WO2014115779A1 - WT1 mRNAの発現量定量方法 - Google Patents

WT1 mRNAの発現量定量方法 Download PDF

Info

Publication number
WO2014115779A1
WO2014115779A1 PCT/JP2014/051294 JP2014051294W WO2014115779A1 WO 2014115779 A1 WO2014115779 A1 WO 2014115779A1 JP 2014051294 W JP2014051294 W JP 2014051294W WO 2014115779 A1 WO2014115779 A1 WO 2014115779A1
Authority
WO
WIPO (PCT)
Prior art keywords
mrna
seq
base sequence
sequence shown
pcr
Prior art date
Application number
PCT/JP2014/051294
Other languages
English (en)
French (fr)
Inventor
容子 西條
隆太 伊藤
古賀 大輔
Original Assignee
大塚製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚製薬株式会社 filed Critical 大塚製薬株式会社
Priority to CN201480005576.5A priority Critical patent/CN104937112B/zh
Priority to AU2014208593A priority patent/AU2014208593A1/en
Priority to CA2898965A priority patent/CA2898965A1/en
Priority to EP14743826.1A priority patent/EP2949760B1/en
Priority to KR1020187010959A priority patent/KR20180043401A/ko
Priority to US14/762,454 priority patent/US10280467B2/en
Priority to ES14743826T priority patent/ES2731780T3/es
Priority to JP2014558599A priority patent/JP6636247B2/ja
Priority to KR1020157022395A priority patent/KR20150109427A/ko
Publication of WO2014115779A1 publication Critical patent/WO2014115779A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a new method for quantifying the expression level of human WT1 mRNA that can be used for diagnosis of cancer such as leukemia and solid cancer and determination of bone marrow transplantation timing.
  • WT1 Wilms tumor gene-1
  • Non-patent Document 2 The Wilms tumor-1 gene (Wilms tumor gene-1; hereinafter referred to as “WT1”) gene was identified as a causative gene of childhood Wilms tumor in 1990 by Call et al.
  • WT1 mRNA is expressed not only in pediatric Wilms tumor but also in solid cancer cells such as gastric cancer cell lines, colon cancer cell lines, lung cancer cell lines, and breast cancer cell lines. It has been shown (Non-patent Document 2) that the WT1 gene is now considered to be a cancer-related gene related to many cancers as well as childhood Wilms tumor.
  • Non-patent Document 1 Reported the expression of WT1 mRNA in K562 cells and CCRF-CEM cells (see Non-Patent Document 1), and Miwa et al. Reported acute myeloid leukemia (acute myeloid leukemia) by Northern blot analysis.
  • AML acute myeloid leukemia
  • Non-patent Document 5 the expression level of WT1 mRNA at the time of diagnosis is related to prognosis (Non-patent document 5), the expression level of WT1 mRNA is negatively increased once after treatment (Non-patent document 6), and It has been reported that the expression level of WT1 mRNA at the time of recurrence is higher than the expression level at the time of diagnosis (Non-patent Document 7).
  • the WT1 gene is a new minimal residual disease in the treatment of AML. Since it is useful as a monitoring marker of (minimal residual disease, hereinafter also referred to as “MRD”), it has been conventionally sold as a pharmaceutical for in vitro diagnosis.
  • MRD minimal residual disease
  • Patent Document 1 As a method for measuring human WT1 mRNA, a competitive quantification method based on ⁇ -actin is conventionally known (Patent Document 1). However, in this measurement method, it is necessary not only to measure WT1 mRNA and ⁇ -actin mRNA individually, but also to perform a so-called two-step RT-PCR method in which an extension reaction is performed after reverse transcription reaction. Takes time.
  • Patent Document 2 discloses a one-step RT-PCR method for WT1 mRNA.
  • this measurement method is complicated because it is necessary to separately measure the expression level of the housekeeping gene for correcting the expression level of the WT1 gene.
  • an object of the present invention is to provide a new WT1 mRNA quantification method that can be carried out simply and in a short time.
  • the present invention aims to provide a new WT1 mRNA quantification method that enables simple and short-time implementation by simultaneously quantifying the expression levels of both human WT1 mRNA and housekeeping gene. .
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems.
  • the reverse transcription reaction and elongation reaction of the target gene human WT1 gene (mRNA) and the correction gene housekeeping gene (mRNA) are performed.
  • the present inventors have found that the expression level of the target human WT1RNA mRNA can be quantified in a short time and simply by proceeding simultaneously and continuously in the same container (1 step).
  • the target gene can be obtained more easily and in almost the same time as compared with the two-step RT-PCR method in which the target gene and the correction gene are amplified separately. It was confirmed that it was possible to detect with high sensitivity.
  • the present invention has been completed based on such knowledge, and includes the following embodiments.
  • (I) Method for quantifying the expression level of human WT1 mRNA (I-1) A method for quantifying the expression level of human WT1 mRNA using a one-step RT-PCR method, comprising human WT1 mRNA and a housekeeping gene (mRNA) A method for quantifying the expression level of human WT1 mRNA, wherein the reverse transcription reaction and the extension reaction of are allowed to proceed simultaneously and continuously in the same container. (I-2) The method according to (I-1), wherein the housekeeping gene is GAPDH mRNA.
  • (I-3) For PCR amplification of human WT1 mRNA, (A) A primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 3 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 4, or (b) a forward consisting of the base sequence shown in SEQ ID NO: 9
  • (I-4) For PCR amplification of human WT1 mRNA, (A ′) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 3 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 4, and a probe consisting of a labeled base sequence shown in SEQ ID NO: 5 Or (b ′) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 9 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 10 and a labeled base sequence shown in SEQ ID NO: 11 The method described in (I-1) or (I-2) using the probe.
  • (I-5) Primer set comprising PCR amplification of human WT1 mRNA and (c) a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 6 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 7 or 12 The method described in (I-3) or (I-4).
  • (II) Real-time PCR kit for quantifying the expression level of human WT1 mRNA (II-1) (a) Forward PCR primer consisting of the base sequence shown in SEQ ID NO: 3 and reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 4 Or (b) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 9 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 10, A kit for real-time PCR for quantifying the expression level of human WT1 mRNA comprising (II-2) (a ′) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 3 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 4, and a labeled SEQ ID NO: 5 (B ′) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 9 and a reverse PCR primer
  • (II-4) Further, (c ′) a primer set consisting of a forward PCR primer consisting of the base sequence shown in SEQ ID NO: 6 and a reverse PCR primer consisting of the base sequence shown in SEQ ID NO: 7 or 12, and a labeled SEQ ID NO:
  • the method of the present invention it is possible to provide a method for quantifying the expression level of WT1 mRNA, which can be measured in a short time with simple operation and labor, compared to the conventional method for quantifying the expression level of WT1 mRNA. it can. Further, according to the method of the present invention, it is possible to detect with higher sensitivity than the measurement method using the conventional two-step RT-PCR method. That is, by using the method of the present invention or the kit for real-time PCR, the expression level of human WT1 mRNA can be quantified with high sensitivity in a simple and short time.
  • the expression level of human WT1 mRNA quantified is a useful index for diagnosis of onset and recurrence of leukemia and solid cancer, judgment of prognosis, and determination of the timing of bone marrow transplantation.
  • Example 1 which shows the GAPDH mRNA amplification curve at the time of amplifying GAPDH mRNA alone for the GAPDH RNA standard product of (1).
  • Example 1 which shows the GAPDH mRNA amplification curve at the time of amplifying WT1 mRNA and GAPDH mRNA simultaneously.
  • Example 2 Using 1-step RT-PCR that simultaneously amplifies WT1 mRNA and GAPDH mRNA as primers and probes, (A) the set shown in Table 8 (sequence set B) and (B) the set shown in Table 9 (comparison set), respectively. The results of agarose gel electrophoresis of the amplification product obtained by using this method are shown.
  • the method of the present invention is a method for quantifying the expression level of human WT1 mRNA using a one-step RT-PCR method.
  • the human WT1 gene to be measured by the present invention is a gene consisting of 3037 bp identified as a causative gene of childhood Wilms tumor as described above, and ⁇ Homo sapiens Wilms tumor 1 (WT1), transcript variant D, mRNA '' As registered with NCBI (NM_024426.4).
  • the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • the test sample to be measured by the method of the present invention is not particularly limited as long as it contains the above-mentioned human WT1RNA mRNA, for example, human-derived cells, tissues, blood, sputum, feces, urine and other biological samples, A total RNA obtained by processing by a known method from a sample possibly containing WT1 mRNA, a sample enriched in mRNA, or the like can be used.
  • the RNA sample can be used in an aqueous solution or in an adsorbed or immobilized state on an appropriate solid phase.
  • the total RNA amount is suitably 0.01 ng to 1 ⁇ g per 100 ⁇ l of reaction solution.
  • a housekeeping gene is a gene that is always expressed and present in any cell regardless of cell differentiation, has no essential function, but has an essential role in their survival, such as RNA synthase, energy Genes such as production system enzymes, ribosomal proteins, and cytoskeletal proteins can be exemplified. Specifically, genes such as GAPDH (glyceraldehyde-3-phosphate dehydrogenase), ⁇ -actin, ⁇ 2-microglobulin, and HPRT 1 (hypoxanthine phosphoribosyltransferase 1) can be mentioned.
