WO2014109352A1 - ポリブチレンテレフタレート系樹脂組成物及び成形体 - Google Patents

ポリブチレンテレフタレート系樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2014109352A1
WO2014109352A1 PCT/JP2014/050212 JP2014050212W WO2014109352A1 WO 2014109352 A1 WO2014109352 A1 WO 2014109352A1 JP 2014050212 W JP2014050212 W JP 2014050212W WO 2014109352 A1 WO2014109352 A1 WO 2014109352A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polybutylene terephthalate
resin composition
parts
terephthalate resin
Prior art date
Application number
PCT/JP2014/050212
Other languages
English (en)
French (fr)
Inventor
山中 康史
創貴 吉田
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013002249A external-priority patent/JP6010464B2/ja
Priority claimed from JP2013176567A external-priority patent/JP6071808B2/ja
Priority claimed from JP2013187039A external-priority patent/JP6482755B2/ja
Priority claimed from JP2013221066A external-priority patent/JP5762506B2/ja
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to EP14737490.4A priority Critical patent/EP2944673A4/en
Priority to CN201480004598.XA priority patent/CN104918997B/zh
Priority to US14/652,642 priority patent/US9957388B2/en
Publication of WO2014109352A1 publication Critical patent/WO2014109352A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a polybutylene terephthalate-based resin composition and a molded body, and more specifically, polybutylene terephthalate having excellent impact resistance, flame retardancy, heat aging resistance, light resistance, moisture and heat resistance, and excellent moldability.
  • the present invention relates to a resin composition and a molded body formed by molding the same.
  • a high degree of flame retardancy is required for a housing for constituting a charger connector for an electric vehicle, a battery capacitor holder, or a charging stand for an electric vehicle, and many metal ones are used.
  • polybutylene terephthalate has properties suitable as engineering plastics such as excellent heat resistance, moldability, chemical resistance and electrical insulation, so it can be used in electrical and electronic parts, automotive parts and other electrical parts. It is used for machine parts and the like, and studies have been made to make it flame-retardant.
  • a flame retardant using polybutylene terephthalate and halogenated compounds or antimony trioxide as a flame retardant aid see Patent Documents 1, 5 to 8.
  • the method of making it flame retardant by adding is well known.
  • the charger connector for electric vehicles, the battery capacitor holder, the battery capacitor case, or the charging stand housing for electric vehicles are thin and small due to the trend toward smaller and lighter devices.
  • the molded products used for them are becoming smaller and thinner, and high flame resistance is required for thin molded products.
  • the thinner the molded products the more the flame retardant is achieved. It becomes difficult.
  • tracking resistance which is one of the electrical characteristics, in order to ensure safety against ignition against electrical loads.
  • Patent Document 9 discloses a resin composition containing a thermoplastic polyester resin and an olefin-based copolymer composed of an ⁇ -olefin and a glycidyl ester of ⁇ , ⁇ -unsaturated acid. It is described that a conventional flame retardant, fillers such as talc, kaolin and silica, and fibrous fillers such as glass fibers may be added as necessary.
  • No. 10 describes a resin composition comprising polybutylene terephthalate, brominated polycarbonate flame retardant, antimony flame retardant aid, fluorinated ethylene polymer, polyolefin and metal silicate filler and glass fiber. Yes.
  • Patent Document 11 discloses a resin composition comprising a thermoplastic polyester resin, compressed fine powder talc, and a halogenated benzyl (meth) acrylate flame retardant, and if necessary, a fibrous reinforcing agent is added. It is described that it may be.
  • Patent Document 2 discloses a flame retardant polyester resin composition comprising a polybutylene terephthalate resin, a polycarbonate resin, a halogen flame retardant, a flame retardant assistant, and a transesterification inhibitor as constituents.
  • 3 discloses a flame-retardant polyester resin composition comprising a polybutylene terephthalate resin, a polycarbonate resin, an elastomer, a flame retardant, and a flame retardant aid.
  • Patent Document 4 discloses a polyester resin composition comprising a polyester resin, a polystyrene rubber and a flame retardant.
  • JP-A-61-66746 JP 2007-314664 A Japanese Patent Application Laid-Open No. 6-100713 JP 2005-112994 A JP 2004-263174 A JP 2006-45544 A JP 2006-56997 A JP 2011-84666 A JP-A-7-196859 JP-A-10-67925 JP-A-10-158486
  • An object of the present invention is to provide a polybutylene terephthalate system having excellent impact resistance, flame retardancy, heat aging resistance, light resistance, moisture and heat resistance, and excellent moldability, and a molded product thereof.
  • the present inventor has blended polybutylene terephthalate resin with polycarbonate resin, impact resistance improver, flame retardant and antimony compound in specific amounts, respectively, to give impact resistance, flame resistance, heat aging resistance, light resistance.
  • the present invention was completed by finding that a polybutylene terephthalate resin composition and a molded article excellent in heat resistance, moist heat resistance and moldability can be provided. That is, according to the present invention, the following polybutylene terephthalate resin composition and molded article are provided.
  • (H) the organophosphate compound metal salt represented by any one of the following general formulas (1) to (4) is used in a total of 100 parts by mass of (A) and (B).
  • R 1 to R 4 each independently represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • M represents an alkaline earth metal or zinc.
  • R 5 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • M represents an alkaline earth metal or zinc.
  • R 6 to R 11 each independently represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • M ′ represents a trivalent metal ion. Represents a metal atom.
  • R 12 to R 14 each independently represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • M ′ represents a trivalent metal ion. Represents a metal atom, and two M's may be the same or different.
  • [12] A molded product obtained by molding the polybutylene terephthalate resin composition according to any one of [1] to [11]. [13] In the core portion of the molded body, the (A) polybutylene terephthalate resin and the (B) polycarbonate resin form a co-continuous phase, and the (C) elastomer has a morphology existing in the (B) polycarbonate resin phase.
  • the molded article according to the above [12] characterized by comprising: [14] The molded article according to the above [12] or [13], in which 80% or more of the (E) antimony compound is present in the (A) polybutylene terephthalate resin phase in the core of the molded article.
  • the polybutylene terephthalate resin composition of the present invention is a resin excellent in impact resistance, flame retardancy, heat aging resistance, light resistance, moist heat resistance, hydrolysis resistance, heat discoloration and release properties, and moldability and appearance. Since it is a material, various electric and electronic equipment parts, parts for electric vehicles, parts for home appliances such as cooking utensils, for example, charger connectors for electric cars, battery capacitor holders, battery capacitor housings or electric parts It is suitable for a housing for an automobile charging stand, a housing for electronic / electrical equipment parts, a connector, a relay, a switch, a sensor, an actuator, a terminal switch, a rice cooker-related part, a grill cooking equipment part, and the like.
  • FIG. 1 is a STEM photograph of the core portion of the molded product obtained in Example 41.
  • FIG. FIG. 2 is a STEM photograph of the core portion of the molded body obtained in Example 41.
  • FIG. 3 is an SEM photograph of the surface layer portion of the molded body obtained in Example 41.
  • (A) polybutylene terephthalate resin As the main component constituting the polybutylene terephthalate resin composition of the present invention, (A) polybutylene terephthalate resin (hereinafter sometimes abbreviated as “PBT resin”) includes terephthalic acid units and 1,4. A polymer having a structure in which butanediol units are ester-bonded. That is, in addition to polybutylene terephthalate resin (homopolymer), polybutylene terephthalate copolymer containing other copolymer components other than terephthalic acid units and 1,4-butanediol units, and homopolymers and copolymers thereof Including the mixture.
  • PBT resin polybutylene terephthalate resin
  • the PBT resin may contain dicarboxylic acid units other than terephthalic acid.
  • dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid.
  • Aromatic dicarboxylic acids such as anthracene dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4′-dicyclohexyldicarboxylic acid, and adipic acid Aliphatic dicarboxylic acids such as sebacic acid, azelaic acid, dimer acid, etc. That.
  • the diol unit may contain other diol units in addition to 1,4-butanediol.
  • other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms.
  • bisphenol derivatives Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4'-dicyclohexylhydroxymethane. 4,4'-dicyclohexylhydroxypropane, bisphenol A ethylene oxide addition diol, and the like.
  • triols such as glycerin and trimethylolpropane are also included.
  • the PBT resin is preferably a polybutylene terephthalate homopolymer obtained by polycondensation of terephthalic acid and 1,4-butanediol.
  • carboxylic acid unit one or more dicarboxylic acids other than the terephthalic acid and / or A polybutylene terephthalate copolymer containing one or more diols other than the 1,4-butanediol as the diol unit may be used.
  • the proportion of terephthalic acid in the dicarboxylic acid unit is preferably 70 mol% or more, more preferably 90 mol% or more.
  • the proportion of 1,4-butanediol in the diol unit is preferably 70 mol% or more, more preferably 90 mol% or more.
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane are introduced to introduce a branched structure, and fatty acids are used for molecular weight control.
  • a small amount of a monofunctional compound can be used in combination.
  • PBT resin is manufactured by batch polymerization or continuous polymerization of a dicarboxylic acid component containing terephthalic acid as a main component or an ester derivative thereof and a diol component containing 1,4-butanediol as a main component. Can do.
  • the degree of polymerization can be increased to a desired value by further solid-phase polymerization under a nitrogen stream or under reduced pressure.
  • the PBT resin is preferably obtained by a production method in which a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing 1,4-butanediol as a main component are continuously melt polycondensed.
  • the catalyst used when performing the esterification reaction may be a conventionally known catalyst, and examples thereof include a titanium compound, a tin compound, a magnesium compound, and a calcium compound. Of these, titanium compounds are particularly preferred.
  • Specific examples of the titanium compound as the esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • the PBT resin may be a polybutylene terephthalate resin modified by copolymerization.
  • a polyalkylene glycol particularly, polytetramethylene glycol (PTMG)
  • PTMG polytetramethylene glycol
  • examples include polyester ether resins, dimer acid copolymerized polybutylene terephthalate resins, and particularly isophthalic acid copolymerized polybutylene terephthalate resins. These copolymers are those having a copolymerization amount of 1 mol% or more and less than 50 mol% in all segments of the PBT resin.
  • the copolymerization amount is preferably 2 to 50 mol%, more preferably 3 to 40 mol%, and particularly preferably 5 to 20 mol%.
  • the preferable content of these copolymers is 10 to 100% by mass, further 30 to 100% by mass, and particularly 50 to 100% by mass in 100% by mass of the total amount of (A) polybutylene terephthalate resin. is there.
  • the intrinsic viscosity ([ ⁇ ]) of the PBT resin is preferably 0.9 dl / g or more. If the intrinsic viscosity is lower than 0.9 dl / g, the resulting resin composition tends to have a low mechanical strength such as impact resistance.
  • the intrinsic viscosity is preferably 1.8 dl / g or less, more preferably 1.6 dl / g or less, and further preferably 1.3 dl / g or less. If it is higher than 1.8 dl / g, the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
  • the intrinsic viscosity is measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the polybutylene terephthalate resin composition of the present invention contains (B) a polycarbonate resin.
  • the polycarbonate resin is an optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount thereof with phosgene or a carbonic acid diester.
  • the production method of the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by a conventionally known phosgene method (interfacial polymerization method) or a melting method (transesterification method) can be used.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy
  • Aromatic polycarbonate copolymers derived from the compounds are preferred. Further, it may be a copolymer mainly composed of an aromatic polycarbonate resin, such as a copolymer with a polymer or oligomer having a siloxane structure. Furthermore, you may mix and use 2 or more types of the polycarbonate resin mentioned above.
  • a monovalent aromatic hydroxy compound may be used.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 20000 or more, more preferably 23000 or more, 25000 or more, and particularly preferably more than 28000.
  • Mv The viscosity average molecular weight
  • the resulting resin composition tends to have a low mechanical strength such as impact resistance.
  • it is preferable that it is 60000 or less, It is more preferable that it is 40000 or less, It is further more preferable that it is 35000 or less. If it is higher than 60000, the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
  • the method for producing the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can also be used. Moreover, the polycarbonate resin which performed the post-process which adjusts the amount of terminal OH groups to the polycarbonate resin manufactured by the melting method is also preferable.
  • the content of (B) polycarbonate resin is based on a total of 100 parts by mass of (A) polybutylene terephthalate resin and (B) polycarbonate resin, and (B) polycarbonate resin is 20 to 50 parts by mass, preferably 25 parts by mass. Part or more, more preferably 30 parts by weight or more, preferably 45 parts by weight or less, more preferably 40 parts by weight or less.
  • the effect of improving the impact resistance and toughness of the polybutylene terephthalate resin composition of the present invention is small, and the dimensional stability is lowered.
  • liquidity will worsen and a moldability will deteriorate.
  • thermoplastic elastomer used to improve its impact resistance by blending with a polyester resin or a polycarbonate resin may be used.
  • a rubber polymer or a rubber polymer obtained by copolymerizing a compound that reacts with the rubber polymer is used.
  • (C) elastomers include, for example, polybutadiene, polyisoprene, diene copolymers (styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, acrylic / butadiene rubber, etc.), ethylene and carbon atoms of 3 or more.
  • Copolymers with ⁇ -olefins ethylene / propylene copolymers, ethylene / butene copolymers, ethylene / octene copolymers, etc.
  • copolymers of ethylene and unsaturated carboxylic acid esters ethylene / methacrylate copolymer
  • Copolymers of ethylene and aliphatic vinyl compounds terpolymers of ethylene, propylene and non-conjugated dienes
  • acrylic rubber polybutyl acrylate, poly (2-ethylhexyl acrylate))
  • silicone rubber a polyorganosiloxane rubber, a polyorganosiloxane rubber and a polyalkyl (meth) IPN type composite rubber consisting of acrylate rubber
  • (C) Another example of the elastomer is a copolymer obtained by polymerizing a monomer compound with a rubber polymer.
  • the monomer compound include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, and the like.
  • epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) acrylate; maleimide compounds such as maleimide, N-methylmaleimide and N-phenylmaleimide; ⁇ , ⁇ - such as maleic acid, phthalic acid and itaconic acid
  • examples thereof also include unsaturated carboxylic acid compounds and anhydrides thereof (for example, maleic anhydride). These monomer compounds can be used alone or in combination of two or more.
  • the elastomer is preferably an elastomer containing an acrylic and / or butadiene component, and is preferably a copolymer obtained by copolymerizing a butadiene-based and / or acrylic rubbery polymer with a monomer compound that reacts therewith.
  • Specific examples of the impact modifier containing an acrylic and / or butadiene component include, for example, acrylonitrile-butadiene copolymer, acrylic-butadiene rubber, and a copolymer obtained by polymerizing a monomer compound with these rubbery polymers. Coalescence is mentioned.
  • Examples of the monomer compound include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, and the like.
  • epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) acrylate; maleimide compounds such as maleimide, N-methylmaleimide and N-phenylmaleimide; ⁇ , ⁇ - such as maleic acid, phthalic acid and itaconic acid
  • Examples thereof also include unsaturated carboxylic acid compounds and anhydrides thereof (for example, maleic anhydride). These monomer compounds can be used alone or in combination of two or more.
  • the elastomer containing the acrylic and / or butadiene component is preferably of the core / shell type graft copolymer type from the viewpoint of improving impact resistance, and the butadiene component-containing rubber and / or the acrylic component-containing rubber polymer is used as the core.
  • a core / shell type graft copolymer comprising a shell layer formed by copolymerizing a monomer selected from an acrylic ester, a methacrylic ester and an aromatic vinyl compound around the layer is particularly preferred.
  • core / shell type graft copolymers examples include butyl acrylate-methyl methacrylate copolymer, butadiene-methyl methacrylate / styrene copolymer, silicone / acryl-methyl methacrylate copolymer, methyl methacrylate-butadiene-styrene polymer.
  • MBS methyl methacrylate-acrylonitrile-butadiene-styrene polymer
  • MB methyl methacrylate-butadiene rubber copolymer
  • Examples include coalescence.
  • Rubbery polymers may be used alone or in combination of two or more.
  • an acrylic core / shell type elastomer in which both the core and the shell are acrylic acid esters is preferable from the viewpoint of impact resistance, heat aging resistance, and light resistance.
  • the content of the acrylic and / or butadiene component in the elastomer containing the acrylic and / or butadiene component is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 70 to 85% by mass. If the content of the acrylic and / or butadiene component is less than 50% by mass, the impact resistance tends to be inferior, and if it exceeds 90% by mass, the flame retardancy and weather resistance tend to deteriorate, such being undesirable.
  • the average particle size of the elastomer is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, further preferably 1 ⁇ m or less, and particularly preferably 800 nm or less.
  • the lower limit is usually 50 nm, preferably 100 nm, more preferably 150 nm, still more preferably 200 nm, particularly preferably 300 nm or more, most preferably 400 nm or more, particularly 500 nm or more.
  • Use of the (C) elastomer having such a particle size is preferable because it tends to improve moldability such as impact resistance such as surface impact, moisture and heat resistance, and releasability.
  • the average particle diameter of (C) elastomer is obtained by observing the morphology of the cross-section of the molded product of polybutylene terephthalate resin composition with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like. It can be measured. Specifically, using a SEM, STEM, or TEM analyzer, the core part of the cross section of the molded body (a part excluding the surface layer part with a depth of less than 20 ⁇ m, a cross section parallel to the resin composition flow direction, the central part of the cross section). Are observed at a magnification of 3,000 to 100,000 times under an acceleration voltage of 20 kV.
  • the glass transition temperature of the (C) elastomer is preferably ⁇ 30 ° C. or lower, more preferably ⁇ 35 ° C. or lower, further preferably ⁇ 40 ° C. or lower, and ⁇ 50 ° C. or lower. It is particularly preferred.
  • the flatness of the elastomer ratio of the major axis to the minor axis of the elastomer described later
  • the impact resistance characteristics tend to be significantly improved, which is preferable.
  • the glass transition temperature of (C) elastomer can be measured by calculating
  • the method for producing an acrylic core / shell type elastomer preferably used as the (C) elastomer of the present invention includes an emulsion polymerization method, which includes a core polymerization and a shell polymerization.
  • the core polymerization is performed by polymerizing an acrylate monomer, and at this time, since there is one double bond in the molecular structure of the acrylate ester, there is no double bond after the completion of polymerization, Excellent weather resistance and good impact resistance due to low glass transition temperature.
  • a certain range of cross-linking agent is used to form a rubber structure as an elastomer, impart impact resistance, and control the glass transition temperature.
  • the cross-linking agent formulated in a certain range not only maintains the stability of the latex during polymerization, but also acts to easily deform the core structure from a spherical shape to a flat shape during processing and also in the resin composition. To do.
  • the shell polymerization is usually performed by using a methacrylic acid ester excellent in compatibility with a vinyl chloride resin as a monomer and allowing graft polymerization to proceed on the core surface.
  • the shell may contain a small amount of acrylonitrile monomer.
  • the first method is disclosed in US Pat. No. 5,612,413, in which a seed having a small particle size is polymerized and the monomer is charged in 2 to 4 steps. This is a multi-stage emulsion polymerization method in which after the seeds are grown, the core-shell structure is completed by introducing the shell component monomer and surrounding the core surface.
  • the second method is disclosed in European Patent 0527605 (A1), in which a latex having a core / shell structure with a size of 100 nm or less is polymerized and converted into particles of a desired size through an aggregation process (Agglomeration). This is a microagglomeration method in which a core-shell structure is formed by forming an encapsulated shell on aggregated particles after growth.
  • the glass transition temperature of the elastomer increases as the crosslink density of the elastomer increases, and decreases as the crosslink density of the rubber decreases. Accordingly, the degree of crosslinking density can be adjusted by the amount of crosslinking agent used in producing the elastomer, and an elastomer having a low glass transition temperature can be produced by using a very small amount of the crosslinking agent. However, when the amount of the crosslinking agent used is too small, the stability of the latex is lowered during the polymerization, and it may be difficult to control the glass transition temperature.
  • the preferred acrylic core / shell type elastomer of the present invention comprises, for example, polymerizing a seed, polymerizing the core component monomer in 2 to 4 times to grow core rubber particles, It is a large particle size elastomer having a particle size of 400 to 900 nm, which is produced by charging a polymer and surrounding the core surface with a shell.
  • the large particle size elastomers have their respective cores i) 95 to 99.999 parts by weight of an acrylate ester having 2 to 8 carbon atoms in the alkyl group; and ii) a crosslinker 0.001 to It is preferable that 5.0 mass parts is included.
  • the acrylic ester is one or more monomers selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate, Preferably, it is an acrylic ester containing butyl acrylate, 2-ethylhexyl acrylate, or a mixture thereof.
  • the crosslinking agent includes 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, allyl acrylate, allyl methacrylate, Use one or more monomers selected from the group consisting of methylolpropane triacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate and divinylbenzene, and homopolymers or copolymers of these monomers. Is preferred.
  • the crosslinking agent is preferably used in an amount of 0.001 to 5 parts by mass based on the total amount of monomers in each elastomer of the present invention.
  • the content of the crosslinking agent is less than 0.001 part by mass with respect to the total monomer, handling during processing is poor, and when it exceeds 5 parts by mass, the elastomer core becomes brittle and the impact reinforcement effect is reduced. There is a case.
  • the large particle size elastomer has a shell containing i) 80 to 100 parts by weight of a methacrylic acid ester having an alkyl group having 1 to 4 carbon atoms, and ii) in order to adjust the glass transition temperature of the shell component, Furthermore, ethyl acrylate, methyl acrylate and butyl acrylate can be added in a proportion of 10 parts by mass or less, and iii) in order to increase the compatibility between the matrix and the shell, nitrile compounds such as acrylonitrile and methacrylonitrile are further added. It can also be added at a ratio of 10 parts by mass or less.
  • the core of the preferred acrylic core / shell type elastomer (large particle size elastomer) of the present invention preferably contains 70 to 95% by mass of a rubber component monomer based on the total monomers. If the amount is less than 70% by mass, the rubber content tends to be small and impact resistance is likely to deteriorate. If the amount exceeds 95% by mass, the shell component cannot completely surround the core. May not be performed well and impact resistance may be reduced.
  • the polymerized elastomer can be obtained by coagulation with an electrolyte and then filtered, and the electrolyte is preferably calcium chloride or the like.
  • the process for producing an acrylic core / shell type elastomer having a low glass transition temperature and a large average particle diameter, preferably 400 nm or more, preferably used in the present invention will be described in more detail.
  • the manufacturing method mainly includes the following steps.
  • the large particle size elastomer having the low glass transition temperature is i) 95 to 99.999 parts by mass of an acrylic ester having 2 to 8 carbon atoms in the alkyl group; 0.001 to 5 parts by mass of a crosslinking agent; 0.001 to 5 parts by mass of a polymerization initiator; A primary polymerization step in which a mixture containing 10 parts by mass; and 1000 parts by mass of ion-exchanged water is subjected to a crosslinking reaction at a temperature of 60 to 80 ° C.
  • a secondary polymerization step in which 0.001 to 5 parts by mass of a polymerization initiator is added and polymerized to produce a core rubber at the same time as the emulsion mixture containing; iii) 95 to 99.999 parts by mass of an acrylic ester having 2 to 8 carbon atoms in the alkyl group; 0.001 to 5 parts by mass of a crosslinking agent; 0.001 to 6 parts by mass of an emulsifier; and 80 parts by mass of ion-exchanged water
  • a third polymerization step in which 0.001 to 5 parts by mass of a polymerization initiator is added and polymerized to produce a core rubber at the same time as the e
  • any compound capable of causing a crosslinking reaction can be used. Specifically, ammonium persulfate, potassium persulfate, benzoyl peroxide, azobisbutyro Nitrile, butyl hydroperoxide, cumene hydroperoxide and the like can be used.
  • the emulsifiers used in the production of the large particle size elastomer include ionic emulsifiers such as unsaturated fatty acid potassium salt, potassium oleate, sodium lauryl sulfate, and sodium dodecylbenzene sulfate, and nonionic emulsifiers. Can be used.
  • the large particle size elastomer thus produced is charged with ion exchange water to reduce the solid content to 10% by mass, and then 10% by mass calcium chloride solution is charged into the mixture to coagulate the polymer particles. Analyze.
  • the coagulated slurry is heated to 90 ° C., aged and cooled. Thereafter, the cooled slurry is washed with ion-exchanged water and filtered to obtain an acrylic core / shell type elastomer preferably used in the present invention.
  • the content of the elastomer is 5 to 20 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • the content of the elastomer (C) is less than 5 parts by mass, the effect of improving the impact resistance is small, and when it exceeds 20 parts by mass, the heat aging resistance and rigidity, as well as the fluidity and flame retardancy are reduced.
  • the preferable content of the elastomer is 7 parts by mass or more, 16 parts by mass or less, and further 13 parts by mass or less.
  • the polybutylene terephthalate resin composition of the present invention contains (D) a flame retardant.
  • a flame retardant known plastic flame retardants can be used. Specifically, halogen flame retardants, phosphorus flame retardants (melamine polyphosphate, etc.), nitrogen flame retardants (melamine cyanurate, etc.) ), Metal hydroxides (magnesium hydroxide, etc.).
  • halogen flame retardants phosphorus flame retardants (melamine polyphosphate, etc.), nitrogen flame retardants (melamine cyanurate, etc.)
  • Metal hydroxides magnesium hydroxide, etc.
  • a brominated flame retardant is more preferable.
  • brominated flame retardant any conventionally known brominated flame retardant used in thermoplastic resins can be used.
  • brominated flame retardants include aromatic compounds, specifically, for example, polybrominated benzyl (meth) acrylates such as pentabromobenzyl polyacrylate, polybromophenylene ether, brominated polystyrene, Examples thereof include brominated epoxy compounds such as an epoxy oligomer of tetrabromobisphenol A, brominated imide compounds such as N, N′-ethylenebis (tetrabromophthalimide), and brominated polycarbonate.
  • polybrominated benzyl (meth) acrylates such as pentabromobenzyl polyacrylate, polybromophenylene ether, brominated polystyrene
  • brominated epoxy compounds such as an epoxy oligomer of tetrabromobisphenol A
  • brominated imide compounds such as N, N′-ethylenebis (tetrabromophthalimi
  • brominated epoxy compounds such as polybrominated benzyl (meth) acrylates such as pentabromobenzyl polyacrylate, epoxy oligomers of tetrabromobisphenol A, brominated polystyrenes, and brominated polycarbonates are preferred from the viewpoint of good thermal stability.
  • brominated polycarbonate or brominated polystyrene, and brominated polycarbonate is particularly preferred from the viewpoint of impact resistance and flame retardancy.
  • a polybrominated benzyl (meth) acrylate a polymer obtained by polymerizing benzyl (meth) acrylate containing a bromine atom alone, copolymerizing two or more kinds, or copolymerizing with other vinyl monomers
  • the bromine atom is added to the benzene ring, and the number of addition is preferably 1 to 5, more preferably 4 to 5 per benzene ring.
  • Examples of the benzyl acrylate containing a bromine atom include pentabromobenzyl acrylate, tetrabromobenzyl acrylate, tribromobenzyl acrylate, and mixtures thereof.
  • Examples of benzyl methacrylate containing a bromine atom include methacrylates corresponding to the acrylates described above.
  • vinyl monomers used for copolymerization with benzyl (meth) acrylates containing bromine atoms include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and benzyl acrylate.
  • xylene diacrylate, xylene dimethacrylate, tetrabromoxylene diacrylate, tetrabromoxylene dimethacrylate, butadiene, isoprene, divinylbenzene, etc. can be used as vinyl monomers, and these usually contain bromine atoms. 0.5 mol or less of benzyl acrylate or benzyl methacrylate can be used.
  • pentabromobenzyl polyacrylate is preferable from the viewpoint of high bromine content and high electrical insulation characteristics (tracking resistance).
