液とにおける原料濃度の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。具体的には、金属塩溶液の金属塩濃度を濃くすることで吸光度が高くなる傾向があり、アルカリ液のアルカリ濃度(塩基の濃度、アルカリ源の濃度)を薄くすることで吸光度が高くなる傾向がある。また、金属塩濃度を濃くすることで光透過率が高くなる傾向があり、アルカリ濃度を薄くすることで光透過率が高くなる傾向がある。
金属塩溶液における金属塩濃度の上限は、優れた研磨速度と優れた砥粒の安定性とを両立しやすくなる点で、金属塩溶液の全体を基準として1.000mol/L以下が好ましく、0.500mol/L以下がより好ましく、0.300mol/L以下が更に好ましく、0.200mol/L以下が特に好ましい。金属塩濃度の下限は、急激に反応が起こることを抑制できる(pHの上昇を穏やかにできる)と共に、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率が高くなる点で、金属塩溶液の全体を基準として0.010mol/L以上が好ましく、0.020mol/L以上がより好ましく、0.030mol/L以上が更に好ましい。
アルカリ液におけるアルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、12.0mol/L以下がより好ましく、10.0mol/L以下が更に好ましい。アルカリ濃度の下限は特に制限されないが、生産性の観点から、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
アルカリ液におけるアルカリ濃度は、選択されるアルカリ源により適宜調整されることが好ましい。例えば、アルカリ源の共役酸のpKaが20以上であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として0.10mol/L以下が好ましく、0.05mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として1.0mol/L以下が好ましく、0.50mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.01mol/L以上が好ましい。
アルカリ源の共役酸のpKaが12未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、10.0mol/L以下がより好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.10mol/L以上が好ましい。
アルカリ源の共役酸のpKaが20以上であるアルカリ源としては、例えば、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(pKa:25)が挙げられる。アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源としては、例えば、水酸化カリウム(pKa:16)、水酸化ナトリウム(pKa:13)が挙げられる。アルカリ源の共役酸のpKaが12未満であるアルカリ源としては、例えば、アンモニア(pKa:9)、イミダゾール(pKa:7)が挙げられる。使用するアルカリ源の共役酸のpKa値は、アルカリ濃度が適切に調整される限り、特に限定されるものではないが、アルカリ源の共役酸のpKaは、20未満であることが好ましく、12未満であることがより好ましく、10未満であることが更に好ましく、8未満であることが特に好ましい。
{混合速度}
金属塩溶液とアルカリ液との混合速度の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。傾向としては、pHの上昇が穏やかになる(遅くなる)ようにすることで吸光度及び光透過率がそれぞれ高くなる。より具体的には、混合速度を遅くすることで吸光度が高くなる傾向があり、混合速度を速くすることで吸光度が低くなる傾向がある。また、混合速度を遅くすることで光透過率が高くなる傾向があり、混合速度を速くすることで光透過率が低くなる傾向がある。
混合速度の上限は、急激に反応が進行することを更に抑制すると共に、局所における反応の偏りを更に抑制する観点から、5.00×10−3/分(5L/分)以下が好ましく、1.00×10−3/分(1L/分)以下がより好ましく、5.00×10−4/分(500mL/分)以下が更に好ましく、1.00×10−4/分(100mL/分)以下が特に好ましい。混合速度の下限は、特に制限されないが、生産性の観点から、1.00×10−7/分(0.1mL/分)以上が好ましい。
{撹拌速度}
金属塩溶液とアルカリ液とを混合するときの撹拌速度の制御により、波長500nmの光に対する光透過率を変化させることができる。具体的には、撹拌速度を速くすることで光透過率が高くなる傾向があり、撹拌速度を遅くすることで光透過率が低くなる傾向がある。
撹拌速度の下限は、局所における反応の偏りを更に抑制でき、且つ、混合効率に優れる観点から、30min−1以上が好ましく、50min−1以上がより好ましく、80min−1以上が更に好ましい。撹拌速度の上限は、特に制限されず、また、撹拌羽根の大きさ、形状により適宜調整を要するが、液はねを抑制する観点から、1000min−1以下が好ましい。
{液温(合成温度)}
4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の制御により、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることが可能であり、所望の研磨速度と保管安定性を達成可能な砥粒を得ることができる。具体的には、液温を低くすることで吸光度が高くなる傾向があり、液温を高くすることで吸光度が低くなる傾向がある。また、液温を低くすることで光透過率が高くなる傾向があり、液温を高くすることで光透過率が低くなる傾向がある。
液温は、例えば混合液に温度計を設置して読み取れる混合液内の温度であり、0〜100℃であることが好ましい。液温の上限は、急激な反応を抑制することができる点で、100℃以下が好ましく、60℃以下がより好ましく、55℃以下が更に好ましく、50℃以下が特に好ましく、45℃以下が極めて好ましい。液温の下限は、反応を容易に進行させることができる点で、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が更に好ましい。
前記方法で合成された4価金属元素の水酸化物は、不純物(例えば金属不純物)を含むことがあるが、洗浄して不純物を除去できる。4価金属元素の水酸化物の洗浄は、遠心分離等で固液分離を数回繰り返す方法などが使用できる。また、遠心分離、透析、限外濾過、イオン交換樹脂等によるイオンの除去などにより洗浄することもできる。不純物を除去することにより、波長450〜600nmの光に対する吸光度を調整することができる。
前記で得られた砥粒が凝集している場合、適切な方法で水中に分散させることができる。主な分散媒である水に砥粒を分散させる方法としては、撹拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等による機械的な分散処理であってもよい。分散方法及び粒径制御方法については、例えば非特許文献1に記述されている方法を用いることができる。また、前記の洗浄処理を行って、砥粒を含む分散液の電気伝導度を下げる(例えば500mS/m以下)ことによっても、砥粒の分散性を高めることができる。そのため、前記洗浄処理を分散処理として適用してもよく、前記洗浄処理と分散処理とを併用してもよい。
(添加剤)
本実施形態に係る研磨剤は、添加剤を含有する。ここで、「添加剤」とは、研磨速度、研磨選択性等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整するために、水及び砥粒以外に研磨剤に添加される物質を指す。
[第一の添加剤:ポリアルキレングリコール]
本実施形態に係る研磨剤は、第一の添加剤として、ポリアルキレングリコールを含有する。第一の添加剤は、ストッパ材料の研磨速度が過度に高くなることを抑制する効果がある。また、第一の添加剤を用いることにより、ストッパ露出後の絶縁材料の研磨を抑制することで、高い平坦性を得ることもできる。第一の添加剤が絶縁材料及びストッパを被覆することにより、砥粒による研磨の進行が緩和されて研磨速度が過度に高くなることが抑制されるものと推測される。
ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられ、中でも、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種が好ましく、ポリエチレングリコールがより好ましい。
第一の添加剤は、研磨選択性又は平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
第一の添加剤の重量平均分子量は、特に制限はない。第一の添加剤の重量平均分子量の上限は、作業性及び起泡性の観点から、100×10以下が好ましく、50×10以下がより好ましく、10×10以下が更に好ましく、8×10以下が特に好ましく、6×10以下が極めて好ましい。また、第一の添加剤の重量平均分子量の下限は、研磨選択性及び平坦性を更に向上させる観点から、200以上が好ましく、300以上がより好ましく、400以上が更に好ましい。上記の観点から、第一の添加剤の重量平均分子量は、200以上100×10以下がより好ましい。なお、重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
使用機器:日立L−6000型〔株式会社日立製作所製〕
カラム:ゲルパックGL−R420+ゲルパックGL−R430+ゲルパックGL−R440〔日立化成株式会社 商品名、計3本〕
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/分
検出器:L−3300RI〔株式会社日立製作所製〕
第一の添加剤の含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましい。第一の添加剤の含有量の上限は、適度な研磨速度を得る観点から、研磨剤の全質量を基準として5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。上記の観点から、第一の添加剤の含有量は、研磨剤の全質量を基準として0.01質量%以上5質量%以下がより好ましい。なお、第一の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
[第二の添加剤:陽イオン性ポリマ]