  • the housekeeping gene used in the present invention is preferably one that does not compete with the human WT1 gene to be measured for amplification by RT-PCR, for example, one that has low base sequence homology. GAPDH is preferred.
  • GAPDH is a gene registered with NCBI as “Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mRNA” (NM_002046.3). The base sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • the reaction buffer used in the one-step RT-PCR method may be a water-soluble buffer suitable for the activity of an enzyme having reverse transcription activity,
  • a buffer solution having a pH of 7 to 10, preferably pH 8 to 9, such as a Tris buffer can be mentioned.
  • this buffer contains various ions necessary for the activity of an enzyme having a reverse transcription activity or a DNA polymerase.
  • Na ions and K ions are added in a salt form in a concentration of 5 to 50 mM.
  • Mg ions are added at 1-10 mM in salt form.
  • an agent that promotes or stabilizes the activity of an enzyme having reverse transcription activity or a DNA polymerase such as a surfactant, bovine serum albumin (BSA), gelatin, and the like can be added as necessary.
  • a ribonuclease inhibitor may be added to suppress degradation of RNA and RNA competitors in the sample.
  • Enzymes with reverse transcription activity include avian osteoblastosis virus-derived reverse transcriptase (AMV), Rous-related virus-derived reverse transcriptase (RAV2), Moloney murine leukemia virus-derived reverse transcriptase (MMLV), and thermus thermo Examples include DNA polymerase (Tth) derived from Thermusthermophilus, DNA polymerase (Bca) derived from Bacillus cardotenax ⁇ ⁇ ⁇ , and derivatives thereof, among which Tth is most suitable for the present invention. Specific examples of Tth include Thermostable enzyme DNA polymerase derived from Thermus species Z05. These enzymes may be either purified and obtained from their original origin, or recombinant proteins produced by genetic engineering.
  • AMV avian osteoblastosis virus-derived reverse transcriptase
  • RAV2 Rous-related virus-derived reverse transcriptase
  • MMLV Moloney murine leukemia virus-derived reverse transcriptase
  • thermus thermo Examples include DNA polyme
  • dNTP deoxynucleotide triphosphates
  • the primer used for cDNA synthesis (reverse transcription reaction and extension reaction) from the target RNA is an oligonucleotide having at least a base sequence complementary to the base sequence of the target RNA, under the reaction conditions employed. It must be annealed to the target RNA. Examples of the length of the oligonucleotide include 6 to 100 nucleotides, preferably 10 to 30 nucleotides. Modified and / or labeled primers can also be used. The primer can be chemically synthesized by, for example, a known method. The primer used in PCR must be capable of amplifying DNA using at least cDNA derived from the target RNA as a template.
  • the oligonucleotide has at least a base sequence complementary to the base sequence of the template cDNA and anneals to the cDNA under the reaction conditions employed.
  • it is an oligonucleotide that functions as a primer for cDNA synthesis (reverse transcription reaction and extension reaction) from the target RNA and also functions as a primer for DNA using cDNA as a template.
  • a primer set suitably used for reverse transcription, extension, and amplification of human WT1WT mRNA, which is the target gene of the present invention is composed of (A1) Forward primer and (A2) Reverse primer described in Table 1 below. Mention may be made of primer set A and primer set B consisting of (B1) Forward primer and (B2) Reverse primer described in Table 2. Tables 1 and 2 also show sequence-specific binding probes ((A3) Probe, (B3) Probe) used to detect human WT1 gene amplification products amplified with these primer sets. . Such a probe is preferably labeled in order to facilitate detection of the amplified product.
  • primer sets that are preferably used to reverse-transcribe, extend, and amplify human GAPDH mRNA that is preferably used as a housekeeping gene in the method of the present invention are described in Table 1 below (a1) Forward Examples include primer set A comprising a primer and (a2) Reverse primer, and primer set B comprising (b1) Forward primer and (b2) Reverse primer described in Table 2.
  • Tables 1 and 2 also show sequence-specific binding probes ((a3) Probe, (b3) Probe) used to detect human GAPDH gene amplification products amplified with these primer sets. . Such a probe is preferably labeled in order to facilitate detection of the amplified product.
  • the probe labeling method includes an RI method and a non-RI method, but it is preferable to use a non-RI method.
  • Non-RI methods include a fluorescent labeling method, a biotin labeling method, a chemiluminescence method, and the like, and the fluorescent labeling method is preferably used.
  • the fluorescent substance is not particularly limited as long as it can bind to the base moiety of nucleic acid, but cyanine dyes (Cy ⁇ DyeTM series Cy3 and Cy5 etc.), rhodamine 6G reagent, N-acetoxy-N2-acetylaminofluorene and its iodine Derivatives can be used.
  • RNA standard used in the present invention can be prepared by a known method. For example, “Proceedings of the National Academy of Sciences of the United States of America (Proc. Natl. Acad. Sci. USA), Vol.87, 275-2729 (1990)”, “Clinical Chemistry (Clin. Chem. ), Vol. 41, pp. 819-825 (1995) ”,“ Blood, Vol. 82, 1929-1936 (1993) ”, and the like.
  • a promoter sequence serving as a reaction base point of an RNA synthetase for example, T7 RNA polymerase, is added to the double-stranded DNA sequence to be amplified to create a DNA sequence that serves as a template for RNA synthesis.
  • RNA polymerase for example, T7 RNA polymerase
  • double-stranded DNA containing an RNA promoter sequence and nucleoside triphosphate are added and reacted at 37 ° C. for 30 minutes to 2 hours, so that one complementary to the template DNA downstream of the RNA promoter. Synthesize single-stranded RNA.
  • reaction operation and reaction conditions of the 1-step RT-PCR used in the present invention are not limited, but the following can be exemplified.
  • a reaction solution containing cNTP, Mg salt, ribonuclease inhibitor, enzyme having reverse transcription activity, primer and the like is added and kept at 4 ° C. or less until the reaction starts.
  • a test sample that can contain human WT1GAmRNA to be measured and a housekeeping gene (for example, GAPDH mRNA) are added and 50 to 70 ° C, preferably 55 to 65 ° C, 2 to 30 minutes, preferably 2 to 10 minutes.
  • a DNA fragment derived from the target RNA is amplified by performing 2 to 50 cycles of a temperature cycle reaction comprising heat denaturation at 90 to 99 ° C., annealing reaction at 45 to 65 ° C., and DNA extension reaction at 60 to 80 ° C.
  • a temperature cycle reaction comprising heat denaturation at 90 to 99 ° C., annealing reaction at 45 to 65 ° C., and DNA extension reaction at 60 to 80 ° C.
  • primers used for the first and second stage PCR are added to the reaction vessel from the beginning, and the two stage PCR is performed. Can also be performed continuously.
  • the amount of the PCR primer for the first step needs to be smaller than the amount of the PCR primer for the second step, and is preferably 100 times or less.
  • the expression level of human WT1 mRNA can be easily measured by a one-step reaction in the same container, and as shown in Example 2, RT-PCR of the target gene. It can be detected with higher sensitivity than the two-step RT-PCR in which the reaction and the RT-PCR reaction of the housekeeping gene are performed separately. In other words, according to the method of the present invention, even a sample with a low concentration of human WT1 mRNA can be detected with high accuracy.
  • This method can be carried out more easily by using a real-time PCR kit described below.
  • the RT-PCR reagent kit of the present invention comprises a primer set for subjecting human WT1 mRNA to RT-PCR, a housekeeping gene, preferably GAPDH It includes both primer sets for subjecting mRNA to RT-PCR.
  • the kit can include a probe used for detecting the amplification product of human WT1 mRNA and the amplification product of the housekeeping gene amplified by the RT-PCR method.
  • kits from “(A1) Forward primer (SEQ ID NO: 3)” and “(A2) Reverse primer (SEQ ID NO: 4)” shown in Table 1 as a primer set for subjecting human WT1 mRNA to RT-PCR.
  • (A3) Probe (SEQ ID NO: 5) As a sequence-specific binding probe used for detecting the primer set A and the human WT1 gene amplified product amplified with these primer sets, “(A3) Probe (SEQ ID NO: 5)” shown in Table 1 is included.
  • the probe is preferably labeled in order to facilitate detection of the amplified product.
  • the probe labeling method includes an RI method and a non-RI method, but it is preferable to use a non-RI method.
  • Non-RI methods include a fluorescent labeling method, a biotin labeling method, a chemiluminescence method, and the like, and the fluorescent labeling method is preferably used.
  • the fluorescent substance is not particularly limited as long as it can bind to the base moiety of nucleic acid, but cyanine dyes (Cy ⁇ DyeTM series Cy3 and Cy5 etc.), rhodamine 6G reagent, N-acetoxy-N2-acetylaminofluorene and its iodine Derivatives can be used.
  • kits “(B1) Forward primer (SEQ ID NO: 9)” and “(B2) Reverse primer (SEQ ID NO: 10) shown in Table 2 as primer sets for subjecting human WT1 mRNA to the RT-PCR method.
  • primer set B consisting of "Reverse primer (SEQ ID NO: 12)" and human GAPDH gene amplification products amplified with these primer sets Shown in Table 2 as a sequence-specific binding probes use may be mentioned those containing "(b3) Probe (SEQ ID NO: 8).”
  • the RT-PCR kit of the present invention has various components (dNTP, Mg salt, buffer components for pH adjustment, etc.) necessary for the two reactions of reverse transcription and PCR, and reverse transcription activity. Enzymes can be included. Furthermore, the thing which added the component which stabilizes an enzyme, a ribonuclease inhibitor, etc. may be used.
  • the RT-PCR kit of the present invention is a kit capable of quantifying the expression level of human WT1 mRNA in a simple, rapid and without cross-contamination problem according to the above method.