  • brominated epoxy compounds include bisphenol A brominated epoxy compounds represented by tetrabromobisphenol A epoxy compounds.
  • the molecular weight of the brominated epoxy compound is arbitrary and may be appropriately selected and determined.
  • the weight average molecular weight (Mw) is 3000 to 100,000, and among them, the higher molecular weight is preferable. 15000 to 80000, particularly 18000 to 78000 (Mw), more preferably 20000 to 75000 (Mw), and particularly preferably 22000 to 70000, and those having a high molecular weight are also preferred within this range.
  • the brominated epoxy compound preferably has an epoxy equivalent of 3000 to 40000 g / eq, more preferably 4000 to 35000 g / eq, and particularly preferably 10,000 to 30000 g / eq.
  • a brominated epoxy oligomer can be used in combination as a brominated epoxy compound flame retardant.
  • a brominated epoxy compound flame retardant for example, by using about 0 to 50% by mass of an oligomer having Mw of 5000 or less, flame retardancy, releasability and fluidity can be appropriately adjusted.
  • the bromine atom content in the brominated epoxy compound is arbitrary, it is usually 10% by mass or more, preferably 20% by mass or more, particularly preferably 30% by mass or more, in order to impart sufficient flame retardancy.
  • the upper limit is 60% by mass, preferably 55% by mass or less.
  • the brominated polycarbonate flame retardant is preferably a brominated polycarbonate obtained from, for example, brominated bisphenol A, particularly tetrabromobisphenol A.
  • the terminal structure include a phenyl group, 4-t-butylphenyl group, 2,4,6-tribromophenyl group, etc., and particularly those having a 2,4,6-tribromophenyl group in the terminal group structure. Is preferred.
  • the average number of carbonate repeating units in the brominated polycarbonate flame retardant may be appropriately selected and determined, but is usually 2 to 30. If the average number of carbonate repeating units is small, the molecular weight of the (A) polybutylene terephthalate resin may be lowered during melting. On the other hand, if it is too large, the melt viscosity of the (B) polycarbonate resin is increased, causing a dispersion failure in the molded body, which may deteriorate the appearance of the molded body, particularly the glossiness. Therefore, the average number of repeating units is preferably 3 to 15, particularly 3 to 10.
  • the molecular weight of the brominated polycarbonate-based flame retardant is arbitrary and may be appropriately selected and determined.
  • the viscosity average molecular weight is 1000 to 20000, and preferably 2000 to 10,000.
  • the viscosity average molecular weight of a brominated polycarbonate flame retardant can be calculated
  • the brominated polycarbonate flame retardant obtained from the brominated bisphenol A can be obtained by, for example, a usual method of reacting brominated bisphenol and phosgene.
  • the end-capping agent include aromatic monohydroxy compounds, which may be substituted with a halogen or an organic group.
  • the content of the flame retardant (D) is 5 to 40 parts by mass, preferably 7 parts by mass or more, based on a total of 100 parts by mass of the (A) polybutylene terephthalate resin and the (B) polycarbonate resin. Preferably it is 10 mass parts or more, Preferably it is 30 mass parts or less, More preferably, it is 25 mass parts or less, More preferably, it is 20 mass parts or less. (D) If the content of the flame retardant is too small, the flame retardancy of the polybutylene terephthalate resin composition of the present invention will be insufficient. Bleed out problems occur.
  • the polybutylene terephthalate resin composition of the present invention contains (E) an antimony compound.
  • Preferred examples of the antimony compound include antimony trioxide (Sb 2 O 3 ), antimony pentoxide (Sb 2 O 5 ), and sodium antimonate. Among these, antimony trioxide is preferable from the viewpoint of impact resistance.
  • the antimony compound has a total mass concentration of 3 bromine atoms derived from the brominated flame retardant and antimony atoms derived from the antimony compound in the resin composition. It is preferably ⁇ 25% by mass, more preferably 4 to 22% by mass, and even more preferably 10 to 20% by mass. If it is less than 3% by mass, the flame retardancy tends to decrease, and if it exceeds 20% by mass, the mechanical strength tends to decrease.
  • the mass ratio (Br / Sb) of bromine atoms to antimony atoms is preferably 0.3 to 5, and more preferably 0.3 to 4. By setting it as such a range, it exists in the tendency for a flame retardance to express easily, and is preferable.
  • the content of the (E) antimony compound is 1 to 15 parts by mass, preferably 2 parts by mass or more, more preferably with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and the (B) polycarbonate resin. It is 3 parts by mass or more, preferably 10 parts by mass or less, more preferably 7 parts by mass or less, further preferably 6 parts by mass or less, and particularly preferably 5 parts by mass or less. If it falls below the lower limit, the flame retardancy is lowered. On the other hand, when the above upper limit is exceeded, the crystallization temperature is lowered and the releasability is deteriorated, and mechanical properties such as impact resistance are lowered.
  • the polybutylene terephthalate resin composition of the present invention preferably contains (F) titanium oxide.
  • titanium oxide By containing titanium oxide in a predetermined amount together with (A) polybutylene terephthalate resin, (B) polycarbonate resin, (C) elastomer, (D) flame retardant, and (E) antimony compound, (A) Crystallization of the polybutylene terephthalate resin is moderately delayed, higher impact resistance can be achieved, and flame retardancy is further improved. Further, when carbon black is blended for the purpose of coloring the resin composition, appearance defects may occur in the welded part of the molded product or the stepped part of the molded product due to aggregation of the carbon black, etc.
  • the production method, crystal form and average particle size of titanium oxide used for titanium oxide are not particularly limited. There are sulfuric acid method and chlorine method in the production method of titanium oxide, but titanium oxide produced by sulfuric acid method tends to be inferior in whiteness of the composition to which this is added, so the object of the present invention can be effectively achieved. To achieve this, those produced by the chlorine method are preferred.
  • the crystal form of titanium oxide includes a rutile type and an anatase type, but a rutile type crystal form is preferable from the viewpoint of light resistance.
  • the average particle diameter of titanium oxide is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m, still more preferably 0.1 to 0.7 ⁇ m, and particularly preferably. Is 0.1 to 0.4 ⁇ m. When the average particle size is less than 0.01 ⁇ m, the workability during the production of the resin composition is poor, and when it exceeds 3 ⁇ m, the surface of the molded product is easily roughened, and the mechanical strength of the molded product is likely to be lowered. Two or more types of titanium oxide having different average particle diameters may be mixed and used.
  • titanium oxide is preferably surface-treated with an organosiloxane-based surface treatment agent, it is preferably pretreated with an alumina-based surface treatment agent before that.
  • Alumina hydrate is preferably used as the alumina-based surface treatment agent.
  • it may be pretreated with silicic acid hydrate together with alumina hydrate.
  • the pretreatment method is not particularly limited, and any method can be used.
  • the pretreatment with alumina hydrate and, if necessary, silicic acid hydrate is preferably carried out in the range of 1 to 15% by mass with respect to titanium oxide.
  • an organosiloxane surface treatment agent by moderately suppressing the activity of titanium oxide, (B) it is preferable because it tends to easily suppress a decrease in mechanical properties such as impact resistance due to a decrease in the molecular weight of the polycarbonate resin and a decrease in hydrolysis resistance. .
  • a reactive functional group-containing organosilicon compound having a reactive functional group that reacts with the surface of the inorganic compound particles is preferable.
  • the reactive functional group include Si—H group, Si—CH 3 group, Si—OH group, Si—NH group, and Si—OR group, but Si—H group, Si—OH group, Si— Those having an OR group are more preferable, and organosilicon compounds having a Si—H group and a Si—CH 3 group are particularly preferable.
  • the Si—H, Si—CH 3 group-containing organosilicon compound is not particularly limited as long as it is a compound having a Si—H group or a Si—CH 3 group in the molecule, and may be appropriately selected and used.
  • a wet method and (2) a dry method as a surface treatment method using a titanium oxide organosiloxane surface treatment agent there are (1) a wet method and (2) a dry method as a surface treatment method using a titanium oxide organosiloxane surface treatment agent.
  • a wet method a mixture of an organosiloxane-based surface treatment agent and a solvent is added with alumina hydrate, and if necessary, titanium oxide pretreated with silicic acid hydrate. Further, the heat treatment is then performed at 100 to 300 ° C.
  • pretreated titanium oxide and polyorganohydrogensiloxane are mixed with a Henschel mixer in the same manner as described above, and an organic solution of polyorganohydrogensiloxane is sprayed on the pretreated titanium oxide. And a method of heat treatment at 100 to 300 ° C.
  • the treatment amount of the siloxane compound is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of (F) titanium oxide.
  • the amount of treatment is less than the above lower limit, the surface treatment effect is low, and the impact resistance, flame retardancy, and hydrolysis resistance of the polybutylene terephthalate resin composition of the present invention are likely to be lowered.
  • the amount of treatment exceeds the above upper limit value, the fluidity of the polybutylene terephthalate resin composition tends to decrease, such being undesirable.
  • the amount of the treatment is more preferably 0.1 to 6 parts by weight, still more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of (F) titanium oxide. preferable.
  • the content of (F) titanium oxide is preferably 0.5 to 10 parts by mass, more preferably 0.005 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. It is 7 parts by mass or more, more preferably 1 part by mass or more, more preferably 8 parts by mass or less, further preferably 6 parts by mass or less, and particularly preferably 5 parts by mass or less. (F) If the content of titanium oxide is less than 0.05 parts by mass, impact resistance, flame retardancy, hydrolysis resistance improvement effect may not be sufficient, and if it exceeds 10 parts by mass, mechanical properties, Formability may be reduced.
  • the polybutylene terephthalate resin composition of the present invention preferably contains (G) a polyolefin mold release agent.
  • the release agent known release agents that are usually used for polybutylene terephthalate resins can be used. In the present invention, however, polyolefin compounds are used in terms of impact resistance, hydrolysis resistance, and release properties. Contains a mold release agent.
  • polyolefin compound examples include compounds selected from paraffin wax and polyethylene wax.
  • the weight average molecular weight is 700 to 10,000, and more preferably 900 to 8,000, from the viewpoint of good dispersion of the polyolefin compound.
  • Polyethylene wax is preferred.
  • the polyolefin compound is preferably not provided with a functional group having an affinity for the polybutylene terephthalate resin, but a carboxyl group (carboxylic acid (anhydride) group, that is, a carboxylic acid group and / Represents a carboxylic acid anhydride group, the same shall apply hereinafter), affinity with polybutylene terephthalate resin such as haloformyl group, ester group, carboxylate metal base, hydroxyl group, alcoholyl group, epoxy group, amino group, amide group, etc. Those having a functional group can be used.
  • a functional group having an affinity for the polybutylene terephthalate resin but a carboxyl group (carboxylic acid (anhydride) group, that is, a carboxylic acid group and / Represents a carboxylic acid anhydride group, the same shall apply hereinafter
  • affinity with polybutylene terephthalate resin such as haloformyl group, ester
  • This concentration is preferably more than 5 mg KOH / g and less than 50 mg KOH / g as the acid value of the polyolefin compound, and more preferably 10 to 40 mg KOH / g, more preferably 15 to 30 mg KOH / g, and particularly preferably 20 to 28 mg KOH / g. preferable.
  • an oxidized polyethylene wax can also be used as the polyolefin-based compound since it has a small amount of volatile matter and at the same time has a remarkable effect of improving the releasability.
  • the acid value can be measured according to a potentiometric titration method (ASTM D1386) using a 0.5 mol KOH ethanol solution.
  • the (G) polyolefin mold release agent preferably has a dropping point of 100 ° C. or lower, more preferably 90 ° C. or lower.
  • the lower limit is usually 50 ° C., preferably 60 ° C. If the dropping point is less than 50 ° C., the release agent tends to bleed during preliminary drying before injection molding of the molded product, and the pellets may be fused together, which is not preferable. Moreover, since a mold release effect will fall easily when a dropping point exceeds 100 degreeC, it is not preferable.
  • the dropping point can be measured by a method based on ASTM D127. Specifically, using a metal nipple, it is measured as the temperature at which molten wax first drops from the metal nipple.
  • the melting point by differential scanning calorimetry (DSC) can be set as the dropping point in the present invention.
  • a preferable content of the polyolefin-based mold release agent is 0.01 to 3 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. If it is less than 0.01 parts by mass, the surface appearance tends to be reduced due to defective release during melt molding, while if it exceeds 3 parts by mass, the kneading workability of the resin composition is reduced, Gas is likely to be generated during molding, and gas burning at the resin flow end and fogging may be seen on the surface of the molded product.
  • the content of the release agent is more preferably 0.07 parts by mass or more, further preferably 0.1 parts by mass or more, more preferably 1.2 parts by mass or less, and further preferably 1.0 parts by mass or less. is there.
  • the polybutylene terephthalate resin composition of the present invention further contains a stabilizer because it has effects of improving thermal stability and preventing deterioration of mechanical strength and hue.
  • a stabilizer a phosphorus stabilizer and a phenol stabilizer are preferable.
  • the mutual compatibility of (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (D) flame retardant can be remarkably improved, and it has a morphological structure described later. It becomes easy to form a molded body stably.
  • Examples of the phosphorus stabilizer include phosphorous acid, phosphoric acid, phosphite ester, phosphate ester, etc. Among them, an organic phosphate compound is preferable.
  • the organic phosphate ester compound has a partial structure in which 1 to 3 alkoxy groups or aryloxy groups are bonded to a phosphorus atom.
  • a substituent may further be bonded to these alkoxy groups and aryloxy groups.
  • it is a metal salt of an organophosphate compound, and as the metal, at least one metal selected from Periodic Tables Ia, IIa, IIb and IIIa is more preferable, among which magnesium, barium, calcium, zinc Aluminum is more preferred, with magnesium, calcium or zinc being particularly preferred.
  • an organic phosphate compound represented by any one of the following general formulas (1) to (5) is preferably used, and is represented by any one of the following general formulas (1) to (4). It is more preferable to use an organic phosphate ester compound, and it is more preferable to use an organic phosphate ester compound represented by the following general formula (1) or (2). Two or more organic phosphate compounds may be used in combination.
  • R 1 to R 4 each independently represents an alkyl group or an aryl group.
  • M represents an alkaline earth metal or zinc.
  • R 5 represents an alkyl group or an aryl group
  • M represents an alkaline earth metal or zinc.
  • R 6 to R 11 each independently represents an alkyl group or an aryl group.
  • M ′ represents a metal atom that becomes a trivalent metal ion.
  • R 12 to R 14 each independently represents an alkyl group or an aryl group.
  • M ′ represents a metal atom to be a trivalent metal ion, and two M ′ may be the same or different.
  • R 15 represents an alkyl group or an aryl group.
  • n represents an integer of 0-2.
  • n is 0 or 1, two R 15 may be the same or different.
  • R 1 to R 15 are usually an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. From the viewpoints of residence heat stability, chemical resistance, heat and humidity resistance, etc., an alkyl group having 2 to 25 carbon atoms is preferred, and an alkyl group having 6 to 23 carbon atoms is more preferred.
  • alkyl group examples include octyl, 2-ethylhexyl, isooctyl, nonyl, isononyl, decyl, isodecyl, dodecyl, tridecyl, isotridecyl, tetradecyl, hexadecyl, octadecyl and the like.
  • M in the general formulas (1) and (2) is preferably zinc
  • M ′ in the general formulas (3) and (4) is preferably aluminum.
  • the organic phosphate ester compound include a bis (distearyl acid phosphate) zinc salt as a compound of the general formula (1), a monostearyl acid phosphate zinc salt as a compound of the general formula (2), and a general formula (3 )
  • a compound of tris (distearyl acid phosphate) As a compound of tris (distearyl acid phosphate), a compound of general formula (4) as a salt of one monostearyl acid phosphate and two monostearyl acid phosphate aluminum salts
  • general formula Examples of the compound (5) include monostearyl acid phosphate and distearyl acid phosphate.
  • bis (distearyl acid phosphate) zinc salt and monostearyl acid phosphate zinc salt are more preferable. These may be used alone or as a mixture.
  • Bis (distearyl acid phosphate) zinc which is a zinc salt of an organic phosphate compound represented by the general formula (1) from the viewpoint of stable molding and excellent hydrolysis resistance and impact resistance. It is preferable to use a zinc salt of stearyl acid phosphate, such as a salt, a monostearyl acid phosphate zinc salt which is a zinc salt of an organic phosphate compound represented by the general formula (2). Examples of these commercially available products include “JP-518Zn” manufactured by Johoku Chemical Industry.
  • the content of the organic phosphate compound is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • the content of the organic phosphate compound is more preferably 0.01 to 0.8 parts by mass, still more preferably 0.05 to 0.7 parts by mass, particularly preferably 0.1 to 0.5 parts by mass. Part.
  • phenol-based stabilizer examples include pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate, thiodiethylenebis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), pentaerythritol tetrakis (3- (3,5-di-neopentyl-4-hydroxyphenyl) ) Propionate) and the like.
  • pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate is preferred.
  • the content of the phenol stabilizer is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • the content of the phenol-based stabilizer is more preferably 0.001 to 0.7 parts by mass, and still more preferably 0.005 to 0.5 parts by mass.
  • the polybutylene terephthalate resin composition of the present invention preferably contains a dripping inhibitor.
  • a fluoropolymer is preferable.
  • the fluoropolymer a known polymer having fluorine can be arbitrarily selected and used, and among these, a fluoroolefin resin is preferable.
  • fluoroolefin resin the polymer and copolymer containing a fluoroethylene structure are mentioned, for example. Specific examples thereof include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, and the like.
  • tetrafluoroethylene resin and the like are preferable.
  • this fluoroethylene resin a fluoroethylene resin having a fibril forming ability is preferable.
  • the fluoroethylene resin having a fibril-forming ability include Mitsui DuPont Fluorochemical Co., Ltd., Teflon (registered trademark) 6J, Daikin Industries, Ltd., Polyflon (registered trademark) F201L, Polyflon F103, and the like.
  • aqueous dispersion of fluoroethylene resin examples include Teflon (registered trademark) 30J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., Fullon D-1 manufactured by Daikin Industries, Ltd., and TF1750 manufactured by Sumitomo 3M Co., Ltd.
  • a fluoroethylene polymer having a multilayer structure formed by polymerizing vinyl monomers can also be used as the fluoropolymer. Specific examples thereof include Metablene (registered trademark) A-3800 manufactured by Mitsubishi Rayon Co., Ltd.
  • the content of the anti-dripping agent is preferably 0.05 to 1 part by mass, more preferably 0.1 parts by mass with respect to a total of 100 parts by mass of (A) polybutylene terephthalate resin and (B) polycarbonate resin. Part or more, more preferably 0.12 part by weight or more, particularly preferably 0.15 part by weight or more, more preferably 0.6 part by weight or less, still more preferably 0.45 part by weight or less, particularly preferably 0.8. 35 parts by mass or less. If the content of the anti-dripping agent is too small, the flame retardancy of the resin composition may be insufficient. Conversely, if the content is too large, the appearance defect of the molded product of the resin composition and the mechanical strength will decrease. there is a possibility.
  • the resin composition of the present invention may contain various additives other than the above as long as the effects of the present invention are not impaired.
  • additives include ultraviolet absorbers, pigments, reinforcing fillers, nucleating agents, antistatic agents, antifogging agents, antiblocking agents, plasticizers, dispersing agents, antibacterial agents, and the like.
  • the polybutylene terephthalate resin composition of the present invention preferably further contains an ultraviolet absorber from the viewpoint of having an effect of improving light resistance.
  • an ultraviolet absorber include organic ultraviolet absorbers such as a benzotriazole compound, a benzophenone compound, a salicylate compound, a cyanoacrylate compound, a triazine compound, an oxanilide compound, a malonic ester compound, and a hindered amine compound.
  • benzotriazole-based UV absorbers, triazine-based UV absorbers or malonic ester-based UV absorbers are more preferable, and benzotriazole-based UV absorbers are particularly preferable.
  • benzotriazole ultraviolet absorber examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -Dimethylbenzyl) phenyl] -benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -benzotriazole, 2- (2'-hydroxy-3'-tert-butyl -5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2′- Hydroxy-3 ′, 5′-di-tert-amyl) -benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotri Azole, 2,2′-methylenebis [4- (1,1,1,2,
  • triazine ultraviolet absorber examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy -4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6--
  • malonic acid ester UV absorber examples include 2- (alkylidene) malonic acid esters, particularly 2- (1-arylalkylidene) malonic acid esters.
  • the content of the ultraviolet absorber is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. In addition, it is preferably 1 part by mass or less, more preferably 0.8 part by mass or less, and further preferably 0.6 part by mass or less. If the content of the ultraviolet absorber is less than the lower limit of the range, the light resistance improvement effect may be insufficient, and if the content of the ultraviolet absorber exceeds the upper limit of the range, the mold Debogit etc. may occur and cause mold contamination.
  • the resin composition in the present invention preferably further contains a pigment from the viewpoint of having an effect of improving light resistance.
  • the pigment include inorganic pigments (black pigments such as carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), red pigments such as iron oxide red, molybdate orange, etc.
  • black pigments such as carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black)
  • red pigments such as iron oxide red, molybdate orange, etc.
  • orange pigments such as titanium pigments
  • white pigments such as titanium oxide
  • organic pigments yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.
  • carbon black is used from the viewpoint of improving light resistance. preferable.
  • the content of the pigment is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. If it is less than 0.05 parts by mass, the light resistance improving effect may not be sufficient, and if it exceeds 5 parts by mass, the mechanical properties may deteriorate.
  • the pigment content is preferably 0.05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the appearance defect in the molded product weld part or the molded product step part due to the aggregation of the carbon black or the like is caused by blending (F) titanium oxide. It became clear that it was easier to improve. This is confirmed specifically for a resin composition containing a specific amount of (C) elastomer, (D) flame retardant and (E) antimony compound in a mixed resin of (A) polybutylene terephthalate resin and (B) polycarbonate resin. This is a remarkable effect.
  • the resin composition used in the present invention may contain a reinforcing filler as long as the effects of the present invention are not impaired. However, when high impact resistance is required, it is preferable not to contain a reinforcing filler.
  • a reinforcing filler having an effect of improving the mechanical properties of the resin composition obtained by blending with the resin is preferable, and a conventional inorganic filler for plastics can be used.
  • fibrous fillers such as glass fiber, carbon fiber, basalt fiber, wollastonite and potassium titanate fiber can be used.
  • granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clays, organic clays, glass beads, etc .; plate-like fillers such as talc; scale-like fillings such as glass flakes, mica and graphite A material can also be used.
  • glass fibers are preferably used from the viewpoint of mechanical strength, rigidity, and heat resistance.
  • a filler such as talc as a nucleating agent for the purpose of improving the crystallization speed
  • 1% by mass or less with respect to a total of 100 parts by mass of (A) polybutylene terephthalate resin and (B) polycarbonate resin Preferably, you may mix
  • the reinforcing filler is surface-treated with a surface treatment agent such as a coupling agent.
  • a surface treatment agent such as a coupling agent.
  • the glass fiber to which the surface treatment agent is attached is preferable because it is excellent in durability, heat and humidity resistance, hydrolysis resistance, and heat shock resistance.
  • any conventionally known one can be used.
  • silane coupling agents such as amino silane, epoxy silane, allyl silane, and vinyl silane are preferable.
  • aminosilane-based surface treatment agents are preferable, and specifically, for example, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane are preferable. Take as an example.
  • epoxy resins such as a novolac type, a bisphenol A type epoxy resin, etc. are mentioned preferably.
  • novolac type epoxy resins are preferable.
  • the silane-based surface treatment agent and the epoxy resin may be used alone or in combination, and it is also preferable to use both in combination.
  • the content of the reinforcing filler is preferably 0 to 100 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • a more preferable content of the reinforcing filler is 5 to 90 parts by mass, of which 15 to 80 parts by mass, more preferably 30 to 80 parts by mass, and particularly 40 to 70 parts by mass.
  • the resin composition used in the present invention can contain (A) a polybutylene terephthalate resin and (B) a thermoplastic resin other than the polycarbonate resin as long as the effects of the present invention are not impaired.
  • the other thermoplastic resins include polyethylene terephthalate, polyamide, polyphenylene oxide, polystyrene resin, polyphenylene sulfide ethylene, polysulfone, polyether sulfone, polyether imide, and polyether ketone.
  • the resin composition used for this invention As a manufacturing method of the resin composition used for this invention, it can carry out in accordance with the conventional method of resin composition preparation. Usually, the components and various additives added as desired are mixed together and then melt-kneaded in a single-screw or twin-screw extruder. Moreover, it is also possible to prepare the resin composition used in the present invention without mixing each component in advance, or by mixing only a part of the components in advance and supplying them to an extruder using a feeder and melt-kneading them.
  • (A) a polybutylene terephthalate-based resin or (B) a polycarbonate resin partly blended with a part of other components is melt-kneaded to prepare a masterbatch, and then the remaining other ingredients May be blended and melt-kneaded.
  • fibrous reinforcement fillers such as glass fiber
  • the (E) antimony compound is blended as a masterbatch with a thermoplastic resin, particularly preferably with the (A) polybutylene terephthalate-based resin.
  • a thermoplastic resin particularly preferably with the (A) polybutylene terephthalate-based resin.
  • the method of masterbatching is not particularly limited, and examples thereof include a method of melt-kneading a thermoplastic resin and an antimony compound.
  • melt-kneading method examples include a single- or twin-screw extruder type kneader, a continuous kneader such as a kneading roll or a calender roll, or a method using a known kneader such as a pressure kneader or a Banbury mixer. It is done. Among these, it is preferable to use a twin screw extruder. Moreover, it is also preferable to dry the thermoplastic resin in advance at the time of melt-kneading. As drying, hot air drying is preferable, and the temperature is preferably 100 to 140 ° C., more preferably 110 to 130 ° C., and the drying time is preferably 1 to 5 hours, more preferably 2 to 4 hours.
  • thermoplastic resin preferably a polybutylene terephthalate resin
  • an antimony compound are supplied to the extruder, melt-kneaded, the resin composition is extruded from a die nozzle to form a strand, and then cooled. Then, a master batch pellet is produced by cutting.
  • a twin screw extruder as the melt kneader.
  • L / D which is the ratio of the screw length L (mm) to the diameter D (mm) of the screw satisfies the relationship of 10 ⁇ (L / D) ⁇ 100, and 15 ⁇ (L / D) It is more preferable to satisfy ⁇ 70.
  • the ratio is 10 or less, the thermoplastic resin and the antimony compound are not easily dispersed finely, and conversely exceeding 100 is not preferable because the thermoplastic resin is easily decomposed.
  • the temperature is preferably 140 to 320 ° C., more preferably 160 to 310 ° C. as the barrel temperature.
  • the melting temperature is less than 140 ° C., the melting becomes insufficient, and aggregation of unmelted gel and antimony compound tends to occur frequently.
  • the melting temperature exceeds 320 ° C., the resin composition is thermally deteriorated and easily colored.
  • the screw rotation speed during melt kneading is preferably 100 to 1,000 rpm, more preferably 120 to 800 rpm. If the screw rotation speed is less than 100 rpm, the antimony compound tends to hardly disperse, and conversely if it exceeds 1,000 rpm, the thermoplastic resin tends to be decomposed, which is not preferable.
  • the discharge rate is preferably 5 to 2,000 kg / hr, more preferably 10 to 1,500 kg / hr. If the discharge amount is less than 5 kg / hr, the strands are not stable and the yield tends to decrease. Even if it exceeds 2,000 kg / hr, the antimony compound tends to aggregate and the dispersibility tends to decrease. Absent.