本実施形態に係る研磨剤は、第一の添加剤の他に、第二の添加剤として陽イオン性ポリマを含有する。「陽イオン性ポリマ」とは、陽イオン基、又は、陽イオン基にイオン化され得る基を、主鎖又は側鎖に有するポリマである。本実施形態において、第二の添加剤は、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種を選択して用いる。
第二の添加剤は、第一の添加剤と併用することにより、ストッパ材料の研磨速度が過度に高くなることを抑制する効果がある。第二の添加剤の方が絶縁材料に吸着しやすいため、第二の添加剤が吸着していることで吸着できなくなった余剰な第一の添加剤がストッパ材料表面に厚く吸着することでストッパ材料が研磨されることが更に抑制されるためであると考えられる。また、第二の添加剤は、絶縁材料の研磨速度を向上させる効果がある。第二の添加剤が第一の添加剤と相互作用することにより、第一の添加剤が絶縁材料を過度に被覆して絶縁材料の研磨速度が小さくなることが抑制されるためであると考えられる。これにより、本実施形態に係る研磨剤によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。
第二の添加剤は、平坦性を悪化させることなく絶縁材料の研磨速度を上昇させる効果もある。第二の添加剤が存在することにより第一の添加剤が適度に絶縁材料を被覆することで、絶縁材料の凸部に対する研磨速度を向上させつつ、絶縁材料の凹部に対する研磨速度を抑制するため、高い平坦性を維持することができると考えられる。
第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体からなる群より選択される少なくとも一種の単量体成分を重合させることにより得ることができる。第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体以外の単量体成分由来の構造単位を有していてもよく、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、アクリル酸、アクリル酸メチル、メタクリル酸、マレイン酸、二酸化硫黄等に由来する構造単位を有していてもよい。
第二の添加剤は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミンの単独重合体(ポリアリルアミン、ポリジアリルアミン、ポリビニルアミン、ポリエチレンイミン)であってもよく、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン又はこれらの誘導体由来の構造単位を有する共重合体であってもよい。共重合体において構造単位の配列は任意である。例えば、(a)それぞれ同種の構造単位が連続したブロック共重合の形態、(b)構造単位A及び構造単位Bが特に秩序なく配列したランダム共重合の形態、(c)構造単位A及び構造単位Bが交互に配列した交互共重合の形態、等を含む任意の形態をとり得る。
アリルアミン重合体は、アリルアミン及びその誘導体を重合させることにより得られる重合体である。アリルアミン誘導体としては、アルコキシカルボニル化アリルアミン、メチルカルボニル化アリルアミン、アミノカルボニル化アリルアミン、尿素化アリルアミン等が挙げられる。
ジアリルアミン重合体は、ジアリルアミン及びその誘導体を重合させることにより得られる重合体である。ジアリルアミン誘導体としては、メチルジアリルアミン、ジアリルジメチルアンモニウム塩、ジアリルメチルエチルアンモニウム塩、アシル化ジアリルアミン、アミノカルボニル化ジアリルアミン、アルコキシカルボニル化ジアリルアミン、アミノチオカルボニル化ジアリルアミン、ヒドロキシアルキル化ジアリルアミン等が挙げられる。アンモニウム塩としては、アンモニウムクロリド等が挙げられる。
ビニルアミン重合体は、ビニルアミン及びその誘導体を重合させることにより得られる重合体である。ビニルアミン誘導体としては、アルキル化ビニルアミン、アミド化ビニルアミン、エチレンオキサイド化ビニルアミン、プロピレンオキサイド化ビニルアミン、アルコキシ化ビニルアミン、カルボキシメチル化ビニルアミン、アシル化ビニルアミン、尿素化ビニルアミン等が挙げられる。
エチレンイミン重合体は、エチレンイミン及びその誘導体を重合させることにより得られる重合体である。エチレンイミン誘導体としては、アミノエチル化アクリル重合体、アルキル化エチレンイミン、尿素化エチレンイミン、プロピレンオキサイド化エチレンイミン等が挙げられる。
第二の添加剤としては、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面におけるディッシングの進行及び研磨傷の発生を更に抑制することができる観点から、ポリアリルアミン、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、ジアリルジメチルアンモニウムクロリド・アクリル酸共重合体が好ましい。また、第二の添加剤としては、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点、及び、絶縁材料の研磨速度を更に向上させる観点から、ポリアリルアミン、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体が好ましい。第二の添加剤は、研磨選択性及び平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
第二の添加剤の重量平均分子量は、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点から、100以上が好ましく、300以上がより好ましく、500以上が更に好ましく、1.0×10以上が特に好ましい。第二の添加剤の重量平均分子量は、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させる観点から、1000×10以下が好ましく、800×10以下がより好ましく、600×10以下が更に好ましく、400×10以下が特に好ましい。上記の観点から、第二の添加剤の重量平均分子量は、100以上1000×10以下であることがより好ましい。なお、第二の添加剤の重量平均分子量は、第一の添加剤の重量平均分子量と同様の方法により測定することができる。
第二の添加剤の含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.00015質量%以上がより好ましく、0.0002質量%以上が更に好ましく、0.0005質量%以上が特に好ましい。第二の添加剤の含有量の上限は、研磨選択性に更に優れる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が非常に好ましく、0.05質量%以下が極めて好ましい。上記の観点から、第二の添加剤の含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。なお、第二の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。第二の添加剤の含有量は、絶縁材料の研磨速度、ストッパ材料に対する絶縁材料の研磨選択性、及び、平坦性を更に向上させる観点から、絶縁材料の作製方法(種類、材料付け条件)に応じて適宜調整することが好ましい。
第一の添加剤の含有量に対する第二の添加剤の含有量の比率は、研磨選択性及び平坦性を更に向上させる観点から、質量比で0.0005以上が好ましく、0.001以上がより好ましく、0.0015以上が更に好ましく、0.002以上が特に好ましい。第一の添加剤の含有量に対する第二の添加剤の含有量の比率は、研磨選択性が更に優れる観点から、質量比で0.03以下が好ましく、0.025以下がより好ましく、0.02以下が更に好ましく、0.015以下が特に好ましい。上記の観点から、前記含有量の比率は、0.0005以上0.03以下がより好ましい。
本実施形態に係る研磨剤は、第二の添加剤以外の陽イオン性ポリマを含有していてもよい。このような陽イオン性ポリマとしては、カチオン変性したポリアクリルアミド、カチオン変性したポリジメチルアクリルアミド等のアクリル系ポリマ;キトサン、キトサン誘導体、カチオン変性したセルロース、カチオン変性したデキストラン等の多糖類;これらの化合物を構成する構成単位由来の単量体を重合させて得られる共重合体などが挙げられる。陽イオン性ポリマは、研磨選択性及び平坦性等の研磨特性を調整する目的で、一種を単独で又は二種類以上を組み合わせて使用することができる。
第二の添加剤を含む陽イオン性ポリマの含有量の下限は、研磨選択性及び平坦性を更に向上させる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.00015質量%以上がより好ましく、0.0002質量%以上が更に好ましく、0.0005質量%以上が特に好ましい。第二の添加剤を含む陽イオン性ポリマの含有量の上限は、研磨選択性に更に優れる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が非常に好ましく、0.05質量%以下が極めて好ましい。上記の観点から、第二の添加剤を含む陽イオン性ポリマの含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。
[第三の添加剤]
本実施形態に係る研磨剤は、研磨速度等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整する目的で、第一の添加剤、及び、第二の添加剤等の陽イオン性ポリマの他に、第三の添加剤を更に含有していてもよい。
第三の添加剤としては、カルボン酸、アミノ酸等が挙げられる。これらは、一種を単独で又は二種類以上を組み合わせて使用することができる。中でも、砥粒の分散性と研磨特性のバランスに優れる観点から、カルボン酸及びアミノ酸が好ましい。
カルボン酸は、pHを安定化させると共に絶縁材料の研磨速度を更に向上させる効果がある。カルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸等が挙げられる。
アミノ酸は、4価金属元素の水酸化物を含む砥粒の分散性を向上させ、絶縁材料の研磨速度を更に向上させる効果がある。アミノ酸としては、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、アラニン、β−アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。なお、アミノ酸はカルボキシル基を有するが、カルボン酸とは異なるものとする。
第三の添加剤を使用する場合、第三の添加剤の含有量は、砥粒の沈降を抑制しつつ添加剤の添加効果が得られる観点から、研磨剤の全質量を基準として0.01質量%以上10質量%以下の範囲が好ましい。なお、第三の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
