WO2015198561A1 - シリコンウェーハ研磨用組成物 - Google Patents

シリコンウェーハ研磨用組成物 Download PDF

Info

Publication number
WO2015198561A1
WO2015198561A1 PCT/JP2015/003021 JP2015003021W WO2015198561A1 WO 2015198561 A1 WO2015198561 A1 WO 2015198561A1 JP 2015003021 W JP2015003021 W JP 2015003021W WO 2015198561 A1 WO2015198561 A1 WO 2015198561A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
group
polishing composition
silicon wafer
molecular weight
Prior art date
Application number
PCT/JP2015/003021
Other languages
English (en)
French (fr)
Inventor
公亮 土屋
久典 丹所
裕介 須賀
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to SG11201609077VA priority Critical patent/SG11201609077VA/en
Priority to CN201580033443.3A priority patent/CN106663619B/zh
Priority to KR1020167031846A priority patent/KR102397821B1/ko
Priority to US15/309,281 priority patent/US10344185B2/en
Priority to EP15812028.7A priority patent/EP3163600B1/en
Publication of WO2015198561A1 publication Critical patent/WO2015198561A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the present invention relates to a polishing composition used for polishing a silicon wafer.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • a polishing method in the polishing step a chemical mechanical polishing method in which a water-soluble polymer is included in a polishing liquid is known. In this method, the water-soluble polymer is adsorbed to or desorbed from abrasive grains or a silicon wafer, thereby contributing to reduction of defects and haze on the polished surface.
  • Patent Literature 1 is cited as a technical literature relating to a polishing composition for a silicon wafer.
  • Patent Document 2 is a technical document related to an abrasive used for polishing silicon oxide.
  • polishing composition which can implement
  • improvement of the filterability of polishing composition is calculated
  • the present invention is for polishing silicon wafers that are excellent in performance to reduce haze on the surface of an object to be polished and have reduced cohesiveness (property that particles contained in the polishing composition aggregate in the polishing composition).
  • An object is to provide a composition.
  • a silicon wafer polishing composition used in the presence of abrasive grains contains a silicon wafer polishing accelerator, an amide group-containing polymer A, an organic compound B not containing an amide group, and water.
  • the amide group-containing polymer A has the following general formula (1): Wherein R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, an aralkyl group, an alkoxy group, an alkoxyalkyl group, an alkylol group, an acetyl group, a phenyl group, a benzyl group, chloro A group, a difluoromethyl group, a trifluoromethyl group, or a cyano group, X is (CH 2 ) n (where n is an integer of 4 to 6), (CH 2 ) 2 O (CH 2 ) 2 Or (CH 2 ) 2 S (CH 2 ) 2 ); having a structural unit S derived from a monomer represented by: Then, the relationship between the molecular weight M B of the organic compound B and the molecular weight M A of the amide group-containing polymer A the following formula: 200 ⁇ M B
  • the ratio of the molecular weight M A of the amide group-containing polymer A to the molecular weight M B of the organic compound B is greater than 5. According to this aspect, the ability to reduce haze and the reduction in cohesion can be achieved at a higher level.
  • the molecular weight MB of the organic compound B is less than 1 ⁇ 10 4 .
  • the haze reduction effect is more suitably exhibited.
  • the amide group-containing polymer A has a molecular weight M A of less than 50 ⁇ 10 4 . According to the polishing composition comprising a combination of an amide group-containing polymer A and the organic compound B having such molecular weight M A, the ability to reduce the haze and reduce the cohesive may be compatible at a higher level.
  • R 1 in the general formula (1) is a hydrogen atom or a methyl group.
  • R 1 in the general formula (1) is a hydrogen atom or a methyl group.
  • X in the general formula (1) is (CH 2 ) 2 O (CH 2 ) 2 .
  • X in the general formula (1) is (CH 2 ) 2 O (CH 2 ) 2 .
  • the abrasive grains are silica particles.
  • the haze reduction effect by including the amide group-containing polymer A and the organic compound B in combination can be suitably exhibited.
  • the cohesiveness of the polishing composition can be reduced.
  • the polishing composition disclosed herein includes an amide group-containing polymer A having a structural unit S derived from the monomer s represented by the following general formula (1) in the main chain.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, an aralkyl group, an alkoxy group, an alkoxyalkyl group, an alkylol group, an acetyl group, phenyl Group, benzyl group, chloro group, difluoromethyl group, trifluoromethyl group or cyano group.
  • a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and a phenyl group are preferable, a hydrogen atom, an alkyl group having 1 or 2 carbon atoms is preferable, and a hydrogen atom is particularly preferable.
  • X may be (CH 2 ) n .
  • n is an integer of 4-6.
  • X can also be (CH 2 ) 2 O (CH 2 ) 2 or (CH 2 ) 2 S (CH 2 ) 2 .
  • X is preferably a (CH 2) 2 O (CH 2) 2.
  • Examples of the monomer s disclosed herein include acryloyl piperidine; acryloyl morpholine; acryloyl thiomorpholine; acryloyl pyrrolidine;
  • the above-mentioned monomer s can be used alone or in combination of two or more.
  • the amide group-containing polymer A is preferably nonionic.
  • a polymer that substantially does not contain an anionic or cationic structural unit is preferable.
  • substantially free of anionic or cationic structural units means that the molar ratio of these structural units is less than 3% (for example, less than 1%, preferably less than 0.5%). .
  • the nonionic amide group-containing polymer A contributes to the reduction of haze by adsorbing appropriately to abrasive grains or a silicon wafer during polishing.
  • the above-described moderate adsorption contributes to defect reduction by suitably suppressing residual abrasive grains and polishing scraps in the cleaning process.
  • the molecular weight (M A ) of the amide group-containing polymer A only needs to be larger than the molecular weight (M B ) of the organic compound B described later.
  • the molecular weight of the amide group-containing polymer A is typically less than 100 ⁇ 10 4 , preferably less than 80 ⁇ 10 4 , more preferably less than 50 ⁇ 10 4 from the viewpoint of reducing aggregation or improving filterability. More preferably, it is less than 45 ⁇ 10 4 .
  • the amide group-containing polymer A may have a molecular weight of less than 40 ⁇ 10 4 , for example, 35 ⁇ 10 4 or less.
  • the molecular weight of the amide group-containing polymer A is typically 5 ⁇ 10 3 or more, preferably 1 ⁇ 10 4 or more, more preferably 5 ⁇ 10 4 or more from the viewpoint of haze reduction or the like. From a viewpoint of improving the polishing rate, in a preferred embodiment, the molecular weight of the amide group-containing polymer A may be 10 ⁇ 10 4 or more, for example, 15 ⁇ 10 4 or more.
  • Mw weight average molecular weight (aqueous type, polyethylene glycol conversion) calculated
  • the relationship between the weight average molecular weight Mw and the number average molecular weight Mn of the amide group-containing polymer A is not particularly limited. From the standpoint of reducing cohesiveness, for example, those having a molecular weight distribution (Mw / Mn) of 5.0 or less can be preferably used. From the viewpoint of performance stability of the polishing composition, the Mw / Mn of the amide group-containing polymer A is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less (for example, 2. 5 or less). In principle, Mw / Mn is 1.0 or more. From the viewpoint of availability of raw materials and ease of synthesis, amide group-containing polymer A having Mw / Mn of 1.05 or more can be preferably used.
  • the amide group-containing polymer A disclosed herein is substantially composed only of the structural unit S.
  • the ratio (molar ratio) of the number of moles of the structural unit S to the number of moles of all the structural units contained in the molecular structure of the polymer is 97 mole% or more (for example, 99 mole% or more, Typically, it is preferably 99.5 to 100 mol%).
  • Preferable examples of such a polymer include a homopolymer composed of only one monomer s disclosed herein and a copolymer composed of two or more monomers s.
  • the amide group-containing polymer A disclosed herein is a structural unit derived from one or more monomers t copolymerizable with the monomer s within a range that does not significantly impair the effects of the invention ( Hereinafter, the copolymer may also be referred to as “structural unit T”.
  • the structural unit T is defined as being different from the structural unit S.
  • the proportion (molar ratio) of the structural unit T in the amide group-containing polymer A can be less than 50 mol% (for example, less than 30 mol%, typically less than 10 mol%).
  • the “mol%” is a molar ratio calculated by regarding one constituent unit derived from one monomer (including monomer s and monomer t) as one molecule. Therefore, the ratio of the above-mentioned structural units S and T can respectively correspond to the molar ratio of the monomer s and the monomer t in the total monomer components used for the polymerization.
  • the polishing composition disclosed herein contains, in addition to the amide group-containing polymer A described above, an organic compound B that does not contain an amide group.
  • an organic compound B typically has a molecular weight (M B ) of preferably 200 or more.
  • M B molecular weight
  • the organic compound B that satisfies such conditions can be used without any particular limitation. Examples of such organic compound B include surfactants or water-soluble polymers that do not contain amide groups.
  • an anionic or nonionic surfactant can be preferably employed. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid
  • Nonionic surfactants such as esters, polyoxyalkylene adducts such as polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done.
  • nonionic surfactants include block copolymers of ethylene oxide (EO) and propylene oxide (PO) (diblock bodies, PEO (polyethylene oxide) -PPO (polypropylene oxide) -PEO type triblock bodies).
  • preferable surfactants include block copolymers of EO and PO (particularly, PEO-PPO-PEO type triblock), random copolymers of EO and PO, and polyoxyethylene alkyl ethers (for example, polyoxyethylene alkyl ethers). Oxyethylene decyl ether).
  • the water-soluble polymer not containing an amide group may have at least one functional group selected from a cationic group, an anionic group, and a nonionic group in the molecule.
  • the arbitrary polymer may have, for example, a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a quaternary ammonium structure, a heterocyclic structure, a vinyl structure, a polyoxyalkylene structure, etc. in the molecule.
  • a nonionic polymer can be preferably used as the above-mentioned arbitrary polymer.
  • the optional polymer in the polishing composition disclosed herein include a polymer containing an oxyalkylene unit, a polymer containing a nitrogen atom, and a vinyl alcohol polymer.
  • Examples of the polymer containing an oxyalkylene unit include PEO, a block copolymer of EO and PO, a random copolymer of EO and PO, and the like.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a PPO block.
  • Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Usually, a PEO-PPO-PEO type triblock body is more preferable.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed.
  • the vinyl alcohol polymer is typically a polymer (PVA) containing a vinyl alcohol unit as a main repeating unit.
  • PVA polymer
  • the ratio of the number of moles of vinyl alcohol units to the number of moles of all repeating units is usually 50% or more, preferably 65% or more, more preferably 70% or more, for example 75% or more.
  • All repeating units may consist essentially of vinyl alcohol units.
  • “substantially” typically means that 95% or more of all repeating units are vinyl alcohol units.
  • the types of repeating units other than vinyl alcohol units are not particularly limited, and may be one or more selected from, for example, vinyl acetate units, vinyl propionate units, vinyl hexanoate units, and the like.
  • optional polymers that can be contained in the polishing composition disclosed herein include cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose. And pullulan.
  • polishing composition disclosed in relationship equation between the molecular weight M B of molecular weight M A and the organic compound B of an amide group-containing polymer A: 200 ⁇ M B ⁇ M A; meet.
  • the performance to reduce haze and reduce the cohesive may be compatible at a higher level.
  • a reduction in the cohesiveness of the polishing composition is preferred because the filterability of the polishing composition can be improved.
  • the low molecular weight organic compound B is densely adsorbed on the silicon wafer so as to fill the gap of the high molecular weight amide group-containing polymer A during polishing. It can be considered that this contributes to haze reduction.
  • the ratio of the molecular weight M A of the amide group-containing polymer A to the molecular weight M B of the organic compound B is generally (M A / M B) ⁇ 1. 5 is suitable, preferably (M A / M B ) ⁇ 2, and more preferably (M A / M B )> 5. In a preferred embodiment, (M A / M B ) ⁇ 7, for example, (M A / M B ) ⁇ 10 may be satisfied.
  • the (M A / M B) is, (M A / M B) may be ⁇ 30, may be a (M A / M B) ⁇ 300 , (M A / M B ) ⁇ 500 may be satisfied.
  • the upper limit of (M A / M B ) is not particularly limited, but is preferably (M A / M B ) ⁇ 5000, and (M A / M B ) ⁇ 1000 from the viewpoint of haze reduction performance and the like. Is more preferable.
  • the molecular weight M B of the organic compound B is typically 2 ⁇ 10 4 or less, preferably 1.8 ⁇ 10 4 or less, more preferably 1.5 ⁇ from the viewpoint of haze reduction performance and cohesiveness reduction. 10 4 or less, more preferably 1.2 ⁇ 10 4 or less.
  • the molecular weight M B of the organic compound B may be less than 1 ⁇ 10 4 , for example, 9.5 ⁇ 10 3 or less (typically 9 ⁇ 10 3 or less).
  • the molecular weight M B is preferably 2 ⁇ 10 4 or less, and more preferably less than 1 ⁇ 10 4 .
  • the molecular weight M B is 1 ⁇ 10 3 or less, more preferably 500 or less.
  • the molecular weight M B is 2 ⁇ 10 4 or less, more preferably 1.25 ⁇ 10 4 or less.
  • the molecular weight MB of the organic compound B is typically 2 ⁇ 10 2 or more, and preferably 2.5 ⁇ 10 2 or more from the viewpoint of haze reduction or the like.
  • the molecular weight M B of the organic compound B it is possible to employ a molecular weight calculated from the weight average molecular weight determined by GPC (water, in terms of polyethylene glycol) or formula.
  • the molecular weight M A of the amide group-containing polymer A is 10 ⁇ 10 4 ⁇ M A ⁇ 50 ⁇ 10 4, and the molecular weight M B of the organic compound B 0 3 ⁇ 10 4 ⁇ M B ⁇ 2 ⁇ 10 4 ;
  • the molecular weight M A of the amide group-containing polymer A is 10 ⁇ 10 4 ⁇ M A ⁇ 50 ⁇ 10 4 and the molecular weight M of the organic compound B B is 300 ⁇ M B ⁇ 0.3 ⁇ 10 4 ;
  • the molecular weight M A of the amide group-containing polymer A is 5 ⁇ 10 4 ⁇ M A ⁇ 40 ⁇ 10 4 and the molecular weight M of the organic compound B Examples where B is 0.8 ⁇ 10 4 ⁇ M B ⁇ 3 ⁇ 10 4 ;
  • the polishing composition disclosed herein typically contains water in addition to the amide group-containing polymer A.
  • water ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • an organic solvent lower alcohol, lower ketone, etc.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • the polishing composition disclosed herein (typically a slurry-like composition) has, for example, a solid content (non-volatile content; NV) of 0.01% by mass to 50% by mass, and the balance Is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • NV non-volatile content
  • the balance is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • NV non-volatile content
  • the balance is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia).
  • the polishing composition disclosed herein is used in the presence of abrasive grains.
  • the abrasive has a function of mechanically polishing the surface of the silicon wafer.
  • the abrasive also has a function of rubbing the amide group-containing polymer A adsorbed on the surface of the abrasive grain on a silicon wafer in the polishing composition disclosed herein, or the amide group-containing polymer A adsorbed on the silicon wafer. It has a function to peel off. This adjusts chemical polishing by the silicon wafer polishing accelerator.
  • “the polishing composition is used in the presence of abrasive grains” can include embodiments in which the polishing composition contains abrasive grains.
  • the polishing composition is used in the presence of abrasive grains” can be rephrased as “the polishing composition contains abrasive grains”.
  • the abrasive grains may be used, for example, in the form of fixed abrasive grains included in the polishing pad.
  • the material of the abrasive grains disclosed herein is not particularly limited, and can be appropriately selected according to the purpose of use and usage of the polishing composition.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles;
  • examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • polyacrylonitrile particles Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • abrasive inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable.
  • silica particles can be mentioned. The reason is that if silica particles composed of the same elements and oxygen atoms as the object to be polished (silicon wafer) are used as abrasive grains, no metal or metalloid residue different from silicon is generated after polishing, and the silicon wafer surface This is because there is no possibility of contamination or deterioration of electrical characteristics as a silicon wafer due to diffusion of a metal or metalloid different from silicon into the object to be polished.
  • a polishing composition containing only silica particles as an abrasive is exemplified as a preferred embodiment of the polishing composition from this viewpoint.
  • Silica has a property that it can be easily obtained in high purity. This is also cited as the reason why silica particles are preferable as the abrasive grains.
  • Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are hardly generated on the surface of the object to be polished and a surface having a lower haze can be realized. Of these, colloidal silica is preferred.
  • colloidal silica can be preferably used as abrasive grains of a polishing composition used for polishing (particularly final polishing) of a silicon wafer.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the polishing rate (amount for removing the surface of the object to be polished per unit time) can be improved when polishing a silicon wafer.
  • silica particles having a true specific gravity of 2.2 or less are preferable.
  • a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the abrasive grains contained in the polishing composition may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least a part of the abrasive grains is contained in the polishing composition in the form of secondary particles.
  • the average primary particle diameter D P1 of the abrasive grains is not particular average primary particle diameter D P1 of the abrasive grains limited, from the viewpoint of polishing efficiency, preferably 5nm or more, and more preferably 10nm or more. From the viewpoint of obtaining a higher polishing effect, the average primary particle diameter D P1 is preferably at least 15 nm, more 20nm (e.g. 20nm greater) are more preferred. Further, from the viewpoint that a surface with higher smoothness is easily obtained, the average primary particle diameter DP1 is usually suitably 100 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less. From the viewpoint of obtaining a higher-quality surface, the average primary particle diameter D P1 may be used abrasive grains 35nm or less (typically less than 30 nm).
  • the measurement of the specific surface area of the abrasive grains can be performed using, for example, a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name “Flow Sorb II 2300”.
  • the average secondary particle diameter D P2 of the abrasive grains is preferably 10nm or more, and more preferably 20nm or more. From the viewpoint of obtaining a higher polishing effect, average secondary particle diameter D P2 is preferably at 30nm or more, more preferably 35nm or more, further preferably more than 40nm (e.g. 40nm greater). From the viewpoint of obtaining a higher smoothness surface, average secondary particle diameter D P2 of the abrasive grains is appropriately 200nm or less, preferably 150nm or less, more preferably 100nm or less.
  • an average secondary particle diameter D P2 is 70 nm (more preferably 60nm or less, such as less than 50 nm) and preferably also in a manner of using the abrasive grains Can be implemented.
  • the average secondary particle diameter D P2 of the abrasive grains, the abrasive grains in the aqueous dispersion of interest as a measurement sample for example, measured by dynamic light scattering method using a Nikkiso Co. Model "UPA-UT151" be able to.
  • the concentration of the abrasive grains in the aqueous dispersion of the measurement sample is not particularly limited, but from the viewpoint of measurement accuracy, the concentration of the abrasive grains is preferably 0.5% by mass or less, and is 0.2% by mass or less. It is more preferable.
  • the average secondary particle diameter D P2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D P1 of the abrasive grains (D P2 / D P1 ⁇ 1) and is typically larger than D P1 (D P2 / D P1 > 1).
  • the D P2 / D P1 of the abrasive grains is usually in the range of 1.2 to 3. A range of 5 to 2.5 is preferable, and a range of 1.7 to 2.3 (for example, more than 1.8 and 2.2 or less) is more preferable.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape.
  • abrasive grains in which most of the abrasive grains have a peanut shape can be preferably employed.
  • the average value (average aspect ratio) of the major axis / minor axis ratio of the primary particles of the abrasive grains is preferably 1.05 or more, more preferably 1.1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • a predetermined number for example, 200
  • SEM scanning electron microscope
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the polishing composition disclosed herein typically contains a silicon wafer polishing accelerator in addition to the amide group-containing polymer A, the organic compound B, and water.
  • the silicon wafer polishing accelerator is a component that functions to chemically polish the surface to be polished by being added to the polishing composition and contributes to an improvement in the polishing rate.
  • the silicon wafer polishing accelerator has a function of chemically etching silicon, and is typically a basic compound. Since the basic compound contained in the polishing composition increases the pH of the polishing composition and improves the dispersion state of the abrasive grains and the amide group-containing polymer A, the dispersion stability of the polishing composition can be improved. It can help to improve the mechanical polishing action by the grains.
  • an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, various carbonates or hydrogencarbonates, and the like can be used.
  • alkali metal hydroxide, quaternary ammonium hydroxide or a salt thereof, ammonia, amine and the like can be mentioned.
  • Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • quaternary ammonium hydroxide or a salt thereof examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • Such basic compounds can be used singly or in combination of two or more.
  • Preferred basic compounds from the viewpoint of improving the polishing rate include ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, hydrogen carbonate.
  • Sodium and sodium carbonate are mentioned. Of these, preferred are ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide. More preferred are ammonia and tetramethylammonium hydroxide.
  • a particularly preferred basic compound is ammonia.
  • the polishing composition disclosed herein is a polishing agent such as a chelating agent, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, a preservative, and an antifungal agent, as long as the effects of the present invention are not significantly hindered.
  • a known additive that can be used in a composition for polishing may be further contained as necessary.
  • Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • organic phosphonic acid-based chelating agents are more preferable, and ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable.
  • a particularly preferred chelating agent is ethylenediaminetetrakis (methylenephosphonic acid).
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids.
  • An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
  • antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
  • the polishing composition disclosed herein can be used for polishing a polishing object (silicon wafer) made of single crystal silicon.
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition disclosed herein is preferably applied to polishing of a polishing object having a flat surface such as a plate shape or a polyhedron shape, or polishing of an end portion of the polishing object (for example, polishing of a wafer edge). obtain.
  • the polishing composition disclosed herein can be preferably used for final polishing of an object to be polished. Therefore, according to this specification, the manufacturing method (for example, manufacturing method of a silicon wafer) of the polishing thing including the final polishing process using the said polishing composition is provided.
  • final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step).
  • the polishing composition disclosed herein also refers to a polishing step upstream of final polishing (a preliminary polishing step between a rough polishing step and a final polishing step.
  • the polishing composition includes at least a primary polishing step. Further, it may include a polishing process such as secondary, tertiary, etc.). For example, it may be used in a polishing process performed immediately before final polishing.
  • the polishing composition disclosed herein can be particularly preferably used for polishing a silicon wafer.
  • it is suitable as a polishing composition used for final polishing of a silicon wafer or a polishing process upstream thereof.
  • application to polishing (typically final polishing or polishing immediately before) of a silicon wafer prepared to have a surface roughness of 0.01 nm to 100 nm by an upstream process is effective.
  • Application to final polishing is particularly preferable.
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the polishing composition.
  • the content of the amide group-containing polymer A in the polishing liquid is not particularly limited, and can be, for example, 1 ⁇ 10 ⁇ 4 mass% or more. From the viewpoint of haze reduction or the like, the preferable content is 5 ⁇ 10 ⁇ 4 mass% or more, more preferably 1 ⁇ 10 ⁇ 3 mass% or more, for example, 2 ⁇ 10 ⁇ 3 mass% or more. Further, from the viewpoint of polishing rate and the like, the content is preferably 0.2% by mass or less, and more preferably 0.1% by mass or less (for example, 0.05% by mass or less). In addition, when the said polishing liquid contains 2 or more types of amide group containing polymers A, the said content means the total content of all the amide group containing polymers A contained in this polishing liquid.
  • the content of the organic compound B in the polishing liquid is not particularly limited, and can be, for example, 1 ⁇ 10 ⁇ 5 mass% or more. From the viewpoint of haze reduction performance and cohesiveness reduction, the preferred content is 3 ⁇ 10 ⁇ 5 mass% or more, more preferably 5 ⁇ 10 ⁇ 5 mass% or more, for example, 8 ⁇ 10 ⁇ 5 mass% or more. is there. Moreover, it is preferable to make the said content into 0.2 mass% or less, and it is more preferable to set it as 0.1 mass% or less (for example, 0.05 mass% or less). In addition, when the said polishing liquid contains 2 or more types of organic compound B, the said content means the total content of all the organic compounds B contained in this polishing liquid.
  • the mass ratio (w1 / w2) between the content w1 of the amide group-containing polymer A and the content w2 of the organic compound B is not particularly limited.
  • the range of 05 to 500 is preferable, the range of 0.1 to 200 is more preferable, and the range of 0.5 to 150 is more preferable.
  • the content of abrasive grains in the polishing liquid is not particularly limited, but is typically 0.01% by mass or more and 0.05% by mass or more. It is preferable that it is 0.1% by mass or more, for example, 0.15% by mass or more. By increasing the abrasive content, higher polishing rates can be achieved. From the viewpoint of realizing a surface having a lower haze, usually, the content is suitably 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, For example, it is 1 mass% or less.
  • the content of the silicon wafer polishing accelerator in the polishing liquid disclosed herein is not particularly limited. From the viewpoint of improving the polishing rate, the content is usually preferably 0.001% by mass or more, more preferably 0.003% by mass or more of the polishing liquid. Further, from the viewpoint of haze reduction or the like, the content is preferably less than 0.4% by mass, and more preferably less than 0.25% by mass.
  • the lower limit of the pH of the polishing liquid is not particularly limited.
  • the pH is preferably 8.0 or more, more preferably 9.0 or more, and most preferably 9.5 or more. If the polishing solution has a pH of 8.0 or higher (more preferably 9.0 or higher, most preferably 9.5 or higher), the polishing rate of the silicon wafer is improved, and a silicon wafer with high surface accuracy is efficiently obtained. Can do. Further, the dispersion stability of the particles in the polishing liquid is improved.
  • the upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less, and more preferably 11.0 or less.
  • the abrasive grains (especially silica particles such as colloidal silica, fumed silica, and precipitated silica) contained in the polishing liquid are made of a basic compound. It is possible to prevent dissolution and to suppress a reduction in mechanical polishing action by the abrasive grains.
  • the pH can be adjusted, for example, with an organic acid or an inorganic acid among the basic compound and the other components.
  • the pH can be preferably applied to a polishing liquid used for polishing a silicon wafer (for example, a polishing liquid for final polishing).
  • the pH of the polishing liquid was measured using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) and a standard buffer solution (phthalate pH buffer solution: pH 4.01 ( 25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)), and then the glass electrode Is measured in the polishing liquid after 2 minutes or more has elapsed and stabilized.