  • kits examples include a kit containing various reagents used in the above-described method, a kit containing the reaction solution used in the present invention, and a kit containing a reaction container into which one batch of the reaction solution has been dispensed. Etc.
  • the kit is particularly useful as a kit for various tests, particularly clinical diagnosis, and can be widely used for leukemia tests, solid cancer micrometastasis tests, residual microlesion tests, infectious disease tests, and the like.
  • Example 1 One step and multiplex RT-PCR measurement (1) Primer and probe design Human WT1 mRNA is selected as the target gene to be measured, and GAPDH mRNA is selected as the endogenous control gene (correction gene) that corrects the expression level of the measurement target. Primer sets and probes that enable amplification and detection were designed and synthesized.
  • the fluorescently labeled probe is labeled with FAM (6-carboxyfluorescein) at the 5 'end of the probe for detecting the target gene.
  • FAM 6-carboxyfluorescein
  • the 5 ′ end of the probe for detecting the correction gene was labeled with HEX (6-hexachlorofluorescein).
  • HEX 6-hexachlorofluorescein
  • ATTO-540Q ATTO-540Q
  • Table 3 shows the primer and probe sequences used in this example.
  • the sequence behind the portion where the WT1 mRNA sequence and GAPDH mRNA sequence were inserted was cleaved with the restriction enzyme EcoRI to obtain linear DNA.
  • the T7 promoter sequence contained in the plasmid DNA was recognized, and T7 RNA polymerase, which is an enzyme that synthesizes RNA using the DNA as a template, was used to synthesize RNA sequences of WT1 mRNA and GAPDH mRNA.
  • the synthesized RNA was diluted with TE buffer containing 50 ng / ⁇ L of E. coli transfer RNA, and RNA standards for the respective genes (WT1 and GAPDH) were prepared.
  • the concentration of the WT1 RNA standard prepared in this way is 2.5 ⁇ 10 1 , 2.5 ⁇ 10 2 , 2.5 ⁇ 10 3 , 2.5 ⁇ 10 4 , 2.5 ⁇ 10 5 copies / test, and the concentration of the GAPDH RNA standard is 1.0 ⁇ 10 4 , 1.0 ⁇ 10 5 , 1.0 ⁇ 10 6 , 1.0 ⁇ 10 7 , 1.0 ⁇ 10 8 copies / test were adjusted.
  • RT-PCR reaction was carried out by a one-step RT-PCR method in which reverse transcription reaction and PCR reaction were continuously performed in one tube.
  • Reverse transcriptase Z05 DNA polymerase (Thermostable enzyme from Thermus species Z05: Roche Diagnostics) was used.
  • (3-2) Reaction conditions (A) Reverse transcription reaction and PCR reaction After 5 minutes at 55 ° C, 5 minutes at 60 ° C, and 5 minutes at 65 ° C, the reverse transcription reaction was performed for 15 minutes, followed by heat denaturation at 92 ° C for 15 seconds, 60 PCR reaction consisting of annealing at 40 ° C. for 40 seconds and DNA extension reaction was repeated 45 cycles.
  • (B) Reagent concentration The volume of the reaction solution was 20 ⁇ L, and the Primer concentration was 0.2 ⁇ M final concentration for each of the forward primer and reverse primer. The probe concentration was 0.1 ⁇ M final concentration.
  • Fig. 1 (a) WT1 mRNA amplification curve when WT1 mRNA is amplified alone with various concentrations of WT1 RNA, and Fig. 2 (b) GAPDH mRNA alone with various concentrations of GAPDH mRNA amplified. GAPDH mRNA amplification curve when performed, Fig. 3 (c) WT1 mRNA amplification curve when WT1 mRNA and GAPDH ⁇ mRNA were simultaneously amplified with various concentrations of WT1 ⁇ RNA, and Fig. 4 (d) various concentrations The GAPDH-mRNA amplification curves when the GAPDH-RNA standard product was simultaneously amplified with WT1 mRNA and GAPDH mRNA were shown.
  • Table 4 shows the number of cycles of amplification of WT1 mRNA when WT1 mRNA is amplified alone and WT1 mRNA and GAPDH mRNA are simultaneously amplified for various concentrations of WT1 RNA standard products.
  • Table 5 shows the number of GAPDH-mRNA amplification cycles when GAPDH-mRNA was amplified alone and GWTDH-mRNA was simultaneously amplified for various concentrations of GAPDH-mRNA standard products.
  • FIG. 1 shows a WT1 mRNA amplification curve when WT1 mRNA is amplified alone.
  • WT1 mRNA when WT1 mRNA was amplified alone, it was possible to detect WT1 mRNA from 2.5 ⁇ 10 5 to 2.5 ⁇ 10 1 copies / test.
  • WT1 mRNA and GAPDH mRNA were amplified simultaneously, it was possible to detect WT1 mRNA from 2.5 ⁇ 10 5 to 2.5 ⁇ 10 1 copies / test, as shown in FIG.
  • the number of amplification cycles when WT1WT mRNA was amplified alone (amplification cycle numbers 18.63 to 32.09), and the number of amplification cycles when WT1 mRNA and GAPDH mRNA were simultaneously amplified (amplification cycle number 18.67).
  • the difference from ⁇ 31.94) was as small as -0.15 to 0.06, and there was no significant difference in the number of amplification cycles between single amplification and simultaneous amplification. Therefore, even when the target gene WT1 mRNA and the correction gene are amplified simultaneously, the WT1 mRNA is amplified at the same number of amplification cycles as in the case of amplifying the target gene (WT1) mRNA) alone. It was considered possible to detect.
  • the GAPDH mRNA amplification curve when GAPDH mRNA is amplified alone is shown in FIG. As shown here, when GAPDH mRNA was amplified alone, it was possible to detect GAPDH mRNA from 1.0 ⁇ 10 8 to 1.0 ⁇ 10 4 copies / test.
  • Example 2 Dilution test using K562 extracted RNA
  • a one-step and multiplex RT-PCR method for simultaneously amplifying WT1 mRNA and GAPDH mRNA, reverse transcription reaction and PCR in separate containers. Each was performed, and the measurement sensitivity was compared by a two-step RT-PCR method in which WT1 mRNA and GAPDH mRNA were separately amplified.
  • the two-step RT-PCR method was performed using a WT1 mRNA measurement kit “Otsuka” (Otsuka Pharmaceutical Co., Ltd.).
  • Primer and probe sequences Table 6 shows the sequences of primers and probes used for WT1 mRNA measurement and GAPDH mRNA measurement by one-step RT-PCR.
  • the WT1 mRNA measurement kit “Otsuka” was used, so the primers and probe are unknown.
  • RNA standard products prepared by the same method as described in Example 1 were used in the one-step RT-PCR method.
  • WT1 RNA standard concentration is 2.5 ⁇ 10 1 , 2.5 ⁇ 10 3 , 2.5 ⁇ 10 5 , 2.5 ⁇ 10 7 copies / test
  • GAPDH RNA standard concentration is 1.0 ⁇ 10 3 , 1.0 ⁇ 10 5 , 1.0 ⁇ 10 7 and 1.0 ⁇ 10 9 copies / test.
  • a standard product provided in the WT1 mRNA measurement kit “Otsuka” was used.
  • Test sample RNA extracted from WT1-positive leukemia cell line K562 was used as a test sample. Specifically, Total RNA extracted from K562 was used with TE buffer to which E. coli transfer RNA was added in advance to a final concentration of 50 ng / ⁇ L as carrier RNA in order to prevent nonspecific nucleic acid adsorption to the tube. The test sample was diluted to a final concentration of 2, 5 and 10 pg / ⁇ L.
  • RT-PCR reaction One-step RT-PCR reaction was performed in the same manner as in Example 1. Two-step RT-PCR was performed using a WT1 mRNA measurement kit “Otsuka” (Otsuka Pharmaceutical Co., Ltd.) according to the package insert. Measurement was performed by double measurement for each test sample. The measurement results were calculated as copy / ⁇ g RNA, which is the number of WT1 mRNA per 1 ⁇ g of total RNA, according to the package insert of the WT1 mRNA measurement kit “Otsuka”.
  • Results of dilution measurement using K562 extracted RNA Table 7 shows the results of dilution tests conducted using the 1-step RT-PCR method and 2-step RT-PCR method using K562 extracted RNA as the test sample. Show.
  • K562-diluted RNA could be measured even after diluting until the RNA concentration reached 2.5 ⁇ pg / ⁇ L
  • the two-step RT-PCR method When the K562-diluted RNA is diluted to an RNA concentration of 2.5 pg / ⁇ L, no amplified signal is detected by PCR, and even at 5 pg / ⁇ L, the double measurement data deviates from 17.2 and 1.9 copy / ⁇ gRNA, The measurable range as an effective value was considered to be up to 10 pg / ⁇ L. From these results, it was found that the one-step RT-PCR method has better measurement sensitivity than the two-step RT-PCR method.
  • Example 3 Cross-reactivity test
  • 1-step RT-PCR that simultaneously amplifies WT1 mRNA and GAPDH mRNA was used as a primer and a probe as shown in Table 8 (sequence set B) and in Table 9. Each set shown was performed and cross-reactivity was evaluated.
  • HumanHGenome DNA (Merck KGaA, Darmstadt, German, Cat No. 69237) 250 ng, 50 ng, and 10 ng, and Total RNA 250ng extracted from WT1-positive leukemia cell line K562 (WT1 K562) were used. .
  • the one-step RT-PCR reaction was performed in the same manner as in Example 1. Furthermore, amplification products obtained by PCR of Human Genome DNA and WT1 K562 mRNA were subjected to agarose gel electrophoresis under the following conditions to confirm the amplification products. The method of agarose electrophoresis followed a conventional method.
  • Electrophoretic conditions 15 min, 4% E-gal, Photo condition: filter for SYBR, Photo directly from E-gal device, Shutter speed: 1/15, Squeeze: 4.5 Apply condition: Sample 2.5 ⁇ L + dH 2 O 16.5 ⁇ L Marker 2.5 ⁇ L + dH 2 O 16.5 ⁇ L [result] It is known that GAPDH pseudogene exists in Human Genomic DNA, although GAPDH gene does not exist. In this example, when one-step RT-PCR was performed using the primers and probe sequences shown in Table 8, as shown in lanes 1 to 3 of FIG. 5 (A), GAPDH was electrophoresed on Human Genome DNA. No matching band was found.
  • GAPDH and GAPDH pseudogenes could be clearly distinguished, and it was confirmed that GAPDH pseudogenes were not misidentified as GAPDH.
  • one-step RT-PCR was performed using the primers and probe sequences shown in Table 9, a band consistent with GAPDH was observed by electrophoresis as shown in lanes 1 to 3 of FIG. 5 (B). . That is, GAPDH and GAPDH pseudogenes could not be distinguished by one-step RT-PCR using the primers and probes.
  • the base sequences shown in SEQ ID NOs: 3 to 12 mean the primers and probes described in Table 3. The correspondence is as detailed in Table 3.
  • the base sequence shown in SEQ ID NO: 13 means the base sequence of the primers described in Table 9. This base sequence corresponds to the base sequence of region 56 to 74 of the human GAPDH gene (NM — 002046.3: SEQ ID NO: 2).