(水溶性高分子)
本実施形態に係る研磨剤は、平坦性、面内均一性、窒化珪素に対する酸化珪素の研磨選択性(酸化珪素の研磨速度/窒化珪素の研磨速度)、ポリシリコンに対する酸化珪素の研磨選択性(酸化珪素の研磨速度/ポリシリコンの研磨速度)等の研磨特性を調整する目的で、水溶性高分子を含有していてもよい。ここで、「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。第一の添加剤、及び、第二の添加剤等の陽イオン性ポリマは、「水溶性高分子」に含まれないものとする。
水溶性高分子としては、特に制限はない。水溶性高分子としては、具体的には、ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ;アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、デキストリン、シクロデキストリン、プルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;ポリグリセリン、ポリグリセリン誘導体等のグリセリン系ポリマなどが挙げられる。本実施形態に係る研磨剤は、ポリビニルアルコールを含有していなくてもよい。水溶性高分子は、一種を単独で又は二種類以上を組み合わせて使用することができる。
水溶性高分子を使用する場合、水溶性高分子の含有量は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。上記の観点から、水溶性高分子の含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。水溶性高分子として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
水溶性高分子の重量平均分子量は、特に制限はないが、100以上300×10以下であることが好ましい。なお、水溶性高分子の重量平均分子量は、第一の添加剤の重量平均分子量と同様の方法により測定することができる。
(研磨剤の特性)
本実施形態に係る研磨剤のpH(25℃)の下限は、絶縁材料の研磨速度を更に向上させる観点から、3.0以上が好ましく、4.0以上がより好ましく、4.5以上が更に好ましく、5.0以上が特に好ましい。また、pHの上限は、絶縁材料の研磨速度を更に向上させる観点から、12.0以下が好ましく、11.0以下がより好ましく、10.0以下が更に好ましく、9.0以下が特に好ましく、8.0以下が極めて好ましい。上記の観点から、研磨剤のpHは、3.0以上12.0以下であることがより好ましい。
研磨剤のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール等のアルカリ成分などによって調整可能である。また、pHを安定化させるため、緩衝剤を添加してもよい。また、緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
本実施形態に係る研磨剤のpHは、pHメータ(例えば、電気化学計器株式会社製の型番PHL−40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨剤に入れて、2分以上経過して安定した後の値を測定する。このとき、標準緩衝液と研磨剤の液温は共に25℃とする。
本実施形態に係る研磨剤は、砥粒と、第一の添加剤と、第二の添加剤と、水とを少なくとも含む一液式研磨剤として保存してもよく、スラリ(第一の液)と添加液(第二の液)とを混合して前記研磨剤となるように前記研磨剤の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨剤セットとして保存してもよい。スラリは、例えば、砥粒を少なくとも含む。添加液は、例えば、第一の添加剤及び第二の添加剤からなる群より選択される少なくとも一種を含む。第一の添加剤、第二の添加剤、第三の添加剤、水溶性高分子及び緩衝剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。なお、前記研磨剤の構成成分は、三液以上に分けた研磨剤セットとして保存してもよい。例えば、前記研磨剤の構成成分は、砥粒及び水を含むスラリと、第一の添加剤及び水を含む添加液と、第二の添加剤及び水を含む添加液とに分けて保存されてもよい。
前記研磨剤セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨剤が作製される。また、一液式研磨剤は、水の含有量を減じた研磨剤用貯蔵液として保存されると共に、研磨時に水で希釈して用いられてもよい。複数液式の研磨剤セットは、水の含有量を減じたスラリ用貯蔵液、添加液用貯蔵液として保存されると共に、研磨時に水で希釈して用いられてもよい。
一液式研磨剤の場合、研磨定盤上への研磨剤の供給方法としては、研磨剤を直接送液して供給する方法;研磨剤用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめ研磨剤用貯蔵液及び水を混合しておき供給する方法等を用いることができる。
スラリと添加液とに分けた複数液式の研磨剤セットとして保存する場合、これらの液の配合を任意に変えることにより研磨速度の調整ができる。研磨剤セットを用いて研磨する場合、研磨定盤上への研磨剤の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめスラリ、添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び水を混合しておき供給する方法等を用いることができる。また、前記研磨剤セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨剤を用いて被研磨面が研磨される。
(基体の研磨方法)
本実施形態に係る基体の研磨方法は、前記一液式研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよく、前記研磨剤セットにおけるスラリと添加液を混合して得られる研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよい。また、本実施形態に係る基体の研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であってもよく、例えば、前記一液式研磨剤、又は、前記研磨剤セットにおけるスラリと添加液とを混合して得られる研磨剤を用いて、絶縁材料をポリシリコンに対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、ポリシリコンを含む部材とを有していてもよい。なお、「材料Aを材料Bに対して選択的に研磨する」とは、同一研磨条件において、材料Aの研磨速度が、材料Bの研磨速度よりも高いことをいう。より具体的には、例えば、材料Bの研磨速度に対する材料Aの研磨速度の研磨速度比が250以上で材料Aを研磨することをいう。
研磨工程では、例えば、被研磨材料を有する基体の該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨剤を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。
研磨対象である基体としては、基板等が挙げられ、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基板が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料;ポリシリコン、窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状であってもよく、酸化珪素膜、ポリシリコン膜、窒化珪素膜等であってもよい。
このような基板上に形成された被研磨材料(例えば酸化珪素等の絶縁材料)を前記研磨剤で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面とすることができる。本実施形態に係る研磨剤は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された半導体基板とを有する基体における絶縁材料を研磨することができる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料であり、ポリシリコン、窒化珪素等が好ましい。このような基体では、ストッパが露出した時に研磨を停止させることにより、絶縁材料が過剰に研磨されることを防止できるため、絶縁材料の研磨後の平坦性を向上させることができる。
本実施形態に係る研磨剤により研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
酸化珪素は、低圧CVD法を用いて、例えば、モノシラン(SiH)と酸素(O)を熱反応させることにより得られる。また、酸化珪素は、準常圧CVD法を用いて、例えば、テトラエトキシシラン(Si(OC)とオゾン(O)を熱反応させることにより得られる。その他の例として、テトラエトキシシランと酸素をプラズマ反応させることにより、同様に酸化珪素が得られる。
酸化珪素は、回転塗布法を用いて、例えば、無機ポリシラザン、無機シロキサン等を含む液体原料を基板上に塗布し、炉体等で熱硬化反応させることにより得られる。
ポリシリコンの作製方法としては、モノシランを熱反応させる低圧CVD法、モノシランをプラズマ反応させるプラズマCVD法等が挙げられる。
窒化珪素の作製方法としては、例えば、ジクロルシランとアンモニアを熱反応させる低圧CVD法、モノシラン、アンモニア及び窒素をプラズマ反応させるプラズマCVD法等が挙げられる。以上のような方法で得られた窒化珪素には、材質を調整するために、炭素、水素等のように、シリコンと窒素以外の元素が含まれていてもよい。
以上のような方法で得られた酸化珪素、ポリシリコン、窒化珪素等の材質を安定化させるために、必要に応じて200〜1000℃の温度で熱処理をしてもよい。また、以上のような方法で得られた酸化珪素には、埋込み性を高めるために微量のホウ素(B)、リン(P)、炭素(C)等が含まれていてもよい。
以下、絶縁材料が形成された半導体基板の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する半導体基板等の基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置:Reflexionを使用できる。
研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性の観点から、発泡ポリウレタン及び非発泡ポリウレタンが好ましい。研磨パッドには、研磨剤がたまるような溝加工が施されていることが好ましい。