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.
  • a standard buffer solution phthalate pH buffer solution: pH 4.01 ( 25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)
  • the polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration rate can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times is appropriate.
  • the concentration ratio of the polishing composition according to a preferred embodiment is 10 to 40 times, for example, 15 to 25 times.
  • the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
  • the NV of the concentrated liquid can be set to 50% by mass or less, for example.
  • the NV of the concentrated liquid is usually suitably 40% by mass or less, and 30% by mass or less. More preferably, it is 20 mass% or less, for example, 15 mass% or less.
  • the NV of the concentrate is suitably 0.5% by mass or more, preferably 1% by mass or more, more preferably Is 3% by mass or more, for example, 5% by mass or more.
  • the content of the amide group-containing polymer A in the concentrated liquid can be, for example, 3% by mass or less.
  • the content is preferably 1% by mass or less, more preferably 0.5% by mass or less, from the viewpoints of filterability and detergency of the polishing composition.
  • the content, manufacturing, distribution, in terms of convenience and cost reduction, etc. at the time of such storage typically is suitably to be at 1 ⁇ 10 -3 wt% or more, preferably 5 ⁇ 10 - It is 3 % by mass or more, more preferably 1 ⁇ 10 ⁇ 2 % by mass or more.
  • Content of the organic compound B in the said concentrate can be 2 mass% or less, for example.
  • the content is preferably 1% by mass or less and more preferably 0.5% by mass or less from the viewpoint of filterability of the polishing composition.
  • the content is usually suitably 1 ⁇ 10 ⁇ 5 mass% or more from the viewpoints of convenience in production, distribution, storage, and cost reduction.
  • the content of abrasive grains in the concentrated liquid can be, for example, 50% by mass or less.
  • the content is preferably 45% by mass or less, more preferably 40% by mass or less, from the viewpoints of stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability.
  • the abrasive content may be 30% by mass or less, or 20% by mass or less (for example, 15% by mass or less).
  • the content of the abrasive grains can be, for example, 0.5% by mass or more, preferably 1% by mass or more, more preferably Is 3% by mass or more (for example, 5% by mass or more).
  • the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • an I liquid for example, a dispersion containing abrasive grains (for example, silica particles), a silicon wafer polishing accelerator, and water) containing a part of the constituents of the polishing composition, and the remaining components
  • the containing II liquid for example, the amide group-containing polymer A and the organic compound B-containing liquid
  • abrasive grains are mixed at a predetermined timing to a polishing composition containing a silicon wafer polishing accelerator, an amide group-containing polymer A, an organic compound B, and water.
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition disclosed herein can be used for polishing a polishing object, for example, in an embodiment including the following operations.
  • a polishing liquid typically a slurry-like polishing liquid, sometimes referred to as a polishing slurry
  • Preparing the polishing liquid may include preparing the polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Or you may use the said polishing composition as polishing liquid as it is.
  • concentration adjustment for example, dilution
  • pH adjustment for example, dilution
  • mixing those agents, diluting one or more agents before the mixing, and after the mixing Diluting the mixture, etc. can be included.
  • the polishing liquid is supplied to the object to be polished and polished by a conventional method.
  • the silicon wafer that has undergone the lapping process and the preliminary polishing process is set in a general polishing apparatus, and the surface of the silicon wafer (surface to be polished) is passed through the polishing pad of the polishing apparatus.
  • a polishing liquid is supplied.
  • the polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two.
  • the polishing of the object to be polished is completed through this polishing step.
  • polishing process is not specifically limited. For example, any of non-woven fabric type, suede type, those containing abrasive grains, those not containing abrasive grains, etc. may be used.
  • the polishing composition disclosed here which is polished using the polishing composition containing abrasive grains, contains a rinsing liquid containing the same components as the polishing composition except that the polishing composition does not contain abrasive grains. Can be used to rinse.
  • the polishing of the object to be polished may include a step (rinsing step) of rinsing the polishing object using a rinsing liquid containing the same components as the polishing composition except that no abrasive grains are included. By the rinsing step, residues such as abrasive grains that cause defects or haze on the surface of the polished article can be reduced.
  • the rinsing process may be performed between the polishing process and the polishing process, and may be performed after the final polishing process and before the cleaning process described later. Except for not containing abrasive grains, rinsing with a rinsing liquid containing the same components as the polishing composition does not hinder the action of the amide group-containing polymer A adsorbed on the silicon wafer surface, and does not cause defects or haze. Further reduction can be achieved.
  • a rinsing liquid is typically a silicon wafer polishing composition containing a silicon wafer polishing accelerator, an amide group-containing polymer A and water (specifically, a composition used for rinsing silicon wafer polishing. Also referred to as a composition). Since the composition of the rinsing composition for the silicon wafer is basically the same as the above-described composition for polishing a silicon wafer except that no abrasive grains are contained, the description thereof will not be repeated here.
  • the polishing object polished using the polishing composition disclosed herein is typically washed after polishing (after rinsing if necessary). This washing can be performed using an appropriate washing solution.
  • the cleaning solution to be used is not particularly limited.
  • an SC-1 cleaning solution ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc.
  • SC-1 cleaning cleaning with the SC-1 cleaning solution
  • SC-2 cleaning solution mixed solution of HCl, H 2 O 2 and H 2 O
  • the temperature of the cleaning liquid can be, for example, about room temperature to 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
  • Example 1 Abrasive grains, water-soluble polymer, organic compound, ammonia water (concentration 29%) and deionized water were mixed to obtain a concentrated liquid of the polishing composition. This concentrated solution was diluted 20 times with deionized water to prepare a polishing composition according to Example 1.
  • abrasive grains colloidal silica having an average primary particle diameter of 35 nm was used. The average primary particle size is measured using a surface area measuring device manufactured by Micromerex, Inc., trade name “Flow Sorb II 2300”.
  • As the water-soluble polymer polyacryloylmorpholine (hereinafter referred to as “PACMO”) having an Mw of 33 ⁇ 10 4 was used.
  • PACMO polyacryloylmorpholine
  • a PEO-PPO-PEO type triblock copolymer having a Mw of 9 ⁇ 10 3 PPO at the center, PEO at both ends, hereinafter referred to as “PEO-PPO-PEO”
  • PPO-PPO-PEO PEO at the center, PEO at both ends
  • the amount of abrasive grains, water-soluble polymer, organic compound and aqueous ammonia used is such that the abrasive grain content in the polishing composition is 0.46%, the water-soluble polymer content is 0.010%, and the organic compound
  • the content of A is 0.0025%, and the content of ammonia (NH 3 ) is 0.010%.
  • Example 2 As an organic compound, polyoxyethylene (ethylene oxide addition mole number 5) decyl ether (hereinafter referred to as “C10PEO5”) having an Mw of 378 is used, and the content of C10PEO5 contained in the composition is 0.0003%.
  • a polishing composition according to this example was prepared in the same manner as Example 1.
  • Example 3 PACMO having a Mw of 17 ⁇ 10 4 is used as the water-soluble polymer, and polyvinyl alcohol having a Mw of 1.2 ⁇ 10 4 (saponification degree of 95 mol% or more; hereinafter referred to as “PVA”) is used as the organic compound.
  • PVA polyvinyl alcohol having a Mw of 1.2 ⁇ 10 4 (saponification degree of 95 mol% or more; hereinafter referred to as “PVA”) is used as the organic compound.
  • a polishing composition according to this example was prepared in the same manner as in Example 1 except that the content of PVA contained in the polishing composition was 0.0100%.
  • Example 4 As the organic compound, the same PVA as in Example 3 and the same PEO-PPO-PEO as in Example 1 were used, the content of PVA contained in the polishing composition was 0.005%, and PEO-PPO-PEO A polishing composition according to this example was prepared in the same manner as in Example 1 except that the content of C was 0.0025%.
  • Example 5 A polishing composition according to this example was prepared in the same manner as in Example 1 except that the content of abrasive grains contained in the polishing composition was 0.35%.
  • Example 1 A polishing composition according to this example was prepared in the same manner as in Example 1 except that PACMO having a Mw of 17 ⁇ 10 4 was used as the water-soluble polymer and that PEO-PPO-PEO was not used.
  • Example 2 A polishing composition according to this example was prepared in the same manner as in Example 1 except that PEO-PPO-PEO was not used.
  • Example 3 Example except that hydroxyethyl cellulose (hereinafter referred to as “HEC”) having an Mw of 25 ⁇ 10 4 was used instead of PACMO, and the content of HEC contained in the polishing composition was 0.017%.
  • HEC hydroxyethyl cellulose
  • EOPO random copolymer a random copolymer of EO and PO (Mw 10 ⁇ 10 4 ; hereinafter referred to as “EOPO random copolymer”) is used, and the EOPO random copolymer contained in the polishing composition is used.
  • the polymer content was 0.017%.
  • PACMO having Mw of 7 ⁇ 10 4 was used as the water-soluble polymer, and the content of PACMO contained in the polishing composition was 0.005%. Others were the same as in Example 1, and a polishing composition according to this example was prepared.
  • the polishing composition according to each example was directly used as a polishing liquid, and the surface of the silicon wafer was polished under the following conditions.
  • a silicon wafer having a diameter of 300 mm, a conductivity type of P type, a crystal orientation of ⁇ 100>, and a resistivity of 0.1 ⁇ ⁇ cm to less than 100 ⁇ ⁇ cm is used as a polishing slurry (Fujimi Co., Ltd.).
  • a product whose surface roughness was adjusted to 0.1 nm to 10 nm by performing preliminary polishing using a product name “GLANZOX 2100” manufactured by Incorporated was used.
  • Polishing machine Single wafer polishing machine manufactured by Okamoto Machine Tool Co., Ltd. Model “PNX-332B” Polishing table: Final polishing 1st stage and 2nd stage after preliminary polishing were carried out using 2 tables at the back stage among the 3 tables of the polishing machine. (The following conditions are the same for each table.) Polishing load: 15 kPa Surface plate rotation speed: 30 rpm Head rotation speed: 30 rpm Polishing time: 2 minutes Polishing liquid temperature: 20 ° C Polishing liquid supply rate: 2.0 l / min
  • the agglomeration rate of the polishing composition in the present specification refers to the average particle diameter of particles in the polishing composition as R 1 , and the average particle diameter of abrasive grains in the control composition described later as R 2 . Is defined as the ratio of R 1 to R 2 (ie, R 1 / R 2 ). It shows that the agglomeration property of polishing composition is so low that the said aggregation rate is small.
  • a method for measuring the aggregation rate of the polishing composition will be specifically described.
  • the polishing composition as a measurement sample, dynamic light scattering using a mean particle diameter of the particles of the polishing composition (volume average particle diameter) of R 1 Nikkiso Co., Ltd. of the type "UPA-UT151" (Measurement apparatus is the same in the following measurement of R 2 ).
  • a control composition is prepared by weighing and mixing the abrasive grains, ammonia water and deionized water used to prepare the polishing composition so as to match the content in the polishing composition.
  • the above-described control composition was prepared in the same manner as in the polishing composition except that no water-soluble polymer and organic compound were used.
  • the resultant control of the composition as a measurement sample, and the average particle diameter (volume average particle diameter) R 2 abrasive grains of the control composition were measured by dynamic light scattering method.
  • both the average particle diameter R 2 of the abrasive grains in the control composition of Examples 1-4 and Comparative Examples 1-4 are 57 nm
  • average particle size abrasive grains in the control composition of Example 5 R 2 was 42nm.
  • Table 1 shows the results of R 1 and the aggregation rate of the polishing composition according to each example.
  • the polishing compositions of Examples 1 to 5 using a combination of a high molecular weight PACMO and a low molecular weight organic compound achieve a high level of both haze reduction performance and cohesion reduction. Showed. Among them, Examples 1, 2, 4 and 5 containing an organic compound having an Mw of less than 1 ⁇ 10 4 showed a more excellent haze reduction effect. In addition, the polishing compositions of Examples 1, 4 and 5 containing PACMO having Mw of 33 ⁇ 10 4 and PEO-PPO-PEO having Mw of 9000 are more excellent in haze reduction performance and cohesion reduction. Of both.
  • the polishing compositions of Comparative Examples 1 and 2 using PACMO alone were insufficient in haze reduction performance.
  • the polishing composition of Comparative Example 3 using a combination of high molecular weight HEC and low molecular weight PEO-PPO-PEO (organic compound) has a lower haze than Comparative Example 1 or 2, but has a cohesive property. The balance between the two performances was high.
  • the polishing composition of Comparative Example 4 using a combination of a low molecular weight PACMO and a high molecular weight EOPO random copolymer (organic compound) is inferior in both haze reduction performance and cohesion reduction. I understood. From these results, it was confirmed that by using a combination of a high molecular weight amino group-containing polymer and a low molecular weight organic compound in combination, haze reduction performance and cohesion reduction can be realized in a balanced manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 ヘイズの低減性能に優れ、かつ、凝集性が低いシリコンウェーハ研磨用組成物を提供すること。ここで提供されるシリコンウェーハ研磨用組成物は、アミド基含有ポリマーAとアミド基を含有しない有機化合物Bとを含む。アミド基含有ポリマーAは、下記一般式(1)で表わされる単量体に由来する構成単位Sを主鎖に有する。また、アミド基含有ポリマーAの分子量Mと有機化合物Bの分子量Mとの関係が次式:200≦M<M;を満たす。