Abstract

白血病や固形癌といった癌の診断や骨髄移植時期の決定に利用できるヒトWT1のmRNAの発現量を簡便且つ短時間に、感度よく定量するための方法を提供する。当該方法は、ヒトWT1 mRNAの発現量を1ステップRT-PCR法を用いて定量する方法であって、ヒトWT1 mRNAおよびハウスキーピング遺伝子(mRNA)の逆転写反応および伸長反応を、同時かつ、同一容器内で連続して進行させることを特徴とする、ヒトWT1 mRNAの発現量の定量方法である。

Description

WT1 mRNAの発現量定量方法
 本発明は、白血病や固形癌といった癌の診断や骨髄移植時期の決定に利用できるヒトWT1のmRNAの発現量を定量する新しい方法に関する。
 ウイルムス腫瘍-1(Wilms tumor gene-1。以下、「WT1」と称する。)遺伝子は、1990年にCallらにより小児ウイルムス腫瘍の原因遺伝子として同定された遺伝子である (非特許文献1)。その後、WT1 mRNAは、小児ウイルムス腫瘍のみならず、固形癌細胞株である胃癌細胞株,大腸癌細胞株,肺癌細胞株,及び乳癌細胞株等の固形癌細胞においても高率に発現していることが示され (非特許文献2)、いまでは、WT1遺伝子は小児ウイルムス腫瘍のみならず、多くのがんに関連する癌関連遺伝子と考えられるようになっている。
 Callらは白血病細胞株であるK562細胞及びCCRF-CEM細胞でWT1 mRNAの発現を報告しており(非特許文献1参照)、Miwaらはノーザン・ブロット解析により急性骨髄性白血病(acute myeloid leukemia。以下、「AML」という。)の22例中15例にWT1 mRNAが発現することを報告している (非特許文献3)。さらにInoueらにより、WT1 mRNAはAMLの初診時に100%(45/45)の症例で発現が認められたと報告されている(非特許文献4.)。また、診断時のWT1 mRNA発現量が予後と関係していること (非特許文献5)、WT1 mRNA発現量は治療により一度陰性化しても再発時に再上昇すること (非特許文献6)、また再発時のWT1 mRNA発現量は診断時の発現量よりも増加していることが報告されている (非特許文献7)。
 このように、WT1遺伝子が、単一の遺伝子としてAML患者に高頻度に出現すること、及び治療により陰性化し再発時に再上昇する等の事実から、WT1遺伝子は、AMLの治療において新しい微小残存病変(minimal residual disease。以下、「MRD」とも称する。)のモニタリングマーカーとして有用であるとして、従来から体外診断用医薬品として販売されている。
 ヒトWT1 mRNAの測定方法としては、従来、β-アクチンを基準する競合定量法が知られている(特許文献1)。しかし、その測定方法では、WT1 mRNAとβ-アクチンのmRNAとを個別に測定するだけでなく、逆転写反応させた後に伸長反応を行う、いわゆる2ステップRT-PCR法を行う必要があり、非常に時間を要する。
 また別のヒトWT1 mRNAの測定方法として、特許文献2にはWT1 mRNAの1ステップRT-PCR法が開示されている。しかし、この測定方法では、WT1遺伝子の発現量を補正するためのハウスキーピング遺伝子の発現量を、別途測定する必要があり、煩雑である。
特開平11-89599号公報 特開平11-89596号公報
Call, K. M. et al., Cell 1990; 60: 509-520. Jpn. J. Cancer Res. 1999; 90: 194-204. Miwa, H., et al., Leukemia 1992; 6: 405-409. Inoue, K., et al., Blood, 1994, 84(9), 3071-3079 Blood 1997; 90: 1217-1225. Blood 1996; 88: 2267-2278. Blood 1996; 88: 4396-4398.
 前述するように、WT1遺伝子の発現量を定量する方法として、公知の方法は、多大な時間を要し、また煩雑という問題があり、簡便かつ短時間でヒトWT1遺伝子の発現量を定量することができる手法が求められている。従って、本発明の目的は、簡便かつ短時間で実施できる新しいWT1 mRNAの定量法を提供することである。特に、本発明は、ヒトWT1 mRNAとハウスキーピング遺伝子の両者の発現量を同時に定量することで、簡便かつ短時間での実施を可能にした新しいWT1 mRNAの定量法を提供することを目的とする。
 本件発明者らは、上記課題を解決すべく鋭意検討をしていたところ、目的遺伝子であるヒトWT1遺伝子(mRNA)と補正用遺伝子であるハウスキーピング遺伝子(mRNA)の逆転写反応および伸長反応を、同時かつ、同一容器内で連続して進行させることで(1ステップ)、短時間でかつ簡便に、目的とするヒトWT1 mRNAの発現量を定量することができることを見出した。しかも当該1ステップRT-PCR法を用いることで、目的遺伝子と補正用遺伝子の増幅を別々に行う2ステップRT-PCR法よりも、簡便で、且つ殆ど同程度の短時間で、目的遺伝子をより感度高く検出することが可能となることを確認した。
 本発明はかかる知見に基づいて完成したものであり、下記の実施形態を包含するものである。
 (I)ヒトWT1 mRNAの発現量の定量方法
(I-1)ヒトWT1 mRNAの発現量を1ステップRT-PCR法を用いて定量する方法であって、ヒトWT1 mRNAおよびハウスキーピング遺伝子(mRNA)の逆転写反応および伸長反応を、同時かつ、同一容器内で連続して進行させることを特徴とする、ヒトWT1 mRNAの発現量の定量方法。
(I-2)ハウスキーピング遺伝子がGAPDH mRNAである(I-1)に記載する方法。
(I-3)ヒトWT1 mRNAのPCR増幅に、
(a)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、または
(b)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット
を用いる(I-1)または(I-2)に記載する方法。
(I-4)ヒトWT1 mRNAのPCR増幅に、
(a’)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号5に示す塩基配列からなるプローブ、または
(b’)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号11に示す塩基配列からなるプローブ
を用いる(I-1)または(I-2)に記載する方法。
(I-5)ヒトWT1 mRNAのPCR増幅に、さらに
(c)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット
を用いる(I-3)または(I-4)に記載する方法。
(I-6)ヒトWT1 mRNAのPCR増幅に、さらに
(c’)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号8に示す塩基配列からなるプローブ
を用いる(I-3)または(I-4)に記載する方法。
 (II)ヒトWT1 mRNAの発現量定量用のリアルタイムPCR用キット
(II-1)(a)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4 に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、または
(b)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、
を含むヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
(II-2)(a’)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号5に示す塩基配列からなるプローブ、または
(b’)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号11に示す塩基配列からなるプローブ、
を含むヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
(II-3)さらに(c)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセットを含む、
(II-1)または(II-2)に記載するヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
(II-4)さらに(c’)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号8に示す塩基配列からなるプローブ
を用いる、(II-1)または(II-2)に記載するヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
 本発明の方法によれば、従来のWT1 mRNAの発現量の定量方法と比較して、簡便な操作と労力でしかも短時間に測定することができるWT1 mRNA発現量の定量方法を提供することができる。また、本発明の方法によれば、従来の2ステップRT-PCR法を用いた測定方法よりも高い感度で検出することも可能になる。つまり、本発明の方法またはリアルタイムPCR用キットを用いることで、簡便且つ短時間で、感度よくヒトWT1 mRNAの発現量を定量することが可能になる。
 斯くして定量されるヒトWT1 mRNAの発現量は、白血病や固形癌の発症及び再発の診断、及び予後判断、並びに骨髄移植の時期決定において有用な指標となる。
各種濃度(図中、1:2.5x105 copies/test、2:2.5x104 copies/test、3: 2.5x103 copies/test、4:2.5x102 copies/test、5:2.5x10copies/test)のWT1 RNA標準品を対象として、WT1 mRNAを単独で増幅した場合のWT1 mRNA増幅曲線を示す(実施例1)。 各種濃度(図中、1:1.0x108 copies/test、2:1.0x107 copies/test、3: 1.0x106 copies/test、4:1.0x105 copies/test、5:1.0x104 copies/test)のGAPDH RNA標準品を対象として、GAPDH mRNAを単独で増幅した場合のGAPDH mRNA増幅曲線を示す(実施例1)。 各種濃度(図中、1:2.5x105 copies/test、2:2.5x104 copies/test、3: 2.5x103 copies/test、4:2.5x102 copies/test、5:2.5x10copies/test)のWT1 RNA標準品を対象として、WT1 mRNAとGAPDH mRNAとを同時に増幅した場合のWT1 mRNA増幅曲線を示す(実施例1)。 各種濃度(図中、1:1.0x108 copies/test、2:1.0x107 copies/test、3: 1.0x106 copies/test、4:1.0x105 copies/test、5:1.0x104 copies/test)のGAPDH RNA標準品を対象として、WT1 mRNAとGAPDH mRNAとを同時に増幅した場合のGAPDH mRNA増幅曲線を示す(実施例1)。 WT1 mRNAとGAPDH mRNAを同時に増幅する1ステップRT-PCRを、プライマーおよびプローブとして、(A)表8に示すセット(配列セットB)、及び(B)表9に示すセット(比較セット)をそれぞれ用いて実施し、得られた増幅産物を、アガロースゲル電気泳動した結果を示す。
(I)ヒトWT1 mRNAの発現量の定量方法
 本発明の方法は、ヒトWT1 mRNAの発現量を1ステップRT-PCR法を用いて定量する方法である。
 本発明が測定の対象とするヒトWT1遺伝子は、前述するように小児ウイルムス腫瘍の原因遺伝子として同定された3037bpからなる遺伝子であり、「Homo sapiens Wilms tumor 1 (WT1), transcript variant D, mRNA」として、NCBIに登録されている(NM_024426.4)。その塩基配列を配列表の配列番号1に示す。
 本発明の方法で測定対象とする被験試料は、上記ヒトWT1 mRNAを含むものであれば特に限定はなく、例えばヒト由来の細胞、組織、血液、喀痰、糞便、尿のような生体試料など、WT1 mRNAを含有する可能性のある試料から公知の方法で処理することで得られる全RNA、あるいはmRNAを富化した試料等が使用できる。RNA試料は水溶液、あるいは適切な固相に吸着又は固定化した状態で用いることができる。全RNA量としては反応液100μl当り0.01ng~1μgが適している。
 ハウスキーピング遺伝子とは、細胞の分化に関係なく、どの細胞にも常に発現し存在し、特殊な機能は果たさないがそれらの生存に必須な役割を持つ遺伝子であり、例えば、RNA合成酵素、エネルギー生成系酵素、リボソームのタンパク質、細胞骨格タンパク質などの遺伝子を例示することができる。具体的には、GAPDH(glyceraldehyde-3-phosphate dehydrogenase),β-アクチン,β2-マイクログロブリン,HPRT 1(hypoxanthine phosphoribosyltransferase 1)などの遺伝子が挙げられる。本発明で使用されるハウスキーピング遺伝子は、測定目的であるヒトWT1遺伝子とRT-PCRによる増幅が競合しないもの、例えば塩基配列の相同性が低いものであることが好ましい。好ましくはGAPDHである。
 GAPDHは「Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mRNA」としてNCBIに登録されている遺伝子である(NM_002046.3)。その塩基配列を配列表の配列番号2に示す。
 本発明において1ステップRT-PCR法(逆転写反応及び伸長反応)に使用される反応緩衝液としては、逆転写活性を有する酵素が活性を示すのに適した水溶性緩衝液であればよく、例えばpH7~10、好ましくはpH8~9の緩衝液、例えばトリス緩衝液を挙げることができる。更にこの緩衝液の中には逆転写活性を有する酵素またはDNAポリメラーゼの活性に必要な種々のイオンを含む。中でもNaイオンやKイオンは塩の形で5~50mMの濃度で添加される。Mgイオンは塩の形で1~10mMで添加される。その他、必要に応じて界面活性剤、ウシ血清アルブミン(BSA)、ゼラチン等、逆転写活性を有する酵素またはDNAポリメラーゼの活性を促進または安定化する薬剤を配合することもできる。また、試料中のRNA及びRNA競合物の分解を抑制するためにリボヌクレアーゼ阻害剤が添加されていてもよい。
 逆転写活性を有する酵素としては、トリ骨芽球症ウイルス由来逆転写酵素(AMV)、ラウス関連ウイルス由来逆転写酵素(RAV2)、モロニー・ネズミ白血病ウイルス由来逆転写酵素(MMLV)、サーマス・サーモフィルス(Thermusthermophilus)由来DNAポリメラーゼ(Tth)、バチルス・カルドテナクス(Bacillus cardotenax )由来DNAポリメラーゼ(Bca)、並びにそれらの誘導体が挙げられるが、中でもTthが最も本発明に適している。Tthとして、具体的にはThermus species Z05に由来するThermostable enzymeのDNAポリメラーゼを例示することができる。なお、これらの酵素はその本来の起源より精製して取得されたもの、あるいは遺伝子工学的に生産された組み換え蛋白質のいずれであってもよい。
 反応液にはcDNA合成並びにPCRにおいて基質となる4種のデオキシヌクレオチド三リン酸(dATP、dCTP、dGTP、dTTP;本明細書ではこの4種を総称して「dNTP」ともいう記載)が添加される。また、dNTPはそのすべて又は一部が、プライマーから合成されるDNA鎖の伸長を可能とする範囲で修飾及び/又は標識されたdNTPに置き換えることもできる。
 本発明において標的RNAからのcDNA合成(逆転写反応及び伸長反応)に用いられるプライマーとしては、少なくとも標的RNAの塩基配列に相補的な塩基配列を有するオリゴヌクレオチドであって、採用される反応条件において標的RNAにアニールするものである必要がある。オリゴヌクレオチドの長さとしては6~100ヌクレオチド、好ましくは10~30ヌクレオチドの長さを例示することができる。また修飾及び/又は標識されたプライマーも使用できる。該プライマーは、例えば公知方法により化学的に合成することができる。また、PCRにおいて使用されるプライマーは、少なくとも標的RNA由来のcDNAを鋳型としたDNAの増幅が可能である必要がある。このためには、少なくとも鋳型cDNAの塩基配列に相補的な塩基配列を有するオリゴヌクレオチドであって、採用される反応条件において当該cDNAにアニールするものである必要がある。好ましくは、上記の標的RNAからcDNAの合成(逆転写反応及び伸長反応)にプライマーとして機能するとともに、cDNAを鋳型としたDNAにもプライマーとして機能するオリゴヌクレオチドである。
 本発明の目的遺伝子であるヒトWT1 mRNAをcDNAに逆転写し伸長、増幅するために好適に使用されるプライマーセットとしては、下記表1に記載する(A1)Forwardプライマー及び(A2)ReverseプライマーからなるプライマーセットA、並びに表2に記載する(B1)Forwardプライマー及び(B2)ReverseプライマーからなるプライマーセットBを挙げることができる。なお、表1及び2には、これらのプライマーセットで増幅されたヒトWT1遺伝子増幅物を検出するために使用される配列特異的結合プローブ((A3)Probe、(B3)Probe)も併せて示す。なお、かかるプローブは、増幅物の検出を容易にするために標識されていることが好ましい。
 また、本発明の方法においてハウスキーピング遺伝子として好適に使用されるヒトGAPDH mRNAをcDNAに逆転写し伸長、増幅するために好適に使用されるプライマーセットとしては、下記表1に記載する(a1)Forwardプライマー及び(a2)ReverseプライマーからなるプライマーセットA、並びに表2に記載する(b1)Forwardプライマー及び(b2)ReverseプライマーからなるプライマーセットBを挙げることができる。なお、表1及び2には、これらのプライマーセットで増幅されたヒトGAPDH遺伝子増幅物を検出するために使用される配列特異的結合プローブ((a3)Probe、(b3)Probe)も併せて示す。なお、かかるプローブは、増幅物の検出を容易にするために標識されていることが好ましい。
 プローブの標識法には、RI法と非RI法とがあるが、非RI法を用いることが好ましい。非RI法には蛍光標識法、ビオチン標識法、化学発光法等が挙げられるが、蛍光標識法が好適に使用される。蛍光物質としては、核酸の塩基部分と結合できるものであれば特に限定されないが、シアニン色素(Cy DyeTMシリーズのCy3やCy5等)、ローダミン6G試薬、N-アセトキシ-N2-アセチルアミノフルオレン及びそのヨウ素誘導体などを用いることが出来る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明において使用されるRNA標準品は公知の方法で作製することができる。例えば、「Proceedings of the National Academy of Sciences of the United States of America(Proc. Natl. Acad. Sci. USA), 第87巻, 第2725~2729頁(1990)」、「Clinical Chemistry(Clin. Chem. ), 第41巻, 第819~825頁(1995)」、「Blood,第82巻,第1929~1936頁(1993)」等の記載を参照して作製することができる。
 具体的には以下の通りである。増幅対象の2本鎖DNA配列に、RNA合成酵素,例えばT7 RNAポリメラーゼ等の反応基点となるプロモーター配列を付加して、RNA合成の鋳型となるDNA配列を作成する。反応容器内に、RNAポリメラーゼと、RNAプロモーター配列を含む2本鎖DNA、ヌクレオシド三リン酸を加え、37℃で30分~2時間反応することにより、RNAプロモーター下流の鋳型DNAに相補的な一本鎖RNAを合成する。
 本発明で使用する1ステップRT-PCRの反応操作及び反応条件としては、制限されないものの、下記を例示することができる。
 反応容器内に、例えばcNTP、Mg塩、リボヌクレアーゼ阻害剤、逆転写活性を有する酵素、プライマー等を含む反応液を加え、反応開始までは4℃以下で保冷しておく。これに測定しようとするヒトWT1 mRNAを含み得る被験試料及びハウスキーピング遺伝子(例えば、GAPDH mRNA)を添加し50~70℃、好ましくは55~65℃で2~30分、好ましくは2~10分程度、複数回反応させcDNA合成を行う(逆転写反応)。引続き90~99℃で10秒~2分間程度加熱し、RNA-cDNA複合体を変性させる(熱変性)。更に90~99℃での熱変性、45~65℃のアニーリング反応、及び60~80℃のDNA伸長反応からなる温度サイクル反応を2~50サイクル行って標的RNA由来のDNA断片を増幅する。更に感度及び/又は特異性を向上するためにネステッドPCRを行う場合には、1段階目、2段階目のPCRに使用するプライマーを共に最初から反応容器内に添加しておき、2段階のPCRを連続して行うこともできる。この場合1段階目のPCR用プライマー量は2段階目のPCR用プライマー量より少なくすることが必要で、好ましくは100倍以下の量が適している。
 以上説明する本発明の方法によれば、ヒトWT1 mRNAの発現量を、同一容器内における1ステップ反応により簡便に測定することができるとともに、実施例2に示すように、目的遺伝子のRT-PCR反応とハウスキーピング遺伝子のRT-PCR反応を別個に行う2ステップRT-PCRよりも感度高く検出することができる。言い換えれば、本発明の方法によれば、ヒトWT1 mRNAの発現量が低濃度の試料であっても精度高く検出することができる。
 当該方法は、下記に説明するリアルタイムPCRキットを用いることでより簡便に実施することができる。
 (II)ヒトWT1 mRNAの発現量定量用のリアルタイムPCR用キット
 本発明のRT-PCR用試薬キットは、ヒトWT1 mRNAをRT-PCR法に供するためのプライマーセットと、ハウスキーピング遺伝子、好ましくはGAPDH mRNAをRT-PCR法に供するためのプライマーセットの両方を包含することを特徴とする。また当該キットには、RT-PCR法で増幅されたヒトWT1 mRNAの増幅産物、及びハウスキーピング遺伝子の増幅産物を検出するために使用されるプローブを含めることができる。
 キットの一例として、ヒトWT1 mRNAをRT-PCR法に供するためのプライマーセットとして表1に示す「(A1)Forwardプライマー(配列番号3)」及び「(A2)Reverseプライマー(配列番号4)」からなるプライマーセットA、並びにこれらのプライマーセットで増幅されたヒトWT1遺伝子増幅物を検出するために使用される配列特異的結合プローブとして表1に示す「(A3)Probe(配列番号5)」を含み、且つ、ハウスキーピング遺伝子として好適に使用されるヒトGAPDH mRNAをRT-PCR法に供するためのプライマーセットとして表1に示す「(a1)Forwardプライマー(配列番号6)」及び「(a2)Reverseプライマー(配列番号7)」からなるプライマーセットA、並びにこれらのプライマーセットで増幅されたヒトGAPDH遺伝子増幅産物を検出するために使用される配列特異的結合プローブとして表1に示す「(a3)Probe(配列番号8)」を含むものを挙げることができる。
 なお、プローブは、増幅物の検出を容易にするために標識されていることが好ましい。
 プローブの標識法には、RI法と非RI法とがあるが、非RI法を用いることが好ましい。非RI法には蛍光標識法、ビオチン標識法、化学発光法等が挙げられるが、蛍光標識法が好適に使用される。蛍光物質としては、核酸の塩基部分と結合できるものであれば特に限定されないが、シアニン色素(Cy DyeTMシリーズのCy3やCy5等)、ローダミン6G試薬、N-アセトキシ-N2-アセチルアミノフルオレン及びそのヨウ素誘導体などを用いることが出来る。
 キットの他の一例として、ヒトWT1 mRNAをRT-PCR法に供するためのプライマーセットとして表2に示す「(B1)Forwardプライマー(配列番号9)」及び「(B2)Reverseプライマー(配列番号10)」からなるプライマーセットB、並びにこれらのプライマーセットで増幅されたヒトWT1遺伝子増幅物を検出するために使用される配列特異的結合プローブとして表2に示す「(B3)Probe(配列番号11)」を含み、且つ、ハウスキーピング遺伝子として好適に使用されるヒトGAPDH mRNAをRT-PCR法に供するためのプライマーセットとして表2に示す「(b1)Forwardプライマー(配列番号6)」及び「(b2)Reverseプライマー(配列番号12)」からなるプライマーセットB、並びにこれらのプライマーセットで増幅されたヒトGAPDH遺伝子増幅産物を検出するために使用される配列特異的結合プローブとして表2に示す「(b3)Probe(配列番号8)」を含むものを挙げることができる。
 本発明のRT-PCR用キットは、上記成分のほか、逆転写反応とPCRの2つの反応に必要な各種成分(dNTP、Mg塩、pH調整のための緩衝成分等)、逆転写活性を有する酵素を含むことができる。更に酵素を安定化するような成分やリボヌクレアーゼ阻害剤等が添加されたものであってもよい。
 該反応液はその必要量を適当な反応容器にとり、測定しようとする試料を添加するだけで反応を開始することができるため、ヒトWT1 mRNAの発現量の定量を簡便に行うことができる。特に、多数の被験試料についてヒトWT1 mRNAの発現量の定量する場合に有用である。また、あらかじめ該反応液の1回分の必要量が分注された反応容器を準備しておくことにより、更に操作効率を改善することができる。本発明のRT-PCR用キットは、上記の方法に従って、ヒトWT1 mRNAの発現量の定量を簡便、迅速に、かつクロスコンタミネーションの問題なく行えるキットである。該キットとしては、例えば上記方法に使用する各種試薬を含有するキット、上記の本発明に使用される反応液を含有するキット、該反応液の1回分が分注された反応容器を含有するキット等が挙げられる。該キットは特に種々の検査、中でも臨床診断用キットとして有用であり、白血病の検査、固型がんの微小転移の検査、残存微小病変の検査、感染症の検査などに広く利用できる。
 以下に実施例を挙げて本発明をさらに詳しく説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。
実施例1] 1ステップかつマルチプレックスRT-PCRの測定
(1)プライマーとプローブの設計
 測定対象の目的遺伝子としてヒトWT1 mRNA,測定対象の発現量を補正する内在性コントロール遺伝子(補正用遺伝子)としてGAPDH mRNAを選択し、それぞれの遺伝子に対して特異的増幅と検出を可能とするプライマーセット及びプローブを設計し、合成した。
 蛍光標識プローブは、目的遺伝子(ヒトWT1 mRNA)と補正用遺伝子(GAPDH mRNA)を同時に検出するために、目的遺伝子を検出するためのプローブの5’末端をFAM(6-カルボキシフルオレセイン)で標識し、補正用遺伝子を検出するためのプローブの5’末端をHEX(6-ヘキサクロロフルオレセイン)で標識した。またそれぞれのプローブの3’末端を消光色素としてATTO-540Q(ATTO-TEC GmbH社)で標識した。
 本実施例で使用したプライマー及びプローブの配列を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (2)標準品(WT1 mRNA,GAPDH mRNA)の調製
 標準品は、WT1 mRNAおよびGAPDH mRNAを発現している白血病細胞株K562よりRNAを抽出し、このRNAを鋳型として、 WT1 mRNAおよびGAPDH mRNAの塩基配列にそれぞれ相補的なプライマーを用いて、RT-PCRを行い、WT1 mRNAおよびGAPDH mRNAの一部の塩基配列を得た。得られたWT1 mRNA配列およびGAPDH mRNA配列をpT7blueプラスミドベクターにクローニングし、大腸菌DH5α株を形質転換した。次いでこの形質転換大腸菌を培養し、プラスミドDNAを抽出した。プラスミドDNA中、WT1 mRNA配列およびGAPDH mRNA配列が挿入されている部分より後ろにある配列を、制限酵素EcoRIを用いて切断し、直鎖状のDNAとした。プラスミドDNAに含まれるT7プロモーター配列を認識し、DNAを鋳型としてRNAを合成する酵素であるT7 RNAポリメラーゼを用いて、WT1 mRNA及びGAPDH mRNAのRNA配列を合成した。合成したRNAを、反応容器への非特異的な吸着を防ぐために50 ng/μLの大腸菌トランスファーRNAを含むTE バッファーで希釈し、それぞれの遺伝子(WT1およびGAPDH)のRNA標準品を調製した。
 斯くして調製したWT1 RNA標準品の濃度を2.5×101,2.5×102,2.5×103,2.5×104,2.5×105 copies/testに、またGAPDH RNA標準品の濃度を1.0×104,1.0×105,1.0×106,1.0×107,1.0×108copies/testに調整した。
 (3)RT-PCR反応
 RT-PCR反応は、逆転写反応とPCR反応を一つのチューブ内で連続して行う1ステップRT-PCR法を行った。
 (3-1)逆転写酵素
 Z05 DNA polymerase(Thermostable enzyme from Thermus species Z05:Roche Diagnostics社)を使用した。
 (3-2)反応条件
(a)逆転写反応とPCR反応
 55℃で5分間、60℃で5分間、65℃で5分間の計15分間かけて逆転写反応を行った後、92℃で15秒間の熱変性、60℃で40秒間のアニーリング、及びDNA伸長反応からなるPCR反応を45サイクロ繰り返した。
 (b)試薬濃度
 反応液の容量を20μLとし、その中のPrimer濃度は、Forward primer、及びReverse primerそれぞれ終濃度を0.2μMとした。Probe濃度は終濃度を0.1μMとした。
 (3-3)反応・測定装置
 RT-PCR法は、Applied Biosystems 7500 Fast Realtime PCR system(ライフテクノロジーズ社)を用いて行った。
 (4)結果
(4-1)蛍光増幅曲線の確認
 (a)WT1 RNA標準品をWT1 mRNAを単独で増幅を行った場合、(b)GAPDH RNA標準品をGAPDH mRNAを単独で増幅を行った場合、及び(c)WT1 RNA標準品及びGAPDH RNA標準品のそれぞれについてWT1 mRNA及びGAPDH mRNAを同時に増幅を行った場合の、蛍光増幅曲線と増幅サイクル数を確認した。
 図1に(a)各種濃度のWT1 RNA標準品をWT1 mRNAを単独で増幅を行った場合のWT1 mRNA増幅曲線、図2に(b)各種濃度のGAPDH RNA標準品をGAPDH mRNA単独で増幅を行った場合のGAPDH mRNA増幅曲線、図3に(c)各種濃度のWT1 RNA標準品をWT1 mRNA及びGAPDH mRNAを同時に増幅した場合のWT1 mRNA増幅曲線を、及び図4に(d)各種濃度のGAPDH RNA標準品をWT1 mRNA及びGAPDH mRNAを同時に増幅した場合のGAPDH mRNA増幅曲線を、それぞれ示した。表4に、各種濃度のWT1 RNA標準品についてWT1 mRNAを単独で増幅した場合及びWT1 mRNA及びGAPDH mRNAを同時に増幅した場合のWT1 mRNAの増幅サイクル数を示した。表5に、各種濃度のGAPDH RNA標準品についてGAPDH mRNAを単独で増幅した場合及びWT1 mRNA及びGAPDH mRNAを同時に増幅した場合のGAPDH mRNAの増幅サイクル数を示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 WT1 mRNAを単独で増幅した場合のWT1 mRNA増幅曲線を図1に示す。ここに示すように、WT1 mRNAを単独で増幅した場合、WT1 mRNAを2.5×105 ~ 2.5×101copies/testまで検出することが可能であった。WT1 mRNA及びGAPDH mRNAを同時に増幅した場合も、図3に示すように、WT1 mRNAを2.5×105 ~ 2.5×101copies/testまで検出することが可能であった。
 また表4に示すように、WT1 mRNAを単独で増幅した場合の増幅サイクル数(増幅サイクル数18.63~32.09)と、WT1 mRNA及びGAPDH mRNAをそれぞれ同時に増幅した場合の増幅サイクル数(増幅サイクル数18.67~31.94)との差は-0.15~0.06と小さく、単独増幅と同時増幅とで増幅サイクル数に有意な差はなかった。このことから、目的遺伝子であるWT1 mRNAと補正用遺伝子とを同時に増幅しても、目的遺伝子(WT1 mRNA)を単独で増幅する場合と同様に、同程度の増幅サイクル数にて、WT1 mRNAを検出することが可能と考えられた。
 GAPDH mRNAを単独で増幅した場合のGAPDH mRNA増幅曲線を図2に示す。ここに示すように、GAPDH mRNAを単独で増幅した場合、GAPDH mRNAを1.0×108 ~ 1.0×104copies/testまで検出することが可能であった。
 表5に示すように、GAPDH mRNAを単独で増幅した場合の増幅サイクル数(10.18~23.68)と、WT1 mRNA及びGAPDH mRNAを同時に増幅した場合の増幅サイクル数(10.30~23.85)との差は0.10~0.20と、単独増幅と同時増幅とで増幅サイクル数の差は大きくなかった。このことから、補正用遺伝子であるGAPDH mRNAと目的遺伝子であるWT1 mRNAとを同時に増幅する場合でも、また補正用遺伝子(GAPDH mRNA)を単独で増幅する場合と同様に、同程度の増幅サイクル数にて、GAPDH mRNAを検出することが可能と考えられた。
 [実施例2] K562抽出RNAを用いた希釈試験
 本実施例では、WT1 mRNAとGAPDH mRNAを同時に増幅する、1ステップかつマルチプレックスなRT-PCR法と、逆転写反応とPCRを別の容器でそれぞれ行い、WT1 mRNAとGAPDH mRNAを別個に増幅する2ステップRT-PCR法とで、測定感度を比較した。なお、2ステップRT-PCR法は、WT1 mRNA測定キット「オーツカ」(大塚製薬株式会社)を使用して行った。
 (1)プライマーとプローブの配列
 1ステップRT-PCR法によるWT1 mRNA測定及びGAPDH mRNA測定に使用したプライマー及びプローブの配列を表6に示す。なお2ステップ RT-PCR法は、WT1 mRNA測定キット「オーツカ」を使用したため、プライマー及びプローブは不明である。
Figure JPOXMLDOC01-appb-T000006
 (2)標準品の調製
 標準品(WT1 mRNA、GAPDH mRNA)として、1ステップ RT-PCR法では、実施例1に記載した方法と同様の方法で調製したRNA標準品を用いた。WT1 RNA標準品の濃度を2.5×101,2.5×103,2.5×105,2.5×107copies/test,GAPDH RNA標準品の濃度を1.0×103,1.0×105,1.0×107,1.0×109copies/testとした。2ステップ RT-PCR法では、WT1 mRNA測定キット「オーツカ」に備え付けられた標準品を使用した。
 (3)被験試料
 被験試料として、WT1陽性白血病細胞株K562より抽出したRNAを用いた。具体的には、K562より抽出したTotal RNAを、チューブへの非特異的な核酸の吸着を防ぐためにキャリアRNAとして大腸菌トランスファーRNAを終濃度50ng/μLとなるようにあらかじめ添加したTE bufferを用いて、最終濃度が2、5、10 pg/μLになるように希釈して、これを被験試料とした。
 (4)RT-PCR反応
 1ステップRT-PCR反応は、実施例1と同様の方法で行った。2ステップRT-PCRは、WT1 mRNA測定キット「オーツカ」(大塚製薬株式会社)を用いてその添付文書に従って行った。測定は各被験試料について2重測定で行った。測定結果はWT1 mRNA測定キット「オーツカ」の添付文書に従い、Total RNA 1μg当たりのWT1 mRNA数であるcopy/μgRNAとして算出した。
 (5)結果
(5-1)K562抽出RNAによる希釈測定結果
 表7にK562抽出RNAを被験試料として、1ステップRT-PCR法及び2ステップRT-PCR法を用いて実施した希釈試験の結果を示す。
Figure JPOXMLDOC01-appb-T000007
 表7からわかるように、1ステップRT-PCR法では、K562希釈RNAをRNA濃度が2.5 pg/μLになるまで希釈しても測定可能であったのに対して、2ステップRT-PCR法では、K562希釈RNAをRNA濃度が2.5 pg/μLとなるまで希釈するとPCRによる増幅シグナルが検出されず、5 pg/μLにおいても、2重測定のデータが、17.2及び1.9 copy/μgRNAと乖離し、有効値として測定可能な範囲は10 pg/μLまでと考えられた。これらの結果から、1ステップRT-PCR法は、2ステップRT-PCR法よりも測定感度が良いことが判明した。
 [実施例3] 交差反応性試験
 本実施例では、WT1 mRNAとGAPDH mRNAを同時に増幅する1ステップRT-PCRを、プライマーおよびプローブとして、表8に示すセット(配列セットB)、及び表9に示すセットをそれぞれ用いて実施し、交差反応性を評価した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 被験試料として、Human Genome DNA (Merck KGaA, Darmstadt, German, Cat No. 69237) 250 ng,50 ng,及び10 ng、並びにWT1陽性白血病細胞株K562(WT1 K562)より抽出したTotal RNA 250ngを用いた。
 1ステップRT-PCR反応は実施例1と同様の方法で行った。さらに、Human Genome DNA及びWT1 K562 mRNAをPCRして得られた増幅産物を、下記条件でアガロースゲル電気泳動して増幅産物を確認した。アガロース電気泳動の方法は常法に従った。
<アガロースゲル電気泳動条件>
泳動条件:15min、4%E-gal、
Photo条件:SYBR用filter、
      E-gal装置より直接photo、
      シャッタースピード:1/15、
      しぼり:4.5
Apply条件:Sample 2.5μL+dH2O 16.5μL
Marker 2.5μL+dH2O 16.5μL
[結果]
 Human Genomic DNAにはGAPDHの遺伝子は存在しないものの、GAPDHの偽遺伝子が存在することが知られている。本実施例では、表8に示したプライマーおよびプローブ配列を用いて1ステップRT-PCRを実施すると、図5(A)のレーン1~3に示すように、Human Genome DNAにおいて電気泳動でGAPDHと一致するバンドは認められなかった。すなわち、本発明のプライマーおよびプローブを用いた1ステップRT-PCRによれば、GAPDHとGAPDHの偽遺伝子とが明確に識別でき、GAPDHの偽遺伝子をGAPDHと誤認することがないことが確認できた。一方、表9に示したプライマーおよびプローブ配列を用いて1ステップRT-PCRを実施すると、図5(B)のレーン1~3に示すように、電気泳動でGAPDHと一致するバンドが認められた。すなわち、当該プライマーおよびプローブを用いた1ステップRT-PCRではGAPDHとGAPDHの偽遺伝子とを区別することができなかった。
 なお、参考までに、表8(実施例)及び表9(比較例)のプライマーおよびプローブ配列をそれぞれ用いて1ステップRT-PCRを行った場合の増幅サイクル数を、GAPDHについては表10に、WT1については表11にそれぞれ示す。表中、「ND」は検出出来なかったことを意味する。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
配列番号3~12に示す塩基配列は、表3に記載するプライマー及びプローブを意味する。対応関係は表3に詳述した通りである。配列番号13に示す塩基配列は、表9に記載するプライマーの塩基配列を意味する。当該塩基配列は、ヒトGAPDH遺伝子(NM_002046.3:配列番号2)の56~74領域の塩基配列に相当する。

Claims (10)

  1. 被験試料におけるヒトWT1 mRNAの発現量を1ステップRT-PCR法を用いて定量する方法であって、
    ヒトWT1 mRNAおよびハウスキーピング遺伝子(mRNA)の逆転写反応および伸長反応を、当該被験試料において同時かつ同一容器内で連続して進行させることを特徴とする、ヒトWT1 mRNAの発現量の定量方法。
  2. ハウスキーピング遺伝子がGAPDH mRNAである請求項1に記載する方法。
  3. ヒトWT1 mRNAのPCR増幅に、
    (a)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4 に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、または
    (b)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセットを用いる請求項1または2に記載の方法。
  4. ヒトWT1 mRNAのPCR増幅に、
    (a’)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号5に示す塩基配列からなるプローブ、または
    (b’)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号11に示す塩基配列からなるプローブ
    を用いる、請求項1または2に記載する方法。
  5. ヒトWT1 mRNAのPCR増幅に、さらに
    (c)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット
    を用いる、請求項3または4に記載する方法。
  6. ヒトWT1 mRNAのPCR増幅に、さらに
    (c’)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号8に示す塩基配列からなるプローブ
    を用いる、請求項3または4に記載する方法。
  7. (a)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4 に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、または
    (b)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、
    を含むヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
  8. (a’)配列番号3に示す塩基配列からなるフォーワードPCRプライマーと配列番号4に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号5に示す塩基配列からなるプローブ、または
    (b’)配列番号9に示す塩基配列からなるフォーワードPCRプライマーと配列番号10に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号11に示す塩基配列からなるプローブ、
    を含むヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
  9. さらに(c)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセットを含む、
    請求項7または8に記載するヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
  10. さらに(c’)配列番号6に示す塩基配列からなるフォーワードPCRプライマーと配列番号7若しくは12に示す塩基配列からなるリバースPCRプライマーとからなるプライマーセット、及び標識された配列番号8に示す塩基配列からなるプローブ
    を用いる、請求項7または8に記載するヒトWT1 mRNAの発現量を定量するためのリアルタイムPCR用キット。
PCT/JP2014/051294 2013-01-22 2014-01-22 WT1 mRNAの発現量定量方法 WO2014115779A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201480005576.5A CN104937112B (zh) 2013-01-22 2014-01-22 对WT1 mRNA的表达量进行定量的方法
AU2014208593A AU2014208593A1 (en) 2013-01-22 2014-01-22 Quantification method for expression level of WT1 mRNA
CA2898965A CA2898965A1 (en) 2013-01-22 2014-01-22 Quantification method for expression level of wt1 mrna
EP14743826.1A EP2949760B1 (en) 2013-01-22 2014-01-22 Quantification method for expression level of wt1 mrna
KR1020187010959A KR20180043401A (ko) 2013-01-22 2014-01-22 WT1 mRNA의 발현량 정량 방법
US14/762,454 US10280467B2 (en) 2013-01-22 2014-01-22 Quantification method for expression level of WT1 mRNA
ES14743826T ES2731780T3 (es) 2013-01-22 2014-01-22 Método de cuantificación para nivel de expresión de ARNm de WT1
JP2014558599A JP6636247B2 (ja) 2013-01-22 2014-01-22 WT1mRNAの発現量定量方法
KR1020157022395A KR20150109427A (ko) 2013-01-22 2014-01-22 WT1 mRNA의 발현량 정량 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008984 2013-01-22
JP2013-008984 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014115779A1 true WO2014115779A1 (ja) 2014-07-31

Family

ID=51227569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051294 WO2014115779A1 (ja) 2013-01-22 2014-01-22 WT1 mRNAの発現量定量方法

Country Status (9)

Country Link
US (1) US10280467B2 (ja)
EP (1) EP2949760B1 (ja)
JP (1) JP6636247B2 (ja)
KR (2) KR20180043401A (ja)
CN (1) CN104937112B (ja)
AU (1) AU2014208593A1 (ja)
CA (1) CA2898965A1 (ja)
ES (1) ES2731780T3 (ja)
WO (1) WO2014115779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328209A (zh) * 2014-11-24 2015-02-04 济南市中心医院 白血病微小残留病wt1基因快速检测方法的引物和试剂盒
WO2018016474A1 (ja) 2016-07-19 2018-01-25 大塚製薬株式会社 小児急性リンパ性白血病の血液学的病期の判定補助方法
JP2018068140A (ja) * 2016-10-25 2018-05-10 アークレイ株式会社 Abl遺伝子増幅用プライマー、核酸増幅方法及び核酸増幅用キット

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107828890A (zh) * 2017-11-30 2018-03-23 深圳美因医学检验实验室 一种用于肾母细胞瘤基因筛查的荧光定量pcr检测系统及其应用
CN110551817A (zh) * 2018-05-31 2019-12-10 苏州云泰生物医药科技有限公司 检测人wt1融合基因的试剂盒及其使用方法
CN111500519B (zh) * 2020-03-14 2022-03-08 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种触发及强化节杆菌产生胞外超氧自由基的方法
WO2023147445A2 (en) * 2022-01-27 2023-08-03 Oregon Health & Science University Cell-free rna biomarkers for the detection of cancer or predisposition to cancer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189599A (ja) 1997-09-24 1999-04-06 Haruo Sugiyama 補正競合rt−pcr法によるヒトwt1発現定量法
JPH1189596A (ja) 1997-09-19 1999-04-06 Takara Shuzo Co Ltd Rna量の測定方法並びに測定キット
JP2002136300A (ja) * 2000-08-25 2002-05-14 Otsuka Pharmaceut Co Ltd 白血病キメラ遺伝子の検出方法
JP2006223303A (ja) * 2005-01-21 2006-08-31 Canon Inc 微量胃癌細胞の検出法
JP2009509502A (ja) * 2005-09-19 2009-03-12 ベリデックス・エルエルシー 原発不明がんの原発巣を同定するための方法および材料
JP2012525825A (ja) * 2009-05-06 2012-10-25 サノフイ 可逆的に不死化された細胞及びそれに関連する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535914B2 (en) 2005-01-21 2013-09-17 Canon Kabushiki Kaisha Probe, probe set and information acquisition method using the same
US20070031966A1 (en) 2005-07-18 2007-02-08 Regents Of The University Of Michigan Renal progenitor cells from embryonic stem cells
CN101182570A (zh) 2007-11-15 2008-05-21 南方医科大学 一种检测wt1和mdr1基因异常表达的多重定量pcr试剂盒
CN101760522A (zh) 2008-10-23 2010-06-30 上海复星医药(集团)股份有限公司 一种使用gapdh基因分析arhgdib基因表达量的rt-pcr技术
CN101781677A (zh) 2009-01-15 2010-07-21 中山大学达安基因股份有限公司 检测白血病广谱标记物WT1基因mRNA表达的试剂盒
CN102459648A (zh) 2009-05-26 2012-05-16 奎斯特诊断投资公司 基因失调的检测方法
CN102443581A (zh) 2010-10-09 2012-05-09 清华大学 用于检测p53基因表达的引物对及其应用
CN102534045A (zh) 2010-12-30 2012-07-04 上海复星医学科技发展有限公司 一种丙型肝炎病毒基因分型荧光pcr检测试剂盒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189596A (ja) 1997-09-19 1999-04-06 Takara Shuzo Co Ltd Rna量の測定方法並びに測定キット
JPH1189599A (ja) 1997-09-24 1999-04-06 Haruo Sugiyama 補正競合rt−pcr法によるヒトwt1発現定量法
JP2002136300A (ja) * 2000-08-25 2002-05-14 Otsuka Pharmaceut Co Ltd 白血病キメラ遺伝子の検出方法
JP2006223303A (ja) * 2005-01-21 2006-08-31 Canon Inc 微量胃癌細胞の検出法
JP2009509502A (ja) * 2005-09-19 2009-03-12 ベリデックス・エルエルシー 原発不明がんの原発巣を同定するための方法および材料
JP2012525825A (ja) * 2009-05-06 2012-10-25 サノフイ 可逆的に不死化された細胞及びそれに関連する方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
BLOOD, vol. 82, 1993, pages 1929 - 1936
BLOOD, vol. 88, 1996, pages 2267 - 2278
BLOOD, vol. 88, 1996, pages 4396 - 4398
BLOOD, vol. 90, 1997, pages 1217 - 1225
CALL, K. M. ET AL., CELL, vol. 60, 1990, pages 509 - 520
CLIN. CHEM., vol. 41, 1995, pages 819 - 825
INOUE, K. ET AL., BLOOD, vol. 84, no. 9, 1994, pages 3071 - 3079
JPN. J. CANCER RES., vol. 90, 1999, pages 194 - 204
MIWA, H. ET AL., LEUKEMIA, vol. 6, 1992, pages 405 - 409
NIRDE ET AL., J. STEROID BIOCHEM. MOLEC. BIOL., vol. 66, no. 1-2, 1998, pages 35 - 43, XP055266556 *
PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2725 - 2729
SASAKI: "Bessatsu Mokutekibetsu de Eraberu PCR Jikken Protocol Shippai shinai Tameno Jikken Sosa to Joken Settei no Kotsu", EXPERIMENTAL MEDICINE, vol. 201, 1 January 2011 (2011-01-01), pages 45 - 46, XP008181711 *
See also references of EP2949760A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328209A (zh) * 2014-11-24 2015-02-04 济南市中心医院 白血病微小残留病wt1基因快速检测方法的引物和试剂盒
CN104328209B (zh) * 2014-11-24 2016-06-15 济南市中心医院 白血病微小残留病wt1基因快速检测方法的引物和试剂盒
WO2018016474A1 (ja) 2016-07-19 2018-01-25 大塚製薬株式会社 小児急性リンパ性白血病の血液学的病期の判定補助方法
JPWO2018016474A1 (ja) * 2016-07-19 2019-05-09 大塚製薬株式会社 小児急性リンパ性白血病の血液学的病期の判定補助方法
JP7002450B2 (ja) 2016-07-19 2022-02-04 大塚製薬株式会社 小児急性リンパ性白血病の血液学的病期の判定補助方法
JP2018068140A (ja) * 2016-10-25 2018-05-10 アークレイ株式会社 Abl遺伝子増幅用プライマー、核酸増幅方法及び核酸増幅用キット
JP7007796B2 (ja) 2016-10-25 2022-02-10 アークレイ株式会社 Abl遺伝子増幅用プライマー、核酸増幅方法及び核酸増幅用キット

Also Published As

Publication number Publication date
CN104937112A (zh) 2015-09-23
US20160333415A1 (en) 2016-11-17
EP2949760B1 (en) 2019-04-24
KR20150109427A (ko) 2015-10-01
EP2949760A4 (en) 2016-08-24
EP2949760A1 (en) 2015-12-02
JP6636247B2 (ja) 2020-01-29
CA2898965A1 (en) 2014-07-31
AU2014208593A2 (en) 2015-11-12
US10280467B2 (en) 2019-05-07
EP2949760A9 (en) 2016-06-22
CN104937112B (zh) 2018-04-24
AU2014208593A1 (en) 2015-07-30
JPWO2014115779A1 (ja) 2017-01-26
KR20180043401A (ko) 2018-04-27
ES2731780T3 (es) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2014115779A1 (ja) WT1 mRNAの発現量定量方法
JP6273198B2 (ja) 定量的pcrによる、ホルマリン固定パラフィン包埋(ffpe)試料におけるテロメア長測定
KR20080052626A (ko) 핵산의 증폭, 정량분석 및 동정 방법
JP5769952B2 (ja) Eml4−alk融合遺伝子の高感度検出方法
WO2016167317A1 (ja) 遺伝子変異の検出方法
CN111349692A (zh) 进行聚合酶链式反应的方法及其相关应用
JP2022189882A (ja) minor BCR-ABL1遺伝子を検出する方法
US9617606B2 (en) Oligonucleotide for HIV detection, HIV detection kit, and HIV detection method
US20220275450A1 (en) Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence
KR20160106041A (ko) Nras 및 braf 핵산의 멀티플렉스 분석을 위한 조성물 및 방법
JP2007116999A (ja) RegIVmRNAの測定方法
JP2017175953A (ja) Syt−ssx融合遺伝子検出用プローブ、syt−ssx融合遺伝子検出用プローブセット、syt−ssx融合遺伝子の検出方法及びsyt−ssx融合遺伝子検出用キット
KR20050074620A (ko) Rt-pcr에 의한 핵산의 절대적 정량
KR20080073087A (ko) 신경모세포종 세포의 검출
US20030175769A1 (en) Reagents for improved PCR
JPWO2006011667A1 (ja) ヘテロ核リボヌクレオチドタンパク質B1(hnRNPB1)mRNAの測定方法
KR102197368B1 (ko) Risc를 이용한 폴리뉴클레오타이드의 검출방법
KR101213173B1 (ko) 유방암과 연관된 단일염기다형성 및 그의 용도
JP2006223194A (ja) スタニオカルシン1(STC1)mRNAの測定方法
KR20180104135A (ko) 과도한 세포 사멸을 수반하는 질환을 진단하는 방법 및 이를 수행하기 위한 키트
KR100825154B1 (ko) 모세관 전기영동-단일쇄 형태변환 다형성을 이용한 세포내mRNA 정량 방법
KR20220098246A (ko) 마이코박테륨·투베르쿨로시스, 마이코박테륨·아비움 및 마이코박테륨·인트라셀룰라레를 검출하기 위한 프라이머 세트 및 이것을 이용한 방법, 및 그를 위한 시약 키트
JP6440997B2 (ja) Pcr法およびpcrキット
CN117187352A (zh) 一种pml/rara融合基因的检测方法
JP2020202766A (ja) プライマー及びWT1 mRNAの検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558599

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2898965

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14762454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014208593

Country of ref document: AU

Date of ref document: 20140122

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014743826

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022395

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201505113

Country of ref document: ID