研磨条件に制限はないが、研磨定盤の回転速度は、半導体基板が飛び出さないように200min−1以下が好ましく、半導体基板にかける研磨圧力(加工荷重)は、研磨傷が発生することを充分に抑制する観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的に研磨剤を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。
研磨終了後の半導体基板は、流水中でよく洗浄して基板に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、半導体基板に付着した水滴を、スピンドライヤ等を用いて払い落としてから半導体基板を乾燥させることが好ましい。
本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、STIの形成に好適に使用できる。STIを形成するためには、ストッパ材料(例えばポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨速度比は、250以上であることが好ましく、300以上であることがより好ましい。前記研磨速度比が250未満であると、ストッパ材料の研磨速度に対する絶縁材料の研磨速度の大きさが小さく、STIを形成する際に所定の位置で研磨を停止しにくくなる傾向がある。一方、前記研磨速度比が250以上であれば、研磨の停止が容易になり、STIの形成に更に好適である。
本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素の他、例えば、リン−シリケートガラス、ボロン−リン−シリケートガラスが使用され、更に、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。
本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。
本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ又はプラスチック等から構成される各種基板にも適用できる。
本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置の製造に用いることができる。
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
<4価金属元素の水酸化物の合成>
175gのCe(NH(NOを8000gの純水に溶解して溶液を得た。次いで、この溶液を攪拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/分の混合速度で滴下して、29gのセリウム水酸化物粒子を含む分散液(黄白色)を得た。セリウム水酸化物粒子の合成は、温度25℃、撹拌速度400min−1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
得られたセリウム水酸化物粒子の分散液に対して、遠心分離(4000min−1、5分間)によって固液分離を施し、固形分含量約10%の沈殿物を取り出した。固液分離により得られた沈殿物に、セリウム水酸化物含有量が1.0質量%になるように水を混合し、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物スラリ用貯蔵液を調製した。
<平均粒径の測定>
ベックマンコールター社製、商品名:N5を用いてセリウム水酸化物スラリ用貯蔵液におけるセリウム水酸化物粒子の平均粒径を測定したところ、25nmであった。測定法は下記のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(水分散液)を1cm角のセルに約1mL入れ、N5内にセルを設置した。測定サンプルの屈折率を1.333、測定サンプルの粘度を0.887mPa・sに調整し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
<砥粒の構造分析>
セリウム水酸化物スラリ用貯蔵液を適量採取し、真空乾燥して砥粒を単離した後に、純水で充分に洗浄して試料を得た。得られた試料について、FT−IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N−XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物スラリ用貯蔵液に含まれる砥粒は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子を少なくとも一部含有することから、砥粒がセリウム水酸化物を含有することが確認された。
<吸光度及び光透過率の測定>
セリウム水酸化物スラリ用貯蔵液を適量採取し、砥粒含有量が0.0065質量%(65ppm)となるように水で希釈して測定サンプル(水分散液)を得た。この測定サンプルを1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200〜600nmの範囲で吸光度測定を行い、波長290nmの光に対する吸光度と、波長450〜600nmの光に対する吸光度とを測定した。波長290nmの光に対する吸光度は1.192であり、波長450〜600nmの光に対する吸光度は0.010未満であった。
セリウム水酸化物スラリ用貯蔵液(粒子の含有量:1.0質量%)を1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200〜600nmの範囲で吸光度測定を行い、波長400nmの光に対する吸光度と、波長500nmの光に対する光透過率とを測定した。波長400nmの光に対する吸光度は2.25であり、波長500nmの光に対する光透過率は92%/cmであった。
<CMP研磨剤の調製>
[実施例1]
ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水840gと、陽イオン性ポリマとして0.1質量%ポリアリルアミン〔ニットーボーメディカル株式会社製PAA−01、重量平均分子量1600〕を含有する水溶液10gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.001質量%含有するpH6.2のCMP研磨剤を調製した。
[実施例2]
ポリアリルアミンの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.0015質量%含有するpH6.3のCMP研磨剤を調製した。
[実施例3]
ポリアリルアミンの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリアリルアミンを0.002質量%含有するpH6.4のCMP研磨剤を調製した。
[実施例4]
ポリエチレングリコール〔ライオン株式会社製PEG#4000、重量平均分子量:4000〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとして0.1質量%ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS−J−81、重量平均分子量:200000〕を含有する水溶液30gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体を0.003質量%含有するpH6.0のCMP研磨剤を調製した。
[実施例5]
陽イオン性ポリマの種類と配合量、イミダゾールの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS−J−81、重量平均分子量:200000〕を0.003質量%含有するpH5.0のCMP研磨剤を調製した。
[実施例6]
陽イオン性ポリマの種類と配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS−J−81、重量平均分子量:200000〕を0.003質量%含有するpH5.8のCMP研磨剤を調製した。
[実施例7]
陽イオン性ポリマの種類と配合量、イミダゾールの配合量以外は実施例1と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS−J−81、重量平均分子量:200000〕を0.003質量%含有するpH6.7のCMP研磨剤を調製した。
[実施例8]
陽イオン性ポリマの種類以外は実施例6と同様にして、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%、ポリエチレンイミン〔株式会社日本触媒製エポミンP−1000、重量平均分子量70000〕を0.003質量%含有するpH6.4のCMP研磨剤を調製した。
[実施例9]
ポリプロピレングリコール〔和光純薬工業株式会社製ポリプロピレングリコール ジオール型 400、重量平均分子量:400〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとして0.1質量%ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体〔ニットーボーメディカル株式会社製PAS−J−81、重量平均分子量:200000〕を含有する水溶液30gとを混合することにより、セリウム水酸化物粒子を0.05質量%、ポリプロピレングリコールを0.5質量%、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体を0.003質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例1]
セリウム水酸化物スラリ用貯蔵液50gと、水940gと、1質量%イミダゾール水溶液10gとを混合し、セリウム水酸化物粒子を0.05質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例2]
セリウム水酸化物スラリ用貯蔵液50gと、水927gと、1質量%イミダゾール水溶液8g、1質量%酢酸水溶液5gと、0.1質量%ポリアリルアミン〔ニットーボーメディカル株式会社製PAA−01、重量平均分子量:1600〕水溶液10gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリアリルアミンを0.001質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例3]
ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.5質量%含有するpH6.2のCMP研磨剤を調製した。
[比較例4]