  • the ratio of the raw material thermoplastic resin (preferably polybutylene terephthalate resin) and antimony compound to be used for melt-kneading should be 20 to 90% by mass of the antimony compound based on the total of 100% by mass of the thermoplastic resin and the antimony compound. Is preferred.
  • the antimony compound is less than 20% by mass, the ratio of the antimony compound in the flame retardant master batch is small, and the effect of improving the flame retardancy to the thermoplastic resin containing the antimony compound is small.
  • the antimony compound exceeds 90% by mass, the dispersibility of the antimony compound is liable to decrease, and when this master batch is blended with the (A) polybutylene terephthalate resin, the difficulty of the polybutylene terephthalate resin composition of the present invention is reached.
  • the flammability becomes unstable, and the workability during the production of the flame retardant masterbatch is remarkably reduced.
  • the content of the antimony compound in the master batch is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, based on the total of 100% by mass of the thermoplastic resin and the antimony compound.
  • thermoplastic resin and an antimony compound When melt-kneading a thermoplastic resin and an antimony compound into a master batch, various additives such as a stabilizer can be blended as necessary.
  • the blend of the antimony compound masterbatch was such that the content of the antimony compound in the obtained polybutylene terephthalate resin composition was 0.5 to 10% by mass in 100% by mass of the whole polybutylene terephthalate resin composition. It is preferably blended, more preferably 0.7 to 9% by mass, further preferably 1 to 8% by mass, particularly 1.5 to 7% by mass, and most preferably 2 to 6% by mass.
  • (E) When blending the antimony compound in a masterbatch, (A) polybutylene terephthalate resin, (B) polycarbonate resin, (C) elastomer, (D) flame retardant and other desired components are each desired.
  • the mixture is fed to a kneader such as an extruder at a ratio.
  • the antimony compound master batch is preferably supplied to the extruder from a dedicated feeder provided separately from other raw materials.
  • Antimony compound masterbatch is not mixed with components (A) to (D) and other desired additives and supplied from the same feeder, but from an independent dedicated feeder, classification is suppressed, The flame retardancy and impact resistance are good, and it is preferable from the point of less variation.
  • an antimony buster batch from a dedicated feeder When supplying an antimony buster batch from a dedicated feeder, it may be fed simultaneously to other raw materials from the dedicated feeder to the hopper of the extruder, or may be fed in the middle of the extruder. When feeding in the middle of an extruder, it is preferable to feed to the hopper side rather than a kneading zone.
  • A Polybutylene terephthalate resin
  • B polycarbonate resin
  • C elastomer
  • D flame retardant
  • E antimony compound
  • A Polybutylene terephthalate resin
  • B polycarbonate resin
  • C elastomer
  • D flame retardant
  • E antimony compound
  • A Polybutylene terephthalate resin
  • B polycarbonate resin
  • C elastomer
  • D flame retardant
  • E antimony compound
  • other desired components are usually heated at the heating temperature. It can be appropriately selected from the range of 220 to 300 ° C. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacity. Therefore, it is desirable to select a screw configuration in consideration of shear heat generation. In order to suppress decomposition during kneading or molding in the subsequent process, it is desirable to use an antioxidant or a heat stabilizer.
  • the molded article of the polybutylene terephthalate resin composition of the present invention is preferably such that (A) the polybutylene terephthalate resin and (B) the polycarbonate resin form a co-continuous phase in the core of the molded article, and (C) The elastomer (B) has a morphology present in the polycarbonate resin phase.
  • the (E) antimony compound is also present in the (A) polybutylene terephthalate resin phase.
  • the core portion is a portion excluding the surface layer portion having a depth of less than 20 ⁇ m of the molded body, and refers to the central portion of the cross section parallel to the resin composition flow direction of the molded body, and the surface layer portion is the surface of the molded body. It is a surface layer part from the inside to a depth of 20 ⁇ m, and refers to a cross section parallel to the resin composition flow direction.
  • the co-continuous phase means that (A) a phase made of polybutylene terephthalate resin and (B) a phase in which polycarbonate resins are in contact with each other form a continuous phase.
  • the molded article of the present invention has both flame retardancy and impact resistance. It becomes easy to express the characteristic that it is excellent in.
  • the structure, shape and size of the co-continuous phase are not limited
  • the morphology of the polybutylene terephthalate-based resin composition molded body can be measured by observing the cross section of the molded body with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like. Specifically, using a SEM, STEM, or TEM analyzer, the core part of the cross section of the molded body (a part excluding the surface layer part with a depth of less than 20 ⁇ m, a cross section parallel to the resin composition flow direction, the central part of the cross section). Are observed at a magnification of 3,000 to 100,000 times under an acceleration voltage of 20 kV.
  • FIG. 1 and 2 show examples of the morphology of the molded body, and are STEM photographs of the core portion of the molded body obtained in Example 41 of the present invention.
  • the flow direction is from left to right in FIG.
  • the light gray part is the (A) polybutylene terephthalate resin phase
  • the darker gray is the (B) polycarbonate resin phase
  • the (C) elastomer phase is present in the (B) polycarbonate resin phase in the form of white circles
  • the (C) elastomer is present in the (B) polycarbonate resin phase.
  • the black portion having a large particle diameter is (E) antimony compound (antimony trioxide in FIG. 1), and (E) 80% or more of the antimony compound. It was also confirmed that (A) was dispersed in the phase of polybutylene terephthalate resin. A black part with a small particle diameter is considered to be titanium dioxide. Moreover, it is thought that (D) a flame retardant exists in (B) polycarbonate resin phase.
  • the average diameter of the (C) elastomer in the molded body core part in the (B) polycarbonate resin phase is preferably 200 nm or more, more preferably 300 nm or more, further preferably 400 nm or more. Is 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, still more preferably 1.2 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the average diameter of the (E) antimony compound is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 2 ⁇ m or less.
  • the elastomer phase and the domain (or particle) particle size (dispersion size) of the (E) antimony compound are the same as those obtained by morphological observation, or the contrast is enhanced in these images, or the brightness is adjusted or both. Can be read by applying the following adjustment to the image.
  • the particle diameter and the like of (C) elastomer phase and (E) antimony compound are calculated by measuring 200 or more particle diameters and arithmetically averaging the maximum diameters.
  • the (C) elastomer phase extends in the resin flow direction, and the ratio of the major axis to the minor axis (major axis / minor axis) is It is preferably 3 to 20, more preferably 4 to 17, and still more preferably 6 to 15.
  • the major axis refers to the maximum diameter of the elastomer particles
  • the minor axis refers to the maximum diameter in the direction perpendicular to the major axis.
  • the surface layer portion refers to a region from the molded body surface to a depth of 20 ⁇ m.
  • FIG. 3 is an SEM photograph of the surface layer portion of the molded body obtained in Example 41 of the present invention.
  • the flow direction of the resin during molding is from left to right in the figure. It is light gray and elongated in the horizontal direction in the (C) elastomer phase, and it can be confirmed that the resin phase extends in the flow direction.
  • (A) Polybutylene terephthalate resin and (B) polycarbonate resin are considered to form a layered structure.
  • a white portion having a large particle size is considered to be
  • E) an antimony compound, and a particle having a small particle size is considered to be titanium dioxide.
  • the molded article of the present invention preferably has such a unique morphological structure.
  • the molded article becomes a flame-retardant molded article that is superior in both flame retardancy and impact resistance.
  • the polybutylene terephthalate resin composition used for the production of the molded body is preferably produced by a melt kneading method using a melt kneader such as an extruder, but the raw materials of the polybutylene terephthalate resin composition are mixed.
  • a melt kneader such as an extruder
  • A Polybutylene terephthalate resin
  • B polycarbonate resin
  • D flame retardant
  • E antimony compound
  • C elastomer
  • L / D which is a ratio of the screw length L (mm) to the diameter D (mm) of the screw satisfies the relationship of 10 ⁇ (L / D) ⁇ 150, and 15 ⁇ (L / D) ⁇ 120 is more preferable, 20 ⁇ (L / D) ⁇ 100 is more preferable, and 30 ⁇ (L / D) ⁇ 70 is particularly preferable.
  • this ratio is 10 or less, (B) polycarbonate resin and (D) flame retardant, (E) antimony compound and (C) elastomer are difficult to finely disperse. Deterioration is remarkable and tends to be difficult to be finely dispersed.
  • the shape of the die nozzle is not particularly limited, but a circular nozzle having a diameter of 1 to 10 mm is preferable, and a circular nozzle having a diameter of 2 to 7 mm is more preferable in terms of pellet shape.
  • the melting temperature of the resin composition at the time of melt kneading is preferably 200 to 300 ° C, more preferably 210 to 295 ° C.
  • the melting temperature is less than 200 ° C., melting is insufficient and unmelted gel is likely to occur frequently.
  • it exceeds 300 ° C. the resin composition is thermally deteriorated and easily colored.
  • the screw rotation speed during melt kneading is preferably 100 to 1,000 rpm, more preferably 150 to 800 rpm.
  • (D) flame retardant, (E) antimony compound and (C) elastomer tend to hardly disperse, and conversely even if it exceeds 1,000 rpm, (E) antimony compound Are not preferred because they tend to aggregate and not finely disperse.
  • the discharge rate is preferably 5 to 1,000 kg / hr, more preferably 10 to 900 kg / hr.
  • the discharge rate is less than 5 kg / hr, the dispersibility of the (E) antimony compound tends to decrease, and even when it exceeds 1,000 kg / hr, the dispersibility tends to decrease due to reaggregation of the antimony compound. It is not preferable.
  • the shear rate of the polybutylene terephthalate resin composition in the die nozzle is preferably 10 to 10,000 sec ⁇ 1 , more preferably 50 to 5,000 sec ⁇ 1 , and 70 to 1,000 sec ⁇ 1 . More preferably.
  • represents the shear rate (sec ⁇ 1 )
  • Q represents the discharge amount of the resin composition per die nozzle (cc / sec)
  • r represents the radius (cm) of the die nozzle cross section.
  • the resin composition extruded into a strand form from the die nozzle is cut into a pellet shape by a pelletizer or the like, and the strand is cooled so that the surface temperature of the strand at the time of cutting is 60 to 150 ° C., particularly 70 to 150 ° C. It is preferable. Usually, it is cooled by a method such as air cooling or water cooling, but water cooling is preferable in terms of cooling efficiency. In such water cooling, the strand may be cooled in a water tank containing water, and a desired strand surface temperature can be obtained by adjusting the water temperature and the cooling time.
  • the pellets thus produced preferably have a diameter of 1 to 8 mm, more preferably 2 to 6 mm, still more preferably 3 to 5 mm, and a length of preferably 1 to 10 mm.
  • the thickness is preferably 2 to 6 mm, more preferably 3 to 5 mm.
  • the relationship between the shear rate ⁇ (sec ⁇ 1 ) in the die nozzle and the surface temperature T (° C.) of the strand at the time of strand cutting is as follows: 1 ⁇ 10 3 ⁇ ( ⁇ ⁇ T) ⁇ 9.9 ⁇ 10 5 Satisfying the above relationship tends to improve electrical insulation, toughness, and flame retardancy, which is preferable.
  • the value of ( ⁇ ⁇ T) within the above range, the morphological structure defined above tends to be formed stably.
  • the lower limit of ( ⁇ ⁇ T) is more preferably 1 ⁇ 10 4
  • the upper limit is more preferably 8.5 ⁇ 10 5 .
  • the shear rate and the surface temperature of the strand may be adjusted.
  • a polybutylene terephthalate-based resin composition having a morphological structure as defined above can be produced by applying the above preferable conditions alone or in combination of a plurality of them, but among them, the value of ( ⁇ ⁇ T) It is effective to adopt production conditions that satisfy the above formula.
  • a molded article is produced using a polybutylene terephthalate resin composition to which the following methods and conditions 1) to 8) are applied. It is also preferable.
  • the flame retardant (D) is a brominated polycarbonate flame retardant
  • the content of chlorine compounds as impurities in the brominated polycarbonate flame retardant is usually 0.2% by mass or less, preferably 0.8%. It is preferably 1% by mass or less, more preferably 0.08% by mass or less, further 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
  • the impurity chlorine compound is a chlorinated bisphenol compound or the like.
  • a chlorine compound is present in the above amount or more, it becomes difficult to stably form the above morphological structure.
  • the chlorine compound content can be quantified as a value in terms of decane by analyzing a gas generated by heating at 270 ° C. for 10 minutes by a gas chromatography method.
  • the amount of free bromine, chlorine and sulfur in the polybutylene terephthalate resin composition is also effective in stably forming the above morphological structure.
  • the amount of free bromine is preferably 800 ppm or less, more preferably 700 ppm or less, further preferably 650 ppm or less, and particularly preferably 480 ppm or less.
  • the lower limit is usually 1 ppm, preferably 5 ppm, more preferably 10 ppm.
  • the amount of free chlorine is preferably 500 ppm or less, more preferably 350 ppm or less, further preferably 200 ppm or less, and particularly preferably 150 ppm or less.
  • the chlorine content in the resin composition is not limited in what state / form the chlorine was present in the resin composition.
  • Chlorine is mixed in from various environments such as raw materials, additives, catalysts, polymerization atmosphere, resin cooling water, and the like, and therefore the total amount of these is preferably controlled to 500 ppm or less.
  • the amount of free sulfur is preferably 250 ppm or less, more preferably 200 ppm or less, further preferably 150 ppm or less, and particularly preferably 100 ppm or less.
  • the sulfur content in the resin composition is not limited in what state and form sulfur is present in the resin composition. Since sulfur is mixed in from various environments such as raw materials, additives, catalysts, polymerization atmospheres, etc., it is preferable to control the total amount of those mixed to 250 ppm or less.
  • the content of free bromine, chlorine and sulfur in the polybutylene terephthalate resin composition can be measured by a combustion ion chromatography method. Specifically, using an automatic sample combustion apparatus of “AQF-100 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd., the resin composition is heated at 270 ° C. for 10 minutes under an argon atmosphere, and the generated bromine, chlorine, The amount of sulfur can be determined by quantifying using “ICS-90” manufactured by Nippon Dionex.
  • antimony trioxide is used as the (E) antimony compound.
  • a brominated polycarbonate flame retardant is used as the flame retardant (D). Brominated polycarbonate flame retardants are easier to incorporate into the (B) polycarbonate resin phase than other flame retardants, so that the (B) polycarbonate resin phase becomes larger, and (A) the polybutylene terephthalate resin and (B) Polycarbonate resin tends to form a co-continuous structure.
  • the (E) antimony compound is blended as a master batch with the (A) polybutylene terephthalate resin. Thereby, the (E) antimony compound is likely to be present in the (A) polybutylene terephthalate resin phase.
  • a zinc salt of stearyl acid phosphate is added as a stabilizer. Accordingly, the transesterification of (A) polybutylene terephthalate resin and (B) polycarbonate resin is more easily suppressed, and the molded article having the morphological structure of the present invention is excellent in thermal stability during melt-kneading and molding processing. Can be formed stably.
  • a molded body by injection molding for example, the screw configuration of the injection molding machine, the processing of the inner wall of the screw or cylinder, selection of molding machine conditions such as nozzle diameter, mold structure, plasticization, measurement, Various methods such as adjustment of molding conditions at the time of injection, addition of other components to the molding material, and the like can be mentioned.
  • adjusting the cylinder temperature it is preferably set to 230 to 280 ° C., more preferably 240 to 270 ° C.
  • the back pressure is adjusted, it is preferably set to 2 to 15 MPa, more preferably 4 to 10 MPa.
  • the screw rotation speed it is preferably set to 20 to 300 rpm, more preferably 20 to 250 rpm.
  • the injection speed is 5 to 1,000 mm / sec, further 10 to 900 mm / sec, especially 20 to 800 mm / sec, 30 to 700 mm / sec, and 40 to 500 mm / sec. It is preferable to do.
  • the (C) elastomer phase is easily oriented in the resin flow direction.
  • a co-continuous structure of (A) polybutylene terephthalate resin and (B) polycarbonate resin is formed in the core portion, and the impact resistance is improved.
  • the elastomer phase is oriented, the expansion of craze by impact stops at the elastomer oriented phase, which is considered to lead to an improvement in impact resistance.
  • the antimony compound that tends to deteriorate the polycarbonate resin (E) is likely to be present in the (A) polybutylene terephthalate-based resin phase, so that the adverse effects on the (B) polycarbonate resin can be suppressed, and the impact resistance is reduced. It tends to be suppressed.
  • These methods and conditions 1) to 8) may be used alone or in combination with a plurality of methods, and may be applied in combination with the above-described resin composition production conditions.
  • the polybutylene terephthalate resin composition of the present invention obtained by the above method preferably has a crystallization temperature of 100 ° C or higher, more preferably 130 ° C or higher, and further preferably 140 ° C or higher. .
  • the flame retardance of 1.5 mm thickness according to UL94 is V-0, and the flame retardance of 3.0 mm thickness according to UL94 5V test is 5VA determination.
  • the Charpy notched impact strength is 30 kJ / m 2 or more, more preferably 40 kJ / m 2 or more, further preferably 45 kJ / m 2 or more.
  • the surface impact strength is preferably 80 cm or more, more preferably 100 cm or more, and even more preferably 150 cm or more, when the molded product is completely destroyed.
  • the evaluation method of crystallization temperature, a flame retardance, and impact resistance is as the description in the below-mentioned Example.
  • the molded product obtained by molding the polybutylene terephthalate-based resin composition of the present invention is an electrical / electronic component, an automotive component or other electrical component, a mechanical component, a part of a household appliance such as a cooking appliance, for example, a charger connector for an electric vehicle, Battery capacitor holder, battery capacitor housing or electric vehicle charging station housing, electronic and electrical equipment parts housing, connectors, relays, switches, sensors, actuators, terminal switches, rice cooker-related parts, grill cooking equipment parts, etc.
  • a charger connector for an electric vehicle a battery capacitor holder, a battery capacitor casing, or a housing for an electric vehicle charging stand.
  • the electric vehicle charger connector is a contact type connector for an electric vehicle charger used in the facility, which is charged in the facility provided with the charger when the amount of stored electricity is reduced.
  • the battery capacitor holder is a holder for holding a large-capacity capacitor as an emergency auxiliary power source separately from the charger (battery).
  • the battery capacitor casing is a casing constituting the capacitor.
  • the electric vehicle charging stand housing is a housing constituting a stand for charging the battery of the electric vehicle from a 100V or 200V AC power supply. The shape, size, thickness and the like of these molded products are arbitrary.
  • the method for producing the molded product using the resin composition is not particularly limited, and a molding method generally employed for the polyester resin composition can be arbitrarily adopted.
  • a molding method generally employed for the polyester resin composition can be arbitrarily adopted.
  • injection molding method ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, rapid heating mold were used.
  • Molding method foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, Examples thereof include a blow molding method. Of these, injection molding is preferred.
  • the characteristics of the obtained pellets were cooled using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., NEX80-9E) except for cylinder temperature 250 ° C., mold temperature 80 ° C., and evaluation of releasability in the following (3). Evaluation of releasability at a time of 15 seconds and (3) was performed on a test piece injection molded under the condition of a cooling time of 20 seconds. During molding, the resin composition was dried at 120 ° C. for 6 to 8 hours until just before that.
  • Impact resistance Charpy impact strength An ISO multi-purpose test piece (thickness: 4.0 mm) is injection-molded, and a 4.0 mm thick notched test piece is produced from the test piece in accordance with the ISO 179 standard. A notched Charpy impact strength (unit: kJ / m) 2 ) was measured.
  • Surface impact strength A box-shaped molded product with a size of 150 x 80 x 40 mm (thickness 1.5 mmt) is formed, a 2.975 kg steel ball is dropped from a predetermined height, and the height at which the molded product is completely destroyed (unit) : Cm). It can be said that the higher the height at the time of complete destruction, the better the surface impact. The test was conducted up to a height of 105 cm, and those that did not break at 105 cm were described in the table as “> 100”.
  • test piece for UL94 test (125 mm ⁇ 12.5 mm ⁇ 1.5 mmt) was molded, and V-0, V-1, and V-2 were determined in accordance with UL94 standards. Also, a test piece for UL94 5V Bar test (125 mm ⁇ 12.5 mm ⁇ 3.0 mmt) and a test piece for 5V Plate test (150 mm ⁇ 150 mm ⁇ 3.0 mmt) were formed, and 5 VA, according to UL94 5V test, A determination of 5 VB was made.
  • Formability Flowability (molding peak pressure): The molding peak pressure (unit: MPa) when the ISO test piece was injection molded was measured. Release properties: The releasability at the time of injection-molding a box-shaped product (wall thickness: 1.5 mmt) having a size of 150 mm ⁇ 80 mm ⁇ 40 mm was evaluated. The molded product without the ejector pin mark was marked with “ ⁇ ”, the molded product with the ejector pin mark marked with “ ⁇ ”, and the molded product with the ejector pin penetrating and cracked with “X”.
  • the (E) antimony compound is composed of 50% by mass of a polybutylene terephthalate resin “Novaduran (registered trademark) 5020” manufactured by Mitsubishi Engineering Plastics and a polybutylene terephthalate resin “Novaduran (registered trademark) 5008” manufactured by Mitsubishi Engineering Plastics.
  • a 50% by mass mixture was blended as a master batch of the antimony compound using the base resin (the content of the (E) antimony compound in the master batch was 70% by mass).
  • the characteristics of the obtained pellets were as follows: For a test piece injection-molded using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., NEX80-9E) under conditions of a cylinder temperature of 250 ° C., a mold temperature of 80 ° C., and a cooling time of 15 seconds, evaluated. During molding, the resin composition was dried at 120 ° C. for 6 to 8 hours until just before the molding.
  • the (E) antimony compound is composed of 50% by mass of a polybutylene terephthalate resin “Novaduran (registered trademark) 5020” manufactured by Mitsubishi Engineering Plastics and a polybutylene terephthalate resin “Novaduran (registered trademark) 5008” manufactured by Mitsubishi Engineering Plastics.
  • a 50% by mass mixture was blended as a master batch of the antimony compound using the base resin (the content of the (E) antimony compound in the master batch was 70% by mass).
  • the characteristics of the obtained pellets were cooled using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., NEX80-9E) except for the cylinder temperature 250 ° C., the mold temperature 80 ° C., and the evaluation of releasability in the following (5). Evaluation of the following (5) releasability was performed on a test piece injection-molded under the condition of cooling time 10 seconds. During molding, the resin composition was dried at 120 ° C. for 6 to 8 hours until just before the molding.
  • a plate trial molded product having a size of 100 ⁇ 100 ⁇ 3 mmt was injection-molded and left in a hot air oven at a temperature of 160 ° C. for 100 hours.
  • the molded product before and after the test of the test piece was subjected to color difference measurement using “CE-7000A” (light source: D65, field of view: 10 °, method: SCI) manufactured by GretagMacbeth, and ⁇ E * was obtained.
  • the free bromine, chlorine, and sulfur contents in the flame retardant were quantified by a combustion ion chromatography method.
  • the brominated polycarbonate flame retardant is heated under the conditions of 270 ° C. and 10 minutes in an argon atmosphere. The amount was measured using “ICS-90” manufactured by Nippon Dionex.
  • the extruder the die 250 ° C., a screw speed of a 200 rpm, the number nozzles 4 holes (circular (.phi.4 mm), length 1.5 cm), shear rate ( ⁇ ) 211sec - Extruded as a strand under the conditions of 1 .
  • the strand temperature immediately after extrusion was 270 ° C.
  • the extruded strand was cooled by introducing it into a water bath whose temperature was adjusted to a range of 30 to 50 ° C.
  • Manufactured Manufactured.
  • the obtained pellets were heated and dried at 120 ° C. for 7 hours, and using an injection molding machine (“J85AD” manufactured by Nippon Steel Works), cylinder temperature 250 ° C., mold temperature 80 ° C., injection pressure 150 MPa, injection holding time.
  • iii) Measurement of particle diameter of elastomer (C) phase 200 maximum particle diameters were measured and calculated by arithmetic averaging.
  • the surface layer portion (surface layer portion having a depth of less than 20 ⁇ m) of the obtained ISO tensile test piece was used with “UC7” manufactured by Leica, and a diamond knife with a thickness of 100 nm or more.
  • the cut cross section after cutting out the thin slice was used.
  • the obtained cut section was stained with ruthenium tetroxide for 40 minutes, and then subjected to SEM observation under the condition of an acceleration voltage of 3 kV using “SU8020” manufactured by Hitachi High-Tech.
  • the core part of the molded body of Example 41 is as shown in FIGS. 1 and 2, respectively, and that the polybutylene terephthalate resin (A) phase and the polycarbonate resin (B) phase form a co-continuous phase, elastomer ( C) is present in the polycarbonate resin (B) phase, and 80% or more of the antimony compound (E) is uniformly dispersed in the polybutylene terephthalate resin (A) phase. It could be confirmed.
  • Example 41 since brominated polycarbonate is used as the flame retardant, it is considered that the flame retardant is present in the polycarbonate resin (B) phase. 3 showing the surface layer portion of Example 41, it was also confirmed that the elastomer (C) phase extended in the resin flow direction in the surface layer portion.
  • the molded bodies of Examples 42 to 46 showed similar morphology.
  • the strand temperature immediately after extrusion was 290 ° C.
  • the resin composition is extruded from a die nozzle to form a strand, cooled, cut, and kneaded with a polybutylene terephthalate resin and an antimony compound. "MB1").
  • Production Example 5 of Antimony Compound Master Batch Production of “MB5”.
  • the polybutylene terephthalate resin mixture was 20 parts by mass and the amount of the antimony compound was 80 parts by mass
  • the polybutylene terephthalate resin and the antimony compound were kneaded under the same conditions as in Production Example 1.
  • a master batch (hereinafter referred to as “MB5”) containing 80% by mass of an antimony compound was obtained.
  • the antimony compound master batches (MB1 to MB5) were fed from independent dedicated feeders, and the other components were blended from the root feeder, and the proportions shown in Table 12 below (all by mass) Part)), using a 30mm vent type twin screw extruder (manufactured by Nippon Steel Works, twin screw extruder “TEX30 ⁇ ”), barrel temperature 270 ° C., discharge 80 kg / hr, screw rotation After melt-kneading at several 280 rpm and extruding into a strand, it was pelletized with a strand cutter to obtain a pellet of a polybutylene terephthalate resin composition.
  • an antimony compound master batch (MB1) was blended together with other components without using an independent dedicated feeder, and supplied from the root feeder in a lump to be polybutylene terephthalate resin composition pellets Got.
  • the obtained polybutylene terephthalate-based resin composition pellets were heat-dried at 120 ° C. for 7 hours, and the conditions of cylinder temperature 250 ° C. and mold temperature 80 ° C. using an injection molding machine (“J85AD” manufactured by Nippon Steel) Then, a test piece for flame retardancy and impact resistance was injection molded.
  • -Crystallization temperature Using a differential scanning calorimetry (DSC) machine (“Pyris Diamond” manufactured by Perkin Elmer), the temperature was increased from 30 to 300 ° C. at a temperature increase rate of 20 ° C./min, held at 300 ° C. for 3 minutes, and then the temperature decrease rate was 20
  • the peak top temperature of the exothermic peak observed when the temperature was lowered at ° C./min was measured as the crystallization temperature (unit: ° C.).
  • An exothermic peak due to crystallization is observed, and the higher the crystallization temperature, the more the transesterification between the polybutylene terephthalate resin and the polycarbonate resin is suppressed, which means that the thermal stability during molding processing is excellent and preferable.
  • Table 12 shows the above evaluation results.
  • the polybutylene terephthalate resin composition of the present invention is excellent in impact resistance, flame retardancy, heat aging resistance, light resistance, moisture and heat resistance, and has excellent moldability, so that it is an electric / electronic part, an automobile part and other electrical parts.
  • parts of home appliances such as machine parts and cooking utensils, for example, charger connectors for electric vehicles, holders for battery capacitors, casings for battery capacitors or casings for charging stands for electric vehicles, casings for electronic and electrical equipment parts, It is suitable for connectors, relays, switches, sensors, actuators, terminal switches, rice cooker-related parts, grill cooking equipment parts, etc., and has very high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性に優れ、さらに優れた成形性を有するポリブチレンテレフタレート系樹脂組成物及びこれを成形してなる成形体を提供する。 (A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂を、(A)及び(B)の合計100質量部基準で、(A)を50~80質量部、(B)を20~50質量部含有し、さらに、(A)及び(B)の合計100質量部に対し、(C)エラストマー5~20質量部、(D)難燃剤5~40質量部及び(E)アンチモン化合物1~15質量部を含有するポリブチレンテレフタレート系樹脂組成物。

