WO2014030570A1 - 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法 - Google Patents

研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法 Download PDF

Info

Publication number
WO2014030570A1
WO2014030570A1 PCT/JP2013/071822 JP2013071822W WO2014030570A1 WO 2014030570 A1 WO2014030570 A1 WO 2014030570A1 JP 2013071822 W JP2013071822 W JP 2013071822W WO 2014030570 A1 WO2014030570 A1 WO 2014030570A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing composition
water
silicon dioxide
soluble polymer
mass
Prior art date
Application number
PCT/JP2013/071822
Other languages
English (en)
French (fr)
Inventor
公亮 土屋
真希 浅田
Original Assignee
株式会社 フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フジミインコーポレーテッド filed Critical 株式会社 フジミインコーポレーテッド
Priority to US14/422,631 priority Critical patent/US9650544B2/en
Priority to KR1020157006389A priority patent/KR102167392B1/ko
Priority to CN201380055071.5A priority patent/CN104736658A/zh
Publication of WO2014030570A1 publication Critical patent/WO2014030570A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a polishing composition, a method for producing a polishing composition, and a method for producing a polishing composition stock solution.
  • Some of the minute surface defects that occur on the substrate are caused by foreign materials such as abrasives such as abrasive grains, additives such as water-soluble polymers, polishing pad scraps, substrate chips removed by polishing, and dust in the air. It is caused by adsorbing to the substrate surface and remaining on the substrate without being removed in the cleaning process.
  • Patent Document 1 discloses that a water-soluble polymer whose viscosity is adjusted is used in a polishing composition for the purpose of imparting hydrophilicity to a polished substrate surface.
  • a polishing composition containing silicon dioxide, a water-soluble polymer and water, wherein the silicon dioxide contains at least one of the water-soluble polymers.
  • the adsorbate containing part is adsorbed, the carbon equivalent concentration of the adsorbate in the polishing composition is 4 mass ppm or more, and the carbon equivalent concentration of the adsorbate relative to the total carbon concentration in the polishing composition
  • a polishing composition having a percentage of 15% or more is provided.
  • the weight average molecular weight of the water-soluble polymer is preferably 300000 or less.
  • the weight average molecular weight of the water-soluble polymer is preferably 200000 or less.
  • the weight average molecular weight of the water-soluble polymer is preferably 100,000 or less.
  • a method for producing the polishing composition of the above aspect the step of preparing a polishing composition stock solution containing silicon dioxide, a water-soluble polymer and water, and the polishing composition
  • the adsorbate containing the water-soluble polymer is a polishing composition adsorbed on the silicon dioxide, and the adsorbate carbon in the polishing composition
  • obtaining a polishing composition having a converted concentration of 4 ppm by mass or more and a percentage of the carbon-converted concentration of the adsorbate with respect to the total carbon concentration in the polishing composition is 15% or more.
  • the step of preparing the polishing composition stock solution preferably includes a step of mixing a water-soluble polymer with a mixture of silicon dioxide and a basic compound and filtering the resulting mixture.
  • the content of the silicon dioxide in the polishing composition stock solution is preferably 1% by mass to 20% by mass, and the content of the basic compound is preferably 0.01% by mass to 1% by mass.
  • the number of moles of the basic compound per unit surface area of the silicon dioxide in the polishing composition stock solution is preferably 8.5 ⁇ 10 ⁇ 6 mol / m 2 or more.
  • a method for producing a polishing composition stock solution comprising a step of mixing a water-soluble polymer with a mixture of silicon dioxide and a basic compound and filtering the resulting mixture.
  • the content of the silicon dioxide in the polishing composition stock solution is preferably 1% by mass to 20% by mass, and the content of the basic compound is preferably 0.01% by mass to 1% by mass.
  • the number of moles of the basic compound per unit surface area of the silicon dioxide in the polishing composition stock solution is preferably 8.5 ⁇ 10 ⁇ 6 mol / m 2 or more.
  • the polishing composition of the present invention it is easy to suppress minute surface defects generated on the substrate. According to the method for producing a polishing composition of the present invention, it is possible to obtain a polishing composition that can easily suppress minute surface defects generated on a substrate. According to the method for producing a polishing composition stock solution of the present invention, it is possible to obtain a polishing composition stock solution used for preparing a polishing composition that can easily suppress minute surface defects generated on a substrate.
  • the polishing composition of the present embodiment contains at least silicon dioxide, a water-soluble polymer, and water.
  • the polishing composition of the present embodiment is used for polishing a semiconductor substrate such as a silicon substrate.
  • the water in the polishing composition serves as a dispersion medium or solvent for other components. It is preferable that water does not inhibit the function of other components contained in the polishing composition. Examples of such water include water having a total content of transition metal ions of 100 ppb or less.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of particles by a filter, distillation, and the like. Specifically, it is preferable to use ion exchange water, pure water, ultrapure water, distilled water or the like.
  • the silicon dioxide in the polishing composition functions as an abrasive for physically polishing the object to be polished.
  • Silicon dioxide also serves as a carrier that carries the water-soluble polymer to the surface of the object to be polished.
  • silicon dioxide used examples include colloidal silica, fumed silica, and sol-gel silica.
  • colloidal silica or fumed silica particularly colloidal silica, is preferable because scratches generated on the substrate surface by polishing are reduced.
  • These silicon dioxides may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the average primary particle diameter of silicon dioxide is preferably 5 nm or more, more preferably 10 nm or more. As the average primary particle diameter of silicon dioxide increases, the polishing efficiency improves. Moreover, it is preferable that the average primary particle diameter of silicon dioxide is 100 nm or less, More preferably, it is 40 nm or less. As the average primary particle diameter of silicon dioxide decreases, the roughness of the substrate surface after polishing improves. In addition, the average primary particle diameter of silicon dioxide is calculated
  • Silicon dioxide has a particle size distribution in which a value (D90 / D10) obtained by dividing the volume-based 90% cumulative average diameter (D90) by the volume-based 10% cumulative average diameter (D10) is 1 or more and 4 or less. It is preferable.
  • the volume-based 10% cumulative average diameter (D10) and 90% cumulative average diameter (D90) are the cumulative volume values of the total volume of all particles when the particle volume is accumulated in order from the particle having the smallest particle diameter.
  • silicon dioxide has the above particle size distribution, the substrate surface after polishing tends to be uniform.
  • the particle size distribution of silicon dioxide can be calculated
  • the content of silicon dioxide in the polishing composition is preferably 0.01% by mass or more. As the content of silicon dioxide increases, a high polishing rate is easily obtained and high hydrophilicity is imparted to the substrate surface. Moreover, it is preferable that content of the silicon dioxide in polishing composition is 5 mass% or less, More preferably, it is 1 mass% or less, More preferably, it is 0.5 mass% or less. As the content of silicon dioxide decreases, the dispersion stability of silicon dioxide improves, making it difficult for silicon dioxide residues to be adsorbed on the polished substrate surface.
  • the water-soluble polymer in the polishing composition is adsorbed on the substrate surface after polishing and functions to increase the wettability of the substrate surface.
  • the water-soluble polymer include cellulose derivatives, polyvinyl pyrrolidone, and copolymers containing polyvinyl pyrrolidone.
  • the cellulose derivative include hydroxyethyl cellulose and hydrolyzed hydroxyethyl cellulose.
  • the copolymer containing polyvinyl pyrrolidone include a graft polymer of polyvinyl alcohol and polyvinyl pyrrolidone.
  • a water-soluble polymer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the weight average molecular weight of the water-soluble polymer is preferably 10,000 or more in terms of polyethylene oxide, more preferably 30000 or more, and further preferably 50000 or more. As the weight average molecular weight of the water-soluble polymer increases, high hydrophilicity is imparted to the substrate surface. Further, the weight average molecular weight of the water-soluble polymer is preferably 1000000 or less, more preferably 300000 or less, still more preferably 200000 or less, and most preferably 100000 or less. As the weight average molecular weight of the water-soluble polymer decreases, it becomes easier to remove the water-soluble polymer attached to the substrate surface by washing. In addition, the dispersion stability of the water-soluble polymer is improved, and the residue of the water-soluble polymer is hardly adsorbed on the polished substrate surface.
  • the content of the water-soluble polymer in the polishing composition is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more. As the content of the water-soluble polymer increases, high hydrophilicity is imparted to the substrate surface. Moreover, it is preferable that content of the water-soluble polymer in polishing composition is 0.5 mass% or less, More preferably, it is 0.1 mass% or less. As the content of the water-soluble polymer decreases, the dispersion stability of the water-soluble polymer improves, and the residue of the water-soluble polymer becomes difficult to adsorb on the polished substrate surface.
  • the polishing composition of the present embodiment may contain other components than silicon dioxide, a water-soluble polymer and water as necessary.
  • the proportion of the water-soluble polymer in the polishing composition is preferably high in the carbon equivalent concentration.
  • the percentage of the carbon equivalent concentration of the water-soluble polymer with respect to the total carbon concentration in the polishing composition is preferably 50% or more, more preferably 70% or more, and still more preferably 85% or more. It is.
  • polishing compositions examples include known additives generally contained in polishing compositions, such as basic compounds, surfactants, salts, preservatives, fungicides, and chelating agents.
  • the basic composition has a function of chemically polishing the substrate surface (chemical etching). Therefore, when the polishing composition contains a basic compound, it becomes easy to improve the polishing rate of the substrate.
  • Specific examples of basic compounds include alkali metal hydroxides or salts, quaternary ammonium hydroxide or salts thereof, ammonia, amines, and the like.
  • Specific examples of the alkali metal include potassium and sodium.
  • Specific examples of the salt include carbonate, hydrogen carbonate, sulfate, acetate, and the like.
  • Specific examples of the quaternary ammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like.
  • Specific examples of the alkali metal hydroxide or salt include potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, potassium chloride and the like.
  • quaternary ammonium hydroxide or a salt thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine and the like. These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • At least one selected from ammonia, ammonium salts, alkali metal hydroxides, alkali metal salts, and quaternary ammonium hydroxides is preferable.
  • the content of the basic compound in the polishing composition is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more. As the content of the basic compound in the polishing composition increases, a high polishing rate is obtained. Moreover, it is preferable that content of the basic compound in polishing composition is 0.5 mass% or less, More preferably, it is 0.25 mass% or less. As the content of the basic compound in the polishing composition decreases, the water-soluble polymer is easily adsorbed on the substrate surface, so that high hydrophilicity is imparted to the substrate surface. In addition, the haze level of the substrate surface after polishing also tends to be reduced.
  • the surfactant optionally contained in the polishing composition has a function of suppressing the surface roughness of the substrate. Therefore, when the polishing composition contains a surfactant, it becomes easy to reduce the haze level of the substrate surface after polishing. In particular, when the polishing composition contains a basic compound, the surface of the substrate after polishing is likely to be roughened by chemical etching with the basic compound. For this reason, the combined use of the basic compound and the surfactant is particularly effective.
  • the surfactant may be either ionic or nonionic, and among them, the nonionic surfactant is suitable. Since the nonionic surfactant has low foaming property, it is easy to handle at the time of preparation and use of the polishing composition. Moreover, when a nonionic surfactant is used, pH adjustment of polishing composition becomes easy. Furthermore, nonionic surfactants are excellent in biodegradability and weakly toxic to living bodies. Therefore, there is an advantage that the influence on the environment is small and there are few concerns about handling.
  • surfactants include oxyalkylene polymers such as polyethylene glycol and polypropylene glycol alone, polyoxyethylene polyoxypropylene diblock type, triblock type, random type, and alternating types of oxyalkylenes.
  • Polyoxyalkylene adducts such as polymers, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl amines, polyoxyethylene fatty acid esters, polyoxyethylene glyceryl ether fatty acid esters, polyoxyethylene sorbitan fatty acid esters Can be mentioned.
  • polyoxyethylene polyoxypropylene copolymer polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, Polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene Stearyl ether, polyoxyethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene Phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene lauryl
  • the weight average molecular weight of the surfactant is preferably 200 or more, more preferably 300 or more. Further, the weight average molecular weight of the surfactant is preferably less than 10,000. By setting the weight average molecular weight of the surfactant within the above range, it is possible to suppress roughness generated on the substrate surface.
  • the content of the surfactant in the polishing composition is preferably 0.00001% by mass or more, and more preferably 0.00005% by mass or more. As the surfactant content increases, the roughness generated on the substrate surface is suppressed. Moreover, it is preferable that content of surfactant in polishing composition is 0.1 mass% or less, More preferably, it is 0.05 mass% or less. As the surfactant content decreases, the polishing efficiency improves.
  • the salt optionally contained in the polishing composition has a function of improving the hydrophilicity of the substrate surface through interaction with the water-soluble polymer.
  • the salt may be either an organic acid salt or an inorganic acid salt.
  • the organic acid salt and inorganic acid salt used are not limited with respect to the type of acid, the structure and the ionic valence, and the base species forming the salt.
  • Examples of acid species of organic acid salts and inorganic acid salts include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid and maleic acid , Fumaric acid, succinic acid, organic sulfonic acid, organic phosphonic acid, carbonic acid, nitric acid and sulfuric acid.
  • Examples of base species that form organic acid salts and inorganic acid salts include ammonium ions and various metal ions. Among these base species, ammonium ions are particularly preferable from the viewpoint of reducing metal contamination of the substrate. These salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the pH of the polishing composition is preferably 8.0 or more, more preferably 9.0 or more. Moreover, it is preferable that pH of polishing composition is 12.0 or less, More preferably, it is 11.0 or less. By setting the pH of the polishing composition within the above range, it is easy to obtain a particularly preferable polishing rate in practical use.
  • an adsorbate containing at least a water-soluble polymer is adsorbed on the surface of silicon dioxide.
  • the carbon equivalent concentration of the adsorbate in the polishing composition is 4 mass ppm or more, preferably 10 mass ppm or more.
  • the percentage of the carbon equivalent concentration of the adsorbate with respect to the total carbon concentration in the polishing composition is 15% or more, preferably 30% or more.
  • the carbon equivalent concentration of the adsorbate and the percentage of the carbon equivalent concentration of the adsorbate relative to the total carbon concentration in the polishing composition can be determined by, for example, changing the combination of the types of silicon dioxide and water-soluble polymer used. Alternatively, it can be adjusted by changing the ratio of the content of the water-soluble polymer to the content of silicon dioxide in the polishing composition.
  • hydrophilicity is imparted to the substrate surface by polishing the substrate using a polishing composition containing a water-soluble polymer.
  • the inventors of the present invention adsorbed the hydrophilicity imparted to the substrate surface to the silicon dioxide when the substrate was polished with a polishing composition containing silicon dioxide and a water-soluble polymer. It has been found that there is a correlation between the absolute amount of the adsorbate containing the water-soluble polymer and the relative amount of the adsorbate in the polishing composition.
  • the imparting of hydrophilicity to the substrate surface by the water-soluble polymer is caused by the adsorption of the water-soluble polymer to the substrate surface.
  • silicon dioxide In order to adsorb the water-soluble polymer on the substrate surface, it is important to make silicon dioxide function as a carrier. That is, when the water-soluble polymer is adsorbed on the surface of silicon dioxide in the polishing composition, when the silicon dioxide and the substrate surface are rubbed together during polishing, the water-soluble polymer adsorbed on the surface of silicon dioxide is absorbed. Molecules migrate to the substrate surface. Thereby, a water-soluble polymer can be efficiently adsorbed on the substrate surface, and the hydrophilicity of the substrate surface is effectively improved. As a result, it becomes easy to suppress minute surface defects generated in the substrate. When the water-soluble polymer is adsorbed on the substrate surface, it is considered that a hydrophobic bond is generated between the substrate and carbon of the water-soluble polymer.
  • the method for producing a polishing composition includes a stock solution preparing step of preparing a polishing composition stock solution containing silicon dioxide, a water-soluble polymer, and water, and a dilution step of diluting the polishing composition stock solution.
  • a first mixed solution containing silicon dioxide and water is prepared.
  • the silicon dioxide is preferably filtered before being mixed with water.
  • the pH of the first mixed solution is preferably 8 or more, more preferably 9 or more.
  • pH of a 1st liquid mixture is 12 or less, More preferably, it is 10.5 or less.
  • the pH of the first mixed liquid can be adjusted by adding a basic compound.
  • a second mixed solution containing a water-soluble polymer and water is prepared.
  • the water-soluble polymer is preferably filtered before being mixed with water.
  • the pH of the second mixed solution is preferably adjusted to around neutral to near basic, more preferably basic.
  • the pH of the second mixed solution is preferably 7 or more, more preferably 8 or more, and further preferably 9 or more.
  • the dispersion stability of the polishing composition stock solution and the polishing composition is improved by suppressing the aggregation of silicon dioxide when the first mixed solution and the second mixed solution are mixed.
  • the pH of a 2nd liquid mixture is 12 or less, More preferably, it is 10.5 or less.
  • the pH of the second mixed solution can be adjusted by adding a basic compound.
  • the third mixed solution is prepared by mixing the first mixed solution and the second mixed solution.
  • the method of mixing the first mixed solution and the second mixed solution is not particularly limited, but it is preferable to add the second mixed solution into the first mixed solution and mix them.
  • the charging speed of the second mixed solution is preferably 0.1 mL or more per minute per 1 L of the first mixed solution, more preferably 1 mL or more, and further preferably 5 mL or more. As the input rate increases, the production efficiency of the polishing composition stock solution can be increased.
  • the input speed of the 2nd liquid mixture is 500 mL or less per minute per 1L of 1st liquid mixture, More preferably, it is 100 mL or less, More preferably, it is 50 mL or less. As the input rate decreases, the aggregation of silicon dioxide can be suppressed.
  • the second mixed liquid is preferably filtered before being mixed with the first mixed liquid.
  • the filtration of the second mixed liquid may be natural filtration performed under normal pressure, or may be performed by suction filtration, pressure filtration, or centrifugal filtration.
  • the filter used for the filtration is preferably selected based on the mesh opening. In addition, the nominal value such as the catalog value of the manufacturer can be used for the opening of the filter.
  • the opening of the filter used for filtering the second mixed solution is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.2 ⁇ m or more.
  • the larger the opening of the filter the higher the production efficiency.
  • the aperture of the filter is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less, and most preferably 0.45 ⁇ m or less.
  • the smaller the mesh of the filter the higher the removal efficiency of foreign matters or aggregates contained in the second mixed liquid, and the easier it is to improve the dispersion stability of the polishing composition stock solution and the polishing composition. Become.
  • the third mixed solution is filtered through a filter.
  • a polishing composition stock solution is obtained through this filtration.
  • the aperture of the filter used for filtering the third mixed solution is preferably 1 ⁇ m or less, more preferably 0.45 ⁇ m or less, and even more preferably 0.2 ⁇ m or less from the viewpoint of removing minute foreign matters.
  • the material and structure of the filter used for filtering the third mixed liquid are not particularly limited. Examples of the filter material include cellulose, nylon, polysulfone, polyethersulfone, polypropylene, polytetrafluoroethylene (PTFE), polycarbonate, and glass. Examples of the filter structure include a depth filter, a pleated filter, and a membrane filter.
  • the content of silicon dioxide in the polishing composition stock solution is preferably 1% by mass or more.
  • the content of silicon dioxide in the polishing composition stock solution is preferably 20% by mass or less, more preferably 15% by mass or less. As the content of silicon dioxide decreases, the risk of occurrence of agglomerates during preparation of the polishing composition stock solution is reduced.
  • the content of the basic compound in the polishing composition stock solution is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. As the content of the basic compound increases, the risk of agglomerates occurring during the preparation of the polishing composition stock solution is reduced.
  • the content of the basic compound in the polishing composition stock solution is preferably 1% by mass or less, more preferably 0.75% by mass or less, and still more preferably 0.40% by mass or less. . As the content of the basic compound decreases, it becomes easy to obtain a polishing composition capable of imparting high hydrophilicity to the substrate surface.
  • the number of moles of the basic compound per unit surface area of silicon dioxide is preferably 8.5 ⁇ 10 ⁇ 6 mol / m 2 or more, more preferably 10 ⁇ 10 ⁇ 6 mol / m 2. m 2 or more. As the number of moles of the basic compound increases, the risk of agglomerates occurring during the preparation of the polishing composition stock solution is reduced.
  • the number of moles of the basic compound per unit surface area of silicon dioxide is preferably 120 ⁇ 10 ⁇ 6 mol / m 2 or less, more preferably 80 ⁇ 10 ⁇ 6 mol / m 2 or less, Preferably, it is 40 ⁇ 10 ⁇ 6 mol / m 2 or less. As the number of moles of the basic compound decreases, it becomes easier to obtain a polishing composition capable of imparting high hydrophilicity to the substrate surface.
  • the polishing composition is prepared by diluting the polishing composition stock solution with water or a basic aqueous solution. During this dilution step, the water-soluble polymer is adsorbed on the surface of silicon dioxide.
  • the pH of the basic aqueous solution is preferably 8 or more, more preferably 9 or more. As the pH increases, the dispersion stability of the polishing composition is improved by suppressing aggregation of silicon dioxide during dilution.
  • the pH of the basic aqueous solution is preferably 12 or less, and more preferably 10.5 or less. As the pH of the basic aqueous solution decreases, dissolution of silicon dioxide can be suppressed.
  • the pH of the basic aqueous solution can be adjusted by adding a basic compound.
  • the dilution ratio of the polishing composition stock solution in the dilution step is preferably 10 to 100 times, more preferably 20 to 60 times.
  • the water-soluble polymer can be suitably adsorbed to silicon dioxide.
  • the polishing composition is supplied to the surface of the silicon substrate, and the polishing pad is pressed against the surface to attach the silicon substrate and the polishing pad. Rotate. At this time, the surface of the silicon substrate is polished by a physical action due to friction between the polishing pad and the silicon substrate surface. The surface of the silicon substrate is also polished by physical action due to friction between the silicon dioxide and the silicon substrate surface. At the same time, the water-soluble polymer adsorbed on the silicon dioxide moves to the surface of the silicon substrate and imparts hydrophilicity to the surface of the silicon substrate. In the case where the polishing composition contains a basic compound, the surface of the silicon substrate is polished by a chemical action by the basic compound in addition to the above physical action.
  • the polishing composition contains silicon dioxide, a water-soluble polymer, and water.
  • An adsorbate containing a water-soluble polymer is adsorbed on silicon dioxide.
  • the carbon equivalent concentration of the adsorbate in the polishing composition is 4 mass ppm or more, and the percentage of the carbon equivalent concentration of the adsorbate with respect to the total carbon concentration in the polishing composition is 15% or more.
  • weight average molecular weight of the water-soluble polymer is 300000 or less, more specifically 200000 or less or 100000 or less, it becomes easier to remove the water-soluble polymer adhering to the substrate surface by washing.
  • a method for producing a polishing composition comprises: a stock solution preparing step for preparing a polishing composition stock solution containing silicon dioxide, a water-soluble polymer and water; and the polishing composition stock solution with water or a basic aqueous solution.
  • a polishing composition in which an adsorbate containing a water-soluble polymer is adsorbed on silicon dioxide by dilution, and the carbon equivalent concentration of the adsorbate in the polishing composition is 4 mass ppm or more, and for polishing And obtaining a polishing composition in which the percentage of the carbon equivalent concentration of the adsorbate with respect to the total carbon concentration in the composition is 15% or more.
  • polishing composition stock solution having a high concentration of silicon dioxide and water-soluble polymer is excellent in dispersion stability, by preparing a polishing composition stock solution and performing a filtration treatment at the stage of the polishing composition stock solution, It becomes easy to perform highly accurate filtration. Furthermore, if it is stored and transported in the state of the stock composition for polishing and diluted with water at the time of use to prepare the polishing composition, it can be stored and transported in a small-capacity container. It becomes easy.
  • the stock solution preparation step includes a step of mixing a water-soluble polymer with a mixture of silicon dioxide and a basic compound and filtering the resulting mixture, the adsorption of the water-soluble polymer to silicon dioxide at the time of stock solution preparation And the generation of aggregates (gelled products) of water-soluble polymers can be suppressed.
  • the polishing composition obtained from the polishing composition stock solution can easily reduce nano-order minute surface defects caused by foreign matter adsorbed on the substrate surface.
  • Polishing composition having a good dispersion state when the number of moles of basic compound per unit surface area of silicon dioxide in the polishing composition stock solution is 8.5 ⁇ 10 ⁇ 6 mol / m 2 or more. A stock solution can be obtained.
  • the polishing composition of the above embodiment may be a one-part type or a multi-part type including a two-part type.
  • Each component contained in the polishing composition of the above embodiment may be filtered with a filter immediately before the production of the polishing composition.
  • the polishing composition of the embodiment may be filtered by a filter immediately before use. By performing the filtration treatment, coarse foreign matters in the polishing composition are removed, and the quality of the polishing composition is improved.
  • the polishing composition of the above embodiment is sold in the state of a polishing composition stock solution, and may be prepared by diluting the polishing composition stock solution with water or a basic aqueous solution at the time of use.
  • the timing which mixes other components is not specifically limited.
  • the other components may be mixed at the time of preparing the first mixed solution or the second mixed solution, or may be mixed at the time of preparing the third mixed solution.
  • Other components are preferably filtered before mixing.
  • the second mixed solution containing the water-soluble polymer was mixed with the first mixed solution.
  • Molecules and water may be separately mixed in the first mixed solution, or only the water-soluble polymer may be mixed in the first mixed solution.
  • the polishing pad used in the polishing process using the polishing composition of the above embodiment is not particularly limited.
  • any of a non-woven fabric type, a suede type, a type including abrasive grains, and a type not including abrasive grains may be used.
  • the polishing composition once used for polishing may be collected and used again for polishing the silicon substrate.
  • a method of reusing the polishing composition for example, there is a method in which a used polishing composition discharged from the polishing apparatus is once collected in a tank and then recycled from the tank to the polishing apparatus. Can be mentioned.
  • the amount of the polishing composition treated as a waste liquid is reduced, and the amount of the polishing composition used is reduced. This is useful in that the environmental load can be reduced and the cost for polishing the silicon substrate can be suppressed.
  • each component such as silicon dioxide and water-soluble polymer is consumed and lost by polishing. For this reason, it is preferable to supplement the polishing composition with a decrease in each component such as silicon dioxide and water-soluble polymer.
  • the components to be replenished may be added individually to the polishing composition, or may be added to the polishing composition as a mixture containing two or more components at any concentration depending on the size of the tank, polishing conditions, etc. May be.
  • the polishing composition of the above embodiment may be used for purposes other than polishing a silicon substrate.
  • it may be used to obtain a polished product made of a metal such as stainless steel, plastic, glass, sapphire and the like.
  • the effects described in (4) to (6) above are not limited to the production of the polishing composition of the above embodiment, but contain silicon dioxide, a water-soluble polymer, a basic compound, and water. It is the effect which can be acquired if it is at the time of manufacture of the polishing composition to obtain, or the polishing composition stock solution for obtaining the polishing composition. That is, as a method for producing a polishing composition stock solution for obtaining a polishing composition containing silicon dioxide, a water-soluble polymer, a basic compound, and water, a mixture of silicon dioxide and a basic compound is highly soluble in water. You may employ
  • the polishing composition obtained from the prepared polishing composition stock solution can easily reduce nano-order minute surface defects caused by foreign matters adsorbed on the substrate surface.
  • Polishing composition whose percentage of carbon conversion density
  • a polishing composition production method comprising a dilution step of diluting a polishing composition stock solution containing silicon dioxide, a water-soluble polymer and water with water or a basic aqueous solution, wherein the silicon dioxide contains The carbon equivalent concentration of the adsorbed water-soluble polymer is 4 mass ppm or more, and the percentage of the carbon equivalent concentration of the water-soluble polymer adsorbed on the silicon dioxide with respect to the total carbon equivalent concentration of the water-soluble polymer is 15%.
  • the manufacturing method of the polishing composition characterized by the above.
  • Example 1 to 13 and Comparative Examples 2 to 8 a first mixed solution in which silicon dioxide, a basic compound, and ion-exchanged water are mixed and a second mixed solution in which a water-soluble polymer and ion-exchanged water are mixed are prepared. Then, the third mixed solution was prepared by mixing the second mixed solution with the first mixed solution.
  • a first mixed solution in which silicon dioxide, a basic compound, and ion-exchanged water are mixed and a second mixed solution in which a water-soluble polymer, a surfactant, a salt, and ion-exchanged water are mixed
  • a third mixed solution was prepared by mixing the second mixed solution with the first mixed solution.
  • the 3rd liquid mixture was prepared by mixing a water-soluble polymer with the 1st liquid mixture which mixed the basic compound and ion-exchange water.
  • the polishing composition stock solution was prepared by filtering each obtained 3rd liquid mixture with a 0.45 micrometer opening filter.
  • a polishing composition was prepared by diluting each obtained polishing composition stock solution 20 times with ion-exchanged water (40 times only in Example 10).
  • Comparative Example 9 a first mixed solution in which silicon dioxide and ion-exchanged water are mixed and a second mixed solution in which a water-soluble polymer and ion-exchanged water are mixed are prepared and second mixed into the first mixed solution.
  • a third liquid mixture was prepared by mixing the liquids.
  • Comparative Example 10 a first mixed solution in which silicon dioxide and ion-exchanged water are mixed and a second mixed solution in which a water-soluble polymer and ion-exchanged water are mixed are prepared, and the second mixed solution is added to the first mixed solution. After mixing, a third mixture was prepared by further mixing a basic compound.
  • Table 2 shows the details of the polishing composition stock solutions and polishing compositions of Examples 1 to 17 and Comparative Examples 1 to 10.
  • Colloidal silica was used as silicon dioxide.
  • water-soluble polymers include hydroxyethyl cellulose (HEC), hydrolyzed hydroxyethyl cellulose (hydrolyzed HEC), graft polymer of polyvinyl alcohol and polyvinyl pyrrolidone (PVA-g-PVP), polyvinyl alcohol (PVA), cation Polyvinyl alcohol (cationized PVA) subjected to a chemical treatment was used. Ammonia was used as the basic compound.
  • the surfactant polyoxyethylene polyoxypropylene copolymer (PEO-PPO-PEO) and polyoxyethylene decyl ether (C-PEO) were used.
  • salts triammonium citrate and ammonium carbonate were used.
  • content of surfactant and salt in polishing composition is 0.0005 mass%, respectively.
  • the particle diameter column of silicon dioxide shows the average primary particle diameter calculated from the value of the specific surface area using “Flow Sorb II 2300” manufactured by Micromeritex.
  • the carbon equivalent concentration (A) of the adsorbate adsorbed on silicon dioxide, and the total carbon concentration (B) in the polishing composition were determined. It was measured. Specifically, a carbon-containing composition different from each polishing composition was prepared only in that it did not contain silicon dioxide. For each of the carbon-containing compositions, the TOC value was measured using “TOC-5000A” manufactured by Shimadzu Corporation, and the measured TOC value was determined as the total carbon concentration (B) in the corresponding polishing composition. did.
  • polishing compositions of Examples 1 to 17 and Comparative Examples 1 to 8 were subjected to a centrifugal separation treatment (20000 rpm, 30 minutes) to obtain a polishing composition, a precipitate containing silicon dioxide, and a supernatant. Then, the TOC value of the supernatant was measured. And the carbon conversion density
  • the silicon substrate used for polishing is a silicon substrate having a diameter of 200 mm, a conductivity type of P type, a crystal orientation of ⁇ 100>, and a resistivity of 0.1 ⁇ ⁇ cm to 100 ⁇ ⁇ cm, manufactured by Fujimi Incorporated.
  • a polishing slurry (trade name GLANZOX 2100)
  • the surface of the polished silicon substrate was washed with running water at a flow rate of 7 L / min for 10 seconds.
  • the silicon substrate was stood vertically and allowed to stand, and after 30 seconds, the water repellent distance from the corner portion of the silicon substrate was measured.
  • the results are shown in Table 3.
  • the water repellent distance is an index of the hydrophilicity of the substrate surface after polishing. The higher the hydrophilicity of the substrate surface, the smaller the value of the water repellent distance.
  • the maximum value of the water repellent distance is 85 mm which is the length of the diagonal line of the silicon substrate.
  • At least one of the carbon equivalent concentration (A) of the adsorbate adsorbed on silicon dioxide and the percentage (A / B) of the carbon equivalent concentration of the adsorbate with respect to the total carbon concentration in the polishing composition is within a specific range.
  • hydrophilicity was not imparted to the substrate surface, or even if it was imparted.

Abstract

研磨用組成物は、二酸化ケイ素と水溶性高分子と水とを含有する。二酸化ケイ素には水溶性高分子の少なくとも一部を含む吸着物が吸着している。吸着物の炭素換算濃度は4質量ppm以上である。研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率は15%以上である。

Description

研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法
 本発明は、研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法に関する。
 コンピュータに使用されるULSI(Ultra Large Scale Integration)等の高度集積化及び高速化を実現するために、半導体デバイスのデザインルールの微細化が年々進んでいる。それに伴って、半導体デバイスに用いられる基板上のナノオーダーの微小な表面欠陥が半導体デバイスの性能に悪影響を与える事例が増えている。そのため、従来は問題とされていなかった微小な表面欠陥を管理することの重要性が高まっている。
 基板に生じる微小な表面欠陥の一部は、砥粒等の研磨材、水溶性高分子等の添加剤、研磨パッド屑、研磨により除去された基板の切り粉、空気中の塵などの異物が基板表面に吸着し、それが洗浄工程において除去されずに基板上に残留することに起因する。
 このような異物に起因する表面欠陥を低減するためには、研磨後の基板表面に親水性を付与して、洗浄工程における異物の除去効率を高めることが有効である。例えば、特許文献1には、研磨後の基板表面に親水性を付与することを目的として、粘度調整された水溶性高分子を研磨用組成物中で用いることの開示がある。
特開2010-34509号公報
 本発明の目的は、基板に生じる微小な表面欠陥を抑制することが容易な研磨用組成物及びその製造方法を提供することにある。また本発明の別の目的は、その研磨用組成物の調製に用いられる研磨用組成物原液の製造方法を提供することにある。
 上記の目的を達成するために、本発明の一態様では、二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物であって、前記二酸化ケイ素には前記水溶性高分子の少なくとも一部を含む吸着物が吸着しており、研磨用組成物中の前記吸着物の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の全炭素濃度に対する前記吸着物の炭素換算濃度の百分率が15%以上である研磨用組成物が提供される。
 前記水溶性高分子の重量平均分子量は300000以下であることが好ましい。
 前記水溶性高分子の重量平均分子量は200000以下であることが好ましい。
 前記水溶性高分子の重量平均分子量は100000以下であることが好ましい。
 本発明の別の態様では、上記態様の研磨用組成物を製造する方法であって、二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物原液を調製する工程と、前記研磨用組成物原液を水又は塩基性水溶液で希釈することにより、前記水溶性高分子を含む吸着物が前記二酸化ケイ素に吸着した研磨用組成物であって、研磨用組成物中の前記吸着物の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の全炭素濃度に対する前記吸着物の炭素換算濃度の百分率が15%以上である研磨用組成物を得る工程とを含む方法が提供される。
 前記研磨用組成物原液を調製する工程は、二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を含むことが好ましい。
 前記研磨用組成物原液における前記二酸化ケイ素の含有量を1質量%以上20質量%以下とするとともに、前記塩基性化合物の含有量を0.01質量%以上1質量%以下とすることが好ましい。
 前記研磨用組成物原液における前記二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数を8.5×10-6mol/m以上とすることが好ましい。
 本発明のさらに別の態様では、二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を含む研磨用組成物原液の製造方法が提供される。
 前記研磨用組成物原液における前記二酸化ケイ素の含有量を1質量%以上20質量%以下とするとともに、前記塩基性化合物の含有量を0.01質量%以上1質量%以下とすることが好ましい。
 前記研磨用組成物原液における前記二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数を8.5×10-6mol/m以上とすることが好ましい。
 本発明の研磨用組成物によれば、基板に生じる微小な表面欠陥を抑制することが容易となる。本発明の研磨用組成物の製造方法によれば、基板に生じる微小な表面欠陥を抑制することが容易な研磨用組成物を得ることができる。本発明の研磨用組成物原液の製造方法によれば、基板に生じる微小な表面欠陥を抑制することが容易な研磨用組成物の調製に用いられる研磨用組成物原液を得ることができる。
 以下、本発明の一実施形態を説明する。
 本実施形態の研磨用組成物は、少なくとも二酸化ケイ素と水溶性高分子と水とを含有する。本実施形態の研磨用組成物は、例えばシリコン基板等の半導体基板を研磨する用途に用いられる。
 研磨組成物中の水は他の成分の分散媒又は溶媒となる。水は研磨用組成物に含有される他の成分の働きを阻害しないことが好ましい。そのような水の例としては、例えば遷移金属イオンの合計含有量が100ppb以下の水が挙げられる。水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる粒子の除去、蒸留等の操作によって高めることができる。具体的にはイオン交換水、純水、超純水、蒸留水等を用いることが好ましい。
 研磨用組成物中の二酸化ケイ素は、研磨対象物を物理的に研磨する砥粒としての働きを有する。また、二酸化ケイ素は水溶性高分子を研磨対象物の表面へと運ぶキャリアとしても働く。
 使用される二酸化ケイ素としては、例えば、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ等が挙げられる。コロイダルシリカ又はフュームドシリカ、特にコロイダルシリカを使用した場合には、研磨により基板表面に発生するスクラッチが減少するので好ましい。これらの二酸化ケイ素は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 二酸化ケイ素の平均一次粒子径は、5nm以上であることが好ましく、より好ましくは10nm以上である。二酸化ケイ素の平均一次粒子径の増大につれて研磨能率が向上する。また、二酸化ケイ素の平均一次粒子径は、100nm以下であることが好ましく、より好ましくは40nm以下である。二酸化ケイ素の平均一次粒子径の減少につれて、研磨後の基板表面の粗さが良化する。なお、二酸化ケイ素の平均一次粒子径は、BET法で測定される比表面積から求められる。
 二酸化ケイ素は、体積基準の90%累積平均径(D90)を体積基準の10%累積平均径(D10)で除して得られる値(D90/D10)が1以上4以下となる粒度分布を有することが好ましい。体積基準の10%累積平均径(D10)及び90%累積平均径(D90)とは、粒子径の小さい粒子から順に粒子体積を積算したとき、その積算体積の値が全粒子の合計体積のそれぞれ10%及び90%となるまでに、体積の積算がされた粒子の平均二次粒子径である。二酸化ケイ素が上記の粒度分布を有することにより、研磨後の基板表面が均質となる傾向がある。なお、二酸化ケイ素の粒度分布は、例えば動的光散乱法による粒度分布測定装置を使用して求めることができる。
 研磨用組成物中における二酸化ケイ素の含有量は、0.01質量%以上であることが好ましい。二酸化ケイ素の含有量の増大につれて、高い研磨速度が得られやすくなるとともに、基板表面に高い親水性が付与される。また、研磨用組成物中における二酸化ケイ素の含有量は、5質量%以下であることが好ましく、より好ましくは1質量%以下であり、更に好ましくは0.5質量%以下である。二酸化ケイ素の含有量の減少につれて、二酸化ケイ素の分散安定性が向上して、研磨後の基板表面に二酸化ケイ素の残渣が吸着し難くなる。
 研磨用組成物中の水溶性高分子は、研磨後の基板表面に吸着して、基板表面の濡れ性を高める働きをする。水溶性高分子としては、例えば、セルロース誘導体、ポリビニルピロリドン、ポリビニルピロリドンを含む共重合体が挙げられる。セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロースが挙げられる。ポリビニルピロリドンを含む共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンのグラフトポリマーが挙げられる。水溶性高分子は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 水溶性高分子の重量平均分子量は、ポリエチレンオキサイド換算で、10000以上であることが好ましく、より好ましくは30000以上であり、更に好ましくは50000以上である。水溶性高分子の重量平均分子量の増大につれて、基板表面に高い親水性が付与される。また、水溶性高分子の重量平均分子量は、1000000以下であることが好ましく、より好ましくは300000以下であり、更に好ましくは200000以下であり、最も好ましくは100000以下である。水溶性高分子の重量平均分子量の減少につれて、基板表面に付着した水溶性高分子を洗浄により除去することが容易になる。また、水溶性高分子の分散安定性が向上して、研磨後の基板表面に水溶性高分子の残渣が吸着し難くなる。
 研磨用組成物中における水溶性高分子の含有量は、0.0001質量%以上であることが好ましく、より好ましくは0.001質量%以上である。水溶性高分子の含有量の増大につれて、基板表面に高い親水性が付与される。また、研磨用組成物中における水溶性高分子の含有量は、0.5質量%以下であることが好ましく、より好ましくは0.1質量%以下である。水溶性高分子の含有量の減少につれて、水溶性高分子の分散安定性が向上して、研磨後の基板表面に水溶性高分子の残渣が吸着し難くなる。
 本実施形態の研磨用組成物は、必要に応じて二酸化ケイ素、水溶性高分子及び水以外の他成分を含有してもよい。ただし、上記他成分を含有する場合でも、炭素換算濃度において、研磨用組成物中における水溶性高分子の占める割合は高いことが好ましい。具体的には、研磨用組成物中の全炭素濃度に対する水溶性高分子の炭素換算濃度の百分率は50%以上であることが好ましく、より好ましくは70%以上であり、更に好ましくは85%以上である。
 上記他成分の例としては、研磨用組成物に一般に含有されている公知の添加剤、例えば、塩基性化合物、界面活性剤、塩、防腐剤、防カビ剤、キレート剤が挙げられる。
 塩基性組成物は、基板表面を化学的に研磨する(ケミカルエッチング)働きを有する。したがって、研磨用組成物が塩基性化合物を含有する場合には、基板の研磨速度を向上させることが容易となる。
 塩基性化合物の具体例としては、アルカリ金属の水酸化物又は塩、水酸化第四級アンモニウム又はその塩、アンモニア、アミン等が挙げられる。アルカリ金属の具体例としては、カリウム、ナトリウム等が挙げられる。塩の具体例としては、炭酸塩、炭酸水素塩、硫酸塩、酢酸塩等が挙げられる。第四級アンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。アルカリ金属の水酸化物又は塩の具体例としては、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム等が挙げられる。水酸化第四級アンモニウム又はその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン等が挙げられる。これらの塩基性化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 塩基性化合物の中でも、アンモニア、アンモニウム塩、アルカリ金属水酸化物、アルカリ金属塩、及び第四級アンモニウム水酸化物から選ばれる少なくとも一種が好ましい。塩基性化合物の中でも、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、及び炭酸ナトリウムから選ばれる少なくとも一種がより好ましく、更に好ましくはアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、及び水酸化テトラエチルアンモニウムから選ばれる少なくとも一種であり、一層好ましくはアンモニア及び水酸化テトラメチルアンモニウムの少なくとも一方であり、最も好ましくはアンモニアである。
 研磨用組成物中における塩基性化合物の含有量は、0.0001質量%以上であることが好ましく、より好ましくは0.001質量%以上である。研磨用組成物中における塩基性化合物の含有量の増大につれて、高い研磨速度が得られる。また、研磨用組成物中における塩基性化合物の含有量は、0.5質量%以下であることが好ましく、より好ましくは0.25質量%以下である。研磨用組成物中における塩基性化合物の含有量の減少につれて、基板表面に水溶性高分子が吸着しやすくなるために、基板表面に高い親水性が付与される。また、研磨後の基板表面のヘイズレベルが低減する傾向もある。
 研磨用組成物中に任意で含まれる界面活性剤は、基板表面の荒れを抑制する働きを有する。したがって、研磨用組成物が界面活性剤を含有する場合には、研磨後の基板表面のヘイズレベルを低減することが容易となる。特に、研磨用組成物が塩基性化合物を含有する場合には、塩基性化合物によるケミカルエッチングによって研磨後の基板表面に荒れが生じ易い。このため、塩基性化合物と界面活性剤との併用は特に有効である。
 界面活性剤は、イオン性又はノニオン性のいずれであってもよく、中でもノニオン性界面活性剤が好適である。ノニオン性界面活性剤は起泡性が低いため、研磨用組成物の調製時や使用時の取り扱いが容易となる。また、ノニオン性界面活性剤を用いた場合、研磨用組成物のpH調整が容易となる。さらに、ノニオン性界面活性剤は、生分解性に優れ、生体に対する毒性が弱い。そのため、環境への影響が小さく、取り扱い上の懸念が少ないといった利点がある。
 界面活性剤の具体例としては、ポリエチレングリコールやポリプロピレングリコール等のオキシアルキレン重合体単体、ポリオキシエチレンポリオキシプロピレンのジブロック型やトリブロック型、ランダム型、交互型といった複数種のオキシアルキレンの共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物が挙げられる。より具体的には、ポリオキシエチレンポリオキシプロピレン共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油が挙げられる。これらの界面活性剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 界面活性剤の重量平均分子量は、200以上であることが好ましく、より好ましくは300以上である。また、界面活性剤の重量平均分子量は、10000未満であることが好ましい。界面活性剤の重量平均分子量を上記範囲とすることによって、基板表面に生じる荒れを抑制することができる。
 研磨用組成物中における界面活性剤の含有量は、0.00001質量%以上であることが好ましく、より好ましくは0.00005質量%以上である。界面活性剤の含有量の増大につれて、基板表面に生じる荒れが抑制される。また、研磨用組成物中の界面活性剤の含有量は0.1質量%以下であることが好ましく、より好ましくは0.05質量%以下である。界面活性剤の含有量の減少につれて、研磨能率が向上する。
 研磨用組成物中に任意で含まれる塩は、水溶性高分子との相互作用により、基板表面の親水性を向上させる働きを有する。塩は、有機酸塩及び無機酸塩のいずれであってもよい。使用される有機酸塩及び無機酸塩は、酸の種類、構造及びイオン価数並びに塩を形成する塩基種に関して限定されるものではない。有機酸塩及び無機酸塩の酸種としては、例えば、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸、炭酸、硝酸、硫酸が挙げられる。有機酸塩及び無機酸塩を形成する塩基種としては、例えば、アンモニウムイオン、各種金属イオンが挙げられる。これらの塩基種の中でも、基板の金属汚染を低減する観点から、アンモニウムイオンが特に好ましい。これらの塩は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 研磨用組成物のpHは8.0以上であることが好ましく、より好ましくは9.0以上である。また、研磨用組成物のpHは12.0以下であることが好ましく、より好ましくは11.0以下である。研磨用組成物のpHを上記範囲とすることによって、実用上特に好ましい研磨速度を得ることが容易である。
 研磨用組成物中において、二酸化ケイ素の表面には、少なくとも水溶性高分子を含む吸着物が吸着している。研磨用組成物中の吸着物の炭素換算濃度は4質量ppm以上であり、好ましくは10質量ppm以上である。研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率は15%以上であり、好ましくは30%以上である。吸着物の炭素換算濃度、及び研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率を上記範囲に設定することによって、基板表面に高い親水性を付与することができる。なお、上記吸着物の炭素換算濃度、及び研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率は、例えば、使用する二酸化ケイ素と水溶性高分子の種類の組み合わせを変えることによって、あるいは、研磨用組成物中の二酸化ケイ素の含有量に対する水溶性高分子の含有量の比率を変化させることによって調整することができる。
 次に、本実施形態の研磨用組成物の作用を記載する。
 従来、水溶性高分子を含んだ研磨用組成物を用いて基板を研磨することによって、基板表面に親水性が付与されることが知られている。本発明者らは、鋭意研究の結果、二酸化ケイ素と水溶性高分子とを含有する研磨用組成物を用いて基板を研磨したときに基板表面に付与される親水性が、二酸化ケイ素に吸着した水溶性高分子を含む吸着物の絶対量及び研磨用組成物中における上記吸着物の相対量と相関することを見出した。そして、研磨用組成物中の上記吸着物の炭素換算濃度を4質量ppm以上とするとともに、研磨用組成物中の全炭素量に対する上記吸着物の炭素換算濃度の百分率を15%以上とすることによって、基板表面への親水性の付与効果が顕著に高まることを見出した。
 水溶性高分子による基板表面への親水性の付与は、基板表面に水溶性高分子が吸着することによって生じる。基板表面に水溶性高分子を吸着させるためには、二酸化ケイ素をキャリアとして機能させることが重要になる。すなわち、研磨用組成物中で二酸化ケイ素の表面に水溶性高分子が吸着した状態であることにより、研磨時に二酸化ケイ素と基板表面とが擦れ合った際、二酸化ケイ素の表面に吸着した水溶性高分子が基板表面へ移行する。これにより、基板表面に水溶性高分子を効率的に吸着させることができ、基板表面の親水性が効果的に向上する。その結果、基板に生じる微小な表面欠陥を抑制することが容易となる。なお、基板表面に水溶性高分子が吸着する際は、基板と水溶性高分子の炭素との間に疎水結合が生じていると考えられる。
 次に、本実施形態の研磨用組成物の製造方法について記載する。
 研磨用組成物の製造方法は、二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物原液を調製する原液調製工程と、研磨用組成物原液を希釈する希釈工程とを含む。
 [原液調製工程]
 原液調製工程では、先ず、二酸化ケイ素及び水を含有する第1混合液が調製される。二酸化ケイ素は、水と混合される前にろ過されることが好ましい。第1混合液のpHは、8以上であることが好ましく、より好ましくは9以上である。第1混合液のpHの上昇につれて、後に第1混合液を水溶性高分子と混合した際に、二酸化ケイ素に対する水溶性高分子の吸着を抑制できるとともに、水溶性高分子の凝集物(ゲル化物)の発生を抑制することができる。また、第1混合液のpHは、12以下であることが好ましく、より好ましくは10.5以下である。第1混合液のpHの減少につれて、二酸化ケイ素の溶解を抑制することができる。第1混合液のpHは、塩基性化合物の添加により調整することができる。
 また原液調製工程では、水溶性高分子及び水を含有する第2混合液が調製される。水溶性高分子は、水と混合される前にろ過されることが好ましい。第2混合液のpHは、好ましくは中性付近~塩基性付近に調整され、より好ましくは塩基性に調整される。
 第2混合液のpHは、7以上であることが好ましく、より好ましくは8以上、更に好ましくは9以上である。pHの上昇につれて、第1混合液と第2混合液とを混合した際における二酸化ケイ素の凝集が抑制されることにより、研磨用組成物原液及び研磨用組成物の分散安定性が向上する。また、第2混合液のpHは、12以下であることが好ましく、より好ましくは10.5以下である。第2混合液のpHの減少につれて、二酸化ケイ素の溶解を抑制することができる。第2混合液のpHは、塩基性化合物の添加により調整することができる。
 そして、第1混合液と第2混合液とが混合されることにより、第3混合液が調製される。第1混合液と第2混合液とを混合する方法は特に限定されないが、第1混合液中に第2混合液を投入して混合することが好ましい。この場合、第2混合液の投入速度は、第1混合液1Lにつき1分間に0.1mL以上であることが好ましく、より好ましくは1mL以上であり、更に好ましくは5mL以上である。投入速度の増大につれて、研磨用組成物原液の生産効率を上げることができる。また、第2混合液の投入速度は、第1混合液1Lにつき1分間に500mL以下であることが好ましく、より好ましくは100mL以下であり、更に好ましくは50mL以下である。投入速度の減少につれて、二酸化ケイ素の凝集を抑制することができる。
 第2混合液は、第1混合液と混合される前にろ過されることが好ましい。ろ過することにより、第2混合液中に含まれる異物又は凝集物を除去することができる。第2混合液のろ過は、常圧状態で行う自然ろ過であってもよいし、吸引ろ過、加圧ろ過、又は遠心ろ過で行ってもよい。ろ過で用いるフィルタは、目開きを基準に選択されることが好ましい。なお、フィルタの目開きは通常、製造メーカーのカタログ値などの公称値を使用することができる。
 第2混合液のろ過に使用するフィルタの目開きは0.05μm以上であることが好ましく、より好ましくは0.1μm以上、更に好ましくは0.2μm以上である。フィルタの目開きが大きいほど、生産効率を上げることができる。また、フィルタの目開きは50μm以下であることが好ましく、より好ましくは30μm以下、更に好ましくは10μm以下であり、一層好ましくは1μm以下であり、最も好ましくは0.45μm以下である。フィルタの目開きが小さいほど、第2混合液中に含まれる異物又は凝集物の除去効率を向上させることができ、研磨用組成物原液及び研磨用組成物の分散安定性を高めることが容易となる。
 また原液調製工程では、第3混合液がフィルタによりろ過される。そして、このろ過を経ることにより研磨用組成物原液が得られる。第3混合液のろ過に用いるフィルタの目開きは、微小な異物を除去する観点から、1μm以下であることが好ましく、より好ましくは0.45μm以下であり、更に好ましくは0.2μm以下である。第3混合液のろ過に用いるフィルタの材質及び構造は特に限定されるものではない。フィルタの材質としては、例えば、セルロース、ナイロン、ポリスルホン、ポリエーテルスルホン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリカーボネート、ガラス等が挙げられる。フィルタの構造としては、例えばデプスフィルタ、プリーツフィルタ、メンブレンフィルタ等が挙げられる。
 研磨用組成物原液中における二酸化ケイ素の含有量は、1質量%以上とすることが好ましい。二酸化ケイ素の含有量が高いほど、即ち研磨用組成物原液が高濃縮であるほど、少量の研磨用組成物原液から多量の研磨用組成物を作成することができるため、運搬等の取扱いの際に有利になる。また、研磨用組成物原液中における二酸化ケイ素の含有量は、20質量%以下とすることが好ましく、より好ましくは15質量%以下である。二酸化ケイ素の含有量の減少につれて、研磨用組成物原液作成時に凝集物の発生するリスクが軽減される。
 研磨用組成物原液中における塩基性化合物の含有量は、0.01質量%以上とすることが好ましく、より好ましくは0.05質量%以上である。塩基性化合物の含有量の増大につれて、研磨用組成物原液作成時に凝集物の発生するリスクが軽減される。また、研磨用組成物原液中における塩基性化合物の含有量は、1質量%以下とすることが好ましく、より好ましくは0.75質量%以下であり、更に好ましくは0.40質量%以下である。塩基性化合物の含有量の減少につれて、基板表面に高い親水性を付与することの可能な研磨用組成物を得ることが容易となる。

 研磨用組成物原液において、二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数は、8.5×10-6mol/m以上であることが好ましく、より好ましくは10×10-6mol/m以上である。上記塩基性化合物のモル数の増大につれて、研磨用組成物原液作成時に凝集物の発生するリスクが軽減される。また、二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数は、120×10-6mol/m以下であることが好ましく、より好ましくは80×10-6mol/m以下であり、更に好ましくは40×10-6mol/m以下である。上記塩基性化合物のモル数の減少につれて、基板表面に高い親水性を付与することの可能な研磨用組成物を得ることが容易となる。
 [希釈工程]
 希釈工程では、研磨用組成物原液が水又は塩基性水溶液により希釈されることによって、研磨用組成物が調製される。この希釈工程時において、二酸化ケイ素の表面に水溶性高分子が吸着された状態となる。
 塩基性水溶液のpHは、8以上であることが好ましく、より好ましくは9以上である。pHの上昇につれて、希釈時における二酸化ケイ素の凝集が抑制されることにより、研磨用組成物の分散安定性が向上する。また、塩基性水溶液のpHは、12以下であることが好ましく、より好ましくは10.5以下である。塩基性水溶液のpHの減少につれて、二酸化ケイ素の溶解を抑制することができる。塩基性水溶液のpHは、塩基性化合物の添加により調整することができる。
 希釈工程における研磨用組成物原液の希釈倍率は、好ましくは10倍以上100倍以下であり、より好ましくは20倍以上60倍以下である。研磨用組成物原液の希釈倍率を上記範囲に設定することにより、二酸化ケイ素に対して水溶性高分子を好適に吸着させることができる。
 次に、本実施形態の研磨用組成物を用いた研磨方法の一例について記載する。
 本実施形態の研磨用組成物を用いてシリコン基板の表面を研磨する場合には、シリコン基板の表面に研磨用組成物を供給しながら、同表面に研磨パッドを押し付けてシリコン基板及び研磨パッドを回転させる。このとき、研磨パッドとシリコン基板表面との間の摩擦による物理的作用によってシリコン基板の表面は研磨される。二酸化ケイ素とシリコン基板表面との間の摩擦による物理的作用によってもシリコン基板の表面は研磨される。同時に、二酸化ケイ素に吸着した水溶性高分子はシリコン基板の表面へ移行して、シリコン基板の表面に親水性が付与される。研磨用組成物が塩基性化合物を含有する場合には、上記物理的作用に加えて、塩基性化合物による化学的作用によってもシリコン基板の表面は研磨される。
 以上詳述した本実施形態によれば、次のような効果が発揮される。
 (1)研磨用組成物は、二酸化ケイ素と水溶性高分子と水とを含有する。二酸化ケイ素には、水溶性高分子を含む吸着物が吸着している。研磨用組成物中の吸着物の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率が15%以上である。これにより、研磨後の基板表面の親水性を高めることができる。その結果、基板表面の清浄性が向上して、基板表面に吸着した異物に起因するナノオーダーの微小な表面欠陥を低減させることが容易となる。
 (2)水溶性高分子の重量平均分子量が300000以下、さらに言えば200000以下又は100000以下である場合には、基板表面に付着した水溶性高分子を洗浄により除去することがさらに容易となる。
 (3)研磨用組成物の製造方法は、二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物原液を調製する原液調製工程と、研磨用組成物原液を水又は塩基性水溶液で希釈することにより、水溶性高分子を含む吸着物が二酸化ケイ素に吸着した研磨用組成物であって、研磨用組成物中の吸着物の炭素換算濃度が4質量ppm以上であ、且つ研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率が15%以上である研磨用組成物を得る工程とを含む。これにより、研磨後の基板表面の親水性を高めて、基板表面に吸着した異物に起因するナノオーダーの微小な表面欠陥を低減させることが容易な研磨用組成物を得ることができる。また、二酸化ケイ素及び水溶性高分子の濃度が高い研磨用組成物原液は分散安定性に優れるため、研磨用組成物原液を調製し、研磨用組成物原液の段階でろ過処理を行うことにより、精度の高いろ過を行うことが容易となる。更に、研磨用組成物原液の状態で保存及び運搬し、使用時に水で希釈して研磨用組成物を調製するようにすれば、容量の小さい容器で保存及び運搬することが可能となり、取り扱いが容易になる。
 (4)二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を原液調製工程が含む場合、原液調製時における二酸化ケイ素に対する水溶性高分子の吸着を抑制できるとともに、水溶性高分子の凝集物(ゲル化物)の発生を抑制することができる。その結果、研磨用組成物原液から得られる研磨用組成物は、基板表面に吸着した異物に起因するナノオーダーの微小な表面欠陥を低減させることが容易なものとなる。
 (5)研磨用組成物原液における二酸化ケイ素の含有量を1質量%以上20質量%以下とするとともに、塩基性化合物の含有量を0.01質量%以上1質量%以下とした場合には、良好な分散状態を有する研磨用組成物原液を得ることができる。
 (6)研磨用組成物原液における二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数を8.5×10-6mol/m以上とした場合には、良好な分散状態を有する研磨用組成物原液を得ることができる。
 なお、前記実施形態は次のように変更されてもよい。
 ・ 前記実施形態の研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。
 ・ 前記実施形態の研磨用組成物に含有される各成分は研磨用組成物の製造の直前にフィルタによりろ過されてもよい。前記実施形態の研磨用組成物は、使用の直前にフィルタによりろ過されてもよい。ろ過処理が施されることによって、研磨用組成物中の粗大異物が取り除かれて研磨用組成物の品質が向上する。
 ・ 前記実施形態の研磨用組成物は、研磨用組成物原液の状態で販売され、使用時に研磨用組成物原液を水又は塩基性水溶液で希釈することにより調製されてもよい。
 ・ 研磨用組成物の製造方法において、界面活性剤や塩等の他成分を混合するタイミングは特に限定されるものではない。例えば、他成分は、第1混合液又は第2混合液の調製時に混合してもよいし、第3混合液の調製時に混合してもよい。混合の前に他成分はろ過されることが好ましい。
 ・ 前記実施形態の研磨用組成物の製造方法では、研磨用組成物原液を調製する際、水溶性高分子を含んだ第2混合液を第1混合液に混合していたが、水溶性高分子と水とを別々に第1混合液に混合してもよいし、水溶性高分子のみを第1混合液に混合してもよい。
 ・ 前記実施形態の研磨用組成物を用いた研磨工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むタイプ、砥粒を含まないタイプのいずれの研磨パッドを用いてもよい。
 ・ 前記実施形態の研磨用組成物を用いてシリコン基板を研磨する際、一度研磨に使用された研磨用組成物を回収して、シリコン基板の研磨に再び使用してもよい。研磨用組成物を再使用する方法としては、例えば、研磨装置から排出される使用済みの研磨用組成物をタンク内にいったん回収し、タンク内から再度研磨装置内へ循環させて使用する方法が挙げられる。研磨用組成物を再使用することで、廃液として処理される研磨用組成物の量が減るとともに、研磨用組成物の使用量が減る。このことは、環境負荷を低減できる点、及びシリコン基板の研磨にかかるコストを抑制できる点において有用である。
 研磨用組成物を再使用すると、二酸化ケイ素や水溶性高分子等の各成分が研磨により消費されて損失する。このため、二酸化ケイ素や水溶性高分子等の各成分の減少分を研磨用組成物に補充することが好ましい。補充する成分は、個別に研磨用組成物に添加してもよいし、タンクの大きさや研磨条件等に応じて、二以上の成分を任意の濃度で含んだ混合物として研磨用組成物に添加してもよい。再使用される研磨用組成物に対して各成分の減少分を補充することにより、研磨用組成物の組成が維持されて、研磨用組成物の機能を持続的に発揮させることができる。
 ・ 前記実施形態の研磨用組成物は、シリコン基板を研磨する以外の用途で使用されてもよい。例えば、ステンレス鋼などの金属、プラスチック、ガラス、及びサファイア等からなる研磨製品を得るために用いてもよい。
 ・ 上記(4)~(6)に記載した効果は、前記実施形態の研磨用組成物の製造時のみに限られる効果ではなく、二酸化ケイ素と水溶性高分子と塩基性化合物と水とを含有する研磨用組成物、又は同研磨用組成物を得るための研磨用組成物原液の製造時であれば得ることのできる効果である。つまり、二酸化ケイ素と水溶性高分子と塩基性化合物と水とを含有する研磨用組成物を得るための研磨用組成物原液の製造方法として、二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を含む方法を採用してもよい。この場合にも、原液調製時における二酸化ケイ素に対する水溶性高分子の吸着を抑制できるとともに、水溶性高分子の凝集物(ゲル化物)の発生を抑制することができる。その結果、製造された研磨用組成物原液から得られる研磨用組成物は、基板表面に吸着した異物に起因するナノオーダーの微小な表面欠陥を低減させることが容易なものとなる。
 次に、前記実施形態から把握できる技術的思想について記載する。
 (a)二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物であって、
 前記二酸化ケイ素には前記水溶性高分子の一部が吸着しており、
 前記二酸化ケイ素に吸着した水溶性高分子の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の前記水溶性高分子の全炭素換算濃度に対する、前記二酸化ケイ素に吸着した水溶性高分子の炭素換算濃度の百分率が15%以上である研磨用組成物。
 (b)二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物原液を、水又は塩基性水溶液で希釈する希釈工程を含む研磨用組成物の製造方法であって、前記二酸化ケイ素に吸着した水溶性高分子の炭素換算濃度を4質量ppm以上とするとともに、前記水溶性高分子の全炭素換算濃度に対する、前記二酸化ケイ素に吸着した水溶性高分子の炭素換算濃度の百分率を15%以上とすることを特徴とする研磨用組成物の製造方法。
 次に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
 実施例1~13及び比較例2~8では、二酸化ケイ素、塩基性化合物及びイオン交換水を混合した第1混合液と、水溶性高分子及びイオン交換水を混合した第2混合液とを調製し、第1混合液へ第2混合液を混合することにより第3混合液を調製した。また、実施例14~17では、二酸化ケイ素、塩基性化合物及びイオン交換水を混合した第1混合液と、水溶性高分子、界面活性剤、塩及びイオン交換水を混合した第2混合液とを調製し、第1混合液へ第2混合液を混合することにより第3混合液を調製した。また、比較例1では、塩基性化合物及びイオン交換水を混合した第1混合液に水溶性高分子を混合することにより第3混合液を調製した。そして、得られた各第3混合液を目開き0.45μmのフィルタでろ過することにより研磨用組成物原液を調製した。得られた各研磨用組成物原液をイオン交換水で20倍(実施例10のみ40倍)に希釈することにより研磨用組成物を調製した。
 また、比較例9では、二酸化ケイ素及びイオン交換水を混合した第1混合液と、水溶性高分子及びイオン交換水を混合した第2混合液とを調製し、第1混合液へ第2混合液を混合することにより第3混合液を調製した。比較例10では、二酸化ケイ素及びイオン交換水を混合した第1混合液と、水溶性高分子及びイオン交換水を混合した第2混合液とを調製し、第1混合液へ第2混合液を混合した後、更に塩基性化合物を混合することにより第3混合液を調製した。
 このとき、比較例9及び10の第3混合液には凝集物(ゲル化物)が発生し、ろ過を行うことができなかった。そのため、比較例9及び10については、ここで試験を中断した。なお、実施例1~17及び比較例1~8の第3混合液については、凝集物(ゲル化物)が発生することはなかった。この結果から、第1混合液中に塩基性化合物が含まれていることが、第1混合液へ第2混合液を混合したときの凝集物(ゲル化物)の発生を抑制するのに有効であることが示唆される。
 表2に実施例1~17及び比較例1~10の研磨用組成物原液及び研磨用組成物の詳細を示す。二酸化ケイ素としてはコロイダルシリカを用いた。水溶性高分子としては、ヒドロキシエチルセルロース(HEC)、加水分解処理を施したヒドロキシエチルセルロース(加水分解HEC)、ポリビニルアルコールとポリビニルピロリドンのグラフトポリマー(PVA-g-PVP)、ポリビニルアルコール(PVA)、カチオン化処理を施したポリビニルアルコール(カチオン化PVA)を用いた。塩基性化合物としてはアンモニアを用いた。界面活性剤としては、ポリオキシエチレンポリオキシプロピレン共重合体(PEO-PPO-PEO)、ポリオキシエチレンデシルエーテル(C-PEO)を用いた。塩としては、クエン酸三アンモニウム、炭酸アンモニウムを用いた。なお、研磨用組成物中の界面活性剤及び塩の含有量はそれぞれ0.0005質量%である。また、表2中、二酸化ケイ素の粒径欄には、マイクロメリテックス社製の“Flow SorbII 2300”を用いて比表面積の値から算出した平均一次粒子径を示す。
 次に、実施例1~17及び比較例1~8の研磨用組成物について、二酸化ケイ素に吸着した吸着物の炭素換算濃度(A)、及び研磨用組成物中の全炭素濃度(B)を測定した。具体的には、二酸化ケイ素を含まない点のみで各研磨用組成物と異なる含炭素組成物を調製した。その含炭素組成物のそれぞれについて、島津製作所社製の“TOC-5000A”を用いてTOC値を測定し、測定されたTOC値を、対応する研磨用組成物中の全炭素濃度(B)とした。
 また、実施例1~17及び比較例1~8の研磨用組成物に対して遠心分離処理(20000rpm、30分)を行うことにより研磨用組成物を、二酸化ケイ素を含む沈降物と上澄液とに分離した後、上澄液のTOC値を測定した。そして、二酸化ケイ素に吸着した吸着物の炭素換算濃度(A)を、対応する含炭素組成物のTOC値と上澄液のTOC値との差として算出した。さらに、研磨用組成物中の全炭素濃度(B)(含炭素組成物中の炭素濃度)に対する吸着物の炭素換算濃度(A)の百分率(A/B)を算出した。それらの結果を表3に示す。
 次に、実施例1~17及び比較例1~8の研磨用組成物を用いて、予備研磨後のシリコン基板の表面を表1に記載の条件で研磨した。研磨に使用したシリコン基板は、直径が200mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm以下であるシリコン基板を、株式会社フジミインコーポレーテッド製の研磨スラリー(商品名GLANZOX 2100)を用いて予備研磨した後、60mm角のチップ型に切断することにより用意したものであった。
 研磨後のシリコン基板の表面を流量7L/分の流水で10秒間洗浄した。シリコン基板を垂直に立てて静置し、30秒後にシリコン基板のコーナ部からの撥水距離を測定した。その結果を表3に示す。なお、撥水距離は研磨後の基板表面の親水性の指標となるものであり、基板表面の親水性が高いほど撥水距離の値が小さくなる。撥水距離の最大値は、シリコン基板の対角線の長さである85mmとなる。
 次に、研磨後のシリコン基板の表面に吸着した水溶性高分子の洗浄性(除去容易性)を評価した。水溶性高分子の洗浄性の評価は、水溶性高分子が吸着して親水性が付与されたシリコン基板に対して所定の洗浄操作を行い、基板表面が完全な撥水面になるまでに要した洗浄操作の繰り返し回数に基づいて行った。所定の洗浄操作とは、シリコン基板を薬液(アンモニア:過酸化水素:水=1:1:8)に25℃にて15秒間浸漬させ、その後、3%フッ化水素水溶液に25℃にて20秒間浸漬させることを含む。完全な撥水面が得られるまでに要した洗浄操作の回数が1回以上3回以下であった場合を「A」、4回以上6回以下であった場合を「B」、7回以上であった場合を「C」として評価した。その結果を表3に示す。なお、比較例1~8に関しては、撥水距離の測定結果から、研磨後のシリコン基板の表面に水溶性高分子が吸着していないと考えられるため、洗浄性の評価は実施しなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、二酸化ケイ素を含有しない比較例1の研磨用組成物を用いた場合には、撥水距離が85mmであり、基板表面に親水性が付与されなかった。これに対して、二酸化ケイ素を含有し、二酸化ケイ素に吸着した吸着物の炭素換算濃度(A)、及び研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率(A/B)がそれぞれ特定の範囲内である実施例1~17の研磨用組成物を用いた場合には、撥水距離が45mm以下であり、基板表面に高い親水性が付与されていることが分かった。そして、用いた水溶性高分子の分子量が小さくなる程、洗浄性の評価が高くなる傾向があった。
 また、二酸化ケイ素に吸着した吸着物の炭素換算濃度(A)、及び研磨用組成物中の全炭素濃度に対する吸着物の炭素換算濃度の百分率(A/B)の少なくともいずれか一方が特定の範囲から外れる比較例2~8の研磨用組成物を用いた場合には、基板表面に親水性が付与されないか、付与されたとしてもわずかであった。

Claims (11)

  1.  二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物であって、
     前記二酸化ケイ素には前記水溶性高分子の少なくとも一部を含む吸着物が吸着しており、
     研磨用組成物中の前記吸着物の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の全炭素濃度に対する前記吸着物の炭素換算濃度の百分率が15%以上であることを特徴とする研磨用組成物。
  2.  前記水溶性高分子の重量平均分子量が300000以下であることを特徴とする請求項1に記載の研磨用組成物。
  3.  前記水溶性高分子の重量平均分子量が200000以下であることを特徴とする請求項1に記載の研磨用組成物。
  4.  前記水溶性高分子の重量平均分子量が100000以下であることを特徴とする請求項1に記載の研磨用組成物。
  5.  請求項1~4のいずれか一項に記載の研磨用組成物を製造する方法であって、
     二酸化ケイ素と水溶性高分子と水とを含有する研磨用組成物原液を調製する工程と、
     前記研磨用組成物原液を水又は塩基性水溶液で希釈することにより、前記水溶性高分子を含む吸着物が前記二酸化ケイ素に吸着した研磨用組成物であって、研磨用組成物中の前記吸着物の炭素換算濃度が4質量ppm以上であり、且つ研磨用組成物中の全炭素濃度に対する前記吸着物の炭素換算濃度の百分率が15%以上である研磨用組成物を得る工程と
    を含むことを特徴とする方法。
  6.  前記研磨用組成物原液を調製する工程は、二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を含むことを特徴とする請求項5に記載の方法。
  7.  前記研磨用組成物原液における前記二酸化ケイ素の含有量を1質量%以上20質量%以下とするとともに、前記塩基性化合物の含有量を0.01質量%以上1質量%以下とすることを特徴とする請求項6に記載の方法。
  8.  前記研磨用組成物原液における前記二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数を8.5×10-6mol/m以上とすることを特徴とする請求項6又は請求項7に記載の方法。
  9.  二酸化ケイ素と塩基性化合物との混合物に水溶性高分子を混合し、得られた混合物をろ過する工程を含むことを特徴とする研磨用組成物原液の製造方法。
  10.  前記研磨用組成物原液における前記二酸化ケイ素の含有量を1質量%以上20質量%以下とするとともに、前記塩基性化合物の含有量を0.01質量%以上1質量%以下とすることを特徴とする請求項9に記載の方法。
  11.  前記研磨用組成物原液における前記二酸化ケイ素の単位表面積あたりの塩基性化合物のモル数を8.5×10-6mol/m以上とすることを特徴とする請求項9又は請求項10に記載の方法。
PCT/JP2013/071822 2012-08-23 2013-08-12 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法 WO2014030570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/422,631 US9650544B2 (en) 2012-08-23 2013-08-12 Polishing composition, method for manufacturing polishing composition, and method for manufacturing polishing composition liquid concentrate
KR1020157006389A KR102167392B1 (ko) 2012-08-23 2013-08-12 연마용 조성물, 연마용 조성물의 제조 방법 및 연마용 조성물 원액의 제조 방법
CN201380055071.5A CN104736658A (zh) 2012-08-23 2013-08-12 研磨用组合物、研磨用组合物的制造方法,以及研磨用组合物原液的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184507 2012-08-23
JP2012184507A JP2014041978A (ja) 2012-08-23 2012-08-23 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Publications (1)

Publication Number Publication Date
WO2014030570A1 true WO2014030570A1 (ja) 2014-02-27

Family

ID=50149879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071822 WO2014030570A1 (ja) 2012-08-23 2013-08-12 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Country Status (6)

Country Link
US (1) US9650544B2 (ja)
JP (1) JP2014041978A (ja)
KR (1) KR102167392B1 (ja)
CN (2) CN104736658A (ja)
TW (2) TWI592470B (ja)
WO (1) WO2014030570A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126051A1 (ja) * 2013-02-13 2014-08-21 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
CN104830236A (zh) * 2015-05-14 2015-08-12 蓝思科技(长沙)有限公司 C向蓝宝石抛光液及其制备方法
WO2015152149A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物
WO2015152152A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 半導体基板の研磨方法
WO2015152151A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
WO2015152150A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物
WO2017126268A1 (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
WO2018043504A1 (ja) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265542B2 (ja) * 2014-05-30 2018-01-24 花王株式会社 半導体基板の製造方法
JP6185432B2 (ja) * 2014-06-24 2017-08-23 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP6482234B2 (ja) 2014-10-22 2019-03-13 株式会社フジミインコーポレーテッド 研磨用組成物
WO2016181888A1 (ja) 2015-05-08 2016-11-17 株式会社フジミインコーポレーテッド 研磨用組成物
WO2017096508A1 (zh) * 2015-12-07 2017-06-15 安徽大富重工机械有限公司 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法
JP6348927B2 (ja) * 2016-04-27 2018-06-27 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP7026043B2 (ja) 2016-08-02 2022-02-25 株式会社フジミインコーポレーテッド シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、およびシリコンウェーハの研磨方法
JP7002354B2 (ja) * 2018-01-29 2022-02-04 ニッタ・デュポン株式会社 研磨用組成物
CN110551453A (zh) * 2018-12-25 2019-12-10 清华大学 一种抛光组合物
JP7380492B2 (ja) 2020-09-04 2023-11-15 信越半導体株式会社 研磨用組成物及びウェーハの加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313815A (ja) * 1999-04-30 2000-11-14 Kao Corp 研磨助剤
WO2000079577A1 (fr) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Compose abrasif pour polissage cmp, procede de polissage d'un substrat, procede de fabrication d'un dispositif a semiconducteur utilisant ledit compose, et additif pour compose abrasif cmp
JP2010538457A (ja) * 2007-08-28 2010-12-09 キャボット マイクロエレクトロニクス コーポレイション イオン性高分子電解質を含有する銅cmp組成物及び方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128069A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2006086462A (ja) * 2004-09-17 2006-03-30 Fujimi Inc 研磨用組成物およびそれを用いた配線構造体の製造法
TW200717635A (en) 2005-09-06 2007-05-01 Komatsu Denshi Kinzoku Kk Polishing method for semiconductor wafer
CN101307211A (zh) * 2007-05-15 2008-11-19 仲跻和 一种纳米二氧化硅磨料抛光液的制备方法
JP2009050920A (ja) 2007-08-23 2009-03-12 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法
US20110081780A1 (en) * 2008-02-18 2011-04-07 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP5474400B2 (ja) 2008-07-03 2014-04-16 株式会社フジミインコーポレーテッド 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
CN101659849A (zh) * 2008-08-29 2010-03-03 日本化学工业株式会社 半导体晶片研磨用组合物和研磨方法
JP5441578B2 (ja) * 2009-09-11 2014-03-12 花王株式会社 研磨液組成物
WO2011142362A1 (ja) * 2010-05-11 2011-11-17 日産化学工業株式会社 シリコンウェーハ用研磨組成物及びシリコンウェーハの研磨方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313815A (ja) * 1999-04-30 2000-11-14 Kao Corp 研磨助剤
WO2000079577A1 (fr) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Compose abrasif pour polissage cmp, procede de polissage d'un substrat, procede de fabrication d'un dispositif a semiconducteur utilisant ledit compose, et additif pour compose abrasif cmp
JP2010538457A (ja) * 2007-08-28 2010-12-09 キャボット マイクロエレクトロニクス コーポレイション イオン性高分子電解質を含有する銅cmp組成物及び方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126051A1 (ja) * 2013-02-13 2014-08-21 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
KR20160140736A (ko) * 2014-03-31 2016-12-07 니타 하스 인코포레이티드 연마용 조성물
US11791164B2 (en) 2014-03-31 2023-10-17 Nitta Dupont Incorporated Polishing composition and polishing method
KR20160140737A (ko) * 2014-03-31 2016-12-07 니타 하스 인코포레이티드 연마용 조성물 및 연마 방법
WO2015152151A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
WO2015152150A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物
JP2015193772A (ja) * 2014-03-31 2015-11-05 ニッタ・ハース株式会社 研磨用組成物
JP2015198112A (ja) * 2014-03-31 2015-11-09 ニッタ・ハース株式会社 半導体基板の研磨方法
JP2015196691A (ja) * 2014-03-31 2015-11-09 ニッタ・ハース株式会社 研磨用組成物
JP2015196704A (ja) * 2014-03-31 2015-11-09 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
CN106133108A (zh) * 2014-03-31 2016-11-16 霓达哈斯股份有限公司 研磨用组合物
CN106133106A (zh) * 2014-03-31 2016-11-16 霓达哈斯股份有限公司 研磨用组合物
CN106133107A (zh) * 2014-03-31 2016-11-16 霓达哈斯股份有限公司 研磨用组合物及研磨方法
CN106165063A (zh) * 2014-03-31 2016-11-23 霓达哈斯股份有限公司 半导体衬底的研磨方法
KR20160138128A (ko) * 2014-03-31 2016-12-02 니타 하스 인코포레이티드 반도체 기판의 연마 방법
WO2015152152A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 半導体基板の研磨方法
KR102408831B1 (ko) * 2014-03-31 2022-06-13 니타 듀폰 가부시키가이샤 연마용 조성물
WO2015152149A1 (ja) * 2014-03-31 2015-10-08 ニッタ・ハース株式会社 研磨用組成物
KR102380782B1 (ko) * 2014-03-31 2022-03-29 니타 듀폰 가부시키가이샤 반도체 기판의 연마 방법
KR102375827B1 (ko) 2014-03-31 2022-03-16 니타 듀폰 가부시키가이샤 연마용 조성물 및 연마 방법
US10077380B2 (en) 2014-03-31 2018-09-18 Nitta Haas Incorporated Polishing composition
CN106133107B (zh) * 2014-03-31 2020-11-03 霓达杜邦股份有限公司 研磨用组合物及研磨方法
US10249486B2 (en) 2014-03-31 2019-04-02 Nitta Haas Incorporated Method for polishing semiconductor substrate
TWI670366B (zh) * 2014-03-31 2019-09-01 日商霓塔哈斯股份有限公司 研磨用組合物
US10344184B2 (en) 2014-03-31 2019-07-09 Nitta Haas Incorporated Polishing composition
CN104830236A (zh) * 2015-05-14 2015-08-12 蓝思科技(长沙)有限公司 C向蓝宝石抛光液及其制备方法
CN108699425A (zh) * 2016-01-19 2018-10-23 福吉米株式会社 研磨用组合物及硅基板的研磨方法
JP2017128638A (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
WO2017126268A1 (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
JPWO2018043504A1 (ja) * 2016-08-31 2019-06-24 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット
WO2018043504A1 (ja) * 2016-08-31 2018-03-08 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット
JP7050684B2 (ja) 2016-08-31 2022-04-08 株式会社フジミインコーポレーテッド 研磨用組成物および研磨用組成物セット

Also Published As

Publication number Publication date
TW201730317A (zh) 2017-09-01
JP2014041978A (ja) 2014-03-06
TWI592470B (zh) 2017-07-21
US20150210891A1 (en) 2015-07-30
CN109943236A (zh) 2019-06-28
KR20150048154A (ko) 2015-05-06
CN104736658A (zh) 2015-06-24
TW201422794A (zh) 2014-06-16
KR102167392B1 (ko) 2020-10-19
US9650544B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
KR102167392B1 (ko) 연마용 조성물, 연마용 조성물의 제조 방법 및 연마용 조성물 원액의 제조 방법
JP6193959B2 (ja) リンス用組成物及びリンス方法
TWI547531B (zh) 研磨用組成物、使用此的研磨方法及基板之製造方法
JP6184962B2 (ja) 研磨用組成物及び基板の製造方法
JP6050125B2 (ja) 研磨用組成物、それを用いた研磨方法及び基板の製造方法
KR101981826B1 (ko) 연마용 조성물, 그의 제조 방법, 희석용 원액, 실리콘 기판의 제조 방법, 및 실리콘 기판
JP6381619B2 (ja) 研磨用組成物、及び研磨用組成物の製造方法
KR102047281B1 (ko) 연마용 조성물, 그의 제조 방법, 실리콘 기판의 제조 방법, 및 실리콘 기판
JP6069308B2 (ja) 研磨用組成物の製造方法
JP6029895B2 (ja) 研磨用組成物及び基板の製造方法
JP6013828B2 (ja) 研磨用組成物、当該研磨用組成物の製造方法、及び当該研磨用組成物を用いた半導体基板の製造方法
JP2014038906A (ja) 研磨用組成物、当該研磨用組成物の製造方法、及び当該研磨用組成物を用いた半導体基板の製造方法
TW201422797A (zh) 研磨用組成物之製造方法及研磨用組成物
JP2013171856A (ja) 研磨用組成物及び半導体基板の製造方法
JP6122783B2 (ja) 研磨用組成物及び半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006389

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13831460

Country of ref document: EP

Kind code of ref document: A1