ポリビニルアルコール〔株式会社クラレ製PVA−403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕5質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.87質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%含有するpH5.8のCMP研磨剤を調製した。
[比較例5]
陽イオン性ポリマとしてポリアリルアミン〔ニットーボーメディカル株式会社製PAA−01、重量平均分子量:1600〕を加えた以外は比較例4と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.0001質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例6]
ポリアリルアミンの配合量以外は比較例5と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.001質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例7]
陽イオン性ポリマとしてポリアリルアミン〔ニットーボーメディカル株式会社製PAA−08、重量平均分子量:8000〕を加えた以外は比較例4と同様にして、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、ポリアリルアミンを0.0008質量%含有するpH5.9のCMP研磨剤を調製した。
[比較例8]
ポリビニルアルコール〔株式会社クラレ製PVA−403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕10質量%、ポリアリルアミン〔ニットーボーメディカル株式会社製PAA−08、重量平均分子量:8000〕0.008質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水89.862質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを1質量%、ポリアリルアミンを0.0008質量%含有するpH6.0のCMP研磨剤を調製した。
[比較例9]
ポリエチレングリコール〔ライオン株式会社製PEG#600、重量平均分子量:600〕0.07質量%、キトサン〔大日精化工業格式会社製ダイキトサン100D、脱アセチル化度:98%以上〕0.15質量%、イミダゾール0.2質量%、酢酸0.15質量%及び水99.43質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリエチレングリコールを0.007質量%、キトサンを0.015質量%含有するpH6.4のCMP研磨剤を調製した。
[比較例10]
ポリビニルアルコール〔株式会社クラレ製PVA−403、平均重合度300、ケン化度80モル%、重量平均分子量:14000〕5質量%、N,N−ジメチルアミノプロピルアクリルアミドの重合体〔重量平均分子量:23000〕0.01質量%、イミダゾール0.08質量%、酢酸0.05質量%及び水94.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合し、セリウム水酸化物粒子を0.05質量%、ポリビニルアルコールを0.5質量%、N,N−ジメチルアミノプロピルアクリルアミドの重合体を0.001質量%含有するpH6.1のCMP研磨剤を調製した。
なお、N,N−ジメチルアミノプロピルアクリルアミドの重合体は、下記の手順により作製した。まず、丸底フラスコにN,N−ジメチルアミノプロピルアクリルアミド(株式会社興人製DMAPAA)15g、水281gを入れ、窒素ガスを導入した。80℃に加熱し、攪拌しながら、2,2´−アゾビス(2−メチルプロピオンアミジン)二塩酸塩696mg及び水4gからなる水溶液を加えた。80℃で2時間加熱攪拌後、室温(25℃)まで冷却して、濃度5質量%のN,N−ジメチルアミノプロピルアクリルアミドの重合体を得た。
<液状特性評価>
CMP研磨剤のpH、及び、CMP研磨剤中のセリウム水酸化物粒子の平均粒径を下記の条件で評価した。
(pH)
測定温度:25±5℃
測定装置:電気化学計器株式会社製、型番PHL−40
測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH6.86(25℃))を用いて2点校正した後、電極をCMP研磨剤に入れて、2分以上経過して安定した後のpHを前記測定装置により測定した。
(セリウム水酸化物粒子の平均粒径)
ベックマンコールター社製、商品名:N5を用いてCMP研磨剤中のセリウム水酸化物粒子の平均粒径を測定した。測定法は下記のとおりである。まず、CMP研磨剤を1cm角のセルに約1mL入れ、N5内にセルを設置した。測定サンプルの屈折率を1.333、測定サンプルの粘度を0.887mPa・sに調整し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
<CMP評価>
CMP研磨剤を用いて下記研磨条件で被研磨基板を研磨した。但し、比較例1及び2については、パターンウエハの研磨を行わなかった。
(CMP研磨条件)
・研磨装置:Reflexion(APPLIED MATERIALS社製)
・CMP研磨剤流量:200mL/分
・被研磨基板:
(パターンなしウエハ)
パターンが形成されていないブランケットウエハとして、厚さ1μmの酸化珪素膜をシリコン基板上にプラズマCVD法で形成した基板と、厚さ0.2μmのポリシリコン膜をシリコン基板上にCVD法で形成した基板とを用いた。
(パターンウエハ)
模擬パターンが形成されたパターンウエハとして、SEMATECH社製、764ウエハ(商品名、直径:300mm)を用いた。当該パターンウエハは、ストッパ膜としてポリシリコン膜をシリコン基板上に積層後、露光工程においてトレンチを形成し、ポリシリコン膜及びトレンチを埋めるようにシリコン基板及びポリシリコン膜の上に絶縁膜として酸化珪素膜(SiO膜)を積層することにより得られたウエハであった。酸化珪素膜は、HDP(High Density Plasma)法により成膜されたものであった。
・研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)、ショアD硬度:60
・研磨圧力:16.5kPa(2.4psi)
・基板と研磨定盤との相対速度:85m/分
・研磨時間:ブランケットウエハは、1分間研磨を行った。パターンウエハは、ストッパ膜であるポリシリコン膜が露出するまで研磨を行った。また、ポリシリコン膜が露出するまでにかかった研磨時間と同じ時間更に削り込むことにより、ディッシングの進行度合いの確認を行なった。
・洗浄:CMP処理後、超音波水による洗浄を行った後、スピンドライヤで乾燥させた。
パターンウエハとして、ライン(凸部)&スペース(凹部)幅が1000μmピッチ、200μmピッチ、100μmピッチであり且つ凸部パターン密度が50%である部分を有するものを使用した。ライン&スペースとは、模擬的なパターンであり、凸部であるポリシリコン膜でマスクされたActive部と、凹部である溝が形成されたTrench部とが、交互に並んだパターンである。例えば、「ライン&スペースが100μmピッチ」とは、ライン部とスペ−ス部との幅の合計が100μmであることを意味する。また、例えば、「ライン&スペースが100μmピッチで、凸部パターン密度が50%」とは、凸部幅:50μmと、凹部幅:50μmとが、交互に並んだパターンを意味する。
パターンウエハにおいて、酸化珪素膜の膜厚は、シリコン基板及びポリシリコン膜のいずれの上においても600nmであった。具体的には、図3に示すように、シリコン基板1上のポリシリコン膜2の膜厚は150nmであり、酸化珪素膜3の凸部の膜厚は600nmであり、酸化珪素膜3の凹部の膜厚は600nmであり、酸化珪素膜3の凹部深さは500nm(トレンチ深さ350nm+ポリシリコン膜厚150nm)であった。
パターンウエハの研磨評価に際しては、セルフストップ性(模擬パターンの残段差が小さくなると研磨速度が低下する)を有する公知のCMP研磨剤を用いて前記ウエハを研磨することにより残段差が100nm以下の状態となったウエハを用いた。具体的には、日立化成株式会社製HS−8005−D4と、日立化成株式会社製HS−7303GPと、水とを2:1.2:6.8の比率で配合した研磨剤を用いて、1000μmピッチ50%密度パターンにおける凸部の酸化珪素膜厚を130nmまで研磨した状態のウエハを用いた。
<研磨品評価>
[ブランケットウエハ研磨速度]
前記条件で研磨及び洗浄した被研磨膜(酸化珪素膜、ポリシリコン膜)の研磨速度(酸化珪素研磨速度:SiORR、ポリシリコン研磨速度:p−SiRR)を次式より求めた。なお、研磨前後での被研磨膜の膜厚差は、光干渉式膜厚装置(フィルメトリクス社製、商品名:F80)を用いて求めた。
(研磨速度:RR)=(研磨前後での被研磨膜の膜厚差(nm))/(研磨時間(分))
[パターンウエハ評価]
前記条件で研磨及び洗浄したパターンウエハの凸部のポリシリコン膜又は酸化珪素膜の残膜厚、及び、凹部の酸化珪素膜の残膜厚を測定して残段差量(ディッシング)を次式より求めた。なお、研磨前後での被研磨膜の膜厚は、光干渉式膜厚装置(ナノメトリクス社製、商品名:Nanospec AFT−5100)を用いて求めた。
残段差(ディッシング)=(350+ポリシリコン膜厚(nm))−(凹部の酸化珪素膜の残膜厚(nm))
[研磨傷評価]
前記条件で研磨及び洗浄した被研磨基板(酸化珪素膜を有するブランケットウエハ基板)を0.5質量%のフッ化水素の水溶液に15秒間浸漬した後に、60秒間水洗した。続いて、ポリビニルアルコールブラシを用いて、水を供給しながら被研磨膜表面を1分間洗浄した後に、乾燥させた。APPLIED MATERIALS社製Complusを用いて、被研磨膜表面の0.2μm以上の欠陥を検出した。さらに、Complusで得られた欠陥検出座標とAPPLIED MATERIALS社製SEM Visionとを用いて、被研磨膜表面を観測したところ、被研磨膜表面における0.2μm以上の研磨傷の個数は、実施例及び比較例のいずれにおいても0〜3(個/ウエハ)程度であり、研磨傷の発生が充分に抑制されていた。
実施例1〜9及び比較例1〜10で得られた各測定結果を表1及び表2に示す。なお、表中、化合物A〜Eは下記化合物を示す。
化合物A:ポリアリルアミン
化合物B:ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体
化合物C:ポリエチレンイミン
化合物D:キトサン
化合物E:N,N−ジメチルアミノプロピルアクリルアミドの重合体
Figure 2013125446
Figure 2013125446
*p−Si上のSiO膜厚(研磨残り有り)
以下、表1及び表2に示す結果について詳しく説明する。
実施例1において、SiORRは263nm/分、p−SiRRは0.3nm/分、研磨速度比は877であり、SiORRが比較例より高い値を示し、p−SiRRが比較例より小さい値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ90nm(1000μmピッチ)、30nm(200μmピッチ)、6nm(100μmピッチ)であり、更に30秒多く削り込んでも残段差がそれぞれ92nm、31nm、6nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例2において、SiORRは268nm/分、p−SiRRは0.3nm/分、研磨速度比は893であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ38nm、8nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ38nm、10nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例3において、SiORRは265nm/分、p−SiRRは0.3nm/分、研磨速度比は883であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ30nm、7nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ30nm、7nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例4において、SiORRは299nm/分、p−SiRRは0.2nm/分、研磨速度比は1495であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ45nm、22nm、6nmであり、更に30秒多く削り込んでも残段差がそれぞれ57nm、31nm、14nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例5において、SiORRは192nm/分、p−SiRRは0.2nm/分、研磨速度比は960であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ33nm、12nm、0nmであり、更に28秒多く削り込んでも残段差がそれぞれ72nm、29nm、14nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例6において、SiORRは363nm/分、p−SiRRは0.1nm/分、研磨速度比は3630であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ56nm、17nm、2nmであり、更に17秒多く削り込んでも残段差がそれぞれ64nm、22nm、5nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例7において、SiORRは233nm/分、p−SiRRは0.3nm/分、研磨速度比は777であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ33nm、10nm、0nmであり、更に30秒多く削り込んでも残段差がそれぞれ37nm、10nm、0nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例8において、SiORRは434nm/分、p−SiRRは0.2nm/分、研磨速度比は2170であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ44nm、15nm、1nmであり、更に27秒多く削り込んでも残段差がそれぞれ44nm、16nm、1nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
実施例9において、SiORRは333nm/分、p−SiRRは0.3nm/分、研磨速度比は1110であり、SiORR及びp−SiRRが実施例1と同等の値を示し、研磨速度比が比較例より高い値を示した。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ59nm、36nm、15nmであり、更に37秒多く削り込んでも残段差がそれぞれ72nm、42nm、19nmであり、高い研磨速度比を示しつつ、ディッシングの進行が抑制されている結果が得られた。
比較例1において、SiORRは163nm/分、p−SiRRは62nm/分、研磨速度比は3であった。
比較例2において、SiORRは50nm/分、p−SiRRは95nm/分、研磨速度比は0.5であった。
比較例3において、SiORRは94nm/分、p−SiRRは4nm/分、研磨速度比は24であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ21nm、13nm、2nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ60nm、46nm、34nmであった。
比較例4において、SiORRは180nm/分、p−SiRRは12nm/分、研磨速度比は15であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ72nm、55nm、40nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ140nm、108nm、84nmであった。
比較例5において、SiORRは192nm/分、p−SiRRは1nm/分、研磨速度比は192であった。また、パターンウエハ評価では、凸部の酸化珪素膜を30秒で除去することはできなかった。
比較例6において、SiORRは195nm/分、p−SiRRは0.8nm/分、研磨速度比は244であった。また、パターンウエハ評価では、凸部の酸化珪素膜を30秒で除去することはできなかった。
比較例7において、SiORRは205nm/分、p−SiRRは0.9nm/分、研磨速度比は228であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ70nm、54nm、42nmであった。また、更に21秒多く削り込んだ時点での残段差はそれぞれ140nm、104nm、82nmであった。
比較例8において、SiORRは182nm/分、p−SiRRは0.8nm/分、研磨速度比は228であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ54nm、37nm、23nmであった。また、更に24秒多く削り込んだ時点での残段差はそれぞれ94nm、67nm、53nmであった。
比較例9において、SiORRは376nm/分、p−SiRRは13nm/分、研磨速度比は29であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ132nm、95nm、81nmであった。また、更に33秒多く削り込んだ時点での残段差はそれぞれ217nm、162nm、140nmであった。
比較例10において、SiORRは170nm/分、p−SiRRは6nm/分、研磨速度比は28であった。また、パターンウエハ評価では、ポリシリコン膜が露出した時点の残段差は、それぞれ68nm、43nm、29nmであった。また、更に30秒多く削り込んだ時点での残段差はそれぞれ128nm、102nm、72nmであった。
本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することができる。また、本発明によれば、特に、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供することができる。
1…シリコン基板、2…ポリシリコン膜、3…酸化珪素膜。

Claims (15)

  1. 水と、4価金属元素の水酸化物を含む砥粒と、ポリアルキレングリコールと、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種の陽イオン性ポリマと、を含有する、研磨剤。
  2. 前記ポリアルキレングリコールの含有量に対する前記陽イオン性ポリマの含有量の比率が質量比で0.0005以上0.03以下である、請求項1に記載の研磨剤。
  3. ポリビニルアルコールを含有していない、請求項1又は2に記載の研磨剤。
  4. 前記ポリアルキレングリコールが、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種である、請求項1〜3のいずれか一項に記載の研磨剤。
  5. 前記ポリアルキレングリコールの含有量が、研磨剤の全質量を基準として0.01質量%以上である、請求項1〜4のいずれか一項に記載の研磨剤。
  6. 前記4価金属元素の水酸化物が、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種である、請求項1〜5のいずれか一項に記載の研磨剤。
  7. 前記砥粒の平均粒径が1nm以上300nm以下である、請求項1〜6のいずれか一項に記載の研磨剤。
  8. 前記砥粒の含有量が、研磨剤の全質量を基準として0.005質量%以上20質量%以下である、請求項1〜7のいずれか一項に記載の研磨剤。
  9. pHが3.0以上12.0以下である、請求項1〜8のいずれか一項に記載の研磨剤。
  10. 酸化珪素を含む被研磨面を研磨するために使用される、請求項1〜9のいずれか一項に記載の研磨剤。
  11. 請求項1〜10のいずれか一項に記載の研磨剤の構成成分が複数の液に分けて保存され、第一の液が前記砥粒を含み、第二の液が前記ポリアルキレングリコール及び前記陽イオン性ポリマからなる群より選択される少なくとも一種を含む、研磨剤セット。
  12. 請求項1〜10のいずれか一項に記載の研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
  13. 請求項11に記載の研磨剤セットにおける前記第一の液と前記第二の液を混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
  14. 絶縁材料及びポリシリコンを有する基体の研磨方法であって、
    請求項1〜10のいずれか一項に記載の研磨剤を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、基体の研磨方法。
  15. 絶縁材料及びポリシリコンを有する基体の研磨方法であって、
    請求項11に記載の研磨剤セットにおける前記第一の液と前記第二の液を混合して得られる研磨剤を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、基体の研磨方法。
JP2014500686A 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法 Active JP6044630B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012035432 2012-02-21
JP2012035432 2012-02-21
PCT/JP2013/053559 WO2013125446A1 (ja) 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法

Publications (2)

Publication Number Publication Date
JPWO2013125446A1 true JPWO2013125446A1 (ja) 2015-07-30
JP6044630B2 JP6044630B2 (ja) 2016-12-14

Family

ID=49005633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500686A Active JP6044630B2 (ja) 2012-02-21 2013-02-14 研磨剤、研磨剤セット及び基体の研磨方法

Country Status (7)

Country Link
US (1) US10557058B2 (ja)
JP (1) JP6044630B2 (ja)
KR (1) KR102005132B1 (ja)
CN (3) CN108831830B (ja)
SG (2) SG10201606827RA (ja)
TW (1) TWI550045B (ja)
WO (1) WO2013125446A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201501334RA (en) * 2012-08-30 2015-05-28 Hitachi Chemical Co Ltd Polishing agent, polishing agent set and method for polishing base
WO2014129408A1 (ja) * 2013-02-21 2014-08-28 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
JP5900913B2 (ja) * 2013-03-19 2016-04-06 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
US20160122591A1 (en) * 2013-06-07 2016-05-05 Fujimi Incorporated Silicon wafer polishing composition
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
US9778122B2 (en) 2013-08-01 2017-10-03 Mts Systems Corporation Two-axis sensor body for a load transducer
US10591373B2 (en) 2013-08-01 2020-03-17 Mts Systems Corporation Load transducer having a biasing assembly
CN105453235B (zh) * 2013-08-30 2018-04-13 日立化成株式会社 浆料、研磨液组、研磨液、基体的研磨方法以及基体
JP6520711B2 (ja) * 2013-09-10 2019-05-29 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
KR101405333B1 (ko) * 2013-09-12 2014-06-11 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 이를 이용한 반도체 소자의 제조 방법
WO2015052988A1 (ja) * 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2015098197A1 (ja) * 2013-12-26 2015-07-02 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP6349852B2 (ja) * 2014-03-27 2018-07-04 日立化成株式会社 研磨剤、研磨剤用貯蔵液及び研磨方法
JP6569191B2 (ja) * 2014-06-10 2019-09-04 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP6268069B2 (ja) * 2014-09-12 2018-01-24 信越化学工業株式会社 研磨組成物及び研磨方法
US20160181435A1 (en) * 2014-12-22 2016-06-23 Wafertech, Llc Floating gate transistors and method for forming the same
WO2016104611A1 (ja) * 2014-12-26 2016-06-30 花王株式会社 酸化珪素膜研磨用研磨液組成物
US10414947B2 (en) 2015-03-05 2019-09-17 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
US9758697B2 (en) 2015-03-05 2017-09-12 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
US9505952B2 (en) 2015-03-05 2016-11-29 Cabot Microelectronics Corporation Polishing composition containing ceria abrasive
TWI666308B (zh) * 2015-06-26 2019-07-21 日商日立化成股份有限公司 研磨劑、研磨劑用儲藏液及研磨方法
KR102628333B1 (ko) * 2015-09-09 2024-01-22 가부시끼가이샤 레조낙 연마액, 연마액 세트 및 기체의 연마 방법
US10432461B2 (en) * 2015-12-04 2019-10-01 T-Mobile Usa, Inc. Peer-to-peer distribution of radio protocol data for software defined radio (SDR) updates
WO2018142516A1 (ja) * 2017-02-01 2018-08-09 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US11078380B2 (en) * 2017-07-10 2021-08-03 Entegris, Inc. Hard abrasive particle-free polishing of hard materials
US10316218B2 (en) * 2017-08-30 2019-06-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous silica slurry compositions for use in shallow trench isolation and methods of using them
US20210189176A1 (en) * 2017-09-29 2021-06-24 Hitachi Chemical Company, Ltd. Polishing solution, polishing solution set, and polishing method
JP7176225B2 (ja) * 2018-04-27 2022-11-22 昭和電工マテリアルズ株式会社 研磨液、研磨液セット及び研磨方法
CN114193328A (zh) * 2020-09-18 2022-03-18 中国科学院微电子研究所 研磨剂容器及研磨剂供应方法
WO2024073209A1 (en) * 2022-09-30 2024-04-04 Versum Materials Us, Llc Modified water-soluble polysaccharides having different cation types for slurries in chemical mechanical planarization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055278A1 (ja) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. 酸化ケイ素用研磨剤、添加液および研磨方法
WO2009131133A1 (ja) * 2008-04-23 2009-10-29 日立化成工業株式会社 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2011097050A (ja) * 2009-10-01 2011-05-12 Nitta Haas Inc 研磨組成物
US20120156874A1 (en) * 2010-12-17 2012-06-21 Soulbrain Co., Ltd Chemical mechanical polishing slurry composition and method for producing semiconductor device using the same

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123452A (en) 1964-03-03 Glass polish and process of polishing
US3097083A (en) 1959-07-02 1963-07-09 American Potash & Chem Corp Polishing composition and process of forming same
BR9104844A (pt) 1991-11-06 1993-05-11 Solvay Processo para a extracao seletiva de cerio de uma solucao aquosa de elementos de terras raras
FR2684662B1 (fr) 1991-12-09 1994-05-06 Rhone Poulenc Chimie Composition a base d'oxyde cerique, preparation et utilisation.
FR2714370B1 (fr) 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
US6296943B1 (en) 1994-03-05 2001-10-02 Nissan Chemical Industries, Ltd. Method for producing composite sol, coating composition, and optical element
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
EP0820092A4 (en) 1996-02-07 2000-03-29 Hitachi Chemical Co Ltd CERIUM OXIDE ABRASIVE, SEMICONDUCTOR MICROPLATE, SEMICONDUCTOR DEVICE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR POLISHING THE SUBSTRATES
JPH09270402A (ja) 1996-03-29 1997-10-14 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の製造法
JPH10106993A (ja) * 1996-09-30 1998-04-24 Hitachi Chem Co Ltd 基板の研磨法
EP2164095A1 (en) 1996-09-30 2010-03-17 Hitachi Chemical Co., Ltd. Cerium oxide abrasive and method of polishing substrates
JPH10154672A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
US5759917A (en) 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JP2000160138A (ja) 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
JP3992402B2 (ja) 1999-05-25 2007-10-17 株式会社コーセー 金属酸化物固溶酸化セリウムからなる紫外線遮断剤並びにそれを配合した樹脂組成物及び化粧料
TW593674B (en) 1999-09-14 2004-06-21 Jsr Corp Cleaning agent for semiconductor parts and method for cleaning semiconductor parts
JP2002241739A (ja) 2001-02-20 2002-08-28 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
KR100512134B1 (ko) 2001-02-20 2005-09-02 히다치 가세고교 가부시끼가이샤 연마제 및 기판의 연마방법
JP2002329688A (ja) 2001-02-28 2002-11-15 Kyoeisha Chem Co Ltd 保湿剤を含有する研磨用懸濁液
JP4231632B2 (ja) 2001-04-27 2009-03-04 花王株式会社 研磨液組成物
US6599813B2 (en) * 2001-06-29 2003-07-29 International Business Machines Corporation Method of forming shallow trench isolation for thin silicon-on-insulator substrates
CN100386850C (zh) 2001-10-31 2008-05-07 日立化成工业株式会社 研磨液及研磨方法
JP4083502B2 (ja) 2002-08-19 2008-04-30 株式会社フジミインコーポレーテッド 研磨方法及びそれに用いられる研磨用組成物
JP3782771B2 (ja) 2002-11-06 2006-06-07 ユシロ化学工業株式会社 研磨用砥粒及び研磨剤の製造方法
US7300601B2 (en) 2002-12-10 2007-11-27 Advanced Technology Materials, Inc. Passivative chemical mechanical polishing composition for copper film planarization
JPWO2004061925A1 (ja) 2002-12-31 2006-05-18 株式会社Sumco 化学的機械研磨用スラリー組成物、これを利用した半導体素子の表面平坦化方法及びスラリー組成物の選択比制御方法
CN100373556C (zh) 2003-05-28 2008-03-05 日立化成工业株式会社 研磨剂及研磨方法
US20050028450A1 (en) 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
CN101885959B (zh) 2003-09-12 2012-06-13 日立化成工业株式会社 铈系研磨剂
US20050056810A1 (en) 2003-09-17 2005-03-17 Jinru Bian Polishing composition for semiconductor wafers
TW200526768A (en) 2003-09-30 2005-08-16 Fujimi Inc Polishing composition and polishing method
US7563383B2 (en) 2004-10-12 2009-07-21 Cabot Mircroelectronics Corporation CMP composition with a polymer additive for polishing noble metals
JP5013671B2 (ja) 2004-12-28 2012-08-29 日揮触媒化成株式会社 金属酸化物ゾルの製造方法および金属酸化物ゾル
JP2006249129A (ja) 2005-03-08 2006-09-21 Hitachi Chem Co Ltd 研磨剤の製造方法及び研磨剤
US20060278614A1 (en) 2005-06-08 2006-12-14 Cabot Microelectronics Corporation Polishing composition and method for defect improvement by reduced particle stiction on copper surface
US7803203B2 (en) 2005-09-26 2010-09-28 Cabot Microelectronics Corporation Compositions and methods for CMP of semiconductor materials
KR20070041330A (ko) 2005-10-14 2007-04-18 가오가부시끼가이샤 반도체 기판용 연마액 조성물
JP4243307B2 (ja) 2006-04-14 2009-03-25 昭和電工株式会社 ガラス基板の加工方法及びガラス基板加工用リンス剤組成物
SG136886A1 (en) 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk
JP2008091524A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 金属用研磨液
JP2008112990A (ja) * 2006-10-04 2008-05-15 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
FR2906800B1 (fr) 2006-10-09 2008-11-28 Rhodia Recherches & Tech Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
WO2008105342A1 (ja) 2007-02-27 2008-09-04 Hitachi Chemical Co., Ltd. 金属用研磨液及び研磨方法
CN101652324B (zh) * 2007-05-03 2012-05-30 株式会社Lg化学 用作磨料的氧化铈粉末和含有该粉末的cmp浆料
JP5281758B2 (ja) 2007-05-24 2013-09-04 ユシロ化学工業株式会社 研磨用組成物
JP4294710B2 (ja) 2007-09-13 2009-07-15 三井金属鉱業株式会社 酸化セリウム及びその製造方法
JP2009099819A (ja) 2007-10-18 2009-05-07 Daicel Chem Ind Ltd Cmp用研磨組成物及び該cmp用研磨組成物を使用したデバイスウェハの製造方法
JP5444625B2 (ja) 2008-03-05 2014-03-19 日立化成株式会社 Cmp研磨液、基板の研磨方法及び電子部品
JP5287174B2 (ja) 2008-04-30 2013-09-11 日立化成株式会社 研磨剤及び研磨方法
US8383003B2 (en) 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
JP5403957B2 (ja) 2008-07-01 2014-01-29 花王株式会社 研磨液組成物
US20100107509A1 (en) 2008-11-04 2010-05-06 Guiselin Olivier L Coated abrasive article for polishing or lapping applications and system and method for producing the same.
JP5499556B2 (ja) 2008-11-11 2014-05-21 日立化成株式会社 スラリ及び研磨液セット並びにこれらから得られるcmp研磨液を用いた基板の研磨方法及び基板
JP2010153782A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
KR101359197B1 (ko) 2008-12-11 2014-02-06 히타치가세이가부시끼가이샤 Cmp용 연마액 및 이것을 이용한 연마 방법
JP5355099B2 (ja) 2009-01-08 2013-11-27 ニッタ・ハース株式会社 研磨組成物
WO2010143579A1 (ja) 2009-06-09 2010-12-16 日立化成工業株式会社 研磨剤、研磨剤セット及び基板の研磨方法
JP2011171689A (ja) * 2009-07-07 2011-09-01 Kao Corp シリコンウエハ用研磨液組成物
WO2011048889A1 (ja) 2009-10-22 2011-04-28 日立化成工業株式会社 研磨剤、濃縮1液式研磨剤、2液式研磨剤及び基板の研磨方法
JP2011142284A (ja) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
TWI472601B (zh) 2009-12-31 2015-02-11 Cheil Ind Inc 化學機械拋光漿體組成物及使用該組成物之拋光方法
KR20130136593A (ko) 2010-03-12 2013-12-12 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
JP5648567B2 (ja) 2010-05-07 2015-01-07 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法
WO2012070542A1 (ja) * 2010-11-22 2012-05-31 日立化成工業株式会社 スラリー、研磨液セット、研磨液、基板の研磨方法及び基板
KR101886895B1 (ko) * 2010-11-22 2018-08-08 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기판의 연마 방법 및 기판
CN102408836A (zh) 2011-10-20 2012-04-11 天津理工大学 一种用于氧化钛薄膜化学机械平坦化的纳米抛光液及应用
JP6044629B2 (ja) * 2012-02-21 2016-12-14 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP5943072B2 (ja) * 2012-05-22 2016-06-29 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法
KR102034329B1 (ko) * 2012-05-22 2019-10-18 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
WO2013175857A1 (ja) * 2012-05-22 2013-11-28 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
SG11201407029XA (en) * 2012-05-22 2014-12-30 Hitachi Chemical Co Ltd Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN105453235B (zh) * 2013-08-30 2018-04-13 日立化成株式会社 浆料、研磨液组、研磨液、基体的研磨方法以及基体
JP6520711B2 (ja) * 2013-09-10 2019-05-29 日立化成株式会社 スラリー、研磨液セット、研磨液及び基体の研磨方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055278A1 (ja) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. 酸化ケイ素用研磨剤、添加液および研磨方法
WO2009131133A1 (ja) * 2008-04-23 2009-10-29 日立化成工業株式会社 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2011097050A (ja) * 2009-10-01 2011-05-12 Nitta Haas Inc 研磨組成物
US20120156874A1 (en) * 2010-12-17 2012-06-21 Soulbrain Co., Ltd Chemical mechanical polishing slurry composition and method for producing semiconductor device using the same

Also Published As

Publication number Publication date
KR20140129092A (ko) 2014-11-06
KR102005132B1 (ko) 2019-07-29
TWI550045B (zh) 2016-09-21
US20150017806A1 (en) 2015-01-15
US10557058B2 (en) 2020-02-11
SG10201606827RA (en) 2016-10-28
TW201343825A (zh) 2013-11-01
CN108831830A (zh) 2018-11-16
CN104137232A (zh) 2014-11-05
WO2013125446A1 (ja) 2013-08-29
CN108831830B (zh) 2024-05-17
JP6044630B2 (ja) 2016-12-14
SG11201405091TA (en) 2014-09-26
CN107617968A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
JP6044630B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6107826B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6044629B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6720975B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2013125441A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6256482B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6375623B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP2017149798A (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2014034379A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6569191B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2018179061A1 (ja) 研磨液、研磨液セット及び研磨方法
JP2016003278A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6209845B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6724573B2 (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2018142516A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179062A1 (ja) 研磨液、研磨液セット、添加液及び研磨方法
JP2016023224A (ja) 研磨剤、研磨剤セット及び基体の研磨方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R151 Written notification of patent or utility model registration

Ref document number: 6044630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350