Description

シリコンウェーハ研磨用組成物
 本発明は、シリコンウェーハの研磨に用いられる研磨用組成物に関する。
 半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。上記ポリシング工程における研磨方法としては、水溶性ポリマーを研磨液に含ませるケミカルメカニカルポリシング法が知られている。この方法では、上記水溶性ポリマーが砥粒やシリコンウェーハに吸着したり脱離したりすることによって、研磨表面の欠陥やヘイズの低減に寄与する。シリコンウェーハの研磨用組成物に関する技術文献として、例えば特許文献1が挙げられる。なお、特許文献2は、酸化ケイ素を研磨する用途で使用される研磨剤に関する技術文献である。
特許第4772156号公報 国際公開第2007/055278号
 近年、シリコンウェーハ等の半導体基板その他の基板について、より高品位の表面が要求されるようになってきている。このため、よりヘイズの低い基板表面を実現可能な研磨用組成物が求められている。また、取扱性等の観点から研磨用組成物の濾過性の向上が求められている。このため、凝集物の発生がより抑制された研磨用組成物が提供されれば有意義である。
 そこで本発明は、研磨対象物表面のヘイズを低減する性能に優れ、かつ、凝集性(研磨用組成物に含まれる粒子が該研磨用組成物中で凝集する性質)が低減したシリコンウェーハ研磨用組成物を提供することを目的とする。
 この明細書によると、砥粒の存在下で用いられるシリコンウェーハ研磨用組成物が提供される。このシリコンウェーハ研磨用組成物は、シリコンウェーハ研磨促進剤と、アミド基含有ポリマーAと、アミド基を含有しない有機化合物Bと、水と、を含む。また、前記アミド基含有ポリマーAは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、炭素原子数1~6のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。Xは、(CH(ただし、nは4~6の整数である。)、(CHO(CHまたは(CHS(CHである。);で表わされる単量体に由来する構成単位Sを主鎖に有している。そして、前記アミド基含有ポリマーAの分子量Mと前記有機化合物Bの分子量Mとの関係が次式:200≦M<M;を満たす。かかる研磨用組成物によると、ヘイズを低減する性能と凝集性の低減とがより高レベルで両立され得る。
 ここに開示される研磨用組成物の好ましい一態様では、前記有機化合物Bの分子量Mに対する前記アミド基含有ポリマーAの分子量Mの比(M/M)が5より大きい。かかる態様によると、ヘイズを低減する性能と凝集性の低減とがより高レベルで両立され得る。
 ここに開示される研磨用組成物の好ましい一態様では、前記有機化合物Bの分子量Mは、1×10未満である。かかる分子量Mを有する有機化合物Bと前記アミド基含有ポリマーAとを組み合わせて含む研磨用組成物において、ヘイズの低減効果がより好適に発揮される。
 ここに開示される研磨用組成物の好ましい一態様では、前記アミド基含有ポリマーAの分子量Mは、50×10未満である。かかる分子量Mを有するアミド基含有ポリマーAと前記有機化合物Bとを組み合わせて含む研磨用組成物によると、ヘイズを低減する性能と凝集性の低減とがより高レベルで両立され得る。
 ここに開示される研磨用組成物の好ましい一態様では、前記一般式(1)中のRは水素原子またはメチル基である。かかる構成を有するアミド基含有ポリマーAを含む研磨用組成物において、優れたヘイズ低減性能と凝集性の低減とが両立され得る。
 ここに開示される研磨用組成物の好ましい一態様では、前記一般式(1)中のXは、(CHO(CHである。かかる構成を有するアミド基含有ポリマーAを含む研磨用組成物において、優れたヘイズ低減性能と凝集性の低減とが両立され得る。
 ここに開示される研磨用組成物の好ましい一態様では、前記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いる研磨において、アミド基含有ポリマーAと有機化合物Bとを組み合わせて含むことによるヘイズの低減効果が好適に発揮され得る。また、かかる態様によると、前記研磨用組成物の凝集性が低減され得る。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 <アミド基含有ポリマーA>
 ここに開示される研磨用組成物は、下記一般式(1)で表わされる単量体sに由来する構成単位Sを主鎖に有するアミド基含有ポリマーAを含んでいる。
 一般式(1):
Figure JPOXMLDOC01-appb-C000002
 ここで上記一般式(1)中、Rは水素原子、炭素原子数1~6のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。なかでも、水素原子、炭素原子数1~6のアルキル基、フェニル基が好ましく、さらには、水素原子、炭素原子数1または2のアルキル基が好ましく、水素原子が特に好ましい。Xは(CHであり得る。ただし、nは4~6の整数である。Xはまた、(CHO(CHまたは(CHS(CHであり得る。なかでも、Xは(CHO(CHであることが好ましい。
 ここに開示される単量体sとしては、例えば、アクリロイルピペリジン;アクリロイルモルホリン;アクリロイルチオモルホリン;アクリロイルピロリジン;等が挙げられる。上述の単量体sは1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記アミド基含有ポリマーAはノニオン性であることが好ましい。換言すれば、アニオン性やカチオン性の構成単位を実質的に含まないポリマーが好ましい。ここで、アニオン性やカチオン性の構成単位を実質的に含まないとは、これらの構成単位のモル比が3%未満(例えば1%未満、好ましくは0.5%未満)であることをいう。ノニオン性のアミド基含有ポリマーを含む研磨用組成物を用いることによって、欠陥やヘイズの低減効果が好適に発揮される。その理由を明らかにする必要はないが、ノニオン性のアミド基含有ポリマーAは、研磨時に砥粒やシリコンウェーハに適度に吸着することによりヘイズ低減に寄与していると考えられ得る。また、上記適度な吸着は、洗浄工程における砥粒や研磨屑の残留を好適に抑制して欠陥低減に寄与していると考えられ得る。
 上記アミド基含有ポリマーAの分子量(M)は、後述する有機化合物Bの分子量(M)よりも大きければよい。例えばアミド基含有ポリマーAの分子量は、凝集性の低減あるいは濾過性の向上等の観点から、典型的には100×10未満、好ましくは80×10未満、より好ましく50×10未満、さらに好ましくは45×10未満である。好ましい一態様において、アミド基含有ポリマーAの分子量は、40×10未満であってもよく、例えば35×10以下であってもよい。また、アミド基含有ポリマーAの分子量は、典型的には5×10以上であり、ヘイズ低減等の観点から好ましくは1×10以上、より好ましくは5×10以上である。研磨レート向上の観点から、好ましい一態様において、アミド基含有ポリマーAの分子量は、10×10以上であってもよく、例えば15×10以上であってもよい。なお、アミド基含有ポリマーAの分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)により求められる重量平均分子量(Mw)(水系、ポリエチレングリコール換算)を採用することができる。
 上記アミド基含有ポリマーAの重量平均分子量Mwと数平均分子量Mnとの関係は特に制限されない。凝集性の低減等の観点から、例えば分子量分布(Mw/Mn)が5.0以下であるものを好ましく用いることができる。研磨用組成物の性能安定性等の観点から、アミド基含有ポリマーAのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下(例えば2.5以下)である。なお、原理上、Mw/Mnは1.0以上である。原料の入手容易性や合成容易性の観点から、通常は、Mw/Mnが1.05以上のアミド基含有ポリマーAを好ましく使用し得る。
 ここに開示されるアミド基含有ポリマーAは、実質的に構成単位Sのみからなることが好ましい。換言すると、アミド基含有ポリマーAは、該ポリマーの分子構造に含まれる全構成単位のモル数に占める構成単位Sのモル数の割合(モル比)が97モル%以上(例えば99モル%以上、典型的には99.5~100モル%)であることが好ましい。そのようなポリマーの好適例として、ここに開示される単量体sの1種のみからなるホモポリマーや単量体sの2種以上からなる共重合体が挙げられる。
 また、ここに開示されるアミド基含有ポリマーAは、発明の効果を大きく損なわない範囲で、単量体sと共重合可能な単量体tの1種または2種以上に由来する構成単位(以下、「構成単位T」ともいう。)を含む共重合体であってもよい。上記構成単位Tは、構成単位Sとは異なるものとして定義される。アミド基含有ポリマーAにおける上記構成単位Tの割合(モル比)は50モル%未満(例えば30モル%未満、典型的には10モル%未満)とすることができる。
 なお、上記「モル%」は、一の単量体(単量体sおよび単量体tを包含する。)に由来する一の構成単位を1分子とみなして算出されるモル比である。したがって、上述の構成単位S,Tの割合は、重合に用いられる全モノマー成分に占める単量体sや単量体tのモル比にそれぞれ対応し得る。
 <有機化合物B>
 ここに開示される研磨用組成物は、上述したアミド基含有ポリマーAのほか、アミド基を含有しない有機化合物Bを含有する。かかる有機化合物Bは、典型的には分子量(M)が200以上であることが好ましい。また、炭素原子数が5以上(好ましくは6以上、より好ましくは10以上)である有機化合物を用いることが好ましい。このような条件を満たす有機化合物Bを特に限定することなく用いることができる。かかる有機化合物Bの一例としては、アミド基を含有しない界面活性剤もしくは水溶性ポリマーが挙げられる。
 アミド基を含有しない界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン性界面活性剤が挙げられる。
 ノニオン性界面活性剤の具体例としては、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック体、PEO(ポリエチレンオキサイド)-PPO(ポリプロピレンオキサイド)-PEO型トリブロック体、PPO-PEO-PPO型トリブロック体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO-PPO-PEO型のトリブロック体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。
 アミド基を含有しない水溶性ポリマー(以下「任意ポリマー」ともいう。)は、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記任意ポリマーは、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第四級アンモニウム構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。凝集性の低減や洗浄性向上等の観点から、上記任意ポリマーとしてノニオン性のポリマーを好ましく採用し得る。
 ここに開示される研磨用組成物における任意ポリマーの好適例として、オキシアルキレン単位を含むポリマーや窒素原子を含有するポリマー、ビニルアルコール系ポリマー等が例示される。
 オキシアルキレン単位を含むポリマーの例としては、PEO、EOとPOとのブロック共重合体、EOとPOとのランダム共重合体等が挙げられる。EOとPOとのブロック共重合体は、PEOブロックとPPOブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
 窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を採用し得る。
 ビニルアルコール系ポリマーは、典型的には、主たる繰返し単位としてビニルアルコール単位を含むポリマー(PVA)である。当該ポリマーにおいて、全繰返し単位のモル数に占めるビニルアルコール単位のモル数の割合は、通常は50%以上であり、好ましくは65%以上、より好ましくは70%以上、例えば75%以上である。全繰返し単位が実質的にビニルアルコール単位から構成されていてもよい。ここで「実質的に」とは、典型的には、全繰返し単位の95%以上がビニルアルコール単位であることをいう。PVAにおいて、ビニルアルコール単位以外の繰返し単位の種類は特に限定されず、例えば酢酸ビニル単位、プロピオン酸ビニル単位、ヘキサン酸ビニル単位等から選択される1種または2種以上であり得る。
 ここに開示される研磨用組成物に含有させ得る任意ポリマーの他の例として、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体およびプルランが挙げられる。
 ここで開示される研磨用組成物は、アミド基含有ポリマーAの分子量Mと有機化合物Bの分子量Mとの関係が次式:200≦M<M;を満たす。有機化合物Bの分子量Mをアミド基含有ポリマーAの分子量Mよりも小さくすることによって、ヘイズを低減する性能と凝集性の低減とがより高レベルで両立され得る。上記研磨用組成物の凝集性が低減すると、該研磨用組成物の濾過性が向上し得るため好ましい。上記ヘイズ低減性能が得られる理由を明らかにする必要はないが、低分子量である有機化合物Bが、研磨時に高分子量であるアミド基含有ポリマーAの隙間を埋めるようにシリコンウェーハに緻密に吸着することによりヘイズ低減に寄与していると考えられ得る。
 ヘイズ低減および凝集性低減等の観点から、有機化合物Bの分子量Mに対するアミド基含有ポリマーAの分子量Mの比(M/M)は、概ね(M/M)≧1.5であることが適当であり、好ましくは(M/M)≧2であり、より好ましくは(M/M)>5である。好ましい一態様において、(M/M)≧7であってもよく、例えば(M/M)≧10であってもよい。有機化合物Bが界面活性剤である場合、上記(M/M)は、(M/M)≧30であってもよく、(M/M)≧300であってもよく、(M/M)≧500であってもよい。(M/M)の上限値は特に限定されないが、ヘイズ低減性能等の観点から(M/M)≦5000であることが好ましく、(M/M)≦1000であることがより好ましい。
 例えば有機化合物Bの分子量Mは、ヘイズ低減性能および凝集性の低減等の観点から、典型的には2×10以下、好ましくは1.8×10以下、より好ましくは1.5×10以下、さらに好ましくは1.2×10以下である。好ましい一態様において、有機化合物Bの分子量Mは、1×10未満であってもよく、例えば9.5×10以下(典型的には9×10以下)であってもよい。例えば有機化合物BとしてPEO-PPO-PEO型のトリブロック体を用いた場合、分子量Mは2×10以下であることが好ましく、1×10未満であることがより好ましい。例えば有機化合物Bとしてポリオキシエチレンアルキルエーテルを用いた場合、分子量Mは1×10以下であることが好ましく、500以下であることがより好ましい。例えば有機化合物Bとしてポリビニルアルコール(PVA)を用いた場合、分子量Mは2×10以下であることが好ましく、1.25×10以下であることがより好ましい。また、有機化合物Bの分子量Mは、典型的には2×10以上であり、ヘイズ低減等の観点から好ましくは2.5×10以上である。なお、有機化合物Bの分子量Mとしては、GPCにより求められる重量平均分子量(水系、ポリエチレングリコール換算)または化学式から算出される分子量を採用することができる。
 ここに開示される研磨用組成物の好適例として、アミド基含有ポリマーAの分子量Mが10×10≦M≦50×10であり、かつ、有機化合物Bの分子量Mが0.3×10≦M≦2×10であるもの;アミド基含有ポリマーAの分子量Mが10×10≦M≦50×10であり、かつ、有機化合物Bの分子量Mが300≦M≦0.3×10であるもの;アミド基含有ポリマーAの分子量Mが5×10≦M≦40×10であり、かつ、有機化合物Bの分子量Mが0.8×10≦M≦3×10であるもの;等が例示される。このようなアミド基含有ポリマーAおよび有機化合物Bの分子量の範囲内であると、ヘイズの低減性能と凝集性の低減とがより高レベルで両立され得る。
 <水>
 ここに開示される研磨用組成物は、典型的には、上記アミド基含有ポリマーAのほかに水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
 ここに開示される研磨用組成物(典型的にはスラリー状の組成物)は、例えば、その固形分含量(non-volatile content;NV)が0.01質量%~50質量%であり、残部が水系溶媒(水または水と上記有機溶剤との混合溶媒)である形態、または残部が水系溶媒および揮発性化合物(例えばアンモニア)である形態で好ましく実施され得る。上記NVが0.05質量%~40質量%である形態がより好ましい。なお、上記固形分含量(NV)とは、研磨用組成物を105℃で24時間乾燥させた後における残留物が上記研磨用組成物に占める質量の割合を指す。
 <砥粒>
 ここに開示される研磨用組成物は砥粒の存在下で用いられる。砥粒はシリコンウェーハの表面を機械的に研磨する機能を有する。砥粒はまた、ここに開示される研磨用組成物中で、該砥粒表面に吸着した上記アミド基含有ポリマーAをシリコンウェーハにこすり付ける機能、あるいはシリコンウェーハに吸着した上記アミド基含有ポリマーAをはがす機能を有する。これによって、シリコンウェーハ研磨促進剤による化学的研磨を調整する。なお、本明細書において「研磨用組成物は砥粒の存在下で用いられる」には、研磨用組成物に砥粒が含まれる態様が包含され得るものとする。かかる態様は、ここに開示される研磨用組成物の好適な一態様として把握される。したがって、「研磨用組成物は砥粒の存在下で用いられる」は「研磨用組成物は砥粒を含む」と換言することができる。あるいは、砥粒は、例えば研磨パッドに内包された固定砥粒の形態で用いられてもよい。
 ここに開示される砥粒の材質は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において使用し得る砥粒の好適例としてシリカ粒子が挙げられる。その理由は、研磨対象物(シリコンウェーハ)と同じ元素と酸素原子とからなるシリカ粒子を砥粒として使用すれば研磨後にシリコンとは異なる金属または半金属の残留物が発生せず、シリコンウェーハ表面の汚染や研磨対象物内部にシリコンとは異なる金属または半金属が拡散することによるシリコンウェーハとしての電気特性の劣化などの虞がなくなるからである。かかる観点から好ましい研磨用組成物の一形態として、砥粒としてシリカ粒子のみを含有する研磨用組成物が例示される。また、シリカは高純度のものが得られやすいという性質を有する。このことも砥粒としてシリカ粒子が好ましい理由として挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。なかでも、シリコンウェーハのポリシング(特に、ファイナルポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、シリコンウェーハを研磨する際に、研磨速度(単位時間当たりに研磨対象物の表面を除去する量)が向上し得る。研磨対象物の表面(研磨面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。
 ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。
 砥粒の平均一次粒子径DP1は特に制限されないが、研磨効率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果を得る観点から、平均一次粒子径DP1は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、より平滑性の高い表面が得られやすいという観点から、平均一次粒子径DP1は、通常、100nm以下であることが適当であり、より好ましくは50nm以下、さらに好ましくは40nm以下である。より高品位の表面を得る等の観点から、平均一次粒子径DP1が、35nm以下(典型的には30nm未満)の砥粒を使用してもよい。
 なお、ここに開示される技術において、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積S(m/g)から平均一次粒子径DP1(nm)=2727/Sの式により算出することができる。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
 砥粒の平均二次粒子径DP2は、研磨速度等の観点から、好ましくは10nm以上、より好ましくは20nm以上である。より高い研磨効果を得る観点から、平均二次粒子径DP2は、30nm以上であることが好ましく、35nm以上であることがより好ましく、40nm以上(例えば40nm超)であることがさらに好ましい。また、より平滑性の高い表面を得るという観点から、砥粒の平均二次粒子径DP2は、200nm以下が適当であり、好ましくは150nm以下、より好ましくは100nm以下である。ここに開示される技術は、より高品位の表面を得やすい等の観点から、平均二次粒子径DP2が70nm未満(より好ましくは60nm以下、例えば50nm未満)の砥粒を用いる態様でも好ましく実施され得る。
 砥粒の平均二次粒子径DP2は、対象とする砥粒の水分散液を測定サンプルとして、例えば、日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により測定することができる。測定サンプルの水分散液中の砥粒の濃度は特に限定されないが、測定精度の観点からは、砥粒の濃度は0.5質量%以下にすることが好ましく、0.2質量%以下にすることがより好ましい。
 砥粒の平均二次粒子径DP2は、一般に砥粒の平均一次粒子径DP1と同等以上(DP2/DP1≧1)であり、典型的にはDP1よりも大きい(DP2/DP1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のDP2/DP1は、通常は1.2~3の範囲にあることが適当であり、1.5~2.5の範囲が好ましく、1.7~2.3(例えば1.8を超えて2.2以下)の範囲がより好ましい。
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、砥粒の多くがピーナッツ形状をした砥粒を好ましく採用し得る。
 特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨速度が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。
 上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
 <シリコンウェーハ研磨促進剤>
 ここに開示される研磨用組成物は、典型的には、アミド基含有ポリマーA、有機化合物Bおよび水の他に、シリコンウェーハ研磨促進剤を含有する。シリコンウェーハ研磨促進剤は、研磨用組成物に添加されることによって研磨対象となる面を化学的に研磨する働きをし、研磨速度の向上に寄与する成分である。シリコンウェーハ研磨促進剤は、シリコンを化学的にエッチングする作用を有し、典型的には塩基性化合物である。研磨用組成物に含まれる塩基性化合物は、研磨用組成物のpHを増大させ、砥粒やアミド基含有ポリマーAの分散状態を向上させるため、研磨用組成物の分散安定性の向上や砥粒による機械的な研磨作用の向上に役立ち得る。
 塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。水酸化第四級アンモニウムまたはその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 研磨速度向上等の観点から好ましい塩基性化合物として、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウムおよび水酸化テトラエチルアンモニウムが例示される。より好ましいものとしてアンモニアおよび水酸化テトラメチルアンモニウムが挙げられる。特に好ましい塩基性化合物としてアンモニアが挙げられる。
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハのファイナルポリシングに用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
 キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてエチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。
 有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
 <用途>
 ここに開示される研磨用組成物は、単結晶シリコンからなる研磨対象物(シリコンウェーハ)の研磨に用いられ得る。研磨対象物の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨、もしくは研磨対象物の端部の研磨(例えばウェーハエッジの研磨)に好ましく適用され得る。
 ここに開示される研磨用組成物は、研磨対象物のファイナルポリシングに好ましく使用され得る。したがって、この明細書によると、上記研磨用組成物を用いたファイナルポリシング工程を含む研磨物の製造方法(例えば、シリコンウェーハの製造方法)が提供される。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、ファイナルポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の予備研磨工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えばファイナルポリシングの直前に行われるポリシング工程に用いられてもよい。
 ここに開示される研磨用組成物は、シリコンウェーハの研磨に特に好ましく使用され得る。例えば、シリコンウェーハのファイナルポリシングまたはそれよりも上流のポリシング工程に用いられる研磨用組成物として好適である。例えば、上流の工程によって表面粗さ0.01nm~100nmの表面状態に調製されたシリコンウェーハのポリシング(典型的にはファイナルポリシングまたはその直前のポリシング)への適用が効果的である。ファイナルポリシングへの適用が特に好ましい。
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該研磨用組成物のpHを調整してなる研磨液が挙げられる。
 研磨液におけるアミド基含有ポリマーAの含有量は特に制限されず、例えば1×10-4質量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5×10-4質量%以上であり、より好ましくは1×10-3質量%以上、例えば2×10-3質量%以上である。また、研磨速度等の観点から、上記含有量を0.2質量%以下とすることが好ましく、0.1質量%以下(例えば0.05質量%以下)とすることがより好ましい。なお、上記研磨液が2種以上のアミド基含有ポリマーAを含む場合、上記含有量とは該研磨液に含まれる全てのアミド基含有ポリマーAの合計含有量のことをいう。
 研磨液における有機化合物Bの含有量は特に制限されず、例えば1×10-5質量%以上とすることができる。ヘイズの低減性能および凝集性の低減の観点から、好ましい含有量は3×10-5質量%以上であり、より好ましくは5×10-5質量%以上、例えば8×10-5質量%以上である。また、上記含有量を0.2質量%以下とすることが好ましく、0.1質量%以下(例えば0.05質量%以下)とすることがより好ましい。なお、上記研磨液が2種以上の有機化合物Bを含む場合、上記含有量とは該研磨液に含まれる全ての有機化合物Bの合計含有量のことをいう。
 また、アミド基含有ポリマーAの含有量w1と有機化合物Bの含有量w2との質量比(w1/w2)は特に制限されないが、例えば0.01~1000の範囲とすることができ、0.05~500の範囲が好ましく、0.1~200の範囲がより好ましく、0.5~150の範囲がさらに好ましい。
 ここに開示される研磨用組成物が砥粒を含む場合、研磨液における砥粒の含有量は特に制限されないが、典型的には0.01質量%以上であり、0.05質量%以上であることが好ましく、より好ましくは0.1質量%以上、例えば0.15質量%以上である。砥粒の含有量の増大によって、より高い研磨速度が実現され得る。よりヘイズの低い表面を実現する観点から、通常は、上記含有量は10質量%以下が適当であり、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、例えば1質量%以下である。
 ここに開示される研磨液におけるシリコンウェーハ研磨促進剤の含有量は特に制限されない。研磨速度向上等の観点から、通常は、その含有量を研磨液の0.001質量%以上とすることが好ましく、0.003質量%以上とすることがより好ましい。また、ヘイズ低減等の観点から、上記含有量を0.4質量%未満とすることが好ましく、0.25質量%未満とすることがより好ましい。
 研磨液のpHの下限値は特に限定されない。例えばpHは8.0以上であることが好ましく、さらに好ましくは9.0以上であり、もっとも好ましくは9.5以上である。研磨液のpHが8.0以上(さらに好ましくは9.0以上、もっとも好ましくは9.5以上)であれば、シリコンウェーハの研磨速度が向上し、効率よく表面精度の高いシリコンウェーハを得ることができる。また研磨液中粒子の分散安定性が向上する。研磨液のpHの上限値は特に制限されないが、12.0以下であることが好ましく、11.0以下であることがさらに好ましい。研磨液のpHが12.0以下(さらに好ましくは11.0以下)であれば、研磨液に含まれる砥粒(特にコロイダルシリカ、フュームドシリカ、沈降シリカ等のシリカ粒子)が塩基性化合物によって溶解することを防ぎ、砥粒による機械的な研磨作用の低下を抑制することができる。上記pHは、例えば上記塩基性化合物、上記その他の成分のうちの有機酸または無機酸によって調整され得る。上記pHは、シリコンウェーハの研磨に用いられる研磨液(例えばファイナルポリシング用の研磨液)に好ましく適用され得る。研磨液のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて、3点校正した後で、ガラス電極を研磨液に入れて、2分以上経過して安定した後の値を測定する。
 <濃縮液>
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍~40倍であり、例えば15倍~25倍である。
 このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、後述するように多剤型の研磨用組成物においては、それらのうち一部の剤を希釈した後に他の剤と混合して研磨液を調製してもよく、複数の剤を混合した後にその混合物を希釈して研磨液を調製してもよい。
 上記濃縮液のNVは、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、濃縮液のNVは、40質量%以下とすることが適当であり、30質量%以下が好ましく、より好ましくは20質量%以下、例えば15質量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液のNVは、0.5質量%以上とすることが適当であり、好ましくは1質量%以上、より好ましくは3質量%以上、例えば5質量%以上である。
 上記濃縮液におけるアミド基含有ポリマーAの含有量は、例えば3質量%以下とすることができる。研磨用組成物の濾過性や洗浄性等の観点から、通常、上記含有量は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。また、上記含有量は、製造、流通、保存等の際における利便性やコスト低減等の観点から、通常は1×10-3質量%以上であることが適当であり、好ましくは5×10-3質量%以上、より好ましくは1×10-2質量%以上である。
 上記濃縮液における有機化合物Bの含有量は、例えば2質量%以下とすることができる。研磨用組成物の濾過性等の観点から、通常、上記含有量は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。また、上記含有量は、製造、流通、保存等の際における利便性やコスト低減等の観点から、通常は1×10-5質量%以上とすることが適当である。
 ここに開示される研磨用組成物が砥粒を含む場合、上記濃縮液における砥粒の含有量は、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。好ましい一態様において、砥粒の含有量を30質量%以下としてもよく、20質量%以下(例えば15質量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5質量%以上とすることができ、好ましくは1質量%以上、より好ましくは3質量%以上(例えば5質量%以上)である。
 ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分のうち一部の成分を含むI液(例えば、砥粒(例えばシリカ粒子)とシリコンウェーハ研磨促進剤と水とを含む分散液)と、残りの成分を含むII液(例えばアミド基含有ポリマーAおよび有機化合物B含有液)とが混合されて研磨対象物の研磨に用いられるように構成され得る。あるいはまた、シリコンウェーハ研磨促進剤とアミド基含有ポリマーAと有機化合物Bと水とを含む研磨用組成物に対して、別途用意した砥粒を所定のタイミングで混合する態様で用いられ得る。
 <研磨用組成物の調製>
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(典型的にはスラリー状の研磨液であり、研磨スラリーと称されることもある。)を用意する。上記研磨液を用意することには、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
 次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウェーハのファイナルポリシングを行う場合には、ラッピング工程および予備ポリシング工程を経たシリコンウェーハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウェーハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
 なお、上記研磨工程で使用される研磨パッドは特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
 <リンス>
 ここに開示される研磨用組成物であって砥粒を含む研磨用組成物を用いて研磨された研磨物は、砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いてリンスされ得る。換言すると、研磨対象物の研磨は、砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いて上記研磨物をリンスする工程(リンス工程)を有してもよい。リンス工程により、研磨物の表面の欠陥やヘイズの原因となる砥粒等の残留物を低減させることができる。リンス工程は、ポリシング工程とポリシング工程との間に行われてもよいし、ファイナルポリシング工程の後であって後述の洗浄工程の前に行われてもよい。砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いてリンスすることにより、シリコンウェーハ表面に吸着した上記アミド基含有ポリマーAの作用を阻害せず、欠陥やヘイズをさらに低減することができる。かかるリンス液は、典型的にはシリコンウェーハ研磨促進剤とアミド基含有ポリマーAと水とを含むシリコンウェーハ研磨用組成物(具体的には、シリコンウェーハ研磨のリンスに用いられる組成物。リンス用組成物ともいう。)であり得る。このシリコンウェーハのリンス用組成物の組成等については、砥粒を含まない他は上述のシリコンウェーハ研磨用組成物と基本的に同じなので、ここでは説明は繰り返さない。
 <洗浄>
 また、ここに開示される研磨用組成物を用いて研磨された研磨物は、典型的には、研磨後に(必要であればリンス後に)洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液。以下、SC-1洗浄液を用いて洗浄することを「SC-1洗浄」という。)、SC-2洗浄液(HClとHとHOとの混合液。)等を用いることができる。洗浄液の温度は、例えば常温~90℃程度とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
 <研磨用組成物の調製>
  (実施例1)
 砥粒、水溶性ポリマー、有機化合物、アンモニア水(濃度29%)および脱イオン水を混合して、研磨用組成物の濃縮液を得た。この濃縮液を脱イオン水で20倍に希釈して、実施例1に係る研磨用組成物を調製した。
 砥粒としては、平均一次粒子径35nmのコロイダルシリカを使用した。上記平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたものである。
 水溶性ポリマーとしては、Mwが33×10のポリアクリロイルモルホリン(以下「PACMO」と表記)を使用した。
 有機化合物としては、Mwが9×10のPEO-PPO-PEO型のトリブロック共重合体(中心部がPPO、両端がPEO、以下「PEO-PPO-PEO」と表記する。)を使用した。上記PEO-PPO-PEOにおけるEO単位とPO単位のモル比は、EO:PO=85:15であった。
 砥粒、水溶性ポリマー、有機化合物およびアンモニア水の使用量は、研磨用組成物中における砥粒の含有量が0.46%となり、水溶性ポリマーの含有量が0.010%となり、有機化合物の含有量が0.0025%となり、アンモニア(NH)の含有量が0.010%となる量とした。
  (実施例2)
 有機化合物として、Mwが378のポリオキシエチレン(エチレンオキサイド付加モル数5)デシルエーテル(以下、「C10PEO5」と表記)を使用し、組成物中に含まれるC10PEO5の含有量を0.0003%とした他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (実施例3)
 水溶性ポリマーとしてMwが17×10のPACMOを使用し、有機化合物としてMwが1.2×10のポリビニルアルコール(けん化度95モル%以上;以下、「PVA」と表記)を使用し、研磨用組成物中に含まれるPVAの含有量を0.0100%とした他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (実施例4)
 有機化合物として、実施例3と同じPVAと、実施例1と同じPEO-PPO-PEOとを使用し、研磨用組成物中に含まれるPVAの含有量を0.005%、PEO-PPO-PEOの含有量を0.0025%とした他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (実施例5)
 研磨用組成物中に含まれる砥粒の含有量を0.35%とした他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (比較例1)
 水溶性ポリマーとしてMwが17×10のPACMOを使用したことと、PEO-PPO-PEOを用いなかったこと以外は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (比較例2)
 PEO-PPO-PEOを用いなかったこと以外は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (比較例3)
 PACMOに代えて、Mwが25×10のヒドロキシエチルセルロース(以下、「HEC」と表記)を使用し、研磨用組成物中に含まれるHECの含有量を0.017%とした他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
  (比較例4)
 PEO-PPO-PEOに代えて、EOとPOのランダム共重合体(Mw10×10;以下、「EOPOランダム共重合体」と表記)を使用し、研磨用組成物中に含まれるEOPOランダム共重合体の含有量を0.017%とした。なお、上記EOPOランダム共重合体におけるEO単位とPO単位のモル比は、EO:PO=12:1であった。また、水溶性ポリマーとして、Mwが7×10のPACMOを使用し、研磨用組成物中に含まれるPACMOの含有量を0.005%とした。その他は実施例1と同様にして、本例に係る研磨用組成物を調製した。
 <シリコンウェーハの研磨>
 各例に係る研磨用組成物をそのまま研磨液として使用して、シリコンウェーハの表面を下記の条件で研磨した。シリコンウェーハとしては、粗研磨を行い直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であるものを、研磨スラリー(株式会社フジミインコーポレーテッド製、商品名「GLANZOX 2100」)を用いて予備研磨を行うことにより表面粗さを0.1nm~10nmに調整したものを使用した。
  [研磨条件]
 研磨機:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨テーブル:上記研磨機の有する3テーブルのうち後段の2テーブルを用いて、予備研磨後のファイナル研磨1段目および2段目を実施した。
 (以下の条件は各テーブル同一である。)
 研磨荷重:15kPa
 定盤回転速度:30rpm
 ヘッド回転速度:30rpm
 研磨時間:2分
 研磨液の温度:20℃
 研磨液の供給速度:2.0リットル/分(掛け流し使用)
 <洗浄>
 研磨後のシリコンウェーハを、組成がアンモニア水(濃度29%):過酸化水素水(濃度31%):脱イオン水(DIW)=1:3:30(体積比)である洗浄液を用いて洗浄した(SC-1洗浄)。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持した。そして、研磨後のシリコンウェーハを第1の洗浄槽に上記超音波発振器を作動させた状態で6分間浸漬した後に、超純水を収容したリンス槽に超音波発振器を作動させた状態で浸漬してリンスし、さらに第2の洗浄槽に上記超音波発振器を作動させた状態で6分間浸漬した。
 <ヘイズ測定>
 洗浄後のシリコンウェーハ表面のヘイズ(ppm)を、ケーエルエー・テンコール社製のウェーハ検査装置、商品名「Surfscan SP2」を用いて、DWOモードで測定した。得られた結果を、比較例1のヘイズ値を100%とする相対値に換算して表1に示した。
 <凝集性評価>
 研磨用組成物の凝集性を評価するため、該研磨用組成物の凝集率を測定した。ここで、本明細書における研磨用組成物の凝集率とは、研磨用組成物中の粒子の平均粒子径をR、後述する対照組成物中の砥粒の平均粒子径をR、としたときのRに対するRの比(すなわち、R/R)として定義される。上記凝集率が小さいほど、研磨用組成物の凝集性が低いことを示す。以下、研磨用組成物の凝集率の測定方法を具体的に説明する。
 まず、研磨用組成物を測定サンプルとし、該研磨用組成物中の粒子の平均粒子径(体積平均粒子径)Rを日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により測定した(測定装置は以下のRの測定において同じ)。次に、上記研磨用組成物を作製するのに使用した砥粒、アンモニア水および脱イオン水を、該研磨用組成物における含有量と一致するように秤量して混合することにより、対照組成物を調製した。具体的には、水溶性ポリマーおよび有機化合物を使用しないこと以外は研磨用組成物の作製方法と同様にして上記対照組成物を調製した。得られた対照組成物を測定サンプルとし、該対照組成物中の砥粒の平均粒子径(体積平均粒子径)Rを動的光散乱法によって測定した。その結果、実施例1~4および比較例1~4の対照組成物中の砥粒の平均粒子径Rはいずれも57nmであり、実施例5の対照組成物中の砥粒の平均粒子径Rは42nmであった。得られたRおよびRから、R/Rを算出することにより、研磨用組成物の凝集率を求めた。各例に係る研磨用組成物のRおよび凝集率の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、高分子量のPACMOと低分子量の有機化合物とを組み合わせて使用した実施例1~5の研磨用組成物は、ヘイズの低減性能と凝集性の低減とを高いレベルで両立して示した。なかでもMwが1×10未満である有機化合物を含む実施例1、2、4および5は、より優れたヘイズ低減効果を示した。また、Mwが33×10のPACMOと、Mwが9000のPEO-PPO-PEOとを含む実施例1、4および5の研磨用組成物は、より優れたヘイズ低減性能と凝集性の低減との両立を示した。これに対して、PACMOを単独で使用した比較例1、2の研磨用組成物は、いずれも、ヘイズ低減性能が不足していた。また、高分子量のHECと低分子量のPEO-PPO-PEO(有機化合物)とを組み合わせて使用した比較例3の研磨用組成物は、比較例1または2よりはヘイズが低減したものの、凝集性が高く、両性能のバランスに欠けるものであった。また、低分子量のPACMOと高分子量のEOPOランダム共重合体(有機化合物)とを組み合わせて使用した比較例4の研磨用組成物は、ヘイズの低減性能および凝集性低減のいずれも劣っていることがわかった。これらの結果から、高分子量のアミノ基含有ポリマーと低分子量の有機化合物とを組み合わせて使用することにより、ヘイズ低減性能と凝集性の低減とをバランスよく実現し得ることが確認できた。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (7)

  1.  砥粒の存在下で用いられるシリコンウェーハ研磨用組成物であって、
     シリコンウェーハ研磨促進剤と、
     アミド基含有ポリマーAと、
     アミド基を含有しない有機化合物Bと、
     水と
    を含み、
     前記アミド基含有ポリマーAは、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子、炭素原子数1~6のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。Xは、(CH(ただし、nは4~6の整数である。)、(CHO(CHまたは(CHS(CHである。);で表わされる単量体に由来する構成単位Sを主鎖に有しており、
     前記アミド基含有ポリマーAの分子量Mと前記有機化合物Bの分子量Mとの関係が次式:
      200≦M<M
     を満たす、シリコンウェーハ研磨用組成物。
  2.  前記有機化合物Bの分子量Mに対する前記アミド基含有ポリマーAの分子量Mの比(M/M)が5より大きい、請求項1に記載のシリコンウェーハ研磨用組成物。
  3.  前記有機化合物Bの分子量Mは、1×10未満である、請求項1または2に記載のシリコンウェーハ研磨用組成物。
  4.  前記アミド基含有ポリマーAの分子量Mは、50×10未満である、請求項1から3のいずれか一項に記載のシリコンウェーハ研磨用組成物。
  5.  前記一般式(1)中のRは水素原子またはメチル基である、請求項1から4のいずれか一項に記載のシリコンウェーハ研磨用組成物。
  6.  前記一般式(1)中のXは、(CHO(CHである、請求項1から5のいずれか一項に記載のシリコンウェーハ研磨用組成物。
  7.  前記砥粒はシリカ粒子である、請求項1から6のいずれか一項に記載のシリコンウェーハ研磨用組成物。
PCT/JP2015/003021 2014-06-24 2015-06-17 シリコンウェーハ研磨用組成物 WO2015198561A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201609077VA SG11201609077VA (en) 2014-06-24 2015-06-17 Composition for polishing silicon wafers
CN201580033443.3A CN106663619B (zh) 2014-06-24 2015-06-17 硅晶圆研磨用组合物
KR1020167031846A KR102397821B1 (ko) 2014-06-24 2015-06-17 실리콘 웨이퍼 연마용 조성물
US15/309,281 US10344185B2 (en) 2014-06-24 2015-06-17 Composition for polishing silicon wafers
EP15812028.7A EP3163600B1 (en) 2014-06-24 2015-06-17 Composition for polishing silicon wafers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-129497 2014-06-24
JP2014129497A JP6185432B2 (ja) 2014-06-24 2014-06-24 シリコンウェーハ研磨用組成物

Publications (1)

Publication Number Publication Date
WO2015198561A1 true WO2015198561A1 (ja) 2015-12-30

Family

ID=54937671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003021 WO2015198561A1 (ja) 2014-06-24 2015-06-17 シリコンウェーハ研磨用組成物

Country Status (8)

Country Link
US (1) US10344185B2 (ja)
EP (1) EP3163600B1 (ja)
JP (1) JP6185432B2 (ja)
KR (1) KR102397821B1 (ja)
CN (1) CN106663619B (ja)
SG (1) SG11201609077VA (ja)
TW (1) TWI660037B (ja)
WO (1) WO2015198561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462797A (zh) * 2017-03-31 2019-11-15 福吉米株式会社 研磨用组合物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425016B1 (en) 2016-02-29 2021-01-27 Fujimi Incorporated Polishing composition and polishing method using same
CN109986458B (zh) * 2017-12-29 2021-02-05 长鑫存储技术有限公司 缓研磨去除多晶硅表面凸块缺陷的方法及半导体工艺方法
JP6929239B2 (ja) * 2018-03-30 2021-09-01 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
KR20200076991A (ko) * 2018-12-20 2020-06-30 주식회사 케이씨텍 Sti 공정용 연마 슬러리 조성물
JP7356248B2 (ja) * 2019-03-28 2023-10-04 株式会社フジミインコーポレーテッド リンス用組成物およびリンス方法
KR20210144815A (ko) 2019-03-28 2021-11-30 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
CN112552824B (zh) * 2019-09-26 2023-07-11 福吉米株式会社 研磨用组合物和研磨方法
CN110922897B (zh) * 2019-11-18 2024-03-08 宁波日晟新材料有限公司 一种用于硅化合物的低雾值无损伤抛光液及其制备方法
KR102679084B1 (ko) * 2021-08-30 2024-06-27 주식회사 케이씨텍 산화세륨 연마입자 및 연마 슬러리 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088868A1 (ja) * 2006-01-31 2007-08-09 Hitachi Chemical Co., Ltd. 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
WO2013061771A1 (ja) * 2011-10-24 2013-05-02 株式会社 フジミインコーポレーテッド 研磨用組成物、それを用いた研磨方法及び基板の製造方法
WO2013108770A1 (ja) * 2012-01-16 2013-07-25 株式会社 フジミインコーポレーテッド 研磨用組成物、その製造方法、希釈用原液、シリコン基板の製造方法、及びシリコン基板
WO2014034425A1 (ja) * 2012-08-31 2014-03-06 株式会社 フジミインコーポレーテッド 研磨用組成物及び基板の製造方法
JP2014041978A (ja) * 2012-08-23 2014-03-06 Fujimi Inc 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004068570A1 (ja) * 2003-01-31 2006-05-25 日立化成工業株式会社 Cmp研磨剤及び研磨方法
EP1870928A4 (en) 2005-04-14 2009-01-21 Showa Denko Kk POLISHING COMPOSITION
KR100621154B1 (ko) * 2005-08-26 2006-09-07 서울반도체 주식회사 발광 다이오드 제조방법
CN100587918C (zh) 2005-11-11 2010-02-03 日立化成工业株式会社 氧化硅用研磨剂、添加液以及研磨方法
WO2008013226A1 (fr) * 2006-07-28 2008-01-31 Showa Denko K.K. Composition de polissage
JPWO2009031389A1 (ja) * 2007-09-03 2010-12-09 Jsr株式会社 化学機械研磨用水系分散体およびその調製方法、化学機械研磨用水系分散体を調製するためのキット、ならびに半導体装置の化学機械研磨方法
US20090270566A1 (en) * 2008-04-23 2009-10-29 Fina Technology, Inc. Olefin Polymerization Processes and Catalysts for Use Therein
JP2011171689A (ja) * 2009-07-07 2011-09-01 Kao Corp シリコンウエハ用研磨液組成物
JP4772156B1 (ja) 2010-07-05 2011-09-14 花王株式会社 シリコンウエハ用研磨液組成物
CN104995277B (zh) * 2013-02-13 2018-05-08 福吉米株式会社 研磨用组合物、研磨用组合物制造方法及研磨物制造方法
KR102226501B1 (ko) 2013-02-21 2021-03-11 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 연마물 제조 방법
US10227518B2 (en) 2013-09-30 2019-03-12 Fujimi Incorporated Polishing composition and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088868A1 (ja) * 2006-01-31 2007-08-09 Hitachi Chemical Co., Ltd. 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
WO2013061771A1 (ja) * 2011-10-24 2013-05-02 株式会社 フジミインコーポレーテッド 研磨用組成物、それを用いた研磨方法及び基板の製造方法
WO2013108770A1 (ja) * 2012-01-16 2013-07-25 株式会社 フジミインコーポレーテッド 研磨用組成物、その製造方法、希釈用原液、シリコン基板の製造方法、及びシリコン基板
JP2014041978A (ja) * 2012-08-23 2014-03-06 Fujimi Inc 研磨用組成物、研磨用組成物の製造方法、及び研磨用組成物原液の製造方法
WO2014034425A1 (ja) * 2012-08-31 2014-03-06 株式会社 フジミインコーポレーテッド 研磨用組成物及び基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462797A (zh) * 2017-03-31 2019-11-15 福吉米株式会社 研磨用组合物
CN110462797B (zh) * 2017-03-31 2023-09-22 福吉米株式会社 研磨用组合物

Also Published As

Publication number Publication date
JP2016009759A (ja) 2016-01-18
KR20170021230A (ko) 2017-02-27
TWI660037B (zh) 2019-05-21
US20170081554A1 (en) 2017-03-23
JP6185432B2 (ja) 2017-08-23
CN106663619B (zh) 2020-06-16
US10344185B2 (en) 2019-07-09
SG11201609077VA (en) 2016-12-29
TW201615796A (zh) 2016-05-01
EP3163600B1 (en) 2019-11-06
CN106663619A (zh) 2017-05-10
EP3163600A1 (en) 2017-05-03
EP3163600A4 (en) 2017-06-21
KR102397821B1 (ko) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6185432B2 (ja) シリコンウェーハ研磨用組成物
JP6360108B2 (ja) シリコンウエハ研磨用組成物
JP6279593B2 (ja) 研磨用組成物、研磨用組成物の製造方法およびシリコンウェーハ製造方法
JP6110681B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP2017101248A (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP6691774B2 (ja) 研磨用組成物およびその製造方法
JP2017183359A (ja) シリコン基板の研磨方法および研磨用組成物セット
JP6377656B2 (ja) シリコン基板の研磨方法および研磨用組成物セット
JP5859055B2 (ja) シリコンウェーハ研磨用組成物
JP6348927B2 (ja) シリコンウェーハ研磨用組成物
JP7026043B2 (ja) シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、およびシリコンウェーハの研磨方法
JP6562605B2 (ja) 研磨用組成物の製造方法
JP5859054B2 (ja) シリコンウェーハ研磨用組成物
TWI829675B (zh) 研磨用組合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309281

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167031846

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015812028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812028

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE