WO2015152150A1 - 研磨用組成物 - Google Patents

研磨用組成物 Download PDF

Info

Publication number
WO2015152150A1
WO2015152150A1 PCT/JP2015/059923 JP2015059923W WO2015152150A1 WO 2015152150 A1 WO2015152150 A1 WO 2015152150A1 JP 2015059923 W JP2015059923 W JP 2015059923W WO 2015152150 A1 WO2015152150 A1 WO 2015152150A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing composition
hydroxyethyl cellulose
polishing
surface defects
abrasive grains
Prior art date
Application number
PCT/JP2015/059923
Other languages
English (en)
French (fr)
Inventor
匡志 寺本
辰哉 中内
規章 杉田
真一 羽場
明子 宮本
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to US15/129,836 priority Critical patent/US10077380B2/en
Priority to CN201580018011.5A priority patent/CN106133108A/zh
Priority to KR1020167028679A priority patent/KR102408832B1/ko
Priority to SG11201608130QA priority patent/SG11201608130QA/en
Priority to DE112015001572.8T priority patent/DE112015001572T5/de
Priority to MYPI2016703571A priority patent/MY188615A/en
Publication of WO2015152150A1 publication Critical patent/WO2015152150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • a semiconductor substrate such as a wafer
  • a semiconductor wafer (hereinafter also simply referred to as a wafer) is highly flat.
  • a high level is required for the reduction of surface defects.
  • it is considered to polish the substrate surface with a polishing composition containing a water-soluble polymer, which is a component that improves wettability to a semiconductor substrate.
  • Patent Document 1 describes a polishing composition containing hydroxyethyl cellulose as a water-soluble polymer.
  • Patent Document 1 selectively removes surface defects of a specific size. It is not possible. Therefore, for example, when there are many surface defects of a specific size on the substrate surface, or when polishing is performed for the purpose of removing surface defects of a specific size from the mixed surface defects, Patent Document 1 discloses.
  • the polishing composition described has a problem that surface defects of a desired size cannot be sufficiently removed.
  • the present invention provides a polishing composition capable of selectively reducing surface defects of a specific size present on the surface of an object to be polished such as a semiconductor substrate.
  • the task is to do.
  • the polishing composition according to the present invention includes hydroxyethyl cellulose, water, and abrasive grains, and the hydroxyethyl cellulose has a molecular weight of 500,000 to 1,500,000, and the mass ratio of the hydroxyethyl cellulose to the abrasive grains is 0.00. 0075 or more and 0.025 or less.
  • the abrasive grains may be contained in an amount of 5% by mass or more and 20% by mass or less.
  • ammonia may further be contained.
  • ammonia may be contained in an amount of 0.1% by mass or more and 1.0% by mass or less.
  • the polishing composition of this embodiment contains hydroxyethyl cellulose, water, and abrasive grains, and the hydroxyethyl cellulose has a molecular weight of 500,000 to 1,500,000, and the mass ratio of the hydroxyethyl cellulose to the abrasive grains is 0.00. 0075 or more and 0.025 or less.
  • the hydroxyethyl cellulose in this embodiment has a molecular weight of 500,000 to 1,500,000, preferably 800,000 to 1,200,000.
  • molecular weight is in the above range, particularly excellent removability can be exhibited with respect to surface defects of a specific size of the polishing object.
  • hydroxyethyl cellulose can improve wettability, but when the molecular weight is in the above range, wettability to a polishing object is improved, and particles on the surface of the polishing object after polishing can be reduced. it can.
  • the molecular weight of hydroxyethyl cellulose in the present embodiment refers to a weight average molecular weight measured using a GFC (gel filtration chromatography; GelGFiltration Chromatography) method, and specifically, measured by the measurement method shown in the examples described later. Value.
  • GFC gel filtration chromatography; GelGFiltration Chromatography
  • the polishing composition of this embodiment contains water. Since the hydroxyethyl cellulose is a hydrophilic polymer, it becomes an aqueous solution easily when mixed with water, and has the effects such as the removal of surface defects of a specific size and the improvement of wettability as described above. Can be demonstrated.
  • the water content is not particularly limited and may be appropriately blended.
  • the polishing composition When the polishing composition is diluted at the time of use, it may be prepared as a high-concentration liquid having a concentration higher than the desired concentration at the time of use, and water may be blended as a diluent at the time of dilution. .
  • the polishing composition of this embodiment contains abrasive grains.
  • the abrasive grains include particles made of metal oxides such as silica, alumina, ceria, and titania, silicon nitride particles, silicon carbide particles, and boron nitride particles.
  • silica is preferable, and colloidal silica such as true spherical or non-spherical colloidal silica is particularly preferable.
  • the abrasive grains are colloidal silica, as will be described later, it is preferable because the hydroxyethyl cellulose aqueous solution is easily adsorbed and the removability of surface defects of a specific size can be further enhanced.
  • non-spherical colloidal silica is preferable.
  • non-spherical colloidal silica is more easily adsorbed by an aqueous hydroxyethyl cellulose solution, and can improve the removal of surface defects of a specific size. Therefore, it is preferable.
  • the ratio of the content (mass%) of the hydroxyethyl cellulose to the content (mass%) of the abrasive grains is 0.0075 or more and 0.025 or less, preferably 0.0075 or more and 0.00. 02 or less.
  • the ratio of the content (mass%) of hydroxyethyl cellulose to the content (mass%) of abrasive grains in the polishing composition is in the above range, the removability of surface defects of a specific size can be further enhanced. At the same time, the wettability of the polished surface of the object to be polished can be improved.
  • the content of abrasive grains in the polishing composition of the present embodiment is not particularly limited.
  • the content of abrasive grains is 5% by mass or more and 20% by mass or less.