Description

ポリブチレンテレフタレート系樹脂組成物及び成形体
 本発明は、ポリブチレンテレフタレート系樹脂組成物及び成形体に関し、さらに詳しくは、耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性に優れ、さらに優れた成形性を有するポリブチレンテレフタレート系樹脂組成物及びこれを成形してなる成形体に関する。
 近年、電気自動車やプラグインハイブリッド車のように、電動モータを動力源に含む自動車が普及しており、そのような自動車のためのバッテリー充電用の充電スタンドを設置することが推進されており、またバッテリー充電のための電気自動車用充電器コネクタや、あるいはまた電池キャパシタ用ホルダーが利用されてきている。
 電気自動車用充電器コネクタあるいは電池キャパシタ用ホルダー、電気自動車用充電スタンドを構成するための筺体には高度の難燃性が要求され、金属製のものが多く使用されている。また、これを樹脂化する動きもあり、各種の樹脂が検討されつつある。
 なかでも、ポリブチレンテレフタレートは、優れた耐熱性、成形性、耐薬品性及び電気絶縁性等の、エンジニアリングプラスチックとして好適な性質を有していることから、電気電子部品、自動車部品その他の電装部品、機械部品等に用いられており、これを難燃化する検討がなされている。
 ポリブチレンテレフタレートに難燃性を付与する方法としては、一般的には、ポリブチレンテレフタレートに、ハロゲン化合物や難燃助剤として三酸化アンチモン(特許文献1、5~8参照)を用いた難燃剤を添加することにより、難燃化する方法がよく知られている。また、電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体は、他の電気電子部品と同様に、機器の小型化、軽量化の趨勢から薄肉小型化されてきており、それに利用される成形品も小型化と薄肉化が進んでおり、薄肉成形品において高度の難燃性が要求されるが、成形品が薄肉になるほど難燃化の達成は難しくなる。
 また、電気電子機器分野では、難燃性に加えて、電気的負荷に対する発火に対する安全性の確保のため、電気的特性の一つである耐トラッキング性に優れていることが必要である。
 耐トラッキング性の改良を試みた材料としては、例えば、特許文献9には、熱可塑性ポリエステル樹脂、α-オレフィンとα,β-不飽和酸のグリシジルエステルからなるオレフィン系共重合体を含む樹脂組成物が開示されており、必要に応じて、慣用の難燃剤、タルク、カオリン、シリカ等の充填剤、ガラス繊維等の繊維状充填剤を添加してもよいことが記載されており、特許文献10には、ポリブチレンテレフタレート、臭素化ポリカーボネート系難燃剤、アンチモン系難燃助剤、フッ化エチレン系重合体、ポリオレフィン及びケイ酸金属塩系充填剤とガラス繊維からなる樹脂組成物が記載されている。また、特許文献11には、熱可塑性ポリエステル樹脂、圧縮微粉タルク、ハロゲン化ベンジル(メタ)アクリレート系難燃剤からなる樹脂組成物が開示されており、必要に応じて、繊維状強化剤を添加してもよいことが記載されている。
 しかしながら、これらの樹脂組成物は、いずれも、難燃性と高い耐衝撃性の両方を、必ずしも充分に満足できるものではなかった。
 さらに、ポリブチレンテレフタレートは、結晶特性に優れるため衝撃強度に代表される靭性が不十分であるという課題を有しており、この課題を解決するためにポリマーアロイの研究が従来から行われ、その難燃処方についても各種の提案がなされている。
 例えば、特許文献2には、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ハロゲン系難燃剤、難燃助剤およびエステル交換防止剤を構成成分とする難燃性ポリエステル樹脂組成物が開示され、また、特許文献3には、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、エラストマー、難燃剤及び難燃助剤からなる難燃性ポリエステル樹脂組成物が開示されている。さらに、特許文献4には、ポリエステル樹脂、ポリスチレン系ゴム及び難燃剤からなるポリエステル樹脂組成物が開示されている。
 しかしながら、電気電子機器分野における要求物性は、益々高度化してきており、難燃性や耐衝撃性に加えて、耐熱老化性、耐光性、耐湿熱性、耐加水分解性や良好で均質な外観を有することも求められ、従来の処方では対応が困難になってきている。
 さらに、射出成形においても離型抵抗力が増加しない優れた離型性が要求されており、例えば成形型から取り出す際のエジェクターピン痕等の発生がない、表面外観が良好で、また、反りのないものが強く求められている。
特開昭61-66746号公報 特開2007-314664号公報 特開平6-100713号公報 特開2005-112994号公報 特開2004-263174号公報 特開2006-45544号公報 特開2006-56997号公報 特開2011-84666号公報 特開平7-196859号公報 特開平10-67925号公報 特開平10-158486号公報
 本発明の目的は、耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性に優れ、さらに優れた成形性を有するポリブチレンテレフタレート系及びその成形体を提供することにある。
 本発明者は、ポリブチレンテレフタレート系樹脂に、ポリカーボネート樹脂、耐衝撃改良剤、難燃剤及びアンチモン化合物を、それぞれ特定の量で配合することにより、耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性、さらに成形性に優れたポリブチレンテレフタレート系樹脂組成物及び成形体を提供できることを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下のポリブチレンテレフタレート系樹脂組成物及び成形体が提供される。
[1](A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂を、(A)及び(B)の合計100質量部基準で、(A)を50~80質量部、(B)を20~50質量部含有し、さらに、(A)及び(B)の合計100質量部に対し、(C)エラストマー5~20質量部、(D)難燃剤5~40質量部及び(E)アンチモン化合物1~15質量部を含有するポリブチレンテレフタレート系樹脂組成物。
[2](B)ポリカーボネート樹脂が、28000を超える粘度平均分子量を有するものである上記[1]に記載のポリブチレンテレフタレート系樹脂組成物。
[3](C)エラストマーが、アクリル系コア/シェル型グラフト共重合体であることを特徴とする上記[1]又は[2]に記載のポリブチレンテレフタレート系樹脂組成物。
[4](C)エラストマーの平均粒子径が300nm以上である上記[1]~[3]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
[5](D)難燃剤が臭素化ポリカーボネート系難燃剤である上記[1]~[4]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
[6](E)アンチモン化合物が、(A)ポリブチレンテレフタレート系樹脂とのマスターバッチとして配合される上記[1]~[5]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
[7]さらに、(F)酸化チタンを、前記(A)及び(B)の合計100質量部に対し、0.5~10質量部含有する上記[1]~[6]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
[8](F)酸化チタンが、アルミナ系化合物及びオルガノシロキサン系化合物で表面処理されたものである上記[7]に記載のポリブチレンテレフタレート系樹脂組成物。
[9]さらに、(G)ポリオレフィン系離型剤を、前記(A)及び(B)の合計100質量部に対し、0.01~3質量部含有する上記[1]~[8]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
[10](G)ポリオレフィン系離型剤の滴点が100℃以下である上記[9]に記載のポリブチレンテレフタレート系樹脂組成物。
[11]さらに、(H)下記一般式(1)~(4)のいずれかで表される有機リン酸エステル化合物金属塩を、前記(A)及び(B)の合計100質量部に対し、0.001~1質量部含有する上記[1]~[10]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、R~Rは、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。)
Figure JPOXMLDOC01-appb-C000007
(一般式(3)中、R~R11は、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、M’は3価の金属イオンとなる金属原子を表す。)
Figure JPOXMLDOC01-appb-C000008
(一般式(4)中、R12~R14は、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、M’は3価の金属イオンとなる金属原子を表し、2つのM’はそれぞれ同一であっても異なっていてもよい。)
[12]上記[1]~[11]のいずれかに記載のポリブチレンテレフタレート系樹脂組成物を成形してなる成形体。
[13]成形体のコア部において、前記(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂は共連続相を形成し、(C)エラストマーは(B)ポリカーボネート樹脂相中に存在するモルフォロジーを有することを特徴とする上記[12]に記載の成形体。
[14]成形体のコア部において、(E)アンチモン化合物の80%以上が、(A)ポリブチレンテレフタレート系樹脂相中に存在する上記[12]又は[13]に記載の成形体。
[15]成形体の表層部において、(C)エラストマー相は樹脂の流れ方向に伸びており、その長径と短径の比(長径/短径)が3~20である上記[12]~[14]のいずれかに記載の成形体。
[16](D)難燃剤が、(B)ポリカーボネート樹脂相中に存在する上記[12]~[15]のいずれかに記載の成形体。
[17]電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体のいずれかである上記[12]~[16]のいずれかに記載の成形体。
 本発明のポリブチレンテレフタレート樹脂組成物は、耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性、耐加水分解性、耐熱変色性及び離型性、さらに成形性、外観に優れる樹脂材料であるので、各種の電気電子機器部品、電気自動車用の部品、調理器具等の家電製品の部品として、例えば、特に電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体、電子電気機器部品の筐体、コネクタ、リレー、スィッチ、センサー、アクチュエーター、ターミナルスイッチ、炊飯器関連部品、グリル調理機器部品等に好適である。
図1は、実施例41で得た成形体のコア部のSTEM写真である。 図2は、実施例41で得た成形体のコア部のSTEM写真である。 図3は、実施例41で得た成形体の表層部のSEM写真である。
 以下、本発明の内容について詳細に説明する。
 以下に記載する各構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。なお、本願明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
[(A)ポリブチレンテレフタレート系樹脂]
 本発明のポリブチレンテレフタレート系樹脂組成物を構成する主成分である(A)ポリブチレンテレフタレート系樹脂(以下、「PBT樹脂」と略称することもある。)としては、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有する高分子を示す。即ち、ポリブチレンテレフタレート樹脂(ホモポリマー)の他に、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体や、ホモポリマーと当該共重合体との混合物を含む。
 PBT樹脂は、テレフタル酸以外のジカルボン酸単位を含んでいてもよいが、他のジカルボン酸の具体例としては、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸等の脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸等の脂肪族ジカルボン酸類等が挙げられる。
 ジオール単位としては、1,4-ブタンジオールの外に他のジオール単位を含んでいてもよいが、他のジオール単位の具体例としては、炭素原子数2~20の脂肪族又は脂環族ジオール類、ビスフェノール誘導体類等が挙げられる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオぺンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノ一ル、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノ一ルAのエチレンオキシド付加ジオール等が挙げられる。更に、グリセリン、トリメチロールプロパン等のトリオールも挙げられる。
 PBT樹脂は、テレフタル酸と1,4-ブタンジオールとを重縮合させたポリブチレンテレフタレート単独重合体が好ましいが、また、カルボン酸単位として、前記のテレフタル酸以外のジカルボン酸1種以上および/又はジオール単位として、前記1,4-ブタンジオール以外のジオール1種以上を含むポリブチレンテレフタレート共重合体であってもよい。PBT樹脂は、機械的性質、耐熱性の観点から、ジカルボン酸単位中のテレフタル酸の割合が、好ましくは70モル%以上であり、より好ましくは90モル%以上である。同様に、ジオール単位中の1,4-ブタンジオールの割合が、好ましくは70モル%以上であり、より好ましくは90モル%以上である。
 また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
 PBT樹脂は、テレフタル酸を主成分とするジカルボン酸成分又はこれらのエステル誘導体と、1,4-ブタンジオールを主成分とするジオール成分を、回分式又は通続式で溶融重合させて製造することができる。また、溶融重合で低分子量のポリブチレンテレフタレート樹脂を製造した後、さらに窒素気流下又は減圧下固相重合させることにより、重合度(又は分子量)を所望の値まで高めることができる。
 PBT樹脂は、テレフタル酸を主成分とするジカルボン酸成分と1,4-ブタンジオールを主成分とするジオール成分とを、連続式で溶融重縮合する製造法で得られたものが好ましい。
 エステル化反応を遂行する際に使用される触媒は、従来から知られているものであってよく、例えば、チタン化合物、錫化合物、マグネシウム化合物、カルシウム化合物等を挙げることができる。これらの中で特に好適なものは、チタン化合物である。エステル化触媒としてのチタン化合物の具体例としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等を挙げることができる。
 PBT樹脂は、共重合により変性したポリブチレンテレフタレート樹脂であってもよいが、その具体的な好ましい共重合体としては、ポリアルキレングリコール類(特にはポリテトラメチレングリコール(PTMG))を共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、特にはイソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。なお、これらの共重合体は、共重合量が、PBT樹脂全セグメント中の1モル%以上、50モル%未満のものをいう。中でも、共重合量が好ましくは2~50モル%、より好ましくは3~40モル%、特に好ましくは5~20モル%である。
 そして、これら共重合体の好ましい含有量は、(A)ポリブチレンテレフタレート系樹脂の総量100質量%中に、10~100質量%、更には30~100質量%、特には50~100質量%である。
 PBT樹脂の極限粘度([η])は、0.9dl/g以上であるものが好ましい。極限粘度が0.9dl/gより低いものを用いると、得られる樹脂組成物が耐衝撃性等の機械的強度の低いものとなりやすい。また極限粘度は、1.8dl/g以下であることが好ましく、1.6dl/g以下であることがより好ましく、1.3dl/g以下であることがさらに好ましい。1.8dl/gより高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。なお、極限粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定するものとする。
[(B)ポリカーボネート樹脂]
 本発明のポリブチレンテレフタレート系樹脂組成物は、(B)ポリカーボネート樹脂を含有する。
 ポリカーボネート樹脂は、ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。
 原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 ポリカーボネート樹脂としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の、芳香族ポリカーボネート樹脂を主体とする共重合体であってもよい。更には、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。
 ポリカーボネート樹脂の分子量を調節するには、一価の芳香族ヒドロキシ化合物を用いればよく、例えば、m-及びp-メチルフェノール、m-及びp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、20000以上であることが好ましく、より好ましくは23000以上、25000以上、特に28000を超えるものであることがさらに好ましい。粘度平均分子量が20000より低いものを用いると、得られる樹脂組成物が耐衝撃性等の機械的強度の低いものとなりやすい。また60000以下であることが好ましく、40000以下であることがより好ましく、35000以下であることがさらに好ましい。60000より高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。
 なお、本発明において、ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、20℃にて、ポリカーボネート樹脂のメチレンクロライド溶液の粘度を測定し極限粘度([η])を求め、次のSchnellの粘度式から算出される値を示す。
  [η]=1.23×10-4Mv0.83
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)及び溶融法(エステル交換法)のいずれの方法で製造したポリカーボネート樹脂も使用することができる。また、溶融法で製造したポリカーボネート樹脂に、末端のOH基量を調整する後処理を施したポリカーボネート樹脂も好ましい。
 (B)ポリカーボネート樹脂の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部基準で、(B)ポリカーボネート樹脂が20~50質量部であり、好ましくは25質量部以上、より好ましくは30質量部以上であり、好ましくは45質量部以下、より好ましくは40質量部以下である。上記下限値を下回ると、本発明のポリブチレンテレフタレート系樹脂組成物の耐衝撃性や靭性の改良効果が小さく、さらに、寸法安定性が低下する。また、上記上限値を上回ると流動性が悪くなり成形性が悪化する。
[(C)エラストマー]
 本発明のポリブチレンテレフタレート系樹脂組成物が含有する(C)エラストマーとしては、ポリエステル樹脂やポリカーボネート樹脂に配合してその耐衝撃性を改良するのに用いられている熱可塑性エラストマーを用いればよく、例えばゴム性重合体やゴム性重合体にこれと反応する化合物を共重合させたものを用いる。
 (C)エラストマーの具体例としては、例えばポリブタジエン、ポリイソプレン、ジエン系共重合体(スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体、アクリル・ブタジエンゴム等)、エチレンと炭素数3以上のα-オレフィンとの共重合体(エチレン・プロピレン共重合体、エチレン・ブテン共重合体、エチレン・オクテン共重合体等)、エチレンと不飽和カルボン酸エステルとの共重合体(エチレン・メタクリレート共重合体、エチレン・ブチルアクリレート共重合体等)、エチレンと脂肪族ビニル化合物との共重合体、エチレンとプロピレンと非共役ジエンとのターポリマー、アクリルゴム(ポリブチルアクリレート、ポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体等)、シリコーン系ゴム(ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムとからなるIPN型複合ゴム)等が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。
 尚、本発明において(メタ)アクリレートはアクリレートとメタクリレートを意味し、(メタ)アクリル酸はアクリル酸とメタクリル酸を意味する。
 また(C)エラストマーの他の例としては、ゴム性重合体に単量体化合物を重合した共重合体が挙げられる。この単量体化合物としては例えば、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物等が挙げられる。また、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)も挙げられる。これらの単量体化合物は単独で用いることも2種以上を併用することもできる。
 (C)エラストマーは、アクリル及び/又はブタジエン成分を含有するエラストマーが好ましく、ブタジエン系及び/又はアクリル系ゴム性重合体にこれと反応する単量体化合物を共重合させたものが好ましい。
 アクリル及び/又はブタジエン成分を含有する耐衝撃性改良剤の具体例としては、例えばアクリロニトリル・ブタジエン共重合体、アクリル・ブタジエンゴム、また、これらゴム性重合体に単量体化合物を重合した共重合体が挙げられる。この単量体化合物としては例えば、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物等が挙げられる。また、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)も挙げられる。これらの単量体化合物は単独で用いることも2種以上を併用することもできる。
 アクリル及び/又はブタジエン成分を含有するエラストマーは、耐衝撃性改良の点から、コア/シェル型グラフト共重合体タイプのものが好ましく、ブタジエン成分含有ゴム及び/又はアクリル成分含有ゴム性重合体をコア層とし、その周囲にアクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物から選ばれる単量体を共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。
 コア/シェル型グラフト共重合体の例としては、ブチルアクリレート-メチルメタクリレート共重合体、ブタジエン-メチルメタクリレート・スチレン共重合体、シリコーン・アクリル-メチルメタクリレート共重合体、メチルメタクリレート-ブタジエン-スチレン重合体(MBS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン重合体(MABS)、メチルメタクリレート-ブタジエン重合体(MB)、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体等が挙げられる。これらのゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。これらの中でも、コア、シェルともにアクリル酸エステルであるアクリル系コア/シェル型のエラストマーが、耐衝撃性、耐熱老化性、耐光性の点から好ましい。
 アクリル及び/又はブタジエン成分を含有するエラストマー中のアクリル及び/又はブタジエン成分の含有量は、好ましくは50~95質量%、より好ましくは60~90質量%、さらに好ましくは70~85質量%ある。アクリル及び/又はブタジエン成分の含有量が50質量%未満であると、耐衝撃性に劣る傾向となり、90質量%を超えると、難燃性や耐候性が悪化する傾向となるため好ましくない。
 (C)エラストマーの平均粒子径は、3μm以下であることが好ましく、2μm以下がより好ましく、1μm以下であることがさらに好ましく、800nm以下が特に好ましい。また、下限は通常50nmであり、好ましくは100nm、より好ましくは150nm、さらに好ましくは200nm、特に好ましくは300nm以上、最も好ましくは400nm以上、特に500nm以上である。このような粒子径の(C)エラストマーを使用することにより、面衝撃性等の耐衝撃性、耐湿熱性、離型性等の成形性が良好となる傾向にあり好ましい。
 なお、(C)エラストマーの平均粒子径は、光学顕微鏡、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)等により、ポリブチレンテレフタレート系樹脂組成物成形体断面のモルフォロジーを観察することで測定できる。
 具体的には、SEM、STEM、TEM分析装置を用い、成形体断面のコア部(深さ20μm未満の表層部を除く部分で、断面の中心部、樹脂組成物流動方向に平行な断面。)を、20kVの加速電圧下で、倍率3,000~100,000倍の倍率により観察される。
 また、(C)エラストマーのガラス転移温度は、-30℃以下であることが好ましく、-35℃以下であることがより好ましく、-40℃以下であることがさらに好ましく、-50℃以下であることが特に好ましい。このようなガラス転移温度を有する(C)エラストマー原料を使用することにより、成形体の表層部において、エラストマーの配向によりエラストマーの扁平度(後述のエラストマーの長径と短径の比)が向上しやすく、耐衝撃特性が大幅に良好となる傾向にあり好ましい。
 なお、(C)エラストマーのガラス転移温度は、動的粘弾性測定により得られる損失正接(tanδ)のピーク温度を求めることにより測定することができる。具体的には、200℃で加熱した熱プレス機を用いて、(C)エラストマー原料を、0.7mm厚×10cm×10cmの型枠にて3分間プレス成形し、水冷後に0.7mm厚×5.5mm×25mmの測定用試験片を切り出し、50~-100℃の温度範囲で、昇温速度3℃/min、周波数110Hzの条件で動的粘弾性測定を行い、得られるtanδのピーク温度を求め、ガラス転移温度とする。
 本発明の(C)エラストマーとして好ましく用いられるアクリル系コア/シェル型エラストマーの製造方法には乳化重合方法があり、これはコア重合とシェル重合とを含む方法である。
 前記コア重合は、アクリル酸エステル単量体を重合して行われ、この時、アクリル酸エステルの分子構造には二重結合が一つ存在するため、重合完了後に二重結合が存在せず、優れた耐候性を示し、またガラス転移温度が低いために良好な耐衝撃性を示す。アクリル酸エステル単量体以外にも、エラストマーとしてゴム構造を形成し、耐衝撃性を付与するため、ならびにガラス転移温度を制御するために一定範囲の架橋剤を用いる。一定範囲にて配合された架橋剤は、重合中のラテックスの安定性を維持させるだけでなく、加工中、ならびに樹脂組成物中でも、コア構造が球形から扁平形態へ容易に変形しやすいように作用する。
 前記シェル重合は、通常塩化ビニル樹脂と相溶性に優れたメタクリル酸エステルを単量体として用い、コア表面でグラフト重合を進行させることによって行われる。エラストマーの分散性を高めるために、シェルはアクリロニトリル単量体を少量含んでいてもよい。
 乳化重合によるアクリル系コア/シェル型エラストマーの公知の製造方法には大きく2種類の方法がある。第1の方法は米国特許第5,612,413号に開示されたものであって、粒子の大きさが小さい種(Seed)を重合し、単量体を2~4工程に分けて投入して種を成長させた後、シェル成分単量体を投入してコア表面を囲うことによってコア・シェル構造を完成させる多段階乳化重合方法である。第2の方法は欧州特許0527605(A1)に開示されたものであって、100nm以下の大きさのコア・シェル構造を有するラテックスを重合し、凝集過程(Agglomeration)を通じて所望の大きさの粒子に成長させた後、凝集粒子上にカプセル化シェルを形成させることによってコア・シェル構造を形成する微細凝集(Microagglomeration)方法である。
 (C)エラストマーのガラス転移温度は、エラストマーの架橋密度が高ければ大きくなり、ゴムの架橋密度が低ければ低くなる。従って、架橋密度の程度はエラストマーを製造する際の架橋剤の使用量によって調整可能であり、架橋剤を極めて少量用いることで、ガラス転移温度の低いエラストマーを製造することができる。しかし、架橋剤の使用量があまりに少ない場合は、重合中にラテックスの安定性が低下するため、ガラス転移温度の制御が困難になる場合があるので、好ましくない。
 本発明の好ましいアクリル系コア/シェル型エラストマーは、例えば、種(seed)を重合し、コア成分単量体を2~4回に分けて重合してコアゴム粒子を成長させた後、シェル成分単量体を投入してシェルでコア表面を囲うことによって製造される、粒径が400~900nmの大粒径エラストマーである。