  • the particle diameter of the abrasive grains is not particularly limited, and for example, the average particle diameter is 50 nm or more.
  • the average particle diameter of the abrasive grains is within the above range, it is preferable because surface defects of a specific size existing on the surface of the polishing object can be more selectively reduced.
  • the average particle diameter of the present embodiment is measured using a DSL method (dynamic light scattering method). More specifically, it means the average particle diameter in the polishing composition, measured using the apparatus of the examples described later. That is, when an abrasive grain forms a cluster in polishing composition so that an abrasive grain may mention later, the average particle diameter of this cluster is said.
  • DSL method dynamic light scattering method
  • the polishing composition of the present embodiment is considered to have the following interaction by including the hydroxyethyl cellulose, water, and the abrasive grains. That is, in the polishing composition, part of hydroxyethyl cellulose is adsorbed on the surface of the abrasive grains such as colloidal silica. Therefore, in the polishing composition, there are hydroxyethyl cellulose adsorbed on the abrasive grains and hydroxyethyl cellulose mixed in the polishing composition without being adsorbed on the abrasive grains. It is considered that when hydroxyethyl cellulose is adsorbed on the abrasive grains, the abrasive grains form clusters due to the action of hydroxyethyl cellulose.
  • polishing target object can be improved with the hydroxyethyl cellulose mixed in the polishing composition, without adsorb
  • the proportion of hydroxyethyl cellulose adsorbed on the abrasive grains is preferably 30% by mass or more and 99% by mass in the total amount of hydroxyethyl cellulose in the polishing composition.
  • the proportion of hydroxyethyl cellulose adsorbed on the abrasive grains is 60% by mass or more and 99% by mass or less based on the total amount of hydroxyethyl cellulose in the polishing composition.
  • it is 70 mass% or more and 99 mass% or less.
  • the proportion of hydroxyethyl cellulose adsorbed on the abrasive grains is 30% by mass or more and 99% by mass in the total amount of hydroxyethyl cellulose in the polishing composition. It is as follows.
  • the particle diameter of the abrasive grains (clusters) and the ratio of hydroxyethyl cellulose adsorbed on the abrasive grains refer to the particle diameter and the ratio when the polishing composition is used.
  • the polishing composition of this embodiment may further contain ammonia.
  • ammonia By including ammonia, surface defects of a specific size existing on the surface of the object to be polished can be more sufficiently reduced, which is preferable.
  • content of ammonia is not specifically limited, For example, it is 0.1 to 1.0 mass%, Preferably it is 0.25 to 0.75 mass%.
  • a content of ammonia in the above range is preferable because surface defects of a specific size existing on the surface of the polishing object can be more sufficiently reduced.
  • the pH of the polishing composition can be adjusted to an appropriate range.
  • the polishing composition of this embodiment may further contain other components.
  • the other components include a pH adjuster, a surfactant, and a chelating agent.
  • the polishing composition of the present embodiment may be prepared as a high-concentration liquid having a concentration higher than the desired concentration at the time of use, and may be diluted at the time of use.
  • a high concentration liquid When prepared as such a high concentration liquid, it is convenient for storage and transportation of the polishing composition.
  • the concentration When adjusting as a high-concentration liquid, for example, the concentration should be adjusted so that it can be diluted to 5 to 100 times, preferably 20 to 60 times, more preferably about 21 to 41 times during use. Is mentioned.
  • the polishing composition of the present embodiment is used for polishing an object to be polished that requires high flatness and a high level of surface defect reduction, such as a semiconductor substrate such as a semiconductor wafer. In these objects to be polished, it is necessary to sufficiently remove fine surface defects.
  • surface defects of various sizes and shapes exist on the wafer surface. Specifically, a minute surface defect having a height of less than 10 nm, a relatively large size surface defect having a height of 10 nm or more, and the like are mixed. Further, among minute surface defects having a height of less than 10 nm, there are relatively large surface defects having a height of 3 nm or more and particularly minute surface defects having a height of less than 3 nm. In order to reduce such surface defects of various sizes, polishing is performed a plurality of times. For example, it is conceivable that a large surface defect is reduced in the first polishing, and a minute surface defect is removed in the final polishing.
  • the height and width of the surface defect as used in the present embodiment refers to the height and width measured with an atomic force microscope (AFM).
  • the presence / absence of surface defects is determined by counting the number of surface defects. Therefore, if there is a surface defect that can be counted regardless of the size, the count number increases and it is determined that the surface defect is not reduced.
  • the surface defects cannot be sufficiently reduced in the final polishing for the purpose of removing minute surface defects. It will be. Therefore, before the final polishing, it is important not to reduce the count number of surface defects but to remove surface defects having a size that is difficult to remove by the final polishing.
  • the polishing composition of the present embodiment can remove surface defects of a specific size.
  • Examples of the surface defect having a size that can be removed most by the polishing composition of the present embodiment include a relatively large surface defect having a height of 3 nm or more and less than 10 nm.
  • the polishing composition of this embodiment can efficiently remove surface defects having a relatively large size, while leaving relatively small surface defects having a height of less than 3 nm.
  • the polishing composition of the present embodiment has the following advantages by being able to remove such a specific size. That is, when the polishing is performed a plurality of times as described above, the surface defects of the object to be polished after the final polishing can be sufficiently reduced by using the polishing composition before the final polishing. Alternatively, the surface defects can be sufficiently reduced by using a polishing composition that polishes an object to be polished having many relatively large surface defects.
  • the surface of the semiconductor substrate which is an object to be polished after being treated with the polishing composition of the present embodiment, is measured using a surface defect inspection apparatus such as a confocal optical laser microscope (MAGICSICM5640, manufactured by Lasertec).
  • a surface defect inspection apparatus such as a confocal optical laser microscope (MAGICSICM5640, manufactured by Lasertec).
  • the ratio of the count number of relatively small surface defects whose height is less than 3 nm is 45% or more, preferably 70% or more, more preferably 90% or more of the total surface defect count number. That is, the ratio of remaining surface defects other than the relatively small surface defects is small.
  • polishing composition concerning this embodiment is as above, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points.
  • the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • the inventors have included hydroxyethyl cellulose having a specific molecular weight and abrasive grains in a specific ratio, thereby causing surface defects of a specific size. The inventors have found that it can be selectively reduced, and have completed the present invention.
  • the polishing composition according to the present invention is a polishing composition containing hydroxyethyl cellulose, water, and abrasive grains, and the hydroxyethyl cellulose has a molecular weight of 500,000 to 1,500,000, and has a hydroxy content of the abrasive grains.
  • the mass ratio of ethyl cellulose is 0.0075 or more and 0.025 or less.
  • the hydroxyethyl cellulose has a molecular weight of 500,000 to 1,500,000 and a mass ratio of the hydroxyethyl cellulose to the abrasive grains is 0.0075 to 0.025. It is possible to selectively reduce surface defects of a specific size existing on the surface.
  • the content of abrasive grains in the polishing composition when the content of abrasive grains in the polishing composition is in the above range, surface defects of a specific size existing on the surface of the object to be polished can be more selectively reduced. it can.
  • polishing composition when the polishing composition further contains ammonia, surface defects of a specific size existing on the surface of the object to be polished can be more sufficiently reduced.
  • polishing composition contains ammonia in the above-described content range, surface defects having a specific size present on the surface of the polishing object can be more selectively reduced.
  • Hydroxyethyl cellulose having different molecular weights (500,000, million) shown in Table 1 below was prepared.
  • the molecular weight of hydroxyethyl cellulose is a molecular weight measured by the following method.
  • the molecular weight is a value of a weight average molecular weight obtained by measurement as follows.
  • a GFC device manufactured by JASCO Corporation: PU-2085plus type system
  • Asahipak GF-710HQ and GF-310HQ manufactured by Shodex are connected in series, and 0.7% chloride is used as an eluent. Measurement was performed using an aqueous sodium solution.
  • HEC hydroxyethyl cellulose
  • abrasive grains silicon dioxide produced by the sol-gel method, particle size in water: 66 nm by dynamic light scattering method
  • ammonia ammonia
  • residual water residual water
  • Each polishing composition of an example and a comparative example was obtained.
  • Each polishing composition was diluted 41 times with water, a silicon wafer (12 inches) as an object to be polished was polished under the following polishing conditions, and the surface defects after polishing were measured by the following method. It is shown in Table 1.
  • Polishing device SPP800S (Okamoto Machine Tool) Polishing pad: POLYPAS 24T (Fujibo Atago Co., Ltd.) Surface plate speed: 40 rpm Polishing load: 120 gf / cm 2 Flow rate: 0.6L / min Object to be polished: 12 inch Silicon wafer Polishing time: 300 sec
  • the surface defect (Defect) is measured by using a measuring apparatus (MAGICS M5640 (manufactured by Lasertec)) after cleaning the wafer polished under the above polishing conditions with an ammonia / hydrogen peroxide mixed solution (Edge Exclusion EE: 5 mm, Slice level: D37 mV). Based on the coordinates of the defect measured by MAGICS, the defect was measured using a measuring apparatus AFM SAP465 (manufactured by Seiko Instruments Inc.). From the two types of measurement results, surface defects were classified into A to F types by the following method, and the ratio of each surface defect was shown in the graph shown in FIG. Table 1 shows the ratio of each type in%.
  • the MAGICS review image classification method was classified into the following A to F types according to the order of the black and white color portions where the defective portion of the review image changes from the left to the right of the image. Note that a bandpass filter was used for analysis of the MAGICS review image. On the MAGICS review image, when the defect is very small (low) due to the influence of the band-pass filter, the color changes three times such as white ⁇ black ⁇ white or black ⁇ white ⁇ black. A defect is analyzed by AFM to determine whether the defect is white ⁇ black ⁇ white, black ⁇ white ⁇ black, and the height is low.
  • B type monochrome white
  • C type black monochrome
  • D type monochrome
  • E type black white F type: black
  • a type height less than 3 nm, width 50-200 nm, length 200 ⁇ m or more
  • B type height less than 3 nm, width 150-350 nm
  • C type Height 3nm to less than 10nm
  • D type Height 10nm to 30nm
  • E type Height 10nm to 50nm
  • F type height over 50 nm, width over 150 nm
  • the A type is a defect having a flaw-like length component
  • B to F are point or irregular defects.
  • the ratio of B type surface defects was high on the wafer surface after polishing with the polishing composition of the example. That is, surface defects other than the B type were sufficiently removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 ヒドロキシエチルセルロースと水と砥粒とを含み、前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下である研磨用組成物が0.0075以上0.025以下である。

Description

研磨用組成物 関連出願の相互参照
 本願は、日本国特願2014-73436号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、研磨用組成物に関する。
 近年、集積回路の高度集積化などに伴い半導体装置の微細化が進み、その結果、半導体ウェーハ(以下、単にウェーハともいう。)等の半導体基板(以下、単に基板ともいう。)には高い平坦性に加え、表面欠陥の低減についても高いレベルが要求されている。
 かかる表面欠陥を低減させるためには、半導体基板に対する濡れ性を高める成分である水溶性高分子を含む研磨用組成物で基板表面を研磨することが考えられている。
 このような研磨用組成物は、例えば、特許文献1に記載されている。特許文献1には、水溶性高分子としてのヒドロキシエチルセルロースを含む研磨用組成物が記載されている。
 一方、研磨前の基板表面にはさまざまなサイズの表面欠陥が混在しているが、特許文献1に記載のような従来の研磨用組成物は、特定のサイズの表面欠陥を選択的に除去することはできない。そのため、例えば、基板表面に特定のサイズの表面欠陥が多く存在する場合や、混在する表面欠陥の中から特定のサイズの表面欠陥を除去する目的の研磨を行う場合等には、特許文献1に記載の研磨用組成物では目的とするサイズの表面欠陥を十分に除去することができないという問題がある。
日本国特開2010-34509号公報
 そこで、本発明は、上記のような従来の問題を鑑みて、半導体基板等の研磨対象物の表面に存在する特定のサイズの表面欠陥を選択的に低減することができる研磨用組成物を提供することを課題とする。
 本発明に係る研磨用組成物は、ヒドロキシエチルセルロースと水と砥粒とを含み、前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下である。
 本発明において、前記砥粒を5質量%以上20質量%以下含んでいてもよい。
 本発明において、アンモニアをさらに含んでいてもよい。
 この場合、アンモニアを0.1質量%以上1.0質量%以下含んでいてもよい。
研磨後の表面欠陥の割合を示すグラフ。
 以下に、本発明にかかる研磨用組成物について説明する。
 本実施形態の研磨用組成物は、ヒドロキシエチルセルロースと水と砥粒とを含み、前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下である。
 本実施形態におけるヒドロキシエチルセルロースは、分子量が、50万以上150万以下、好ましくは、80万以上120万以下であるものが用いられる。
 分子量が前記範囲であることにより、研磨対象物の特定のサイズの表面欠陥に対して特に優れた除去性を発揮することができる。
 また、ヒドロキシエチルセルロースは、濡れ性を向上させうるが、分子量が前記範囲であることにより、特に、研磨対象物に対する濡れ性が向上し、研磨後の研磨対象物表面のパーティクル等を低減させることができる。
 本実施形態におけるヒドロキシエチルセルロースの分子量とは、GFC(ゲルろ過クロマトグラフィー;Gel Filtration Chromatography)法を用いて測定される重量平均分子量をいい、具体的には、後述する実施例に示す測定方法で測定される値をいう。
 本実施形態の研磨用組成物は水を含む。前記ヒドロキシエチルセルロースは親水性高分子であるため、水と混合されることで容易に水溶液となり、前述のような研磨対象物の特定のサイズの表面欠陥の除去性及び濡れ性の向上等の作用を発揮しうる。
 水の含有量は特に限定されるものではなく、適宜配合されうる。
 尚、研磨用組成物を使用時に希釈して用いる場合には、使用時の所望の濃度よりも高濃度である高濃度液として調製しておき、希釈時に水を希釈液として配合してもよい。
 本実施形態の研磨用組成物は砥粒を含む。
 前記砥粒は、シリカ、アルミナ、セリア、チタニアなどの金属酸化物からなる粒子、窒化ケイ素粒子、炭化ケイ素粒子、窒化ホウ素粒子等が挙げられる。中でも、シリカが好ましく、特に好ましいのは真球状又は非真球状コロイダルシリカ等のコロイダルシリカである。
 砥粒がコロイダルシリカである場合には、後述するように、ヒドロキシエチルセルロース水溶液が吸着しやすく、特定のサイズの表面欠陥の除去性をより高めることができるため好ましい。
 コロイダルシリカの中でも、非真球状コロイダルシリカが好ましい。
 非真球状コロイダルシリカは、研磨用組成物中でヒドロキシエチルセルロースと共存することによって、後述するように、ヒドロキシエチルセルロース水溶液がより吸着しやすく、特定のサイズの表面欠陥の除去性をより高めることができるため好ましい。
 本実施形態の研磨用組成物は、砥粒の含有量(質量%)に対する前記ヒドロキシエチルセルロースの含有量(質量%)の比が0.0075以上0.025以下、好ましくは0.0075以上0.02以下である。
 研磨用組成物における砥粒の含有量(質量%)に対するヒドロキシエチルセルロースの含有量(質量%)の比が前記範囲であることにより、特定のサイズの表面欠陥の除去性をより高めることができる。同時に、研磨対象物の研磨後の表面の濡れ性を向上させることができる。
 本実施形態の研磨用組成物中の砥粒の含有量は特に限定されるものではないが、例えば砥粒の含有量は、5質量%以上20質量%以下である。
 砥粒の含有量が前記範囲である場合には、適度な研磨速度に調整できるため好ましい。
 砥粒の粒子径は特に限定されるものではないが、例えば、平均粒子径が50nm以上であることが挙げられる。砥粒の平均粒子径が前記範囲である場合には、研磨対象物の表面に存在する特定のサイズの表面欠陥をより選択的に低減することができるため好ましい。
 尚、本実施形態の平均粒子径とはDSL法(動的光散乱法;Dynamic light scattering)を用いて測定される。より具体的には後述する実施例の装置を用いて測定される、研磨用組成物中における平均粒子径をいう。すなわち、砥粒が後述するように砥粒が研磨用組成物中でクラスターを形成する場合には、該クラスターの平均粒子径をいう。
 本実施形態の研磨用組成物は、前記ヒドロキシエチルセルロースと水と前記砥粒とを含むことで、以下のような相互作用があると考えられる。
 すなわち、研磨用組成物においてヒドロキシエチルセルロースの一部はコロイダルシリカ等の砥粒表面に吸着される。従って、研磨用組成物中には、砥粒に吸着された状態のヒドロキシエチルセルロースと、砥粒に吸着されずに研磨用組成物中に混合されているヒドロキシエチルセルロースとが存在している。砥粒にヒドロキシエチルセルロースが吸着されると、ヒドロキシエチルセルロースの作用によって砥粒がクラスターを形成すると考えられる。ヒドロキシエチルセルロースの分子量が大きいほど、あるいはヒドロキシエチルセルロースの研磨用組成物中の含有量が多いほど、クラスターは大きくなりやすい。
 かかるクラスターの大きさ及び量によって、研磨対象物の表面に存在する特定のサイズの表面欠陥の低減性能が変化すると考えられる。
 また、砥粒に吸着されずに研磨用組成物中に混合されているヒドロキシエチルセルロースによって、研磨対象物への濡れ性を向上させることができる。
 よって、砥粒に吸着されるヒドロキシエチルセルロースと、吸着されないヒドロキシエチルセルロースとのバランスをとることで、本実施形態の研磨用組成物は、研磨対象物の表面に存在する特定のサイズの表面欠陥を低減することができると考えられる。
 本実施形態の研磨用組成物において、砥粒に吸着されるヒドロキシエチルセルロースの割合は、研磨用組成物中のヒドロキシエチルセルロース全量中の30質量%以上99質量%であることが好ましい。
 ヒドロキシエチルセルロースとして、分子量80万~100万のものを用いた場合は、本砥粒に吸着されるヒドロキシエチルセルロースの割合は、研磨用組成物中のヒドロキシエチルセルロース全量中の60質量%以上99質量%以下、好ましくは70質量%以上99質量%以下であることが好ましい。
 また、ヒドロキシエチルセルロースとして、分子量50万~80万のものを用いた場合は、砥粒に吸着されるヒドロキシエチルセルロースの割合は、研磨用組成物中のヒドロキシエチルセルロース全量中の30質量%以上99質量%以下である。
 尚、本実施形態において、砥粒(クラスター)の粒子径、砥粒に吸着されるヒドロキシエチルセルロースの割合については、研磨用組成物の使用時における粒子径及び前記割合をいう。
 本実施形態の研磨用組成物は、さらにアンモニアを含んでいてもよい。
 アンモニアを含むことで、研磨対象物の表面に存在する特定のサイズの表面欠陥をより十分に低減することができるため好ましい。
 アンモニアの含有量は特に限定されるものではないが、例えば、0.1質量%以上1.0質量%以下、好ましくは0.25質量%以上0.75質量%以下であることが挙げられる。
 アンモニアの含有量が前記範囲である場合には、研磨対象物の表面に存在する特定のサイズの表面欠陥をより十分に低減することができるため好ましい。
 またアンモニアの含有量が前記範囲である場合には、研磨用組成物のpHを適切な範囲に調整することもできるため好ましい。
 本実施形態の研磨用組成物には、さらに他の成分が含まれていてもよい。
 前記他の成分としては、pH調整剤、界面活性剤、キレート剤等が挙げられる。
 本実施形態の研磨用組成物は、使用時の所望の濃度よりも高濃度である高濃度液として調整しておき、使用時に希釈してもよい。
 かかる高濃度液として調整した場合には、研磨用組成物の貯蔵、輸送に便利である。
 尚、高濃度液として調整する場合には、例えば、使用時に5倍~100倍、好ましくは20倍~60倍、より好ましくは21倍~41倍程度に希釈できる濃度になるように調整することが挙げられる。
 本実施形態の研磨用組成物は、半導体ウェーハ等の半導体基板のように高い平坦性、高レベルの表面欠陥の低減が要求される研磨対象物の研磨に用いられる。これらの研磨対象物においては微細な表面欠陥も十分に除去することが必要である。
 例えば、ウェーハ表面には様々なサイズや形状の表面欠陥が存在する。具体的には、高さが10nm未満の微小な表面欠陥や、高さが10nm以上の比較的大きいサイズの表面欠陥等が混在する。さらに、高さ10nm未満の微小な表面欠陥の中でも、高さが3nm以上の比較的大きい表面欠陥と、3nm未満の特に微小な表面欠陥とが存在する。このような様々のサイズの表面欠陥を低減するために、複数回研磨することが行われている。例えば、最初の研磨でサイズの大きい表面欠陥を小さくしていき、最終研磨で微小な表面欠陥を除去することが考えられる。
 尚、本実施形態でいう表面欠陥の高さ及び幅とは、原子間力顕微鏡(Atomic Force Microscope:AFM)で測定される高さ及び幅をいう。
 一方、表面欠陥の有無の判定は、表面欠陥数のカウントで行われる。従って、サイズの大小にかかわらずカウント可能な表面欠陥が存在するとカウント数が大きくなり表面欠陥が低減されていないと判定される。しかし、前述の複数回の研磨において、最終研磨段階に数が少なくてもサイズの大きい表面欠陥が残っていると、微小な表面欠陥の除去を目的とする最終研磨において十分に表面欠陥が低減できないことになる。従って、最終研磨の前までには、表面欠陥のカウント数を低減するのではなく、最終研磨で除去しにくいサイズの表面欠陥を除去することが重要になる。
 本実施形態の研磨用組成物は、特定のサイズの表面欠陥を除去することができる。本実施形態の研磨用組成物で最も多く除去可能なサイズの表面欠陥としては、例えば、高さが3nm以上10nm未満の比較的大きい表面欠陥が挙げられる。言い換えると、本実施形態の研磨用組成物は、高さが3nm未満の比較的小さい微小な表面欠陥は残して、それ以上の比較的大きいサイズの表面欠陥を効率的に除去することができる。
 本実施形態の研磨用組成物は、かかる特定のサイズを除去することができることにより、以下のようなメリットがある。すなわち、前述のような複数回研磨を行う場合に最終研磨前の研磨用組成物として使用することで、最終研磨後の研磨対象物の表面欠陥を十分に低減することができる。あるいは、比較的大きい表面欠陥が多く存在するような研磨対象物を研磨する研磨用組成物として使用することで、表面欠陥を十分に低減することができる。
 本実施形態の研磨用組成物で処理した後の研磨対象物である半導体基板表面は、例えば、コンフォーカル光学系のレーザー顕微鏡(MAGICS M5640 レーザーテック社製)等の表面欠陥検査装置を用いて測定される表面欠陥のうち、高さが3nm未満の比較的小さい表面欠陥のカウント数の割合が全表面欠陥カウント数中の45%以上、好ましくは70%以上、より好ましくは90%以上である。すなわち、前記比較的小さい表面欠陥以外の表面欠陥が残存している割合が少ない状態である。
 尚、本実施形態にかかる研磨用組成物は以上のとおりであるが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明者らは、上述のような課題を解決すべく鋭意検討を行った結果、特定の分子量を有するヒドロキシエチルセルロースと砥粒とを特定の比で含有させることで、特定のサイズの表面欠陥を選択的に低減することができることを見出し、本発明を完成するに至った。
 本発明に係る研磨用組成物は、ヒドロキシエチルセルロースと水と砥粒とを含む研磨用組成物であって、前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下である。
 本発明によれば、前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下であることにより、研磨対象物の表面に存在する特定のサイズの表面欠陥を選択的に低減することができる。
 本発明において、研磨用組成物中の砥粒の含有量が上述のような範囲である場合には、研磨対象物の表面に存在する特定のサイズの表面欠陥をより選択的に低減することができる。
 本発明において、研磨用組成物がアンモニアをさらに含む場合には、研磨対象物の表面に存在する特定のサイズの表面欠陥をより十分に低減することができる。
 研磨用組成物がアンモニアを上述のような含有量の範囲で含む場合には、研磨対象物の表面に存在する特定のサイズの表面欠陥をより選択的に低減することができる。
 以上のように、本発明によれば、半導体基板等の研磨対象物の表面に存在する特定のサイズの表面欠陥を選択的に低減することができる。
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
(ヒドロキシエチルセルロース)
 下記表1に示す異なる分子量(50万、100万)のヒドロキシエチルセルロースを準備した。
 尚、ヒドロキシエチルセルロースの分子量は以下の方法で測定した分子量である。
(分子量の測定)
 分子量は、以下のように測定して得られた重量平均分子量の値である。
 測定装置として、GFC装置(日本分光社製:PU-2085plus型システム)を用い、カラムはShodex社製 AsahipakGF-710HQとGF-310HQを2本直列に連結し用い、溶離液に0.7%塩化ナトリウム水溶液を用いて測定した。
 表1に示す配合で前記ヒドロキシエチルセルロース(HEC)、砥粒(ゾルゲル法で製造された二酸化珪素、水中での粒子径:動的光散乱法で66nm)、アンモニア、残水とを混合して実施例及び比較例の各研磨用組成物を得た。
 各研磨用組成物を水で41倍に希釈して、被研磨物としてのシリコン製ウェーハ(12インチ)を下記研磨条件で研磨を行い、研磨後の表面欠陥を以下の方法で測定した結果を表1に示した。
(研磨条件)
研磨装置:SPP800S(岡本工作機械社製)
研磨パッド:POLYPAS 24T(フジボウ愛媛株式会社製)
定盤速度:40rpm
研磨荷重:120gf/cm
流量:0.6L/min
被研磨物:12inch Silicon wafer 
研磨時間:300sec
(表面欠陥の測定方法)
 表面欠陥(Defect)は、前記研磨条件で研磨した後のウェーハをアンモニア/過酸化水素混合液で洗浄した後に、測定装置(MAGICS M5640(レーザーテック社製)を用いて測定(エッジエクスクルージョン EE:5mm,Slice level:D37mV)を行った。
 MAGICSで測定された欠陥の座標を元に測定装置AFM SAP465 (セイコーインスツル株式会社製)を用いて欠陥の測定を行った。
 前記2種類の測定結果から、表面欠陥を以下方法でA~Fタイプに分類し、図1に示すグラフに各表面欠陥の割合を示した。表1には各タイプの割合を%で示した。
(MAGICレビュー画像の分類)
 MAGICSレビュー画像の分類方法は、レビュー画像の欠陥部分が、画像の左から右に向かって変化する白黒の色の部分の順序によって以下のようなA~Fタイプに分類した。尚、MAGICSのレビュー画像の分析にはバンドパスフィルタを使用した。
 MAGICSレビュー画像上では、バンドバスフィルタの影響で、欠陥が非常に小さい(低い)場合には、白→黒→白あるいは黒→白→黒というように、3回色が変化する。白→黒→白、黒→白→黒のいずれか高さが低い欠陥かはAFMで分析する。
 
Aタイプ:白黒白 且つスクラッチ状の像
Bタイプ:白黒白
Cタイプ:黒白黒
Dタイプ:白黒
Eタイプ:黒白
Fタイプ:黒
 
(表面欠陥の寸法)
 各タイプの欠陥をAFMで測定すると欠陥の寸法は以下のような範囲になった。
 すなわち、欠陥を以下のようなA~Fに分類した。
Aタイプ:高さ3nm未満、幅50-200nm、長さ200μm以上
Bタイプ:高さ3nm未満、幅150-350nm
Cタイプ:高さ3nm以上10nm未満、幅50-70nm
Dタイプ:高さ10nm以上30nm以下、幅70-250nm
Eタイプ:高さ10nm以上50nm以下、幅100-300nm
Fタイプ:高さ50nm超、幅150nm超
 
 尚、Aタイプはキズ状の長さ成分を持つ欠陥であり、B~Fは点または不定形の欠陥である。
(pH)
 各研磨組用成物及びこれらの41倍希釈液の液温度25℃の時のpHを、pHメーター(堀場製作所社製)を用いて測定した。
(吸着ヒドロキシエチルセルロースの測定)
 各研磨用組成物を41倍に水で希釈し、1.5mgサンプルとして採取し、遠心分離機 MCD-2000(アズワン社製)で14000rpm 10min遠心分離した。その後沈殿物と上澄みに分離し、該上澄み液を取り出し、該上澄み液及び各研磨用組成物のTOC(全有機炭素、Total Organic Carbon)量を、測定装置 Siervers900(GE社製)で測定した。測定結果から、下記式1により、各研磨用組成物の吸着ヒドロキシエチルセルロースの割合を算出した結果を表1に示す。
 
吸着ヒドロキシエチルセルロースの割合(%)=(研磨用組成物のTOC-上澄みのTOC)/研磨用組成物のTOC×100・・・(式1)
 
(クラスターの粒子径の測定)
 各研磨用組成物の41倍希釈液中の砥粒(クラスター)の粒子径を測定した。
 測定装置は、ゼータ電位・粒径測定システム ELSZ-2(大塚電子社製)を用いて粒子径を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例の研磨用組成物で研磨後のウェーハ表面には、Bタイプの表面欠陥の割合が多かった。すなわち、Bタイプ以外の表面欠陥は十分に除去されていた。
 

Claims (4)

  1.  ヒドロキシエチルセルロースと水と砥粒とを含み、
     前記ヒドロキシエチルセルロースは分子量が50万以上150万以下であって、
     前記砥粒に対する前記ヒドロキシエチルセルロースの質量比が0.0075以上0.025以下である研磨用組成物。
  2.  前記砥粒を5質量%以上20質量%以下含む請求項1に記載の研磨用組成物。
  3.  アンモニアをさらに含む請求項1又は2に記載の研磨用組成物。
  4.  前記アンモニアを0.1質量%以上1.0質量%以下含む請求項3に記載の研磨用組成物。
     
     
     
     
PCT/JP2015/059923 2014-03-31 2015-03-30 研磨用組成物 WO2015152150A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/129,836 US10077380B2 (en) 2014-03-31 2015-03-30 Polishing composition
CN201580018011.5A CN106133108A (zh) 2014-03-31 2015-03-30 研磨用组合物
KR1020167028679A KR102408832B1 (ko) 2014-03-31 2015-03-30 연마용 조성물
SG11201608130QA SG11201608130QA (en) 2014-03-31 2015-03-30 Polishing composition
DE112015001572.8T DE112015001572T5 (de) 2014-03-31 2015-03-30 Polierzusammensetzung
MYPI2016703571A MY188615A (en) 2014-03-31 2015-03-30 Polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073436 2014-03-31
JP2014073436A JP6389630B2 (ja) 2014-03-31 2014-03-31 研磨用組成物

Publications (1)

Publication Number Publication Date
WO2015152150A1 true WO2015152150A1 (ja) 2015-10-08

Family

ID=54240473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059923 WO2015152150A1 (ja) 2014-03-31 2015-03-30 研磨用組成物

Country Status (9)

Country Link
US (1) US10077380B2 (ja)
JP (1) JP6389630B2 (ja)
KR (1) KR102408832B1 (ja)
CN (1) CN106133108A (ja)
DE (1) DE112015001572T5 (ja)
MY (1) MY188615A (ja)
SG (1) SG11201608130QA (ja)
TW (1) TWI672367B (ja)
WO (1) WO2015152150A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142083A (zh) * 2017-06-16 2017-09-08 宿迁德特材料科技有限公司 一种纤维素纳米纤维基研磨液及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128070A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2007103515A (ja) * 2005-09-30 2007-04-19 Fujimi Inc 研磨方法
WO2014030570A1 (ja) * 2012-08-23 2014-02-27 株式会社 フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140427A (ja) * 1997-11-13 1999-05-25 Kobe Steel Ltd 研磨液および研磨方法
JP2004128069A (ja) 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP4212861B2 (ja) 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
CN100440445C (zh) * 2002-11-08 2008-12-03 福吉米株式会社 抛光组合物和清洗组合物
JP4712556B2 (ja) * 2003-02-18 2011-06-29 株式会社タイテム 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
JP2006108151A (ja) * 2004-09-30 2006-04-20 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハの製造方法
JP4852302B2 (ja) * 2004-12-01 2012-01-11 信越半導体株式会社 研磨剤の製造方法及びそれにより製造された研磨剤並びにシリコンウエーハの製造方法
JP2007214205A (ja) * 2006-02-07 2007-08-23 Fujimi Inc 研磨用組成物
JP5474400B2 (ja) 2008-07-03 2014-04-16 株式会社フジミインコーポレーテッド 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP5441578B2 (ja) 2009-09-11 2014-03-12 花王株式会社 研磨液組成物
US9536752B2 (en) 2009-11-11 2017-01-03 Kuraray Co., Ltd. Slurry for chemical mechanical polishing and polishing method for substrate using same
US8932952B2 (en) * 2010-04-30 2015-01-13 Sumco Corporation Method for polishing silicon wafer and polishing liquid therefor
JP5860057B2 (ja) * 2011-10-24 2016-02-16 株式会社フジミインコーポレーテッド 研磨用組成物、それを用いた研磨方法及び基板の製造方法
WO2013073025A1 (ja) * 2011-11-16 2013-05-23 日産化学工業株式会社 半導体ウェーハ用研磨液組成物
DE112013004295T5 (de) 2012-08-31 2015-05-13 Fujimi Incorporated Polierzusammensetzung und Verfahren zur Herstellung eines Substrats
CN105073941B (zh) * 2013-02-21 2018-01-30 福吉米株式会社 研磨用组合物及研磨物制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128070A (ja) * 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2007103515A (ja) * 2005-09-30 2007-04-19 Fujimi Inc 研磨方法
WO2014030570A1 (ja) * 2012-08-23 2014-02-27 株式会社 フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Also Published As

Publication number Publication date
US20170174940A1 (en) 2017-06-22
TW201544583A (zh) 2015-12-01
US10077380B2 (en) 2018-09-18
TWI672367B (zh) 2019-09-21
KR20160138127A (ko) 2016-12-02
SG11201608130QA (en) 2016-11-29
DE112015001572T5 (de) 2017-02-16
KR102408832B1 (ko) 2022-06-13
MY188615A (en) 2021-12-22
JP6389630B2 (ja) 2018-09-12
JP2015196691A (ja) 2015-11-09
CN106133108A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5474400B2 (ja) 半導体用濡れ剤、それを用いた研磨用組成物および研磨方法
JP5927059B2 (ja) 研磨用組成物及びそれを用いた基板の製造方法
TWI652320B (zh) 半導體基板用潤濕劑及研磨用組合物
WO2015152149A1 (ja) 研磨用組成物
TWI770098B (zh) 矽晶圓研磨用組合物及研磨方法
JP6389630B2 (ja) 研磨用組成物
JP6314019B2 (ja) 半導体基板の研磨方法
JP5575735B2 (ja) 研磨用組成物濃縮物
KR102382508B1 (ko) 슬러리 및 연마 방법
JP7061968B2 (ja) 研磨用組成物及び研磨方法
JP6200979B2 (ja) 研磨用組成物及びそれを用いた基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15129836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001572

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167028679

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15774187

Country of ref document: EP

Kind code of ref document: A1