 このために前記大粒径エラストマーは、それらの各々のコアが、i)アルキル基の炭素数が2~8であるアクリル酸エステル95~99.999質量部;及びii)架橋剤0.001~5.0質量部を含むことが好ましい。
 前記アクリル酸エステルは、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、ヘキシルアクリレート、オクチルアクリレート及び2-エチルヘキシルアクリレートからなる群より選択される1種以上の単量体、及びこれら単量体のホモ重合体または共重合体を含むことが好ましく、ブチルアクリレート、2-エチルヘキシルアクリレート、又はこれらの混合物を含むアクリル酸エステルであることがさらに好ましい。
 また、前記架橋剤は、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、アリルアクリレート、アリルメタクリレート、トリメチロールプロパントリアクリレート、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート及びジビニルベンゼンからなる群より選択される1種以上の単量体、及びこれら単量体のホモ重合体または共重合体を用いることが好ましい。1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、アリルアクリレート、アリルメタクリレート又はこれらの混合物を含むことがより好ましい。前記架橋剤は、本発明の各々のエラストマーで全単量体に対して0.001~5質量部を用いることが好ましい。架橋剤の含有量が全単量体に対して0.001質量部未満であると、加工中のハンドリングが乏しく、5質量部を超えると、エラストマーのコアが脆性を示し、衝撃補強効果が低下する場合がある。
 また、前記大粒径エラストマーは、シェルが、i)アルキル基の炭素数が1~4であるメタクリル酸エステル80~100質量部を含み、ii)シェル成分のガラス転移温度を調整するために、さらにエチルアクリレート、メチルアクリレート、ブチルアクリレートを10質量部以下の割合で添加することができ、iii)マトリックスとシェルとの相溶性を増加させるために、さらにアクリロニトリル、メタクリロニトリルのようなニトリル化合物を10質量部以下の割合で添加することもできる。
 また、本発明の好ましいアクリル系コア/シェル型エラストマー(大粒径エラストマー)のコアは、全単量体に対して70~95質量%のゴム成分単量体を含むことが好ましい。70質量%未満であると、ゴム含有量が小さくなって耐衝撃補強性が低下しやすく、95質量%を超えるとシェル成分がコアを完全に囲うことができないために、マトリックス中のゴムの分散がよく行われなくなり、耐衝撃性が低下する場合がある。
 重合後のエラストマーは、電解質で凝析させた後にろ過して得ることでき、前記電解質としては塩化カルシウム等が好ましい。
 本発明において好ましく用いられる、低ガラス転移温度及び平均粒子径が大きい、好ましくは400nm以上のアクリル系コア/シェル型エラストマーを製造する工程をより詳細に説明する。その製造方法は以下の工程を主として含む。
 前記低ガラス転移温度を有する大粒径エラストマーは、
i)アルキル基の炭素数が2~8であるアクリル酸エステル95~99.999質量部;架橋剤0.001~5質量部;重合開始剤0.001~5質量部;乳化剤0.001~10質量部;及びイオン交換水1000質量部;を含む混合物を、60~80℃の温度で架橋反応させて種(seed)を製造する1次重合工程と、
ii)アルキル基の炭素数が2~8であるアクリル酸エステル95~99.999質量部;架橋剤0.001~5質量部;乳化剤0.001~6質量部;及びイオン交換水80質量部;を含むエマルジョン混合物を前記i)工程で製造した種に連続投入すると同時に、重合開始剤0.001~5質量部を投入し重合してコアラバーを製造する2次重合工程と、
iii)アルキル基の炭素数が2~8であるアクリル酸エステル95~99.999質量部;架橋剤0.001~5質量部;乳化剤0.001~6質量部;及びイオン交換水80質量部;を含むエマルジョン混合物を前記ii)工程で製造した2次重合物に連続投入すると同時に、重合開始剤0.001~5質量部を投入し重合してコアラバーを製造する3次重合工程と、
iv)アルキル基の炭素数が1~4であるアクリル酸エステル80~100質量部;エチルアクリレート、メチルアクリレート及びブチルアクリレートからなる群より選択されるアクリル酸エステル10質量部以下;アクリロニトリル及びメタクリロニトリルからなる群より選択されるニトリル成分10質量部以下;乳化剤0.001~4質量部;及びイオン交換水150質量部;を含むエマルジョン混合物を前記iii)段階で製造したコアに連続投入すると同時に、重合開始剤0.001~5質量部を投入し重合してシェルを形成させる4次重合工程とを含む方法で製造される。
 前記大粒径エラストマーの製造に用いられる重合開始剤は、架橋反応を起こすことのできるいかなる化合物も用いることができ、具体的には、過硫酸アンモニウム、過硫酸カリウム、ベンゾイルパーオキサイド、アゾビスブチロニトリル、ブチルヒドロパーオキサイド及びクメンヒドロパーオキサイド等を用いることができる。
 また、前記大粒径エラストマーの製造に用いられる乳化剤は、不飽和脂肪酸カリウム塩、オレイン酸カリウム塩、ソジウムラウリルスルフェート、ソジウムドデシルベンゼンスルフェート等のイオン系乳化剤と非イオン系乳化剤等を用いることができる。
 このようにして製造されたた大粒径エラストマーにイオン交換水を投入し、固形分含有率を10質量%と低くした後、10質量%の塩化カルシウム溶液を混合物に投入してポリマー粒子を凝析させる。凝析スラリーは90℃まで昇温して熟成させ冷却する。その後、冷却されたスラリーをイオン交換水で洗浄しろ過することで、本発明において好ましく用いられる、アクリル系コア/シェル型エラストマーを得ることができる。
 (C)エラストマーの含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、5~20質量部である。(C)エラストマーの含有量が5質量部未満では、耐衝撃性の改良効果が小さく、20質量部を超えると耐熱老化性や剛性、さらには流動性、難燃性が低下する。(C)エラストマーの好ましい含有量は、7質量部以上であり、16質量部以下、さらには13質量部以下である。
[(D)難燃剤]
 本発明のポリブチレンテレフタレート系樹脂組成物は、(D)難燃剤を含有する。
 (D)難燃剤としては、既知のプラスチック用難燃剤が使用可能であり、具体的には、ハロゲン系難燃剤、リン系難燃剤(ポリリン酸メラミン等)、窒素系難燃剤(シアヌル酸メラミン等)、金属水酸化物(水酸化マグネシウム等)である。
 ハロゲン系難燃剤としては、臭素系難燃剤がより好ましい。
・臭素系難燃剤
 臭素系難燃剤としては、従来公知の任意の、熱可塑性樹脂に使用される臭素系難燃剤を用いることが出来る。この様な臭素系難燃性としては、芳香族系化合物が挙げられ、具体的には例えば、ペンタブロモベンジルポリアクリレート等のポリ臭素化ベンジル(メタ)アクリレート、ポリブロモフェニレンエーテル、臭素化ポリスチレン、テトラブロモビスフェノールAのエポキシオリゴマー等の臭素化エポキシ化合物、N,N’-エチレンビス(テトラブロモフタルイミド)等の臭素化イミド化合物、臭素化ポリカーボネート等が挙げられる。
 中でも熱安定性の良好な点より、ペンタブロモベンジルポリアクリレート等のポリブロモ化ベンジル(メタ)アクリレート、テトラブロモビスフェノールAのエポキシオリゴマー等の臭素化エポキシ化合物、臭素化ポリスチレン、臭素化ポリカーボネートが好ましく、更には臭素化ポリカーボネート、臭素化ポリスチレンが好ましく、特に臭素化ポリカーボネートが耐衝撃性、難燃性の点から好ましい。
 ポリ臭素化ベンジル(メタ)アクリレートとしては、臭素原子を含有するベンジル(メタ)アクリレートを単独で重合、又は2種以上を共重合、もしくは他のビニル系モノマーと共重合させることによって得られる重合体であることが好ましく、該臭素原子は、ベンゼン環に付加しており、付加数はベンゼン環1個あたり1~5個、中でも4~5個付加したものであることが好ましい。
 該臭素原子を含有するベンジルアクリレートとしては、ペンタブロムベンジルアクリレート、テトラブロムベンジルアクリレート、トリブロムベンジルアクリレート、又はそれらの混合物等が挙げられる。また、臭素原子を含有するベンジルメタクリレートとしては、上記したアクリレートに対応するメタクリレートがあげられる。
 臭素原子を含有するベンジル(メタ)アクリレートと共重合させるために使用される他のビニル系モノマーとしては、具体的には例えば、アクリル酸、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレートのようなアクリル酸エステル類;メタクリル酸、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ベンジルメタクリレートのようなメタクリル酸エステル類;スチレン、アクリロニトリル、フマル酸、マレイン酸のような不飽和カルボン酸又はその無水物;酢酸ビニル、塩化ビニル、等が挙げられる。
 これらは通常、臭素原子を含有するベンジル(メタ)アクリレートに対して等モル量以下、中でも0.5倍モル量以下が用いることが好ましい。
 また、ビニル系モノマーとしては、キシレンジアクリレート、キシレンジメタクリレート、テトラブロムキシレンジアクリレート、テトラブロムキシレンジメタクリレート、ブタジエン、イソプレン、ジビニルベンゼン等を使用することもでき、これらは通常、臭素原子を含有するベンジルアクリレート又はベンジルメタクリレートに対し、0.5倍モル量以下が使用できる。
 該ポリブロム化ベンジル(メタ)アクリレートとしては、ペンタブロモベンジルポリアクリレートが、高臭素含有量であること、電気絶縁特性(耐トラッキング特性)が高い観点で好ましい。
 臭素化エポキシ化合物としては、具体的には、テトラブロモビスフェノールAエポキシ化合物に代表されるビスフェノールA型ブロモ化エポキシ化合物が挙げられる。
 臭素化エポキシ化合物の分子量は任意であり、適宜選択して決定すればよいが、好ましくは、質量平均分子量(Mw)で3000~100000であり、中でも分子量が高い方が好ましく、具体的にはMwとして15000~80000、中でも18000~78000(Mw)、更には20000~75000(Mw)、特に22000~70000であることが好ましく、この範囲内に於いても分子量の高いものが好ましい。
 臭素化エポキシ化合物は、そのエポキシ当量が3000~40000g/eqであることが好ましく、中でも4000~35000g/eqが好ましく、特に10000~30000g/eqであることが好ましい。
 また、臭素化エポキシ化合物系難燃剤として臭素化エポキシオリゴマーを併用することもできる。この際、例えばMwが5000以下のオリゴマーを0~50質量%程度用いることで、難燃性、離型性および流動性を適宜調整することができる。臭素化エポキシ化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常10質量%以上であり、中でも20質量%以上、特に30質量%以上であることが好ましく、その上限は60質量%、中でも55質量%以下であることが好ましい。
 臭素化ポリカーボネート系難燃剤としては、具体的には例えば、臭素化ビスフェノールA、特にテトラブロモビスフェノールAから得られる、臭素化ポリカーボネートであることが好ましい。その末端構造は、フェニル基、4-t-ブチルフェニル基や2,4,6-トリブロモフェニル基等が挙げられ、特に、末端基構造に2,4,6-トリブロモフェニル基を有するものが好ましい。
 臭素化ポリカーボネート系難燃剤における、カーボネート繰り返し単位数の平均は適宜選択して決定すればよいが、通常、2~30である。カーボネート繰り返し単位数の平均が小さいと、溶融時に(A)ポリブチレンテレフタレート系樹脂の分子量低下を引き起こす場合がある。逆に大きすぎても(B)ポリカーボネート樹脂の溶融粘度が高くなり、成形体内の分散不良を引き起こし、成形体外観、特に光沢性が低下する場合がある。よってこの繰り返し単位数の平均は、中でも3~15、特に3~10であることが好ましい。
 臭素化ポリカーボネート系難燃剤の分子量は任意であり、適宜選択して決定すればよいが、好ましくは、粘度平均分子量で1000~20000、中でも2000~10000であることが好ましい。なお、臭素化ポリカーボネート系難燃剤の粘度平均分子量は、(B)ポリカーボネート樹脂の粘度平均分子量の測定と同様の方法で求めることができる。
 上記臭素化ビスフェノールAから得られる臭素化ポリカーボネート系難燃剤は、例えば、臭素化ビスフェノールとホスゲンとを反応させる通常の方法で得ることができる。末端封鎖剤としては芳香族モノヒドロキシ化合物が挙げられ、これはハロゲン又は有機基で置換されていてもよい。
 (D)難燃剤の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、5~40質量部であり、好ましくは7質量部以上であり、より好ましくは10質量部以上であり、好ましくは30質量部以下であり、より好ましくは25質量部以下であり、さらに好ましくは20質量部以下である。(D)難燃剤の含有量が少なすぎると、本発明のポリブチレンテレフタレート系樹脂組成物の難燃性が不十分となり、逆に多すぎても機械的特性、離型性の低下や難燃剤のブリードアウトの問題が生ずる。
[(E)アンチモン化合物]
 本発明のポリブチレンテレフタレート系樹脂組成物は、(E)アンチモン化合物を含有する。
 アンチモン化合物としては、三酸化アンチモン(Sb)、五酸化アンチモン(Sb)およびアンチモン酸ナトリウムが好ましい例として挙げられる。これらの中でも、耐衝撃性の点から三酸化アンチモンが好ましい。
 (E)アンチモン化合物は、難燃剤として臭素系難燃剤を使用する場合、樹脂組成物中の臭素系難燃剤由来の臭素原子と、アンチモン化合物由来のアンチモン原子の質量濃度が、両者の合計で3~25質量%であることが好ましく、4~22質量%であることがより好ましく、10~20質量%であることがさらに好ましい。3質量%未満であると難燃性が低下する傾向にあり、20質量%を超えると機械的強度が低下する傾向にある。また、臭素原子とアンチモン原子の質量比(Br/Sb)は、0.3~5であることが好ましく、0.3~4であることがより好ましい。このような範囲とすることにより、難燃性が発現しやすい傾向にあり好ましい。
 (E)アンチモン化合物の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、1~15質量部であり、好ましくは2質量部以上、より好ましくは3質量部以上であり、好ましくは10質量部以下、より好ましくは7質量部以下、さらに好ましくは6質量部以下、特に好ましくは5質量部以下である。上記下限値を下回ると難燃性が低下する。また、上記上限値を上回ると、結晶化温度が低下し離型性が悪化したり、耐衝撃性等の機械的物性が低下する。
[(F)酸化チタン]
 本発明のポリブチレンテレフタレート系樹脂組成物は、(F)酸化チタンを含有することが好ましい。酸化チタンを、(A)ポリブチレンテレフタレート系樹脂、(B)ポリカーボネート樹脂、(C)エラストマー、(D)難燃剤及び(E)アンチモン化合物と共にそれぞれ所定の量で含有するすることにより、(A)ポリブチレンテレフタレート系樹脂の結晶化が適度に遅延し、より高い耐衝撃性を達成でき、また難燃性もより向上する。さらに、樹脂組成物の着色等の目的でカーボンブラックを配合する場合には、カーボンブラックの凝集等による成形品ウエルド部や成形品段差部等における外観不良が発生する場合があるが、(F)酸化チタンを配合することによって、その外観不良がより改善されやすいことが明らかとなった。これは、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の混合樹脂に、(C)エラストマー、(D)難燃剤及び(E)アンチモン化合物を特定含有する樹脂組成物に特有に確認される効果である。
 (F)酸化チタンに用いられる酸化チタンは、製造方法、結晶形態および平均粒子径などは、特に限定されるものではない。酸化チタンの製造方法には硫酸法および塩素法があるが、硫酸法で製造された酸化チタンは、これを添加した組成物の白度が劣る傾向があるため、本発明の目的を効果的に達成するには、塩素法で製造されたものが好適である。
 また、酸化チタンの結晶形態には、ルチル型とアナターゼ型があるが、耐光性の観点からルチル型の結晶形態のものが好適である。(F)酸化チタンの平均粒子径は、0.01~3μmであることが好ましく、0.05~1μmであることがより好ましく、0.1~0.7μmであることがさらに好ましく、特に好ましくは0.1~0.4μmである。平均粒子径が0.01μm未満では樹脂組成物製造時の作業性に劣り、3μmを超える場合は、成形品表面に肌荒れを起こしたり、成形品の機械的強度が低下したりしやすい。なお、平均粒子径の異なる酸化チタンを2種類以上混合して使用してもよい。
 なお、(F)酸化チタンは、オルガノシロキサン系の表面処理剤で表面処理することが好ましいが、その前にはアルミナ系表面処理剤で前処理するのが好ましい。アルミナ系表面処理剤としてはアルミナ水和物が好適に用いられる。さらにアルミナ水和物とともに珪酸水和物で前処理しても良い。前処理する方法は特に限定されるものではなく、任意の方法によることが出来る。アルミナ水和物、さらに必要に応じて珪酸水和物による前処理は、酸化チタンに対して1~15質量%の範囲で行なうのが好ましい。
 アルミナ水和物で、必要に応じて更に珪酸水和物で前処理された酸化チタンは、更にその表面をオルガノシロキサン系の表面処理剤で表面処理することによって、熱安定性を大幅に改善することが出来る他、酸化チタンの活性を適度に抑えることによって、(B)ポリカーボネート樹脂の分子量低下による耐衝撃性等の機械的特性の低下や、耐加水分解性の低下を抑制しやすい傾向となり好ましい。
 オルガノシロキサン系表面処理剤としては、無機化合物粒子の表面と反応する反応性の官能基を持つ反応性官能基含有有機珪素化合物が好ましい。反応性の官能基としては、Si-H基、Si-CH基、Si-OH基、Si-NH基、Si-OR基が挙げられるが、Si-H基、Si-OH基、Si-OR基を持つものがより好ましく、Si-H基、Si-CH基をもつ有機珪素化合物が、特に好ましい。
 Si-H、Si-CH基含有有機珪素化合物としては、分子中にSi-H基又はSi-CH基を持つ化合物であれば特に制限されず、適宜選択して用いればよいが、なかでも、ポリ(メチルハイドロジェンシロキサン)、ポリ(ジメチルシロキサン)、ポリシクロ(メチルハイドロジェンシロキサン)、ポリ(エチルハイドロジェンシロキサン)、ポリ(フェニルハイドロジェンシロキサン)、ポリ[(メチルハイドロジェンシロキサン)(ジメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(エチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ヘキシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(フェニルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジメトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(3,3,3-トリフルオロプロピルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((2-メトキシエトキシ)メチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(フェノキシメチルシロキサン)]コポリマー等のポリオルガノシロキサンが好ましい。
 酸化チタンのオルガノシロキサン系表面処理剤による表面処理法には、(1)湿式法と(2)乾式法とがある。湿式法は、オルガノシロキサン系の表面処理剤と溶剤との混合物に、アルミナ水和物、さらに必要に応じて珪酸水和物で前処理された酸化チタンを加え、撹拌した後に脱溶媒を行い、更にその後100~300℃で熱処理する方法である。乾式法は、上記と同様に前処理された酸化チタンとポリオルガノハイドロジェンシロキサン類とをヘンシェルミキサーなどで混合する方法、前処理された酸化チタンにポリオルガノハイドロジェンシロキサン類の有機溶液を噴霧して付着させ、100~300℃で熱処理する方法などが挙げられる。
 シロキサン化合物の処理量としては、(F)酸化チタン100質量部に対し、通常0.01~10質量部である。処理量が、上記下限値未満の場合は、表面処理効果が低く、本発明のポリブチレンテレフタレート系樹脂組成物の耐衝撃性、難燃性、耐加水分解性が低下しやすい。また、処理量が、上記上限値を超える場合は、ポリブチレンテレフタレート系樹脂組成物の流動性が低下しやすくなるため好ましくない。
 このような観点より上記処理量は、(F)酸化チタン100質量部に対し、0.1~6質量部がより好ましく、0.5~5質量部がさらに好ましく、1~4質量部が特に好ましい。
 (F)酸化チタンの含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、0.5~10質量部であることが好ましく、より好ましくは0.7質量部以上、さらに好ましくは1質量部以上であり、また、より好ましくは8質量部以下、さらに好ましくは6質量部以下、特に好ましくは5質量部以下である。(F)酸化チタンの含有量が0.05質量部未満であると、耐衝撃性、難燃性、耐加水分解性改良効果が十分でない場合があり、10質量部を超えると機械的物性、成形性が低下する場合がある。
[(G)ポリオレフィン系離型剤]
 本発明のポリブチレンテレフタレート系樹脂組成物は、(G)ポリオレフィン系離型剤を含有することが好ましい。離型剤としては、ポリブチレンテレフタレート系樹脂に通常使用される既知の離型剤が利用可能であるが、本発明では、耐衝撃性、耐加水分解性及び離型性の点で、ポリオレフィン化合物系の離型剤を含有する。
 ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が好ましく挙げられ、中でも、ポリオレフィン系化合物の分散が良好であるという点から、質量平均分子量が、700~10000、更には900~8000のポリエチレンワックスが好ましい。
 また、本発明においては、ポリオレフィン系化合物は、ポリブチレンテレフタレート系樹脂と親和性のある官能基を付与されていないものが好ましいが、カルボキシル基(カルボン酸(無水物)基、即ちカルボン酸基および/又はカルボン酸無水物基を表す。以下同様。)、ハロホルミル基、エステル基、カルボン酸金属塩基、水酸基、アルコシル基、エポキシ基、アミノ基、アミド基等の、ポリブチレンテレフタレート系樹脂と親和性のある官能基を付与されたものも使用できる。この濃度は、ポリオレフィン系化合物の酸価として、5mgKOH/gを超えて50mgKOH/g未満が好ましく、中でも10~40mgKOH/g、さらには15~30mgKOH/g、特に20~28mgKOH/gであることが好ましい。
 また、揮発分が少なく、同時に離型性の改良効果も著しい点で、ポリオレフィン系化合物としては、酸化ポリエチレンワックスを使用することもできる。
 なお、酸価は、0.5mol KOHエタノール溶液による電位差滴定法(ASTM D1386)に従って測定することができる。
 また、(G)ポリオレフィン系離型剤は、その滴点が100℃以下であるものが好ましく、より好ましくは90℃以下である。またその下限は通常50℃、好ましくは60℃である。滴点が50℃未満であると、成形品を射出成形する前の予備乾燥時に離型剤がブリードしやすく、ペレット同士が融着する場合があり好ましくない。また、滴点が100℃を超えると離型効果が低下しやすいため、好ましくない。
 なお、滴点は、ASTM D127に準拠した方法により測定することができる。具体的には、金属ニップルを用いて、溶融したワックスが金属ニップルから最初に滴下するときの温度として測定される。なお、ポリオレフィン系離型剤が、滴点測定が難しいものである場合は、示差走査熱量測定(DSC)による融点を、本発明における滴点とすることができる。
 (G)ポリオレフィン系離型剤の好ましい含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対して0.01~3質量部である。0.01質量部未満であると、溶融成形時の離型不良により表面外観が低下する傾向があり、一方、3質量部を超えると、樹脂組成物の練り込み作業性が低下し、また、成形時にガスが発生しやすく、樹脂流動末端部でのガス焼けや、成形品表面に曇りが見られる場合がある。離型剤の含有量は、より好ましくは0.07質量部以上、さらに好ましくは0.1質量部以上であり、より好ましくは1.2質量部以下、さらに好ましくは1.0質量部以下である。
[安定剤]
 本発明のポリブチレンテレフタレート系樹脂組成物は、さらに安定剤を含有することが、熱安定性改良や、機械的強度及び色相の悪化を防止する効果を有するという点で好ましい。安定剤としては、リン系安定剤及びフェノール系安定剤が好ましい。
 特にリン系安定剤を含有すると、(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂と(D)難燃剤との相互の相溶性を格段に向上させることができ、後記するモルフォロジー構造を有する成形体を安定して形成しやすくなる。
 リン系安定剤としては、亜リン酸、リン酸、亜リン酸エステル、リン酸エステル等が挙げられ、中でも有機リン酸エステル化合物が好ましい。
 有機リン酸エステル化合物は、リン原子にアルコキシ基又はアリールオキシ基が1~3個結合した部分構造を有するものである。なお、これらのアルコキシ基やアリールオキシ基には、さらに置換基が結合していてもよい。好ましくは、有機リン酸エステル化合物の金属塩であり、金属としては、周期律表第Ia、IIa、IIb及びIIIaから選ばれる少なくとも1種の金属がより好ましく、中でも、マグネシウム、バリウム、カルシウム、亜鉛、アルミニウムがさらに好ましく、マグネシウム、カルシウム又は亜鉛が特に好まい。
 本発明においては、下記一般式(1)~(5)のいずれかで表される有機リン酸エステル化合物を用いることが好ましく、下記一般式(1)~(4)のいずれかで表される有機リン酸エステル化合物を用いることがより好ましく、下記一般式(1)又は(2)で表される有機リン酸エステル化合物を用いることがさらに好ましい。有機リン酸エステル化合物は二種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、R~Rは、それぞれ独立して、アルキル基又はアリール基を表す。Mはアルカリ土類金属又は亜鉛を表す。
Figure JPOXMLDOC01-appb-C000010
 一般式(2)中、Rはアルキル基又はアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。
Figure JPOXMLDOC01-appb-C000011
 一般式(3)中、R~R11は、それぞれ独立して、アルキル基又はアリール基を表す。M’は3価の金属イオンとなる金属原子を表す。
Figure JPOXMLDOC01-appb-C000012
 一般式(4)中、R12~R14は、それぞれ独立して、アルキル基又はアリール基を表す。M’は3価の金属イオンとなる金属原子を表し、2つのM’はそれぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000013
 一般式(5)中、R15はアルキル基又はアリール基を表す。nは0~2の整数を表す。なお、nが0又は1のとき、2つのR15は同一でも異なっていてもよい。
 一般式(1)~(5)中、R~R15は、通常は炭素数1~30のアルキル基又は炭素数6~30のアリール基である。滞留熱安定性、耐薬品性、耐湿熱性等の観点からは、炭素数2~25のアルキル基であるのが好ましく、更には炭素数6~23のアルキル基であるのが最も好ましい。アルキル基としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等が挙げられる。また、一般式(1)、(2)のMは亜鉛であるのが好ましく、一般式(3)、(4)のM’はアルミニウムであるのが好ましい。
 有機リン酸エステル化合物の好ましい具体例としては一般式(1)の化合物としてはビス(ジステアリルアシッドホスフェート)亜鉛塩、一般式(2)の化合物としてはモノステアリルアシッドホスフェート亜鉛塩、一般式(3)の化合物としてはトリス(ジステアリルアッシドホスフェート)アルミニウム塩、一般式(4)の化合物としては1個のモノステアリルアッシドホスフェートと2個のモノステアリルアッシドホスフェートアルミニウム塩との塩、一般式(5)の化合物としてはモノステアリルアシッドホスフェートやジステアリルアシッドホスフェート等が挙げられる。中でも、ビス(ジステアリルアシッドホスフェート)亜鉛塩、モノステアリルアシッドホスフェート亜鉛塩がより好ましい。
 これらは単独で用いてもよく、また混合物として用いてもよい。
 有機リン酸エステル化合物としては、エステル交換抑制効果が非常に高く、成形加工時の熱安定性がよく成形性に優れ、射出成形機での計量部の設定温度を高めに設定することが可能となって成形が安定すること、また耐加水分解性、耐衝撃性が優れる観点から、前記一般式(1)で表される有機リン酸エステル化合物の亜鉛塩であるビス(ジステアリルアシッドホスフェート)亜鉛塩、前記一般式(2)で表される有機リン酸エステル化合物の亜鉛塩であるモノステアリルアシッドホスフェート亜鉛塩等のステアリルアシッドホスフェートの亜鉛塩を用いるのが好ましい。これらの市販のものとしては、城北化学工業製「JP-518Zn」等がある。
 有機リン酸エステル化合物の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0.001~1質量部である。含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、1質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。有機リン酸エステル化合物の含有量は、より好ましくは0.01~0.8質量部であり、更に好ましくは、0.05~0.7質量部、特に好ましくは0.1~0.5質量部である。
 フェノール系安定剤としては、例えば、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ペンタエリスリトールテトラキス(3-(3,5-ジ-ネオペンチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。これらの中でも、ペンタエリスリト-ルテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。
 フェノール系安定剤の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0.001~1質量部である。含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、1質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。フェノール系安定剤の含有量は、より好ましくは0.001~0.7質量部であり、更に好ましくは、0.005~0.5質量部である。
[滴下防止剤]
 本発明のポリブチレンテレフタレート系樹脂組成物は、滴下防止剤を含有することが好ましい。
 滴下防止剤としては、フルオロポリマーが好ましい。
 フルオロポリマーとしては、フッ素を有する公知のポリマーを任意に選択して使用できるが、中でもフルオロオレフィン樹脂が好ましい。
 フルオロオレフィン樹脂としては、例えば、フルオロエチレン構造を含む重合体や共重合体が挙げられる。その具体例を挙げると、ジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂等が挙げられる。中でもテトラフルオロエチレン樹脂等が好ましい。このフルオロエチレン樹脂としては、フィブリル形成能を有するフルオロエチレン樹脂が好ましい。
 フィブリル形成能を有するフルオロエチレン樹脂としては、例えば、三井・デュポンフロロケミカル社製、テフロン(登録商標)6J、ダイキン工業社製、ポリフロン(登録商標)F201L、ポリフロンF103等が挙げられる。
 また、フルオロエチレン樹脂の水性分散液として、例えば、三井・デュポンフロロケミカル社製のテフロン(登録商標)30J、ダイキン工業社製フルオンD-1、住友スリーエム社製TF1750等も挙げられる。さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も、フルオロポリマーとして使用することができる。その具体例を挙げると、三菱レイヨン社製メタブレン(登録商標)A-3800等が挙げられる。
 滴下防止剤の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、0.05~1質量部であることが好ましく、より好ましくは0.1質量部以上、さらに好ましくは0.12質量部以上、特に好ましくは0.15質量部以上であり、より好ましくは0.6質量部以下、さらに好ましくは0.45質量部以下、特に好ましくは0.35質量部以下である。滴下防止剤の含有量が少なすぎると樹脂組成物の難燃性が不十分となる可能性があり、逆に多すぎても樹脂組成物の成形品の外観不良や機械的強度の低下が生ずる可能性がある。
[その他含有成分]
 本発明の樹脂組成物は、本発明の効果を損なわない範囲で、上記以外の種々の添加剤を含有していても良い。このような添加剤としては、紫外線吸収剤、顔料、強化充填材、核剤、帯電防止剤、防曇剤、アンチブロッキング剤、可塑剤、分散剤、抗菌剤等が挙げられる。
<紫外線吸収剤>
 本発明のポリブチレンテレフタレート系樹脂組成物は、耐光性改良効果を有する点から、さらに紫外線吸収剤を含有することも好ましい。特に、上記したリン系安定剤及び/またはフェノール系安定剤と併用することにより、耐光性がより向上しやすい傾向にある。
 紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物等の有機紫外線吸収剤等が挙げられる。これらの中では、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤またはマロン酸エステル系紫外線吸収剤がより好ましく、ベンゾトリアゾール系の紫外線吸収剤が特に好ましい。
 ベンゾトリアゾール系紫外線吸収剤の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、なかでも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。
 トリアジン系紫外線吸収剤の具体例としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等が挙げられる。
 マロン酸エステル系紫外線吸収剤の具体例としては、2-(アルキリデン)マロン酸エステル類、特に2-(1-アリールアルキリデン)マロン酸エステル類が挙げられる。
 紫外線吸収剤の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、また、好ましくは1質量部以下、より好ましくは0.8質量部以下、さらに好ましくは0.6質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐光性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。
<顔料>
 本発明における樹脂組成物は、耐光性改良効果を有する点から、さらに顔料を含有することも好ましい。顔料としては、例えば、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等)等の黒色顔料、酸化鉄赤等の赤色顔料、モリブデートオレンジ等の橙色顔料、酸化チタン等の白色顔料、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料等)等が挙げられる。なかでも、耐光性改良効果の点から、カーボンブラックが好ましい。
 顔料の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対して、好ましくは、0.05~5質量部である。0.05質量部未満であると、耐光性改良効果が十分でない場合があり、5質量部を超えると機械的物性が低下する場合がある。顔料の含有量は、好ましくは0.05~4質量部、さらに好ましくは0.1~3質量部である。
 特に、本発明においては、カーボンブラックを配合した場合に発生しやすい、カーボンブラックの凝集等による成形品ウエルド部や成形品段差部等における外観不良が、(F)酸化チタンを配合することによって、より改善されやすいことが明らかとなった。これは、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の混合樹脂に、(C)エラストマー、(D)難燃剤及び(E)アンチモン化合物を特定量含有する樹脂組成物に特有に確認される効果であり、顕著な効果である。
<強化充填材>
 本発明に用いる樹脂組成物は、本発明の効果を損なわない範囲で、強化充填材を含有してもよいが、高い耐衝撃性が必要な場合は、強化充填材は含有しないことが好ましい。強化充填材を含有する場合は、樹脂に配合することにより得られる樹脂組成物の機械的性質を向上させる効果を有する強化充填材が好ましく、常用のプラスチック用無機充填材を用いることができる。好ましくはガラス繊維、炭素繊維、玄武岩繊維、ウォラストナイト、チタン酸カリウム繊維等の繊維状の充填材を用いることができる。また炭酸カルシウム、酸化チタン、長石系鉱物、クレー、有機化クレー、ガラスビーズ等の粒状又は無定形の充填材;タルク等の板状の充填材;ガラスフレーク、マイカ、グラファイト等の鱗片状の充填材を用いることもできる。なかでも、機械的強度、剛性および耐熱性の点からガラス繊維を用いるのが好ましい。
 なお、結晶化速度向上の目的で核剤としてタルク等の充填剤を使用する場合は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対して1質量%以下、好ましくは0.6質量部以下の量で配合してもよい。
 強化充填材は、カップリング剤等の表面処理剤によって、表面処理されたものを用いることがより好ましい。表面処理剤が付着したガラス繊維は、耐久性、耐湿熱性、耐加水分解性、耐ヒートショック性に優れるので好ましい。
 表面処理剤としては、従来公知の任意のものを使用でき、具体的には、例えば、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシラン系カップリング剤が好ましく挙げられる。
 これらの中では、アミノシラン系表面処理剤が好ましく、具体的には例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン及びγ-(2-アミノエチル)アミノプロピルトリメトキシシランが好ましい例として挙げられる。
 また、表面処理剤として、ノボラック型等のエポキシ樹脂、ビスフェノールA型のエポキシ樹脂等も好ましく挙げられる。中でもノボラック型エポキシ樹脂が好ましい。
 シラン系表面処理剤とエポキシ樹脂は、それぞれ単独で用いても複数種で用いてもよく、両者を併用することも好ましい。
 強化充填材の含有量は、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0~100質量部である。強化充填材の含有量が100質量部を上回ると、流動性が低下するので好ましくない。強化充填材のより好ましい含有量は、5~90質量部であり、中でも15~80質量部、さらに好ましくは30~80質量部、特には40~70質量部である。
<他の熱可塑性樹脂>
 また、本発明に用いる樹脂組成物には、(A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂以外の他の熱可塑性樹脂を、本発明の効果を損わない範囲で含有することができる。その他の熱可塑性樹脂としては、具体的には、例えば、ポリエチレンテレフタレート、ポリアミド、ポリフェニレンオキサイド、ポリスチレン系樹脂、ポリフェニレンサルファイドエチレン、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン等が挙げられる。
[樹脂組成物の製造方法]
 本発明に用いる樹脂組成物の製造方法としては、樹脂組成物調製の常法に従って行うことができる。通常は各成分及び所望により添加される種々の添加剤を一緒にしてよく混合し、次いで一軸又は二軸押出機で溶融混練する。また各成分を予め混合することなく、ないしはその一部のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練し、本発明に用いる樹脂組成物を調製することもできる。さらには、(A)ポリブチレンテレフタレート系樹脂又は(B)ポリカーボネート樹脂の一部に他の成分の一部を配合したものを溶融混練してマスターバッチを調製し、次いでこれに残りの他の成分を配合して溶融混練してもよい。
 なお、ガラス繊維等の繊維状の強化充填材を用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
 特に、(E)アンチモン化合物は、熱可塑性樹脂、特に好ましくは(A)ポリブチレンテレフタレート系樹脂とのマスターバッチとして配合されることが、溶融混練、成形加工時等の熱安定性や、難燃性、耐衝撃性のばらつきの点において、好ましい。マスターバッチ化する方法は、特に制限はないが、熱可塑性樹脂とアンチモン化合物を溶融混練する方法が挙げられる。
 溶融混練の方法としては、単軸又は二軸押出機型混練機、混練ロールもしくはカレンダーロールなどの連続式混練機、又は、加圧ニーダー、バンバリーミキサーなどの公知の混練機を用いる方法等が挙げられる。中でも二軸押出機を使用することが好ましい。
 また、溶融混練の際には、予め熱可塑性樹脂を、乾燥することも好ましい。乾燥としては熱風乾燥が好ましく、その温度は好ましくは100~140℃、より好ましくは110~130℃で、乾燥時間は、好ましくは1~5時間、より好ましくは2~4時間である。
 押出機を使用する場合は、熱可塑性樹脂(好ましくはポリブチレンテレフタレート系樹脂)及びアンチモン化合物を押出機に供給し、溶融混錬し、ダイノズルから樹脂組成物を押出してストランド状とした後に、冷却、切断してマスターバッチのペレットが製造される。
 この際、溶融混練機としては、二軸押出機を用いることが好ましい。中でも、スクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが、10<(L/D)<100の関係を満足することが好ましく、15<(L/D)<70を満足することがより好ましい。かかる比が10以下では、熱可塑性樹脂とアンチモン化合物が微分散しにくく、逆に100を超えても熱可塑性樹脂が分解しやすくなり好ましくない。
 溶融混練の条件としては、温度はバレル温度で好ましくは140~320℃、より好ましくは160~310℃である。溶融温度が140℃未満では、溶融不十分となり、未溶融ゲルやアンチモン化合物の凝集が多発しやすく、逆に320℃を超えると、樹脂組成物が熱劣化し、着色しやすくなる等好ましくない。
 溶融混練時のスクリュー回転数は、100~1,000rpmであることが好ましく、120~800rpmがより好ましい。スクリュー回転数が100rpm未満であると、アンチモン化合物が微分散しにくい傾向にあり、逆に1,000rpmを超えても、熱可塑性樹脂が分解しやすくなる傾向となり好ましくない。また、吐出量は5~2,000kg/hrであることが好ましく、10~1,500kg/hrがより好ましい。吐出量が5kg/hr未満であると、ストランドが安定せず、歩留まりが低下する傾向にあり、2,000kg/hrを超えても、アンチモン化合物が凝集しやすく、分散性が低下する傾向となり好ましくない。
 溶融混練に供する原料の熱可塑性樹脂(好ましくはポリブチレンテレフタレート系樹脂)及びアンチモン化合物の割合は、熱可塑性樹脂とアンチモン化合物の合計100質量%基準で、アンチモン化合物を20~90質量%とすることが好ましい。アンチモン化合物が20質量%未満の場合は、難燃剤マスターバッチ中のアンチモン化合物の割合が少なく、これを配合する熱可塑性樹脂への難燃性向上効果が少ない。一方、アンチモン化合物が90質量%を超える場合は、アンチモン化合物の分散性が低下しやすく、このマスターバッチを(A)ポリブチレンテレフタレート系樹脂に配合すると本発明のポリブチレンテレフタレート系樹脂組成物の難燃性が不安定になり、また難燃剤マスターバッチ製造時の作業性も著しく低下する、例えば、押出機を使用して製造する際に、ストランドが安定せず、切れやすい等の問題が発生しやすいため好ましくない。
 マスターバッチ中のアンチモン化合物の含有量は、熱可塑性樹脂とアンチモン化合物の合計100質量%基準で、好ましくは30~85質量%であり、より好ましくは40~80質量%である。
 熱可塑性樹脂とアンチモン化合物を溶融混練してマスターバッチ化する際には、必要に応じて安定剤等の各種の添加剤を配合することもできる。
 アンチモン化合物マスターバッチの配合は、得られるポリブチレンテレフタレート系樹脂組成物中のアンチモン化合物の含有量が、ポリブチレンテレフタレート系樹脂組成物全体100質量%において、0.5~10質量%であるように配合することが好ましく、より好ましくは0.7~9質量%、さらに好ましくは1~8質量%、特には1.5~7質量%、最も好ましくは2~6質量%である。
 (E)アンチモン化合物をマスターバッチで配合する場合は、(A)ポリブチレンテレフタレート系樹脂、(B)ポリカーボネート樹脂、(C)エラストマー、(D)難燃剤及他の所望の成分を、それぞれ所望の割合で押出機等の混練機にフィードするが、この際、アンチモン化合物マスターバッチは、他の原料とは別に設けた専用のフィーダーから押出機に供給することが好ましい。アンチモン化合物マスターバッチは、(A)~(D)成分及び他の所望の添加剤と混合して同じフィーダーから供給するのではなく、独立した専用のフィーダーから供給することが、分級が抑制され、難燃性、耐衝撃性が良好となり、ばらつきも少ない点から好ましい。
 アンチモンバスターバッチを専用のフィーダーから供給する場合は、押出機のホッパーに、専用のフィーダーから他の原料と同時にフィードしてもよいし、押出機の途中にフィードしてもよい。押出機の途中にフィードする場合は、ニーディングゾーンよりもホッパー側にフィードすることが好ましい。
 (A)ポリブチレンテレフタレート系樹脂、(B)ポリカーボネート樹脂、(C)エラストマー、(D)難燃剤及び(E)アンチモン化合物、並びに他の所望の成分を、溶融混練する際の加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練り時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。
[樹脂組成物成形体のモルフォロジー]
 本発明のポリブチレンテレフタレート系樹脂組成物の成形体は、好ましくは、成形体のコア部において、(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂は共連続相を形成し、(C)エラストマーは(B)ポリカーボネート樹脂相中に存在するモルフォロジーを有する。また、好ましくは、(E)アンチモン化合物も、(A)ポリブチレンテレフタレート系樹脂相に存在する。
 ここで、コア部とは、成形体の深さ20μm未満の表層部を除く部分で、成形体の樹脂組成物流動方向に平行な断面の中心部をいい、表層部とは、成形体の表面から深さ20μm内部までの表層部分であって、樹脂組成物流動方向に平行な断面をいう。
 共連続相とは、(A)ポリブチレンテレフタレート系樹脂からなる相と、(B)ポリカーボネート樹脂同士が互いに接している相とが、共に連続相をなしていることを意味する。このような共連続構造を有することにより、また、(C)エラストマーは(B)ポリカーボネート樹脂相中に存在するモルフォロジーを有することにより、本発明の成形品は、難燃性及び耐衝撃性の両方に優れるという特性を発現することが容易となる。共連続相の構造、形状及びその大きさは限定されない
 なお、ポリブチレンテレフタレート系樹脂組成物成形体のモルフォロジーの観察は、光学顕微鏡、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)等により成形体断面を観察することで測定できる。
 具体的には、SEM、STEM、TEM分析装置を用い、成形体断面のコア部(深さ20μm未満の表層部を除く部分で、断面の中心部、樹脂組成物流動方向に平行な断面。)を、20kVの加速電圧下で、倍率3,000~100,000倍の倍率により観察される。
 図1、2は、成形体のモルフォロジーの一例を示すものであって、本発明の実施例41で得られた成形体のコア部のSTEM写真である。
 図1中、流動方向は図1において左から右方向である。薄い灰色部分が(A)ポリブチレンテレフタレート系樹脂相であり、それより濃い灰色が(B)ポリカーボネート樹脂の相であり、両者は共連続構造を形成しているのが分かる。その(B)ポリカーボネート樹脂相中に白い丸の形で存在しているのが(C)エラストマーの相であり、(C)エラストマーが(B)ポリカーボネート樹脂相中に存在していることが分かる。
 薄い灰色部分の(A)ポリブチレンテレフタレート系樹脂相中において、黒い部分で粒子径の大きいものが(E)アンチモン化合物(図1では三酸化アンチモン)であり、(E)アンチモン化合物の80%以上は(A)ポリブチレンテレフタレート系樹脂の相に分散して存在していることも確認された。黒い部分で粒子径の小さいものは二酸化チタンと考えられる。また、(D)難燃剤は、(B)ポリカーボネート樹脂相中に存在すると考えられる。
 成形体コア部における(C)エラストマーの、(B)ポリカーボネート樹脂相中における平均径は、200nm以上であることが好ましく、300nm以上であることがより好ましく、400nm以上であることがさらに好ましく、好ましくは2μm以下、より好ましくは1.5μm以下、さらに好ましくは1.2μm以下、特に好ましくは1μm以下である。
 また、(E)アンチモン化合物の平均径は、4μm以下であることが好ましく、より好ましくは3μm以下、さらには2μm以下であることが好ましい。
 (C)エラストマー相や(E)アンチモン化合物のドメイン(又は粒子)粒子径(分散径)等は、モルフォロジー観察で得られた像をそのまま又はこれらの像にコントラストを強調あるいは、明暗の調整又は両方の調整を像に施すことにより読み取ることができる。
 (C)エラストマー相や(E)アンチモン化合物の粒子径等は、200個以上の粒子径を測定し、その最大径を算術平均して算出される。
 また、ポリブチレンテレフタレート系樹脂組成物成形体は、成形体の表層部においては、(C)エラストマー相は樹脂の流れ方向に伸びており、その長径と短径の比(長径/短径)が3~20であることが好ましく、4~17であることがより好ましく、6~15であることがさらに好ましい。なお、長径とは、エラストマー粒子の最大径をいい、短径とは、長径に垂直な方向の径のうちの最大径とする。また、表層部とは、成形体表面から深さ20μmまでの領域をいう。
 成形体の表層部のこのような好ましいモルフォロジーは、例えば、図3を観察することにより確認できる。図3は、本発明の実施例41で得られた成形体の表層部のSEM写真である。
 図3において、成形時の樹脂の流れ方向は図の左から右への方向である。薄い灰色で水平方向に細長く伸びているのが(C)エラストマー相であり、樹脂の流れ方向に伸びていることが確認できる。(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂は層状構造を形成していると考えられる。白い部分で粒子径の大きいものは(E)アンチモン化合物、粒子径の小さいものは二酸化チタンであると考えられる。
 このように、本発明の成形体は、好ましくはこのような特異なモルフォロジー構造を有する。
[成形体モルフォロジーの好ましい制御法]
 成形体は、このようなモルフォロジー構造を有することによって、難燃性と耐衝撃性の両方により優れた難燃性の成形体となる。
 成形体の製造に用いるポリブチレンテレフタレート系樹脂組成物は、押出機等の溶融混練機を用いた溶融混練法により製造することが好ましいが、ポリブチレンテレフタレート系樹脂組成物の原料各成分を混合して、単に混練するだけでは、上記で規定するモルフォロジー構造を安定して形成することは難しく、特別の方法により混練することが推奨される。
 以下に、上記で規定するモルフォロジー構造を安定して形成するための好ましい製造方法について、説明する。
 (A)ポリブチレンテレフタレート系樹脂、(B)ポリカーボネート樹脂、(D)難燃剤、(E)アンチモン化合物及び(C)エラストマーを、それぞれ所定の割合で混合後、ダイノズルが設けられた単軸又は二軸の押出機に供給後、溶融混練し、ダイノズルから樹脂組成物を押出してストランド状とした後に、切断してペレットを製造する。
 この際、溶融混練機としては、二軸押出機を用いることが好ましい。中でも、スクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが、10<(L/D)<150の関係を満足することが好ましく、15<(L/D)<120の関係を満足することがより好ましく、20<(L/D)<100の関係を満足することがさらに好ましく、30<(L/D)<70を満足することが特に好ましい。かかる比が10以下では、(B)ポリカーボネート樹脂と(D)難燃剤、(E)アンチモン化合物及び(C)エラストマーが微分散しにくく、逆に150を超えても、(D)難燃剤の熱劣化が著しく、微分散されにくくなる傾向があり好ましくない。
 ダイノズルの形状も特に限定されないが、ペレット形状の点で、直径1~10mmの円形ノズルが好ましく、直径2~7mmの円形ノズルがより好ましい。
 また、溶融混練時の樹脂組成物の溶融温度は200~300℃であることが好ましく、210~295℃であることがより好ましい。溶融温度が200℃未満では、溶融不十分となり、未溶融ゲルが多発しやすく、逆に300℃を超えると、樹脂組成物が熱劣化し、着色しやすくなる等好ましくない。
 溶融混練時のスクリュー回転数は、100~1,000rpmであることが好ましく、150~800rpmがより好ましい。スクリュー回転数が100rpm未満であると、(D)難燃剤、(E)アンチモン化合物及び(C)エラストマーが微分散しにくい傾向にあり、逆に1,000rpmを超えても、(E)アンチモン化合物が凝集し、微分散しない傾向となり好ましくない。また、吐出量は5~1,000kg/hrであることが好ましく、10~900kg/hrがより好ましい。吐出量が5kg/hr未満であると、(E)アンチモン化合物の分散性が低下する傾向にあり、1,000kg/hrを超えても、アンチモン化合物の再凝集により、分散性が低下する傾向となり好ましくない。
 ダイノズルにおけるポリブチレンテレフタレート系樹脂組成物のせん断速度は、10~10,000sec-1であることが好ましく、50~5,000sec-1であることがより好ましく、70~1,000sec-1であることがさらに好ましい。せん断速度を上記の範囲とすることにより、(D)難燃剤、(E)アンチモン化合物及び(C)エラストマーの再凝集を抑制し、本発明で規定するモルフォロジーを安定して形成しやすい傾向にあり、好ましい。かかるせん断速度は、一般的に樹脂組成物の吐出量とダイノズルの断面の形状より決定されるものであり、例えば、ダイノズルの断面が円形の時は、
 γ=4Q/πr
 により算出することができる。ここで、γはせん断速度(sec-1)、Qはダイノズル1本当たりの樹脂組成物の吐出量(cc/sec)、rはダイノズル断面の半径(cm)をそれぞれ表す。
 ダイノズルからストランド状に押し出された樹脂組成物は、ペレタイザー等により切断しペレット形状とするが、切断時のストランドの表面温度が60~150℃、特に70~150℃となるようにストランドを冷却することが好ましい。通常、空冷、水冷等の方法により冷却されるが、冷却効率の点で、水冷することが好ましい。かかる水冷にあたっては、水を入れた水槽中にストランドを通して冷却すればよく、水温と冷却時間を調整することにより、所望のストランド表面温度とすることができる。このようにして製造されたペレットの形状は、円柱状の場合は、径が好ましくは1~8mm、より好ましくは2~6mm、さらに好ましくは3~5mm、長さが好ましくは1~10mm、より好ましくは2~6mm、さらに好ましくは3~5mmである。
 また、上記ダイノズルにおけるせん断速度γ(sec-1)と上記ストランド切断時のストランドの表面温度T(℃)との関係が、
  1×10<(γ・T)<9.9×10
の関係を満足することにより、電気絶縁性、靱性、難燃性が向上する傾向にあり、好ましい。(γ・T)の値を上記範囲とすることにより、上記で規定するモルフォロジー構造を安定して形成しやすい傾向となる。また、樹脂組成物の各成分の分散不良による成形品表面の肌荒れ現象や、(D)難燃剤、(E)アンチモン化合物及び(C)エラストマーの再凝集による靱性の低下を抑制しやすく、さらに、機械的特性、難燃性及び絶縁特性等を良好に保つことが容易となる。(γ・T)の下限は1×10であることがより好ましく、上限は8.5×10であることがより好ましい。
 (γ・T)の値を上記の範囲に調整するためには、上記のせん断速度とストランドの表面温度を調整すればよい。
 上記の好ましい条件を単独でも、また複数を組み合わせて適用することにより、上記で規定するモルフォロジー構造を有するポリブチレンテレフタレート系樹脂組成物を製造することができるが、中でも、(γ・T)の値が上記式を満たすような製造条件を採用することが効果的である。
 このようなポリブチレンテレフタレート系樹脂組成物の製造方法を採用することにより、上記で規定するモルフォロジー構造を有するポリブチレンテレフタレート系樹脂組成物成形体を安定して製造することができる。しかし、その製造は、かかる方法に限られるものではなく、上記で規定するモルフォロジー構造が得られる限り、他の方法を用いてもよい。
 また、上記したモルフォロジー構造を有する成形体を安定して形成しやすくするには、以下の1)~8)の方法・条件を適用したポリブチレンテレフタレート系樹脂組成物を用いて成形体を製造することも好ましい。
1)(D)難燃剤が、臭素化ポリカーボネート系難燃剤である場合は、臭素化ポリカーボネート系難燃剤中の不純物である塩素化合物の含有量を、通常0.2質量%以下、好ましくは0.1質量%以下、より好ましくは0.08質量%以下、さらには0.05質量%以下、特には0.03質量%以下とすることが好ましい。このように制御することで、上記で規定するモルフォロジー構造を安定して形成しやすくなる。
 不純物である塩素化合物は塩素化ビスフェノール化合物等である。このような塩素化合物が上記量以上存在すると、上記のモルフォロジー構造を安定して形成しにくくなる。なお、塩素化合物含有量は、270℃で10分間の加熱により発生したガスを、ガスクロマトグラフィー法により分析し、デカン換算の値として定量することができる。
2)ポリブチレンテレフタレート系樹脂組成物中の遊離の臭素、塩素、硫黄の量を特定量以下にすることも上記のモルフォロジー構造を安定して形成しやする上で有効である。遊離の臭素の量は、800ppm以下とすることが好ましく、700ppm以下がより好ましく、650ppm以下がさらに好ましく、480ppm以下が特に好ましい。また、含有量を0ppmまでに除去することは、経済性を度外視するような精製を必要とするので、その下限量は、通常1ppmであり、好ましくは5ppmであり、より好ましくは10ppmである。
 遊離の塩素の量は、500ppm以下とすることが好ましく、350ppm以下がより好ましく、200ppm以下がさらに好ましく、150ppm以下が特に好ましい。なお、樹脂組成物中の塩素含有量は、塩素がどの様な状態・形態で樹脂組成物中に存在していたかは限定されない。塩素は、使用する原料、添加剤、触媒、重合雰囲気、樹脂の冷却水等、種々の環境より混入するので、それらの混入量の総計を、500ppm以下と制御することが好ましい。
 また、遊離の硫黄の量は、250ppm以下とすることが好ましく、200ppm以下がより好ましく、150ppm以下がさらに好ましく、100ppm以下が特に好ましい。なお、樹脂組成物中の硫黄含有量は、硫黄がどの様な状態・形態で樹脂組成物中に存在していたかは限定されない。硫黄は、使用する原料、添加剤、触媒、重合雰囲気等、種々の環境より混入するので、それらの混入量の総計を、250ppm以下と制御することが好ましい。
 なお、ポリブチレンテレフタレート系樹脂組成物中の遊離臭素、塩素、硫黄の含有量は、燃焼イオンクロマトグラフィー法により測定することができる。具体的には、三菱化学アナリテック社製「AQF-100型」の自動試料燃焼装置を用い、アルゴン雰囲気下、270℃、10分の条件で樹脂組成物を加熱し、発生した臭素、塩素、硫黄の量を、日本ダイオネクス社製「ICS-90」を用いて定量することにより求めることができる。
3)また、(E)アンチモン化合物として、三酸化アンチモンを使用する。
4)(D)難燃剤として、臭素化ポリカーボネート系難燃剤を使用する。臭素化ポリカーボネート系難燃剤は、他の難燃剤に比べて(B)ポリカーボネート樹脂相に取り込まやすいため、これにより(B)ポリカーボネート樹脂相が大きくなり、(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂が共連続構造を形成しやすくなる。
5)(C)エラストマーの平均粒子径が、300~1,500nmと比較的大きな粒子径のものを使用する。これにより(C)エラストマーを取り込んだ(B)ポリカーボネート樹脂相が大きくなり、(B)ポリカーボネート樹脂相同士が接触しやすくなることにより、コア部において共連続構造を形成しやすくなり、さらに表層部において、(C)エラストマー相が樹脂流動方向に配向しやすくなる。
6)(E)アンチモン化合物を、(A)ポリブチレンテレフタレート系樹脂とのマスターバッチとして配合する。これにより、(E)アンチモン化合物が、(A)ポリブチレンテレフタレート系樹脂相に存在しやすくなる。
7)安定剤として、ステアリルアシッドホスフェートの亜鉛塩を配合する。これにより、(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂とのエステル交換がより抑制されやすく、溶融混練や成形加工時の熱安定性に優れるため、本発明のモルフォロジー構造を有する成形体を安定して形成しやすくなる。
8)また、射出成形により成形体を製造する場合は、例えば、射出成形機のスクリュー構成、スクリューやシリンダー内壁の加工、ノズル径、金型構造等の成形機条件の選択、可塑化、計量、射出時等の成形条件の調整、成形材料への他成分の添加等、種々の方法が挙げられる。特に、可塑化、計量、射出時の条件として、例えば、シリンダー温度、背圧、スクリュー回転数、射出速度等を調整することが好ましい。例えば、シリンダー温度を調整する場合は、好ましくは230~280℃、より好ましくは240~270℃に設定する。背圧を調整する場合は、好ましくは2~15MPa、より好ましくは4~10MPaに設定する。スクリュー回転数を調整する場合は、好ましくは20~300rpm、より好ましくは20~250rpmに設定する。射出速度を調整する場合は、射出速度を5~1,000mm/sec、さらには10~900mm/sec、特に20~800mm/sec、30~700mm/sec、40~500mm/secの成形条件を採用することが好ましい。これにより、表層部において、(C)エラストマー相が樹脂流動方向に配向しやすくなる。これらの中でも、成形体表層部において、(C)エラストマー相をより配向させやすくするために、射出速度を調整する方法を採用することが特に好ましい。
 特に、上記4)~8)により、コア部において、(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂の共連続構造が形成され耐衝撃性が向上し、さらに、表層部では、(C)エラストマー相が配向することにより、衝撃によるクレイズの伸長がエラストマー配向相で停止するため、耐衝撃性の向上につながると考えられる。
 また、(B)ポリカーボネート樹脂を劣化させやすい(E)アンチモン化合物が(A)ポリブチレンテレフタレート系樹脂相に存在しやすくなるため、(B)ポリカーボネート樹脂に対する悪影響が抑制でき、耐衝撃性の低下が抑えられる傾向となる。
 これら1)~8)の方法・条件は、これを単独でも、また複数を組み合わせて適用することも好ましく、また前記した樹脂組成物の製造条件と組み合わせて適用することでもより可能となる。
 上記の方法で得られる本発明のポリブチレンテレフタレート系樹脂組成物は、結晶化温度が100℃以上であることが好ましく、130℃以上であることがより好ましく、140℃以上であることがさらに好ましい。また、UL94に準拠した厚み1.5mmの難燃性がV-0、UL94 5V試験に準拠した厚み3.0mmの難燃性が5VA判定であることが好ましい。また、ノッチ付きシャルピー衝撃強度が30kJ/m以上であることが好ましく、40kJ/m以上であることがより好ましく、45kJ/m以上であることがさらに好ましい。面衝撃強度は、成形品が全破壊するときの高さが80cm以上であることが好ましく、100cm以上であることがより好ましく、150cm以上であることがさらに好ましい。なお、結晶化温度、難燃性、耐衝撃性の評価方法は、後述の実施例に記載の通りである。
[成形品]
 本発明のポリブチレンテレフタレート系樹脂組成物を成形した成形品は、電気電子部品、自動車部品その他の電装部品、機械部品、調理器具等の家電製品の部品として、例えば、電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体、電子電気機器部品の筐体、コネクタ、リレー、スィッチ、センサー、アクチュエーター、ターミナルスイッチ、炊飯器関連部品、グリル調理機器部品等に好適であり、特には電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体として好適に使用できる。
 電気自動車用充電器コネクタは、蓄電量が低下した場合に充電器を備えた設備において充電することになるが、当該設備で使用する電気自動車用充電器の接触式コネクタである。電池キャパシタ用ホルダーは、充電器(バッテリー)とは別に非常用補助電源としての大容量キャパシタを保持するホルダーである。電池キャパシタ用筐体は、上記キャパシタを構成する筐体でである。また、電気自動車用充電スタンド用筺体は、100Vあるいは200Vの交流電源から電気自動車のバッテリーに充電するためのスタンドを構成する筺体である。
 これら成形品の形状、大きさ、厚み等は任意である。
 樹脂組成物を用いて上記成形品を製造する方法は、特に限定されず、ポリエステル樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられる。中でも射出成形が好ましい。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
[実施例1-17、比較例1-2]
 使用した成分は、以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000014
 上記表1に示す各成分を表2~表4に示す割合(質量部)にて、タンブラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製「TEX-30α」、L/D=52)を使用し、バレル設定温度250℃、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリブチレンテレフタレート系樹脂組成物のペレットを得た。得られたペレットの特性は、射出成形機(日精樹脂工業社製、NEX80-9E)を用いてシリンダー温度250℃、金型温度80℃、下記(3)での離型性の評価以外は冷却時間15秒、(3)での離型性の評価は冷却時間20秒の条件で射出成形した試験片について、評価した。なお、成形に際して、樹脂組成物はその直前まで120℃にて6~8時間乾燥した。
(1)耐衝撃性
 シャルピー衝撃強度:
 ISO多目的試験片(厚さ4.0mm)を射出成形し、ISO179規格に準拠して試験片から厚さ4.0mmのノッチ付試験片を作製し、ノッチ付きシャルピー衝撃強度(単位:kJ/m)を測定した。
 面衝撃強度:
 大きさ150×80×40mmの箱型成形品(肉厚1.5mmt)を成形し、2.975kgの鋼球を所定の高さから落下させ、成形品が全破壊するときの高さ(単位:cm)を求めた。全破壊するときの高さが高いほど、面衝撃性に優れているといえる。なお、試験は105cmの高さまで行い、105cmで破壊しないものを「>100」と表中に記載した。
(2)難燃性
 UL94試験用試験片(125mm×12.5mm×1.5mmt)を成形し、UL94規格に準拠して、V-0、V-1、V-2の判定をした。
 また、UL94 5V Bar試験用試験片(125mm×12.5mm×3.0mmt)及び5V Plate試験用試験片(150mm×150mm×3.0mmt)を成形し、UL94 5V試験に準拠して、5VA、5VBの判定を行った。
(3)成形性
 流動性(成形ピーク圧):
 ISO試験片を射出成形した際の成形ピーク圧(単位:MPa)を測定した。
 離型性:
 大きさ150mm×80mm×40mmの箱型成形品(肉厚1.5mmt)を射出成形する際の離型性を評価した。成形品にエジェクターピン痕のないものを「○」、エジェクターピン痕が付くものを「△」、成形品をエジェクターピンが貫通し、割れが生じたものを「×」とした。
(4)引張強度
 ISO試験片を射出成形し、耐湿熱性試験前と後の引張強度(単位:MPa)を、ISO527規格に準拠して、引張速度50mm/分の条件で測定した。
(5)色差
 耐熱老化性試験、耐光性試験前後の試験片について、GretagMacbeth社製「CE-7000A」(光源:D65、視野:10°、方式:SCI)を用いて色差測定を行い、ΔEを求めた。
(6)耐熱老化性試験
 大きさ100mm×100mm×3mmtの平板成形品を射出成形し、温度160℃の熱風オーブン中に100時間放置した。
(7)耐光性試験
 大きさ100mm×100mm×3mmtの成形品を射出成形し、キセノンウエザオ試験機を用い、以下の条件で耐光処理を行った。
  使用機器;アトラスCi4000
  フイルター/インナー;石英
  フイルター/アウター;タイプSボロシリケイト
  ブラックパネル温度;63℃
  放射照度;0.55W/m(at 340nm)
  処理時間:1000時間
  雨なし
  湿度;50%
(8)耐湿熱性試験
 ISO試験片を射出成形し、温度121℃、湿度100%、圧力2atmのプレッシャークッカー試験機中に50時間放置した。
 以上の評価結果を、以下の表2~表4に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
[実施例21~26]
 使用した成分は、以下の表5の通りである。
Figure JPOXMLDOC01-appb-T000018
(実施例21~26)
 上記表5に示す各成分を表6に示す割合(全て質量部)にて、タンブラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製「TEX-30α」、L/D=52)を使用し、バレル設定温度250℃、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリブチレンテレフタレート系樹脂組成物のペレットを得た。なお、(E)アンチモン化合物は、三菱エンジニアリングプラスチックス社製ポリブチレンテレフタレート樹脂「ノバデュラン(登録商標)5020」50質量%と、三菱エンジニアリングプラスチックス社製ポリブチレンテレフタレート樹脂「ノバデュラン(登録商標)5008」50質量%の混合物をベース樹脂としたアンチモン化合物のマスターバッチとして配合した(マスターバッチ中の(E)アンチモン化合物の含有量は70質量%)。
 得られたペレットの特性は、射出成形機(日精樹脂工業社製、NEX80-9E)を用いてシリンダー温度250℃、金型温度80℃、冷却時間15秒の条件で射出成形した試験片について、評価した。なお、成形に際して、樹脂組成物はその直前まで120℃にて6~8時間乾燥した。
(1)難燃性
 前記と同様にして、評価を行った。
(2)耐衝撃性
 前記と同様にして、ノッチ付シャルピー衝撃強度及び面衝撃強度を測定した。
(3)耐加水分解特性
 ISO多目的試験片(厚さ4.0mm)を用い、ISO527に準拠し、引張速度50mm/分の条件で、引張強度(処理前)を測定した(単位:MPa)。
 また、ISO多目的試験片(厚さ4.0mm)を、プレッシャークッカー試験機(平山製作所社製)を用いて、温度121℃、相対湿度100%、圧力2atmの条件で、75時間処理し、同様に引張強度(75hr処理後)を測定した(単位:MPa)。
(4)外観
 カーボンブラックを含有する樹脂組成物(実施例25及び26)のペッレットを用いて、試験片中央部にウエルドラインが形成された厚み1.0mmのUL94燃焼試験片及び厚さ1.0mmの部分と、厚さ2.0mmの部分と、厚さ3.0mmの部分とを有する3段プレートを射出成形し、そのウエルド部と3段プレートの段差部分について、外観を目視観察し、以下の基準で評価した。
  ○:外観が均質で良好。
  △:色が黒くなった部分が少しあり外観がやや劣るが、実成形品としては問題ない。
  ×:色が黒くなった部分があり、外観がが劣る。
 以上の評価結果を、纏めて以下の表6に示す。
Figure JPOXMLDOC01-appb-T000019
[実施例31~36]
 使用した成分は、以下の表7の通りである。
Figure JPOXMLDOC01-appb-T000020
 表7に示す各成分を表8に示す割合(全て質量部)にて、タンブラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製「TEX-30α」、L/D=52)を使用し、バレル設定温度250℃、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリブチレンテレフタレート系樹脂組成物のペレットを得た。なお、(E)アンチモン化合物は、三菱エンジニアリングプラスチックス社製ポリブチレンテレフタレート樹脂「ノバデュラン(登録商標)5020」50質量%と、三菱エンジニアリングプラスチックス社製ポリブチレンテレフタレート樹脂「ノバデュラン(登録商標)5008」50質量%の混合物をベース樹脂としたアンチモン化合物のマスターバッチとして配合した(マスターバッチ中の(E)アンチモン化合物の含有量は70質量%)。
 得られたペレットの特性は、射出成形機(日精樹脂工業社製、NEX80-9E)を用いてシリンダー温度250℃、金型温度80℃、下記(5)での離型性の評価以外は冷却時間15秒、下記(5)離型性の評価は冷却時間10秒の条件で射出成形した試験片について、評価した。なお、成形に際して、樹脂組成物はその直前まで120℃にて6~8時間乾燥した。
(1)難燃性
 前記と同様にして、評価を行った。
(2)耐衝撃性
 前記と同様にして、ノッチ付シャルピー衝撃強度及び面衝撃強度を測定した。
(3)耐加水分解特性
 前記と同様にして、評価を行った。
(4)耐熱変色特性
 大きさ100×100×3mmtの平板試成形品を射出成形し、温度160℃の熱風オーブン中に100時間放置した。試験片の試験前後の成形品について、GretagMacbeth社製「CE-7000A」(光源:D65、視野:10°、方式:SCI)を用いて色差測定を行い、ΔEを求めた。
(5)離型性
 大きさ150mm×80mm×40mmの箱形成形品(肉厚1.5mm)を射出成形し、中央部エジェクターピンに取り付けた圧力センサーにて、成形品が金型から離型する時にかかる圧力(離型抵抗値、単位:MPa)を測定し評価した。
 以上の評価結果を、以下の表8に示す。
Figure JPOXMLDOC01-appb-T000021
[実施例41~46]
 使用した成分は、以下の表9の通りである。
Figure JPOXMLDOC01-appb-T000022
 なお、上記難燃剤中の遊離の臭素、塩素、硫黄含有量は、燃焼イオンクロマトグラフィー法により定量した。三菱化学アナリテック社製「AQF-100型」の自動試料燃焼装置を用い、アルゴン雰囲気下、270℃、10分の条件で臭素化ポリカーボネート系難燃剤を加熱し、発生した臭素、塩素及び硫黄の量を、日本ダイオネクス社製「ICS-90」を用いて測定した。
 上記表9に記載の各原料成分を以下の表10に記載の配合割合(質量部)になるように、噛み合い型同方向2軸スクリュー式押出機(日本製鋼所社製「TEX30α」、スクリュー径32mm、L/D=54.2)に40kg/hrにて供給した。アンチモン化合物(E)は、ポリブチレンテレフタレート系樹脂(A)とアンチモン化合物(E)とのマスターバッチとして配合した(マスターバッチ中のアンチモン化合物(E)の含有量は70質量%)。押出機のバレル設定温度をC1~C15を260℃、ダイを250℃、スクリュー回転数を200rpmとし、ノズル数4穴(円形(φ4mm)、長さ1.5cm)、せん断速度(γ)211sec-1の条件下でストランドとして押出した。押出した直後のストランド温度は270℃であった。
 押出されたストランドを、温度を30~50℃の範囲に調整した水槽に導入して冷却した。ストランド表面温度(T)は、赤外線温度計で測定される温度で65℃まで冷却され(γ・T=1.4×10)、ペレタイザーに挿入してカッティングして、樹脂組成物のペレットを製造した。
 得られたペレットを、120℃で7時間加熱乾燥し、射出成形機(日本製鋼所社製「J85AD」)を用いてシリンダー温度250℃、金型温度80℃、射出圧150MPa、射出保圧時間15sec、冷却時間15sec、射出速度120mm/sec、背圧5MPa、スクリュー回転数100rpmの条件で、モルフォロジー観察用のISO引張試験片(厚さ4mm)及びシャルピー衝撃強度、面衝撃強度、難燃性評価用の試験片を射出成形した。
(1)モルフォロジー観察:
 得られたISO引張試験片(厚さ4mm)のコア部(深さ20μm未満の表層部以外の部分で、試験片断面の中心部の、樹脂組成物流動方向に平行な断面)から、Leica社製「UC7」を用い、ダイヤモンドナイフで厚さ100nmの超薄切片を切り出した。得られた超薄切片を四酸化ルテニウムで40分染色後、日立ハイテク社製「S-4800」を用い、加速電圧25kVの条件で、STEM観察した。
 得られたSTEM写真をもとに、以下の評価を行った。
i)ポリブチレンテレフタレート系樹脂(A)相及びポリカーボネート樹脂(B)相が、共連続相を形成しているかどうか。共連続相を形成しているものを「○」、形成していないものを「×」と下記表10に記載した。
ii)エラストマー(C)がポリカーボネート樹脂(B)相中に存在しているどうか。ポリカーボネート樹脂(B)相中に存在する場合を「PC相」、ポリカーボネート樹脂(B)相に存在しない場合を「×」と記した。
iii)エラストマー(C)相の粒子径の測定
 200個の最大粒子径を測定し、算術平均して算出した。
iv)アンチモン化合物(E)が、ポリブチレンテレフタレート系樹脂(A)相中に存在するかどうか。なお、アンチモン化合物(E)の80%以上がポリブチレンテレフタレート系樹脂(A)相中に存在する場合を「PBT相」、アンチモン化合物(E)の80%以上がポリブチレンテレフタレート系樹脂(A)相に存在しない場合を「×」とした。
 また、表層部観察用の試料としては、得られたISO引張試験片断面の表層部(深さ20μm未満の表層部)を、Leica社製「UC7」を用い、ダイヤモンドナイフで厚さ100nmの超薄切片を切り出した後の切削断面を用いた。得られた切削断面を四酸化ルテニウムで40分染色後、日立ハイテク社製「SU8020」を用い、加速電圧3kVの条件で、SEM観察した。
 得られたSEM写真をもとに、以下の評価を行った。
v)エラストマー(C)相が樹脂の流れ方向に伸びているかどうか(伸びているものを「○」、伸びていないものを「×」)。
vi)エラストマー(C)相の長径と短径の比の測定
 エラストマー(C)相200個について、長径と短径を測定し、長径/短径比を算術平均した。なお、長径とは、エラストマー粒子の最大径とし、短径とは、長径に垂直な方向の径のうちの最大径とした。
 実施例41の成形体のコア部は、それぞれ図1、2に示すとおりでありポリブチレンテレフタレート系樹脂(A)相及びポリカーボネート樹脂(B)相が共連続相を形成していること、エラストマー(C)がポリカーボネート樹脂(B)相中に存在していること、アンチモン化合物(E)の80%以上がポリブチレンテレフタレート系樹脂(A)の相中に均一に分散して存在していることが確認できた。実施例41では、難燃剤として臭素化ポリカーボネートを使用しているため、難燃剤は、ポリカーボネート樹脂(B)相に存在していると考えられる。また、実施例41の表層部を示す図3から、表層部においてエラストマー(C)相が樹脂の流れ方向に伸びていることも確認できた。また、実施例42~46の成形体についても同様のモルフォロジーを示していることが確認された。
 さらに、以下の各特性評価用の試験片についても、同様にモルフォロジー観察を行った結果、上記モルフォロジー観察用のISO引張試験片(厚さ4mm)について行った実施例、比較例と同様のモルフォロジー観察結果であることが確認された。
 難燃性及び耐衝撃性の評価を、前記と同様にして行った。
 以上の評価結果を以下の表10に示す。
Figure JPOXMLDOC01-appb-T000023
[実施例51~57]
<アンチモン化合物マスターバッチの製造>
(アンチモン化合物マスターバッチの製造例1:「MB1」の製造)
 予め120℃で3時間熱風乾燥した、ポリブチレンテレフタレート樹脂(三菱エンジニアリングプラスチックス社製、商品名「ノバデュラン(登録商標)5020」、固有粘度1.20dl/gと、同「ノバデュラン5008」、固有粘度0.85dl/gの1:1混合物)30質量部と、アンチモン化合物(山中産業社製、商品名「GMA」)70質量部とを、噛み合い型同方向2軸スクリュー式押出機(日本製鋼所社製「TEX44αII」、スクリュー径47mm、L/D=55.2)に300kg/hrにて供給した。押出機のバレル設定温度をC1~C15を260℃、ダイを250℃、スクリュー回転数を230rpmとし、ノズル数10穴(円形(φ4mm)、長さ1.5cm)、せん断速度(γ)1012sec-1の条件下で溶融混練した。なお、押出した直後のストランド温度は290℃であった。
 溶融混練後、ダイノズルから樹脂組成物を押出してストランド状とした後に冷却し、切断して、ポリブチレンテレフタレート樹脂とアンチモン化合物とが混練された、アンチモン化合物を70質量%含有するマスターバッチ(以下、「MB1」という。)を得た。
(アンチモン化合物マスターバッチの製造例2:「MB2」の製造)
 ポリブチレンテレフタレート樹脂として、三菱エンジニアリングプラスチックス社製、商品名「ノバデュラン5007」、固有粘度0.75dl/gのみを使用した以外は、製造例1と同様の条件で行い、ポリブチレンテレフタレート樹脂とアンチモン化合物とが混練された、アンチモン化合物を70質量%含有するマスターバッチ(以下、「MB2」という。)を得た。
(アンチモン化合物マスターバッチの製造例3:「MB3」の製造)
 ポリブチレンテレフタレート樹脂として、三菱エンジニアリングプラスチックス社製、商品名「ノバデュラン5006」、固有粘度0.60dl/gのみを使用した以外は、製造例1と同様の条件で行い、ポリブチレンテレフタレート樹脂とアンチモン化合物とが混練された、アンチモン化合物を70質量%含有するマスターバッチ(以下、「MB3」という。)を得た。ストランドが引きにくかったため、マスターバッチの製造中に、ストランド切れが発生する場合があった。
(アンチモン化合物マスターバッチの製造例4:「MB4」の製造)
 ポリブチレンテレフタレート樹脂として、三菱エンジニアリングプラスチックス社製、商品名「ノバデュラン5026」、固有粘度1.26dl/gのみを使用した以外は、製造例1と同様の条件で行った。押出機のバレル設定温度C1~C15を260℃で行うと、ベント部から樹脂が溢れる場合があり、安定してストランドが引き難く安定生産が難しかったため、C1~C15の設定温度を280℃まで上げ生産を行い、ポリブチレンテレフタレート樹脂とアンチモン化合物とが混練された、アンチモン化合物を70質量%含有するマスターバッチ(以下、「MB4」という。)を得た。
(アンチモン化合物マスターバッチの製造例5:「MB5」の製造)
 製造例1において、ポリブチレンテレフタレート樹脂混合物の量を20質量部、アンチモン化合物量を80質量部とした以外は、製造例1と同様の条件で行い、ポリブチレンテレフタレート樹脂とアンチモン化合物とが混練された、アンチモン化合物を80質量%含有するマスターバッチ(以下、「MB5」という。)を得た。
<ポリブチレンテレフタレート系樹脂組成物の製造>
 使用した原料成分は、下記の表11のとおりである。
Figure JPOXMLDOC01-appb-T000024
 上記表11に記載の各成分の中、アンチモン化合物マスターバッチ(MB1~5)は独立した専用のフィーダーから、その他の成分はブレンドして根元フィーダーから、以下の表12に示される割合(全て質量部)にてホッパーへ供給し、これを30mmのベントタイプ二軸押出機(日本製鋼所社製、二軸押出機「TEX30α」)を使用し、バレル温度270℃、吐出80kg/hr、スクリュー回転数280rpmにて溶融混練し、ストランドに押し出した後、ストランドカッターによりペレット化し、ポリブチレンテレフタレート系樹脂組成物のペレットを得た。
 実施例56においては、アンチモン化合物マスターバッチ(MB1)を、独立した専用のフィーダーを使用せず、その他の成分と合わせてブレンドし、一括して根元フィーダーから供給しポリブチレンテレフタレート系樹脂組成物ペレットを得た。
 得られたポリブチレンテレフタレート系樹脂組成物ペレットを、120℃で7時間加熱乾燥し、射出成形機(日本製鋼所社製「J85AD」)を用いてシリンダー温度250℃、金型温度80℃の条件で、難燃性及び耐衝撃性用の試験片を射出成形した。
 生産性、難燃性、耐衝撃性、結晶化温度及び滞留熱安定性の評価は、以下のように実施した。
・生産性(ストランド安定性)
 ポリブチレンテレフタレート系樹脂組成物ペレット溶融混練の際の、10時間のロングラン生産時において、1時間あたりのストランド切れ度合いを以下の基準で評価し、生産安定性の指標とした。
 「安定」:ストランド切れなし
 「やや不安定」:1~2回
・難燃性(UL94):
 アンダーライターズ・ラボラトリーズのサブジェクト94(UL94)の方法に準じ、5本の試験片(厚み:1.50mmt)を用いて難燃性を試験した。
 また、各燃焼試験片での燃焼合計時間(第1接炎後と第2接炎後の燃焼時間の合計)を測定し、燃焼時間のばらつきを標準偏差値で評価した。また5本の試験片の燃焼合計時間を合計して合計燃焼時間として表12に記載した。
・ノッチ付シャルピー衝撃強度:
 ISO試験片(厚さ4.0mm)を射出成形し、試験片から厚さ4.0mmのノッチ付試験片を作製し、10本の試験片に対して、ISO179規格に準拠してノッチ付きシャルピー衝撃強度(単位:kJ/m)を測定した。
 また、シャルピー衝撃強度のばらつきを標準偏差値で評価した。
・面衝撃強度:
 大きさ150×80×40mmの箱型成形品(肉厚1.5mmt)を成形し、2.975kgの鋼球を所定の高さから落下させ、成形品が全破壊するときの高さ(単位:cm)を求めた。なお、試験は205cmの高さまで行い、205cmで破壊しないものは「>200」と表12中に記載した。
・結晶化温度:
 示差走査熱量測定(DSC)機(パーキンエルマー社製「Pyris Diamond」)を用い、30~300℃まで昇温速度20℃/minで昇温し、300℃で3分保持した後、降温速度20℃/minにて降温した際に観測される発熱ピークのピークトップ温度を、結晶化温度(単位:℃)として測定した。結晶化による発熱ピークが観測され、結晶化温度が高いほど、ポリブチレンテレフタレート系樹脂とポリカーボネート樹脂とのエステル交換が抑制されており、成形加工時等の熱安定性に優れ、好ましいことを意味する。
 以上の評価結果を、表12に示す。
Figure JPOXMLDOC01-appb-T000025
 本発明のポリブチレンテレフタレート系樹脂組成物は耐衝撃性、難燃性、耐熱老化性、耐光性、耐湿熱性に優れ、さらに優れた成形性を有するので、電気電子部品、自動車部品その他の電装部品、機械部品、調理器具等の家電製品の部品として、例えば、電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体、電子電気機器部品の筐体、コネクタ、リレー、スィッチ、センサー、アクチュエーター、ターミナルスイッチ、炊飯器関連部品、グリル調理機器部品等に好適であり、産業上の利用性は非常に高いものがある。

Claims (17)

  1.  (A)ポリブチレンテレフタレート系樹脂及び(B)ポリカーボネート樹脂を、(A)及び(B)の合計100質量部基準で、(A)を50~80質量部、(B)を20~50質量部含有し、さらに、(A)及び(B)の合計100質量部に対し、(C)エラストマー5~20質量部、(D)難燃剤5~40質量部及び(E)アンチモン化合物1~15質量部を含有するポリブチレンテレフタレート系樹脂組成物。
  2.  (B)ポリカーボネート樹脂が、28000を超える粘度平均分子量を有するものである請求項1に記載のポリブチレンテレフタレート系樹脂組成物。
  3.  (C)エラストマーが、アクリル系コア/シェル型グラフト共重合体であることを特徴とする請求項1又は2に記載のポリブチレンテレフタレート系樹脂組成物。
  4.  (C)エラストマーの平均粒子径が300nm以上である請求項1~3のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
  5.  (D)難燃剤が臭素化ポリカーボネート系難燃剤である請求項1~4のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
  6.  (E)アンチモン化合物が、(A)ポリブチレンテレフタレート系樹脂とのマスターバッチとして配合される請求項1~5のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
  7.  さらに、(F)酸化チタンを、前記(A)及び(B)の合計100質量部に対し、0.5~10質量部含有する請求項1~6のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
  8.  (F)酸化チタンが、アルミナ系化合物及びオルガノシロキサン系化合物で表面処理されたものである請求項7に記載のポリブチレンテレフタレート系樹脂組成物。
  9.  さらに、(G)ポリオレフィン系離型剤を、前記(A)及び(B)の合計100質量部に対し、0.01~3質量部含有する請求項1~8のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
  10.  (G)ポリオレフィン系離型剤の滴点が100℃以下である請求項9に記載のポリブチレンテレフタレート系樹脂組成物。
  11.  さらに、(H)下記一般式(1)~(4)のいずれかで表される有機リン酸エステル化合物の金属塩を、前記(A)及び(B)の合計100質量部に対し、0.001~1質量部含有する請求項1~10のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R~Rは、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、R~R11は、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、M’は3価の金属イオンとなる金属原子を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、R12~R14は、それぞれ独立して、炭素数1~30のアルキル基又は炭素数6~30のアリール基を表し、M’は3価の金属イオンとなる金属原子を表し、2つのM’はそれぞれ同一であっても異なっていてもよい。)
  12.  請求項1~11のいずれか1項に記載のポリブチレンテレフタレート系樹脂組成物を成形してなる成形体。
  13.  成形体のコア部において、前記(A)ポリブチレンテレフタレート系樹脂と(B)ポリカーボネート樹脂は共連続相を形成し、(C)エラストマーは(B)ポリカーボネート樹脂相中に存在するモルフォロジーを有することを特徴とする請求項12に記載の成形体。
  14.  成形体のコア部において、(E)アンチモン化合物の80%以上が、(A)ポリブチレンテレフタレート系樹脂相中に存在する請求項12又は13に記載の成形体。
  15.  成形体の表層部において、(C)エラストマー相は樹脂の流れ方向に伸びており、その長径と短径の比(長径/短径)が3~20である請求項12~14のいずれか1項に記載の成形体。
  16.  (D)難燃剤が、(B)ポリカーボネート樹脂相中に存在する請求項12~15のいずれか1項に記載の成形体。
  17.  電気自動車用充電器コネクタ、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体のいずれかである請求項12~16のいずれか1項に記載の成形体。
PCT/JP2014/050212 2013-01-10 2014-01-09 ポリブチレンテレフタレート系樹脂組成物及び成形体 WO2014109352A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14737490.4A EP2944673A4 (en) 2013-01-10 2014-01-09 POLYBUTYLENE TEREPHTHALATE RESIN COMPOSITION AND FORMING PRODUCTS
CN201480004598.XA CN104918997B (zh) 2013-01-10 2014-01-09 聚对苯二甲酸丁二酯类树脂组合物和成型体
US14/652,642 US9957388B2 (en) 2013-01-10 2014-01-09 Polybutylene terephthalate resin composition and molded article

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013-002249 2013-01-10
JP2013002249A JP6010464B2 (ja) 2013-01-10 2013-01-10 成形品
JP2013-176567 2013-08-28
JP2013176567A JP6071808B2 (ja) 2013-08-28 2013-08-28 ポリエステル樹脂組成物成形体
JP2013187039A JP6482755B2 (ja) 2013-09-10 2013-09-10 熱可塑性樹脂組成物の製造方法
JP2013-187039 2013-09-10
JP2013-221066 2013-10-24
JP2013221075 2013-10-24
JP2013-221075 2013-10-24
JP2013221066A JP5762506B2 (ja) 2013-10-24 2013-10-24 ポリブチレンテレフタレート系樹脂組成物及び成形品

Publications (1)

Publication Number Publication Date
WO2014109352A1 true WO2014109352A1 (ja) 2014-07-17

Family

ID=51166999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050212 WO2014109352A1 (ja) 2013-01-10 2014-01-09 ポリブチレンテレフタレート系樹脂組成物及び成形体

Country Status (4)

Country Link
US (1) US9957388B2 (ja)
EP (1) EP2944673A4 (ja)
CN (2) CN109135200B (ja)
WO (1) WO2014109352A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180099451A1 (en) * 2015-04-24 2018-04-12 Toyobo Co., Ltd. Biaxially stretched polyester film, and production method therefor
WO2020067309A1 (ja) * 2018-09-27 2020-04-02 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
US11098190B2 (en) * 2016-05-19 2021-08-24 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin composition and molded article
CN113652062A (zh) * 2021-07-09 2021-11-16 金发科技股份有限公司 一种力学性能稳定的pbt/pc合金及其制备方法和制品

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990162B1 (ko) * 2014-05-07 2019-06-18 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
US10655007B2 (en) * 2014-12-26 2020-05-19 Polyplastics Co., Ltd. Polyalkylene terephthalate resin composition
JP2018537562A (ja) * 2015-12-17 2018-12-20 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. カーボンブラックを含むポリマー組成物およびそれから製造された成形物体
DE112016005889T5 (de) * 2015-12-22 2018-08-30 Idemitsu Kosan Co., Ltd. Harzzusammensetzung auf Polycarbonat-Basis und Formgegenstand daraus
CN108473753B (zh) 2015-12-25 2020-07-24 东洋纺株式会社 聚酯树脂组合物、含有其的光反射体用元件及光反射体、以及聚酯树脂组合物的制造方法
EP3419089A4 (en) * 2016-02-17 2019-07-03 Zeon Corporation BINDER COMPOSITION FOR WATER-FREE SECONDARY BATTERY ELECTRODE, MUD COMPOSITION FOR WATER-FREE SECONDARY BATTERY ELECTRODE, ELECTRODE FOR WATER-FREE SECONDARY BATTERY AND WATER-FREE SECONDARY BATTERY
CN109641377B (zh) * 2016-08-23 2021-11-16 宝理塑料株式会社 嵌入成型品及树脂组合物的耐热冲击性降低抑制方法
CN106317808A (zh) * 2016-10-17 2017-01-11 蒙宇 一种轻量化笔记本电脑外壳复合材料
CN110249002B (zh) * 2017-02-02 2021-06-25 东洋纺株式会社 聚酯树脂组合物、含该聚酯树脂组合物的光反射体用部件和光反射体
WO2018143099A1 (ja) 2017-02-02 2018-08-09 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体
US11104794B2 (en) 2017-02-28 2021-08-31 Toyobo Co., Ltd. Polybutylene terephthalate resin composition for molded body for welding polyester elastomer, and composite molded body
JP7144924B2 (ja) * 2017-08-22 2022-09-30 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN107955474A (zh) * 2017-12-15 2018-04-24 苏州威斯道智能科技有限公司 一种耐高温智能车载充电器
CN108102330A (zh) * 2017-12-27 2018-06-01 南京鸿瑞塑料制品有限公司 一种汽车用耐光照性pc/pbt合金材料及其制备方法
KR102059754B1 (ko) * 2017-12-29 2019-12-26 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019182006A1 (ja) 2018-03-22 2019-09-26 ポリプラスチックス株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN111918924A (zh) 2018-03-26 2020-11-10 东洋纺株式会社 聚酯树脂组合物、含该聚酯树脂组合物的光反射体用部件和光反射体
CN113728051A (zh) * 2019-03-15 2021-11-30 朗盛德国有限责任公司 高压部件
KR20210054605A (ko) * 2019-11-04 2021-05-14 현대자동차주식회사 차량의 레이더 투과커버용 조성물
CN114981357B (zh) * 2020-01-27 2023-05-16 三菱工程塑料株式会社 聚对苯二甲酸丁二醇酯树脂组合物及成形体
EP3868818A1 (de) * 2020-02-19 2021-08-25 LANXESS Deutschland GmbH Hochvoltkomponenten
KR20210133366A (ko) 2020-04-28 2021-11-08 현대자동차주식회사 차량의 레이더 투과커버용 조성물
EP4244272A1 (en) * 2020-11-10 2023-09-20 SHPP Global Technologies B.V. Thermoplastic polycarbonate compositions and shaped articles thereof
CN113583396B (zh) * 2021-07-07 2022-08-19 金发科技股份有限公司 一种耐循环注塑的pbt组合物及其制备方法和制品
CN113667287B (zh) * 2021-07-29 2022-08-16 金发科技股份有限公司 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166746A (ja) 1984-09-10 1986-04-05 Polyplastics Co 難燃性ポリブチレンテレフタレ−ト組成物
EP0527605A1 (en) 1991-08-13 1993-02-17 Rohm And Haas Company Microagglomeration of impact modifiers
JPH06100713A (ja) 1992-09-21 1994-04-12 Teijin Ltd 難燃シート及び熱成形体
JPH07196859A (ja) 1993-12-28 1995-08-01 Toray Ind Inc 耐電圧部品用ポリエステル樹脂組成物および耐電圧部品
US5612413A (en) 1994-09-08 1997-03-18 Rohm And Haas Company Impact-modified poly(vinyl chloride)
JPH1067925A (ja) 1996-08-28 1998-03-10 Teijin Ltd 樹脂組成物
JPH10158486A (ja) 1996-11-29 1998-06-16 Polyplastics Co 難燃性ポリエステル樹脂組成物およびその製造方法
JP2000212420A (ja) * 1998-11-17 2000-08-02 Toray Ind Inc ポリエステル樹脂組成物およびその成形品
JP2004263174A (ja) 2003-02-12 2004-09-24 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル系難燃性樹脂組成物およびその成形品
JP2005112994A (ja) 2003-10-07 2005-04-28 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2006045544A (ja) 2004-07-07 2006-02-16 Mitsubishi Engineering Plastics Corp 絶縁材料部品
JP2006056997A (ja) 2004-08-20 2006-03-02 Mitsubishi Engineering Plastics Corp ポリブチレンテレフタレート樹脂組成物及び成形品
JP2007077208A (ja) * 2005-09-12 2007-03-29 Mitsubishi Chemicals Corp 樹脂組成物
JP2007314664A (ja) 2006-05-25 2007-12-06 Toray Ind Inc ポリエステル樹脂組成物およびその製造方法
JP2011084666A (ja) 2009-10-16 2011-04-28 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル樹脂組成物およびその成形体
JP2011231280A (ja) * 2010-04-30 2011-11-17 Kaneka Corp ポリカーボネート系樹脂組成物、及びその射出成型体
WO2013058270A1 (ja) * 2011-10-20 2013-04-25 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物
WO2013058269A1 (ja) * 2011-10-20 2013-04-25 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物
JP2014001374A (ja) * 2012-05-25 2014-01-09 Toray Ind Inc ポリブチレンテレフタレート樹脂組成物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044073A (en) 1975-05-23 1977-08-23 Mobay Chemical Corporation High impact strength blends of polybutylene terephthalate
JP2960149B2 (ja) 1990-10-31 1999-10-06 ポリプラスチックス株式会社 ポリエステル成形体
EP0539325A1 (de) 1991-10-15 1993-04-28 Du Pont De Nemours (Deutschland) Gmbh Verstärkte, flammhemmende thermoplastische Polyesterformmassen
JP2732986B2 (ja) 1992-06-23 1998-03-30 帝人化成株式会社 電磁波遮蔽用樹脂組成物
JPH08165358A (ja) 1994-12-14 1996-06-25 Kanegafuchi Chem Ind Co Ltd 熱成形用ポリオレフィンシート
JP3464284B2 (ja) * 1994-08-19 2003-11-05 石原産業株式会社 ポリカーボネート樹脂組成物
US5554674A (en) 1995-04-07 1996-09-10 General Electric Company Flame retardant molding thermoplastics
JP2000178417A (ja) 1998-12-21 2000-06-27 Toray Ind Inc 車載用電気・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物およびそれからなる車載用電気・電子部品
DE19904698A1 (de) 1999-02-05 2000-08-10 Basf Ag Flammgeschützte Formmassen
JP3785017B2 (ja) 2000-03-10 2006-06-14 ポリプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物からなる成形品
US6762250B2 (en) 2002-06-07 2004-07-13 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition
IL153918A (en) 2003-01-13 2008-08-07 Bromine Compounds Ltd Flame-retardant for engineering thermoplastic applications
US20040176511A1 (en) 2003-02-12 2004-09-09 Mitsubishi Engineering-Plastics Corporation Thermoplastic polyester-based flame-retardant resin composition and molded products thereof
US20050085589A1 (en) * 2003-10-20 2005-04-21 General Electric Company Modified weatherable polyester molding composition
EP1614716B1 (en) 2004-07-07 2007-06-06 Mitsubishi Engineering-Plastics Corporation Insulating parts
WO2007032253A1 (ja) * 2005-09-12 2007-03-22 Mitsubishi Chemical Corporation 樹脂組成物および樹脂成形体
KR100869967B1 (ko) * 2006-12-29 2008-11-24 제일모직주식회사 난연성 및 내광성이 우수한 폴리카보네이트 수지 조성물
CA2726634C (en) 2008-06-13 2015-04-07 Arkema Inc. Biodegradable impact-modified polymer compositions
WO2010046847A1 (en) 2008-10-20 2010-04-29 Sabic Innovative Plastics Ip B.V. Flow-enhanced thermoplastic compositions and methods for enhancing the flow of thermoplastic compositions
EP2404969B1 (en) 2009-03-04 2019-08-07 Mitsubishi Engineering- Plastics Corporation Aromatic polycarbonate resin composition, process for producing resin composition, and molded article
CN102311619B (zh) * 2011-08-30 2016-06-15 上海金发科技发展有限公司 一种高cti值的溴系阻燃增强pbt材料及其制备方法
JP2013058269A (ja) 2012-12-27 2013-03-28 Kyocera Corp 入力装置および入力装置の制御方法
CN103183935B (zh) * 2013-04-08 2015-03-11 四川大学 高韧性pbt/pc合金及其制备方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166746A (ja) 1984-09-10 1986-04-05 Polyplastics Co 難燃性ポリブチレンテレフタレ−ト組成物
EP0527605A1 (en) 1991-08-13 1993-02-17 Rohm And Haas Company Microagglomeration of impact modifiers
JPH06100713A (ja) 1992-09-21 1994-04-12 Teijin Ltd 難燃シート及び熱成形体
JPH07196859A (ja) 1993-12-28 1995-08-01 Toray Ind Inc 耐電圧部品用ポリエステル樹脂組成物および耐電圧部品
US5612413A (en) 1994-09-08 1997-03-18 Rohm And Haas Company Impact-modified poly(vinyl chloride)
JPH1067925A (ja) 1996-08-28 1998-03-10 Teijin Ltd 樹脂組成物
JPH10158486A (ja) 1996-11-29 1998-06-16 Polyplastics Co 難燃性ポリエステル樹脂組成物およびその製造方法
JP2000212420A (ja) * 1998-11-17 2000-08-02 Toray Ind Inc ポリエステル樹脂組成物およびその成形品
JP2004263174A (ja) 2003-02-12 2004-09-24 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル系難燃性樹脂組成物およびその成形品
JP2005112994A (ja) 2003-10-07 2005-04-28 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2006045544A (ja) 2004-07-07 2006-02-16 Mitsubishi Engineering Plastics Corp 絶縁材料部品
JP2006056997A (ja) 2004-08-20 2006-03-02 Mitsubishi Engineering Plastics Corp ポリブチレンテレフタレート樹脂組成物及び成形品
JP2007077208A (ja) * 2005-09-12 2007-03-29 Mitsubishi Chemicals Corp 樹脂組成物
JP2007314664A (ja) 2006-05-25 2007-12-06 Toray Ind Inc ポリエステル樹脂組成物およびその製造方法
JP2011084666A (ja) 2009-10-16 2011-04-28 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル樹脂組成物およびその成形体
JP2011231280A (ja) * 2010-04-30 2011-11-17 Kaneka Corp ポリカーボネート系樹脂組成物、及びその射出成型体
WO2013058270A1 (ja) * 2011-10-20 2013-04-25 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物
WO2013058269A1 (ja) * 2011-10-20 2013-04-25 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物
JP2014001374A (ja) * 2012-05-25 2014-01-09 Toray Ind Inc ポリブチレンテレフタレート樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180099451A1 (en) * 2015-04-24 2018-04-12 Toyobo Co., Ltd. Biaxially stretched polyester film, and production method therefor
US11098190B2 (en) * 2016-05-19 2021-08-24 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin composition and molded article
WO2020067309A1 (ja) * 2018-09-27 2020-04-02 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
JPWO2020067309A1 (ja) * 2018-09-27 2021-08-30 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
JP7411148B2 (ja) 2018-09-27 2024-01-11 三菱ケミカル株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
CN113652062A (zh) * 2021-07-09 2021-11-16 金发科技股份有限公司 一种力学性能稳定的pbt/pc合金及其制备方法和制品

Also Published As

Publication number Publication date
CN104918997B (zh) 2018-07-31
CN109135200B (zh) 2021-11-09
CN109135200A (zh) 2019-01-04
EP2944673A1 (en) 2015-11-18
EP2944673A4 (en) 2016-08-17
CN104918997A (zh) 2015-09-16
US20150368459A1 (en) 2015-12-24
US9957388B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2014109352A1 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
US10501621B2 (en) Polyester resin composition, injection molded article, light-reflecting base body, and light-reflecting body
JP6010464B2 (ja) 成形品
WO2012043219A1 (ja) 熱可塑性樹脂組成物およびそれからなる成形品
JP6518479B2 (ja) 絶縁性ポリブチレンテレフタレート系樹脂組成物及び成形体
JP6454560B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP6694977B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形品
JP6449038B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP2010077349A (ja) 樹脂組成物ならびにそれからなる成形品
KR20130113498A (ko) 폴리에스테르 조성물
KR20150063938A (ko) 폴리에스테르 조성물
JP5393054B2 (ja) 難燃性ポリアミド樹脂組成物及びこれを用いた成形品
JP6071808B2 (ja) ポリエステル樹脂組成物成形体
JP2016023291A (ja) ポリエステル樹脂組成物及び成形体
JP5762506B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形品
JP6421058B2 (ja) ポリエステル樹脂組成物及び成形体
JP6438307B2 (ja) ポリブチレンテレフタレート系樹脂組成物及び成形品
JP2019006866A (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP6837336B2 (ja) ポリエステル樹脂組成物
JP7411148B2 (ja) ポリブチレンテレフタレート樹脂組成物及び成形体
CN116063827A (zh) 聚酰胺6的用途
JP2023033950A (ja) 熱可塑性ポリエステル樹脂組成物、成形品および熱可塑性ポリエステル樹脂組成物の製造方法
JP2017122170A (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014737490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14652642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE