WO2014104165A1 - ヘテロ二量化ポリペプチド - Google Patents

ヘテロ二量化ポリペプチド Download PDF

Info

Publication number
WO2014104165A1
WO2014104165A1 PCT/JP2013/084809 JP2013084809W WO2014104165A1 WO 2014104165 A1 WO2014104165 A1 WO 2014104165A1 JP 2013084809 W JP2013084809 W JP 2013084809W WO 2014104165 A1 WO2014104165 A1 WO 2014104165A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
polypeptide
gph7
region
antibody
Prior art date
Application number
PCT/JP2013/084809
Other languages
English (en)
French (fr)
Inventor
智之 井川
風太 味元
仁 堅田
宙丈 白岩
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to CN201380073842.3A priority Critical patent/CN105102618B/zh
Priority to JP2014554530A priority patent/JP6433297B2/ja
Priority to DK13868831.2T priority patent/DK2940135T5/da
Priority to US14/654,895 priority patent/US10766960B2/en
Priority to EP13868831.2A priority patent/EP2940135B9/en
Priority to KR1020157019773A priority patent/KR102249779B1/ko
Priority to ES13868831T priority patent/ES2876009T3/es
Publication of WO2014104165A1 publication Critical patent/WO2014104165A1/ja
Priority to HK16105820.7A priority patent/HK1217731A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Definitions

  • the present invention provides an antibody constant region having an amino acid sequence modified from a naturally occurring antibody constant region, an antibody containing the constant region, a pharmaceutical composition containing the antibody, and a method for producing them.
  • Non-patent Documents 1 and 2 Antibodies are attracting attention as pharmaceuticals because of their high stability in blood and few side effects (Non-patent Documents 1 and 2).
  • Most antibody drugs currently on the market are antibodies of the human IgG1 subclass.
  • ADCC antibody-dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • IgG1 subclass antibodies have the highest ADCC activity and CDC activity (Non-patent Document 3).
  • ADCP Antibody-dependent cell-mediated phagocytosis
  • Fc ⁇ R antibody Fc region and antibody receptor
  • Non-patent Documents 7 and 8 The importance of Fc ⁇ R-mediated effector function for the antitumor effect of antibodies has been reported using mouse models (Non-patent Documents 7 and 8). In addition, a correlation was observed between clinical effects in humans and high affinity polymorphic allotypes (V158) and low affinity polymorphic allotypes (F158) of Fc ⁇ RIIIa (Non-patent Document 9). These reports indicate that antibodies with Fc regions that are optimized for binding to specific Fc ⁇ Rs mediate stronger effector functions and thereby exert an effective anti-tumor effect.
  • the balance of the binding activity of the antibody to the activating receptor consisting of Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa, and Fc ⁇ RIIIb and the inhibitory receptor consisting of Fc ⁇ RIIb is an important factor in optimizing the effector function of the antibody.
  • an optimal effector function can be imparted to an antibody by using an Fc region with enhanced binding activity to an activated receptor and reduced binding activity for an inhibitory receptor.
  • immunosuppressive action can be imparted to the antibody by maintaining or reducing the binding activity to the activated receptor and using the Fc region with enhanced binding activity for the inhibitory receptor. (Non-patent document 11).
  • Patent Literature For the binding of Fc region and Fc ⁇ R, it is shown that several amino acid residues in the antibody hinge region and CH2 domain and the sugar chain added to 297th Asn of EU numbering in CH2 domain are important. (Non-patent document 12, Non-patent document 13, Non-patent document 14). Fc region variants having various Fc ⁇ R-binding properties have been studied so far, centering on this binding site, and Fc region variants having higher activation Fc ⁇ R-binding activity have been obtained (Patent Literature). 1, Patent Document 2). For example, Lazar et al.
  • Non-patent document 15 Patent document 239th Ser, 330 Ala, and 332 Ile of human IgG1 with Asp, Leu, and Glu, respectively.
  • This variant has a binding ratio (A / I ratio) to Fc ⁇ RIIIa and Fc ⁇ RIIb of about 9 times that of the wild type.
  • Lazar et al. also succeeded in enhancing the binding to Fc ⁇ RIIb by about 430 times (Non-patent Document 16).
  • Shinkawa et al. Succeeded in increasing the binding to Fc ⁇ RIIIa to about 100 times by deleting the fucose of the sugar chain added to 297th Asn of EU numbering (Non-patent Document 17).
  • the Fc region optimized asymmetrically does not necessarily show excellent Fc ⁇ RIIIa binding activity as compared to the Fc region optimized symmetrically (Patent Document 5).
  • the binding to Fc ⁇ RIIIa has been increased several tens of times compared to that of natural IgG, and ADCC activity has been enhanced.
  • ADCC activity is similar or weaker than that (Patent Document 6).
  • the present invention has been made in view of such a situation, and the problem is that the polypeptide having an improved function of the Fc region as compared with the homodimerized polypeptide having the Fc region according to the prior art, It is in providing the pharmaceutical composition containing polypeptide, the therapeutic agent or preventive agent of an immunoinflammatory disease containing this pharmaceutical composition, the therapeutic agent or preventive agent of various cancer, and these manufacturing methods. Furthermore, the subject of this invention is providing the method of improving the function of Fc area
  • the present inventors have conducted intensive research to solve the above problems. As a result, the present inventors produced a heterodimerized polypeptide having an Fc region consisting of two polypeptides having different amino acid sequences (a first polypeptide and a second polypeptide). To produce a heterodimerized polypeptide containing an Fc region whose function is improved compared to a homodimer consisting of only a first polypeptide or a homodimer consisting of only a second polypeptide. succeeded in.
  • a polypeptide comprising a heterodimer comprising a first polypeptide and a second polypeptide, which is any of the first polypeptide and the second polypeptide Either of them includes an Fc region into which the mutation described in (i) or (ii) is introduced, and the function of the Fc region is altered compared to a polypeptide containing an Fc region into which no mutation has been introduced.
  • Polypeptide characterized by: (i) EU numbering 234th amino acid is L, S, F, E, V, D, Q, I, M, T, A, G or H, 235th amino acid is Y or Q, 236th amino acid is W, 239th amino acid is M or I, 268th amino acid is D, and 298th amino acid is A (ii) EU numbering 270th amino acid is E, 326th amino acid is D, 330th amino acid is A, K, M, F, I, Y or H, and 334th amino acid is E [2] Either one of the first polypeptide and the second polypeptide includes an Fc region into which the mutation described in (i) or (ii) is introduced, and the other is described in (iii) The polypeptide according to [1], wherein a mutation is introduced: (i) EU numbering 234th amino acid is L, S, F, E, V, D, Q, I, M, T, A, G or H, 235th amino acid is
  • the active Fc ⁇ receptor is at least one selected from the group consisting of Fc ⁇ RIa, Fc ⁇ RIIa R, Fc ⁇ RIIa H, Fc ⁇ RIIIaF, and Fc ⁇ RIIIaV
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb.
  • the polypeptide according to [11] which is characterized.
  • the amino acid modification for imparting a difference in isoelectric point is performed by the EU numbering 137th Gly, 138th Gly, 139th in the amino acid sequence of the first polypeptide and / or the second polypeptide.
  • An amino acid modification for imparting a difference in isoelectric point is performed by 196th Gln, 199th EU numbering in the amino acid sequence of either the first polypeptide or the second polypeptide.
  • At least one amino acid mutation selected from the group consisting of Pro and 397th Val has been introduced, and in the amino acid sequence of the other polypeptide, EU numbering 137th Gly, 138th Gly, 139 Thr, 147th Lys, 192th Ser, 193rd Leu, 198th Tyr, 199th Ile, 203th Asn, 214th Lys, 274th Eye Lys, 278th Tyr, 288th Lys, 290th Lys, 316th Gly, 317th Lys, 320th Lys, 324th
  • antigen-binding molecule is an Fc fusion molecule such as an antibody, a bispecific antibody, a peptide Fc fusion protein, or a scaffold Fc fusion protein .
  • a pharmaceutical composition comprising the polypeptide according to any one of [1] to [18] and a medically acceptable carrier.
  • a step of modifying the function of the Fc region as compared to the case where the Fc region becomes a homodimer by introducing the amino acid mutation according to any one of [1] to [7] as a heterodimer A method for altering the function of a polypeptide.
  • An Fc region comprising a step of modifying the function of the Fc region as compared to a case where the Fc region becomes a homodimer by introduction of the amino acid mutation according to any one of [1] to [7]
  • a method for producing a polypeptide comprising: [22] A method for treating or preventing cancer, comprising a step of administering the polypeptide of any one of [1] to [18] or the pharmaceutical composition of [19] to a subject. [23] The polypeptide according to any one of [1] to [18] or the pharmaceutical composition according to [19] for use in the treatment or prevention of cancer.
  • GpH7-G1d / GpL16-k0 The binding activity of GpH7-G1d / GpL16-k0 (SEQ ID NO: 2, 5) to each Fc ⁇ R was defined as 100.
  • Samples and their sequences used for evaluation were GpH7-G1d / GpL16-k0 (SEQ ID NOs: 2, 5), GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NOs: 3, 4, 5), GpH7-B3 / GpL16-k0 (SEQ ID NO: 4, 5), GpH7-A5 / GpL16-k0 (SEQ ID NO: 3, 5).
  • FIG. 3 is a diagram showing that the 329th Pro in the EU numbering in the Fc region interacts with Fc ⁇ RIII mainly in one CH2 domain, CH A 2.
  • the left side in the figure is called the HA chain, CH A 2, CH A 3, and the right side is called the H B chain, CH B 2, and CH B 3.
  • FIG. 3 is a diagram comparing the binding activity to each Fc ⁇ R when P329R is introduced into the same H chain or different H chains with respect to a heterodimerized antibody in which G237A is introduced into one H chain.
  • the binding activity of each of GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) to Fc ⁇ R was defined as 100.
  • He / Con shows the binding activity to Fc ⁇ RIa of the heterodimerized antibody GpH7-A5 / GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutation in one H chain, GpH7 without mutation It is a value obtained by dividing 100 by the value divided by the binding activity to the Fc ⁇ RIa of the heterodimerized antibody GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NO: 3, 4, 5) using -B3.
  • Ho / Con shows the value of the binding activity to Fc ⁇ RIa of the homodimerized antibody GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutation in both H chains, and GpH7-B3 without mutation Is a value obtained by multiplying by 100 the value obtained by dividing by the value of the binding activity to the Fc ⁇ RIa of the homodimerized antibody GpH7-B3 / GpL16-k0 (SEQ ID NOs: 4, 5). It is the figure which compared the binding activity with respect to Fc (gamma) RIIa (R) of the hetero dimerization antibody and homodimerization antibody which introduce
  • He / Con does not introduce a mutation into the Fc ⁇ RIIa R binding activity of the heterodimerized antibody GpH7-A5 / GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with a mutation in one H chain It is a value obtained by dividing the heterodimeric antibody GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NO: 3, 4, 5) using GpH7-B3 by the binding activity to Fc ⁇ RIIa R.
  • Ho / Con shows the value of the binding activity to Fc ⁇ RIIa R of the homodimerized antibody GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutations in both H chains. This is a value obtained by multiplying by 100 the value obtained by dividing the homodimerized antibody GpH7-B3 / GpL16-k0 (SEQ ID NOs: 4, 5) using B3 by the value of the binding activity to Fc ⁇ RIIa R. It is the figure which compared the binding activity with respect to Fc ⁇ RIIaIIH of the heterodimerized antibody and the homodimerized antibody introduced with the same modification.
  • the horizontal axis shows Ho / Con and the vertical axis shows He / Co values.
  • He / Con does not introduce mutations into the binding activity of FpH ⁇ RIIa H of the heterodimerized antibody GpH7-A5 / GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutation in one H chain
  • This is a value obtained by dividing the heterodimeric antibody GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NO: 3, 4, 5) using GpH7-B3 by the binding activity to Fc ⁇ RIIa H.
  • Ho / Con shows the value of the binding activity to Fc ⁇ RIIa H of the homodimerized antibody GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutations in both H chains. This is a value obtained by multiplying by 100 the value obtained by dividing the homodimeric antibody GpH7-B3 / GpL16-k0 (SEQ ID NOs: 4, 5) using B3 by the value of the binding activity to Fc ⁇ RIIa H. It is the figure which compared the binding activity with respect to Fc (gamma) RIIb of the hetero dimerization antibody which introduce
  • He / Con shows the binding activity of GpH7-A5 / GpH7-B3 variant / GpL16-k0, which is a heterodimerized antibody using GpH7-B3 variant with mutation to one H chain, to Gc7RIIb without mutation. It is a value divided by the binding activity to the Fc ⁇ RIIb of the heterodimerized antibody GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) using -B3.
  • Ho / Con shows the value of the binding activity to Fc ⁇ RIIb of the homodimerized antibody GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutation in both H chains
  • GpH7-B3 without mutation Is a value obtained by multiplying by 100 the value obtained by dividing by the value of the binding activity to the Fc ⁇ RIIb of the homodimerized antibody GpH7-B3 / GpL16-k0 (SEQ ID NOs: 4, 5). It is the figure which compared the binding activity with respect to Fc (gamma) RIIIa of the hetero dimerization antibody which introduce
  • He / Con shows the binding activity to Fc ⁇ RIIIa of heterodimerized antibody GpH7-A5 / GpH7-B3 variant / GpL16-k0 using GpH7-B3 variant with mutation in one H chain, GpH7 without mutation It is a value divided by the binding activity to the Fc ⁇ RIIIa of the heterodimerized antibody GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NO: 3, 4, 5) using -B3.
  • Ho / Con shows the value of the binding activity of GpH7-B3 variant / GpL16-k0, a homodimerized antibody using GpH7-B3 variant with mutations in both H chains, to Fc ⁇ RIIIa.
  • FIG. 3 is a conceptual diagram comparing Fc ⁇ R binding in each of a heterodimerized antibody and a homodimerized antibody using a modified H chain.
  • the plotted point is included in the region i, it means that the modification introduced in the Fc region has an effect of He / Con> 100, Ho / Con ⁇ 100, He / Con> Ho / Con.
  • the plotted point is included in the region ii, it means that the modification introduced into the Fc region has an effect of He / Con> 100, Ho / Con> 100, and He / Con> Ho / Con.
  • the plotted point is included in the region iii, it means that the modification introduced into the Fc region has an effect of He / Con ⁇ ⁇ > 100, Ho / Con> 100, and He / Con ⁇ Ho / Con.
  • each variant on the active Fc ⁇ R (Activating Receptor) is plotted on the vertical axis
  • the binding activity on the inhibitory Fc ⁇ R Inhibitory Receptor
  • the binding activity of the natural antibody on the active Fc ⁇ R and inhibitory Fc ⁇ R is 100 and respectively. did.
  • the antibody in which the binding activity of the variant to the active Fc ⁇ R is enhanced than that of the natural antibody and the binding activity to the inhibitory Fc ⁇ R is reduced is plotted in the region a (shaded part).
  • the antibody in which the binding activity of the variant to the inhibitory Fc ⁇ R is enhanced than that of the natural antibody and the binding activity to the active Fc ⁇ R is decreased is plotted in the region c (shaded area). It is a figure which shows the comparison of the binding activity with respect to active type Fc ⁇ R and inhibitory type Fc ⁇ R. It is the conceptual diagram which compared the binding activity with respect to active type Fc ⁇ R and inhibitory type Fc ⁇ R of each variant.
  • the binding activity of the natural antibody to the activated Fc ⁇ R is plotted on the vertical axis and the binding activity on the inhibitory Fc ⁇ R (Inhibitory Receptor) is plotted on the horizontal axis, and the binding activity of the natural antibody to the active Fc ⁇ R and inhibitory Fc ⁇ R is 100 It was.
  • An antibody in which the value obtained by dividing the binding activity of the variant for active Fc ⁇ R by the binding activity for inhibitory Fc ⁇ R is 1.2 or more is plotted in the region b (shaded part).
  • An antibody in which the value obtained by dividing the binding activity of the variant for active Fc ⁇ R by the binding activity for inhibitory Fc ⁇ R is 0.8 or less is plotted in the region d (shaded area).
  • He / Con is a heterodimeric antibody GpH7-A5 / GpH7-B3 that does not introduce a modification to the Fc ⁇ R binding activity of GpH7-A5 / GpH7-B3 variant / GpL16-k0 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) divided by 100 and multiplied by the binding activity to Fc ⁇ R. It is a figure which shows the comparison of the binding activity with respect to Fc ⁇ RIIaRR and Fc ⁇ RIIb of the heterodimerized antibody.
  • FIG. 3 is a diagram comparing the binding activity of the modified heterodimerized antibody to Fc ⁇ RIIa R, which is an active Fc ⁇ R, and Fc ⁇ RIIb, which is an inhibitory Fc ⁇ R.
  • the horizontal axis represents the He / Con value for the inhibitory Fc ⁇ R, and the vertical axis represents the He / Con value for the active Fc ⁇ R.
  • He / Con is a heterodimeric antibody GpH7-A5 / GpH7-B3 that does not introduce a modification to the Fc ⁇ R binding activity of GpH7-A5 / GpH7-B3 variant / GpL16-k0 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) divided by 100 and multiplied by the binding activity to Fc ⁇ R. It is a figure which shows the comparison of the binding activity with respect to Fc ⁇ RIIaRH and Fc ⁇ RIIb of the heterodimerized antibody.
  • He / Con is a heterodimeric antibody GpH7-A5 / GpH7-B3 that does not introduce a modification to the Fc ⁇ R binding activity of GpH7-A5 / GpH7-B3 variant / GpL16-k0 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) divided by 100 and multiplied by the binding activity to Fc ⁇ R. It is a figure which shows the comparison of the binding activity with respect to Fc ⁇ RIIIa and Fc ⁇ RIIb of the heterodimerized antibody.
  • He / Con is a heterodimeric antibody GpH7-A5 / GpH7-B3 that does not introduce a modification to the Fc ⁇ R binding activity of GpH7-A5 / GpH7-B3 variant / GpL16-k0 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) divided by 100 and multiplied by the binding activity to Fc ⁇ R.
  • the vertical axis represents the cytotoxic activity of the antibody, and the horizontal axis represents the antibody concentration ( ⁇ g / mL).
  • FIG. 14 is a graph showing the results of examining ADCC activity of the Fc heterodimerized antibody described in Example 12.
  • the effector cells were human PBMC.
  • GpH7-G1d / GpL16-k0 (SEQ ID NOs: 2, 5), GpH7-Kn033 / GpH7-Hl033 / GpL16-k0 (SEQ ID NOs: 51, 56, 5), GpH7-Kn032 / GpH7-Hl032 / GpL16-k0 (SEQ ID NOs: 53, 58, 5), GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 (SEQ ID NOs: 54, 59, 5), GpH7-Kn056 / GpH7-Hl055 / GpL16 -k0 (SEQ ID NOs: 55, 60, 5), GpH7-Kn037 / GpH7-H1036 / GpL16-k0 (SEQ ID NOs: 52, 57, 5).
  • the vertical axis represents the cytotoxic activity of the antibody, and the horizontal axis represents the antibody concentration ( ⁇ g / mL). It is a figure which shows the examination result of ADCC activity of the hetero dimerization antibody H240-Kn061 / H240-Hl071 / L73-k0.
  • the effector cells were human PBMC.
  • the sample used for the evaluation and its sequence are H240-Kn033 / H240-Hl033 / L73-k0 (SEQ ID NO: 84, 85, 106), H240-Kn032 / H240-Hl032 / L73-k0 (SEQ ID NO: 86, 87, 106), H240-Kn061 / H240-Hl071 / L73-k0 (SEQ ID NO: 81, 82, 106), H240-afucosyl_G1d (H240-afucosyl_G1d has the same amino acid sequence as H240-G1d (SEQ ID NO: 83), The fucose is removed) / L73-k0 (SEQ ID NO: 83, 106).
  • the vertical axis represents the cytotoxic activity of the antibody, and the horizontal axis represents the antibody concentration ( ⁇ g / mL). It is a figure which shows the binding activity with respect to FcgRI of the point mutant which used the hetero dimerization antibody H240-Kn061 / H240-Hl071 / L73-k0 as a template.
  • Relative KD on the vertical axis represents the value obtained by dividing KDmol (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 for FcgRI by the KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Relative KD on the vertical axis represents a value obtained by dividing KD (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 with respect to FcgRIIa R by KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Relative KD on the vertical axis represents a value obtained by dividing KD (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 with respect to FcgRIIa H by KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Relative KD on the vertical axis represents the value obtained by dividing the KD (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 for FcgRIIb by the KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Relative KD on the vertical axis represents the value obtained by dividing KD (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 for FcgRIIIa F by the KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Relative KD on the vertical axis represents the value obtained by dividing KD (mol / L) of H240-Kn061 / H240-Hl071 / L73-k0 for FcgRIIIaIIIV by the KD of each variant.
  • the numbers on the horizontal axis represent the order when Relative KD is arranged in ascending order.
  • Samples used for evaluation and their sequences were H240-Kn033 / H240-Hl033 / L73-k0 (SEQ ID NOs: 84, 85, 106), H240-Kn061 / H240-Hl071 / L73-k0 (SEQ ID NOs: 81, 82, 106), H240-afucosyl_G1d / L73-k0 (SEQ ID NO: 83, 106), H240-Kn072 / H240-Hl076 / L73-k0 (SEQ ID NO: 90, 91, 106).
  • the vertical axis represents the cytotoxic activity of the antibody, and the horizontal axis represents the antibody concentration ( ⁇ g / mL).
  • Samples used for evaluation and their sequences were H240-Kn033 / H240-Hl033 / L73-k0 (SEQ ID NO: 84, 85, 106), H240-afucosyl_G1d / L73-k0 (SEQ ID NO: 83, 106), H240-Kn113 / H240-Hl076 / L73-k0 (SEQ ID NO: 92, 91, 106), H240-Kn115 / H240-Hl076 / L73-k0 (SEQ ID NO: 93, 91, 106), H240-Kn125 / H240-Hl076 / L73 -k0 (SEQ ID NO: 94, 91, 106).
  • the vertical axis represents the cytotoxic activity of the antibody, and the horizontal axis represents the antibody concentration ( ⁇ g / mL). It is a figure which shows the examination result of ADCC activity, such as heterodimerization antibody H240-Kn067 / H240-Hl068 / L73-k0.
  • the effector cells were human PBMC.
  • Samples used for evaluation and their sequences were H240-Kn033 / H240-Hl033 / L73-k0 (SEQ ID NO: 84, 85, 106), H240-afucosyl_G1d / L73-k0 (SEQ ID NO: 83, 106), H240-Kn067 / H240-Hl068 / L73-k0 (SEQ ID NO: 95, 96, 106), H240-Kn120 / H240-Hl068 / L73-k0 (SEQ ID NO: 99, 96, 106), H240-Kn126 / H240-Hl068 / L73 -k0 (SEQ ID NO: 100, 96, 106).
  • the side chains of three residues Gln127, Leu132, and Phe160 that differ between FcgRIIa R and FcgRIIb are shown in the vicinity of the interaction interface between Fc and FcgRIIa R of the same structure.
  • the corresponding amino acid residues in FcgRIIb are represented by one letter.
  • FIG. 2 is a diagram of Fc (Kn 120Hl068) / FcgRIIb extracellular region complex determined by X-ray crystal structure analysis.
  • the left side was designated as domain A and the right side as domain B.
  • FIG. 4 is a diagram showing the structure around Lys127 (Gln in the FcgRIIaGR type) of the FcgRIIb extracellular region in the Fc (Kn120 / Hl068) / FcgRIIb extracellular region complex determined by X-ray crystal structure analysis.
  • Tyr296 of Fc (Kn120 / Hl068) no side chain electron density was observed, so no side chain model was constructed except for the C ⁇ atom.
  • Fc (R) BP208
  • FcgRIIb extracellular region complex For each of the CH2 domain and the CH3 domain, the left side was designated as domain A and the right side as domain B.
  • the Fc (BP208) / FcgRIIb extracellular region complex is drawn with a bold line
  • the Fc (WT) / FcgRIIa extracellular region complex is drawn with a thin line.
  • the structure of Fc ⁇ ⁇ ⁇ ⁇ (WT) ⁇ ⁇ ⁇ ⁇ / FFcgRIIa extracellular region complex only CH2 domain A is drawn. It is the figure which showed the structure around Ser239 of Fc (BP208) CH2 domain B among Fc (BP208) / FcgRIIb extracellular region complex determined by X-ray crystal structure analysis.
  • A H240-AK072 / H240-BH076 / L73-k0
  • B H240-FA021 / H240-FB084 / L73-k0
  • B results of ion exchange rechromatography
  • the present invention is a polypeptide comprising a heterodimer comprising a first polypeptide and a second polypeptide, wherein the first polypeptide and the second polypeptide are Provided is a polypeptide comprising an Fc region into which a mutation has been introduced, wherein the function of the Fc region is altered as compared to a polypeptide comprising an Fc region into which no mutation has been introduced. Furthermore, a method for producing the polypeptide and a method for modifying the function of the polypeptide containing the Fc region are also provided.
  • polypeptide comprising a heterodimer comprising a first polypeptide and a second polypeptide refers to the first polypeptide and the second polypeptide, Furthermore, it may be a polypeptide complex composed of a plurality of other polypeptides.
  • first polypeptide and “second polypeptide” mean polypeptides constituting the Fc region of an antibody.
  • First polypeptide” and “second polypeptide” mean that the sequences are different from each other, and preferably means that the sequences of at least the CH2 regions are different.
  • the polypeptide may be, for example, a polypeptide that constitutes the Fc region of natural IgG, or a polypeptide in which a modification is made to the polypeptide that constitutes the Fc region of natural IgG. .
  • Natural IgG refers to a polypeptide that includes the same amino acid sequence as IgG found in nature and belongs to the class of antibodies substantially encoded by immunoglobulin gamma genes.
  • natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like.
  • Naturally-occurring IgG includes naturally occurring mutants.
  • polypeptide usually refers to peptides and proteins having a length of about 10 amino acids or more. Moreover, although it is normally a polypeptide derived from a living organism
  • the protein molecule in the present invention refers to a molecule containing the polypeptide.
  • polypeptide of the present invention include antibodies. Further preferred examples include natural IgG, particularly natural human IgG.
  • Native IgG refers to a polypeptide that includes the same amino acid sequence as an IgG found in nature and belongs to the class of antibodies substantially encoded by immunoglobulin gamma genes.
  • natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like.
  • Naturally-occurring IgG includes naturally occurring mutants.
  • IgK secreta, secretor
  • IgL1, IgL2, IgL3, IgL6, IgL7 (Lambda, ⁇ chain) type in the light chain constant region of the antibody. May be.
  • human IgK (Kappa) constant region and human IgL7 (Lambda) constant region multiple allotype sequences due to gene polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used.
  • the light chain constant region may be a light chain constant region in which alterations such as amino acid substitution, addition, deletion, insertion and / or modification have been performed.
  • the Fc region of the antibody examples include IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM type Fc regions.
  • the Fc region of the antibody of the present invention for example, the Fc region of a human IgG antibody can be used, and preferably the Fc region of a human IgG1 antibody.
  • a constant region of natural IgG specifically, a constant region originating from natural human IgG1 (SEQ ID NO: 76), a constant region originating from natural human IgG2 (sequence) No.
  • FIG. 32 shows the sequences of the constant regions of natural IgG1, IgG2, IgG3, and IgG4.
  • the constant region of natural IgG includes mutants naturally occurring therefrom.
  • constant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies multiple allotype sequences due to gene polymorphisms are described in SequencesSof proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used.
  • the amino acid sequence of EU numbering 356-358 may be DEL or EEM.
  • the “Fc region” refers to a region consisting of a hinge region or a part thereof, CH2 and CH3 domains in an antibody molecule.
  • the Fc region of the IgG class is EU numbering (also referred to as EU INDEX in this specification) and means, for example, from 226th cysteine to C-terminus, or from 230th proline to C-terminus, but is not limited thereto.
  • Fc region is suitably obtained by re-elution of the fraction adsorbed on the protein A column or protein G column after partial digestion of IgG1, IgG2, IgG3, IgG4 monoclonal antibody, etc. with a protease such as pepsin Can be done.
  • protease such as pepsin
  • Such proteolytic enzymes are not particularly limited as long as they can digest full-length antibodies so that Fab and F (ab ') 2 can be produced in a limited manner by appropriately setting the reaction conditions of the enzyme such as pH.
  • pepsin, papain, etc. can be illustrated.
  • heterodimerization means that one polypeptide is composed of two polypeptides having different amino acid sequences
  • heterodimer means two polypeptides having different amino acid sequences. It means a polypeptide composed of “Homodimerization” means that one polypeptide is composed of two polypeptides having the same amino acid sequence
  • homodimer means a polypeptide consisting of two identical amino acid sequences.
  • heterodimer or “homodimer” preferably means “heterodimerization” or “homodimerization” with respect to the Fc region, more preferably CH2 in the Fc region.
  • heterodimerization or “homodimerization”.
  • the “parent polypeptide” means a polypeptide before introduction of a modification such as an amino acid mutation.
  • amino acid mutations of the present invention may be used alone or in combination.
  • the number of combinations is not particularly limited, and can be set as appropriate within the range in which the object of the invention can be achieved. For example, it is 2 or more and 30 or less, preferably 2 or more and 15 or less. .
  • the amino acid mutation may be added to only one of the two polypeptides constituting the Fc region, or may be added to both of the two polypeptides as appropriate. Further, in the present invention, in order to obtain the effect of modifying the higher function of the Fc region, compared to the case where no mutation is introduced and the case where the mutation is introduced into both Fc regions of two polypeptides, When only the mutation is introduced, it is preferable that at least one amino acid mutation that improves the function of the Fc region is introduced.
  • the site to be modified is not particularly limited as long as it is an Fc region, and can be appropriately set within a range in which the object of the present invention can be achieved.
  • a hinge region for example, a CH2 region, a CH3 region, and the like.
  • the site to be modified is the CH2 region.
  • the CH2 region means EU numbering 231st to 340th
  • the CH3 region means EU numbering 341th to 447th.
  • Modifications can be made to amino acid residues at positions.
  • amino acid alteration means any one of substitution, deletion, addition, insertion or modification, or a combination thereof.
  • amino acid modification can be rephrased as amino acid mutation and is used interchangeably.
  • the purpose is to modify, for example, the following points (a) to (c) by substituting with another amino acid residue.
  • Amino acid residues are divided into the following groups based on general side chain properties: (1) Hydrophobicity: norleucine, met, ala, val, leu, ile; (2) Neutral hydrophilicity: cys, ser, thr, asn, gln; (3) Acidity: asp, glu; (4) Basicity: his, lys, arg; (5) Residues that affect chain orientation: gly, pro; and (6) Aromaticity: trp, tyr, phe.
  • substitution of amino acid residues within each of these groups is called conservative substitution, while the substitution of amino acid residues between other groups is called non-conservative substitution.
  • substitution in the present invention may be conservative substitution, non-conservative substitution, or a combination of conservative substitution and non-conservative substitution.
  • polypeptide of the present invention can further contain additional modifications. Additional alterations can be selected from, for example, amino acid substitutions, deletions, modifications, or combinations thereof.
  • the polypeptide of the present invention can be arbitrarily modified as long as it does not substantially change the target function of the polypeptide.
  • the polypeptide of the present invention is an antibody
  • the heavy chain and the light chain can be modified.
  • mutations can be made by conservative substitution of amino acid residues.
  • such a modification can be performed as long as the change in the function is within the scope of the object of the present invention.
  • the alteration of the amino acid sequence in the present invention includes post-translational modification.
  • post-translational modifications addition or deletion of sugar chains can be shown.
  • the 297th amino acid residue of the EU numbering can be modified with a sugar chain.
  • the sugar chain structure to be modified is not limited.
  • antibodies expressed in eukaryotic cells contain glycosylation in the constant region. Therefore, antibodies expressed in the following cells are usually modified with some sugar chain.
  • Mammalian antibody-producing cells ⁇ Eukaryotic cells transformed with an expression vector containing DNA encoding the antibody
  • the eukaryotic cells shown here include yeast and animal cells.
  • CHO cells and HEK293H cells are representative animal cells for transformation with an expression vector containing DNA encoding an antibody.
  • those having no sugar chain modification at the position are also included in the antibody of the present invention.
  • An antibody whose constant region is not modified with a sugar chain can be obtained by expressing a gene encoding the antibody in a prokaryotic cell such as Escherichia coli.
  • a sialic acid may be added to the sugar chain of the Fc region (MAbs. 2010 2010 Sep-Oct; 2 (5): 519-27. .).
  • polypeptide of the present invention is an antibody
  • an amino acid substitution J Immunol. 2006 Jan 1; 176 (1): 346-56, J Biol Chem. 2006 Aug
  • an amino acid substitution J Immunol. 2006 Dec; 18 (12): 1759-69., Nat Biotechnol. 2010 Feb; 28 (2): 157-9.
  • amino acid substitution (WO / 2009/041613)) for improving the heterogeneity and stability of the antibody
  • heterodimerized polypeptide of the present invention it is necessary to associate polypeptides having different amino acids with each other, or to separate the target heterodimerized polypeptide from other homodimerized polypeptides.
  • amino acid residues that contact at the interface of other constant regions of the H chain include, for example, EU in the CH3 region Numbering region 356, EU numbering 439th residue, EU numbering 357th residue, EU numbering 370th residue, EU numbering 399th residue, EU numbering 409th residue Can be mentioned.
  • a set of 3 amino acid residues can be an antibody having the same type of charge; (1) amino acid residues contained in the H chain CH3 region, wherein the amino acid residues at EU positions 356 and 439; (2) amino acid residues contained in the H chain CH3 region, EU amino acid residues at positions 357 and 370, (3) Amino acid residues contained in the H chain CH3 region, and amino acid residues at EU positions 399 and 409.
  • a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region One to three amino acid residues corresponding to the amino acid residue groups shown in (1) to (3) having the same kind of charge in the first H chain CH3 region are the first H chain CH3 region.
  • amino acid residues described in (1) to (3) above are close to each other when they are associated.
  • a person skilled in the art finds a site corresponding to the amino acid residue described in (1) to (3) above by using homology modeling using commercially available software for the desired H chain CH3 region or H chain constant region.
  • the amino acid residue at the site can be subjected to modification.
  • the “charged amino acid residue” is preferably selected from, for example, amino acid residues included in any of the following groups (X) or (Y); (X) glutamic acid (E), aspartic acid (D), (Y) Lysine (K), Arginine (R), Histidine (H).
  • “having the same kind of charge” means, for example, that two or more amino acid residues each have an amino acid residue included in any one group of (X) or (Y). Means that. “Having an opposite charge” means, for example, an amino acid residue in which at least one amino acid residue of two or more amino acid residues is included in any one group of the above (X) or (Y) Means that the remaining amino acid residues have amino acid residues contained in different groups.
  • the first H chain CH3 region and the second H chain CH3 region may be cross-linked by a disulfide bond.
  • amino acid residues to be modified are not limited to amino acid residues in the above-described antibody variable region or antibody constant region. Those skilled in the art can find amino acid residues that form an interface for polypeptide mutants or heterologous multimers by homology modeling using commercially available software, etc. Amino acid residues can be subjected to modification.
  • the heterodimerized polypeptide can also be obtained by separating and purifying the heterodimerized polypeptide from the homodimerized polypeptide. It is possible to obtain.
  • a homodimerized polypeptide consisting of only two first polypeptides, two second polypeptides A homodimerized polypeptide consisting only of the polypeptide is mixed as an impurity.
  • a known technique can be used as a method for efficiently removing these two types of homodimerized polypeptides.
  • a method has been reported that enables the purification of two types of homodimers and the desired heterodimerized antibody by ion-exchange chromatography by introducing amino acid substitutions into the variable regions of the two types of H chains and providing differences in isoelectric points.
  • WO2007114325 As a method of purifying heterodimerized antibodies, a method of purifying heterodimerized antibodies consisting of mouse IgG2a H chain that binds to protein A and rat IgG2b H chain that does not bind to protein A using protein A. has been reported (WO98050431, WO95033844).
  • polypeptide of the present invention may be prepared based on the above-described modification.
  • the amino acid sequence can be modified by various methods known in the art. These methods include, but are not limited to, site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide- directed dual amber method for site-directed mutagenesis. Gene 152, 271-275, Zoller, MJ, and Smith, M.
  • the function of the Fc region means, for example, the binding activity of the Fc region to the Fc ⁇ receptor (enhancement of binding activity or reduction of binding activity), selectivity between Fc ⁇ receptor isoforms of the Fc region (binding) Activity selectivity), physicochemical stability of Fc region, ADCC activity, ADCP activity, etc.
  • the selectivity between Fc ⁇ receptor isoforms in the Fc region means selective binding to a specific isoform of Fc ⁇ receptor.
  • the physicochemical stability of the Fc region refers to, for example, the thermodynamic stability of the Fc region, stability to proteases, stability to chemical treatment, stability to freeze-thaw, storage stability, stability under acidic conditions, It means photostability, stability against stress associated with shaking and concentration, and maintenance of solubility in a wide range of solution conditions.
  • the function of the Fc region is a function combining two or more of Fc region binding activity to Fc ⁇ receptor, selectivity between Fc ⁇ receptor isoforms of Fc region, physicochemical stability of Fc region, etc.
  • the function combining the binding activity of the Fc region to the Fc ⁇ receptor and the selectivity between the Fc ⁇ receptor isoforms of the Fc region the function combining the binding activity of the Fc region to the Fc ⁇ receptor and the physicochemical stability of the Fc region.
  • Functions that combine the selectivity between the Fc ⁇ receptor isoforms of the Fc region and the physicochemical stability of the Fc region, the binding activity of the Fc region to the Fc ⁇ receptor, the selectivity between the Fc ⁇ receptor isoforms of the Fc region and the Fc region It means a function that combines physicochemical stability.
  • modifying the function of the Fc region means, for example, enhancement or attenuation of the binding activity of the Fc region to the Fc ⁇ receptor when the function of the Fc region exhibits binding activity to the Fc ⁇ receptor of the Fc region.
  • the improvement in selectivity means, for example, enhancing the binding activity to a certain Fc ⁇ receptor while maintaining or decreasing the binding activity to another Fc ⁇ receptor.
  • improvement of selectivity means, for example, maintaining or enhancing the binding activity to another Fc ⁇ receptor while reducing the binding activity to a certain Fc ⁇ receptor.
  • the function of the Fc region when the function of the Fc region shows selectivity between Fc ⁇ receptor subtypes in the Fc region, it means improvement or reduction in selectivity between Fc ⁇ receptor subtypes in the Fc region.
  • the function of the Fc region when the function of the Fc region shows the physicochemical stability of the Fc region, it means an improvement or decrease in the physicochemical stability of the Fc region, suppression of a decrease in stability, and more specifically, For example, it means improvement or reduction of the Tm value in the CH2 region, suppression of reduction of the Tm value, and the like.
  • Fc region Fc ⁇ receptor binding activity, Fc region Fc ⁇ receptor isoform selectivity, and Fc region physicochemical stability combined with improved functions compared to the control. It is not always necessary to improve the receptor binding activity, the selectivity between Fc ⁇ receptor isoforms in the Fc region, and the physicochemical stability of the Fc region, as long as the function of the Fc region is improved as a whole. .
  • the Fc region has a reduced activity that combines the binding activity to the Fc ⁇ receptor, the selectivity between the Fc ⁇ receptor isoforms of the Fc region, and the physicochemical stability of the Fc region compared to the control.
  • Fc ⁇ receptor binding activity, selectivity between Fc ⁇ receptor isoforms in the Fc region, and physicochemical stability of the Fc region do not necessarily have to be reduced, but overall the function of the Fc region may be reduced. That's fine.
  • Fc ⁇ receptor (which may be described as Fc ⁇ receptor, Fc ⁇ R or FcgR in the present specification) refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, or IgG4. By any member of the family of proteins encoded by the Fc ⁇ receptor gene.
  • this family includes Fc ⁇ RI (CD64), including isoforms Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc; isoforms Fc ⁇ RIIa (including allotypes H131 (H) and R131 (R)), Fc ⁇ RIIb (Fc ⁇ RIIb-1 and Fc ⁇ RIIb- 2) and Fc ⁇ RII (CD32) including Fc ⁇ RIIc; and Fc ⁇ RIII (CD16) including isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (including allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ RIIIb-NA2), and any undiscovered Human Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes, but are not limited to these.
  • Fc ⁇ R includes, but is not limited to, those derived from human, mouse, rat, rabbit and monkey, and may be derived from any organism.
  • Mouse Fc ⁇ Rs include Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), Fc ⁇ RIII (CD16) and Fc ⁇ RIII-2 (CD16-2 or Fc ⁇ RIV), as well as any undiscovered mouse Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes However, it is not limited to these.
  • Suitable examples of such Fc ⁇ receptors include human Fc ⁇ RI (CD64), Fc ⁇ RIIa (CD32), Fc ⁇ RIIb (CD32), Fc ⁇ RIIIa (CD16) and / or Fc ⁇ RIIIb (CD16).
  • Fc ⁇ R has an active receptor having ITAM (Immunoreceptor-tyrosine-based activation-motif) and an inhibitory receptor having ITIM (immunoreceptor-tyrosine-based inhibition-motif).
  • ITAM Immunoreceptor-tyrosine-based activation-motif
  • ITIM immunommunoreceptor-tyrosine-based inhibition-motif
  • Fc ⁇ R is classified into Fc ⁇ RI, Fc ⁇ RIIa R, Fc ⁇ RIIa H, Fc ⁇ RIIIa, and Fc ⁇ RIIIb active Fc ⁇ R, and Fc ⁇ RIIb inhibitory Fc ⁇ R.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RI are NM_000566.3 and NP_000557.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIa are BC020823.1 and AAH20823.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIb are shown in BC146678.1 and AAI46679.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIIa are described in BC033678.1 and AAH33678.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIIb are described in BC128562.1 and AAI28563.1, respectively (RefSeq accession number).
  • Fc ⁇ RIIa has two gene polymorphisms in which the 131st amino acid of Fc ⁇ RIIa is substituted with histidine (H type) or arginine (R type) (J. Exp. Med, 172, 19-25, 1990).
  • Fc ⁇ RIIb has two gene polymorphisms in which the 232nd amino acid of Fc ⁇ RIIb is replaced with isoleucine (type I) or threonine (T type) (Arthritis. Rheum. 46: 1242-1254 (2002) ).
  • Fc ⁇ RIIIa has two gene polymorphisms in which the 158th amino acid of Fc ⁇ RIIIa is replaced with valine (V type) or phenylalanine (F type) (J. (Clin. Invest. 100 (5): 1059) -1070 (1997)).
  • Fc ⁇ RIIIb has two gene polymorphisms, NA1 type and NA2 type (J.JClin. Invest. 85: 1287-1295
  • the Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram).
  • the amount of analyte binding to the ligand captured on the sensor chip surface from the sensorgram (the amount of change in the response on the sensorgram before and after the interaction of the analyte) is determined.
  • the amount of binding also depends on the amount of ligand, it is necessary to compare under the condition that the amount of ligand can be regarded as essentially the same amount.
  • the kinetics: association rate constant (ka) and dissociation rate constant (kd) are obtained from the curve of the sensorgram, and the affinity (KD) is obtained from the ratio of the constants.
  • an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
  • Biacore® GE® Healthcare
  • Biacore includes all models such as Biacore T100, T200, X100, A100, 4000, 3000, 2000, 1000, and C.
  • Any sensor chip for Biacore such as CM7, CM5, CM4, CM3, C1, SA, NTA, L1, HPA, and Au chip can be used as the sensor chip.
  • a buffer adjusted to a neutral pH such as pH 7.4 with HEPES, phosphoric acid, ACES, Tris, citric acid or the like can be used.
  • Measurement temperature can be measured in the range of 4-37 °C.
  • Protein A, Protein G, Protein L, anti-human IgG antibody, anti-human IgG-Fab, anti-human L chain antibody, anti-human that supplement the antibody with a coupling method such as amine coupling, disulfide coupling, aldehyde coupling on the sensor chip Immobilizing proteins for capturing antibodies such as Fc antibodies, antigenic proteins, and antigenic peptides.
  • Fc ⁇ receptors such as Fc ⁇ receptor I, IIa R type, IIa H type, IIb, IIIa F type, V type, and IIIb are flowed as analytes, the interaction is measured, and a sensorgram is obtained.
  • concentration of Fc ⁇ receptor at this time can be carried out in the range of several uM to several pM according to the strength of interaction such as KD of the sample to be measured.
  • KD dissociation constant
  • the polypeptide or Fc region of the present invention has increased binding activity to various Fc ⁇ receptors or the binding depending on whether the value of KD has decreased or increased. It can be determined whether the activity has decreased.
  • the value when captured with antibody-supplemented protein immobilized on the sensor chip, the value is measured using the amount of change in the sensorgram value before and after each Fc ⁇ receptor is run as an analyte for the antibody on the sensor chip. It can be determined whether the polypeptide or Fc region of the present invention has increased binding activity to various Fc ⁇ receptors or decreased binding activity. It is also possible to immobilize various Fc ⁇ receptors on the sensor chip instead of the antibody and allow the antibody sample to be evaluated to interact therewith.
  • polypeptide or Fc region of the present invention has enhanced binding activity to various Fc ⁇ receptors from the degree of decrease or increase in KD value calculated from the sensorgram of interaction, or the increase in sensorgram before and after the antibody sample is allowed to act, Alternatively, it can be determined whether the binding activity has decreased.
  • the Fc region binding activity to Fc ⁇ receptors is determined by ELISA or FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) or BIACORE method using surface plasmon resonance (SPR) phenomenon. (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
  • ALPHA screen is implemented based on the following principle by ALPHA technology using two beads of donor and acceptor.
  • a molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead, and a luminescent signal is detected only when the two beads are in close proximity.
  • a photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted.
  • the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
  • test polypeptide labeled with biotin on the donor bead is bound to streptavidin on the donor bead, and an Fc ⁇ receptor tagged with glutathione S transferase (GST) is bound to the acceptor bead.
  • GST glutathione S transferase
  • Untagged polypeptides compete with the interaction between the test polypeptide and the Fc ⁇ receptor. Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition. It is known that a polypeptide is biotinylated using Sulfo-NHS-biotin or the like.
  • a glutathione column can be expressed in a cell or the like holding a fusion gene in which a polynucleotide encoding Fc ⁇ receptor and a polynucleotide encoding GST are fused in frame.
  • a method of purifying using the above can be employed as appropriate.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
  • the tagging is not limited to GST, and any tag such as histidine tag, MBP, CBP, Flag tag, HA tag, V5 tag, c-myc tag, etc. may be used.
  • the binding of the test polypeptide to the donor bead is not limited to the binding using the biotin-streptavidin reaction.
  • Fc such as an antibody or Fc fusion polypeptide
  • a method of binding the test polypeptide via an Fc recognition protein such as Protein A or Protein G on the donor bead can be considered. . *
  • Fc ⁇ R binding or decreased Fc ⁇ R binding activity means that when assayed with essentially the same amount of polypeptide to be compared, it binds to Fc ⁇ R with a substantially weaker binding activity than the parent polypeptide.
  • a heterodimerized polypeptide with reduced, reduced, or reduced Fc ⁇ R binding or Fc ⁇ R binding activity is more essential than a homodimerized polypeptide when assayed with essentially the same amount of polypeptide to be compared. Those that bind Fc ⁇ R with weaker binding activity.
  • the KD value ratio (KD value of parent polypeptide / KD value of polypeptide into which mutation is introduced) is preferably 0.99 or less, 0.95 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.5 or less, 0.3 or less, 0.1 or less. More preferably, they are 0.08 or less, 0.05 or less, 0.02 or less, 0.01 or less, or 0.001 or less.
  • the KD value ratio is also referred to as KD ratio.
  • the KD value measured by the above measurement method is preferably increased by 1 pM or more, 10 ⁇ p, 100 ⁇ p, 1 ⁇ m or more, 2 ⁇ n or more, 3 to nM or more, 5 to nM or more, 10 to nM As described above, it is more preferable that the concentration is increased by 20 nM or more, 50 nM or more, 100 nM or more, 1 ⁇ M or more.
  • the KD value measured by the above measurement method is preferably 1 pM or more, 10 pM or more, 100 pM or more, 1 nM or more, 10 nM or more, 100 nM or more, 500 nM or more, 1 ⁇ M As described above, it is preferably 3 ⁇ M or more and 5 ⁇ M or more.
  • Binding to Fc ⁇ R or enhancement, increase or improvement of binding activity to Fc ⁇ R means that when assayed with essentially the same amount of polypeptide to be compared with Fc ⁇ R with a substantially stronger binding activity than the parent polypeptide. It means joining.
  • a heterodimerized polypeptide with enhanced, elevated or improved binding to Fc ⁇ R or to Fc ⁇ R is more essential than a homodimerized polypeptide when assayed with essentially the same amount of polypeptide to be compared.
  • a substance that binds to Fc ⁇ R with a stronger binding activity is more essential than a homodimerized polypeptide when assayed with essentially the same amount of polypeptide to be compared.
  • the KD value ratio (KD value of parent polypeptide / KD value of polypeptide into which mutation is introduced) is preferably 1.1 or more, 1.2 or more, 1.3 or more, 1.5 or more, 1. 8 or more, 2 or more, 3 or more. More preferably, they are 5 or more, 10 or more, 100 or more, 250 or more, 1000 or more. In the present specification, the KD value ratio is also referred to as KD ratio.
  • the KD value measured by the above measurement method is preferably decreased by 1 pM or more, 10 pM, 100 pM, 1 nM or more, 2 nM or more, 3 nM or more, 5 nM or more, 10 It is more preferable that the concentration is reduced by nM or more, 20 nM or more, 50 nM or more, 100 nM or more, or 1 ⁇ M or more.
  • the KD value measured by the above measurement method is preferably 5 ⁇ M or less, 3 ⁇ M or less, 1 ⁇ M or less, 0.5 ⁇ M or less, 0.1 ⁇ M or less, 0.01 ⁇ M or less, 1 nM or less, 0.1 nM or less, More preferably, it is 0.001 nM or less and 1 pM or less.
  • amino acid mutations may be introduced.
  • the type and range of the amino acid mutation to be introduced are not particularly limited. Further, it has been reported that the strength of interaction between the Fc region of an antibody and Fc ⁇ R is dependent on the Zn 2+ ion concentration (Immunology Letters 143 (2012) 60-69). As the antibody has a higher Zn 2+ ion concentration in the Fc region, the interaction between the Fc region and FcgR is enhanced.
  • each CH2 domain of the distal Fc region is opened. This facilitates the interaction between the CH2 domain and FcgR, and the interaction between the Fc region and FcgR is enhanced.
  • the Fc ⁇ receptor is Fc ⁇ RIa
  • the region i of Table 2-1 and Table 2-2 is used. At least one amino acid mutation selected from the group consisting of the amino acid mutations described in 1) may be introduced.
  • the Fc ⁇ receptor is Fc ⁇ RIa
  • the amino acid sequences of the first polypeptide and / or the second polypeptide constituting the Fc region are shown in Tables 2-1, 2-2 and At least one amino acid mutation selected from the group consisting of amino acid mutations described in Region ii of Table 2-3 may be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region includes the specification Table 3-1 and Table 3-2. At least one amino acid mutation selected from the group consisting of the amino acid mutations described in the region i may be introduced. In the case where the Fc ⁇ receptor is Fc ⁇ RIIa R, the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region includes the specification Table 3-1 and Table 3-2. At least one amino acid mutation selected from the group consisting of the amino acid mutations described in region ii may be introduced.
  • the Fc ⁇ receptor When the Fc ⁇ receptor is Fc ⁇ RIIaIIH, the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region is described in the region i of the specification table 4. At least one amino acid mutation selected from the group consisting of amino acid mutations may be introduced.
  • the Fc ⁇ receptor is Fc ⁇ RIIaIIH, the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region is described in region ii of Table 4 in the specification. At least one amino acid mutation selected from the group consisting of amino acid mutations may be introduced.
  • the Fc ⁇ receptor when the Fc ⁇ receptor is Fc ⁇ RIIb, the amino acid sequence described in region i of Table 5 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region. At least one amino acid mutation selected from the group consisting of mutations may be introduced.
  • the Fc ⁇ receptor is Fc ⁇ RIIb, the amino acid sequence described in region ii of Table 5 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region. At least one amino acid mutation selected from the group consisting of mutations may be introduced.
  • the Fc ⁇ receptor when the Fc ⁇ receptor is Fc ⁇ RIIIa, the amino acid sequence described in region i of Table 6 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region. At least one amino acid mutation selected from the group consisting of mutations may be introduced. Further, when the Fc ⁇ receptor is Fc ⁇ RIIIa, the amino acids described in region ii of Table 6 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region. At least one amino acid mutation selected from the group consisting of mutations may be introduced.
  • the Fc ⁇ receptor is Fc ⁇ RIIIa
  • the Fc ⁇ receptor is Fc ⁇ RIIIa
  • EU numbering 239 at least one selected from the group consisting of substitution of amino acid S to D, EU numbering 330th amino acid A to L, and EU numbering 332 amino acid I to E
  • EU numbering At least one selected from the group consisting of substitution of amino acid L at position 234 with Y, substitution of EU numbering 236 at amino acid G with W, and substitution of amino acid S at EU numbering 298 with amino acid S
  • the above (for example, two or three) amino acid mutations may be introduced.
  • the Fc ⁇ receptor is Fc ⁇ RIIIa
  • Numbering 234th Leu, 235th Leu, 236th Gly, 239th Ser, 268th His, 270th Asp, 298th Ser, 327th Ala, 328th Leu and 334th Lys Mutation is introduced into at least one or more amino acids selected from (for example, 2 or 3), and in the amino acid sequence of the other polypeptide, Asp of EU numbering 270, Lys of 326, 330
  • a mutation may be introduced into at least one (for example, two or three) amino acids selected from the Ala and 334th Lys.
  • the amino acid to be modified can be appropriately selected.
  • the amino acid L at position 234 in the EU numbering in the amino acid sequence of either the first polypeptide or the second polypeptide constituting the Fc region is used.
  • substitution of EU numbering 270th amino acid D to E, EU numbering 326th amino acid K to D At least one (for example, 2 or 3) selected from the group consisting of substitution,
  • the mutation of any one of (i) to (vi) is introduced in the amino acid sequence of either the first polypeptide or the second polypeptide constituting the Fc region.
  • Any of the mutations (vii) to (ix) may be introduced in the amino acid sequence of the other polypeptide.
  • the heterodimer comprising the first polypeptide and the second polypeptide is constituted.
  • a polypeptide characterized in that either one of the first polypeptide and the second polypeptide includes an Fc region into which the mutation described in (i) or (ii) has been introduced. You may go out.
  • EU numbering 234th amino acid is L, S, F, E, V, D, Q, I, M, T, A, G or H, 235th amino acid is Y or Q, 236th amino acid is W, 239th amino acid is M or I, 268th amino acid is D, and 298th amino acid is A
  • EU numbering 270th amino acid is E
  • 326th amino acid is D
  • 330th amino acid is A, K, M, F, I, Y or H
  • 334th amino acid is E
  • one of the first polypeptide and the second polypeptide is introduced with the mutation described in (iii) or (iv), and the other is introduced with the mutation described in (v). It may be an Fc region.
  • EU numbering 234th amino acid is L, S, F, E, V, D, Q, I, M, T, A, G or H
  • 235th amino acid is Y or Q
  • 236th amino acid is W
  • 239th amino acid is M or I
  • 268th amino acid is D
  • 298th amino acid is A
  • 327th is D
  • EU numbering 234th amino acid is L, S, F, E, V, D, Q, I, M, T, A, G or H
  • 235th amino acid is Y or Q
  • 236th amino acid is W
  • amino acid at position 239 is M or I
  • amino acid at position 268 is D
  • amino acid at position 270 is E
  • amino acid at position 298 is A
  • EU numbering The 270th amino acid
  • any one of the first polypeptide and the second polypeptide may have the EU numbering 234th amino acid of E, D, T or L in (iii) above. It is preferable that In order to enhance the binding activity to Fc ⁇ receptor IIIa and decrease the binding activity to Fc ⁇ receptor IIb, it is more preferable that the EU numbering 234th amino acid in (iv) is L, F, E or D. .
  • any one of the first polypeptide and the second polypeptide has the EU numbering 234th amino acid of (iii) described above as V, I, T, M or L is preferred.
  • V, I, T, or L is preferable, and in this case, the binding activity to Fc ⁇ receptor IIIa can also be increased.
  • the EU numbering 234th amino acid of (iii) above is V, E, D, T, I, L or F
  • the 239th amino acid is When M or I and the other is the amino acid at position 330 EU numbering A in the above (v) is A or K
  • the EU numbering 234th amino acid in the above (iv) is F, E, D, S or L
  • the 239th amino acid is M or I.
  • the EU numbering 330th amino acid of the above (v) is A, F or K.
  • the selectivity of the binding activity can be measured by measuring the binding activity of each polypeptide to each Fc ⁇ receptor isoform and then determining the ratio thereof.
  • an index of binding activity for example, the amount of binding to Fc ⁇ R and the KD value can be used.
  • the selectivity of the binding activity is improved, for example, the ratio of the binding activity of the test polypeptide to the Fc ⁇ receptor isoform of the test polypeptide determined based on the measurement method described above (the target Test polypeptide compared to the binding activity of the test polypeptide to the first Fc ⁇ receptor isoform / binding activity of the test polypeptide to the second Fc ⁇ receptor isoform)
  • the ratio of the binding activity to the Fc ⁇ receptor isoform is 0.1 Or more, preferably 0.2 or more, 0.5 or more, 1 or more, 2 or more, 3 or more, 5 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, 30 or more, 50 or more, 70 or more 100, 150, 200, 500, 1000 or more.
  • the selectivity for the Fc ⁇ receptor isoform is reduced, for example, compared with the ratio of the binding activity of the test polypeptide to the Fc ⁇ receptor isoform of the parent polypeptide determined based on the above measurement method.
  • the ratio of the binding activity of the test polypeptide to the Fc ⁇ receptor isoform is 0.1 or more, preferably 0.2 or more, 0.5 or more, 1 or more, 2 or more, 3 or more, 5 or more, 7 or more, 8 or more, 9 or more, 10 As mentioned above, it refers to a decrease of 15 or more, 20 or more, 30 or more, 50 or more, 70 or more, 100 or more, 150 or more, 200 or more, 500 or more, 1000 or more.
  • a / Iratio indicating the ratio of binding activity to active Fc ⁇ R and inhibitory Fc ⁇ R can be used as an index of selectivity.
  • the value obtained by dividing the KD of the test polypeptide for Fc ⁇ RIIb by the Fc ⁇ RIIa H type or R type KD of the test polypeptide was defined as each A / I ratio.
  • the A / I ratio is preferably 1.1 or more, 1.5 or more, 2 or more, 3 or more, 5 or more, more preferably 6 or more, 8 or more, 9 or more.
  • Fc ⁇ RIIIa F / Fc ⁇ RIIbIIratio which is a value obtained by dividing KD for Fc ⁇ RIIb by KD for Fc ⁇ RIIIa F, can be used as an index of selectivity.
  • the value obtained by dividing the KD of the test polypeptide for Fc ⁇ RIIb by the KD of the test polypeptide for Fc ⁇ RIIIa was defined as the respective Fc ⁇ RIIIa F / Fc ⁇ RIIb ratio.
  • Fc ⁇ RIIIa F / Fc ⁇ RIIb ratio is preferably 1.1 or more, 1.5 or more, 2 or more, 3 or more, 5 or more, more preferably 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, 60 or more, 70 or more 80 or more, 90 or more, 100 or more, 110 or more, 120 or more, 130 or more, 140 or more, 150 or more, 200 or more, 210 or more, 220 or more, 230 or more, 240 or more.
  • amino acid mutations when the function modification of the Fc region of the polypeptide is to improve the selectivity of the binding activity with the Fc ⁇ receptor, the first polypeptide and / or the second polypeptide constituting the Fc region In this amino acid sequence, amino acid mutations may be introduced.
  • the type and range of the amino acid mutation to be introduced are not particularly limited.
  • the active Fc ⁇ receptor is Fc ⁇ RIa
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIa is selectively enhanced compared to Fc ⁇ RIIb
  • the Fc region is Amino acid mutations described in the region a of Table 19-1, Table 19-2, Table 19-3 and Table 19-4 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting At least one amino acid mutation selected from the group consisting of may be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region In Table 19-1, Table 19-2, Table 19-3, Table 19-4 and Table 19-5, at least one or more selected from the group consisting of amino acid mutations described in region b Amino acid mutations may be introduced.
  • the active Fc ⁇ receptor is Fc ⁇ RIa
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIa is selectively attenuated compared to Fc ⁇ RIIb
  • the Fc region is At least one selected from the group consisting of amino acid mutations described in the region c of the specification Table 23-1 and Table 23-2 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting Two or more amino acid mutations may be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region In Table 2, at least one amino acid mutation selected from the group consisting of amino acid mutations described in region d of Table 23-1 and Table 23-2 may be introduced.
  • the active Fc ⁇ receptor is Fc ⁇ RIIa R
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in the selectivity is that the binding activity to Fc ⁇ RIIa R is selectively enhanced compared to Fc ⁇ RIIb
  • the Fc In the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the region at least one or more selected from the group consisting of amino acid mutations described in the region a of the specification Table 20-1 Amino acid mutations may be introduced.
  • the amino acids of the first polypeptide and / or the second polypeptide constituting the Fc region In the sequence, at least one or more amino acid mutations selected from the group consisting of the amino acid mutations described in the region b of Table 20-1, Table 20-2 and Table 20-3 may be introduced. .
  • the active Fc ⁇ receptor is Fc ⁇ RIIa R
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIIa R is selectively attenuated compared to Fc ⁇ RIIb
  • the Fc In the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the region at least one or more selected from the group consisting of amino acid mutations described in the region c of the specification Table 24-1 Amino acid mutations may be introduced.
  • the amino acids of the first polypeptide and / or the second polypeptide constituting the Fc region In the sequence, at least one or more amino acid mutations selected from the group consisting of amino acid mutations described in region d of the specification Table 24-1 and Table 24-2 may be introduced.
  • the active Fc ⁇ receptor is Fc ⁇ RIIa H
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIIa H is selectively enhanced as compared to Fc ⁇ RIIb
  • the Fc In the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the region, at least one or more selected from the group consisting of amino acid mutations described in region a of the specification Table 21-1. Amino acid mutations may be introduced.
  • the amino acids of the first polypeptide and / or the second polypeptide constituting the Fc region In the sequence, at least one or more amino acid mutations selected from the group consisting of amino acid mutations described in the region b of Table 21-1, Table 21-2 and Table 21-3 may be introduced. .
  • the active Fc ⁇ receptor is Fc ⁇ RIIa H
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in the selectivity is that the binding activity to Fc ⁇ RIIa H is selectively attenuated compared to Fc ⁇ RIIb
  • the amino acids of the first polypeptide and / or the second polypeptide constituting the Fc region In the sequence, at least one or more amino acid mutations selected from the group consisting of amino acid mutations described in the region d of the specification Table 25-1, Table 25-2, and Table 25-3 may be introduced. .
  • the active Fc ⁇ receptor is Fc ⁇ RIIIa
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIIIa is selectively enhanced compared to Fc ⁇ RIIb
  • the Fc region is At least one amino acid mutation selected from the group consisting of amino acid mutations described in region a of the specification Table 22-1 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting May be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region In Table 2, at least one amino acid mutation selected from the group consisting of amino acid mutations described in region b of Table 22-1, Table 22-2 and Table 22-3 may be introduced.
  • the active Fc ⁇ receptor is Fc ⁇ RIIIa
  • the inhibitory Fc ⁇ receptor is Fc ⁇ RIIb
  • the improvement in selectivity is that the binding activity to Fc ⁇ RIIIa is selectively attenuated compared to Fc ⁇ RIIb
  • the Fc region is At least one selected from the group consisting of the amino acid mutations described in the region c of Table 26-1 and Table 26-2 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting Two or more amino acid mutations may be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region In Table 26-1, Table 26-2, Table 26-3 and Table 26-4, at least one amino acid mutation selected from the group consisting of amino acid mutations described in region d is introduced. It may be.
  • the selective enhancement of the binding activity to the desired Fc ⁇ receptor means any of the following cases.
  • the binding activity to the desired Fc ⁇ receptor is enhanced, and the binding activity to receptors other than the desired Fc ⁇ receptor is not changed or attenuated;
  • the binding activity to a desired Fc ⁇ receptor is enhanced and the binding activity to a receptor other than the desired Fc ⁇ receptor is also enhanced, but the degree of enhancement of the binding activity to a receptor other than the desired Fc ⁇ receptor is Less than the degree of enhanced activity, or
  • the degree of attenuation of the binding activity is lower than that of the binding activity to Fc ⁇ receptors other than the desired Fc ⁇ receptor.
  • the selective decrease in the binding activity to a desired Fc ⁇ receptor means any of the following cases. (i) the binding activity to the desired Fc ⁇ receptor is attenuated, and the binding activity to a receptor other than the desired Fc ⁇ receptor is not changed or enhanced, (ii) The binding activity to the desired Fc ⁇ receptor is reduced and the binding activity to a receptor other than the desired Fc ⁇ receptor is also reduced, but the degree of the binding activity to a receptor other than the desired Fc ⁇ receptor is reduced to the binding to the desired Fc ⁇ receptor.
  • the degree of enhancement of the binding activity is lower than the degree of enhancement of the binding activity to Fc ⁇ receptors other than the desired Fc ⁇ receptor.
  • the physicochemical stability of a polypeptide means, for example, the thermodynamic stability of the polypeptide, and the thermodynamic stability of the polypeptide, for example, uses the Tm value of the CH2 region as an index. Judgment can be made.
  • the Tm value can be measured by CD (circular dichroism), DSC (inspection scanning calorimeter), and DSF (inspection scanning fluorescence quantitative method).
  • CD calculates the Tm value by observing the change in mean residue molar ellipticity ( ⁇ ) with increasing temperature.
  • An example of the measuring instrument is a circular dichroism dispersometer (JASCO).
  • JASCO circular dichroism dispersometer
  • Tm is a temperature that takes a midpoint value of ⁇ at low temperature and ⁇ at high temperature.
  • a protein solution prepared with citric acid, tris, phosphoric acid solution or the like can be used, and can be used for the measurement at a concentration of several hundred ug / mL.
  • DSC calculates the Tm value by observing the change in the amount of heat as the temperature rises.
  • measuring instruments include MicroCal VP-DSC and Micro Cal Capillary DSC (both are DKSH Japan).
  • Tm the temperature at this time.
  • DSF calculates the Tm value by observing the exposure of hydrophobic residues as the temperature rises using a fluorescent reagent that specifically binds to hydrophobic residues (for example, SYPRO®Orange).
  • a fluorescent reagent that specifically binds to hydrophobic residues
  • SYPRO®Orange a fluorescent reagent that specifically binds to hydrophobic residues
  • a protein solution and a fluorescent reagent are mixed at an appropriate ratio and the fluorescence intensity is measured while raising the temperature with an RT-PCR apparatus, an increase in fluorescence intensity is observed at a certain temperature. The temperature at this time is Tm.
  • measuring instruments include Rotor-Gene Q (QIAGEN) and CFX96 real-time PCR analysis system (Bio-Rad).
  • a protein solution prepared with PBS, histidine buffer or the like can be used, and can be used for the measurement at a concentration of several tens ug / mL to several hundred ug / mL.
  • Tm value of CH2 region in polypeptide Fc region is 0.1 degree or more, preferably 0.2 degree or more, 0.3 degree or more, 0.4 degree or more, 0.5 degree or more, 1 degree or more, 2 degree or more, 3 degree or more, 4 degree or more It means that it is improved by 5 degrees or more and 10 degrees or more. Further, that the physical stability of a polypeptide is improved means that a decrease in the physical stability of the polypeptide is suppressed.
  • a control polypeptide obtained based on the above measurement method A decrease in the Tm value of the CH2 region in the Fc region of the test polypeptide relative to the Tm value of the CH2 region in the Fc region of 0.1 ° or more, preferably 0.2 ° or more, 0.3 ° or more, 0.4 ° or more , 0.5 degree or more, 1 degree or more, 2 degree or more, 3 degree or more, 4 degree or more, 5 degree or more, or 10 degree or more.
  • the physical stability of the polypeptide is reduced, for example, compared to the Tm value of the CH2 region in the Fc region of the control polypeptide obtained based on the above measurement method.
  • Tm value of CH2 region in Fc region of test polypeptide is 0.1 degree or more, preferably 0.2 degree or more, 0.3 degree or more, 0.4 degree or more, 0.5 degree or more, 1 degree or more, 2 degree or more, 3 degree or more, 4 Degrees above 5 degrees, above 5 degrees, above 10 degrees.
  • the present invention also provides a polypeptide comprising a heterodimer comprising the first polypeptide and the second polypeptide, wherein the first polypeptide and the second polypeptide Also included are polypeptides characterized in that the function of the Fc region is altered as compared to a polypeptide comprising an Fc region into which a mutation has been introduced and an Fc region into which no mutation has been introduced. .
  • the modification of the function of the Fc region is at least one selected from the group consisting of enhancing the binding activity of the polypeptide to the Fc ⁇ receptor, decreasing the binding activity, and improving the selectivity of the binding activity. In addition to one or more modifications, the modification may further improve physicochemical stability. If any of these functions is modified, the function of the Fc region of the present invention is modified. be able to. In the present invention, "when an amino acid mutation is introduced into the Fc region of both the first polypeptide and the second polypeptide, the function of the Fc region is not altered" means that the same amino acid mutation is When introduced into both the polypeptide and the second polypeptide, it means that the desired function is not improved.
  • the binding activity is changed. If the binding activity is not changed or attenuated, the binding activity is not changed or enhanced, or the binding activity selectivity is not improved, the selectivity is not improved.
  • the stability does not change or decreases.
  • An amino acid mutation is “when only one Fc region is introduced, the function of the Fc region is altered” means that the amino acid mutation is introduced only to either the first polypeptide or the second polypeptide. In this case, it means that the desired function is improved.For example, when it is desired to enhance the binding activity of the polypeptide to the Fc ⁇ receptor, the binding activity is enhanced. If the binding activity is reduced or the selectivity of the binding activity is to be improved, the selectivity is improved. If the physicochemical stability of the polypeptide is to be improved, the stability is improved. Means.
  • the polypeptide wherein the Fc region is composed of a heterodimer containing the first polypeptide and the second polypeptide, is a homozygote containing only the first polypeptide. It has a high Tm compared to a polypeptide characterized in that it is composed of a polypeptide characterized by comprising a quantifier or a homodimer comprising only a second polypeptide.
  • the function of the Fc region may be further modified.
  • the modification of the function of the added Fc region is enhancement of the binding activity to Fc ⁇ RIa
  • the specification table 31 -1 in the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region, the specification table 31 -1, at least one amino acid mutation selected from the group consisting of amino acid mutations described in Table 31-2 and Table 31-3 may be introduced.
  • At least one amino acid mutation selected from the group consisting of the amino acid mutations described in Table 32-1 and Table 32-2 may be introduced.
  • the modification of the function of the added Fc region is enhancement of the binding activity to Fc ⁇ RIIa H
  • the modification of the function of the added Fc region is enhancement of the binding activity to Fc ⁇ RIIa H
  • at least one or more amino acid mutations selected from the group consisting of amino acid mutations described in Tables 33-1 and 33-2 may be introduced.
  • the amino acid sequence of the first polypeptide and / or the second polypeptide constituting the Fc region At least one amino acid mutation selected from the group consisting of the amino acid mutations described in Table 34-1 and Table 34-2 may be introduced.
  • At least one amino acid mutation selected from the group consisting of amino acid mutations described in Table 35-1 and Table 35-2 may be introduced.
  • the combination of the first polypeptide and the second polypeptide into which an amino acid mutation has been introduced is not particularly limited, but from the polypeptides described in SEQ ID NOs: 2 to 4 and 6 to 60 Examples of combinations of different types / or the same type of polypeptides selected can be exemplified.
  • a combination of polypeptides including the first polypeptide and the second polypeptide (combination of two antibody H chains and one antibody L chain) described in the examples of the present application is given as a preferred example. be able to.
  • the polypeptide of the present invention may be an antigen-binding molecule.
  • the type of antibody-binding molecule is not particularly specified, but preferred examples include Fc fusion molecules such as antibodies, bispecific antibodies, peptide Fc fusion proteins, or scaffold Fc fusion proteins. It can be illustrated.
  • an antibody is provided as the polypeptide of the present invention.
  • the term “antibody” in the present invention is used in the broadest sense, and as long as it exhibits a desired biological activity, monoclonal antibodies (including full-length monoclonal antibodies), polyclonal antibodies, antibody variants, antibody fragments, multispecificity Any antibody, such as an antibody (eg, a bispecific antibody), a chimeric antibody, a humanized antibody, etc. is included.
  • the antibody of the present invention is not limited to the type of antigen, the origin of the antibody, etc., and may be any antibody.
  • the origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
  • monoclonal antibodies can be produced by the hybridoma method (Kohler and Milstein, steinNature 256: 495 (1975)) or recombinant methods (US Pat. No. 4,816,567). May be. Alternatively, it may be isolated from a phage antibody library (Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1991)). Alternatively, it may be isolated from a single B cell clone (N. Biotechnol. 28 (5): 253-457 (2011)).
  • Humanized antibodies are also referred to as reshaped human antibodies.
  • non-human animals for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known.
  • General genetic recombination techniques for obtaining humanized antibodies are also known.
  • Overlap-Extension-PCR is known as a method for transplanting mouse antibody CDRs into human FRs.
  • FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site.
  • amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
  • Transgenic animals having all repertoires of human antibody genes are used as immunized animals, and desired by DNA immunization. Human antibodies can be obtained.
  • the V region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method.
  • Phages expressing scFv that bind to the antigen can be selected.
  • the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined.
  • the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector, whereby an expression vector can be prepared.
  • the human antibody is obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody.
  • These methods are already known (see International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).
  • variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen.
  • the antigen is not particularly limited, and any antigen may be used.
  • antigens include 17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 Adenosine Receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressins, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1
  • HGF Hemopoietic growth factor
  • Hep B gp120 Heparanase
  • heparin cofactor II hepatic growth factor
  • Bacillus anthracis protective antigen Hepatitis C virus E2 glycoprotein, Hepatitis E, Hepcidin, Her1, Her2 / neu ( ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, High molecular weight melanoma-associated antigen (HMW-MA A), HIV envelope proteins such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90
  • the site to be modified and the number of amino acids to be modified are not particularly limited.
  • amino acids present in CDR and / or FR can be appropriately modified.
  • the amino acid of the variable region is modified, although not particularly limited, it is preferable that the binding activity is maintained, for example, 50% or more, preferably 80% or more, more preferably 100% or more compared to before modification. It preferably has binding activity. Further, the binding activity may be increased by amino acid modification. For example, the binding activity may be 2 times, 5 times, 10 times, etc., compared to before the modification.
  • the amino acid sequence alteration may be at least one of amino acid residue substitution, addition, deletion, insertion and modification.
  • the modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine of the variable region is a modification well known to those skilled in the art. Therefore, the antibody of the present invention comprises a variable region in which the heavy chain is modified with pyroglutamic acid when the N-terminus of the heavy chain is glutamine.
  • variable region of the antibody of the present invention may be of any sequence, mouse antibody, rat antibody, rabbit antibody, goat antibody, camel antibody, humanized antibody obtained by humanizing these non-human antibodies, and human It may be a variable region of an antibody of any origin, such as an antibody.
  • “Humanized antibody” refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as the complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted.
  • CDR complementarity determination region
  • variable region of the antibody of the present invention has a pH dependence on the binding to the antigen, and may be able to repeatedly bind to the antigen (WO / 2009/125825).
  • the light chain constant region of an antibody has a ⁇ chain and ⁇ chain type constant region, but any light chain constant region may be used. Further, in the present invention, the light chain constant region may be a light chain constant region in which alterations such as amino acid substitution, addition, deletion, insertion and / or modification have been performed.
  • the heavy chain constant region of the antibody of the present invention for example, the heavy chain constant region of a human IgG antibody can be used, and preferably the heavy chain constant region of a human IgG1 antibody.
  • variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen. As long as the antigen binding activity of the amino acid sequence constituting the heavy chain variable region is maintained, modification of one or more amino acid residues is allowed.
  • Modification of the variable region also increases binding activity, improves specificity, decreases pI, imparts pH-dependent properties to antigen binding, improves binding thermal stability, improves solubility, stability to chemical modification Improve heterogeneity derived from glycans, identify immunogenicity using in silico prediction, or avoid T cell epitopes identified by in vitro T cell assays, or regular Implemented for the purpose of introducing T cell epitopes that activate tree T cells (mAbs 3: 243-247, 2011)
  • polypeptide of the present invention is a cell composed of an Fc fusion protein molecule (peptide Fc fusion protein) in which an Fc region is bound to another protein, a physiologically active peptide, or a polymer such as collagen or polylactic acid. It may be an Fc fusion protein molecule (scaffold Fc fusion protein) to which an outer matrix or the like is bound.
  • proteins and bioactive peptides include, but are not limited to, receptors, adhesion molecules, ligands, and enzymes.
  • Fc fusion protein molecule of the present invention include a protein in which an Fc domain is fused to a receptor protein that binds to a target.
  • a protein in which an Fc domain is fused to a receptor protein that binds to a target For example, TNFR-Fc fusion protein, IL1R-Fc fusion protein, VEGFR-Fc fusion protein, CTLA4 -Fc fusion proteins and the like (Nat Med. 2003 Jan; 9 (1): 47-52, BioDrugs. 2006; 20 (3): 151-60.).
  • the protein to be fused to the polypeptide of the present invention may be any molecule as long as it binds to the target molecule.
  • scFv molecule WO2005 / 037989
  • single domain antibody molecule WO2004 / 058821, WO2003 / 002609
  • antibody -Like molecule a compound that influences the degree of a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell in a cell sorting WO2004 / 020565
  • Affibody WO1995 / 001937
  • Avimer WO2004 / 044011, WO2005 / 040229
  • Adnectin WO2002 / 032925
  • the antibodies and Fc fusion protein molecules may also be multispecific antibodies such as bispecific antibodies that bind to multiple types of target molecules or epitopes.
  • the antibodies of the present invention also include modified antibodies.
  • modified antibody include antibodies bound to various molecules such as polyethylene glycol (PEG) and cytotoxic substances.
  • PEG polyethylene glycol
  • Such a modified antibody can be obtained by chemically modifying the antibody of the present invention. Methods for modifying antibodies have already been established in this field.
  • the antibody of the present invention may be a bispecific antibody.
  • a bispecific antibody refers to an antibody having variable regions that recognize different epitopes in the same antibody molecule, but the epitope may exist in different molecules or in the same molecule. It may be.
  • polypeptide of the present invention can be produced by methods known to those skilled in the art.
  • the antibody can be prepared by the following method, but is not limited thereto.
  • host cells for producing antibodies by introducing a gene encoding an isolated polypeptide into a suitable host are known. Any of these expression systems can be applied to isolate the antigen-binding molecule of the present invention.
  • animal cells When eukaryotic cells are used as host cells, animal cells, plant cells, or fungal cells can be used as appropriate. Specifically, the following cells can be exemplified as animal cells.
  • Mammalian cells CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / O, NS0, etc.), BHK (baby hamster kidney cell line), HEK293 (human embryonic kidney cell line) with sheared adenovirus (Ad) 5 DNA), PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), Hela, Vero, etc. (Current Protocols in Protein Science (May, 2001 , Unit 5.9, Table 5.9.1))
  • Amphibian cells Xenopus oocytes, etc.
  • DNA encoding the heavy chain of an antibody where one or more amino acid residues in the Fc region are the target DNA encoding the heavy chain substituted with other amino acids and DNA encoding the light chain of the antibody are expressed.
  • DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest for example, obtain the Fc region portion of the DNA encoding the natural heavy chain, It can be obtained by appropriately introducing substitutions so that a codon encoding a specific amino acid in the region encodes another amino acid of interest.
  • DNA encoding a protein in which one or more amino acid residues in the Fc region of the natural heavy chain are substituted with other amino acids of interest By designing a DNA encoding a protein in which one or more amino acid residues in the Fc region of the natural heavy chain are substituted with other amino acids of interest, and chemically synthesizing the DNA, It is also possible to obtain DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest.
  • the amino acid substitution site and the type of substitution are not particularly limited. Moreover, it is not restricted to substitution, either deletion, addition, insertion, or modification, or a combination thereof may be used.
  • DNA encoding a heavy chain in which one or more amino acid residues in the Fc region are substituted with other amino acids of interest can be produced by dividing into partial DNAs.
  • Examples of combinations of partial DNAs include DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. is not.
  • the DNA encoding the light chain can also be produced by dividing it into partial DNAs.
  • DNA encoding a heavy chain variable region is incorporated into an expression vector together with DNA encoding a heavy chain constant region to construct a heavy chain expression vector.
  • DNA encoding a light chain variable region is incorporated into an expression vector together with DNA encoding a light chain constant region to construct a light chain expression vector.
  • the DNA encoding the target antibody When the DNA encoding the target antibody is incorporated into an expression vector, it is incorporated into the expression vector so that it is expressed under the control of an expression control region such as an enhancer or promoter. Next, host cells are transformed with this expression vector to express the antibody. In that case, a combination of an appropriate host and an expression vector can be used.
  • vectors examples include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script.
  • pGEM-T pDIRECT, pT7 and the like can be used in addition to the above vector.
  • an expression vector is particularly useful.
  • an expression vector for example, when the host is E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341). , 544-546; FASEB J. (1992) 6, 2422-2427, incorporated herein by reference in its entirety, araB promoter (Better et al., Science (1988) 240, 1041-1043, in its entirety by reference) Are incorporated herein), or have a T7 promoter or the like.
  • such vectors include pGEX-5X-1 (Pharmacia), “QIAexpress® system” (QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase).
  • pGEX-5X-1 Pulacia
  • QIAexpress® system QIAGEN
  • pEGFP pEGFP
  • pET in this case, the host expresses T7 RNA polymerase.
  • BL21 is preferred).
  • the vector may also contain a signal sequence for polypeptide secretion.
  • a signal sequence for polypeptide secretion the pelB signal sequence (Lei, S. P. et al J. Built in).
  • Introduction of a vector into a host cell can be performed using, for example, the lipofectin method, the calcium phosphate method, or the DEAE-Dextran method.
  • vectors for producing the polypeptide of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS® (Nucleic® Acids.® Res.
  • pEF Bacillus subtilis-derived expression vectors
  • pCDM8 Bacillus subtilis-derived expression vectors
  • insect cell-derived expression vectors eg “Bac-to-BAC baculovirus expression system” (GIBCO BRL), pBacPAK8)
  • plant-derived expression vectors eg, pMH1, pMH2
  • animal virus-derived expression vectors eg, pHSV, pMV, pAdexLcw
  • retrovirus-derived expression vectors eg, pZIPneo
  • yeast-derived expression vectors eg, “Pichia® Expression® Kit” (manufactured by Invitrogen), pNV11, SP-Q01
  • Bacillus subtilis-derived expression vectors for example, pPL608, pKTH50.
  • promoters required for expression in cells such as SV40 promoter (Mulligan et al., Nature (1979) 277, 108, incorporated herein by reference in its entirety), MMTV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322, incorporated herein in its entirety by reference), It is essential to have a CAG promoter (Gene.
  • a CMV promoter etc.
  • a gene for selecting transformed cells for example, More preferably, it has a drug resistance gene that can be discriminated by a drug (neomycin, G418, etc.).
  • examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • the EBNA1 protein is co-expressed for the purpose of increasing the copy number of the gene.
  • a vector having the replication origin OriP is used. (Biotechnol Bioeng. 2001 Oct 20; 75 (2): 197-203., Biotechnol Bioeng. 2005 Sep 20; 91 (6): 670-7.)
  • a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway for example, , PCHOI, etc.
  • amplifying with methotrexate (MTX) for example, COS with a gene expressing SV40 T antigen on the chromosome
  • COS with a gene expressing SV40 T antigen on the chromosome An example is a method of transforming a cell with a vector (such as pcD) having an SV40 replication origin.
  • a vector such as pcD
  • the replication origin those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used.
  • the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • Antibody recovery can be performed, for example, by culturing transformed cells and then separating them from the inside of the cell or the culture solution of molecularly transformed cells.
  • methods such as centrifugation, ammonium sulfate fractionation, salting out, ultrafiltration, 1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, and gel filtration chromatography are used. It can carry out in combination as appropriate.
  • the Knobs-into-holes technique can be used as an efficient method for producing bispecific antibodies. Specifically, in order to produce the heterodimerized polypeptide of the present invention, polypeptides having different amino acids are associated with each other, or the target heterodimerized polypeptide is separated from other homodimerized polypeptides. There is a need.
  • amino acid residues that contact at the interface of other constant regions of the H chain include, for example, EU in the CH3 region Numbering region 356, EU numbering 439th residue, EU numbering 357th residue, EU numbering 370th residue, EU numbering 399th residue, EU numbering 409th residue Can be mentioned.
  • a set of 3 amino acid residues can be an antibody having the same type of charge; (1) amino acid residues contained in the H chain CH3 region, wherein the amino acid residues at EU positions 356 and 439; (2) amino acid residues contained in the H chain CH3 region, EU amino acid residues at positions 357 and 370, (3) Amino acid residues contained in the H chain CH3 region, and amino acid residues at EU positions 399 and 409.
  • a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region One to three amino acid residues corresponding to the amino acid residue groups shown in (1) to (3) having the same kind of charge in the first H chain CH3 region are the first H chain CH3 region.
  • amino acid residues described in (1) to (3) above are close to each other when they are associated.
  • a person skilled in the art finds a site corresponding to the amino acid residue described in (1) to (3) above by using homology modeling using commercially available software for the desired H chain CH3 region or H chain constant region.
  • the amino acid residue at the site can be subjected to modification.
  • the “charged amino acid residue” is preferably selected from, for example, amino acid residues included in any of the following groups (X) or (Y); (X) glutamic acid (E), aspartic acid (D), (Y) Lysine (K), Arginine (R), Histidine (H).
  • “having the same kind of charge” means, for example, that two or more amino acid residues each have an amino acid residue included in any one group of (X) or (Y). Means that. “Having an opposite charge” means, for example, an amino acid residue in which at least one amino acid residue of two or more amino acid residues is included in any one group of the above (X) or (Y) Means that the remaining amino acid residues have amino acid residues contained in different groups.
  • the first H chain CH3 region and the second H chain CH3 region may be cross-linked by a disulfide bond.
  • amino acid residues to be modified are not limited to the above-described antibody variable region or antibody constant region amino acid residues.
  • a person skilled in the art can find amino acid residues that form an interface for polypeptide variants or heterologous multimers by homology modeling using commercially available software, etc. Amino acid residues can be subjected to modification.
  • the heterodimerized polypeptide can also be obtained by separating and purifying the heterodimerized polypeptide from the homodimerized polypeptide. Is possible.
  • a homodimerized polypeptide consisting of only two first polypeptides, two second polypeptides A homodimerized polypeptide consisting only of the polypeptide is mixed as an impurity.
  • a known technique can be used as a method for efficiently removing these two types of homodimerized polypeptides.
  • the amino acid modification for imparting the difference in isoelectric point is not particularly limited as long as the difference in isoelectric point between the two polypeptides to be associated is produced, such as a decrease in immunogenicity, etc.
  • Other desired amino acid modifications may be included.
  • the amino acid to be modified is preferably an amino acid at a position having little influence on the binding activity to the Fc ⁇ receptor. Further, it may be an amino acid modification that enhances the binding activity to a desired Fc ⁇ receptor.
  • the amino acid positions for such modification include, for example, the EU numbering 137th Gly, 138th Gly in the amino acid sequence of the first polypeptide and / or the second polypeptide, 139 th Thr, 147 th Lys, 192 th Ser, 193 th Leu, 196 th Gln, 198 th Tyr, 199 th Ile, 203 th Asn, 214 th Lys, 231 th Ala, 233rd Glu, 242nd Leu, 263th Val, 272th Glu, 274th Lys, 278th Tyr, 288th Lys, 290th Lys, 316th Gly, 317th Lys, 320th Lys, 324th Lys, 335th Thr, 337th Ser, 338th Lys, 340th Lys, 341th Gly, 358th Leu, 360th Lys, 362th Gln, 364 Selected from the group consisting of Ser of the eye, Ser of the eye
  • Gly 138th Gly, 147th Lys, 192th Ser, 193rd Leu, 196th Gln, 199th Ile, 203th Asn, 214th Lys, 274th Lys, More preferably, at least one amino acid mutation selected from the group consisting of 288th Lys, 358th Leu, 384th Asn and 397th Val is introduced.
  • EU numbering 137th Gly, 138th Gly, 139th Thr, 147th Lys EU numbering 137th Gly, 138th Gly, 139th Thr, 147th Lys, 192th Ser 193rd Leu, 198th Tyr, 199th Ile, 203th Asn, 214th Lys, 274th Lys, 278th Tyr, 288th Lys, 290th Lys, 316th Gly, 317th Lys, 320th Lys, 324th Lys, 335th Thr, 337th Ser, 338th Lys, 340th Lys, 341th Gly, 358th Leu
  • EU numbering 196th Gln, 199th Ile, 272th Glu, 358th Leu, 383th Ser, and 397th Val are selected from the group consisting of: At least one amino acid mutation has been introduced, and in the amino acid sequence of the other polypeptide, EU numbering 137th Gly, 138th Gly, 139th Thr, 147th Lys, 192th Ser, 193rd Leu, 199th Ile, 203th Asn, 214th Lys, 274th Lys, 288th Lys, 290th Lys, 360th Lys, 360th Lys, 362th Gln, 383th At least one selected from the group consisting of: Ser, 384th Asn, 385th Gly, 386th Gln, 390th Asn, and 422th Val
  • amino acid mutations are introduced.
  • At least one amino acid mutation selected from the group consisting of EU numbering 196th Gln, 199th Ile, 358th Leu and 397th Val is introduced.
  • EU numbering 137th Gly, 138th Gly, 147th Lys, 192th Ser, 193rd Leu, 199th Ile, 203th Asn, 214th More preferably, at least one amino acid mutation selected from the group consisting of Lys, 274th Lys, 288th Lys and 384th Asn is introduced.
  • the amino acid modification is not particularly limited as long as it is modified so that a difference occurs in the isoelectric point between the two polypeptides to be associated after modification.
  • Preferred modifications for increasing the isoelectric point include, for example, EU numbering 196th amino acid substitution to Lys, 231st amino acid substitution to Lys, 242nd amino acid substitution to Lys, 263rd Substitution of amino acid to Lys, substitution of 272nd amino acid to Lys, substitution of 316th amino acid to Lys, substitution of 364th amino acid to Lys, substitution of 358th amino acid to Lys, 383rd Examples include substitution of an amino acid with Lys, substitution of the 387th amino acid with Lys, and substitution of the 397th amino acid with Lys.
  • Preferred modifications for lowering the isoelectric point include, for example, substitution of the 137th amino acid to Glu, substitution of the 138th amino acid to Glu, substitution of the 139th amino acid to Glu, 147 Substitution of Glu for the 1st amino acid, substitution of Glu for the 198th amino acid, substitution of Asp for the 203rd amino acid, substitution of Thr for the 214th amino acid, substitution of Gln for the 274th amino acid, 278 Substitution of Glu for the 2nd amino acid, substitution of Glu for the 288th amino acid, substitution of Glu for the 290th amino acid, substitution of Glu for the 316th amino acid, substitution of Glu for the 317th amino acid, 320 Substitution of amino acid Glu, 324 amino acid substitution of Glu, 335th amino acid substitution of Glu, 337th amino acid substitution of Asp, 338th amino acid substitution Substitution of acid to Glu, substitution of amino acid 340 to Glu, substitution of amino acid 341 to Glu, substitution of
  • substitution of the 138th amino acid with Ser substitution of the 192nd amino acid with Asn
  • substitution of the 193rd amino acid with Phe and the substitution of the 199th amino acid with Thr may be combined.
  • reduced immunogenicity is sufficient to reduce the continued effect of antibody administration for a time sufficient to achieve a therapeutic effect in at least a majority of individuals to whom the antibody is administered. It does not cause the production of any amount of antibody.
  • the level of immunogenicity in humans is predicted using 1% threshold analysis of all alleles using the MHC class II binding prediction program Propred (http://www.imtech.res.in/raghava/propred) be able to.
  • Other available programs are: -Rankpep (http://bio.dfci.harvard.edu/Tools/rankpep.html)
  • -Epibase Algonomics proprietary software: algonomics.com
  • a polypeptide with reduced immunogenicity does not contain a peptide that is predicted to bind to an MHC class II allele that is highly expressed in the target population compared to the initial donor molecule, or the number of such peptides.
  • Functional analysis of MHC class II binding is to test for their ability to generate overlapping peptides corresponding to the protein of interest and elicit T cell activation (T cell proliferation analysis) or reporter peptides Can be performed by replacing known MHC class II binding peptides (Hammer et al. (J. Exp. Med. (1994) 180, 2353-2358)).
  • heterodimerized antibodies As a method for purifying heterodimerized antibodies, a heterodimerized antibody consisting of a mouse IgG2a H chain that binds to protein A and a rat IgG2b H chain that does not bind to protein A has been purified using protein A. Has been reported (WO98050431, WO95033844).
  • the present invention provides the Fc region as a heterodimer by introducing an amino acid mutation into the first polypeptide and / or the second polypeptide constituting the Fc region.
  • a method for producing a polypeptide containing an Fc region which comprises a step of modifying the function of the Fc region as compared to a case of becoming a homodimer.
  • a production method including the following steps can be mentioned; (A) in a polypeptide containing an Fc region, introducing an amino acid mutation into the first polypeptide and / or the second polypeptide constituting the Fc region; (B) measuring the function of the Fc region of the heterodimer comprising the first polypeptide and the second polypeptide into which mutations have been introduced in the step (a), and (c) the parent polypeptide or A step of selecting a polypeptide in which the function of the Fc region is modified as compared to the case where the Fc region becomes a homodimer by introducing an amino acid mutation.
  • step (D) a step of displaying a heterodimerized polypeptide comprising a first polypeptide having an Fc region and a second polypeptide on the displayed ribosome, phage, or yeast.
  • a preferred embodiment is a method for producing a polypeptide comprising an Fc region, (A) Modifying the nucleic acid encoding the polypeptide so that the function of the Fc region is modified as compared to the case where the Fc region becomes a homodimer by introduction of a parent polypeptide or amino acid mutation Process, (B) introducing the nucleic acid into a host cell and culturing so as to express the polypeptide; (C) recovering the polypeptide from the host cell culture.
  • antibodies and Fc fusion protein molecules produced by the production method are also included in the present invention.
  • amino acid mutations introduced by this method are not particularly limited, but amino acid mutations involved in alteration of the function of each Fc region described in the specification (more specifically, in the examples) Amino acid mutations specifically disclosed in the table can be exemplified.
  • the present invention also relates to a method for modifying the function of a polypeptide comprising an Fc region, wherein the Fc region is introduced by introducing an amino acid mutation into the first polypeptide and / or the second polypeptide.
  • a method for altering the function of a polypeptide comprising the step of making the region a heterodimer and altering the function of the Fc region as compared to the case where the Fc region becomes a homodimer by introduction of amino acid mutations .
  • a modification method including the following steps can be mentioned; (A) in a polypeptide containing an Fc region, introducing an amino acid mutation into the first polypeptide and / or the second polypeptide constituting the Fc region; (B) measuring the function of the Fc region of the heterodimer comprising the first polypeptide and the second polypeptide into which mutations have been introduced in the step (a), and (c) the parent polypeptide or A step of selecting a polypeptide in which the function of the Fc region is modified as compared to the case where the Fc region becomes a homodimer by introducing an amino acid mutation.
  • a modification method comprising: (A) Modifying the nucleic acid encoding the polypeptide so that the function of the Fc region is modified as compared to the case where the Fc region becomes a homodimer by introduction of a parent polypeptide or amino acid mutation Process, (B) introducing the nucleic acid into a host cell and culturing so as to express the polypeptide; (C) recovering the polypeptide from the host cell culture.
  • a modification method comprising: (A) Modifying the nucleic acid encoding the polypeptide so that the function of the Fc region is modified as compared to the case where the Fc region becomes a homodimer by introduction of a parent polypeptide or amino acid mutation Process, (B) introducing the nucleic acid into a host cell and culturing so as to express the polypeptide; (C) recovering the polypeptide from the host cell culture.
  • antibodies and Fc fusion protein molecules modified by the modification method are also included in the present invention.
  • amino acid mutations introduced by this method are not particularly limited, but amino acid mutations involved in alteration of the function of each Fc region described in the specification (more specifically, Examples The amino acid mutations specifically disclosed in the table of FIG.
  • the present invention provides a polypeptide comprising a heterodimer comprising a first polypeptide and a second polypeptide, wherein the first polypeptide and the second polypeptide are Provided with a nucleic acid encoding a polypeptide comprising an Fc region into which a mutation has been introduced and a function of the Fc region being altered compared to a polypeptide having an Fc region into which no mutation has been introduced To do.
  • the nucleic acid of the present invention may be in any form such as DNA or RNA.
  • the present invention provides a vector containing the nucleic acid of the present invention.
  • the type of vector can be appropriately selected by those skilled in the art depending on the host cell into which the vector is introduced. For example, the above-described vectors can be used.
  • the present invention relates to a host cell transformed with the vector of the present invention.
  • the host cell can be appropriately selected by those skilled in the art.
  • the above-described host cell can be used.
  • the present invention provides a pharmaceutical composition containing the polypeptide of the present invention.
  • the pharmaceutical composition of the present invention can be formulated by a known method by introducing a pharmaceutically acceptable carrier in addition to the antibody or Fc fusion protein molecule which is the polypeptide of the present invention.
  • a pharmaceutically acceptable carrier in addition to the antibody or Fc fusion protein molecule which is the polypeptide of the present invention.
  • it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable solution, or an injection of suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice.
  • silicic acid lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylacetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride
  • the carrier include polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethylcellulose, corn starch, and inorganic salts. The amount of active ingredient in these preparations is such that an appropriate volume within the indicated range can be obtained.
  • a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • aqueous solutions for injection examples include isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizers such as Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), HCO-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • buffer for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, procaine hydrochloride, stabilizer, for example, benzyl alcohol, phenol, antioxidant.
  • the prepared injection solution is usually filled into a suitable ampoule.
  • Administration is preferably parenteral administration, and specific examples include injection, nasal administration, pulmonary administration, and transdermal administration.
  • injection form it can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the pharmaceutical composition containing the polypeptide or the polynucleotide encoding the polypeptide can be selected, for example, in the range of 0.0001 mg / kg to 1000 mg / kg body weight at a time. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
  • the pharmaceutical composition containing the polypeptide of the present invention is useful as an active ingredient of a therapeutic agent or preventive agent for cancer, immunoinflammatory diseases and the like.
  • Example 1 Description of concept of improving Fc ⁇ R recognition ability by heterodimerized antibody
  • the antibody interacts with various molecules such as FcRn, Fc ⁇ R and complement through the Fc region. Since one molecule of FcRn, which is one of the Fc ligands, is bound to each H chain (heavy chain) of the antibody, two molecules of FcRn bind to one molecule of antibody (FIG. 1). Since FcRn is expressed on the cell membrane in vivo, the antibody recognizes two molecules of FcRn in contrast via the same part of each H chain (Nature, 372: 379-383, 1994).
  • IgA belonging to the same immunoglobulin family as IgG also recognizes Fc ⁇ R, which is a two-molecule IgA receptor symmetrically, as in the relationship between IgG and FcRn (FIG. 2) (Nature, 423: 614-620, 2003).
  • Fc ⁇ R binds only one molecule to one antibody molecule (FIG. 3) (JBC, 276: 16469-16477, 2001).
  • IgG recognizes Fc ⁇ R through the CH2 domains of both H chains, but the site interacting with Fc ⁇ R is different in each H chain. For example, if the left H chain in FIG. 3 is the HA chain and the right H B chain, the EU numbering 327th Ala interacts with the Fc ⁇ R in each of the HA and H B chains. The nature of the partner residues that interact in the H chain is different (FIG. 4).
  • a modification that enhances the binding to Fc ⁇ R has been sought by using a homodimerized antibody in which the same modification is introduced into each H chain of the antibody.
  • the modification enhances the binding activity to Fc ⁇ R in one H chain.
  • the other H chain may inhibit binding.
  • a homodimerized antibody in which such a modification is introduced into both H chains does not necessarily enhance the binding activity to Fc ⁇ R, but a heterodimerized antibody in which a modification is introduced into only one H chain can enhance the binding activity to Fc ⁇ R. There is sex.
  • heterodimerization consisting of a first polypeptide in which a modification that is thought to modify the binding activity to Fc ⁇ R is introduced only into one H chain, and a second polypeptide that has not been modified.
  • the binding to the Fc ⁇ R of the antibody and a homodimerized antibody composed of the first polypeptide in which the modification considered to modify the binding activity to Fc ⁇ R was introduced only into one H chain was compared.
  • the modification enhances the binding activity to Fc ⁇ R
  • the homodimerized antibody should surely be superior to the heterodimerized antibody.
  • the antibody Fc recognizes Fc ⁇ R asymmetrically, depending on the type of modification, the heterodimerized antibody should show stronger binding activity to Fc ⁇ R than the homodimerized antibody. .
  • variable region of the H chain of the antibody the variable region of the anti-glypican 3 antibody having improved CDR of the pH 7 of the anti-glypican 3 antibody disclosed in WO2009 / 041062 is used, and GpH7 (SEQ ID NO: 1) is used. Call it.
  • the following antibody H chain constant region was used, which was used in combination with GpH7.
  • the name of the antibody H chain constant region is H1
  • the sequence corresponding to the H chain of the antibody having GpH7 in the variable region is referred to as GpH7-H1.
  • change of an amino acid it shows like D356K.
  • the first alphabet (corresponding to D in D356K) means the alphabet when the amino acid residue before modification is shown in single letter notation, and the following number (corresponding to 356 in D356K) means the EU numbering of the modified part
  • the last alphabet (corresponding to K in D356K) means the alphabet in the case where the amino acid residue after modification is indicated by a single letter.
  • GpH7-G1d (SEQ ID NO: 2) from which Gly and Lys at the C-terminus of IgG1 having GpH7 in the variable region have been removed
  • GpH7-A5 (SEQ ID NO: 3) in which mutations D356K and H435R have been introduced into GpH7-G1d
  • GpH7 GpH7-B3 (SEQ ID NO: 4) in which a mutation of K439E was introduced into -G1d was prepared according to the method of Reference Example 1.
  • H435R is a modification that prevents binding to Protein ProA, and was introduced to efficiently separate heterozygotes and homozygotes (see Reference Examples 3, 4, and 5).
  • GpL16-k0 SEQ ID NO: 5
  • an L chain of glypican 3 antibody with improved plasma kinetics disclosed in WO2009 / 041062 was used as the L chain of the antibody.
  • an expression vector in which GpL16-k0 was inserted as an antibody L chain was used as an antibody L chain, and GpH7-A5 introduced with a modification of D356K as one of the antibody H chains Heterodimerization using an expression vector in which a further modified sequence is inserted into GpH7-B3 into which the K439E modification has been introduced as another antibody H chain.
  • the antibody was expressed efficiently.
  • the antibody obtained by purification after expression includes, for example, one of the expression vectors corresponding to the antibody H chain used for the expression of the heterodimerized antibody is GpH7-H1, the other antibody H chain is GpH7-H2, and the antibody L chain.
  • the expression vector corresponding to is GpL16-k0, it is expressed as GpH7-H1 / GpH7-H2 / GpL16-k0.
  • the sequence into which the modification of D356K and H435R was introduced was made to correspond to H1, and the sequence into which the modification of K439E was introduced to H2.
  • the expression vector corresponding to the antibody H chain used for the expression of the homodimerized antibody is GpH7-H1
  • the expression vector corresponding to the antibody L chain is GpL16-k0
  • GpH7-H1 / GpL16 Expressed as -k0 Using the prepared antibody, the binding activity to Fc ⁇ R was measured by the method described in Reference Example 2.
  • homodimerized antibody GpH7-A5 / GpL16-k0 (SEQ ID NOs: 3, 5) in which D356K and H435R are introduced into both H chains, and homodimerized antibody GpH7- in which K439E is introduced into both H chains.
  • Heterodimerized antibody GpH7-A5 / GpH7-B3 / in which D356K and H435R are introduced into one H chain and K439E is introduced into the other H chain B3 / GpL16-k0 (SEQ ID NOs: 4, 5) GpL16-k0 (SEQ ID NOs: 3, 4, 5) was prepared. The results of comparing the binding activities of these antibodies with each Fc ⁇ R according to the method of Reference Example 2 are summarized in FIG.
  • GpH7-G1d / GpL16-k0 and GpH7-A5 / GpH7-B3 / GpL16-k0 were compared, no significant change was observed in the binding activity to each Fc ⁇ R.
  • GpH7-A5 / GpL16-k0 and GpH7-B3 / GpL16-k0 maintained at least 80% of the binding activity to any Fc ⁇ R compared to GpH7-G1d / GpL16-k0.
  • GpH7-A26 (SEQ ID NO: 6) in which G237A mutation was introduced into GpH7-A5 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A26 / GpH7-B3 / GpL16-k0 in which G237A is introduced into only one H chain using GpH7-A26, GpH7-B3 as the H chain and GpL16-k0 as the L chain (SEQ ID NO: : 4,4,5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A26 / GpH7-B3 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0.
  • the homodimerized antibody GpH7-A26 / GpL16-k0 with the same modification added to both H chains has a weaker binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb than GpH7-A5 / GpH7-B3 / GpL16-k0. It was.
  • G237A is a modification that enhances the binding activity to Fc ⁇ RIIa ⁇ R and Fc ⁇ RIIb when introduced into only one H chain, although it decreases the binding activity to Fc ⁇ RIIaIIR and Fc ⁇ RIIb when introduced into both H chains. It became clear.
  • GpH7-A29 (SEQ ID NO: 7) in which G237L mutation was introduced into GpH7-A5 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A29 / GpH7-B3 / GpL16-k0 in which G237L is introduced into only one H chain using GpH7-A29, GpH7-B3 as the H chain and GpL16-k0 as the L chain (SEQ ID NO: : 7, 4 and 5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A29 / GpH7-B3 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0. Nevertheless, the homodimerized antibody GpH7-A29 / GpL16-k0 with the same modification added to both heavy chains has a weaker binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb than GpH7-A5 / GpH7-B3 / GpL16-k0. It was.
  • G237L is a modification that has the effect of enhancing the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb when introduced into only one H chain, although it decreases the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb when introduced into both H chains. It became clear that there was.
  • GpH7-A42 (SEQ ID NO: 8) in which the L328E mutation was introduced into GpH7-A5 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A42 / GpH7-B3 / GpL16-k0 in which L328E is introduced into only one H chain using GpH7-A42, GpH7-B3 as the H chain and GpL16-k0 as the L chain (SEQ ID NO: : 8, 4, 5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A42 / GpH7-B3 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0.
  • the binding activity to Fc ⁇ RIIa R is less than that of GpH7-A5 / GpH7-B3 / GpL16-k0, and Fc ⁇ RIIb
  • the binding activity against GpH7-A42 / GpH7-B3 / GpL16-k0, in which L328E was introduced only into one H chain was greater. From this, it was clarified that L328E is a modification having a higher effect of enhancing the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb when introduced into only one H chain rather than into both H chains.
  • GpH7-A43 (SEQ ID NO: 9) in which the L328D mutation was introduced into GpH7-A5 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A43 / GpH7-B3 / GpL16-k0 in which L328D is introduced into only one H chain using GpH7-A43, GpH7-B3 as H chain and GpL16-k0 as L chain (SEQ ID NO: : 9, 4, 5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A43 / GpH7-B3 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0.
  • the binding activity to Fc ⁇ RIIa R is less than that of GpH7-A5 / GpH7-B3 / GpL16-k0, and Fc ⁇ RIIb
  • the binding activity against GpH7-A43 / GpH7-B3 / GpL16-k0, in which L328D was introduced only into one H chain was greater. From this, it was clarified that L328D is a modification having an effect of enhancing the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb when introduced into only one H chain rather than into both H chains.
  • GpH7-B16 (SEQ ID NO: 10) in which the L234E mutation was introduced into GpH7-B3 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A5 / GpH7-B16 / GpL16-k0 in which L234E is introduced into only one H chain using GpH7-A5, GpH7-B16 as H chain and GpL16-k0 as L chain (SEQ ID NO: : 3, 10, 5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A5 / GpH7-B16 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIIa F and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0. Nevertheless, the homodimerized antibody GpH7-B16 / GpL16-k0 with the same modification added to both H chains has a weaker binding activity to Fc ⁇ RIIIa F and Fc ⁇ RIIb than GpH7-A5 / GpH7-B3 / GpL16-k0. It was.
  • L234E is a modification that, when introduced into both H chains, attenuates the binding activity to Fc ⁇ RIIIa F and Fc ⁇ RIIb, but has the effect of enhancing the binding activity to Fc ⁇ RIIIa F and Fc ⁇ RIIb when introduced into only one H chain. It became clear.
  • GpH7-B17 (SEQ ID NO: 11) in which the L234D mutation was introduced into GpH7-B3 was prepared according to the method of Reference Example 1.
  • Heterodimerized antibody GpH7-A5 / GpH7-B17 / GpL16-k0 in which L234D is introduced only into one H chain using GpH7-A5, GpH7-B17 as H chain and GpL16-k0 as L chain (SEQ ID NO: : 3, 11, 5) were expressed according to the method of Reference Example 1.
  • the heterodimerized antibody GpH7-A5 / GpH7-B17 / GpL16-k0 enhanced the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb compared to GpH7-A5 / GpH7-B3 / GpL16-k0. Nevertheless, the homodimerized antibody GpH7-B17 / GpL16-k0 with the same modification added to both H chains has a weaker binding activity to Fc ⁇ RIIaFR and Fc ⁇ RIIb than GpH7-A5 / GpH7-B3 / GpL16-k0. It was.
  • L234D is a modification that, when introduced into both H chains, reduces the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb, but when introduced into only one H chain, it has the effect of enhancing the binding activity to Fc ⁇ RIIa R and Fc ⁇ RIIb. It became clear.
  • Example 3 Confirmation of Fc ⁇ R recognition direction by heterodimerized antibody As shown in Example 2, it is clear that by using a heterodimerized antibody, the binding activity to Fc ⁇ R can be enhanced compared to a homodimerized antibody. became.
  • the modification of Example 2 was introduced into both heavy chains of the antibody, the binding activity to Fc ⁇ R was decreased rather than the natural antibody. From this result, when the modification introduced into the heterodimerized antibody is introduced into one H chain, the binding activity to Fc ⁇ R is enhanced, but when introduced into both chains, the Fc ⁇ R is bound in the state, In one chain, the modified residue enhances binding, but the other chain is thought to inhibit the interaction with Fc ⁇ R.
  • the state in which Fc ⁇ R in FIG. 3 is coupled from the back side of the figure is referred to as “coupling from the X direction”, and conversely, the coupling from the front side of the figure is referred to as “coupling from the Y direction”.
  • Homodimerized antibodies change Fc ⁇ R binding activity equally in both the X and Y directions, whereas heterodimerized antibodies tend to bind to Fc ⁇ R with a bias toward binding from either the X or Y direction. It was thought to be changing.
  • P329 of H A chain forms a 87 th and 110 th Trp and hydrophobic core of Fc [gamma] RIII
  • P329 of H B chain does not directly interact with Fc ⁇ RIII (Nature, 372: 379 - 383, 1994 (FIG. 12).
  • substitution of P329 in the HA chain with a charged residue would disrupt this hydrophobic core and inhibit binding from the X direction shown in FIG. 12, but from the opposite Y direction.
  • P329 of H B-chain which are not involved in binding are not substituted, since it is intact, and expected to not have a major effect on the binding from the Y-direction.
  • the antibodies obtained by purification are GpH7-A5 / GpH7-B12 / GpL16-k0, GpH7-A5 / GpH7-B13 / GpL16-k0, GpH7-A5 / GpH7-B14 / GpL16-k0 as heterodimerized antibodies, GpH7-A5 / GpH7-B15 / GpL16-k0, and homodimerized antibodies include GpH7-B12 / GpL16-k0, GpH7-B13 / GpL16-k0, GpH7-B14 / GpL16-k0, GpH7-B15 / GpL16- k0.
  • the binding to each Fc ⁇ R was measured by the method described in Reference Example 2, and the results are shown in FIG.
  • Heterodimerized antibodies GpH7-A5 / GpH7-B12 / GpL16-k0 and GpH7-A5 / GpH7-B13 / GpL16-k0 introduced with P329R and P329K have a binding activity to Fc ⁇ R of GpH7-A5 / GpH7-B3 / GpL16-k0
  • the binding activity to each Fc ⁇ R was about 1/5 to 1/4, and no binding to Fc ⁇ R was observed with the homodimerized antibodies GpH7-B12 / GpL16-k0 and GpH7-B13 / GpL16-k0.
  • the binding activity of P329D and P329E-introduced heterodimerized antibodies GpH7-A5 / GpH7-B14 / GpL16-k0 and GpH7-A5 / GpH7-B15 / GpL16-k0 to Fc ⁇ R is GpH7-A5 / GpH7-
  • the binding activity of B3 / GpL16-k0 was about 1/5 to 1/4 of the binding activity to each Fc ⁇ R, and the binding activity of more than 1/2 was maintained except for Fc ⁇ RIa.
  • G237A and L234D which enhance the binding activity to Fc ⁇ R by heterodimerization found in Example 2, are unidirectionally enhanced in the interaction with Fc ⁇ R.
  • a modified product was prepared in combination with each other, and verified by comparing the binding activity of each modified product to each Fc ⁇ R.
  • GpH7-B12 SEQ ID NO: 12
  • the P329R mutation is introduced into GpH7-B3, so that the P329R mutation is introduced into the same H chain as K439E
  • the P329R mutation is introduced into the same H chain as D356K and H435R.
  • GpH7-A48 (SEQ ID NO: 16) with P329R introduced into GpH7-A5, GpH7-A45 (SEQ ID NO: 17) with G237A and P329R mutations introduced into GpH7-A5, and L234D and P329R into GpH7-B5
  • An expression vector into which GpH7-B41 (SEQ ID NO: 18) into which the mutation was introduced was inserted was prepared by the method described in Reference Example 1. According to the method of Reference Example 1, G237A or L234D and P329R are introduced into one H chain using these expression vectors and GpL16-k0, which is an expression vector corresponding to the antibody L chain. Expressed (Table 1).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • GpH7-A5 / GpH7-B3 / GpL16-k0 was used as a polypeptide for introducing a modification
  • GpH7-A5 / GpH7-B12 / GpL16 was used as a modified substance in which P329R was introduced into one H chain.
  • G237A was introduced into the same H chain as P329R, and G237A was introduced into the H chain different from GpH7-A45 / GpH7-B3 / GpL16-k0 and P329R.
  • GpH7-A26 / GpH7-B12 / GpL16-k0 was compared according to the method of Reference Example 2 (FIG. 14).
  • GpH7-A26 / GpH7-B3 / GpL16-k0 a heterodimerized antibody in which G237A is introduced only into one H chain, binds to Fc ⁇ RIIaIIR and IIb more than GpH7-A5 / GpH7-B3 / GpL16-k0 was strengthening.
  • Fc ⁇ R is used in GpH7-A26 / GpH7-B12 / GpL16-k0, in which G237A is introduced into the other H chain.
  • GpH7-A5 / GpH7-B17 / GpL16-k0 a heterodimerized antibody in which L234D is introduced only into one H chain, has enhanced binding to Fc ⁇ RIIaIIR and IIb than GpH7-A5 / GpH7-B3 / GpL16-k0 It was.
  • Fc ⁇ R is used in GpH7-A48 / GpH7-B17 / GpL16-k0 in which L234D is introduced into the other H chain. Binding to Fc ⁇ R other than Ia was attenuated, and the effect of enhancing binding of L234D to Fc ⁇ RIIaIIR and IIb was not observed.
  • both G237A and L234D had the same direction of increasing (or decreasing) the binding activity of the antibody and Fc ⁇ R as P329R.
  • the hetero-modification strengthened the binding to Fc ⁇ R by biasing in either the X or Y direction. From this result, it was shown that the heterodimerized antibody enhanced the interaction with Fc ⁇ R asymmetrically.
  • Example 4 Binding comparison of heterodimerized antibody and homodimerized antibody to Fc ⁇ R From Example 2, by adding different modifications to the two H chains of the antibody, rather than adding the same modification to the two H chains, It was found that the binding to Fc ⁇ R through the Fc region of the antibody can be enhanced. Therefore, in order to find a modification having such a property, the following experiment was conducted.
  • GpH7-B3 (SEQ ID NO: 4) prepared in Example 2, the amino acid considered to be involved in the binding to Fc ⁇ R and its surrounding amino acids, specifically, EU numbering 234 Leu, EU numbering 235 Leu EU numbering 236th Gly, EU numbering 237th Gly, EU numbering 238th Pro, EU numbering 329th Ser, EU numbering 265th Asp, EU numbering 266th Val, EU numbering 267th Ser, EU numbering 268th His, EU numbering 269th Glu, EU numbering 270th Asp, EU numbering 271th Pro, EU numbering 295th Gln, EU numbering 296th Tyr, EU numbering 298th Ser, EU Numbering 300th Tyr, EU numbering 324th Ser, EU numbering 325th Asn, EU numbering 326th Lys, EU numbering 327th Ala, EU numbering 328th Leu, EU numbering 329th Pro, EU numbering 330th Ala, EU numbering 331th Pro, EU number
  • each GpH7-B3 variant is expressed as A_B
  • A is the EU numbering of the residue to be modified
  • the information on the type of amino acid is written in one-letter code
  • B is the information on the amino acid after substitution.
  • B3_variant with EU numbering 234 Leu as Gly is named L234_01G.
  • L234_01G the numerical value peculiar to the amino acid was described for convenience before the one-letter code.
  • the symbols 18N for Asn, 19Q for Gln, and 20W for Trp were used.
  • a homodimerized antibody in which mutations were introduced into two H chains was prepared by the following procedure.
  • the antibody was prepared according to the method of Reference Example 1, using GpH7-B3 variant as the H chain and GpL16-k0 (SEQ ID NO: 5) as the L chain.
  • the homodimerized antibody in which mutations are introduced into both H chains thus prepared is called Ho Ab.
  • a heterodimerized antibody in which mutation was introduced into only one H chain was prepared by the following procedure.
  • the antibody was prepared according to the method of Reference Example 1, using GpH7-B3 variant and GpH7-A5 (SEQ ID NO: 3) as the H chain and GpL16-k0 (SEQ ID NO: 5) as the L chain.
  • the heterodimerized antibody in which mutation is introduced only into one H chain prepared in this way is called He Ab.
  • GpH7-B3 / GpL16-k0 prepared using GpH7-B3 (SEQ ID NO: 4) for the H chain and GpL16-k0 (SEQ ID NO: 5) for the L chain was used as a reference.
  • the control antibody for this homodimerized antibody is called HoConHoAb.
  • HoCon Ab does not significantly change the binding activity to each Fc ⁇ R compared to native IgG1.
  • GpH7-A5 SEQ ID NO: 3
  • GpH7-B3 SEQ ID NO: 4
  • GpL16-k0 SEQ ID NO: 5
  • -A5 / GpH7-B3 / GpL16-k0 was prepared according to the method of Reference Example 1.
  • the control antibody for this heterodimerized antibody is called HeCon ⁇ ⁇ Ab.
  • HeCon Ab does not significantly change the binding to each Fc ⁇ R as compared to natural IgG1.
  • the binding activity to Fc ⁇ RIa, Fc ⁇ RIIa (R), Fc ⁇ RIIa (H), Fc ⁇ RIIb, and Fc ⁇ RIIIa was measured according to the method of Reference Example 2.
  • the binding activity of He Ab to each Fc ⁇ R was divided by the binding activity of HeCon Ab to each Fc ⁇ R, and the value multiplied by 100 was defined as He / Con.
  • the binding activity of Ho Ab to each Fc ⁇ R was divided by the binding activity of HoCon Ab to each Fc ⁇ R, and the value multiplied by 100 was defined as Ho / Con.
  • He / Con and Ho / Con values of 100 Heterodimerization antibody He Ab containing the GpH7-B3 variant into which the mutation is introduced and homodimerization antibody Ho Ab have heterozygous binding activities to Fc ⁇ R, respectively. It shows that it is equivalent to the Fc ⁇ R binding activity of the dimerized antibody control and the homodimerized antibody control.
  • the values of He / Con and Ho / Con are 100 or less: the binding activity to Fc ⁇ R of the heterodimerized antibody He Ab and the homodimerized antibody Ho Ab containing the GpH7-B3 variant into which the mutation is introduced, respectively.
  • He / Con is greater than the value of Ho / Con: the binding activity of Fb ⁇ R of the heterodimerized antibody He Ab containing the GpH7-B3 variant into which the mutation has been introduced to the Fc ⁇ R of the homodimerized antibody Ho Ab. It is stronger than the binding activity. 5. If the He / Con value is smaller than the Ho / Con value: the binding activity to the Fc ⁇ R of the heterodimerized antibody He Ab containing the mutated GpH7-B3 variant contains the mutated GpH7-B3 variant It shows that the homodimerized antibody Ho Ab is weaker than the binding activity to Fc ⁇ R.
  • the modification When the modification exists in the region i in FIG. 21, the modification attenuates the binding to Fc ⁇ R in the homodimerized antibody introduced into the two H chains, but the same modification is applied only to one H chain. This means that the introduced heterodimerized antibody has an effect of enhancing the binding to Fc ⁇ R. That is, the modification is a modification that enhances the binding to Fc ⁇ R only with the heterodimerized antibody.
  • Table 2 Tables 2-1 to 2-3
  • Table 3 Tables 3-1 and 3-2
  • Table 4 Table 5 and Table 6 summarize the modifications included in the region i.
  • the modification corresponding to that point is a homodimerized antibody introduced into both H chains, and the heterodimerization in which the same modification is introduced into only one H chain.
  • Any of the antibodies enhances binding to Fc ⁇ R, which means that the binding enhancing effect is greater in the heterodimerized antibody. That is, the modification in this region is a modification having a higher binding enhancing effect on Fc ⁇ R in the heterodimerized antibody than in the homodimerized antibody.
  • Table 2 Tables 2-1 to 2-3
  • Table 3 Tables 3-1 and 3-2
  • Table 5 and Table 6 summarize the modifications included in the region ii.
  • He / Con related to the binding activity to Fc ⁇ RIa, Fc ⁇ RIIIa H, Fc ⁇ RIIa R, Fc ⁇ RIIb, and Fc ⁇ RIIIa are He / Con_1a, He / Con_2aH, He / Con_2aR, He / Con_2b, He / Con_3a, respectively.
  • Ho / Con related to the binding activity to Fc ⁇ RIa, Fc ⁇ RIIa H, Fc ⁇ RIIa R, Fc ⁇ RIIb, and Fc ⁇ RIIIa were defined as Ho / Con_1a, Ho / Con_2aH, Ho / Con_2aR, Ho / Con_2b, and Ho / Con_3a, respectively.
  • the modification corresponding to that point is a homodimerized antibody introduced into both H chains, and the heterodimerization in which the same modification is introduced into only one H chain.
  • Any of the antibodies enhances the binding to Fc ⁇ R, which means that the binding enhancing effect is greater in the homodimerized antibody. That is, the modification in this region is a modification having a higher binding enhancing effect on Fc ⁇ R in the homodimerized antibody than in the heterodimerized antibody.
  • the first alphabet (corresponding to A in A327_03V) means the alphabet in the case where the amino acid residue before modification is indicated by a single letter.
  • the number after that (corresponding to 327 of A327_03V) means the EU numbering of the modified part.
  • the last number + alphabet (corresponding to 03V of A327_03V) means the alphabet (number indicating the type of amino acid + alphabet) when the amino acid residue after modification is indicated by a single letter.
  • A327_03V means “substitution of amino acid A at position 327 of EU numbering to V”.
  • the modification found in this example was considered to support the concept of improving Fc ⁇ R recognition ability by the heterodimerized antibody shown in Example 1 in addition to Example 2.
  • the modification in the region i in FIG. 21 is considered as a modification that attenuates the binding activity to Fc ⁇ R when introduced into both of the two H chains as in the prior art, and has not been recognized as a modification that enhances the binding. .
  • Example 5 Method for Determining Combination of Heterodimerized Antibody Modifications
  • the effect of a certain modification on binding to Fc ⁇ R varies in direction depending on the modification. Therefore, when combining heterogeneous antibodies with a plurality of modifications to further enhance or attenuate the binding to Fc ⁇ R, it is necessary to align the direction of the effect of each modification on the binding to Fc ⁇ R. If the two modifications are introduced in a state where the direction of the enhancing effect on the binding of the antibody to Fc ⁇ R is different, the effects of each modification cancel each other out, and the binding is enhanced despite the combination of the binding enhancing modifications to Fc ⁇ R. It is thought that the enhancement effect is not observed.
  • the target variant was expressed and prepared according to the method of Reference Example 1 using GpH7-A5 as another H chain and GpL16-k0 as an L chain.
  • GpH7-B3-01-15Y SEQ ID NO: 22
  • GpH7-B3-03-20W SEQ ID NO: 23
  • GpH7-B3- with L234Y, G236W, and S298A introduced into GpH7-B3 as H chains, respectively.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( When there is no mutation, “-”), the binding activity to Fc ⁇ RIIIa is relative to the binding of GpH7-A5 / GpH7-B3 / GpL16-k0 (SEQ ID NOs: 3, 4, 5) to Fc ⁇ RIIIa. The binding activity was expressed.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the binding activity to Fc ⁇ RIIIa was compared when each modification was introduced into the same H chain as P329R and when it was introduced into a different H chain.
  • the binding activity of GpH7-A5 / GpH7-HA5 / GpL16-k0 corresponding to the former is 60
  • the binding activity of GpH7-A48 / GpH7-B3-01-15Y / GpL16-k0 corresponding to the latter is 11. Yes, binding to Fc ⁇ R was more inhibited when the modification was introduced into an H chain different from P329R.
  • P329R is considered to inhibit binding from the X direction.
  • the combination in which binding was significantly inhibited was when L234Y, G236W, and S298A were introduced into an H chain different from P329R. In this case, these modifications were introduced into the H B chain.
  • P329R is P329R is any modification when introduced into H B chain It is thought that the binding from the X direction that inhibits the binding of Fc ⁇ RIIIa was strengthened. Therefore, it was considered that the binding to Fc ⁇ RIIIa could be further enhanced by introducing these modifications into the same H chain.
  • GpH7-TA4 (SEQ ID NO: 28) in which L234Y and G236W were introduced into GpH7-A5
  • GpH7-TA5 (SEQ ID NO: 29) in which L234Y and S298A were introduced into GpH7-A5, G236W and S298A into GpH7-A5
  • An expression vector into which the introduced GpH7-TA6 (SEQ ID NO: 30) was inserted was prepared. These were combined as shown in Table 8, and GpL16-k0 was added as an L chain to each combination, and the target antibody was expressed and prepared according to the method of Reference Example 1.
  • Table 8 summarizes the results of measuring the H chain of the expressed sample, information on the mutation site, and the binding of the antibody to Fc ⁇ RIIIa.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( When there was no mutation in particular, “-”), the binding activity to Fc ⁇ RIIIa was expressed as a relative binding activity when the binding of GpH7-A5 / GpH7-B3 / GpL16-k0 to Fc ⁇ RIIIa was defined as 100.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • GpH7-TA4 / GpH7-B3 / GpL16-k0 with L234Y and G236W introduced into the same H chain has a binding activity of 168
  • GpH7-A5 / GpH7-B3-01-15Y / GpL16- with only L234Y introduced
  • the binding activity increased compared to GpH7-A5 / GpH7-B3-03-20W / GpL16-k0 into which only k0 and G236W were introduced. From this result, it was clarified that L234Y and G236W further enhanced the binding activity to Fc ⁇ RIIIa when introduced into the same H chain as predicted.
  • GpH7-TA1 / GpH7-B3-15-02A / GpL16-k0 with L234Y and S298A introduced into different H chains has a binding activity to Fc ⁇ RIIIa of 142, and GpH7-A5 / GpH7-B3-01- with only L234Y introduced Although the binding activity of 15Y / GpL16-k0 was increased compared to 131, it was decreased from 163, which was the binding activity of GpH7-A5 / GpH7-B3-15-02A / GpL16-k0 into which S298A alone was introduced.
  • GpH7-TA1 / GpH7-B3-15-02A / GpL16-k0 has no enhanced binding activity compared to the case of introducing S298A alone, so that S298A and L234Y were introduced into different H chains, and Fc ⁇ RIIIa It can be said that the effect of further enhancing the binding activity to can not be imparted.
  • GpH7-TA5 / GpH7-B3 / GpL16-k0 with L234Y and S298A introduced into the same H chain has a binding activity of 208
  • GpH7-A5 / GpH7-B3-01-15Y / GpL16- with only L234Y introduced Compared with any of GpH7-A5 / GpH7-B3-15-02A / GpL16-k0 into which only k0 and S298A were introduced, the binding activity to Fc ⁇ RIIIa was increased. From this result, it was clarified that L234Y and S298A further enhance the binding activity to Fc ⁇ RIIIa when introduced into the same H chain as predicted.
  • GpH7-TA3 / GpH7-B3-03-20W / GpL16-k0 in which G236W and S298A are introduced into different H chains has a binding activity to Fc ⁇ RIIIa of 70
  • GpH7-A5 / GpH7-B3-03- in which only G236W is introduced 20W / GpL16-k0 binding activity is decreased compared to 140
  • GpH7-A5 / GpH7-B3-15-02A / GpL16-k0 binding activity introduced with S298A alone is decreased compared to 163 It was.
  • GpH7-TA6 / GpH7-B3 / GpL16-k0 with G236W and S298A introduced into the same H chain has a binding activity of 228, and GpH7-A5 / GpH7-B3-03-20W / GpL16- with only G236W introduced
  • the binding activity was increased as compared with either GpH7-A5 / GpH7-B3-15-02A / GpL16-k0 into which only k0 or S298A was introduced. From this result, it was clarified that G236W and S298A further enhance the binding activity to Fc ⁇ RIIIa when introduced into the same H chain as predicted.
  • L234Y and G236W, L234Y and S298A, G236W and S298A modified groups were introduced into GpH7-A5 GpH7-TA4, GpH7-TA5, GpH7-TA6 and L234Y, G236W, and S298A, respectively.
  • GpH7-B3-01-15Y, GpH7-B3-03-20W, GpH7-B3-15-02A introduced into GpH7-B3 was prepared according to Reference Example 1, and L234Y, G236W, and S298A The three antibodies were combined so as to be introduced into any H chain, GpL16-k0 was added as the L chain, and the target antibody was expressed and purified according to the method of Reference Example 1.
  • GpH7-TA7 (SEQ ID NO: 31) in which three modifications of L234Y, G236W, and S298A were introduced into GpH7-A5 was prepared, and was combined with GpH7-B3 and GpL16-k0 according to the method of Reference Example 1.
  • the antibody was expressed and purified. Table 9 summarizes the list of antibodies prepared here and the results of comparing the binding activity of each antibody to Fc ⁇ RIIIa.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 (When there was no mutation in particular, “ ⁇ ”), the binding activity to Fc ⁇ RIIIa was expressed as a relative binding activity when the binding activity of GpH7-A5 / GpH7-B3 / GpL16-k0 to Fc ⁇ RIIIa was defined as 100.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • GpH7-TA7 / GpH7-B3 / GpL16-k0 in which L234Y, G236W, and S298A were introduced into the same H chain, was predicted as the result of combining each modification with P329R and comparing the binding activity to Fc ⁇ RIIIa.
  • the binding to Fc ⁇ RIIIa was enhanced. That is, from this result, it was revealed that an appropriate combination method of two or more modifications can be predicted by combining each modification with P329R and comparing the binding activity to Fc ⁇ RIIIa.
  • Example 6 Comparison of conventional homodimerized antibody and novel heterodimerized antibody in heterodimerized antibody From the results of Table 7, Table 8, and Table 9 in Example 5, heterozygous that enhances the binding activity to Fc ⁇ RIIIa alone. Modifications have been shown to be able to further enhance binding to Fc ⁇ RIIIa when combined appropriately. Specifically, L234Y, G236W, and S298A were shown to further enhance the binding activity to Fc ⁇ R by modifying the same H chain.
  • GpH7-TA7 and GpH7-TA45 (SEQ ID NO: 32) in which L234Y, G236W, and S298A were introduced into GpH7-A5 and GpH7-B3, respectively, were prepared according to the method of Reference Example 1, and Table 10 L234Y, G236W, S298A is introduced into only one H chain as shown in GpH7-TA7 / GpH7-B3 / GpL16-k0 and GpH7-A5 / GpH7-TA45 / GpL16-k0, L234Y, G236W
  • the homodimerized antibody GpH7-TA7 / GpH7-TA45 / GpL16-k0 having S298A
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 (When there was no mutation in particular, “ ⁇ ”), the binding activity to Fc ⁇ RIIIa was expressed as a relative binding activity when the binding activity of GpH7-A5 / GpH7-B3 / GpL16-k0 to Fc ⁇ RIIIa was defined as 100.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the homodimerized antibody GpH7-TA7 / GpH7-TA45 / GpL16-k0 in which L234Y, G236W, and S298A were introduced into both H chains had decreased binding to Fc ⁇ RIIIa.
  • GpH7-TA8 SEQ ID NO: 33
  • GpH7-B12 SEQ ID NO: 12
  • P329R was introduced into each of GpH7-TA7 and GpH7-B3
  • Table 11 Heterodimerized antibody GpH7-TA8 / GpH7-B3 / GpL16-k0 into which L234Y, G236W, S298A and P329R were introduced into the same H chain, and heterodimerized antibody GpH7-TA7 / GpH7-B12 / GpL16- introduced into different chains k0 was prepared according to the method of Reference Example 1.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( When there was no mutation in particular, “-”), the binding activity to Fc ⁇ RIIIa was expressed as a relative binding activity when the binding of GpH7-A5 / GpH7-B3 / GpL16-k0 to Fc ⁇ RIIIa was defined as 100.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • all of the heterodimerized antibodies GpH7-TA7 / GpH7-B12 / GpL16-k0 introduced into the H chain had a decreased binding activity to Fc ⁇ RIIIa compared to GpH7-TA7 / GpH7-B3 / GpL16-k0
  • GpH7 In -TA7 / GpH7-B12 / GpL16-k0 the binding activity to Fc ⁇ RIIIa was 11, which was markedly attenuated compared to 150 in GpH7-TA8 / GpH7-B3 / GpL
  • ADCC antibody-dependent cellular cytotoxicity
  • the antibody Fc region and Fc ⁇ R interact asymmetrically.
  • all of the modified residues of S239D, I332E, and A330L are involved in enhancing the interaction with Fc ⁇ R in the HA chain due to its three-dimensional structure.
  • it not in contact with the Fc [gamma] R except S239D in H B-chain was considered not contribute to the binding activity enhancement against Fc [gamma] R ( Figure 23).
  • heterodimerized antibody technique in which different modifications are made to each H chain of an antibody
  • the binding to Fc ⁇ R can be further enhanced than the technique for making the same modification (hereinafter referred to as “conventional technique” or “homodimerized antibody technique”).
  • S298 is considered not to interact only with H B chain of 23 and Fc ⁇ R (JBC, 276: 16469-16477 , 2001). Therefore, the introduction of modifications to S298, is believed to interact with Fc ⁇ RIIIa substituted mutations also H B chain side. As seen in Example 5, it was considered that L234Y and G236W enhanced the interaction with Fc ⁇ R from the same direction as S298A.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 (When there was no mutation in particular, “ ⁇ ”), the binding activity to Fc ⁇ RIIIa was expressed as a relative binding activity when the binding activity of GpH7-A5 / GpH7-B3 / GpL16-k0 to Fc ⁇ RIIIa was defined as 100.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the binding activity of GpH7-A5 / GpH7-HA18 / GpL16-k0 corresponding to the former is 35, and the binding activity of GpH7-A48 / GpH7-B3-22-10E / GpL16-k0 corresponding to the latter is 189.
  • binding to Fc ⁇ RIIIa was more inhibited when the modification was introduced into the same H chain as P329R.
  • binding to Fc ⁇ RIIIa was inhibited when the former P329R was introduced into the same H chain. Assuming that the H chain into which P329R has been introduced corresponds to the HA chain in FIG. 23, P329R is considered to inhibit binding from the X direction.
  • Example 5 L234Y, G236W, S298A was considered to have strengthened the bond from X-direction when both introduced into H B chain. As discussed in Example 5 and Example 6, it is possible to find a method of appropriately combining each modification by combining with P329R. Our results, S239D to enhance binding to Fc ⁇ RIIIa from X-direction of FIG. 3, A330L, I332E is H A chain, L234Y, G236W, S298A must be introduced into the H B chain, each of the modified It was considered that the binding to Fc ⁇ RIIIa from the X direction could be further enhanced by introducing the groups into different H chains.
  • S239D, A330L, and I332E were all introduced into GpH7-A5 according to the method of Reference Example 1, GpH7-A57 (SEQ ID NO: 40), and GpH7-B78 (sequence) introduced into GpH7-B3.
  • No .: 41) and G234-TA7 (SEQ ID NO: 31) in which L234Y, G236W and S298A were all introduced into GpH7-A5, and GpH7-TA45 (SEQ ID NO: 32) introduced in GpH7-B3 were prepared. did.
  • the prepared antibody was compared with the binding activity against Fc ⁇ RIIIa using the KD against Fc ⁇ RIIIa measured according to the method of Reference Example 2 as an index, and Table 13 shows the verification results of the effect of the combination of L234Y, G236W, S298A and S239D, A330L, I332E. Summarized.
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing KD for Fc ⁇ RIIIa of GpH7-G1d / GpL16-k0 by KD of each antibody is KD ratio 1
  • KD for Fc ⁇ RIIIa of GpH7-A5 / GpH7-B3 / GpL16-k0 divided by KD of each antibody was defined as KD ratio 2.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the effect of each modification was verified on the homodimerized antibody using the conventional technique.
  • the homodimerized antibody GpH7-A57 / GpH7-B78 / GpL16-k0, in which S239D, A330L, and I332E are introduced into both H chains has about 260 times the binding activity to Fc ⁇ RIIIa compared to GpH7-A5 / GpH7-B3 / GpL16-k0
  • the homodimerized antibody GpH7-TA7 / GpH7-TA45 / GpL16-k0 into which L234Y, G236W and S298A were introduced into both H chains was attenuated 0.49 times. From this result, it was revealed that in the homodimerized antibody, only the modified group of S239D, A330L, and I332E has an effect of enhancing the binding activity to Fc ⁇ RIIIa.
  • Heterodimerized antibody GpH7-A5 / GpH7-B78 / GpL16-k0 with S239D, A330L, or I332E introduced into one H chain has 30 times the binding activity to Fc ⁇ RIIIa compared to GpH7-A5 / GpH7-B3 / GpL16-k0
  • the heterodimerized antibody GpH7-TA7 / GpH7-B3 / GpL16-k0 in which L234Y, G236W, and S298A were introduced into one H chain was 5.1-fold enhanced. From these results, it was revealed that the modified group of S239D, A330L, and I332E has a higher binding activity enhancing effect on Fc ⁇ RIIIa.
  • the heterodimerized antibody has a 30-fold increase in binding activity to Fc ⁇ RIIIa as compared to GpH7-A5 / GpH7-B3 / GpL16-k0, and the homodimerized antibody has an increase of about 260-fold.
  • the enhancement of the binding activity to Fc ⁇ RIIIa can be further enhanced by introduction into a homodimerized antibody.
  • the asymmetric interaction between the Fc region and Fc ⁇ RIIIa can be optimized more than using a conventional homodimerized antibody, and an Fc region having higher binding activity can be obtained. It was shown that it can be designed.
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-A5 / GpH7-B78 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • S239D, A330L, and I332E are introduced into one H chain and S239D, A330L, and I332E are introduced into only one H chain in GpH7-A53 / GpH7-B78 / GpL16-k0 in which S239D is introduced into the other H chain.
  • an expression vector was prepared by inserting GpH7-TA22 (SEQ ID NO: 43) into which S239D was introduced into GpH7-TA7, and GpH7 into which S239D, A330L, I332E was introduced into GpH7-B3.
  • the target antibody was expressed and adjusted together with -B78 and GpL16-k0. Furthermore, a heterodimerized antibody GpH7-TA22 / GpH7-B78 / GpL16-k0 was prepared by introducing L234Y, G236W, S239D, S298A into one H chain and S239D, A330L, I332E into the other H chain. According to the method of Reference Example 2, the binding activity to Fc ⁇ R IIIa was compared to verify the effect of the combination of S239D and S239D, A330L, I332E (Table 15).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-TA7 / GpH7-B78 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • S239D is included in the heterodimerized antibody GpH7-TA7 / GpH7-B78 / GpL16-k0 in which L234Y, G236W and S298A are introduced into one H chain and S239D, A330L and I332E are introduced into the other H chain.
  • GpH7-TA22 / GpH7-B78 / GpL16-k0 in which S239D was introduced into the non-chain the binding activity was enhanced 3.2 times that of GpH7-TA7 / GpH7-B78 / GpL16-k0.
  • S239D can further enhance the binding to Fc ⁇ RIIIa.
  • GpH7-TA52 (SEQ ID NO: 44), in which the Y296W mutation was introduced into GpH7-TA7, was prepared and expressed and prepared according to the method of Reference Example 1 in combination with GpH7-B78.
  • GpH7-TA58 (SEQ ID NO: 45) in which Y296W was introduced into GpH7-B78 was prepared and expressed and prepared according to the method of Reference Example 1 in combination with GpH7-TA22.
  • the binding activity to Fc ⁇ RIIIa was compared, and the effect of the combination of Y296W was verified (Table 16).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-TA7 / GpH7-B78 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • GpH7-TA54 (SEQ ID NO: 46) in which Y296W was introduced into GpH7-TA22 was prepared, and was expressed and prepared according to the method of Reference Example 1 in combination with GpH7-B78.
  • GpH7-TA58 (SEQ ID NO: 45) in which Y296W was introduced into GpH7-B78 was prepared and expressed and prepared according to the method of Reference Example 1 in combination with GpH7-TA22.
  • the binding activity to Fc ⁇ RIIIa was compared, and the effect of the combination of Y296W was verified (Table 17).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-TA22 / GpH7-B78 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • GpH7-TA40 (SEQ ID NO: 47) in which K334G was introduced into GpH7-TA7 was produced, and expressed and prepared according to the method of Reference Example 1 in combination with GpH7-B78.
  • GpH7-TA50 (SEQ ID NO: 48) in which K334G was introduced into GpH7-B78 was prepared and expressed and prepared according to the method of Reference Example 1 in combination with GpH7-TA7.
  • the prepared antibodies were compared for binding to Fc ⁇ RIIIa according to the method of Reference Example 2, and the effect of the combination of K334G was verified (Table 18).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-TA7 / GpH7-B78 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • Example 8 Improvement of selectivity for active Fc ⁇ R and inhibitory Fc ⁇ R
  • Fc ⁇ R There are two types of Fc ⁇ R, an active type having ITAM and an inhibitory type having ITIM.
  • Typical active Fc ⁇ R Activating receptor
  • Fc ⁇ RIa Fc ⁇ RIIa
  • Fc ⁇ RIIIa Fc ⁇ RIIIa
  • representative inhibitory Fc ⁇ R Inhibitory receptor
  • ADCP antibody-dependent cell phagocytosis
  • antibodies targeting cancer to enhance the binding activity to active Fc ⁇ R and attenuate the binding activity to inhibitory Fc ⁇ R.
  • the modification included in the region a shown in FIG. 24 it binds more strongly to the active Fc ⁇ R than the natural antibody and binds to the inhibitory Fc ⁇ R weaker than the natural antibody.
  • a modification that selectively enhances binding to active Fc ⁇ R is desirable.
  • the ratio is such that the ratio of the binding activity to the active Fc ⁇ R and the inhibitory Fc ⁇ R is larger than that of the natural antibody, such as the modification in the region b shown in FIG.
  • Such a modification can be said to be a modification that selectively enhances the binding activity to the active Fc ⁇ R compared to the inhibitory Fc ⁇ R.
  • the binding activity of each of the heterodimerized antibody He Ab in which the modification was introduced into one H chain to the active Fc ⁇ R and the inhibitory Fc ⁇ R was measured according to the method of Example 4.
  • the results are summarized in FIG. 26, FIG. 27, FIG. 28, and FIG.
  • the active Fc ⁇ R in FIG. 26 is Fc ⁇ RIa
  • the active Fc ⁇ R in FIG. 27 is Fc ⁇ RIIa (R)
  • the active Fc ⁇ R in FIG. 28 is Fc ⁇ RIIa (H)
  • the active Fc ⁇ R in FIG. 29 is Fc ⁇ RIIIa.
  • Table 19 summarizes modifications existing in the regions corresponding to a and b in FIGS. 24 and 25 in FIG. Similarly, for Fc ⁇ RIIa (R) (FIG. 27), Fc ⁇ RIIa (H) (FIG. 28), and Fc ⁇ RIIIa (FIG. 29), a list of modifications existing in the regions corresponding to a and b is shown in Table 20 (Table 20-). 1 to 20-3), Table 21 (Tables 21-1 to 21-3), and Table 22 (Tables 22-1 to 22-3).
  • Fc ⁇ RIIb the only inhibitory Fc ⁇ R
  • antibodies with an Fc region with enhanced Fc ⁇ RIIb binding activity may be effective in treating autoimmune diseases caused by B cells (Mol. Immunology 45, 3926-3933,9332008) .
  • the active Fc ⁇ R-mediated ADCC activity and ADCP activity may aggravate the pathology, so the binding activity to active Fc ⁇ R is attenuated as much as possible It is desirable to enhance the binding activity to inhibitory Fc ⁇ R.
  • the modification in the region c of FIG. 24 there is an effect that the binding activity to the inhibitory Fc ⁇ R is enhanced as compared with the natural antibody and the binding activity to the active Fc ⁇ R is attenuated. desirable.
  • Such a modification can be said to have an effect of selectively enhancing binding to the inhibitory Fc ⁇ R.
  • the ratio of the binding activity to the inhibitory Fc ⁇ R and the binding activity to the active Fc ⁇ R is larger than that of the natural antibody, as in the modification existing in the region d in FIG.
  • Such a modification can be said to be a modification that selectively enhances the binding activity to the inhibitory Fc ⁇ R compared to the active Fc ⁇ R.
  • FIGS. 26, 27, 28, and 29 in which the ratio of the binding activity of each heterodimerized antibody to the inhibitory Fc ⁇ R and the active Fc ⁇ R was evaluated, the modifications in each figure are shown in FIGS. Tables 23 (Tables 23-1 and 23-2), Table 24 (Tables 24-1 and 24-2), and Table 25 (Tables 25-1 to 25) show the list of modifications existing in the regions corresponding to c and d, respectively. -3) and Table 26 (Tables 26-1 to 26-4).
  • Example 9 Evaluation of physicochemical stability of heterodimerized antibody When developing an antibody as a pharmaceutical product, it is expected to have a high degree of physicochemical stability. For example, in the case of the modification in which S239D, A330L, and I332E mentioned above are introduced into both chains of the antibody, it has been reported that when this modification is introduced, the Fc region of the antibody becomes thermodynamically unstable. Reduced stability makes development as a pharmaceutical product difficult (Molecular Immunology, 45, 1872-1882, 2008). In order to enhance the usefulness of the antibody as a pharmaceutical and the ease of development, it is also important to maintain the physicochemical stability while enhancing the binding activity to Fc ⁇ R.
  • the modification is introduced into both heavy chains, so when one kind of modification is introduced, two modifications are introduced per antibody molecule.
  • heterodimerized antibodies can choose whether or not to introduce modifications to each H chain, even if one kind of modification is introduced, only one modification per antibody molecule can be introduced. Is possible.
  • the effect of enhancing the binding activity to Fc ⁇ RIIIa may be sufficient when introduced into one H chain. If the modification had the effect of reducing the physicochemical stability of the antibody, by introducing the modification only to one H chain, the effect of enhancing the binding activity against Fc ⁇ RIIIa was given. It is considered possible to minimize physicochemical destabilization.
  • the target antibody was expressed and prepared using unmodified GpH7-B3 and GpL16-k0.
  • the Tm of the CH2 region of each antibody was compared by Thermal shift assay according to the method of Reference Example 5 (Table 27). In the following description, unless otherwise specified, Tm refers to Tm in the CH2 region.
  • the column of the sample is the name of the antibody
  • the column of H is the name of the H chain constant region of each antibody
  • the column of mutation is a different mutation compared to GpH7-B3 / GpL16-k0 (especially when there is no mutation) "-")
  • the Tm column shows the Tm of each antibody
  • the ⁇ Tm column shows the difference between the Tm of each antibody and the Tm of GpH7-B3 / GpL16-k0.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • I332E has the highest effect of reducing Tm of CH2, and I332E contributes most to the decrease of Tm even in the antibody introduced with the modified group of S239D, A330L, and I332E. it was thought.
  • I332E is surrounded by hydrophobic amino acids such as V240, V323, and L328 around the side chain.
  • the highly hydrophobic Ile is substituted with the highly hydrophilic Glu, so the hydrophobic interaction with surrounding residues disappears, contributing to destabilization of the Fc region. It was thought that there was.
  • I332E interacts with Fc ⁇ RIIIa only on one H chain. Therefore, I332 of the other H chain that is not involved in the interaction with Fc ⁇ RIIIa is left as Ile, while maintaining the thermodynamic stability while providing the effect of enhancing the binding to Fc ⁇ RIIIa. It was considered possible.
  • An expression vector was prepared by inserting GpH7-A44 (SEQ ID NO: 49) into which I332E was introduced into GpH7-A5 and GpH7-B80 (SEQ ID NO: 50) into which GpH7-B3 was introduced, and GpH7-B3, GpH7-A5, Heterodimerized antibody GpH7-A5 / GpH7-B80 / GpL16-k0, GpH7-A44 / GpH7-B3 / GpL16-k0, I332E in both H chains with GpL16-k0 and I332E introduced into only one H chain
  • the homodimerized antibodies GpH7-A44 / GpH7-B80 / GpL16-k0 introduced into the above were expressed and prepared according to the method of Reference Example 1, respectively.
  • GpH7-A5 / GpH7-B3 / GpL16-k0 was prepared.
  • the binding activity of each antibody to Fc ⁇ RIIIa was evaluated according to the method of Reference Example 2.
  • the Tm of the CH2 region of each antibody was compared by Thermal-shift assay according to the method of Reference Example 5 (Tables 28 and 29).
  • the column of the sample is the name of the antibody
  • the column of H1 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD of GpH7-A5 / GpH7-B3 / GpL16-k0 against Fc ⁇ RIIIa by the KD of each antibody was taken as the KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the column of Sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( When there was no particular mutation, “-”), the Tm column represents the Tm of each antibody, and the ⁇ Tm column represents the difference between the Tm of each antibody and the Tm of GpH7-B3 / GpL16-k0.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the heterodimerized antibody GpH7-A5 / GpH7-B80 / GpL16-k0 in which I332E is introduced into only one H chain has a binding activity to Fc ⁇ RIIIa as compared to GpH7-A5 / GpH7-B3 / GpL16-k0.
  • GpH7-A44 / GpH7-B80 / GpL16-k0 in which I332E was introduced into both H chains, increased Fc ⁇ RIIIa binding activity by about 7 times compared to GpH7-A5 / GpH7-B3 / GpL16-k0. From these results, it was clarified that I332E has a sufficient effect of enhancing the binding activity to Fc ⁇ RIIIa even if it is introduced into only one H chain, even if it is not introduced into both H chains, as considered from its three-dimensional structure. .
  • the heterodimerized antibodies GpH7-A5 / GpH7-B80 / GpL16-k0 and GpH7-A44 / GpH7-B3 / GpL16-k0 in which I332E is introduced only into one H chain are the same. Since Tm decreased by 4 ° C from GpH7-A5 / GpH7-B3 / GpL16-k0, which is the parent Fc molecule, even if I332E was introduced into either GpH7-A5 or GpH7-B3, the Tm of the antibody of I332E The effect was thought not to change.
  • the homodimerized antibody GpH7-A44 / GpH7-B80 / GpL16-k0 in which I332E was introduced into both H chains had a Tm decreased by 10 ° C. from GpH7-A5 / GpH7-B3 / GpL16-k0.
  • the heterodimerized antibody in which I332E was introduced into only one H chain maintained a Tm of 6 ° C. higher than the homodimerized antibody in which I332E was introduced into both H chains. From these results, it was revealed that the decrease in Tm can be suppressed by using a heterodimerized antibody in which I332E is introduced into only one H chain instead of both H chains.
  • Heterodimerized antibodies have been shown to be useful techniques for maintaining antibody physicochemical stability.
  • a heterodimerized antibody GpH7-TA7 / GpH7-B78 in which a modified group of L234Y, G236W, S298A is introduced into one H chain and a modified group of S239D, A330L, I332E is introduced into the other H chain.
  • Tm of the CH2 region of each antibody was compared by Thermal-shift assay according to the method of Reference Example 5, and the effect of the combination of L234Y, G236W, S298A and S239D, A330L, I332E on Tm was examined (Table 30).
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of mutation is a different mutation compared to GpH7-G1d / GpL16-k0 (no particular mutation)
  • the Tm column shows the Tm of each antibody
  • the ⁇ Tm column shows the difference between the Tm of each antibody and the Tm of GpH7-A5 / GpH7-B3 / GpL16-k0.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the effect of each modified group was verified on the homodimerized antibody which is a conventional technique.
  • the homodimerized antibody GpH7-A57 / GpH7-B78 / GpL16-k0 with S239D, A330L, I332E introduced into both H chains has a Tm of 20 ° C lower than that of GpH7-A5 / GpH7-B3 / GpL16-k0, and L234Y.
  • each modified group was verified for a heterodimerized antibody in which each modified group was introduced only into one H chain.
  • Tm decreased by 8 ° C compared to GpH7-A5 / GpH7-B3 / GpL16-k0
  • No decrease in Tm was observed with the heterodimerized antibody GpH7-TA7 / GpH7-B3 / GpL16-k0 in which L234Y, G236W and S298A were introduced into one H chain. From this result, it was considered that the L234Y, G236W, and S298A modified groups themselves have no effect of reducing Tm even in the heterodimerized antibody.
  • Tm was reduced by 21 ° C. compared to natural IgG1, but only one H chain was S239D, A330L,
  • Tm was 60 ° C., and Tm higher than that of the homodimerized antibody was maintained by 10 ° C. or more.
  • Tm decreased only by 1 ° C. compared to the natural antibody, which means that L234Y, G236W, and S298A It was thought that it was not the decrease in Tm due to, but the influence of D356K / H435R and K439E used to make heterodimerized antibodies as discussed above. This is also indicated by the fact that Tm decreased only by 1 ° C. in GpH7-TA7 / GpH7-B3 / GpL16-k0 in which L234Y, G236W and S298A were introduced into one H chain.
  • the Tm of GpH7-TA7 / GpH7-B78 / GpL16-k0 with L234Y, G236W and S298A in one H chain and S239D, A330L and I332E in the other H chain is 10 ° C lower than the natural antibody. It is almost the same as GpH7-A5 / GpH7-B78 / GpL16-k0 in which S239D, A330L, and I332E are introduced into one H chain.
  • GpH7-TA7 / GpH7-B78 / GpL16-k0 has a 10-fold or greater increase in binding to Fc ⁇ RIIIa than GpH7-A5 / GpH7-B78 / GpL16-k0.
  • thermodynamic stability of the sample from which Tm was measured was further evaluated by the thermal acceleration test (40 ° C., 2 weeks or 4 weeks) described in Reference Example 6 (FIG. 30).
  • GpH7-TA7 / GpH7-B78 / GpL16-k0 with L234Y, G236W, S298A in one H chain and S239D, A330L, I332E in the other H chain has a 2.47% monomer ratio after 4 weeks.
  • the monomer ratio was slightly decreased from 1.86% of the natural type antibody.
  • the heterodimerized antibody not only enhances the binding to Fc ⁇ R but also improves the stability of the antibody as a pharmaceutical product compared to the homodimerized antibody, as compared with the normal homodimerized antibody. It was shown that this is a technology that can.
  • Example 10 Search for modifications that improve the binding to Fc ⁇ R and do not decrease the stability
  • the modification when the modification is introduced into the H chain, the binding activity to Fc ⁇ R is enhanced. Stability, that is, Tm may be lowered.
  • such a property is not preferable particularly when an antibody is used as a medicine.
  • it is useful to use a heterodimerized antibody in which a modification is introduced only in one H chain. is there. That is, even in the conventional homodimerized antibody corresponding to the regions ii and iii in FIG.
  • the Tm decreased in the homodimerized antibody, although the enhanced binding activity to Fc ⁇ R was observed.
  • heterodimerization can enhance the binding activity to Fc ⁇ R compared to natural antibodies, and can improve Tm over homodimerized antibodies.
  • Table 31 shows Ia data in regions ii and iii with a Tm of 68 ° C or lower
  • Table 32 (Tables 32-1 and 32-2) shows Tm in regions ii and iii of 68 ° C
  • Table 33 Tables 33-1 and 33-2) in Regions ii, iii and IIaH with a Tm of 68 ° C. or lower
  • Table 34 Tables 34-1 and 34-2) in Region ii , iii and IIm data with Tm of 68 ° C. or lower
  • Table 35 shows IIIa data with regions ii and iii with Tm of 68 ° C. or lower.
  • Example 11 Measurement of ADCC activity of heterodimerized antibody with improved recognition ability for Fc ⁇ RIIIa As discussed in Example 7, using heterodimerized antibody, it was created by conventional homodimerized antibody technology. It succeeded in enhancing the binding activity to Fc ⁇ RIIIa rather than the variant. The antibody induces NK cells via Fc ⁇ RIIIa and exhibits antibody-dependent cytotoxic activity against cells expressing the target antigen.
  • both GpH7-A5 / GpH7-B78 / GpL16-k0 and GpH7-TA7 / GpH7-B3 / GpL16-k0 are enhanced compared to GpH7-A5 / GpH7-B3 / GpL16-k0.
  • a similar trend was observed in ADCC activity.
  • GpH7-A5 / GpH7-B78 / GpL16-k0 has a higher binding activity to Fc ⁇ RIIIa than GpH7-TA7 / GpH7-B3 / GpL16-k0, but the same tendency is maintained in ADCC activity. It was shown that the strength of the binding activity to Fc ⁇ RIIIa and the strength of ADCC activity correlate with the heterodimerized antibody as well as the homodimerized antibody.
  • GpH7-TA7 / GpH7-B3 / GpL16-k0 which is a heterodimerized antibody in which a modified group of L234Y, G236W, and S298A is introduced only into one H chain, and a homodimerized antibody that is introduced into both H chains
  • the heterodimerized antibody is more potent than GpH7-A5 / GpH7-B3 / GpL16-k0 in terms of binding activity to Fc ⁇ RIIIa.
  • the binding was attenuated with the homodimerized antibody. A similar trend was observed for ADCC activity.
  • the ADCC activity also reflected the effect of enhancing the binding activity to Fc ⁇ RIIIa possessed by the modified group of L234Y, G236W, and S298A from only one direction. From these results, it can be said that the strength of the binding activity to Fc ⁇ RIIIa and the strength of ADCC activity of a heterodimerized antibody in which a certain modified group is introduced only into one H chain and a homodimerized antibody introduced into both H chains are correlated. it was thought.
  • GpH7-TA7 / GpH7-B78 / GpL16-k0 and S239D, A330L are heterodimerized antibodies in which L234Y, G236W, S298A are introduced into one H chain, and S239D, A330L, I332E are introduced into the other H chain.
  • GpH7-A57 / GpH7-B78 / GpL16-k0 which is a homodimerized antibody in which I332E was introduced into both H chains, was compared.
  • GpH7-TA7 / GpH7-B78 / GpL16-k0 has a stronger binding activity to Fc ⁇ RIIIa than GpH7-A57 / GpH7-B78 / GpL16-k0, and ADCC activity also has GpH7-TA7 / GpH7- B78 / GpL16-k0 showed stronger ADCC activity.
  • Example 12 Comparison of conventional homodimerized antibody and novel heterodimerized antibody in Fc ⁇ RIIa As described in Example 1, Fc ⁇ RIIIa is considered to play an important role in the efficacy of antibody drugs. Furthermore, in addition to Fc ⁇ RIIIa, the role played by Fc ⁇ RIIa in the drug efficacy of IgG1-derived antibody drugs is also attracting attention.
  • Fc ⁇ RIIa has R-type and H-type allotypes where the 131st amino acid is Arg or His, and each has different binding activity to human IgG2 (Tissue Antigens 2003: 61: 189-202) ). It is known that the susceptibility to infection varies depending on the Fc ⁇ RIIa allotype (Tissue Antigens 2003: 61: 189-202). This is thought to be due to the difference in Fc ⁇ RIIa and IgG2 binding activity due to differences in allotypes, resulting in different resistance mechanisms against pathogens mediated by IgG2 (Infection and Immunitiy 1995: 63: 73-81).
  • mouse Fc ⁇ RIV is known to correspond to human Fc ⁇ RIIa and expressing cells, and it has been reported that Fc ⁇ RIV plays an important role in the efficacy of anti-CD20 antibody in a mouse model. This suggests that Fc ⁇ RIIa plays a similar role in humans (The Journal of Experimental Medicine 2004: 199: 1659-1669, The Journal of Experimental Medicine 2006: 203: 743-753, Immunity 2005: 23: 41-51). In fact, it has been reported that antibodies with enhanced binding activity to Fc ⁇ RIIa in the Fc region of antibodies over IgG1 have enhanced antibody-dependent cell phagocytic activity (ADCP activity) via macrophage compared to IgG1 (Molecular Cancer Therapeutics 2008: 7: 2517-2527).
  • ADCP activity antibody-dependent cell phagocytic activity
  • the anti-CD19 antibody having the Fc region enhanced by ADCP shows a stronger antitumor effect than IgG1 in mousemousxenograft model (Nature Medicine 2000: 6: 443-446).
  • the Fc region of this antibody also has enhanced binding activity to monkey Fc ⁇ RIIa.
  • CD19 is expressed on the surface of B cells, it has been reported that when this antibody is administered to monkeys, loss of B cells is enhanced as compared to anti-CD19 antibody having the Fc region of IgG1 (Science 2005: 310: 1510-1512).
  • Example 4 In order to verify this, from the results of Example 4, a modification that enhances the binding activity of Fc ⁇ RIIIa, FcgRIIaR type, and H type as compared with natural IgG is selected, and these are combined to combine Fc ⁇ RIIIa and FcgRIIa. Mutations with enhanced binding activity were introduced into both R-type and H-type to produce heterodimerized antibodies combining H chains with different binding to Fc ⁇ R, and the binding activity to each Fc ⁇ R was evaluated.
  • Fc ⁇ RIIb the inhibitory Fc ⁇ R, Fc ⁇ RIIb, induces intracellular signals that suppress immune responses.
  • the antitumor effect of the antibody is enhanced (Nature Medicine 2000: 6: 443-446), or the loss of B cells via the antibody is promoted (The Journal of Experimental Medicine 2006: 203: 743-753), it is shown that Fc ⁇ RIIb antibody plays an important role in the in vivo drug efficacy.
  • a / I ratio is important for the effector function through antibody immunity. That is, if an antibody with a high A / I ratio is created, its effector function is enhanced, which is useful.
  • Fc ⁇ RIIa which is an active Fc ⁇ R
  • Fc ⁇ RIIb which is an inhibitory Fc ⁇ R
  • Fc ⁇ RIIb has 93% sequence homology in the extracellular domain, and because the sequence homology is extremely high, Fc ⁇ RIIb is enhanced while enhancing the binding activity to Fc ⁇ RIIa. It was expected that it was extremely difficult to increase the A / I ratio without enhancing the binding activity to.
  • Fc ⁇ RIIb and the Fc region of an antibody are considered to bind asymmetrically.
  • Knobs-into-Holes technique was used for the antibody H chain constant region in order to efficiently form heterodimerized antibodies.
  • Knobs-into-Holes technology replaces the amino acid side chain present in the CH3 region of one H chain with a larger side chain (knob), and replaces the amino acid side chain present in the CH3 region of the other H chain.
  • a technology that can efficiently obtain the desired heterodimerized antibody by accelerating the heterodimerization of the H chain by substituting the small side chain (hole) into the void so that the protrusion is arranged in the void. (Nature, 372: 379-383 (1994)).
  • the H chain in which the modification of Y349C and T366W for the purpose of enlarging the amino acid side chain in the CH3 region is introduced to the constant region is called the Knob chain.
  • the name of the normal area starts with the symbol Kn, followed by a three-digit number and is called as Kn001.
  • the H chain in which the Hole modification of D356C, T366S, L368A, and Y407V, which aims to make the amino acid side chain in the CH3 region smaller, is introduced into the constant region is called the Hole chain.
  • the name of the H chain constant region begins with the symbol Hl, followed by a three-digit number and is called as Hl001.
  • the sequences corresponding to the H chain of the antibody having GpH7 in the variable region are called GpH7-Kn001 and GpH7-Hl001.
  • Antibodies obtained by purification after expression include, for example, a sequence corresponding to the antibody H chain used for the expression of the heterodimerized antibody GpH7-Kn001, a sequence corresponding to the other antibody H chain is GpH7-Hl001, and the antibody L When the sequence corresponding to the chain was GpL16-k0, it was expressed as GpH7-Kn001 / GpH7-Hl001 / GpL16-k0.
  • GpH7-Kn033 (SEQ ID NO: 51) in which modifications of Y349C and T366W were introduced into the constant region for GpH7-G1d, and modifications of D356C, T366S, L368A, and Y407V were introduced into the constant region for GpH7-G1d.
  • GpH7-Hl033 (SEQ ID NO: 56) was prepared according to the method of Reference Example 1.
  • an expression vector into which GpL16-k0 has been inserted is used as the antibody L chain, and GpH7-Kn033 (SEQ ID NO: 51) into which Y349C and T366W modifications have been introduced as one of the antibody H chains. ) was further modified into GpH7-Hl033 (SEQ ID NO: 56) into which the modifications of D356C, T366S, L368A, and Y407V were introduced as the other antibody H chain.
  • the expression vector into which the sequence was inserted was used to efficiently express the heterodimerized antibody.
  • antibodies intended to enhance binding to any of Fc ⁇ RIIIa, Fc ⁇ RIIa R type, and H type are as follows: It produced as follows. When introducing different modifications into the constant region of each H chain of the antibody, GpH7-Kn033 and GpH7-Hl033 were used as parent polypeptides.
  • GpH7-Kn056 (SEQ ID NO: 55) in which L234Y, L235Y, G236A, H268D, Q295L, S298A was introduced
  • GpH7-Kn045 (SEQ ID NO: 54) in which L234Y, L235Y, G236A, H268D, S298A were introduced into GpH7-Kn033,
  • GpH7-H1053 SEQ ID NO: 59
  • G236A, S239D, A330K, and I332E were introduced into GpH7-H033
  • GpH7-H1055 (SEQ ID NO: 60) in which G236A, S239D, Q295L, A330M, and I332E were introduced
  • Reference Example 1 It was produced according to the method.
  • GpH7-Kn045 and GpH7-H1055 as the H chain and GpL16-k0 as the L chain
  • GpH7-Kn045 / GpH7-H1055 / GpL16-k0 which is a heterodimerized antibody
  • GpH7-Kn056 and GpH7-H1055 as the H chain and GpL16-k0 as the L chain
  • GpH7-Kn056 / GpH7-H1055 / GpL16-k0 which is a heterodimerized antibody
  • modified S239D / A330L / I332E which is reported to have enhanced binding to Fc ⁇ RIIIa, was introduced into GpH7-Kn033 and GpH7-Hl033, respectively, and GpH7-Kn032 (SEQ ID NO: 53), GpH7-H1032 (SEQ ID NO: 53) : 58). These H chains were combined to express antibodies according to Reference Example 1.
  • GpH7-Kn033 / GpH7-Hl033 / GpL16-k0 is a molecule that applies only Knobs-into-Holes technology to G1d using GpH7-Kn037, GpH7-H1036 as the H chain, and GpL16-k0 as the L chain.
  • GpH7-Kn032 / GpH7-Hl033 / GpL16-k0 is a molecule that applies only Knobs-into-Holes technology to G1d using GpH7-Kn032, GpH7-Hl032 as the H chain, and GpL16-k0 as the L chain.
  • the homodimerized antibody GpH7-Kn032 / GpH7-Hl032 / GpL16-k0 into which S239D / A330L / I332E was introduced into both H chains was expressed.
  • Table 36 shows the KD ratio of each antibody
  • Table 38 shows the A / I ratio, which is the ratio of KD to Fc ⁇ RIIIa.
  • the column of the sample is the name of the antibody
  • the columns of Kn and Hl are the names of the Knob chain and Hole chain constant regions of each antibody
  • the column of mutation is compared with GpH7-Kn033 / GpH7-Hl033 / GpL16-k0. Different mutations (“-” in the absence of mutations).
  • the column of the sample is the name of the antibody
  • the columns of Kn and Hl are the names of the Knob chain and Hole chain constant regions of each antibody
  • the column of mutation is compared with GpH7-Kn033 / GpH7-Hl033 / GpL16-k0. Different mutations (“-” in the absence of mutations).
  • the value obtained by dividing KD for Fc ⁇ R of GpH7-Kn033 / GpH7-Hl033 / GpL16-k0 by KD of each antibody was defined as KD ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the ratio of the binding activity to active Fc ⁇ R and inhibitory Fc ⁇ R is shown.
  • the column of the sample is the name of the antibody
  • the columns of Kn and Hl are the names of the Knob chain and Hole chain constant regions of each antibody
  • the column of mutation is compared with GpH7-Kn033 / GpH7-Hl033 / GpL16-k0. Different mutations (“-” in the absence of mutations).
  • the value obtained by dividing the KD for Fc ⁇ RIIb of GpH7-Kn033 / GpH7-Hl033 / GpL16-k0 by the Fc ⁇ RIIa H type and R type KD of each antibody was defined as the respective A / I ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • G236A / S239D / I332E was compared to G1d in comparison with GpH7-Kn033 / GpH7-Hl033 / GpL16-k0, which is a molecule to which only Knobs-into-Holes technology was applied.
  • the GpH7-Kn037 / GpH7-Hl036 / GpL16-k0 introduced into the protein showed a 22-fold increase in binding to Fc ⁇ RIIaIIH type, 43-fold binding to Fc ⁇ RIIa R type, and 161-fold binding to Fc ⁇ RIIIa F.
  • the A / I ratio of GpH7-Kn037 / GpH7-Hl036 / GpL16-k0 is 8.6 for Fc ⁇ RIIa H type and 13 for Fc ⁇ RIIa R type, and GpH7-Kn033 / GpH7-H033 Compared with 6.2 and 4.9 of / GpL16-k0.
  • a / I / ratio of GpH7-Kn032 / GpH7-Hl032 / GpL16-k0 is 0.93 for Fc ⁇ RIIa H type, 1.8 for Fc ⁇ RIIa R type, and GpH7-Kn033 / GpH7-H033 It was lower than / GpL16-k0.
  • GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 in which G236A / S239D / A330K / I332E is introduced into the other H chain, has 52 times the binding to Fc ⁇ RIIa H type and the binding to Fc ⁇ RIIa R type
  • the binding to Fc ⁇ RIIIa F was enhanced 154 times and 419 times.
  • the binding activity to Fc ⁇ RIIa is the conventional homodimerized antibody GpH7-Kn037 / GpH7-Hl036 / GpL16 in which G236A / S239D / I332E is introduced into both H chains for both H type and R type.
  • a / I ratio of GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 is 9.5 for Fc ⁇ RIIa H type, 22 for Fc ⁇ RIIa R type, and GpH7-Kn033 / GpH7-Hl033 / GpL16- Compared with any of k0, GpH7-Kn037 / GpH7-Hl036 / GpL16-k0, and GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, it was improved.
  • GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 enhances the binding activity to Fc ⁇ RIIa and Fc ⁇ RIIIa F and more selectively active type compared to the conventional technology. It was shown to bind to Fc ⁇ R.
  • GpH7-Kn045 / GpH7-Hl055 / GpL16-k0 in which G236A / S239D / Q295L / A330M / I332E is introduced into the other H chain, is 21-fold binding to Fc ⁇ RIIa H type and to Fc ⁇ RIIa R type The binding was enhanced 56 times and the binding to Fc ⁇ RIIIa F was enhanced 985 times.
  • the binding increasing activity for Fc ⁇ RIIa was confirmed to be a conventional homodimerized antibody GpH7-Kn037 / GpH7-Hl036 / in which G236A / S239D / I332E was introduced into both H chains for both H type and R type. Compared with GpL16-k0.
  • the binding activity to Fc ⁇ RIIIa F was enhanced as compared with the homodimeric antibody GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, which is a conventional technology in which S239D / A330L / I332E was introduced into both H chains.
  • a / I ratio of GpH7-Kn045 / GpH7-Hl055 / GpL16-k0 is 8.3 for Fc ⁇ RIIa H type and 18 for Fc ⁇ RIIa R type, and GpH7-Kn033 / GpH7-Hl033 / GpL16- k0, improved from GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, compared to GpH7-Kn037 / GpH7-Hl036 / GpL16-k0, almost the same for Fc ⁇ RIIa H, and improved for Fc ⁇ RIIa R It was.
  • GpH7-Kn045 / GpH7-H1055 / GpL16-k0 improves the binding activity to Fc ⁇ RIIa to the same extent as compared with the conventional technology, and more binding activity to Fc ⁇ RIIIa. In addition to enhancing, it was shown to bind more selectively to active Fc ⁇ R.
  • GpH7-Kn056 / GpH7-Hl055 / GpL16-k0 in which / S298A is introduced into one H chain and G236A / S239D / Q295L / A330M / I332E into the other H chain, has 20-fold binding to Fc ⁇ RIIa H type, Fc ⁇ RIIa R
  • the binding to the mold was enhanced 44 times and the binding to Fc ⁇ RIIIa F was enhanced 1114 times.
  • the binding increasing activity for Fc ⁇ RIIa was confirmed to be a conventional homodimerized antibody GpH7-Kn037 / GpH7-Hl036 / in which G236A / S239D / I332E was introduced into both H chains for both H type and R type. Compared with GpL16-k0.
  • the binding activity to Fc ⁇ RIIIa F was enhanced as compared with the homodimeric antibody GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, which is a conventional technology in which S239D / A330L / I332E was introduced into both H chains.
  • a / I ratio of GpH7-Kn056 / GpH7-Hl055 / GpL16-k0 is 8.7 for Fc ⁇ RIIa H type and 16 for Fc ⁇ RIIa R type, and GpH7-Kn033 / GpH7-Hl033 / GpL16- k0, improved from GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, compared to GpH7-Kn037 / GpH7-Hl036 / GpL16-k0, almost the same for Fc ⁇ RIIa H, and improved for Fc ⁇ RIIa R It was.
  • GpH7-Kn056 / GpH7-H1055 / GpL16-k0 has improved the binding activity to Fc ⁇ RIIa to the same extent as that of the conventional technology, and more binding activity to Fc ⁇ RIIIa. In addition to enhancing, it was shown to bind more selectively to active Fc ⁇ R.
  • Example 13 Comparison with prior art: Evaluation of thermal stability of heterodimerized antibody with enhanced binding activity to Fc ⁇ RIIa and Fc ⁇ RIIIa As shown in Example 9, the homodimerized antibody obtained by the prior art is Fc ⁇ R Although its binding activity to selenium was enhanced, it was physicochemically unstable, so it lost its value as a pharmaceutical product. However, heterodimerized antibody technology makes it easy to control the effect of enhancing the binding activity of each modification on Fc ⁇ R and the effect on the physicochemical aspect, and the physicochemical stability is impaired while enhancing the binding activity to Fc ⁇ R. It became clear that it was not possible.
  • Tm of an antibody with enhanced binding activity to Fc ⁇ RIIa and Fc ⁇ RIIIa is shown.
  • any of the dimerized antibodies GpH7-Kn045 / GpH7-Hl048 / GpL16-k0, GpH7-Kn045 / GpH7-Hl055 / GpL16-k0, GpH7-Kn056 / GpH7-Hl055 / GpL16-k0
  • the Tm was higher than that of the conventional homodimerized antibodies GpH7-Kn037 / GpH7-H1036 / GpL16-k0 and GpH7-Kn032 / GpH7-H1032 / GpL16-k0.
  • these heterodimerized antibodies have properties more suitable for exerting effector functions via Fc ⁇ R than conventional homodimerized antibodies. That is, it was clarified from this result that by using the heterodimerized antibody technique, it is possible to precisely control the binding to Fc ⁇ R without impairing the physicochemical stability of the antibody.
  • Example 14 Effect of modified combination with improved selectivity for Fc ⁇ RIIIa F, which is an active Fc ⁇ R As described in Example 8, a technique for improving the selectivity for active Fc ⁇ R and inhibitory Fc ⁇ R is useful. .
  • heterodimerization is effective in improving the ratio of binding to Fc ⁇ RIIIa F, which is the active Fc ⁇ found in Example 8, and binding to Fc ⁇ RIIb, which is the inhibitory Fc ⁇ R, that is, to improve selectivity. .
  • Example 7 it was examined in Example 7 with L234Y, G236W, S298A (Table 22-1 region a), which are modifications that improve the ratio of binding to Fc ⁇ RIIIa F, which is an active Fc ⁇ , and binding to Fc ⁇ RIIb, which is an inhibitory Fc ⁇ R.
  • S239D, A330L, and I332E it was verified whether the effect of improving selectivity can be obtained with the heterodimerized antibody compared with the homodimerized antibody.
  • GpH7-A57 (SEQ ID NO: 40) in which S239D, A330L, and I332E were all introduced into GpH7-A5 according to the method of Reference Example 1, and GpH7-B78 (SEQ ID NO :) introduced into GpH7-B3. 41) and GpH7-TA7 (SEQ ID NO: 31) in which L234Y, G236W and S298A were all introduced into GpH7-A5, and GpH7-TA45 (SEQ ID NO: 32) introduced in GpH7-B3 were prepared.
  • the prepared antibody was measured for KD for Fc ⁇ RIIIa and KD for Fc ⁇ RIIb according to the method of Reference Example 2. It was verified whether or not the selectivity of the binding activity of each antibody to Fc ⁇ RIIIa was improved by using Fc ⁇ RIIIa / Fc ⁇ RIIb ratio, which is a value obtained by dividing KD of each antibody to Fc ⁇ RIIb by KD to Fc ⁇ RIIIa.
  • the verification results are summarized in Table 40.
  • the column of the sample is the name of the antibody
  • the column of H1, H2 is the name of the H chain constant region of each antibody
  • the column of the mutation is a different mutation compared to GpH7-A5 / GpH7-B3 / GpL16-k0 ( In particular, when there was no mutation, “-”) was indicated.
  • the value obtained by dividing the KD for Fc ⁇ RIIb of each antibody by the KD for Fc ⁇ RIIIa F was defined as Fc ⁇ RIIIa F / Fc ⁇ RIIb ratio.
  • the amino acid sequence numbers corresponding to the H chain and L chain of each antibody are also shown.
  • the effect of each modification was verified on the homodimerized antibody using the conventional technique.
  • the homodimerized antibody GpH7-A57 / GpH7-B78 / GpL16-k0 with S239D, A330L, and I332E introduced into both H chains has Fc ⁇ RIIIa / Fc ⁇ RIIb ratio of 100, compared with GpH7-A5 / GpH7-B3 / GpL16-k0 And improved.
  • the homodimerized antibody GpH7-TA7 / GpH7-TA45 / GpL16-k0 with L234Y, G236W, and S298A introduced into both H chains is 5.3, and the combination of S239D, A330L, and I332E is the homodimerized antibody.
  • S239D, A330L, and I332E was found to be highly effective in improving the selectivity of the binding activity to Fc ⁇ RIIIa.
  • the modified group of S239D, A330L, and I332E is more effective in improving the selectivity of the binding activity to Fc ⁇ RIIIa than the modified group of L234Y, G236A, and S298A.
  • the modified group of L234Y, G236A, and S298A is more effective in improving the selectivity of the binding activity to Fc ⁇ RIIIa than the modified group of S239D, A330L, and I332E.
  • heterodimerized antibody GpH7-TA7 / GpH7-B78 / GpL16-k0 that combines the modified group of L234Y, G236A, S298A and the modified group of S239D, A330L, I332E, Fc ⁇ RIIIa / Fc ⁇ RIIbIIratio is 244, L234Y, G236A, S298A Heterodimerized antibody GpH7-TA7 / GpH7-B3 / GpL16-k0 having the modified group of only one H chain, homodimerized antibody GpH7-TA7 / GpH7-TA45 / GpL16-k0 having both H chains, S239D, Heterodimerized antibody GpH7-A5 / GpH7-B78 / GpL16-k0 having a modified group of A330L and I332E only on one H chain, homodimerized antibody GpH7-
  • the asymmetric interaction between the Fc region and Fc ⁇ RIIIa can be optimized more than when using a conventional homodimerized antibody, and the selectivity of the binding activity to Fc ⁇ RIIIa is higher. It has been shown that it is possible to design Fc regions with
  • Example 15 Measurement of ADCC activity of FcgRIIa binding-enhanced heterodimerized antibody GpH7-G1d / GpL16-k0, GpH7-Kn033 / GpH7-Hl033 / GpL16-k0, GpH7-Kn037 / GpH7-Hl036 prepared in Example 12 / GpL16-k0, GpH7-Kn032 / GpH7-Hl032 / GpL16-k0, GpH7-Kn045 / GpH7-Hl048 / GpL16-k0, GpH7-Kn056 / GpH7-Hl055 / GpL16-k0 according to the method of Reference Example 7 ADCC activity was evaluated and the results are summarized in FIG.
  • the heterodimerized antibodies GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 and GpH7-Kn056 / GpH7-H1055 / GpL16-k0 described in Example 12 are all antibodies GpH7-Kn033 / GpH7-Hl033 / GpL16 before introduction of the modification. It showed stronger ADCC activity compared to -k0.
  • a homodimerized antibody GpH7-Kn037 / GpH7-Hl036 / GpL16-k0 having a modification of G236A / S239D / I332E in both H chains and GpH7-Kn032 / GpH7-Hl032 / GpL16, which is an antibody to which the existing ADCC activity enhancement is applied ADCC activity comparable to -k0 was shown.
  • GpH7-Kn045 / GpH7-Hl048 / GpL16-k0 and GpH7-Kn056 / GpH7-Hl055 / GpL16-k0 are further enhanced in binding to FcgRIIa R and FcgRIIa H as shown in Example 12 compared to the existing technology.
  • it has an ADCC activity enhancement effect equivalent to that of the existing ADCC activity enhancement technology. That is, the heterodimerized antibody evaluated here is superior to the existing technology in that it has the same effect as that of the existing technology with respect to the ADCC activity enhancing effect and also has an enhanced binding to FcgRIIa H and FcgRIIa R. It is thought that.
  • Example 16 Creation of heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 with enhanced binding to FcgRIIIa
  • heterodimerized antibody with enhanced Fc ⁇ RIIIa binding activity was also found to enhance ADCC activity.
  • the effect was confirmed with an antibody against GPC3, but in order to confirm whether the same effect was observed with other antigens, a similar experiment was performed using an anti-Epiregulin (EREG) antibody.
  • the sequence of the H chain variable region of the antibody against EREG is H240 (SEQ ID NO: 80), and the sequence of the L chain including the variable region and the constant region is L73-k0 (SEQ ID NO: 106).
  • Example 4 Based on the results of Example 4, a modified variant having a newly enhanced binding to FcgRIIIa was prepared on the H chain.
  • the Knobs-into-Holes technique described in Example 12 was used as the heterodimerization technique.
  • H240-Kn033 (SEQ ID NO: 84) in which a modification of Y349C, T366W was introduced into the constant region for H240-G1d (SEQ ID NO: 83), D356C, T366S, L368A for H240-G1d, H240-Hl033 (SEQ ID NO: 85) in which a modification of Y407V was introduced into the constant region was prepared according to the method of Reference Example 1.
  • H240-Kn033 SEQ ID NO: 84
  • H240-Kn061 SEQ ID NO: 81
  • H240-H033 K326D, A330M, and K334E were introduced into (SEQ ID NO: 85)
  • H240-Hl071 SEQ ID NO: 82
  • a heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 was expressed by combining H240-Kn061, H240-H1071, and L73-k0 according to the method of Reference Example 1.
  • Example 12 a modified product introduced with S239D, A330L, or I332E, which has been reported to enhance binding to FcgRIIIa, was prepared for use as a comparison target.
  • S239D, A330L, and I332E were introduced into each of H240-Kn033 (SEQ ID NO: 84) and H240-Hl033 (SEQ ID NO: 85) according to the method of Reference Example 1, and H240-Kn032 (SEQ ID NO: 86), H240-Hl032 (SEQ ID NO: 87).
  • H240-Kn032, H240-Hl032, and L73-k0 were combined to express the homodimerized antibody H240-Kn032 / H240-Hl032 / L73-k0 according to the method of Reference Example 1.
  • fucose-deficient antibodies can be obtained by producing antibodies in cells in which beta-1,1,4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II are forcibly expressed (Ferrara, et al., Biotechnol. Bioin. (2006) 93 (5), 851-861).
  • H240-afucosyl_G1d / L73 in which H240-G1d (SEQ ID NO: 83) and L73-k0 (SEQ ID NO: 106) were expressed in combination and afucosylated H240-afucosyl_G1d / L73 by methods known to those skilled in the art -k0 (SEQ ID NO: 83, 106) was obtained.
  • H240-Kn033 SEQ ID NO: 84
  • H240-Hl033 SEQ ID NO: 85
  • L73-k0 SEQ ID NO: 106
  • the heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has particularly enhanced binding to FcgRIIIa ⁇ F and FcgRIIIa ⁇ ⁇ V compared to H240-Kn033 / H240-Hl033 / L73-k0. It was.
  • Heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 is a modified version of L240Y / L235Y / G236W / H268D / S298A and K326D / A330M / K334E introduced into H240-Kn033 / H240-Hl033 / L73-k0 Therefore, it can be said that the binding of these introduced modifications to FcgR was enhanced.
  • the heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 is H240-afucosyl_G1d / L73-k0 and H240-Kn032 / H240-Hl032 / L73-k0 to which the existing ADCC activity enhancement technology is applied.
  • binding to FcgRIIIa V was enhanced. From this result, it was clarified that the heterodimerized antibody has a higher binding enhancement effect on FcgRIIIa than the conventional ADCC activity enhancement technology by homodimerization antibody and ADCC activity enhancement technology by afucosylation.
  • heterodimerized antibodies have enhanced binding to FcgRIIa, which is thought to be important for enhancing ADCP activity, FcgRIIa H is more potent than both antibodies, and FcgRIIa R is more potent than H240-afucosyl_G1d / L73-k0 However, it was similar to H240-Kn032 / H240-Hl032 / L73-k0.
  • heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has the characteristics of a heterodimerized antibody that enhances the binding activity to FcgR than the homodimerized antibody consisting of each H chain.
  • Heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 is one H chain H240-Kn061 is L234Y / L235Y / G236W / H268D / S298A, and the other H chain is H240-Hl071.
  • K326D / A330M / K334E has been introduced.
  • This heterodimerized antibody was confirmed to have a stronger binding activity to each FcgR as compared to a homodimerized antibody consisting of each H chain.
  • L240Y / L235Y / G236W / H268D / S298A was introduced into H240-Hl033, H240-Hl134 (SEQ ID NO: 88), and K326D / A330M / K334E was introduced into H240-Kn033, H240-Kn132 (SEQ ID NO: : 89) was prepared according to the method of Reference Example 1.
  • the homodimerized antibody H240-Kn061 / H240-Hl134 / L73-k0 having L234Y / L235Y / G236W / H268D / S298A in both H chains is expressed according to the method of Reference Example 1.
  • the homodimerized antibody H240-Kn132 / H240-H071 / L73-k0 having K326D / A330M / K334E in both H chains was expressed.
  • the heterodimerized antibody H240-Kn061 / H240-Hl071 / L73 having L234Y / L235Y / G236W / H268D / S298A on one H chain and K326D / A330M / K334E on the other H chain -k0 is a homodimerized antibody H240-Kn061 / H240-Hl134 / L73-k0 that has L234Y / L235Y / G236W / H268D / S298A in both H chains and K326D / A330M / K334E in both H chains It was confirmed to have stronger binding activity to FcgRIIIa F and FcgRIIIa V than any of the homodimerized antibodies H240-Kn132 / H240-Hl071 / L73-k0.
  • H240-Kn061 / H240-Hl071 / L73-k0 has the characteristics of a heterodimerized antibody that enhances the binding activity to FcgR as compared to the homodimerized antibody composed of each H chain.
  • H240-Kn061 / H240-Hl071 / L73-k0 showed significantly stronger ADCC activity than H240-Kn033 / H240-Hl033 / L73-k0.
  • it showed ADCC activity stronger than H240-Kn032 / H240-Hl032 / L73-k0 and H240-afucosyl_G1d / L73-k0 to which the existing ADCC activity enhancement technology was applied.
  • H240-Kn061 / H240-Hl071 / L73-k0 was also found to exhibit stronger ADCC activity than the existing ADCC activity enhancement technology in terms of ADCC activity.
  • Example 17 Production and evaluation of further variants using heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 as a template
  • H240-Kn061 / H240 exhibiting excellent ADCC activity -Hl071 / L73-k0 was found.
  • EU numbering of each H chain of H240-Kn061 and H240-Hl071 was carried out according to the method of Reference Example 1 using H240-Kn061 / H240-Hl071 / L73-k0 as a template.
  • a total of about 420 variants were prepared by substituting the 231st to 242nd amino acids with 18 different amino acids other than Cys and the original amino acid, and the binding to each FcgR was evaluated.
  • the KD values for FcgRI, FcgRIIa R, FcgRIIa H, FcgRIIb, FcgRIIIa F, and FcgRIIIa V of each variant were calculated, and the KD value was H240-Kn061 / The value obtained by dividing the KD value of H240-Hl071 / L73-k0 for FcgRI, FcgRIIa R, FcgRIIa H, FcgRIIb, FcgRIIIa F, and FcgRIIIa V was used as an evaluation index.
  • a modification was selected in which Relative KD for FcgRIIb was 1 or less, and any of FcgRIIa R, FcgRIIIa F, FcgRIIIa V, or some of them had a Relative KD of 1.3 or more.
  • the numerical value in the said Table 45 represents Relative KD with respect to each FcgR of each modified body. These modifications attenuate the binding to the inhibitory FcgR, FcgRIIb, without diminishing the binding to FcgRIIIa, which plays an important role in ADCC activity. Therefore, introduction of this modification is expected to exert stronger antitumor activity because the immunosuppressive action of the antibody is reduced without reducing ADCC activity.
  • heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has the property of a heterodimerized antibody that binds to FcgR more strongly than the homodimerized antibody consisting of each H chain, these It is considered that the modified form obtained by introducing the modification into H240-Kn061 / H240-Hl071 / L73-k0 also has similar heterodimerized antibody properties.
  • Example 18 Modifications Replaceable with Modifications Introduced into Heterodimerized Antibody H240-Kn061 / H240-Hl071 / L73-k0
  • FIGS. 35, 36, 37, 38, and 39 Obtained in Example 17 From the results of FIG. 40, it was verified whether these modified portions of the heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 can be replaced with other modifications.
  • the substitutable modification is such that by introducing the modification, the binding to FcgRIIIa F and FcgRIIIa V is 0.7 times or more and the binding to FcgRIIb is 1.3 times or less compared to before the introduction. Refers to modification.
  • the variant prepared in Example 17 introduces a modification to the 231st to 242nd amino acids of the EU numbering of the antibody.
  • H240-H071 which is one H chain of H240-Kn061 / H240-Hl071 / L73-k0 is not included, and the EU numbering of the H chain of H240-Kn061 which is the other H chain is 234th, 235 The 236th is included.
  • H240-Kn061 H chain EU numbering 234th, 235th, 236th introduced a modification, compared with H240-Kn061 / H240-Hl071 / L73-k0,
  • a variant that has a binding to FcgRIIIa F and FcgRIIIa V of 0.7-fold or more and a binding to FcgRIIb of 1.3-fold or less is considered to have an activity that is equivalent to or superior to that of H240-Kn061 / H240-Hl071 / L73-k0.
  • H chain introduced with modification means which H chain of H240-Kn061 / H240-H071 / L73-k0 can be substituted
  • Modification is The numbers represent the residue numbers when expressed by EU numbering, the first alphabet represents the amino acid corresponding to that residue number of H240-Kn061 / H240-Hl071 / L73-k0, and the last alphabet represents the substitutable amino acid.
  • the “modified site” in Table 47 above is the residue number when represented by EU numbering of H240-Kn061.
  • the residue number when represented by EU numbering, the substitutable amino acid is the amino acid in the table Represents an amino acid having a similar activity to that of H240-Kn061 / H240-Hl071 / L73-k0, that is, a substitutable amino acid.
  • Example 4 Of the modifications introduced into H240-Kn061 / H240-Hl071 / L73-k0, H268D, S298A of H240-Kn061 and K326D, A330M, K334E of H240-Hl071 were modified at the corresponding sites in Example 17. Not. In the following, the results of Example 4 were considered for the presence or absence of alterations that could replace these sites. Specifically, among the results of Example 4, in the heterodimerized antibody in which the modification is introduced into only one of the H chains, He / Con_3aF, which is an index of binding to FcgRIIIa F, is 1.3 times or more than before the modification introduction.
  • the “modified site” in Table 48 above represents the residue number when expressed by EU numbering.
  • “Substitutable amino acid” refers to He / Con_3aF, which is an indicator of binding to FcgRIIIa1.3F, increased 1.3 times or more in the heterodimerized antibody in which the modification is introduced into only one of the H chains in Example 4. And represents the three modifications that have the strongest effect at that site.
  • “He / Con — 3aF” is a value defined in the fourth embodiment.
  • Table 48 The results of Table 48 are summarized for each modification site by substitutable amino acids.
  • Table 49 (Modification H268D, S298A, K326D, A330M, K334E of H240-Kn061 / H240-Hl071 / L73-k0, Substitutable amino acids).
  • heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has the characteristics of a heterodimerized antibody that enhances the binding activity to FcgR than the homodimerized antibody consisting of each H chain, these The modification obtained by introducing the above modification into H240-Kn061 / H240-Hl071 / L73-k0 is also considered to have the properties of a heterodimerized antibody.
  • D270E which is a modification that enhances the binding to FcgRIIIa found in Example 4 and attenuates the binding to FcgRIIb, was introduced into both H chains of H240-Kn061 / H240-Hl071 / L73-k0.
  • the sequences obtained by introducing D270E into each of H240-Kn061 and H240-Hl071 are H240-Kn072 (SEQ ID NO: 90) and H240-H1076 (SEQ ID NO: 91), respectively, and according to the method of Example 1, L73-k0
  • a combined heterodimerized antibody H240-Kn072 / H240-H1076 / L73-k0 was expressed and prepared.
  • H240-Kn072 / H240-Hl076 / L73-k0 applies HADC-Kn032 / H240-Hl032 / L73-k0 to which the existing ADCC activity enhancement technology is applied in the same manner as H240-Kn061 / H240-Hl071 / L73-k0.
  • H240-afucosyl_G1d / L73-k0 bound more strongly to FcgRIIIa F and FcgRIIIa V, and in addition to H240-Kn061 / H240-Hl071 / L73-k0.
  • H240-Kn072 / H240-Hl076 / L73-k0 has less binding than H240-Kn032 / H240-Hl032 / L73-k0 and H240-afucosyl_G1d / L73-k0 produced by the existing ADCC activity enhancement technology However, it was more attenuated than H240-Kn061 / H240-Hl071 / L73-k0.
  • H240-Kn072 / H240-Hl076 / L73-k0 is superior to H240-Kn061 / H240-Hl071 / L73-k0 because it is expected to reduce the immunosuppressive action of antibodies. It is considered that
  • H240-Kn072 / H240-Hl076 / L73-k0 showed significantly stronger ADCC activity than H240-Kn033 / H240-Hl033 / L73-k0.
  • H240-Kn072 / H240-Hl076 / L73-k0 shows ADCC activity stronger than the afucosylated antibody H240-afucosyl_G1d / L73-k0 to which the existing ADCC activity enhancement technology is applied, and H240-Kn061 / H240-Hl071 / L73 ADCC activity comparable to -k0 was shown.
  • the heterodimerized antibody H240-Kn072 / H240-Hl076 / L73-k0 has a stronger ADCC activity than the existing ADCC activity enhancement technology, and is superior to the existing technology in which the binding to FcgRIIb is also attenuated. It is an antibody.
  • heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has the property of a heterodimerized antibody that binds to FcgR more strongly than the homodimerized antibody consisting of each H chain
  • D270E H240-Kn072 / H240-Hl076 / L73-k0 obtained by introduction into both H chains of H240-Kn061 / H240-Hl071 / L73-k0 is also considered to have the properties of a heterodimerized antibody.
  • Example 20 Further improvement of heterodimerized antibody H240-Kn072 / H240-Hl076 / L73-k0 Attempts were made to further improve H240-Kn072 / H240-Hl076 / L73-k0 found in Example 19 . Specifically, modified Y234E, Y235N, Y235Q, and S239M that are imparted by introducing further superior properties into H240-Kn061 / H240-Hl071 / L73-k0 found in Example 18; Combined with H240-Kn072 / H240-Hl076 / L73-k0.
  • H240-Kn072 introduced Y234E and Y235N into H240-Kn113 (SEQ ID NO: 92), H240-Kn072 introduced S239M into H240-Kn115 (SEQ ID NO: 93), H240-Kn072 H240-Kn125 (SEQ ID NO: 94) into which Y235Q and S239M were introduced was prepared.
  • H240-Hl076 as one H chain L73-k0 as the L chain
  • H240-Kn113, H240-Kn115, H240-Kn125 as the other H chain
  • H240-Kn113 / H240-Hl076 / L73-k0, H240-Kn115 / H240-Hl076 / L73-k0, and H240-Kn125 / H240-Hl076 / L73-k0 were prepared.
  • binding to each FcgR was performed by adding H240-G1d / L73-k0, which is a natural IgG1, and H240-Kn033 / H240-Hl033 / L73- with Knobs-into-Holes added thereto.
  • H240-Kn113 / H240-Hl076 / L73-k0 maintains the same level of binding to the inhibitory FcgR, FcgRIIb, and is important for ADCC activity.
  • the binding to FcgRIIIaIIIF and FcgRIIIa V that play a role was enhanced.
  • the binding to the inhibitory FcgR, FcgRIIb, was comparable to that of the natural antibody IgG1.
  • FcgRIIIa the homozygous binding of FcgRIIIa F and FcgRIIIa V was introduced into both H chains using afucosylated antibody H240-afucosyl_G1d / L73-k0, which is an existing ADCC activity enhancement technology, and S239D / A330L / I332E, an ADCC activity enhancement modification. It was enhanced over the quantified antibody H240-Kn032 / H240-Hl032 / L73-k0.
  • H240-Kn113 / H240-Hl076 / L73-k0 does not have an immunosuppressive effect as compared with natural IgG1, and is an afucosylated antibody or homologue to which an existing ADCC activity enhancement modification is applied. It may have a stronger anti-tumor effect than dimerized antibodies.
  • H240-Kn115 / H240-Hl076 / L73-k0 further enhanced binding to FcgRIIIa F and FcgRIIIa V, which play an important role in ADCC activity, compared with H240-Kn113 / H240-Hl076 / L73-k0.
  • binding to FcgRIIa R and FcgRIIa H was also achieved by H240-G1d / L73-k0, a natural IgG1, and H240-Kn033 / H240-Hl033 / L73-k0 with Knobs-into-Holes added.
  • H240-Kn125 / H240-Hl076 / L73-k0 increases ADCC activity while maintaining the binding to FcgRIIb, which is an inhibitory FcgR, at the same level as IgG1. Binding to FcgRIIIa F and FcgRIIIa V, which play an important role, was enhanced over H240-Kn115 / H240-H1076 / L73-k0.
  • the binding to FcgRIIa H which is one of the allotypes of FcgRIIa
  • the binding to FcgRIIb is attenuated, and the binding to both allotypes is increased for FcgRIIIa, so that H240-Kn125 / H240-Hl076 / L73-k0 is expected to enhance ADCP activity and ADCC activity over the afucosylated and homodimerized antibodies to which the existing ADCC activity enhancement modification is applied, and in addition, it can be expected to attenuate immunosuppressive action .
  • the ADCC activity of H240-Kn113 / H240-Hl076 / L73-k0, H240-Kn115 / H240-Hl076 / L73-k0, H240-Kn125 / H240-Hl076 / L73-k0 is set to H240-Kn033 / H240-Hl033 / L73-k0 was compared with afucosylated antibody H240-afucosyl_G1d / L73-k0, which is an existing ADCC activity enhancement technology. The result is shown in FIG.
  • any heterodimerized antibody exhibits ADCC activity superior to the afucosylated antibody, which is an existing ADCC activity enhancement technique.
  • Y234E, Y235N, Y235Q and S239M introduced into H240-Kn072 of H240-Kn072 / H240-Hl076 / L73-k0 were H240-Kn072 / H240 -Hl076 / L73-k0 proved to be a modification that imparts superior properties.
  • the heterodimerized antibody H240-Kn061 / H240-Hl071 / L73-k0 has the property of a heterodimerized antibody that binds to FcgR more strongly than the homodimerized antibody consisting of each H chain.
  • H240-Kn072 / H240-Hl076 / L73-k0 obtained by introducing into both heavy chains of Kn061 / H240-Hl071 / L73-k0 also has the properties of a heterodimerized antibody, and further modifications are introduced there.
  • H240-Kn113 / H240-Hl076 / L73-k0, H240-Kn115 / H240-Hl076 / L73-k0, and H240-Kn125 / H240-Hl076 / L73-k0 are also considered to have the properties of heterodimerized antibodies. It was.
  • Example 21 Preparation of heterodimerized antibody with enhanced binding to FcgRIIa and FcgRIIIa Based on the results of Example 4, a variant with enhanced binding to FcgRIIIa and FcgRIIa was prepared on the H chain. Specifically, according to the method of Reference Example 1, L234Y, L235Y, G236W, H268D, S298A, A327D were introduced into H240-Kn033 (SEQ ID NO: 84) to prepare H240-Kn067 (SEQ ID NO: 95).
  • H240-Hl033 SEQ ID NO: 85
  • H240-Hl068 SEQ ID NO: 96
  • a heterodimerized antibody H240-Kn067 / H240-Hl068 / L73-k0 was expressed by combining H240-Kn067, H240-H1068, and L73-k0 according to the method of Reference Example 1.
  • heterodimerized antibody H240-Kn067 / H240-Hl068 / L73-k0 has the characteristics of a heterodimerized antibody that enhances the binding activity to FcgR over the homodimerized antibody consisting of each H chain. did.
  • Heterodimerized antibody H240-Kn067 / H240-Hl068 / L73-k0 is one H chain, H240-Kn067, and L234Y / L235Y / G236W / H268D / S298A / A327D is the other H chain, H240-Hl068.
  • H240-Hl136 (SEQ ID NO: 97) in which L234Y / L235Y / G236W / H268D / S298A / A327D was introduced into H240-Hl033, and H240-Kn133 (array in which D270E / K326D / A330K / K334E was introduced into H240-Kn033) No. 98) was prepared according to the method of Reference Example 1.
  • the modified Y235Q, S239M which imparts further superior properties to H240-Kn061 / H240-H071 / L73-k0 by introducing into this H240-Kn061 found in Example 18, H240-Kn061, -Combined with Kn067 / H240-Hl068 / L73-k0.
  • H240-Kn120 SEQ ID NO: 99
  • H240-Kn126 SEQ ID NO: 100
  • H240-H1068 as one H chain L73-k0 as the L chain
  • H240-Kn067, H240-Kn120, H240-Kn126 as the other H chain and H240-Kn067 / H240-Hl068 / L73-k0
  • H240-Kn126 / H240-Hl068 / L73-k0 were prepared.
  • Table 53 The results of evaluating the binding to each FcgR according to the method of Reference Example 8 are summarized in Table 53.
  • H240-Kn067 / H240-Hl068 / L73-k0, H240-Kn120 / H240-Hl068 / L73-k0, and H240-Kn126 / H240-Hl068 / L73-k0 are all existing ADCC activity-enhancing antibodies.
  • H240-afucosyl_G1d / L73-k0 and H240-Kn032 / H240-Hl032 / L73-k0 the binding to FcgRIIIa was equivalent or more enhanced.
  • the binding to FcgRIIa R and FcgRIIa ⁇ H which play an important role in ADCP activity, was enhanced.
  • any of the heterodimerized antibodies of H240-Kn067 / H240-Hl068 / L73-k0, H240-Kn120 / H240-Hl068 / L73-k0 and H240-Kn126 / H240-Hl068 / L73-k0 prepared this time It was suggested that ADCC activity is equal to or higher than that of existing technologies and that ADCP activity is superior to those.
  • H240-Kn120 / H240-Hl068 / L73-k0 enhanced the binding to FcgRIIa R and FcgRIIa H, and homodimerization with modification of G236A / S239D / I332E reported on both H chains, reported to have enhanced ADCP activity.
  • the binding to FcgRIIa H and FcgRIIa R is further enhanced.
  • H240-Kn120 / H240-Hl068 / L73-k0 enhances the binding to FcgRIIIa F and FcgRIIIa V compared to the antibody using the existing ADCC activity enhancement technology, and more than the antibody using the existing ADCP activity enhancement technology. Binding to FcgRIIa R and FcgRIIa H is enhanced. Therefore, H240-Kn120 / H240-Hl068 / L73-k0 is an excellent antibody that may have stronger ADCC activity and ADCP activity than antibodies using existing technology.
  • H240-Kn067 / H240-Hl068 / L73-k0, H240-Kn120 / H240-Hl068 / L73-k0, H240-Kn126 / H240 prepared this time from the binding profile for each FcgR and the result of ADCC activity compared with the existing technology -Hl068 / L73-k0 is a heterodimerized antibody that has ADCC activity that is comparable to or higher than that of existing ADCC activity enhancement technology, but is also likely to enhance ADCP activity via FcgRIIa binding It became clear.
  • H240Y / L235Y / G236W / H268D / D270E / S298A which is a modification introduced into H240-Kn072 which is one H chain of H240-Kn072 / H240-Hl076 / L73-k0, H240-G1d
  • H240-A07E SEQ ID NO: 104 was prepared by introducing H356-A1E (SEQ ID NO: 102) into which D356K and H435R were introduced into H240-G1dE (SEQ ID NO: 101).
  • H240-H1076 D270E / K326D / A330M / K334E introduced into the other H chain, H240-H1076, was introduced into H240-B3E (SEQ ID NO: 103) into which K439E was introduced into H240-G1dE, and H240- BH076 (SEQ ID NO: 105) was prepared.
  • H240-AK072, H240-BH076, and L73-k0 were combined to express and prepare the heterodimerized antibody H240-AK072 / H240-BH076 / L73-k0.
  • H240-AK072 and L73-k0, and H240-BH076 and L73-k0 were respectively combined to express and prepare homodimerized antibodies H240-AK072 / L73-k0 and H240-BH076 / L73-k0.
  • Table 54 summarizes the results of comparing the binding activities of these antibodies to each FcgR according to the method of Reference Example 8.
  • the heterodimerized antibody H240-AK072 / H240-BH076 / L73-k0 is stronger than any of the homodimerized antibodies H240-AK072 / L73-k0 and H240-BH076 / L73-k0 consisting of each H chain. It was confirmed to have the characteristics of a heterodimerized antibody that binds to FcgR.
  • H240-A5E, H240-B3E, and L73-k0 were expressed in combination to prepare H240-A5E / H240-B3E / L73-k0.
  • Table 55 The binding of -k0 to each FcgR was evaluated and the results are summarized in Table 55.
  • the binding activity of H240-G1d / L73-k0 and H240-A5E / H240-B3E / L73-k0 is equivalent to FcgR
  • the enhancement of the binding activity of H240-AK072 / H240-BH076 / L73-k0 is It is thought to be derived from the modification of L234Y / L235Y / G236W / H268D / D270E / S298A and D270E / K326D / A330M / K334E introduced into each H chain.
  • Example 23 X-ray crystal structure analysis of complex of Fc (Kn120 / Hl068) and FcgRIIb extracellular region In H240-Kn120 / H240-Hl068 / L73-k0 prepared in Example 21, FcgRIIIa and FcgRIIa H type
  • FcgRIIIa the binding activity to the allotype FcgRIIa R type
  • the binding activity to the inhibitory receptor FcgRIIb was also observed at the same time. Since the enhanced binding to FcgRIIb is considered to bring about an immunosuppressive effect, it is possible that ADCC activity, which is the object of the present invention, can be further enhanced by reducing the binding to FcgRIIb.
  • FcgRIIa and FcgRIIb have very high homology because 93% of the amino acid sequences in the extracellular region are identical. Furthermore, analysis from the crystal structure of the extracellular region complex of natural IgG1 Fc (hereinafter Fc (WT)) and FcgRIIa R type (J. Imunol. 2011, 187, 3208-3217) Compared with FcgRIIb, FcgRIIa R type was found to differ only by 3 amino acids (Gln127, Leu132, Phe160) (FIG. 44). For this reason, it was expected that it was very difficult to attenuate only the binding activity to FcgRIIb while maintaining the binding activity to FcgRIIa R type.
  • Fc (WT) natural IgG1 Fc
  • FcgRIIa R type J. Imunol. 2011, 187, 3208-3217
  • FIG. 45 shows the structure acquired as a result of the analysis.
  • FcgRIIb extracellular region is sandwiched between two Fc CH2 domains, and Fc (WT) and FcgRIIIa (Proc.Natl.Acad.Sci.USA, 2011, 108, 12669- 126674), FcgRIIIb (Nature, 2000, 400, 267-273; J.Biol.Chem. 2011, 276, 16469-16477), FcgRIIa complex with each extracellular region It became clear.
  • FIG. 46 shows the structure around Lys127 (Gln in FcgRIIaRR type).
  • the closest FcgRIIb residue is EU numbering 298th Ala in CH2 domain B of Fc shown in FIG. 46, but this residue is in direct contact with FcgRIIb at the interface of binding, and thus mutually interacts with Lys127.
  • the introduction of large residues that could act was considered difficult.
  • Other surrounding amino acid residues were also far from Lys127, and it was not possible to find mutations that could interact directly.
  • FIG. 47 shows the structure around Ser132 (Leu in FcgRIIa R type).
  • FIG. 48 shows a structure around Tyr160 (Phe in FcgRIIa R type). This Tyr forms a hydrogen bond with the main chain carbonyl oxygen of the EU numbering 236th Gly in the CH2 domain A of Fc. Therefore, if a mutation is introduced into Gly236 at EU numbering 236 and the loop structure is changed, and as a result, this hydrogen bond can be eliminated, only the binding activity to FcgRIIb may be reduced.
  • Fc (Kn0120 / Hl068) expression purification Fc (Kn0120 / Hl068) was prepared as follows. First, the EU numbering 220th Cys of H240-Kn120 (SEQ ID NO: 99) and H240-Hl068 (SEQ ID NO: 96) was replaced with Ser, and the C-terminus of the EU numbering 236th Glu was cloned by PCR Fc (Kn0120) and Fc (Hl068) were prepared, expressed and purified according to the method described in Reference Example 1.
  • Cys of EU numbering 220th forms a disulfide bond with Cys of L chain in normal IgG1, but when preparing only Fc, L chain is not co-expressed, so unnecessary disulfide bond formation occurs. Replaced with Ser to avoid.
  • Endo F1 (Protein Science 1996, 5, 2617-2622) 0.15 mg expressed and purified by E. coli as a fusion protein with glutathione S-transferase was added to 1.5 mg of the FcgRIIb extracellular region sample obtained for crystallization, The mixture was allowed to stand at room temperature for 3 days under a buffer condition of M Bis-Tris pH 6.5 to cleave leaving N-acetylglucosamine in which the N-type sugar chain was directly bound to Asn.
  • the FcgRIIb extracellular region sample that had been subjected to this sugar chain cleavage treatment was concentrated with a 10000 MWCO ultrafiltration membrane and equilibrated with 20 mM HEPES pH 7.5, 0.1 M NaCl (Superdex200 10/300).
  • Fc (Kn0120 / Hl068) was added to the obtained sugar chain-cleaved FcgRIIb extracellular region fraction so that the FcgRIIb extracellular region was slightly excessive in molar ratio, and after concentration by a 10,000 MWCO ultrafiltration membrane, 25 mM HEPES pH 7 Purified by gel filtration column chromatography (Superdex200 10/300) equilibrated with .5, 0.1 M NaCl to obtain a sample of Fc (Kn0120 / Hl068) / FcgRIIb extracellular region complex.
  • Fc (Kn120 / Hl068) / FcgRIIb complex extracellular region complex crystallization A sample of the Fc (Kn120 / Hl068) / FcgRIIb extracellular domain complex was concentrated to about 10 mg / ml with a 10,000 MWCO ultrafiltration membrane, and crystallization was performed using the hanging drop vapor diffusion method together with the Seeding method.
  • the sample was kept frozen by placing it in a -178 ° C nitrogen stream at all times, and the CCD detector Quantum 315r (ADSC) equipped with the beam line was used to rotate the crystal by 0.5 ° in total, making a total of 360 X-rays. Diffraction images were collected. To determine the lattice constant from the obtained diffraction image, index the diffraction spots, and process the diffraction data, the programs Xia2 (J. Appl. Cryst. 2010, 43, 186-190), XDS Package (Acta Cryst. 2010, D66, 125-132) and Scala (Acta Cryst.
  • ADSC CCD detector Quantum 315r
  • the amino acid residue part of A chain 6-178 was extracted from the structure coordinates of PDB code: 2FCB, which is the crystal structure of the FcgRIIb extracellular region, and used as a model for searching FcgRIIb.
  • the orientation and position of the Fc CH3 domain, FcgRIIb extracellular region, and Fc CH2 domain search model in the crystal lattice are determined from the rotation and translation functions, and the Fc (Kn120 / Hl068) / FcgRIIb extracellular region complex.
  • An initial model of crystal structure was obtained.
  • the rigid model that moves the two Fc CH2 domains, the two Fc CH3 domains, and the FcgRIIb extracellular region to the initial model was obtained.
  • the scientific reliability factor R value was 41.4%, and the Free R value was 42.6%.
  • the structure refinement using the program REFMAC5 Acta Cryst. 2011, D67, 355-367
  • the structural factor Fo determined experimentally the structural factor Fc calculated from the model
  • the phase calculated from the model are also included.
  • the model is corrected with the program Coot (Acta Cryst. 2010, D66, 486-501) while looking at the electron density map with the coefficients of 2Fo-Fc and Fo-Fc calculated as above. Made.
  • Example 24 Preparation of an antibody that maintains or enhances the binding activity to FcgRIIaR and decreases the binding activity to FcgRIIb.
  • the variant H240-Kn120 / H240-Hl068 / L73-k0 found in Example 21 has ADCP activity.
  • the binding activity to important FcgRIIaR and FcgRIIaH was enhanced, and the binding activity to inhibitory FcgRIIb was also enhanced about 50 times compared to that of natural IgG1. In order to exhibit high ADCP activity, it is preferable that the binding activity to inhibitory FcgRIIb can be reduced as much as possible.
  • the inventors searched for a modification that can reduce the binding activity to FcgRIIb while maintaining the binding activity to active FcgRIIaR and FcgRIIaH.
  • Example 23 From the crystal structure analysis result of the complex of Fc and FcgRIIb extracellular region of H240-Kn120 / H240-Hl068 / L73-k0, the CH2 domain of Tyr160 and Fc (Kn120 / Hl068) of FcgRIIb It was shown that a hydrogen bond was formed with the main chain carbonyl oxygen of Gly236 present in A.
  • FcgRIIaR and FcgRIIaH this site is Phe160, and it is considered that the above-mentioned interaction does not exist.Therefore, if modification can be introduced into Gly236 and the interaction of FcgRIIb with Tyr160 can be eliminated, FcgRIIa R type There is a possibility that the binding activity to FcgRIIb can be reduced, that is, the binding activity to FcgRIIb can be selectively reduced, while maintaining the binding activity to.
  • Lys127 of FcgRIIb and E294 of CH2 domain A of Fc (Kn120 / Hl068) may be electrostatically interacted with each other although they are distal. Therefore, we considered that replacing E294 with positively charged Lys or Arg could induce electrostatic repulsion and attenuate the interaction with FcgRIIb.
  • H240-Kn120 (SEQ ID NO: 99), H240-Kn179 (SEQ ID NO: 107) and H240-Kn180 (SEQ ID NO: 108) introduced with E294R and E294K, respectively, were converted into H240-Hl068 (SEQ ID NO: 108).
  • H240-Hl073 (SEQ ID NO: 109), H240-Hl085 (SEQ ID NO: 110), H240-Hl086 (SEQ ID NO: 111), H240-Hl089 (SEQ ID NO: 112) into which G236S, G236V, G236I, and G236T were introduced, respectively.
  • H240-Kn120 (SEQ ID NO: 99), H240-Kn192 (SEQ ID NO: 113) introduced with Y235N and E294K, H240-Kn193 (SEQ ID NO: 114) introduced with Y235N and E294R, H240-Kn120 H240-Hl204 (SEQ ID NO: 115) in which G236T and I332E were introduced into -Hl068 (SEQ ID NO: 96) was prepared.
  • Table 58 shows the results of evaluating the binding activity of these variants to FcgR according to the method of Reference Example 8.
  • the H240-Kn120 / H240-Hl073 / L73-k0 of KD was shaded in gray in Table, the measurement range 5x10 dissociation constant of Biacore4000 that kd is used in this measurement for FcgRIa this time (kd) - since the 5 s -1 showed a value smaller than 5x10 -5 s -1 range measurement limit of 1s -1, a KD calculated the kd as 5x10 -5 s -1 or less.
  • the H240-Kn179 / H240-Hl089 / L73-k0 and the H240-Kn180 / H240-Hl089 / L73-k0, in which E294K or E294R is introduced in the H240-Kn120 and G236T is introduced in the H240-Hl068, are both H240-Kn120 / Compared with H240-Hl068 / L73-k0, the binding to FcgRIIaR and FcgRIIaH was enhanced and the binding to FcgRIIb was reduced by 0.4 times.
  • H240-Kn192 / H240-Hl204 / L73-k0 and H240-Kn193 / H240-Hl204 / L73-k0 into which I332E and Y235N were introduced were both H240-Kn179 / Compared with H240-Hl089 / L73-k0 and H240-Kn180 / H240-Hl089 / L73-k0, binding to FcgRIIIaF is doubled and binding to FcgRIIIaV is maintained while binding to FcgRIIaR, FcgRIIaH and FcgRIIb is maintained. Was improved about 8 times.
  • Example 25 Enhancement of the binding activity of the heterodimerized antibody H240-Kn120 / H240-Hl068 / L73-k0 to active FcgR
  • an alteration was introduced to H240-Kn120 / H240-Hl068 / L73-k0
  • the modified body which maintained or enhanced the binding to FcgRIIaR and FcgRIIaH and reduced the binding activity to inhibitory FcgRIIb was produced.
  • H240-Kn138 (SEQ ID NO: 116) introduced with L328W into H240-Kn120 according to the method of Reference Example 1, H240-Kn173 (SEQ ID NO: 117) introduced with I332Q, H240-Kn178 (SEQ ID NO: 118) introduced with K334Y, H240-Kn166 (SEQ ID NO: 119) introduced with L328A, H240-Kn172 (SEQ ID NO: 120) introduced with I332M, and H240-Kn149 (SEQ ID NO: 121) introduced with L328W and K334L were prepared.
  • H240-Hl147 (SEQ ID NO: 122) introduced with L328W into H240-Hl068, H240-Hl170 (SEQ ID NO: 123) introduced with L328A, and H240-Hl174 (SEQ ID NO: 124) introduced with I332E.
  • H240-Hl150 (SEQ ID NO: 125) introduced with I332T
  • H240-Hl182 (SEQ ID NO: 126) introduced with A231H
  • H240-Hl177 (SEQ ID NO: 127) introduced with I332Q were prepared.
  • H240-Kn138 (SEQ ID NO: 116), H240-Kn173 (SEQ ID NO: 117), H240-Kn178 (SEQ ID NO: 118), H240-Kn149 (SEQ ID NO: 121), H240- Kn166 (SEQ ID NO: 119), H240-Kn172 (SEQ ID NO: 120), and H240-Hl170 (SEQ ID NO: 123), H240-Hl150 (SEQ ID NO: 125), H240-Hl174 (SEQ ID NO: 124) as the other H chain , H240-Hl182 (SEQ ID NO: 126), H240-Hl147 (SEQ ID NO: 122), H240-Hl177 (SEQ ID NO: 127), and L73-k0 (SEQ ID NO: 106) as the L chain, H240-Kn120 / H240-Hl170 / L73-k0, H240-Kn120 / H240-Hl150 /
  • Table 61 shows the relative KD, which is the relative KD when each KD is 1 for FcgRIIaR, FcgRIIaH, and FcgRIIb of k0.
  • the variant shown here is a variant having enhanced binding to at least one of FcgRIIaR, FcgRIIaH, FcgRIIIaF, and FcgRIIIaV compared to H240-Kn120 / H240-H1068 / L73-k0.
  • H240-Kn120 / H240-Hl170 / L73-k0 which introduced L328A to H240-Hl068 which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0 is H240-Kn120 / H240-Hl068 / L73- Compared to k0, the binding activity to FcgRIIaR and FcgRIIaH was improved 2.3 times.
  • H240-Kn120 / H240-Hl150 / L73-k0 which introduced I332T to H240-Hl068, which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0, is H240-Kn120 / H240-Hl068 / L73- Compared with k0, the binding activity to FcgRIIaH was improved by 1.2 times while maintaining the binding activity to FcgRIIaR.
  • the binding activity to FcgRIIaH was improved 1.6 times while maintaining the binding activity to FcgRIIaR.
  • H240-Kn120 / H240-Hl174 / L73-k0 in which I332E was introduced to H240-Hl068, which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0, is H240-Kn120 / H240-Hl068 / L73 Compared to -k0, the binding activity to FcgRIIIaF was improved 4.3 times and the binding activity to FcgRIIIaV was improved 10 times.
  • H240-Kn173 / H240-Hl068 / L73-k0 which introduced I332Q to H240-Kn120 which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0 is H240-Kn120 / H240-Hl068 / L73 Compared to -k0, the binding activity to FcgRIIIaF was improved by 1.2 times while maintaining the binding activity to FcgRIIIaV.
  • H240-Kn120 / H240-Hl068 / L73 is a H240-Kn120 / H240-Hl068 / L73-k0 that has A231H introduced to H240-Hl068, which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0. Compared to -k0, the binding activity to FcgRIIIaV was improved 1.2-fold.
  • H240-Kn138 / H240-Hl147 / L73-k0 with L328W introduced into both H chains of H240-Kn120 / H240-Hl068 / L73-k0 is FcgRIIaR compared to H240-Kn120 / H240-Hl068 / L73-k0
  • the binding activity to was improved 1.8 times.
  • H240-Kn166 / H240-Hl170 / L73-k0 with L328A introduced in both H chains of H240-Kn120 / H240-Hl068 / L73-k0 is FcgRIIaH compared to H240-Kn120 / H240-Hl068 / L73-k0
  • the binding activity with respect to was improved 1.9 times.
  • H240-Kn149 / H240-Hl068 / L73-k0 in which L328W and K334L are introduced into H240-Kn120, which is one H chain of H240-Kn120 / H240-Hl068 / L73-k0, is H240-Kn120 / H240-Hl068 / L73 Compared to -k0, the binding activity to FcgRIIaH was improved 1.6 times while maintaining the binding activity to FcgRIIaR and FcgRIIIaV. From these results, it was considered that these variants had higher ADCP activity or ADCC activity than H240-Kn120 / H240-Hl068 / L73-k0.
  • the Fc ⁇ R protein family includes Fc ⁇ RIa (CD64A), Fc ⁇ RIIa (CD32A), Fc ⁇ RIIb (CD32B), Fc ⁇ RIIIa (CD16A), Fc ⁇ RIIIb ( CD16B) isoforms have been reported and their allotypes have also been reported (Immunol Lett, 82 (1-2), 57-65, 2002).
  • Fc ⁇ RIa, Fc ⁇ RIIa, and Fc ⁇ RIIIa are called active Fc ⁇ R because they have an immunoactive function, and Fc ⁇ RIIb has an immunosuppressive function, called inhibitory Fc ⁇ R (Nat Rev Immunol, 10, 328-343, 2010) .
  • Fc ⁇ RIIb is the only Fc ⁇ R expressed in B cells (Eur J Immunol 19, 1379-1385, 1989). It has been reported that the Fc region of an antibody interacts with Fc ⁇ RIIb to suppress primary immunity of B cells (J Exp Med 129, 1183-1201, 1969). In addition, when Fc ⁇ RIIb and B cell receptor (BCR) on B cells are cross-linked via immune complexes in blood, B cell activation is suppressed and B cell antibody production is suppressed. It is reported to be suppressed (Immunol Lett 88, 157-161, 2003).
  • Immunoreceptor tyrosine-based inhibitory motif (ITIM) contained in the intracellular domain of Fc ⁇ RIIb is required for the transmission of immunosuppressive signals via BCR and Fc ⁇ RIIb (Science, 256, 1808-1812, 1992, Nature, 368, 70-73, 1994).
  • ITIM Immunoreceptor tyrosine-based inhibitory motif
  • Fc ⁇ RIIb is also expressed on dendritic cells, macrophages, activated neutrophils, mast cells, and basophils. Also in these cells, Fc ⁇ RIIb inhibits the function of active Fc ⁇ R such as phagocytosis and release of inflammatory cytokines and suppresses inflammatory immune responses (Nat Rev Immunol, 10, 328-343, 2010).
  • Fc ⁇ RIIb knockout mice The importance of the immunosuppressive function of Fc ⁇ RIIb has been clarified so far by studies using Fc ⁇ RIIb knockout mice.
  • humoral immunity is not adequately controlled (J Immunol, 163, 618-622, 1999), and susceptibility to collagen-induced arthritis (CIA) is increased (J Exp Med, 189, 187-194, 1999), lupus-like symptoms and Goodpasture syndrome-like symptoms (J Exp Med, 191, 899-906, 2000) have been reported.
  • dysregulation of Fc ⁇ RIIb has been reported to be associated with human autoimmune diseases.
  • SLE systemic lupus erythematosus
  • Fc ⁇ RIIb is thought to play a role in controlling autoimmune diseases and inflammatory diseases, mainly involving B cells, and controls autoimmune diseases and inflammatory diseases. Is a promising target molecule.
  • IgG1 which is mainly used as a commercially available antibody drug, is known to bind not only to Fc ⁇ RIIb but also to active Fc ⁇ R (Blood, 113, 3716-3725, 2009).
  • Development of antibody drugs with immunosuppressive properties compared to IgG1 by using Fc region with enhanced binding to Fc ⁇ RIIb or improved selectivity of binding activity to Fc ⁇ RIIb compared to active Fc ⁇ R There is a possibility.
  • the use of an antibody having a variable region that binds to BCR and an Fc that has enhanced binding to Fc ⁇ RIIb has been suggested to inhibit B cell activation (Mol Immunol, 45, 3926-3933). , 2008).
  • Fc ⁇ RI and FcgRIIb on mast cells are combined using a molecule that fuses the Fc portion of IgE that binds to Fc ⁇ RI, the receptor for IgE, and the Fc portion of IgG that has enhanced binding to FcgRIIb. It has been reported that cross-linking causes phosphorylation of FcgRIIb and suppresses Fc ⁇ RI-dependent calcium influx, which enhances binding to FcgRIIb and inhibits degranulation through stimulation of FcgRIIb. (Immunol let, doi: 10.1016 / j.imlet.2012.01.008). These facts suggest that antibodies having Fc with improved Fc ⁇ RIIb binding activity are promising as therapeutic agents for inflammatory diseases such as autoimmune diseases.
  • FcgRIIb has been shown to play an important role in the agonist activity of agonist antibodies against the anti-TNF receptor family.
  • the antibody introduced with the mutation of S267E / L328F maintained the binding of Fc ⁇ RIa and Fc ⁇ RIIa to the H type at the same level as that of natural IgG1.
  • this modification increases the binding of Fc ⁇ RIIa to the R-type by several hundred times as much as the binding to Fc ⁇ RIIb, and improves the selectivity of the binding activity to Fc ⁇ RIIb when compared to the Fc ⁇ RIIa R-type.
  • the Fc with enhanced binding to FcgRIIb is markedly enhanced compared to native IgG1 for FcgRIIa R type, so as a drug for patients with FcgRIIa R type
  • the value is significantly reduced.
  • Fc ⁇ RIIa H-type and R-type are observed in Caucasian and African-American with almost the same frequency (J Clin Invest, 97, 1348-1354, 1996, Arthritis Rheum, 41, 1181-1189, 1998). Therefore, when this Fc is used for the treatment of autoimmune diseases, the number of patients that can be safely used while enjoying the effect as a pharmaceutical is limited.
  • dendritic cell maturation occurs spontaneously in dendritic cells deficient in FcgRIIb, or in dendritic cells whose anti-FcgRIIb antibody inhibits the interaction between FcgRIIb and the Fc portion of the antibody.
  • FcgRIIb actively suppresses maturation of dendritic cells in a steady state where no inflammation or the like occurs.
  • FcgRIIa is also expressed on the surface of dendritic cells.
  • Fc ⁇ RIIb is one of the active Fc ⁇ Rs
  • Fc ⁇ RIIa is 93% identical in sequence to the extracellular region, very similar in structure
  • Fc ⁇ RIIa is a H type whose 131st amino acid is His as a gene polymorphism. (H type) and Rrgtype (R type), which is Arg, each have different interactions with antibodies (J Exp Med, 172, 19-25, 1990).
  • IL6R variable region IL6R (SEQ ID NO: 128), which is a variable region of an antibody against human interleukin 6 receptor disclosed in WO2009 / 125825, was used.
  • IL6R-G1d (SEQ ID NO: 129) having G1d from which Cly terminal Gly and Lys of human IgG1 were removed was prepared.
  • IL6R-B3 (SEQ ID NO: 130) in which K439E was introduced into IL6R-G1d was prepared.
  • IL6R-BP208 (SEQ ID NO: 131) in which E233D, G237D, P238D, H268D, P271G, and A330R were introduced into IL6R-B3 was prepared.
  • S267E and L328F were introduced into IL6R-B3 to prepare IL6R-BP253 (SEQ ID NO: 132) having an existing FcgRIIb binding activity-enhancing Fc.
  • IL6R-L SEQ ID NO: 133
  • IL6R-L which is the L chain of tocilizumab, is commonly used as the antibody L chain
  • Table 62 shows the results of evaluating the binding activity of these variants to FcgR Ia, FcgR IIaR, FcgR IIaH, FcgR IIb, and FcgR IIIaV according to the method described in Reference Example 8.
  • the cells painted in gray were weakly bound to IgG by FcgR, and it was determined that the analysis could not be performed correctly by kinetic analysis.
  • KD By transforming this equation, KD can be expressed as Equation 2 below. [Formula 2] By substituting the values of R max , RI, and C into this equation, KD can be calculated. For RI and C, values can be obtained from the sensorgram of measurement results and measurement conditions. For the calculation of R max , the following method was used. Interaction is sufficiently strong antibody to be compared were evaluated simultaneously to the measurement count, above 1: 1 the value of the Langmuir binding model with R max obtained when obtained by global fitting, antibodies to be compared sensors The value obtained by dividing by the capture amount on the chip and multiplying by the capture amount of the modified antibody to be evaluated was defined as R max .
  • IL6R-B3 / IL6R-L FcgRIa FcgRIIaR, FcgRIIaH, FcgRIIb KD divided by the corresponding KD of each variant
  • IL6R-B3 / IL6R-L FcgRIIaR, FcgRIIaH, FcKDII Table 63 shows the relative KD, which is the relative KD.
  • the existing FcgRIIb binding activity-enhancing antibody IL6R-BP253 / IL6R-L binds to FcgRIIb compared to the human IgG1 type antibody (IL6R-B3 / IL6R-L) before the introduction of the modification.
  • the activity is enhanced about 350 times, and the binding activity to FcgRIIaR is enhanced about 500 times.
  • IL6R-BP208 / IL6R-L has about 100 times the binding activity to FcgRIIb, which is less than that of the existing FcgRIIb binding activity-enhancing antibody, but the binding activity to FcgRIIaR is 1.3 times that of IgG1 type. This antibody retains its activity and has excellent selectivity for FcgRIIb.
  • Fc (BP208) expression purification Fc (BP208) was prepared as follows. First, replace the Cy of EU numbering 220th of IL6R-BP208 with Ser, and express the gene sequence Fc (BP208) cloned by PCR from the EU numbering 236th Glu by PCR according to the method described in Reference Example 1. Vector preparation, expression and purification were performed. In addition, Cys of EU numbering 220th forms a disulfide bond with Cys of L chain in normal IgG1, but when preparing only Fc, L chain is not co-expressed, so unnecessary disulfide bond formation occurs. Replaced with Ser to avoid.
  • Endo F1 (Protein Science 1996, 5, 2617-2622) 0.15 mg expressed and purified by E. coli as a fusion protein with glutathione S-transferase was added to 1.5 mg of the FcgRIIb extracellular region sample obtained for crystallization, The mixture was allowed to stand at room temperature for 3 days under a buffer condition of M Bis-Tris pH 6.5 to cleave leaving N-acetylglucosamine in which the N-type sugar chain was directly bound to Asn.
  • the FcgRIIb extracellular region sample that had been subjected to the sugar chain cleavage treatment was concentrated with a 5000 MWCO ultrafiltration membrane and equilibrated with 20 mM HEPES pH 7.5, 0.1 M NaCl (Superdex200 10/300).
  • Fc (BP208) was added to the obtained sugar chain-cleaved FcgRIIb extracellular region fraction so that the FcgRIIb extracellular region was slightly excessive in molar ratio, and after concentration by an ultrafiltration membrane of a 10,000 MWCO ultrafiltration membrane, The sample was purified by gel filtration column chromatography (Superdex200 10/300) equilibrated with 25 mM HEPES pH 7.5, 0.1 M NaCl to obtain a sample of Fc (BP208) / FcgRIIb extracellular region complex.
  • Fc (BP208) / FcgRIIb extracellular region complex crystallization A sample of the Fc (BP208) / FcgRIIb extracellular region complex was concentrated to about 10 mg / ml with a 10,000 MWCO ultrafiltration membrane, and crystallization was performed using the hanging drop vapor diffusion method together with the Seeding method.
  • crystallization sample 0.85 ⁇ l: 0.85 ⁇ l
  • the CCD detector MX-225HE (RAYONIX) equipped with a beam line is used to rotate the crystals by 0.6 ° at a time to make a total of 300 X Line diffraction images were collected.
  • the programs Xia2 J. Appl. Cryst. 2010, 43, 186-190
  • XDS Package Acta Cryst. 2010, D66, 125-132
  • Scala Acta Cryst. 2006, D62, 72-82
  • the amino acid residue part of A chain 6-178 was extracted from the structure coordinates of PDB code: 2FCB, which is the crystal structure of the FcgRIIb extracellular region, and used as a model for searching Fc (BP208).
  • an initial model of Fc (BP208) / FcgRIIb extracellular region complex crystal structure was obtained.
  • the rigid model that moves the two Fc CH2 domains, the two Fc CH3 domains, and the FcgRIIb extracellular region to the initial model was obtained.
  • the scientific reliability factor R value was 42.6%
  • the Free R value was 43.7%.
  • the structure refinement using the program REFMAC5 Acta Cryst. 2011, D67, 355-367
  • the structural factor Fo determined experimentally, the structural factor Fc calculated from the model, and the phase calculated from the model are also included.
  • the model is corrected with the program Coot (Acta Cryst.
  • FcgRIIb extracellular region complex As a result of structural analysis, the three-dimensional structure of Fc (BP208) / FcgRIIb extracellular region complex was determined with a resolution of 2.81 ⁇ , and the structure obtained as a result of the analysis is shown in FIG. FcgRIIb extracellular region is sandwiched between two Fc CH2 domains, and Fc (WT) and FcgRIIIa (Proc.Natl.Acad.Sci.USA) are Fc of natural IgG analyzed so far. , 2011, 108, 12669-126674), FcgRIIIb (Nature, 2000, 400, 267-273; J. Biol. Chem. 2011, 276, 16469-16477), three-dimensional structure of the complex with each extracellular region of FcgRIIa It was similar.
  • Fc (BP208) changes the loop structure of 233-239 that continues from the hinge region in CH2 domain A compared to Fc (WT) bound to FcgRIIa due to the introduction of G237D and P238D mutations.
  • FIG. 50 As a result, formation of a strong hydrogen bond was observed between the amide of the G237 main chain of Fc (BP208) and the Tyr160 side chain of FcgRIIb. This Tyr160 is a Phe in FcgRIIa and cannot form a hydrogen bond, so this hydrogen bond makes an important contribution to the enhancement of the binding activity to FcgRIIb and the selectivity to reduce the binding to FcgRIIa. It was considered.
  • S239 was found as one of the candidates for modification introduction sites. As shown in FIG. 51, Ser239 of CH2 domain B is located in the direction in which Lys117 of FcgRIIb extends in the most natural form when viewed structurally. However, since the electron density of Lys117 in FcgRIIb has not been observed in this analysis, there is no fixed structure, and at present, the involvement of Lys117 in the interaction with Fc (BP208) is limited.
  • this amino acid side chain forms a hydrogen bond with the main chain of G236, continues from the hinge region, and includes D237 that forms a hydrogen bond with the FcgRIIb Tyr160 side chain. It was thought that the loop structure from No. to No. 239 was stabilized (FIG. 52). Stabilization of the loop structure to the conformation at the time of binding suppresses a decrease in entropy accompanying the binding, resulting in an increase in binding free energy, that is, an improvement in binding activity. On the other hand, when S239 of this CH2 domain A is altered to D or E, the hydrogen bond with the G236 main chain is lost, leading to instability of the loop structure.
  • the binding activity may be increased by the amount of electrostatic interaction with Lys117 of FcgRIIb newly formed by S239D or S239E introduced into CH2 domain B. It was.
  • IL6R-A5 (SEQ ID NO: 136) in which D356K and H435R mutations were introduced into IL6R-G1d was prepared as the other H chain, and E233D, G237D, P238D, H268D, P271G, and A330R were further prepared.
  • the introduced IL6R-AP002 (SEQ ID NO: 137) was prepared.
  • IL6R-L SEQ ID NO: 133
  • IL6R-L which is the L chain of tocilizumab, is commonly used as the antibody L chain
  • the homodimerized antibodies IL6R-B3 / IL6R-L, IL6R are used together with the respective H chains according to the method of Reference Example 1.
  • KD By transforming this equation, KD can be expressed as Equation 2 below. [Formula 2] By substituting the values of R max , RI, and C into this equation, KD can be calculated. For RI and C, values can be obtained from the sensorgram of measurement results and measurement conditions. For the calculation of R max , the following method was used. Interaction is sufficiently strong antibody to be compared were evaluated simultaneously to the measurement count, above 1: 1 the value of the Langmuir binding model with R max obtained when obtained by global fitting, antibodies to be compared sensors The value obtained by dividing by the capture amount on the chip and multiplying by the capture amount of the modified antibody to be evaluated was defined as R max .
  • Table 65 shows values obtained by dividing relative KD as relative KD and KD for FcgRIIaR of each variant by KD for FcgRIIb.
  • the binding activity to FcgRIIb was improved by 752 times and 657 times, respectively.
  • the binding activity to FcgRIIaR also increased from 1.3 times that of IL6R-BP208 / IL6R-L to 7.7 times and 8.3 times, respectively.
  • KD (IIaR) / KD (IIb) in the table is a value obtained by dividing the KD of each variant for FcgRIIaR by the KD for FcgRIIb, and the larger this value, the higher the selectivity for FcgRIIb.
  • IL6R-BP253 / IL6R-L which is an existing FcgRIIb-binding activity-enhancing antibody, has a value of 0.3, which does not improve selectivity compared to IgG1, whereas IL6R-BP208 / IL6R-L has 26.3. And high FcgRIIb selectivity.
  • IL6R-AP002 / IL6R-BP256 / IL6R-L, IL6R-AP002 / IL6R-BP257 / IL6R-L introduced S239D or S239E on one H chain of IL6R-BP208 / IL6R-L.
  • IIaR) / KD (IIb) were 34.3 and 27.7, respectively, which were improved from IL6R-BP208 / IL6R-L.
  • Example 27 Design of constant region amino acid sequence aimed at improving separation and purification ability of homodimer and heterodimer [Selection of residue substitution site]
  • heterodimerized antibodies when two types of H chains (each A chain and B chain) are co-expressed, homodimerized antibodies and B chains in which each H chain is dimerized A dimerized homodimerized antibody and a heterodimerized antibody in which two different H chains, A and B chains, are dimerized.
  • separation on the ion exchange column depends on the charge on the surface of the molecule, and in many cases, the separation conditions considering the isoelectric point of the target molecule are examined. Therefore, also in this example, separation on an ion exchange column is performed by substituting amino acid residues constituting the antibody constant region so that a difference occurs in isoelectric points between the homodimerized antibody and the heterodimerized antibody to be separated. was expected to improve.
  • Residue substitution that changes the isoelectric point is a method in which a neutral residue is substituted with a basic residue or an acidic residue, and a basic residue or acidic residue is substituted with a neutral residue. There is. As a more effective countermeasure, there are methods of replacing a positively charged residue with a negatively charged residue and replacing a negatively charged residue with a positively charged residue.
  • all parts of the antibody sequence are candidates for residue substitution sites that can change the isoelectric point.
  • random substitution to a non-native sequence has the risk of increasing the risk of immunogenicity and is not an appropriate method when considered for use as a pharmaceutical product.
  • IgG subclass sequences There are IgG1, IgG2, IgG3 and IgG4 in the subclass of human IgG. Based on the method disclosed in WO2007 / 114325, it is possible to change the isoelectric point while suppressing an increase in T-cell epitope by substituting a part of the antibody sequence with a sequence of a different subclass.
  • an in silico tool for predicting T-cell epitope such as Epibase
  • Epibase Light is an in silico tool that uses FASTER algorism (Expert Opin Biol Ther. 2007 Mar; 7 (3): 405-18.) To calculate the binding ability of the 9-mer peptide and the major DRB1 allele. is there. This tool can identify T-cell epitopes that are strong and moderate binding to MHC class II. The abundance ratio of DRB1 allotype is reflected in the calculation, and the abundance ratio in Caucasian shown below can be used.
  • DRB1 * 1501 (24.5%), DRB1 * 0301 (23.7%), DRB1 * 0701 (23.3%), DRB1 * 0101 (15.0%), DRB1 * 1101 (11.6%), DRB1 * 1302 (8.2%), DRB1 * 1401/1454 (4.9%), DRB1 * 0901 (2.3%), DRB1 * 1502 (0.5%), DRB1 * 1202 (0.1%)
  • H240-AK072 SEQ ID NO: 1034
  • H240-BH076 SEQ ID NO: 105
  • Table 67 shows the number of T-cell epitopes that can be altered by substitution of any residue for H240-AK072 and Table 68 for H240-BH076. Based on this result, it is possible to select a residue substitution that does not increase T-cell epitope and changes the isoelectric point.
  • H240-AK072 and H240-BH076 variants were designed as residue substitution sites for isoelectric point modification (Tables 69 and 70).
  • H240-AK072 / H240-BH076 / L73-k0 modified antibody expression vector First, synthesis designed to mutate each selected amino acid residue using H240-AK072 or H240-BH076 as a template to generate H240-AK072 / H240-BH076 / L73-k0 modified antibody cDNA. Each oligo DNA was designed. Next, using each synthetic oligo DNA, an animal cell expression vector containing the target gene was prepared according to the method of Reference Example 1.
  • each H chain introduced with a modification to H240-AK072 or H240-BH076 (H chain modified with H240-AK072 is replaced with A chain, H240 -The H chain in which modification is introduced into BH076 is referred to as the B chain) and the L chain (L73-k0, SEQ ID NO: 106) are co-expressed in any combination, and according to the method of Reference Example 1, the A chain And a modified antibody in which the B chain is an arbitrary combination was obtained.
  • Representative A chain and B chain SEQ ID NOs are shown in Table 71.
  • FIG. 53 shows a representative chromatogram.
  • the peak appearing at the position where the elution time is early is derived from the B chain-B chain homodimerized antibody, and the main peak is derived from the A chain-B chain heterodimerized antibody.
  • Residue substitution H435R
  • the antibody used here is rProtein A SepharoseTM Fast Flow (GE Healthcare) in the process of preparation by the method of Reference Example 1.
  • retention time difference ⁇ RT (min) (heteroantibody peak retention time) ⁇ (B chain homoantibody peak retention time) was calculated.
  • Table 72 shows the evaluation results of various variants. From the above, it was shown that the retention time difference between the heteroantibody and the homoantibody is expanded by the introduction of the designed residue substitution and the combination thereof.
  • Tm thermal denaturation midpoint
  • the thermal stability was evaluated by measuring the thermal denaturation midpoint (Tm) of the antibody using a scanning scanning fluorometric method using Rotor-Gene Q (QIAGEN).
  • QIAGEN Rotor-Gene Q
  • this technique shows a good correlation with Tm evaluation using a scanning scanning calorimeter widely known as an antibody thermal stability evaluation method (Journal of Pharmaceutical Science 2010; 4: 1707-1720).
  • a measurement sample was prepared by diluting 5000 times concentration of SYPRO orange (Molecular Probes) with PBS (Sigma) and then mixing with the antibody solution. 20 ⁇ L of each sample was set in a measuring tube and the temperature was raised from 30 ° C.
  • Example 29 Immunological evaluation of H240-AK072 / H240-BH076 / L73-k0 variant [Evaluation of binding activity to Fc ⁇ R by surface plasmon scattering] According to the method of Reference Example 8, an interaction analysis between the target antibody and FcgR was performed. Table 73 shows the evaluation results of various modified products. Thus, the binding ability of the H240-FA021 / H240-BF084 / L73-k0 variant confirmed to be separated in FIG. 54 to Fc ⁇ R is equivalent to that of H240-AK072 / H240-BH076 / L73-k0 before the alteration. It has been shown.
  • Epibase Light is an in silico tool that uses FASTER algorism (Expert Opin Biol Ther. 2007 Mar; 7 (3): 405-18.) To calculate the binding ability of the 9-mer peptide and the major DRB1 allele. is there. This tool can identify T cell epitopes that bind strongly and moderately to MHC class II.
  • the in silico immunogenicity score of each modified antibody is determined by the following formula (Equation 4) in the Epibase Light (Lonza) system.
  • (Formula 4) Immunogenicity score Sum (each DRB1 allotype population frequency X number of critical epitopes) The abundance ratio of DRB1 allotype is reflected in the calculation, and the abundance ratio in Caucasian shown below can be used.
  • DRB1 * 1501 (24.5%), DRB1 * 0301 (23.7%), DRB1 * 0701 (23.3%), DRB1 * 0101 (15.0%), DRB1 * 1101 (11.6%), DRB1 * 1302 (8.2%), DRB1 * 1401/1454 (4.9%), DRB1 * 0901 (2.3%), DRB1 * 1502 (0.5%), DRB1 * 1202 (0.1%)
  • Table 74 shows the risk scores calculated for H240-AK072 and H240-BH076 and their variants. From this, by selecting any combination of A chain and B chain, the ability to separate and purify homodimer and heterodimer compared to H240-AK072 / H240-BH076 / L73-k0, It is possible to produce variants that do not significantly change the risk of immunogenicity.
  • Example 30 In Example 20 and Example 21, heterodimerized antibodies H240-Kn125 / H240-Hl076 / L73-k0 and H240-Kn120 / H240-Hl068 / L73-k0 with enhanced binding to active FcgR were found. . Of these modifications used in these heterodimerized antibodies, substitution of H240-Kn125 and H240-Kn120 with positions 234 and 239 and H240-Hl076 with other amino acids is even better. It was verified whether heterodimerized antibodies could be obtained.
  • W187 S239D / A330M / K334V having one of the H chains having the highest affinity for Fc ⁇ RIIIa and considered to be the most excellent modification
  • M81 variants with S239D / K334V on one H chain and L234Y / Y296W / S298C on the other H chain
  • H240-Kn03 introduced L234Y / K290Y / Y296W into H240-Kn033, H240-Hl033 introduced S239D / A330M / K334V H240-Hl211 and H240-Kn033 introduced L234Y / Y296W.
  • H240-Kn205 into which / S298C was introduced and H240-Hl212 into which S239D / K334V was introduced into H240-Hl033 were prepared.
  • H240-Kn204 as one H chain, L73-k0 as L chain, H240-Hl211 as another H chain, H240-Kn205 as one H chain, L chain L73-k0 was expressed in combination with H240-Hl212 as the other H chain, and H240-Kn204 / H240-Hl211 / L73-k0 and H240-Kn205 / H240-Hl212 / L73-k0 were prepared. Binding of the prepared variants to FcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, and FcgRIIIaV was measured according to the method of Reference Example 8. These measurement results are summarized in Table 75.
  • template indicates whether the chain used as a template for substituting the 234th amino acid is H240-Kn125 or H240-Kn120.
  • the “234th amino acid” indicates the type of amino acid after substitution of the EU numbering 234th amino acid of H240-Kn125 or H240-Kn120.
  • “Fold 2aR”, “fold 2aH”, “fold 2b”, “fold 3aF”, and “fold 3aV” are respectively FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, and FcgRIIIaV to promote heterodimerized antibody formation.
  • H240-Kn033 / H240-Hl033 / L73-k0 which is only modified to promote the formation of heterodimerized antibody in IgG1
  • afucosylated antibody (H240-afucosyl_G1d / L73-k0) is against FcgRIIIaF
  • H240-Kn032 / H240-Hl032 / L73-k0 having S239D / A330L / I332E in both chains was enhanced 32 times with respect to FcgRIIIaF and 16 times with respect to FcgRIIIaV.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)

Abstract

本発明者らは、アミノ酸配列の異なる2つのポリペプチド(第一のポリペプチド及び第二のポリペプチド)からなるFc領域を有するヘテロ二量化ポリペプチドを作製することにより、従来技術であるFc領域が第一のポリペプチドのみからなるホモ二量化体又は第二のポリペプチドからなるホモ二量化体と比べて機能が改善されたFc領域を含むヘテロ二量化ポリペプチドを作製することに成功した。

Description

ヘテロ二量化ポリペプチド
 本発明は、天然由来の抗体定常領域からアミノ酸配列が改変された抗体定常領域、該定常領域を含む抗体、該抗体を含む医薬組成物、ならびに、それらの製造方法を提供する。
 抗体は血中での安定性が高く、副作用も少ないことから医薬品として注目されている(非特許文献1、非特許文献2)。現在上市されている抗体医薬のほとんどがヒトIgG1サブクラスの抗体である。IgGクラスの抗体のエフェクター機能である抗体依存性細胞障害活性(以下、ADCCと表記する)、補体依存性細胞障害活性(以下、CDCと表記する)については、これまでに多数の研究が行われ、ヒトIgGクラスでは、IgG1サブクラスの抗体が最も高いADCC活性、CDC活性を有することが報告されている(非特許文献3)。また、IgGクラスの抗体を介した標的細胞のファゴサイトーシスである抗体依存性細胞介在性ファゴサイトーシス(ADCP)も抗体のエフェクター機能の一つとして示されている(非特許文献4、非特許文献5)。
 IgG抗体のADCC、CDC、ADCPの発現には、抗体Fc領域と、キラー細胞、ナチュラルキラー細胞、活性化されたマクロファージ等のエフェクター細胞表面上に存在する抗体レセプター(以下、FcγRと表記する)及び各種補体成分との結合が必要である。ヒトでは、FcγRのタンパク質ファミリーには、FcγRIa、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbのアイソフォームが報告されており、それぞれのアロタイプも報告されている(非特許文献6)。
 ADCC、ADCPおよびCDCなどの細胞傷害性エフェクター機能の増強は、抗体の抗腫瘍効果を増強するための有望な手段として注目されている。抗体の抗腫瘍効果のためのFcγRを介したエフェクター機能の重要性は、マウスモデルを使って報告されている(非特許文献7、非特許文献8)。また、ヒトにおける臨床効果と、FcγRIIIaの高親和性多型アロタイプ(V158)と低親和性多型アロタイプ(F158)との間には相関が観察された(非特許文献9)。これらの報告から、特定のFcγRに対する結合を最適化したFc領域を有する抗体は、より強力なエフェクター機能を媒介し、それにより効果的な抗腫瘍効果を発揮することが示される。
 FcγRIa、FcγRIIa、FcγRIIIa、FcγRIIIbからなる活性化受容体、FcγRIIbからなる阻害性受容体のそれぞれに対する抗体の結合活性のバランスは、抗体のエフェクター機能を最適化する上で重要な要素である。活性化受容体に対する結合活性を増強し、阻害性受容体に対しては結合活性を低減したFc領域を用いることで、最適なエフェクター機能を抗体に付与できる可能性がある(非特許文献10)。また、逆に、活性化受容体に対する結合活性を維持あるいは低減し、阻害性受容体に対しては結合活性を増強したFc領域を用いることで、免疫抑制作用を抗体に付与できる可能性がある(非特許文献 11)。Fc領域とFcγRの結合については、抗体のヒンジ領域及びCH2ドメイン内のいくつかのアミノ酸残基ならびにCH2ドメイン内のEUナンバリング297番目のAsnに付加される糖鎖が重要であることが示されている(非特許文献12、非特許文献13、非特許文献14)。この結合箇所を中心に、これまでに様々なFcγR結合特性を持つFc領域の変異体がこれまでに研究され、より高い活性化FcγR結合活性を有するFc領域変異体が得られている(特許文献1、特許文献2)。例えば、Lazarらは、ヒトIgG1のEUナンバリング239番目のSer、330のAla、332のIleをそれぞれAsp、Leu、Gluに置換することで、ヒトFcγRIIIa(V158)への結合を約370倍まで増加させることに成功している(非特許文献15、特許文献2)。この改変体は野生型と比べて、FcγRIIIaとFcγRIIbに対する結合の比 (A/I比)が約9倍になっている。また、LazarらはFcγRIIbに対する結合を約430倍増強させることにも成功している(非特許文献16)。ShinkawaらはEUナンバリング297番目のAsnに付加される糖鎖のフコースを欠損させることで、FcγRIIIaに対する結合を約100倍まで増加させることに成功している(非特許文献17)。
 上述の方法は抗体の両H鎖のFc領域に同じアミノ酸改変、あるいは同じ糖鎖修飾を導入している。その一方で、抗体のFc領域は、FcγRと1:1で結合し、FcγRをlower hingeおよびCH2領域で非対称に認識していることが報告されている(非特許文献18)。Fc領域がFcγRと非対称に相互作用することを考慮すると、各H鎖に異なる改変を導入した方がIgGとFcγRとの相互作用をより精密に最適化することが可能と考えられる。この着想に基づき、抗体の各H鎖のFc領域に異なる改変を加え、非対称にFc領域を修飾することにより、FcγRとの相互作用を最適化する方法も報告されている(特許文献5、特許文献6)。しかし、非対称に最適化されたFc領域は、対称に最適化されたFc領域と比較して、必ずしも優れたFcγRIIIa結合活性を示していない(特許文献5)。導入する改変の種類によっては、非対称にFc領域を最適化することにより、FcγRIIIaに対する結合を天然型IgGと比較して数十倍増強し、ADCC活性を増強することに成功しているが、一方で従来技術によって作製された両H鎖のN型糖鎖からフコースを除去したアフコシル化抗体と比較して、ADCC活性は同程度か、あるいはそれよりも弱い活性しか示していない(特許文献6)。
WO 2000/042072 WO 2006/019447 WO 2009/041062 WO 2006/106905 WO 2012/058768 WO 2012/125850
Nature Biotechnology, 23, 1073 - 1078 (2005) Eur. J. Pharm. Biopharm, 59(3), 389-96 (2005) Chemical Immunology, 65, 88 (1997) Cancer Res., 68, 8049-8057 (2008) Blood, 113,3735-3743 (2009) Immunol. Lett. 82, 57-65 (2002) Pro. Nat. Acad. Sci. 95:652-656 (1998) Nature Medicine, 6: 443-446 (2000) Blood 99:754-758 (2002) Science, 310, 1510-1512 (2005) Science, 291, 484-486 (2001) Chemical Immunology, 65, 88 (1997) Eur. J. Immunol. 23, 1098 (1993) Immunology, 86, 319 (1995) Pro. Nat. Acad. Sci., 103, 4005-4010 (2006) Mol. Immun. 45, 3926-3933 (2008) J. Biol. Chem., 278, 3466-3473(2003) J. Biol. Chem., 276: 16469-16477, 2001)
 本発明はこのような状況に鑑みて為されたものであり、その課題は、従来技術であるFc領域を有するホモ二量化ポリペプチドと比較してFc領域の機能が改善されたポリペプチド、該ポリペプチドを含有する医薬組成物、該医薬組成物を含有する免疫炎症性疾患の治療剤又は予防剤、各種のがんの治療剤又は予防剤、及びこれらの製造方法を提供することにある。さらに、本発明の課題は、従来技術であるFc領域を有するホモ二量化ポリペプチドと比較して、Fc領域の機能を改善する方法を提供することにある。
 本発明者らは上記課題を解決するために鋭意研究を行った。その結果、本発明者らは、アミノ酸配列の異なる2つのポリペプチド(第一のポリペプチド及び第二のポリペプチド)からなるFc領域を有するヘテロ二量化ポリペプチドを作製することにより、従来技術であるFc領域が第一のポリペプチドのみからなるホモ二量化体又は第二のポリペプチドのみからなるホモ二量化体と比べて機能が改善されたFc領域を含むヘテロ二量化ポリペプチドを作製することに成功した。
 本発明は、より具体的には以下の〔1〕~〔21〕を提供するものである。
〔1〕第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、(i)又は(ii)に記載の変異が導入されているFc領域を含み、変異が導入されていないFc領域を含むポリペプチドと比べて、Fc領域の機能が改変されていることを特徴とするポリペプチド:
(i)EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、及び、298番目のアミノ酸がA
(ii)EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE
〔2〕前記第一のポリペプチドと第二のポリペプチドのいずれか一方が(i)又は(ii)に記載の変異が導入されているFc領域を含み、もう一方が(iii)に記載の変異が導入されていることを特徴とする、〔1〕に記載のポリペプチド:
(i) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、298番目のアミノ酸がA、及び、327番目がD
(ii) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、270番目のアミノ酸がE、及び、298番目のアミノ酸がA)
(iii) EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE
〔3〕上記〔2〕(i)のEUナンバリング234番目のアミノ酸がE、D、T又はLである、〔2〕に記載のポリペプチド。
〔4〕上記〔2〕(ii)のEUナンバリング234番目のアミノ酸がL、F、E又はDである、〔2〕に記載のポリペプチド。
〔5〕上記〔2〕(i)のEUナンバリング234番目のアミノ酸がV、I、T、M又はLである、〔2〕に記載のポリペプチド。
〔6〕上記〔2〕(i)のEUナンバリング234番目のアミノ酸がV、E、D、T、I、L又はF、及び、239番目のアミノ酸がM又はIであって、(iii)のEUナンバリング330番目のアミノ酸がA又はKである、〔2〕に記載のポリペプチド。
〔7〕上記〔2〕(ii)のEUナンバリング234番目のアミノ酸がF、E、D、S又はL、及び、239番目のアミノ酸がM又はIであって、(iii)のEUナンバリング330番目のアミノ酸がA、F又はKである、〔2〕に記載のポリペプチド。
〔8〕前記Fc領域の機能の改変が、ポリペプチドのFcγレセプターに対する結合活性の増強、結合活性の減弱、及び、結合活性の選択性の向上からなる群より選択される少なくとも一つ以上の改変であることを特徴とする、〔1〕~〔7〕のいずれかに記載のポリペプチド。
〔9〕前記FcγレセプターがFcγRIa、FcγRIIa R、FcγRIIa H、FcγRIIb 、FcγRIIIaF及びFcγRIIIaVからなる群より選択される少なくとも1つ以上のレセプターであることを特徴とする、〔8〕に記載のポリペプチド。
〔10〕前記Fc領域の機能の改変がFcγレセプターに対する結合活性の選択性の向上であることを特徴とする、〔8〕又は〔9〕に記載のポリペプチド。
〔11〕前記Fcγレセプターに対する結合活性の選択性の向上が、活性型Fcγレセプターと阻害型Fcγレセプターとの間の選択性であることを特徴とする、〔10〕に記載のポリペプチド。
〔12〕前記Fcγレセプターにおいて、活性型FcγレセプターがFcγRIa、FcγRIIa R、FcγRIIa H、FcγRIIIaF及びFcγRIIIaVからなる群より選択される少なくとも1つ以上のレセプターであり、阻害型FcγレセプターがFcγRIIbであることを特徴とする、〔11〕に記載のポリペプチド。
〔13〕前記活性型Fcγレセプターに対する結合活性が、前記阻害型Fcγレセプターに対する結合活性に比べて、選択的に増強されたことを特徴とする、〔11〕又は〔12〕に記載のポリペプチド。
〔14〕更に第一のポリペプチドと第二のポリペプチドの等電点に差を付与させるためのアミノ酸改変及び/又はが導入されている、〔1〕から〔13〕のいずれかに記載のポリペプチド。
〔15〕等電点の差を付与するためのアミノ酸改変が、第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、196番目のGln、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、364番目のSer、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、387番目のPro、390番目のAsn、397番目のVal及び422番目のValからなる群より選択されるアミノ酸部位において、少なくとも一つのアミノ酸変異が導入されていることを特徴とする、〔14〕に記載のポリペプチド。
〔16〕等電点の差を付与するためのアミノ酸改変が、第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、EUナンバリング196番目のGln、199番目のIle、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、316番目のGly、358番目のLeu、364番目のSer、383番目のSer、387番目のPro及び397番目のValからなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、390番目のAsn及び422番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることを特徴とする、〔15〕に記載のポリペプチド。
〔17〕前記ポリペプチドが、抗原結合分子であることを特徴とする、〔1〕~〔16〕のいずれかに記載のポリペプチド。
〔18〕前記抗原結合分子が、抗体、二重特異性抗体、ペプチドFc融合タンパク質、又はスキャッフォールドFc融合タンパク質などのFc融合分子であることを特徴とする、〔17〕に記載のポリペプチド。
〔19〕〔1〕から〔18〕のいずれかに記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
〔20〕Fc領域を含むポリペプチドの機能を改変する方法であって、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、〔1〕から〔7〕のいずれかに記載のアミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、ポリペプチドの機能を改変する方法。
〔21〕Fc領域を含むポリペプチドを製造する方法であって、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、〔1〕から〔7〕のいずれかに記載のアミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、Fc領域を含むポリペプチドを製造する方法。
〔22〕〔1〕から〔18〕のいずれかに記載のポリペプチド又は〔19〕に記載の医薬組成物を対象へ投与する段階を含む、がんを治療又は予防する方法。
〔23〕がんの治療又は予防において使用するための、〔1〕から〔18〕のいずれかに記載のポリペプチド又は〔19〕に記載の医薬組成物。
〔24〕がんの治療剤又は予防剤の製造における、〔1〕から〔18〕のいずれかに記載のポリペプチド又は〔19〕に記載の医薬組成物の使用。
〔25〕〔1〕から〔18〕のいずれかに記載のポリペプチド又は〔19〕に記載の医薬組成物を使用する段階を含む、がんの治療剤又は予防剤を製造するためのプロセス。
Fc領域とFcRnとの複合体の構造を示す図である。FcRnは抗体の各H鎖のCH2およびCH3に結合し、抗体全体に対しては対称的に結合している。 IgAとIgA receptorであるFcαRとの複合体の構造を示す図である。FcαRはIgAの各H鎖のCα2およびCα3に結合し、抗体全体に対しては対称的に結合している。 Fc領域とFcγRIIIとの複合体の構造を示す図である。H鎖、CH2、CH3のそれぞれについて、図の向かって左側をHA鎖、CHA2、CHA3、右側をHB鎖、CHB2、CHB3と呼ぶ。 各H鎖におけるA327のFcγRIIIとの相互作用の詳細を示す図である。(A)はCHA2におけるA327とFcγRIIIとの相互作用を示す。(B)はCHB2HBにおけるA327とFcγRIIIとの相互作用を示す。FcγRIII上の色は、それぞれ、黒色:塩基性部位、灰色:中性部位、白:酸性部位を示す。 D356K、H435R、K439Eを導入した抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)である。 G237Aを導入した抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A26/GpH7-B3/GpL16-k0(配列番号:6、4、5)、GpH7-A26/GpL16-k0(配列番号:6、5)である。 G237Lを導入したヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A29/GpH7-B3/GpL16-k0(配列番号:7、4、5)、GpH7-A29/GpL16-k0(配列番号:7、5)である。 L328Eを導入したヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A42/GpH7-B3/GpL16-k0(配列番号:8、4、5)、GpH7-A42/GpL16-k0(配列番号:8、5)、である。 L328Dを導入したヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A43/GpH7-B3/GpL16-k0(配列番号:9、4、5)、GpH7-A43/GpL16-k0(配列番号:9、5)、である。 L234Eを導入したヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A5/GpH7-B16/GpL16-k0(配列番号:3、10、5)、GpH7-B16/GpL16-k0(配列番号:10、5)である。 L234Dを導入したヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合活性の比較を示す図である。GpH7-G1d/GpL16-k0(配列番号:2、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-B3/GpL16-k0(配列番号:4、5)、GpH7-A5/GpL16-k0(配列番号:3、5)、GpH7-A5/GpH7-B17/GpL16-k0(配列番号:3、11、5)、GpH7-B17/GpL16-k0(配列番号:11、5)である。 Fc領域におけるP329とFcγRIIIとの相互作用を示す図である。H鎖、CH2、CH3のそれぞれについて、図の向かって左側をHA鎖、CHA2、CHA3、右側をHB鎖、CHB2、CHB3と呼ぶ。Fc領域におけるEUナンバリング329番目のProがFcγRIIIとの主に一方のCH2ドメインであるCHA2で相互作用していることを示した図である。H鎖、CH2、CH3のそれぞれについて、図の向かって左側をHA鎖、CHA2、CHA3、右側をHB鎖、CHB2、CHB3と呼ぶ。 P329R、P329K、P329D、P329Eを導入したヘテロ二量化抗体およびホモ二量化抗体のFcγRに対する結合活性に与える効果の比較を示す図である。GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-A5/GpH7-B12/GpL16-k0(配列番号:3、12、5)、GpH7-A5/GpH7-B13/GpL16-k0(配列番号:3、13、5)、GpH7-A5/GpH7-B14/GpL16-k0(配列番号:3、14、5)、GpH7-A5/GpH7-B15/GpL16-k0(配列番号:3、15、5)、GpH7-B12/GpL16-k0(配列番号:12、5)、GpH7-B13/GpL16-k0(配列番号:13、5)、GpH7-B14/GpL16-k0(配列番号:14、5)、GpH7-B15/GpL16-k0(配列番号:15、5)である。 G237Aが一方のH鎖に導入されたヘテロ二量化抗体に対して、P329Rを同じH鎖または異なるH鎖に導入した際の各FcγRに対する結合活性を比較した図である。GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-A5/GpH7-B12/GpL16-k0(配列番号:3、12、5)、GpH7-A48/GpH7-B3/GpL16-k0(配列番号:16、4、5)、GpH7-A26/GpH7-B3/GpL16-k0(配列番号:6、4、5)、GpH7-A26/GpH7-B12/GpL16-k0(配列番号:6、12、5)、GpH7-A45/GpH7-B3/GpL16-k0(配列番号:17、4、5)である。 L234Dが一方のH鎖に導入されたヘテロ二量化抗体に対して、P329Rを同じH鎖または異なるH鎖に導入した際の各FcγRに対する結合活性を比較した図である。GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)の各FcγRに対する結合活性を100とした。評価に用いたサンプルとその配列はGpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-A5/GpH7-B12/GpL16-k0(配列番号:3、12、5)、GpH7-A48/GpH7-B3/GpL16-k0(配列番号:16、4、5)、GpH7-A5/GpH7-B17/GpL16-k0(配列番号:3、11、5)、GpH7-A48/GpH7-B17/GpL16-k0(配列番号:16、11、5)、GpH7-A5/GpH7-B41/GpL16-k0(配列番号:3、18、5)である。 同一の改変を導入したヘテロ二量化抗体とホモ二量化抗体のFcγRIaに対する結合活性を比較した図である。横軸にHo/Con、縦軸にHe/Coの値を示した。He/Conは変異を導入したGpH7-B3 variantを一方のH鎖に用いたヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRIaに対する結合活性を、変異を導入していないGpH7-B3を用いたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRIaに対する結合活性で割った値に100を乗じた値である。Ho/Conは変異を導入したGpH7-B3 variantを両方のH鎖に用いたホモ二量化抗体GpH7-B3 variant/GpL16-k0のFcγRIaに対する結合活性の値を、変異を導入していないGpH7-B3を用いたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)のFcγRIaに対する結合活性の値で割った値に100を乗じた値である。 同一の改変を導入したヘテロ二量化抗体とホモ二量化抗体のFcγRIIa Rに対する結合活性を比較した図である。横軸にHo/Con、縦軸にHe/Coの値を示した。He/Conは変異を導入したGpH7-B3 variantを一方のH鎖に用いたヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRIIa Rに対する結合活性を、変異を導入していないGpH7-B3を用いたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRIIa Rに対する結合活性で割った値である。Ho/Conは変異を導入したGpH7-B3 variantを両方のH鎖に用いたホモ二量化抗体GpH7-B3 variant/GpL16-k0のFcγRIIa Rに対する結合活性の値を、変異を導入していないGpH7-B3を用いたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)のFcγRIIa Rに対する結合活性の値で割った値に100を乗じた値である。 同一の改変を導入したヘテロ二量化抗体とホモ二量化抗体のFcγRIIa Hに対する結合活性を比較した図である。横軸にHo/Con、縦軸にHe/Coの値を示した。He/Conは変異を導入したGpH7-B3 variantを一方のH鎖に用いたヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRIIa Hに対する結合活性を、変異を導入していないGpH7-B3を用いたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRIIa Hに対する結合活性で割った値である。Ho/Conは変異を導入したGpH7-B3 variantを両方のH鎖に用いたホモ二量化抗体GpH7-B3 variant/GpL16-k0のFcγRIIa Hに対する結合活性の値を、変異を導入していないGpH7-B3を用いたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)のFcγRIIa Hに対する結合活性の値で割った値に100を乗じた値である。 同一の改変を導入したヘテロ二量化抗体とホモ二量化抗体のFcγRIIbに対する結合活性を比較した図である。横軸にHo/Con、縦軸にHe/Coの値を示した。He/Conは変異を導入したGpH7-B3 variantを一方のH鎖に用いたヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRIIbに対する結合活性を、変異を導入していないGpH7-B3を用いたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRIIbに対する結合活性で割った値である。Ho/Conは変異を導入したGpH7-B3 variantを両方のH鎖に用いたホモ二量化抗体GpH7-B3 variant/GpL16-k0のFcγRIIbに対する結合活性の値を、変異を導入していないGpH7-B3を用いたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)のFcγRIIbに対する結合活性の値で割った値に100を乗じた値である。 同一の改変を導入したヘテロ二量化抗体とホモ二量化抗体のFcγRIIIaに対する結合活性を比較した図である。横軸にHo/Con、縦軸にHe/Coの値を示した。He/Conは変異を導入したGpH7-B3 variantを一方のH鎖に用いたヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRIIIaに対する結合活性を、変異を導入していないGpH7-B3を用いたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRIIIaに対する結合活性で割った値である。Ho/Conは変異を導入したGpH7-B3 variantを両方のH鎖に用いたホモ二量化抗体GpH7-B3 variant/GpL16-k0のFcγRIIIaに対する結合活性の値を、変異を導入していないGpH7-B3を用いたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)のFcγRIIIaに対する結合活性の値で割った値に100を乗じた値である。 改変を導入したH鎖を用いたヘテロ二量化抗体、ホモ二量化抗体のそれぞれにおけるFcγR結合を比較した概念図である。プロットした点がiの領域に含まれた場合、Fc領域に導入した改変がHe/Con > 100、 Ho/Con <100、He/Con > Ho/Conとなる効果を有することを意味する。プロットした点がiiの領域に含まれた場合、Fc領域に導入した改変がHe/Con > 100、 Ho/Con >100、He/Con > Ho/Conとなる効果を有することを意味する。プロットした点がiiiの領域に含まれた場合、Fc領域に導入した改変改変がHe/Con > 100、 Ho/Con >100、He/Con < Ho/Conとなる効果を有することを意味する。 三種類の改変をヘテロ二量化抗体のいずれかのH鎖に導入する場合の組み合わせの数を示した図である。●(黒丸)、▲(黒三角)、■(黒四角)のそれぞれは異なる改変であることを意味する。 抗体のFc領域におけるS239、A330、I332の各残基とFcγRIIIとの相互作用を示す図である。Proc. Natl. Acad. Sci. USA, 103, 4005-4010, 2006より引用。 活性型FcγRと抑制型FcγRに対する結合活性の比較を示す図である。各改変体の活性型FcγRと抑制型FcγRに対する結合活性を比較した概念図である。各改変体の活性型FcγR (Activating Receptor)に対する活性を縦軸、抑制型FcγR (Inhibitory Receptor)に対する結合活性を横軸にとり、天然型抗体の活性型FcγRと抑制型FcγRに対する結合活性をそれぞれ100とした。改変体の活性型FcγRに対する結合活性が天然型抗体より増強し、抑制型FcγRに対する結合活性が低下した抗体はaの領域(網かけ部分)にプロットされる。改変体の抑制型FcγRに対する結合活性が天然型抗体より増強し、活性型FcγRに対する結合活性が低下した抗体はcの領域(斜線部分)にプロットされる。 活性型FcγRと抑制型FcγRに対する結合活性の比較を示す図である。各改変体の活性型FcγRと抑制型FcγRに対する結合活性を比較した概念図である。活性型FcγR (Activating Receptor)に対する天然型抗体の結合活性を縦軸、抑制型FcγR (Inhibitory Receptor)に対する結合活性を横軸にとり、天然型抗体の活性型FcγRと抑制型FcγRに対する結合活性をそれぞれ100とした。改変体の活性型FcγRに対する結合活性を抑制型FcγRに対する結合活性で割った値が1.2以上である抗体は、bの領域(網かけ部分)にプロットされる。改変体の活性型FcγRに対する結合活性を抑制型FcγRに対する結合活性で割った値が0.8以下である抗体はdの領域(斜線部分)にプロットされる。 ヘテロ二量化抗体のFcγRIaとFcγRIIbに対する結合活性の比較を示す図である。改変を導入したヘテロ二量化抗体の活性型FcγRであるFcγRIaと抑制型FcγRであるFcγRIIbに対する結合活性を比較した図である。横軸に抑制型FcγRに対するHe/Conの値、縦軸に活性型FcγRに対するHe/Conの値を示した。He/ConはFcに変異を導入したヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRに対する結合活性を、改変を導入していないヘテロ二量抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRに対する結合活性で割った値に100を乗じた値である。 ヘテロ二量化抗体のFcγRIIa RとFcγRIIbに対する結合活性の比較を示す図である。改変を導入したヘテロ二量化抗体の活性型FcγRであるFcγRIIa Rと抑制型FcγRであるFcγRIIbに対する結合活性を比較した図である。横軸に抑制型FcγRに対するHe/Conの値、縦軸に活性型FcγRに対するHe/Conの値を示した。He/ConはFcに変異を導入したヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRに対する結合活性を、改変を導入していないヘテロ二量抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRに対する結合活性で割った値に100を乗じた値である。 ヘテロ二量化抗体のFcγRIIa HとFcγRIIbに対する結合活性の比較を示す図である。改変を導入したヘテロ二量化抗体の活性型FcγRであるFcγRIIa Hと抑制型FcγRであるFcγRIIbに対する結合活性を比較した図である。横軸に抑制型FcγRに対するHe/Conの値、縦軸に活性型FcγRに対するHe/Conの値を示した。He/ConはFcに変異を導入したヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRに対する結合活性を、改変を導入していないヘテロ二量抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRに対する結合活性で割った値に100を乗じた値である。 ヘテロ二量化抗体のFcγRIIIaとFcγRIIbに対する結合活性の比較を示す図である。改変を導入したヘテロ二量化抗体の活性型FcγRであるFcγRIIIaと抑制型FcγRであるFcγRIIbに対する結合活性を比較した図である。横軸に抑制型FcγRに対するHe/Conの値、縦軸に活性型FcγRに対するHe/Conの値を示した。He/ConはFcに変異を導入したヘテロ二量化抗体GpH7-A5/GpH7-B3 variant/GpL16-k0のFcγRに対する結合活性を、改変を導入していないヘテロ二量抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)のFcγRに対する結合活性で割った値に100を乗じた値である。 L234Y、G236W、S298AとS239D、A330L、I332Eの組み合わせが抗体の熱安定性に与える影響の比較を示す図である。L234Y、G236W、S298Aのヘテロ二量化抗体及びホモ二量化抗体、S239D、A330L、I332Eのヘテロ二量化抗体およびホモ二量化抗体、L234Y、G236W、S298Aを一方のH鎖に導入し、S239D、A330L、I332Eをもう一方のH鎖に導入したヘテロ二量化抗体の熱加速試験(40℃ 2週間または4週間)後の単量体比率の変化を比較した図である。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-TA7/GpH7-B3/GpL16-k0(配列番号:31、4、5)、GpH7-A5/GpH7-B78/GpL16-k0(配列番号:3、41、5)、GpH7-TA7/GpH7-TA45/GpL16-k0(配列番号:31、32、5)、GpH7-A57/GpH7-B78/GpL16-k0(配列番号:40、41、5)、GpH7-TA7/GpH7-B78/GpL16-k0(配列番号:31、41、5)である。 ヘテロ二量化抗体のADCC活性の検討結果を示す図である。評価に用いた細胞株はSK-pca13aであり、E/T ratio=50である。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)、GpH7-A5/GpH7-B78/GpL16-k0(配列番号:3、41、5)、GpH7-TA7/GpH7-B3/GpL16-k0(配列番号:31、4、5)、GpH7-A57/GpH7-B78/GpL16-k0(配列番号:40、41、5)、GpH7-TA7/GpH7-TA45/GpL16-k0(配列番号:31、32、5)、GpH7-TA7/GpH7-B78/GpL16-k0(配列番号:31、41、5)である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度(μg/mL)を表す。 IgG1(配列番号:76)、IgG2(配列番号:77)、IgG3(配列番号:78)及びIgG4(配列番号:79)のFc領域を構成するアミノ酸残基と、kabatのEUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係を表す図である。 実施例12に記載のFcヘテロ二量化抗体のADCC活性の検討結果を示す図である。評価に用いた細胞株はSK-pca13aであり、E/T ratio=50である。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はGpH7-G1d/GpL16-k0(配列番号:2、5)、GpH7-Kn033 /GpH7-Hl033/GpL16-k0(配列番号:51、56、5)、GpH7-Kn032 /GpH7-Hl032/GpL16-k0(配列番号:53、58、5)、GpH7-Kn045 /GpH7-Hl048/GpL16-k0(配列番号:54、59、5)、GpH7-Kn056 /GpH7-Hl055/GpL16-k0(配列番号:55、60、5)、GpH7-Kn037 /GpH7-Hl036/GpL16-k0(配列番号:52、57、5)、である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度(μg/mL)を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0のADCC活性の検討結果を示す図である。評価に用いた細胞株はSKE18であり、E/T ratio=50であった。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はH240-Kn033 /H240-Hl033/L73-k0(配列番号:84、85、106)、H240-Kn032 /H240-Hl032/L73-k0(配列番号:86、87、106)、H240-Kn061 /H240-Hl071/L73-k0(配列番号:81、82、106)、H240-afucosyl_G1d(H240-afucosyl_G1dはそのアミノ酸配列はH240-G1d (配列番号:83)と同じで、そのフコースが取れたものである)/L73-k0(配列番号:83、106)である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度 (μg/mL)を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIに対する結合活性を示す図である。縦軸のRelative KDはFcgRIに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIIa Rに対する結合活性を示す図である。縦軸のRelative KDはFcgRIIa Rに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIIa Hに対する結合活性を示す図である。縦軸のRelative KDはFcgRIIa Hに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIIbに対する結合活性を示す図である。縦軸のRelative KDはFcgRIIbに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIIIa Fに対する結合活性を示す図である。縦軸のRelative KDはFcgRIIIa Fに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした点変異体のFcgRIIIa Vに対する結合活性を示す図である。縦軸のRelative KDはFcgRIIIa Vに対するH240-Kn061/H240-Hl071/L73-k0のKD (mol/L) を各改変体のKDで割った値を表す。横軸の数字はRelative KDが小さい順に並べた際の順位を表す。 ヘテロ二量化抗体H240-Kn072/H240-Hl076/L73-k0のADCC活性の検討結果を示す図である。評価に用いた細胞株はMIAPaCa-2であり、E/T ratio=25であった。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はH240-Kn033 /H240-Hl033/L73-k0(配列番号:84、85、106)、H240-Kn061 /H240-Hl071/L73-k0(配列番号:81、82、106)、H240-afucosyl_G1d/L73-k0(配列番号:83、106)、H240-Kn072 /H240-Hl076/L73-k0(配列番号:90、91、106)である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度 (μg/mL)を表す。 ヘテロ二量化抗体H240-Kn072/H240-Hl076/L73-k0改良抗体のADCC活性の検討結果を示す図である。評価に用いた細胞株はDLD-1であり、E/T ratio=50であった。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はH240-Kn033 /H240-Hl033/L73-k0(配列番号:84、85、106)、H240-afucosyl_G1d/L73-k0(配列番号:83、106)、H240-Kn113 /H240-Hl076/L73-k0(配列番号:92、91、106)、H240-Kn115 /H240-Hl076/L73-k0(配列番号:93、91、106)、H240-Kn125 /H240-Hl076/L73-k0(配列番号:94、91、106)である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度(μg/mL)を表す。 ヘテロ二量化抗体H240-Kn067/H240-Hl068/L73-k0等のADCC活性の検討結果を示す図である。評価に用いた細胞株はDLD-1であり、E/T ratio=50であった。エフェクター細胞はヒトPBMCであった。評価に用いたサンプルとその配列はH240-Kn033 /H240-Hl033/L73-k0(配列番号:84、85、106)、H240-afucosyl_G1d/L73-k0(配列番号:83、106)、H240-Kn067/H240-Hl068/L73-k0(配列番号:95、96、106)、H240-Kn120 /H240-Hl068/L73-k0(配列番号:99、96、106)、H240-Kn126 /H240-Hl068/L73-k0(配列番号:100、96、106)である。縦軸は抗体の細胞傷害活性を表し、横軸は抗体の濃度(μg/mL)を表す。 Fc(WT) / FcgR2a R型結晶構造(PDB ID=3RY6, J. Imunol. 2011, 187, 3208-321)の図である。同構造のFcとFcgRIIa R型の相互作用界面付近においてFcgRIIa R型とFcgRIIbとで異なる3残基Gln127, Leu132, Phe160の側鎖を図示した。なお()内はFcgRIIb中での対応するアミノ酸残基を一文字表記で表したものである。 X線結晶構造解析によって決定されたFc(Kn 120Hl068) / FcgRIIb細胞外領域複合体の図である。CH2ドメイン、CH3ドメインのそれぞれについて、向かって左側をドメインA、右側をドメインBとした。 X線結晶構造解析によって決定されたFc (Kn120/Hl068) / FcgRIIb細胞外領域複合体のうち、FcgRIIb細胞外領域のLys127(FcgRIIa R型においてはGln)周辺の構造を示した図である。なおFc (Kn120/Hl068)のTyr296については側鎖の電子密度が観測されなかっため、Cα原子以外の側鎖のモデル構築はおこなわなかった。 X線結晶構造解析によって決定されたFc (Kn120/Hl068) / FcgRIIb細胞外領域複合体のうち、FcgRIIb細胞外領域のSer132(FcgRIIa R型においてはLeu)周辺の構造を示した図である。なおFc (Kn120/Hl068)のD327については側鎖の電子密度が観測されなかっため、Cα原子以外の側鎖のモデル構築はおこなわなかった。 X線結晶構造解析によって決定されたFc (Kn120/Hl068) / FcgRIIb細胞外領域複合体のうち、FcgRIIb細胞外領域のTyr160(FcgRIIa R型においてはPhe)周辺の構造を示した図である。 X線結晶構造解析によって決定されたFc (BP208) / FcgRIIb細胞外領域複合体の図である。CH2ドメイン、CH3ドメインのそれぞれについて、向かって左側をドメインA、右側をドメインBとした。 X線結晶構造解析によって決定されたFc (BP208) / FcgRIIb細胞外領域複合体の構造とFc (WT) / FcgRIIa細胞外領域複合体の構造(PDB code:3RY6)をCH2ドメインAにおいて比較したものである。図中太線で描画されたものがFc (BP208) / FcgRIIb細胞外領域複合体であり、細線で描画されたものがFc (WT) / FcgRIIa細胞外領域複合体の構造である。なお、Fc (WT) / FcgRIIa細胞外領域複合体の構造においては、CH2ドメインAのみを描画してある。 X線結晶構造解析によって決定されたFc (BP208) / FcgRIIb細胞外領域複合体のうち、Fc (BP208) CH2ドメインBのSer239周辺の構造を示した図である。 X線結晶構造解析によって決定されたFc (BP208) / FcgRIIb細胞外領域複合体のうち、Fc (BP208) CH2ドメインAのSer239周辺の構造を示した図である。 代表的なH240-AK072/H240-BH076/L73-k0改変抗体の分析用陽イオン交換クロマトグラフィーの結果を図示したものである。A: H240-AK072/H240-BH076/L73-k0、B: H240-FA021/H240-FB084/L73-k0 代表的なH240-AK072/H240-BH076/L73-k0改変抗体であるH240- FA021/H240- FB084/L73-k0の分取用陽イオン交換クロマトグラフィー(A)および分取画分の分析用陽イオン交換リクロマトグラフィー(B)の結果を図示したものである。
 以下の定義は、本明細書において説明する本発明の理解を容易にするために提供される。
 本発明は、第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチド及び第二のポリペプチドが、変異が導入されているFc領域を含み、変異が導入されていないFc領域を含むポリペプチドと比べて、Fc領域の機能が改変されていることを特徴とするポリペプチドを提供する。さらに、当該ポリペプチドの製造方法及びFc領域を含むポリペプチドの機能を改変する方法なども提供する。
 本発明において、「第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチド」とは、第一のポリペプチド及び第二のポリペプチド、並びに他の複数のポリペプチドから構成されるポリペプチド複合体であってもよい。
 本明細書で「第一のポリペプチド」及び「第二のポリペプチド」とは、抗体のFc領域を構成するポリペプチドを意味する。「第一のポリペプチド」及び「第二のポリペプチド」は互いに配列が異なっていることを意味し、好ましくは少なくともCH2領域の配列が異なることを意味する。当該ポリペプチドとしては、例えば、天然型IgGのFc領域を構成するポリペプチドであってもよく、また天然型IgGのFc領域を構成するポリペプチドに改変が加えられたポリペプチドであってもよい。
 天然型IgGとは天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。
 本発明における「ポリペプチド」とは、通常、10アミノ酸程度以上の長さを有するペプチド、およびタンパク質を指す。また、通常、生物由来のポリペプチドであるが、特に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。尚、本発明におけるタンパク質分子とは当該ポリペプチドを含む分子を指す。
 本発明のポリペプチドの好ましい例として、抗体を挙げることができる。更に好ましい例として、天然型IgG、特に天然型ヒトIgGを挙げることができる。天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。
 抗体の軽鎖定常領域にはIgK(Kappa、κ鎖)、IgL1、IgL2、IgL3、IgL6、IgL7 (Lambda、λ鎖)タイプの定常領域が存在しているが、いずれの軽鎖定常領域であってもよい。ヒトIgK(Kappa)定常領域とヒトIgL7 (Lambda)定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。さらに、本発明において軽鎖定常領域は、アミノ酸の置換、付加、欠損、挿入および/または修飾などの改変が行われた軽鎖定常領域であってもよい。抗体のFc領域としては、例えばIgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgMタイプのFc領域が存在している。本発明の抗体のFc領域は、例えばヒトIgG抗体のFc領域を用いることができ、好ましくはヒトIgG1抗体のFc領域である。本発明のFc領域として、例えば、天然型IgGの定常領域、具体的には、天然型ヒトIgG1を起源とする定常領域(配列番号:76)、天然型ヒトIgG2を起源とする定常領域(配列番号:77)、天然型ヒトIgG3を起源とする定常領域(配列番号:78)、天然型ヒトIgG4を起源とする定常領域(配列番号:79)由来のFc領域を用いることができる。図32には天然型IgG1、IgG2、IgG3、IgG4の定常領域の配列を示す。天然型IgGの定常領域にはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356-358番目のアミノ酸配列がDELであってもEEMであってもよい。
 また、抗体のFc領域とFcγRとの相互作用の強さはZn2+イオン濃度依存的であることが報告されている(Immunology Letters 143 (2012) 60-69)。抗体はFc領域のZn2+イオン濃度が高いほど、Fc領域とFcgRとの相互作用は増強される。抗体のFc領域のCH3に存在するHis310、His435がZn2+をキレートすることにより、遠位にあるFc領域の各CH2ドメインが開く。これにより、CH2ドメインとFcgRと相互作用しやすくなり、Fc領域とFcgRの相互作用が増強される。本発明のFc領域の非限定な一態様として、EUナンバリングで表される310位のHis、435位のHis、433位のHisおよび/または434位のAsnにZn2+がキレートされたFc領域が挙げられる。
 本発明において、「Fc領域」は、抗体分子中の、ヒンジ部若しくはその一部、CH2、CH3ドメインからなる領域のことをいう。IgGクラスのFc領域は、EU ナンバリング(本明細書ではEU INDEXとも呼ばれる)で、例えば226番目のシステインからC末端、あるいは230番目のプロリンからC末端までを意味するが、これに限定されない。
 Fc領域は、IgG1、IgG2、IgG3、IgG4モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、プロテインAカラムまたはプロテインGカラムに吸着された画分を再溶出することによって好適に取得され得る。かかる蛋白分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にFabやF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやパパイン等が例示できる。
 本明細書において、「ヘテロ二量化」とはアミノ酸配列の異なる二つのポリペプチドから一つのポリペプチドを構成することを意味し、「ヘテロ二量化体」とは、アミノ酸配列の異なる二つのポリペプチドから構成されるポリペプチドのことを意味する。また、「ホモ二量化」とは同一のアミノ酸配列を有する二つのポリペプチドから一つのポリペプチドを構成することを意味し、「ホモ二量化体」とは、2つの同じアミノ酸配列からなるポリペプチド、あるいはヘテロ二量化形成を効率的にすることを目的とした改変や、ヘテロ二量化体を効率的に精製することを目的とした改変を除いて同じアミノ酸配列からなるポリペプチド、あるいはFcの機能を改善することを目的としない改変を除いて同じアミノ酸からなるポリペプチドから構成されるポリペプチドのことを意味する。本発明において、「ヘテロ二量化体」又は「ホモ二量化体」とは、好ましくは、Fc領域について「ヘテロ二量化」または「ホモ二量化」を意味し、より好ましくは、Fc領域中のCH2について「ヘテロ二量化」または「ホモ二量化」を意味する。また「親ポリペプチド」とはアミノ酸変異等の改変を導入する前のポリペプチドを意味する。
 本発明のアミノ酸変異は、単独で用いてもよく複数組み合わせて使用してもよい。
 複数組み合わせて使用する場合、組み合わせる数は特に限定されず、発明の目的を達成できる範囲内で適宜設定することができ、例えば、2個以上30個以下、好ましくは2個以上15個以下である。
 複数組み合わせる場合、Fc領域を構成する2つのポリペプチドの一方にのみ当該アミノ酸変異を加えてもよく、また2つのポリペプチドの双方に適宜振り分けて加えてもよい。
 また、本発明においては、Fc領域のより高い機能の改変効果を得るために、変異を導入しない場合及び2つのポリペプチドの両方のFc領域に変異が導入された場合と比較して、一方にのみ変異が導入された場合の方が、該Fc領域の機能が向上するアミノ酸変異が、少なくとも1つ導入されていることが好ましい。
 改変される部位は、Fc領域であれば特に限定されず、本発明の目的を達成できる範囲内で適宜設定することができ、例えばヒンジ領域、CH2領域、CH3領域などである。
 より好ましくは、改変される部位はCH2領域である。なお、CH2領域とはEUナンバリング231番目から340番目、CH3領域とはEUナンバリング341番目から447番目を意味する。例えば、ヒトIgG1を起源とする定常領域のアミノ酸配列に対して変異を導入する場合、EUナンバリング118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372、373、374、375、376、377、378、379、380、381、382、383、384、385、386、387、388、389、390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447から選択される1以上の位置におけるアミノ酸残基に改変を加えることができる。
 より具体的には、ヒトIgG1定常領域のアミノ酸配列に対して改変を導入する場合、EUナンバリング226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372、373、374、375、376、377、378、379、380、381、382、383、384、385、386、387、388、389、390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447から選択される1以上の位置におけるアミノ酸残基に改変を加えることができる。
 より具体的には、ヒトIgG1定常領域のアミノ酸配列に対して改変を導入する場合、EUナンバリング226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340から選択される1以上の位置におけるアミノ酸残基に改変を加えることができる。
 より具体的には、ヒトIgG1定常領域のアミノ酸配列に対して変異を導入する場合、EUナンバリング231、232、233、234、235、236、237、238、239、240、265、266、267、268、269、270、271、295、296、298、300、324、325、326、327、328、329、330、331、332、333、334、335、336、337から選択される1以上の位置におけるアミノ酸残基に改変を加えることができる。
 本発明においてアミノ酸の改変とは、置換、欠損、付加、挿入あるいは修飾のいずれか、又はそれらの組み合わせを意味する。本発明においては、アミノ酸の改変はアミノ酸の変異と言い換えることが可能であり、同じ意味で使用される。
置換
 アミノ酸残基を置換する場合には、別のアミノ酸残基に置換することで、例えば次の(a)~(c)のような点について改変する事を目的とする。
(a) シート構造、若しくは、らせん構造の領域におけるポリペプチドの背骨構造;(b) 標的部位における電荷若しくは疎水性、または(c)側鎖の大きさ。
 アミノ酸残基は一般の側鎖の特性に基づいて以下のグループに分類される:
(1) 疎水性: ノルロイシン、met、ala、val、leu、ile;
(2) 中性親水性: cys、ser、thr、asn、gln;
(3) 酸性: asp、glu;
(4) 塩基性: his、lys、arg;
(5) 鎖の配向に影響する残基: gly、pro;及び
(6) 芳香族性: trp、tyr、phe。
 これらの各グループ内でのアミノ酸残基の置換は保存的置換と呼ばれ、一方、他グループ間同士でのアミノ酸残基の置換は非保存的置換と呼ばれる。
 本発明における置換は、保存的置換であってもよく、非保存的置換であってもよく、また保存的置換と非保存的置換の組合せであってもよい。
 また本発明のポリペプチドには、本発明に基づいて導入されたアミノ酸変異に加え、更に付加的な改変を含むことができる。付加的な改変は、たとえば、アミノ酸の置換、欠損、あるいは修飾のいずれか、あるいはそれらの組み合わせから選択することができる。
 例えば、本発明のポリペプチドには、さらに当該ポリペプチドの目的とする機能に実質的な変化を与えない範囲で、任意に改変を加えることができる。本発明のポリペプチドが抗体の場合、重鎖や軽鎖に改変を加えることができる。例えばこのような変異はアミノ酸残基の保存的置換によって行うことができる。また、本発明のポリペプチドの目的とする機能に変化を与えるような改変であっても、当該機能の変化が本発明の目的の範囲内であれば、そのような改変も行うことができる。
 本発明におけるアミノ酸配列の改変には、翻訳後修飾が含まれる。具体的な翻訳後修飾として、糖鎖の付加あるいは欠損を示すことができる。たとえば、IgG1定常領域において、EUナンバリングの297番目のアミノ酸残基は、糖鎖で修飾されたものであることができる。修飾される糖鎖構造は限定されない。一般的に、真核細胞で発現される抗体は、定常領域に糖鎖修飾を含む。したがって、以下のような細胞で発現される抗体は、通常、何らかの糖鎖で修飾される。
 ・哺乳動物の抗体産生細胞
 ・抗体をコードするDNAを含む発現ベクターで形質転換された真核細胞
 ここに示した真核細胞には、酵母や動物細胞が含まれる。たとえばCHO細胞やHEK293H細胞は、抗体をコードするDNAを含む発現ベクターで形質転換するための代表的な動物細胞である。他方、当該位置に糖鎖修飾が無いものも本発明の抗体に含まれる。定常領域が糖鎖で修飾されていない抗体は、抗体をコードする遺伝子を大腸菌などの原核細胞で発現させて得ることができる。
 本発明において付加的な改変としては、より具体的には、例えばFc領域の糖鎖にシアル酸を付加したものであってもよい(MAbs. 2010 Sep-Oct;2(5):519-27.)。
 本発明のポリペプチドが抗体である場合、抗体定常領域部分に、例えばFcRnに対する結合活性を向上させるアミノ酸置換(J Immunol. 2006 Jan 1;176(1):346-56、J Biol Chem. 2006 Aug 18;281(33):23514-24.、Int Immunol. 2006 Dec;18(12):1759-69.、Nat Biotechnol. 2010 Feb;28(2):157-9.、WO/2006/019447、WO/2006/053301、WO/2009/086320)、抗体のヘテロジェニティーや安定性を向上させるためのアミノ酸置換((WO/2009/041613))を加えてもよい。
 本発明のヘテロ二量化ポリペプチドを作製するには互いに異なるアミノ酸を有するポリペプチド同士を会合化させる、あるいは目的のヘテロ二量化ポリペプチドを他のホモ二量化ポリペプチドから分離する必要がある。
 Fc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には、抗体H鎖の第二の定常領域(CH2)又はH鎖の第三の定常領域(CH3)の界面に電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術を適用することができる(WO2006/106905)。
 CH2又はCH3の界面に電荷的な反発を導入して意図しないH鎖同士の会合を抑制させる技術において、H鎖の他の定常領域の界面で接触するアミノ酸残基としては、例えばCH3領域におけるEUナンバリング356番目の残基、EUナンバリング439番目の残基、EUナンバリング357番目の残基、EUナンバリング370番目の残基、EUナンバリング399番目の残基、EUナンバリング409番目の残基に相対する領域を挙げることができる。
 より具体的には、例えば、2種のH鎖CH3領域を含む抗体においては、第1のH鎖CH3領域における以下の(1)~(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体とすることができる;
(1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、
(2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、
(3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。
 更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)~(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)~(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体とすることができる。
 上記(1)~(3)に記載のそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域について、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)~(3)に記載のアミノ酸残基に対応する部位を見出すことができ、適宜、該部位のアミノ酸残基を改変に供することが可能である。
 上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の(X)または(Y)のいずれかの群に含まれるアミノ酸残基から選択されることが好ましい;
(X)グルタミン酸(E)、アスパラギン酸(D)、
(Y)リジン(K)、アルギニン(R)、ヒスチジン(H)。
 上記抗体において、「同種の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記(X)または(Y)のいずれか1の群に含まれるアミノ酸残基を有することを意味する。「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のなかの少なくとも1つのアミノ酸残基が、上記(X)または(Y)のいずれか1の群に含まれるアミノ酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有することを意味する。
 好ましい態様において上記抗体は、第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。
 本発明において改変に供するアミノ酸残基としては、上述した抗体の可変領域または抗体の定常領域のアミノ酸残基に限られない。当業者であれば、ポリペプチド変異体または異種多量体について、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を見出すことができ、会合を制御するように、該部位のアミノ酸残基を改変に供することが可能である。
 本発明のFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖の可変領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖の相対する可変領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することによって、突起が空隙に配置され得るようにすることで効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681)。
 これに加えて、Fc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖のCH3の一部をその部分に対応するIgA由来の配列にし、もう一方のH鎖のCH3の相補的な部分にその部分に対応するIgA由来の配列を導入したstrand-exchange engineered domain CH3を用いることで、異なる配列を有するポリペプチドの会合化をCH3の相補的な会合化によって効率的に引き起こすことができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を使っても効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる。
 他にもWO2011/028952に記載の抗体のCH1とCLの会合化、VH、VLの会合化を利用したヘテロ二量化抗体作製技術も用いることができる。
 また、効率的にヘテロ二量化ポリペプチドを効率的に形成することができない場合であっても、ヘテロ二量化ポリペプチドをホモ二量化ポリペプチドと分離、精製することによってもヘテロ二量化ポリペプチドを得ることが可能である。互いに配列の異なる第一のポリペプチドおよび第二のポリペプチドからなるヘテロ二量化ポリペプチドを作製する際には、2つの第一のポリペプチドのみからなるホモ二量化ポリペプチド、2つの第二のポリペプチドのみからなるホモ二量化ポリペプチドが不純物として混入する。これら2種類のホモ二量化ポリペプチドを効率的に除去する方法として、公知技術を使うことができる。2種類のH鎖の可変領域にアミノ酸置換を導入し等電点の差を付与することで、2種類のホモ体と目的のヘテロ二量化抗体をイオン交換クロマトグラフィーで精製可能にする方法が報告されている(WO2007114325)。ヘテロ二量化抗体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖からなるヘテロ二量化抗体をプロテインAを用いて精製する方法が報告されている(WO98050431, WO95033844)。
 また、IgGとProteinAの結合部位であるEUナンバリング435番目および436番目のアミノ酸残基を、Tyr、HisなどのProteinAへの結合力の異なるアミノ酸に置換したH鎖を用いることで、各H鎖とProtein Aとの相互作用を変化させ、Protein Aカラムを用いることで、ヘテロ二量化抗体のみを効率的に精製することもできる。
 これらの置換、技術を複数、例えば2個以上組合せて用いることができる。またこれらの改変は、第一のポリペプチドと第二のポリペプチドに適宜別々に加えることができる。なお、本発明のポリペプチドは、上記改変が加えられたものをベースにして作製したものであってもよい。
 アミノ酸配列の改変は、当分野において公知の種々の方法により行うことができる。これらの方法には、次のものに限定されるわけではないが、部位特異的変異誘導法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)、PCR変異法、カセット変異法等の方法により行うことができる。
 本発明において、「Fc領域の機能」とは、例えば、Fc領域のFcγレセプターに対する結合活性(結合活性の増強、又は、結合活性の減弱)、Fc領域のFcγレセプターアイソフォーム間の選択性(結合活性の選択性の向上)、Fc領域の物理化学的安定性、ADCC活性、ADCP活性などをいう。ここでFc領域のFcγレセプターアイソフォーム間の選択性とは、Fcγレセプターの特定のアイソフォームに対して選択的に結合することを意味する。Fc領域の物理化学的安定性とは、例えばFc領域の熱力学的な安定性、プロテアーゼに対する安定性、化学処理に対する安定性、凍結融解に対する安定性、保存安定性、酸性条件下の安定性、光安定性、振とうや濃縮にともなうストレスに対する安定性、幅広い溶液条件における溶解性の維持を意味する。また、Fc領域の機能とは、Fc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性、Fc領域の物理化学的安定性などから2つ以上を組み合わせた機能であってもく、例えばFc領域のFcγレセプターに対する結合活性とFc領域のFcγレセプターアイソフォーム間の選択性を合わせた機能、Fc領域のFcγレセプターに対する結合活性とFc領域の物理化学的安定性を合わせた機能、Fc領域のFcγレセプターアイソフォーム間の選択性とFc領域の物理化学的安定性を合わせた機能、Fc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性及びFc領域の物理化学的安定性を合わせた機能を意味する。
 本発明において、「Fc領域の機能を改変」とは、例えばFc領域の機能がFc領域のFcγレセプターに対する結合活性を示す場合はFc領域のFcγレセプターに対する結合活性の増強や減弱などを意味する。選択性の向上とは、例えばあるFcγレセプターに対する結合活性を増強する一方で、他のFcγレセプターに対する結合活性を維持あるいは低減することを意味する。あるいは、選択性の向上とは、例えばあるFcγレセプターに対する結合活性を低減する一方で、他のFcγレセプターに対する結合活性を維持あるいは増強することを意味する。また、例えばFc領域の機能がFc領域のFcγレセプターサブタイプ間の選択性を示す場合はFc領域のFcγレセプターサブタイプ間の選択性の向上や低下などを意味する。また、例えばFc領域の機能がFc領域の物理化学的安定性を示す場合は、Fc領域の物理化学的安定性の向上や低下、安定性の低下の抑制などを意味し、より具体的には、例えばCH2領域のTm値の向上や低下、Tm値の低下の抑制などを意味する。
 また、例えばFc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性及びFc領域の物理化学的安定性を合わせた機能の向上とは、対照に比べて、Fc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性及びFc領域の物理化学的安定性の全てが向上している必要は必ずしもなく、全体としてFc領域の機能が向上していればよい。また逆に、例えばFc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性及びFc領域の物理化学的安定性を合わせた機能の低下とは、対照に比べて、Fc領域のFcγレセプターに対する結合活性、Fc領域のFcγレセプターアイソフォーム間の選択性及びFc領域の物理化学的安定性の全てが低下している必要は必ずしもなく、全体としてFc領域の機能が低下していればよい。
 本発明において、Fcγレセプター(本明細書ではFcγ受容体、FcγRまたはFcgRと記載することがある)とは、IgG1、IgG2、IgG3、IgG4のFc領域に結合し得る受容体をいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131(H型)およびR131(R型)を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサル由来のものが含まれるが、これらに限定されず、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(CD16-2あるいはFcγRIV)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγ受容体の好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。
 FcγRには、ITAM(Immunoreceptor tyrosine-based activation motif)をもつ活性型レセプターとITIM(immunoreceptor tyrosine-based inhibitory motif)をもつ抑制型レセプターが存在する。FcγRはFcγRI、FcγRIIa R、FcγRIIa H、FcγRIIIa、FcγRIIIbの活性型FcγRと、FcγRIIbの抑制型FcγRに分類される。
 FcγRIのポリヌクレオチド配列及びアミノ酸配列は、それぞれNM_000566.3及びNP_000557.1に、
 FcγRIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC020823.1及びAAH20823.1に、
 FcγRIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC146678.1及びAAI46679.1に、
 FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC033678.1及びAAH33678.1に、及び
 FcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC128562.1及びAAI28563.1に記載されている(RefSeq登録番号)。
 尚、FcγRIIaには、FcγRIIaの131番目のアミノ酸がヒスチジン(H型)あるいはアルギニン(R型)に置換された2種類の遺伝子多型が存在する(J. Exp. Med, 172, 19-25, 1990)。また、FcγRIIbには、FcγRIIbの232番目のアミノ酸がイソロイシン(I型)あるいはスレオニン (T型)に置換された2種類の遺伝子多型が存在する(Arthritis. Rheum. 46: 1242-1254 (2002))。また、FcγRIIIaには、FcγRIIIaの158番目のアミノ酸がバリン(V型)あるいはフェニルアラニン(F型)に置換された2種類の遺伝子多型が存在する(J. Clin. Invest. 100(5): 1059-1070 (1997))。また、FcγRIIIbには、NA1型、NA2型の2種類の遺伝子多型が存在する(J. Clin. Invest. 85: 1287-1295 (1990))。
 相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムからセンサーチップ表面に補足したリガンドに対するアナライトの結合量(アナライトを相互作用させた前後でのセンサーグラム上でのレスポンスの変化量)が求められる。ただし、結合量はリガンドの量にも依存するため、比較する際にはリガンドの量を本質的に同じ量にしたとみなせる条件下で比較する必要がある。また、センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。
 本発明において、本発明のポリペプチド又はFc領域が各種Fcγレセプターに対する結合活性が増強した、あるいは、結合活性が減少したかどうかは、例えば本実施例に示されるように、表面プラズモン共鳴(SPR)現象を利用した相互作用解析機器であるBiacore (GE Healthcare) を用いて測定することができる。BiacoreはBiacore T100、T200、X100、A100、4000、3000、2000、1000、Cなどいずれの機種も含まれる。センサーチップにはCM7、CM5、CM4、CM3、C1、SA、NTA、L1、HPA,Auチップ等のBiacore用のセンサーチップのいずれも用いることができる。ランニングバッファーにはHBE-EP+に加えて、HEPES、リン酸、ACES、Tris、クエン酸などでpH7.4等の中性付近のpHに調整したバッファーを用いることができる。測定温度は4-37℃の範囲で測定可能である。センサーチップ上にアミンカップリング、ジスルフィドカップリング、アルデヒドカップリング等のカップリング方法で抗体を補足するProteinA、ProteinG、ProteinL、抗ヒトIgG抗体、抗ヒトIgG-Fab、抗ヒトL鎖抗体、抗ヒトFc抗体、抗原タンパク質、抗原ペプチド等の抗体補足用のタンパク質を固定化する。そこへFcγレセプターI、IIa R型、IIa H型、IIb、IIIa F型、V型、IIIbなどの各種Fcγレセプターをアナライトとして流し、相互作用を測定し、センサーグラムを取得する。このときのFcγレセプターの濃度は測定するサンプルのKD等の相互作用の強さに合わせて、数uMから数pMの範囲で実施することができる。測定によってはその解離定数(KD)を取得し、KDの値が低下したか、あるいは増加したかどうかで本発明のポリペプチド又はFc領域が各種Fcγレセプターに対する結合活性が増強したか、あるいは、結合活性が減少したかどうかを判断することができる。また、センサーチップ上に固定化した抗体補足用タンパク質でキャプチャーした場合、センサーチップ上の抗体に対して各種Fcγレセプターをアナライトとして流した前後でのセンサーグラムの値の変化量を指標にその値が増加した程度で本発明のポリペプチド又はFc領域が各種Fcγレセプターに対する結合活性が増強したか、あるいは、結合活性が減少したかどうかを判断することができる。また、抗体ではなく、各種Fcγレセプターをセンサーチップ上に固定化し、そこへ評価したい抗体サンプルを相互作用させることも可能である。相互作用のセンサーグラムから算出したKD値の低下または増加、あるいは抗体サンプルを作用させる前後のセンサーグラムの増加の程度から本発明のポリペプチド又はFc領域が各種Fcγレセプターに対する結合活性が増強したか、あるいは、結合活性が減少したかどうかを判断することができる。
 具体的には、Fc領域のFcγレセプターに対する結合活性はELISAやFACS(fluorescence activated cell sorting)の他、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって測定することができる(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010)。
 ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
 例えば、ドナービーズにビオチン標識された被検ポリペプチドがドナービーズ上のストレプトアビジンに結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγレセプターが結合される。競合するポリペプチドの非存在下では、被検ポリペプチドとFcγレセプターとは相互作用し520-620 nmのシグナルを生ずる。タグ化されていないポリペプチドは、被検ポリペプチドとFcγレセプター間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合活性が決定され得る。ポリペプチドをSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。FcγレセプターをGSTでタグ化する方法としては、FcγレセプターをコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターに保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウエアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
 なお、タグ化はGSTに限らず、ヒスチジンタグ、MBP、CBP、Flagタグ、HAタグ、V5タグ、c-mycタグなどのどのようなタグででよく、限定されない。また、被検ポリペプチドのドナービーズへの結合については、ビオチンーストレプトアビジン反応を利用した結合に限らればい。特に、被検ポリペプチドが抗体、Fc融合ポリペプチドなどのFcを含む場合は、ドナービーズ上のProtein A、Protein GなどのFc認識タンパク質を介して被検ポリぺプチドを結合させる方法が考えられる。 
 FcγRに対する結合またはFcγRに対する結合活性の減弱とは、比較するポリペプチドの量を本質的に同じにしてアッセイを行った時に、親ポリペプチドよりも本質的により弱い結合活性でFcγRと結合することをいう。
 FcγRに対する結合またはFcγRに対する結合活性が減弱、減少又は低下したヘテロ二量化ポリペプチドとは、比較するポリペプチドの量を本質的に同じにしてアッセイを行った時に、ホモ二量化ポリペプチドよりも本質的により弱い結合活性でFcγRと結合するものをいう。
 例えば、上記の測定法で測定したKD値において、KD値比(親ポリペプチドのKD値/変異を導入したポリペプチドのKD値)は、好ましくは0.99以下、0.95以下、0.9以下、0.8以下、0.7以下、0.5以下、0.3以下、0.1以下である。さらに好ましくは、0.08以下、0.05以下、0.02以下、0.01以下、0.001以下である。尚、本明細書においてKD値比はKD ratioともいう。
 また、上記の測定法で測定したKD値において、KD値が1pM以上上昇していることが好ましく、10 pM、100 pM、1 nM以上、2 nM以上、3 nM以上、5 nM以上、10 nM以上、20 nM以上、50 nM以上、100 nM以上、1μM以上上昇していることがさらに好ましい。また、上記の測定法で測定したKD値において、KD値が1 pM以上であることが好ましく、10 pM以上、100 pM以上、1 nM以上、10 nM以上、100 nM以上、500 nM以上、1μM以上、3μM以上、5μM以上であることが好ましい。
 FcγRに対する結合またはFcγRに対する結合活性の増強、上昇又は向上とは、比較するポリペプチドの量を本質的に同じにしてアッセイを行った時に、親ポリペプチドよりも本質的により強い結合活性でFcγRと結合することをいう。
 FcγRに対する結合またはFcγRに対する結合活性が増強、上昇又は向上したヘテロ二量化ポリペプチドとは、比較するポリペプチドの量を本質的に同じにしてアッセイを行った時に、ホモ二量化ポリペプチドよりも本質的により強い結合活性でFcγRと結合するものをいう。
 例えば、上記の測定法で測定したKD値において、KD値比(親ポリペプチドのKD値/変異を導入したポリペプチドのKD値)は、好ましくは1.1以上、1.2以上、1.3以上、1.5以上、1.8以上、2以上、3以上である。さらに好ましくは、5以上、10以上、100以上、250以上、1000以上である。尚、本明細書においてKD値比はKD ratioともいう。
 また、上記の測定法で測定したKD値において、KD値が1 pM以上低下していることが好ましく、10 pM、100 pM、1 nM以上、2 nM以上、3 nM以上、5 nM以上、10 nM以上、20 nM以上、50 nM以上、100 nM以上、1μM以上低下していることがさらに好ましい。
 また、上記の測定法で測定したKD値において、KD値が5μM以下であることが好ましく、3μM以下、1μM以下、0.5μM以下、0.1μM以下、0.01μM以下、1 nM以下、0.1 nM以下、0.001 nM以下、1 pM以下であることが更に好ましい。
 本発明において、当該ポリペプチドのFc領域の機能の改変が、Fcγレセプターとの結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、アミノ酸変異が導入されていてもよい。導入される当該アミノ酸変異の種類や範囲は特に限定されるものではない。
 また、抗体のFc領域とFcγRとの相互作用の強さはZn2+イオン濃度依存的であることが報告されている(Immunology Letters 143 (2012) 60-69)。抗体はFc領域のZn2+イオン濃度が高いほど、Fc領域とFcgRとの相互作用は増強される。抗体のFc領域のCH3に存在するHis310、His435がZn2+をキレートすることにより、遠位にあるFc領域の各CH2ドメインが開く。これにより、CH2ドメインとFcgRと相互作用しやすくなり、Fc領域とFcgRの相互作用が増強される。本発明の抗体の非限定な一態様として、EUナンバリングで表される310位のHis、435位のHis、433位のHisおよび/または434位のAsnにZn2+がキレートされたFc領域が挙げられる。
 該Fcγレセプターが、FcγRIaである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表2-1及び表2-2の領域iに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIaである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表2-1、表2-2及び表2-3の領域iiに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、該Fcγレセプターが、FcγRIIa Rである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表3-1及び表3-2の領域iに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIa Rである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表3-1及び表3-2の領域iiに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、該Fcγレセプターが、FcγRIIa Hである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表4の領域iに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIa Hである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表4の領域iiに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、該Fcγレセプターが、FcγRIIbである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表5の領域iに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIbである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表5の領域iiに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、該Fcγレセプターが、FcγRIIIaである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表6の領域iに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIIaである場合には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表6の領域iiに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIIaである場合には、より具体的には、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、EUナンバリング234番目のアミノ酸LのYへの置換、EUナンバリング235番目のアミノ酸LのY又はQへの置換、EUナンバリング236番目のアミノ酸GのWへの置換、EUナンバリング239番目のアミノ酸SからMへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング270番目のアミノ酸DからEへの置換、EUナンバリング298番目のアミノ酸SのAへの置換、EUナンバリング326番目のアミノ酸KからDへの置換、EUナンバリング327番目のアミノ酸AからDへの置換、EUナンバリング328番目のアミノ酸LからWへの置換、EUナンバリング330番目のアミノ酸AからM又はKへの置換及びEUナンバリング334番目のアミノ酸KからE又はLへの置換からなる群より選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸変異が導入されていてもよい。また、該Fcγレセプターが、FcγRIIIaである場合には、さらに具体的には、前記Fc領域を構成する第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、
EUナンバリング239番目のアミノ酸SのDへの置換、EUナンバリング330番目のアミノ酸AのLへの置換、及びEUナンバリング332番目のアミノ酸IのEへの置換からなる群より選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸変異が導入されており、
もう一方のポリペプチドのアミノ酸配列において、
EUナンバリング234番目のアミノ酸LのYへの置換、EUナンバリング236番目のアミノ酸GのWへの置換、及びEUナンバリング298番目のアミノ酸SのAへの置換からなる群より選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸変異が導入されていてもよい。
 また、該Fcγレセプターが、FcγRIIIaである場合には、さらに具体的には、前記Fc領域を構成する第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、EUナンバリング234番目のLeu、235番目のLeu、236番目のGly、239番目のSer、268番目のHis、270番目のAsp、298番目のSer、327番目のAla、328番目のLeu及び334番目のLysから選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸に変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング270番目のAsp、326番目のLys、330番目のAla及び334番目のLysから選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸に変異が導入されていてもよい。
 改変されるアミノ酸は適宜選択され得るが、好ましくは、前記Fc領域を構成する第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからY又はQへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング239番目のアミノ酸SからMへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング270番目のアミノ酸DからEへの置換、EUナンバリング298番目のアミノ酸SからAへの置換及びEUナンバリング327番目のアミノ酸AからDへの置換、EUナンバリング328番目のアミノ酸LからWへの置換及びEUナンバリング334番目のアミノ酸KからLへの置換からなる群より選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング270番目のアミノ酸DからEへの置換、EUナンバリング326番目のアミノ酸KからDへの置換、EUナンバリング330番目のアミノ酸AからM又はKへの置換、EUナンバリング334番目のアミノ酸KからEへの置換からなる群より選択される、少なくとも一つ以上(例えば2つ又は3つ)のアミノ酸変異が導入されていてもよい。
 より好ましくは、前記Fc領域を構成する第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、(i)から(vi)のいずれかの変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、(vii)から(ix)のいずれかの変異が導入されていてもよい。
(i) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからYへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング268番目のアミノ酸HからDへの置換及びEUナンバリング298番目のアミノ酸SからAへの置換
(ii) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからYへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング270番目のアミノ酸DからEへの置換及びEUナンバリング298番目のアミノ酸SからAへの置換
(iii) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからQへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング239番目のアミノ酸SからMへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング270番目のアミノ酸DからEへの置換及びEUナンバリング298番目のアミノ酸SからAへの置換
(iv) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからYへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング298番目のアミノ酸SからAへの置換及びEUナンバリング327番目のアミノ酸AからDへの置換
(v) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからYへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング239番目のアミノ酸SからMへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング298番目のアミノ酸SからAへの置換及びEUナンバリング327番目のアミノ酸AからDへの置換
(vi) EUナンバリング234番目のアミノ酸LからYへの置換、EUナンバリング235番目のアミノ酸LからYへの置換、EUナンバリング236番目のアミノ酸GからWへの置換、EUナンバリング239番目のアミノ酸SからMへの置換、EUナンバリング268番目のアミノ酸HからDへの置換、EUナンバリング298番目のアミノ酸SからAへの置換、EUナンバリング327番目のアミノ酸AからDへの置換、EUナンバリング328番目のアミノ酸LからWへの置換及びEUナンバリング334番目のアミノ酸KからLへの置換
(vii) EUナンバリング326番目のアミノ酸KからDへの置換、EUナンバリング330番目のアミノ酸AからMへの置換及びEUナンバリング334番目のアミノ酸KからEへの置換
(viii) EUナンバリング270番目のアミノ酸DからEへの置換、EUナンバリング326番目のアミノ酸KからDへの置換、EUナンバリング330番目のアミノ酸AからMへの置換及びEUナンバリング334番目のアミノ酸KからEへの置換
(ix) EUナンバリング270番目のアミノ酸DからEへの置換、EUナンバリング326番目のアミノ酸KからDへの置換、EUナンバリング330番目のアミノ酸AからKへの置換及びEUナンバリング334番目のアミノ酸KからEへの置換。
 また、活性型Fcγレセプターへの結合を増強させ、エフェクター機能を誘起するために優れたヘテロ二量化体としては、第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、(i)又は(ii)に記載の変異が導入されているFc領域を含んでいてもよい。
(i)EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、及び、298番目のアミノ酸がA
(ii)EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE
 より具体的には、第一のポリペプチドと第二のポリペプチドのいずれか一方が(iii)又は(iv)に記載の変異が導入され、もう一方が(v)に記載の変異が導入されているFc領域であってもよい。
(iii) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、298番目のアミノ酸がA、及び、327番目がD
(iv) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、270番目のアミノ酸がE、及び、298番目のアミノ酸がA
(v) EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE
 特にFcγレセプターIIIaに対する結合活性を増強させるためには、第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、上記(iii)のEUナンバリング234番目のアミノ酸がE、D、T又はLであることが好ましい。また、FcγレセプターIIIaに対する結合活性を増強させ、FcγレセプターIIbに対する結合活性を低下させるためには、上記(iv)のEUナンバリング234番目のアミノ酸がL、F、E又はDであることがより好ましい。
 FcγレセプターIIaに対する結合活性を増強させるためには、第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、上記(iii)のEUナンバリング234番目のアミノ酸がV、I、T、M又はLであることが好ましい。中でも、I、T又はLであることが好ましく、この場合、FcγレセプターIIIaに対する結合活性をも高めることが可能である。
 また、活性型Fcγレセプターへの結合を増強させ、エフェクター機能の誘起に優れたヘテロ二量化体としては、
第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、上記(iii)のEUナンバリング234番目のアミノ酸がV、E、D、T、I、L又はFであり、239番目のアミノ酸がM又はIであって、かつ、もう一方が、上記(v)のEUナンバリング330番目のアミノ酸がA又はKである場合、
あるいは、
第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、上記(iv)のEUナンバリング234番目のアミノ酸がF、E、D、S又はLであり、239番目のアミノ酸がM又はIであって、もう一方が、上記(v)のEUナンバリング330番目のアミノ酸がA、F又はKであることが好ましい。
 より具体的には実施例に記載のアミノ酸変異の導入の組合せが挙げられる。
 結合活性の選択性は、ポリペプチドのFcγレセプターアイソフォームそれぞれに対する結合活性を測定した後、それらの比を求めることで測定することができる。結合活性の指標として、例えばFcγRに対する結合量、KD値を用いることができる。
 本明細書において、結合活性の選択性が向上しているとは、例えば、上記の測定方法に基づいて求めた被検ポリペプチドの親ポリペプチドのFcγレセプターアイソフォームへの結合活性の比(被検ポリペプチドの親ポリペプチドの第一のFcγレセプターアイソフォームへの結合活性/被検ポリペプチドの親ポリペプチドの第二のFcγレセプターアイソフォームへの結合活性)に比較して、被検ポリペプチドのFcγレセプターアイソフォームへの結合活性の比(被検ポリペプチドの第一のFcγレセプターアイソフォームへの結合活性/被検ポリペプチドの第二のFcγレセプターアイソフォームへの結合活性)の比が0.1以上、好ましくは0.2以上、0.5以上、1以上、2以上、3以上、5以上、7以上、8以上、9以上、10以上、15以上、20以上、30以上、50以上、70以上、100以上、150以上、200以上、500以上、1000以上向上していることをいう。また、Fcγレセプターアイソフォームに対する選択性が低下しているとは、例えば、上記の測定方法に基づいて求めた被検ポリペプチドの親ポリペプチドのFcγレセプターアイソフォームへの結合活性の比に比較して被検ポリペプチドのFcγレセプターアイソフォームへの結合活性の比が0.1以上、好ましくは0.2以上、0.5以上、1以上、2以上、3以上、5以上、7以上、8以上、9以上、10以上、15以上、20以上、30以上、50以上、70以上、100以上、150以上、200以上、500以上、1000以上低下することをいう。
 また、本明細書において、選択性の指標として、例えば、活性型FcγRと抑制型FcγRに対する結合活性の比率を示すA/I ratioを用いることができる。被検ポリペプチドのFcγRIIbに対するKDを被検ポリペプチドのFcγRIIa H型又はR型のKDで割った値をそれぞれのA/I ratioとした。A/I ratioは、好ましくは、1.1以上、1.5以上、2以上、3以上、5以上が好ましく、より好ましくは6以上、8以上、9以上である。
 また、本明細書において、選択性の指標として、例えば、FcγRIIbに対するKDをFcγRIIIa Fに対するKDで割った値であるFcγRIIIa F/FcγRIIb ratioを用いることができる。被検ポリペプチドのFcγRIIbに対するKDを被検ポリペプチドのFcγRIIIaに対するKDで割った値をそれぞれのFcγRIIIa F/FcγRIIb ratioとした。FcγRIIIa F/FcγRIIb ratioは、好ましくは、1.1以上、1.5以上、2以上、3以上、5以上が好ましく、より好ましくは10以上、20以上、30以上、40以上、50以上、60以上、70以上、80以上、90以上、100以上、110以上、120以上、130以上、140以上、150以上、200以上、210以上、220以上、230以上、240以上である。
 本発明において、当該ポリペプチドのFc領域の機能の改変が、Fcγレセプターとの結合活性の選択性の向上である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、アミノ酸変異が導入されていてもよい。導入される当該アミノ酸変異の種類や範囲は特に限定されるものではない。
 前記活性型FcγレセプターがFcγRIaであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIaに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表19-1、表19-2、表19-3及び表19-4の領域aに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIaに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表19-1、表19-2、表19-3、表19-4及び表19-5の領域bに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIaであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIaに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表23-1及び表23-2の領域cに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIaに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表23-1及び表23-2の領域dに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIa Rであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIa Rに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表20-1の領域aに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIa Rに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表20-1、表20-2及び表20-3の領域bに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIa Rであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIa Rに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表24-1の領域cに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIa Rに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表24-1及び表24-2の領域dに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIa Hであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIa Hに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表21-1の領域aに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIa Hに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表21-1、表21-2及び表21-3の領域bに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIa Hであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIa Hに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表25-1及び表25-2の領域cに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIa Hに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表25-1、表25-2及び表25-3の領域dに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIIaであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIIaに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表22-1の領域aに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIIaに対する結合活性が選択的に増強されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表22-1、表22-2及び表22-3の領域bに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 前記活性型FcγレセプターがFcγRIIIaであり、前記阻害型FcγレセプターがFcγRIIbであり、当該選択性の向上がFcγRIIbに比べてFcγRIIIaに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表26-1及び表26-2の領域cに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。また、当該選択性の向上がFcγRIIbに比べてFcγRIIIaに対する結合活性が選択的に減弱されたことである場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表26-1、表26-2、表26-3及び表26-4の領域dに記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 ここで、所望のFcγレセプターに対する結合活性が選択的に増強するとは、以下のいずれかの場合を意味する。
(i)所望のFcγレセプターに対する結合活性が増強し、所望のFcγレセプター以外のレセプターに対する結合活性は変わらない又は減弱する、
(ii) 所望のFcγレセプターに対する結合活性が増強し、所望のFcγレセプター以外のレセプターに対する結合活性も増強するが、所望のFcγレセプター以外のレセプターに対する結合活性の増強の程度が所望のFcγレセプターに対する結合活性の増強の程度よりも低い、あるいは、
(iii)所望のFcγレセプターに対する結合活性は減弱しているが、当該結合活性の減弱の程度が所望のFcγレセプター以外のFcγレセプターに対する結合活性の減弱の程度よりも低い。
 また、所望のFcγレセプターに対する結合活性が選択的に減弱するとは、以下のいずれかの場合を意味する。
(i)所望のFcγレセプターに対する結合活性が減弱し、所望のFcγレセプター以外のレセプターに対する結合活性は変わらない又は増強する、
(ii) 所望のFcγレセプターに対する結合活性が減弱し、所望のFcγレセプター以外のレセプターに対する結合活性も減弱するが、所望のFcγレセプター以外のレセプターに対する結合活性の減弱の程度が所望のFcγレセプターに対する結合活性の減弱の程度よりも低い、あるいは、
(iii) 所望のFcγレセプターに対する結合活性は増強しているが、当該結合活性の増強の程度が所望のFcγレセプター以外のFcγレセプターに対する結合活性の増強の程度よりも低い。
 本明細書において、ポリペプチドの物理化学的安定性は、例えばポリペプチドの熱力学的な安定性を意味し、ポリペプチドの熱力学的な安定性は、例えばCH2領域のTm値などを指標として判断することができる。Tm値はCD(円二色性)、DSC(示査走査型熱量計)、DSF(示査走査型蛍光定量法)により測定することが可能である。
 CDは昇温にともなう平均残基モル楕円率(θ)の変化を観測することにより、Tm値を算出する。測定機器としては、例えば円二色性分散計(日本分光)があげられる。適当な一波長(例えば208 nmや222 nm)において温度を上昇させながらCDスペクトルを測定すると、ある温度でθが上昇し、それ以降の温度では一定の値となる。このとき、低温時のθと高温時のθの中点の値をとる温度をTmとする。測定には、例えば、クエン酸、トリス、リン酸溶液などで調製されたタンパク質溶液を用いることが可能であり、数百ug/mLの濃度で測定に用いることができる。
 DSCは昇温にともなう熱量変化を観測することにより、Tm値を算出する。測定機器としては、MicroCal VP-DSC、Micro Cal Capillary DSC(いずれもDKSHジャパン)があげられる。測定セルにタンパク質溶液ならびに緩衝液を封入し、温度を上昇させながらセル間の温度差を測定すると、ある温度を境に吸熱反応へと変化する。このときの温度をTmとする。測定には、例えば、クエン酸緩衝液、TBS、PBS、ヒスチジン緩衝液などで調製されたタンパク質溶液を用いることが可能であり、数十ug/mLから数百ug/mLの濃度で測定に用いることができる。
 DSFは疎水性残基に特異的に結合する蛍光試薬(例えばSYPRO Orange)を用いて、昇温にともなう疎水性残基の露出を観測することにより、Tm値を算出する。タンパク質溶液と蛍光試薬を適当な割合で混合し、RT-PCR装置により温度を上昇させながら蛍光強度を測定すると、ある温度で蛍光強度の上昇が観測される。このときの温度をTmとする。測定機器としては、例えばRotor-Gene Q(QIAGEN)、CFX96リアルタイムPCR解析システム(Bio-Rad)があげられる。測定には、例えば、PBS、ヒスチジン緩衝液などで調製されたタンパク質溶液を用いることが可能であり、数十ug/mLから数百ug/mLの濃度で測定に用いることができる。
 本明細書において、ポリペプチドの物理学的安定性が向上しているとは、例えば上記の測定方法に基づいて求めた対照ポリペプチドのFc領域中のCH2領域のTm値に比較して被検ポリペプチドのFc領域中のCH2領域のTm値が0.1度以上、好ましくは0.2度以上、0.3度以上、0.4度以上、0.5度以上、1度以上、2度以上、3度以上、4度以上、5度以上、10度以上向上していることをいう。また、ポリペプチドの物理学的安定性が向上しているとは、ポリペプチドの物理学的安定性の低下が抑制されていることをいい、例えば上記の測定方法に基づいて求めた対照ポリペプチドのFc領域中のCH2領域のTm値に対して被検ポリペプチドのFc領域中のCH2領域のTm値が低下するのを、0.1度以上、好ましくは0.2度以上、0.3度以上、0.4度以上、0.5度以上、1度以上、2度以上、3度以上、4度以上、5度以上、10度以上抑制していることをいう。
 また、本明細書において、ポリペプチドの物理学的安定性が低下しているとは、例えば上記の測定方法に基づいて求めた対照ポリペプチドのFc領域中のCH2領域のTm値に比較して被検ポリペプチドのFc領域中のCH2領域のTm値が0.1度以上、好ましくは0.2度以上、0.3度以上、0.4度以上、0.5度以上、1度以上、2度以上、3度以上、4度以上、5度以上、10度以上低下していることをいう。
 また、本発明には、第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチド及び第二のポリペプチドが、変異が導入されているFc領域を含み、変異が導入されていないFc領域を含むポリペプチドと比べて、Fc領域の機能が改変されていることを特徴とするポリペプチドも含まれる。
 当該ポリペプチドにおいては、前記Fc領域の機能の改変が、ポリペプチドのFcγレセプターとの結合活性の増強、結合活性の減弱、及び、結合活性の選択性の向上からなる群より選択される少なくとも一つ以上の改変に加えて、さらに物理化学的安定性が向上するという改変であってもよく、これらいずれかの機能が改変されていれば、本発明のFc領域の機能が改変されているということができる。
 本発明において、「アミノ酸変異が、第一のポリペプチド及び第二のポリペプチドの両方のFc領域に導入された場合、該Fc領域の機能が改変されない」とは、同じアミノ酸変異を第一のポリペプチドと第二のポリペプチド両方に導入した場合に、所望の機能が向上しないことを意味し、例えば、ポリペプチドのFcγレセプターとの結合活性を増強させたい場合には、当該結合活性が変化しない又は減弱する、結合活性を減弱させたい場合には、当該結合活性が変化しない又は増強する、結合活性の選択性を向上させたい場合には、当該選択性が向上しない、ポリペプチドの物理化学的安定性を向上させたい場合には、当該安定性が変化しない又は低下することを意味する。アミノ酸変異が「一方のFc領域にのみ導入された場合、該Fc領域の機能が改変される」とは、アミノ酸変異を第一のポリペプチド又は第二のポリペプチドのいずれか一方のみに導入した場合に、所望の機能が向上することを意味し、例えば、ポリペプチドのFcγレセプターとの結合活性を増強させたい場合には、当該結合活性が増強する、結合活性を減弱させたい場合には、当該結合活性が減弱する、結合活性の選択性を向上させたい場合には、当該選択性が向上する、ポリペプチドの物理化学的安定性を向上させたい場合には、当該安定性が向上することを意味する。
 本発明には、前記Fc領域が第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドが、第一のポリペプチドのみを含むホモ二量化体により構成されていることを特徴とするポリペプチド又は第二のポリペプチドのみを含むホモ二量化体により構成されていることを特徴とするポリペプチドと比べて、高いTmを有することを特徴とするポリペプチドも含まれる。当該ポリペプチドは高いTmを有するという物理化学的安定性が向上した改変とともに、さらにFc領域の機能の改変が加わっていてもよい。
 さらに付加されるFc領域の機能の改変が、FcγRIaに対する結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表31-1、表31-2及び表31-3に記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、さらに付加されるFc領域の機能の改変が、FcγRIIa Rに対する結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表32-1及び表32-2に記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、さらに付加されるFc領域の機能の改変が、FcγRIIa Hに対する結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表33-1及び表33-2に記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、さらに付加されるFc領域の機能の改変が、FcγRIIbに対する結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表34-1及び表34-2に記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 また、さらに付加されるFc領域の機能の改変が、FcγRIIIaに対する結合活性の増強である場合、前記Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、明細書表35-1及び表35-2に記載されたアミノ酸変異からなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されていてもよい。
 本発明において、アミノ酸変異が導入された第一のポリペプチド及び第二のポリペプチドの組み合わせは特に限定されるものではないが、配列番号:2~4及び6~60に記載されたポリペプチドから選択された、異なる種類/又は同一の種類のポリペプチドの組み合わせを例示することができる。又、本願の実施例に記載された、第一のポリペプチド及び第二のポリペプチドを含むポリペプチドの組み合わせ(2つの抗体のH鎖及び1つの抗体のL鎖の組み合わせ)を好ましい例として挙げることができる。
 本発明のポリペプチドは、抗原結合分子であってもよい。本発明において、抗体結合分子の種類は特に特定されるものではないが、好ましい例としては、抗体、二重特異性抗体、ペプチドFc融合タンパク質、又はスキャッフォールドFc融合タンパク質などのFc融合分子を例示することができる。
<抗体>
 さらに、本発明のポリペプチドとして抗体を提供する。
 本発明における「抗体」という用語は、最も広い意味で使用され、所望の生物学的活性を示す限り、モノクローナル抗体(全長モノクローナル抗体を含む)、ポリクローナル抗体、抗体変異体、抗体断片、多特異性抗体(例えば、二特異性抗体)、キメラ抗体、ヒト化抗体等、如何なる抗体も含まれる。
 本発明の抗体は、抗原の種類、抗体の由来などは限定されず、いかなる抗体でもよい。抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。
 抗体を作製する方法は当業者によく知られているが、例えばモノクローナル抗体の場合ハイブリドーマ法(Kohler and Milstein, Nature 256:495 (1975))、組換え方法(米国特許第4,816,567号)により製造してもよい。また、ファージ抗体ライブラリーから単離してもよい(Clackson et al., Nature 352:624-628 (1991) ; Marks et al., J.Mol.Biol. 222:581-597 (1991))。また、単一のB細胞クローンから単離してもよい (N. Biotechnol. 28(5): 253-457 (2011))。
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。
 3つのCDRと4つのFRが連結された抗体可変領域をコードするDNAとヒト抗体定常領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト化抗体発現用ベクターが作成できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、該組換え細胞を培養し、該ヒト化抗体をコードするDNAを発現させることによって、該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開EP 239400、国際公開WO1996/002576参照)。
 必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。
 ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
 さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。
 本明細書において抗原は特に限定されず、どのような抗原でもよい。抗原の例としては、17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 Adenosine Receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressins, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1-antichemotrypsin, alpha1-antitrypsin, alpha-synuclein, alpha-V/beta-1 antagonist, aminin, amylin, amyloid beta, amyloid immunoglobulin heavy chain variable region. amyloid immunoglobulin light chain variable region, Androgen, ANG, angiotensinogen, Angiopoietin ligand-2, anti-Id, antithrombinIII, Anthrax, APAF-1, APE, APJ, apo A1, apo serum amyloid A, Apo-SAA, APP, APRIL, AR, ARC, ART, Artemin, ASPARTIC, Atrial natriuretic factor, Atrial natriuretic peptide, atrial natriuretic peptides A, atrial natriuretic peptides B, atrial natriuretic peptides C, av/b3 integrin, Axl, B7-1, B7-2, B7-H, BACE, BACE-1, Bacillus anthracis protective antigen, Bad, BAFF, BAFF-R, Bag-1, BAK, Bax, BCA-1, BCAM, BcI, BCMA, BDNF, b-ECGF, beta-2-microglobulin, betalactamase, bFGF, BID, Bik, BIM, BLC, BL-CAM, BLK, B-lymphocyte Stimulator (BIyS), BMP, BMP-2 (BMP-2a), BMP-3 (Osteogenin), BMP-4 (BMP-2b), BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8 (BMP-8a), BMPR, BMPR-IA (ALK-3), BMPR-IB (ALK-6), BMPR-II (BRK-3), BMPs, BOK, Bombesin, Bone-derived neurotrophic factor, bovine growth hormone, BPDE, BPDE-DNA, BRK-2, BTC, B-lymphocyte cell adhesion molecule, C10, C1-inhibitor, C1q, C3, C3a, C4, C5, C5a(complement 5a), CA125, CAD-8, Cadherin-3, Calcitonin, cAMP, Carbonic anhydrase-IX, carcinoembryonic antigen (CEA), carcinoma-associated antigen, Cardiotrophin-1, Cathepsin A, Cathepsin B, Cathepsin C/DPPI, Cathepsin D, Cathepsin E, Cathepsin H, Cathepsin L, Cathepsin O, Cathepsin S, Cathepsin V, Cathepsin X/Z/P, CBL, CCI, CCK2, CCL, CCL1/I-309, CCL11/Eotaxin, CCL12/MCP-5, CCL13/MCP-4, CCL14/HCC-1, CCL15/HCC-2, CCL16/HCC-4, CCL17/TARC, CCL18/PARC, CCL19/ELC, CCL2/MCP-1, CCL20/MIP-3-alpha, CCL21/SLC, CCL22/MDC, CCL23/MPIF-1, CCL24/Eotaxin-2, CCL25/TECK, CCL26/Eotaxin-3, CCL27/CTACK, CCL28/MEC, CCL3/M1P-1-alpha, CCL3Ll/LD-78-beta, CCL4/MIP-l-beta, CCL5/RANTES, CCL6/C10, CCL7/MCP-3, CCL8/MCP-2, CCL9/10/MTP-1-gamma, CCR, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CD1, CD10, CD105, CD11a, CD11b, CD11c, CD123, CD13, CD137, CD138, CD14, CD140a, CD146, CD147, CD148, CD15, CD152, CD16, CD164, CD18, CD19, CD2, CD20, CD21, CD22, CD23, CD25, CD26, CD27L, CD28, CD29, CD3, CD30, CD30L, CD32, CD33 (p67 proteins), CD34, CD37, CD38, CD3E, CD4, CD40, CD40L, CD44, CD45, CD46, CD49a, CD49b, CD5, CD51, CD52, CD54, CD55, CD56, CD6, CD61, CD64, CD66e, CD7, CD70, CD74, CD8, CD80 (B7-1), CD89, CD95, CD105, CD158a, CEA, CEACAM5, CFTR, cGMP, CGRP receptor, CINC, CKb8-1, Claudin18, CLC, Clostridium botulinum toxin, Clostridium difficile toxin, Clostridium perfringens toxin, c-Met, CMV, CMV UL, CNTF, CNTN-1, complement factor 3 (C3), complement factor D, corticosteroid-binding globulin, Colony stimulating factor-1 receptor, COX, C-Ret, CRG-2, CRTH2, CT-1, CTACK, CTGF, CTLA-4, CX3CL1/Fractalkine, CX3CR1, CXCL, CXCL1/Gro-alpha, CXCL10, CXCL11/I-TAC, CXCL12/SDF-l-alpha/beta, CXCL13/BCA-1, CXCL14/BRAK, CXCL15/Lungkine. CXCL16, CXCL16, CXCL2/Gro-beta CXCL3/Gro-gamma, CXCL3, CXCL4/PF4, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2, CXCL8/IL-8, CXCL9/Mig, CXCLlO/IP-10, CXCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, cystatin C, cytokeratin tumor-associated antigen, DAN, DCC, DcR3, DC-SIGN, Decay accelerating factor, Delta-like protein ligand 4, des(1-3)-IGF-1 (brain IGF-1), Dhh, DHICA oxidase, Dickkopf-1, digoxin, Dipeptidyl peptidase IV, DKl, DNAM-1, Dnase, Dpp, DPPIV/CD26, Dtk, ECAD, EDA, EDA-A1, EDA-A2, EDAR, EGF, EGFR (ErbB-1), EGF like domain containing protein 7, Elastase, elastin, EMA, EMMPRIN, ENA, ENA-78, Endosialin, endothelin receptor, endotoxin, Enkephalinase, eNOS, Eot, Eotaxin, Eotaxin-2, eotaxini, EpCAM, Ephrin B2/EphB4, Epha2 tyrosine kinase receptor, epidermal growth factor receptor (EGFR), ErbB2 receptor, ErbB3 tyrosine kinase receptor, ERCC, EREG, erythropoietin (EPO), Erythropoietin receptor, E-selectin, ET-1, Exodus-2, F protein of RSV, F10, F11, F12, F13, F5, F9, Factor Ia, Factor IX, Factor Xa, Factor VII, factor VIII, Factor VIIIc, Fas, FcalphaR, FcepsilonRI, FcgammaIIb, FcgammaRI, FcgammaRIIa, FcgammaRIIIa, FcgammaRIIIb, FcRn, FEN-1, Ferritin, FGF, FGF-19, FGF-2, FGF-2 receptor, FGF-3, FGF-8, FGF-acidic, FGF-basic, FGFR, FGFR-3, Fibrin, fibroblast activation protein (FAP), fibroblast growth factor, fibroblast growth factor-10, fibronectin, FL, FLIP, Flt-3, FLT3 ligand, Folate receptor, follicle stimulating hormone (FSH), Fractalkine (CX3C), free heavy chain, free light chain, FZD1, FZD10, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, G250, Gas 6, GCP-2, GCSF, G-CSF, G-CSF receptor, GD2, GD3, GDF, GDF-1, GDF-15 (MIC-1), GDF-3 (Vgr-2), GDF-5 (BMP-14/CDMP-1), GDF-6 (BMP-13/CDMP-2), GDF-7 (BMP-12/CDMP-3), GDF-8 (Myostatin), GDF-9, GDNF, Gelsolin, GFAP, GF-CSF, GFR-alpha1, GFR-alpha2, GFR-alpha3, GF-β1, gH envelope glycoprotein, GITR, Glucagon, Glucagon receptor, Glucagon-like peptide 1 receptor, Glut 4, Glutamate carboxypeptidase II, glycoprotein hormone receptors, glycoprotein IIb/IIIa (GP IIb/IIIa), Glypican-3, GM-CSF, GM-CSF receptor, gp130, gp140, gp72, granulocyte-CSF (G-CSF), GRO/MGSA, Growth hormone releasing factor, GRO-β, GRO-γ, H. pylori, Hapten (NP-cap or NIP-cap), HB-EGF, HCC, HCC 1, HCMV gB envelope glycoprotein, HCMV UL, Hemopoietic growth factor (HGF), Hep B gp120, heparanase, heparin cofactor II, hepatic growth factor, Bacillus anthracis protective antigen, Hepatitis C virus E2 glycoprotein, Hepatitis E, Hepcidin, Her1, Her2/neu (ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, High molecular weight melanoma-associated antigen (HMW-MAA), HIV envelope proteins such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90, HSV gD glycoprotein, human cardiac myosin, human cytomegalovirus (HCMV), human growth hormone (hGH), human serum albumin, human tissue-type plasminogen activator (t-PA), Huntingtin, HVEM, IAP, ICAM, ICAM-1, ICAM-3, ICE, ICOS, IFN-alpha, IFN-beta, IFN-gamma, IgA, IgA receptor, IgE, IGF, IGF binding proteins, IGF-1, IGF-1 R, IGF-2, IGFBP, IGFR, IL, IL-1, IL-10, IL-10 receptors, IL-11, IL-11 receptors, IL-12, IL-12 receptors, IL-13, IL-13 receptors, IL-15, IL-15 receptors, IL-16, IL-16 receptors, IL-17, IL-17 receptors, IL-18 (IGIF), IL-18 receptors, IL-1alpha, IL-1beta, IL-1 receptors, IL-2, IL-2 receptors, IL-20, IL-20 receptors, IL-21, IL-21 receptors, IL-23, IL-23 receptors, IL-2 receptors, IL-3, IL-3 receptors, IL-31, IL-31 receptors, IL-3 receptors, IL-4, IL-4 receptors IL-5, IL-5 receptors, IL-6, IL-6 receptors, IL-7, IL-7 receptors, IL-8, IL-8 receptors, IL-9, IL-9 receptors, immunoglobulin immune complex, immunoglobulins, INF-alpha, INF-alpha receptors, INF-beta, INF-beta receptors, INF-gamma, INF-gamma receptors, IFN type-I , IFN type-I receptor, influenza, inhibin, Inhibin α, Inhibin β, iNOS, insulin, Insulin A-chain, Insulin B-chain, Insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding proteins, integrin, integrin alpha2, integrin alpha3, integrin alpha4, integrin alpha4/beta1, integrin alpha-V/beta-3, integrin alpha-V/beta-6, integrin alpha4/beta7, integrin alpha5/beta1, integrin alpha5/beta3, integrin alpha5/beta6, integrin alphaσ (alphaV), integrin alphaθ, integrin beta1, integrin beta2, integrin beta3(GPIIb-IIIa), IP-10, I-TAC, JE, kalliklein, Kallikrein 11, Kallikrein 12, Kallikrein 14, Kallikrein 15, Kallikrein 2, Kallikrein 5, Kallikrein 6, Kallikrein L1, Kallikrein L2, Kallikrein L3, Kallikrein L4, kallistatin, KC, KDR, Keratinocyte Growth Factor (KGF), Keratinocyte Growth Factor-2 (KGF-2), KGF, killer immunoglobulin-like receptor, kit ligand (KL), Kit tyrosine kinase, laminin 5, LAMP, LAPP (Amylin, islet-amyloid polypeptide), LAP (TGF- 1), latency associated peptide, Latent TGF-1, Latent TGF-1 bp1, LBP, LDGF, LDL, LDL receptor, LECT2, Lefty, Leptin, leutinizing hormone (LH), Lewis-Y antigen, Lewis-Y related antigen, LFA-1, LFA-3, LFA-3 receptors, Lfo, LIF, LIGHT, lipoproteins, LIX, LKN, Lptn, L-Selectin, LT-a, LT-b, LTB4, LTBP-1, Lung surfactant, Luteinizing hormone, Lymphotactin, Lymphotoxin Beta Receptor, Lysosphingolipid receptor, Mac-1, macrophage-CSF (M-CSF), MAdCAM, MAG, MAP2, MARC, maspin, MCAM, MCK-2, MCP, MCP-1, MCP-2, MCP-3, MCP-4, MCP-I (MCAF), M-CSF, MDC, MDC (67 a.a.), MDC (69 a.a.), megsin, Mer, MET tyrosine kinase receptor family, METALLOPROTEASES, Membrane glycoprotein OX2, Mesothelin, MGDF receptor, MGMT, MHC (HLA-DR), microbial protein, MIF, MIG, MIP, MIP-1α, MIP-1β, MIP-3α, MIP-3β, MIP-4, MK, MMAC1, MMP, MMP-1, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-2, MMP-24, MMP-3, MMP-7, MMP-8, MMP-9, monocyte attractant protein, monocyte colony inhibitory factor, mouse gonadotropin-associated peptide, MPIF, Mpo, MSK, MSP, MUC-16, MUC18, mucin (Mud), Muellerian-inhibiting substance, Mug, MuSK, Myelin associated glycoprotein, myeloid progenitor inhibitor factor-1 (MPIF-I), NAIP, Nanobody, NAP, NAP-2, NCA 90, NCAD, N-Cadherin, NCAM, Neprilysin, Neural cell adhesion molecule, neroserpin, Neuronal growth factor (NGF), Neurotrophin-3, Neurotrophin-4, Neurotrophin-6, Neuropilin 1, Neurturin, NGF-beta, NGFR, NKG20, N-methionyl human growth hormone, nNOS, NO, Nogo-A, Nogo receptor, non-structural protein type 3 (NS3) from the hepatitis C virus, NOS, Npn, NRG-3, NT, NT-3, NT-4, NTN, OB, OGG1, Oncostatin M, OP-2, OPG, OPN, OSM, OSM receptors, osteoinductive factors, osteopontin, OX40L, OX40R, oxidized LDL, p150, p95, PADPr, parathyroid hormone, PARC, PARP, PBR, PBSF, PCAD, P-Cadherin, PCNA, PCSK9, PDGF, PDGF receptor, PDGF-AA, PDGF-AB, PDGF-BB, PDGF-D, PDK-1, PECAM, PEDF, PEM, PF-4, PGE, PGF, PGI2, PGJ2, PIGF, PIN, PLA2, Placenta growth factor, placental alkaline phosphatase (PLAP), placental lactogen, plasmi
nogen activator inhibitor-1, platelet-growth factor, plgR, PLP, poly glycol chains of different size(e.g. PEG-20, PEG-30, PEG40), PP14, prekallikrein, prion protein, procalcitonin, Programmed cell death protein 1, proinsulin, prolactin, Proprotein convertase PC9, prorelaxin, prostate specific membrane antigen (PSMA), Protein A, Protein C, Protein D, Protein S, Protein Z, PS, PSA, PSCA, PsmAr, PTEN, PTHrp, Ptk, PTN, P-selectin glycoprotein ligand-1, R51, RAGE, RANK, RANKL, RANTES, relaxin, Relaxin A-chain, Relaxin B-chain, renin, respiratory syncytial virus (RSV) F, Ret, reticulon 4, Rheumatoid factors, RLI P76, RPA2, RPK-1, RSK, RSV Fgp, S100, RON-8, SCF/KL, SCGF, Sclerostin, SDF-1, SDF1α, SDF1β, SERINE, Serum Amyloid P, Serum albumin, sFRP-3, Shh, Shiga like toxin II, SIGIRR, SK-1, SLAM, SLPI, SMAC, SMDF, SMOH, SOD, SPARC, sphingosine 1-phosphate receptor 1, Staphylococcal lipoteichoic acid, Stat, STEAP, STEAP-II, stem cell factor (SCF), streptokinase, superoxide dismutase, syndecan-1, TACE, TACI, TAG-72 (tumor-associated glycoprotein-72), TARC, TB, TCA-3, T-cell receptor alpha/beta, TdT, TECK, TEM1, TEM5, TEM7, TEM8, Tenascin, TERT, testicular PLAP-like alkaline phosphatase, TfR, TGF, TGF-alpha, TGF-beta, TGF-beta Pan Specific, TGF-beta RII, TGF-beta RIIb, TGF-beta RIII, TGF-beta Rl (ALK-5), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta4, TGF-beta5, TGF-I, Thrombin, thrombopoietin (TPO), Thymic stromal lymphoprotein receptor, Thymus Ck-1, thyroid stimulating hormone (TSH), thyroxine, thyroxine-binding globulin, Tie, TIMP, TIQ, Tissue Factor, tissue factor protease inhibitor, tissue factor protein, TMEFF2, Tmpo, TMPRSS2, TNF receptor I, TNF receptor II, TNF-alpha, TNF-beta, TNF-beta2, TNFc, TNF-RI, TNF-RII, TNFRSF10A (TRAIL R1 Apo-2/DR4), TNFRSF10B (TRAIL R2 DR5/KILLER/TRICK-2A/TRICK-B), TNFRSF10C (TRAIL R3 DcR1/LIT/TRID), TNFRSF10D (TRAIL R4 DcR2/TRUNDD), TNFRSF11A (RANK ODF R/TRANCE R), TNFRSF11B (OPG OCIF/TR1), TNFRSF12 (TWEAK R FN14), TNFRSF12A, TNFRSF13B (TACI), TNFRSF13C (BAFF R), TNFRSF14 (HVEM ATAR/HveA/LIGHT R/TR2), TNFRSF16 (NGFR p75NTR), TNFRSF17 (BCMA), TNFRSF18 (GITR AITR), TNFRSF19 (TROY TAJ/TRADE), TNFRSF19L (RELT), TNFRSF1A (TNF Rl CD120a/p55-60), TNFRSF1B (TNF RII CD120b/p75-80), TNFRSF21 (DR6), TNFRSF22 (DcTRAIL R2 TNFRH2), TNFRSF25 (DR3 Apo-3/LARD/TR-3/TRAMP/WSL-1), TNFRSF26 (TNFRH3), TNFRSF3 (LTbR TNF RIII/TNFC R), TNFRSF4 (OX40 ACT35/TXGP1 R), TNFRSF5 (CD40 p50), TNFRSF6 (Fas Apo-1/APT1/CD95), TNFRSF6B (DcR3 M68/TR6), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1 BB CD137/ILA), TNFRST23 (DcTRAIL R1 TNFRH1), TNFSF10 (TRAIL Apo-2 Ligand/TL2), TNFSF11 (TRANCE/RANK Ligand ODF/OPG Ligand), TNFSF12 (TWEAK Apo-3 Ligand/DR3 Ligand), TNFSF13 (APRIL TALL2), TNFSF13B (BAFF BLYS/TALL1/THANK/TNFSF20), TNFSF14 (LIGHT HVEM Ligand/LTg), TNFSF15 (TL1A/VEGI), TNFSF18 (GITR Ligand AITR Ligand/TL6), TNFSF1A (TNF-a Conectin/DIF/TNFSF2), TNFSF1B (TNF-b LTa/TNFSF1), TNFSF3 (LTb TNFC/p33), TNFSF4 (OX40 Ligand gp34/TXGP1), TNFSF5 (CD40 Ligand CD154/gp39/HIGM1/IMD3/TRAP), TNFSF6 (Fas Ligand Apo-1 Ligand/APT1 Ligand), TNFSF7 (CD27 Ligand CD70), TNFSF8 (CD30 Ligand CD153), TNFSF9 (4-1 BB Ligand CD137 Ligand), TNF-α, TNF-β, TNIL-I, toxic metabolite, TP-1, t-PA, Tpo, TRAIL, TRAIL R, TRAIL-R1, TRAIL-R2, TRANCE, transferrin receptor, transforming growth factors (TGF) such as TGF-alpha and TGF-beta, Transmembrane glycoprotein NMB, Transthyretin, TRF, Trk, TROP-2, Trophoblast glycoprotein, TSG, TSLP, Tumor Necrosis Factor (TNF), tumor-associated antigen CA 125, tumor-associated antigen expressing Lewis Y related carbohydrate, TWEAK, TXB2, Ung, uPAR, uPAR-1, Urokinase, VAP-1, vascular endothelial growth factor (VEGF), vaspin, VCAM, VCAM-1, VECAD, VE-Cadherin, VE-Cadherin-2, VEFGR-1 (flt-1), VEFGR-2, VEGF receptor (VEGFR), VEGFR-3 (flt-4), VEGI, VIM, Viral antigens, VitB12 receptor, Vitronectin receptor, VLA, VLA-1, VLA-4, VNR integrin, von Willebrand Factor (vWF), WIF-1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B/13, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1, XCL2/SCM-l-beta, XCLl/Lymphotactin, XCR1, XEDAR, XIAP, XPDなどがあげられる。
 可変領域を構成するアミノ酸配列は、その抗原結合活性が維持される限り、1または複数のアミノ酸残基の改変が許容される。可変領域のアミノ酸配列を改変する場合、改変される部位や改変されるアミノ酸の数は特に限定されない。例えば、CDRおよび/またはFRに存在するアミノ酸を適宜、改変することができる。可変領域のアミノ酸を改変する場合、特に限定されないが、結合活性が維持されていることが好ましく、例えば、改変前と比較して50%以上、好ましくは80%以上、さらに好ましくは100%以上の結合活性を有していることが好ましい。又、アミノ酸改変により結合活性が上昇していてもよく、例えば結合活性が改変前と比較して2倍、5倍、10倍等になっていてもよい。本発明の抗体において、アミノ酸配列の改変とは、アミノ酸残基の置換、付加、欠損、挿入および修飾の少なくとも1つであることができる。
 例えば、可変領域のN末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である。したがって、本発明の抗体は、その重鎖のN末端がグルタミンの場合には、それがピログルタミン酸に修飾された可変領域を含む。
 本発明の抗体の可変領域は、任意の配列であってよく、マウス抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体、および、これらの非ヒト抗体をヒト化したヒト化抗体、および、ヒト抗体など、どのような由来の抗体の可変領域でもよい。「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号EP 125023号公報、WO 96/02576 号公報参照)。また、これらの抗体の可変領域に対して、抗原への結合、薬物動態、安定性、抗原性を改善するために、様々なアミノ酸置換を導入したものであってもよい。本発明の抗体の可変領域は抗原に対する結合にpH依存性を有することで、抗原に対して繰り返し結合することができてもよい(WO/2009/125825)。
 抗体の軽鎖定常領域にはκ鎖とλ鎖タイプの定常領域が存在しているが、いずれの軽鎖定常領域であってもよい。さらに、本発明において軽鎖定常領域は、アミノ酸の置換、付加、欠損、挿入および/または修飾などの改変が行われた軽鎖定常領域であってもよい。
 本発明の抗体の重鎖定常領域としては、例えばヒトIgG抗体の重鎖定常領域を用いることができ、好ましくはヒトIgG1抗体の重鎖定常領域である。
 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。重鎖可変領域を構成するアミノ酸配列は、その抗原結合活性が維持される限り、1または複数のアミノ酸残基の改変が許容される。
 また、可変領域の改変は結合活性の上昇、特異性の改善、pIの低下、抗原に対する結合にpH依存的な性質の付与、結合熱安定性の改善、溶解性の改善、化学修飾に対する安定性、糖鎖に由来するヘテロジェナイエティの改善、免疫原性を低下させることをin silico予測を使って同定した、あるいはin vitroのT細胞を使ったアッセイによって同定したT細胞エピトープの回避、あるいはレギュラトリーT細胞を活性化するT細胞エピトープの導入等を目的として実施される(mAbs 3:243-247, 2011) 
 また、本発明のポリペプチドは、Fc領域と他のタンパク質、生理活性ペプチドなどとを結合させたFc融合タンパク質分子(ペプチドFc融合タンパク質)又は、コラーゲンやポリ乳酸などの高分子によって構成される細胞外マトリックスなどを結合させたFc融合タンパク質分子(スキャッフォールドFc融合タンパク質)であってもよい。
 他のタンパク質、生理活性ペプチドとしては、例えば受容体、接着分子、リガンド、酵素が挙げられるが、これらに限定されるものではない。
 本発明のFc融合タンパク質分子の好ましい例として、標的に結合するレセプタータンパク質にFcドメインを融合したタンパク質が挙げられ、例えば、TNFR-Fc融合タンパク、IL1R-Fc融合タンパク、VEGFR-Fc融合タンパク、CTLA4-Fc融合タンパク等(Nat Med. 2003 Jan;9(1):47-52、BioDrugs. 2006;20(3):151-60.)が挙げられる。また、本発明のポリペプチドに融合させるタンパク質は標的分子に結合する限り如何なる分子であってもよく、例えばscFv分子(WO2005/037989)、単ドメイン抗体分子(WO2004/058821, WO2003/002609)、抗体様分子(Current Opinion in Biotechnology 2006, 17:653-658、Current Opinion in Biotechnology 2007, 18:1-10、Current Opinion in Structural Biology 1997, 7:463-469、Protein Science 2006, 15:14-27)、例えば、DARPins(WO2002/020565)、Affibody(WO1995/001937)、Avimer(WO2004/044011, WO2005/040229)、Adnectin(WO2002/032925)等が挙げられる。また、抗体およびFc融合タンパク質分子は、複数種類の標的分子あるいはエピトープに結合する二重特異性抗体などの多重特異性抗体であってもよい。
 また本発明の抗体には、抗体の修飾物も含まれる。抗体の修飾物の例としては、例えば、ポリエチレングリコール(PEG)や細胞障害性物質等の各種分子と結合させた抗体を挙げることができる。このような抗体修飾物は、本発明の抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。
 さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体とは、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいうが、当該エピトープは異なる分子中に存在していてもよいし、同一の分子中に存在していてもよい。
 本発明のポリペプチドは当業者に公知の方法により製造することができる。例えば、抗体は以下の方法で作製することができるが、これに限定されるものではない。
 単離されたポリペプチドをコードする遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合分子を単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、ミエローマ(Sp2/O、NS0等)、BHK (baby hamster kidney cell line)、HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA)、PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes)、Hela、Vero、など(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
 抗体の重鎖をコードするDNAであって、Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNA、および抗体の軽鎖をコードするDNAを発現させる。Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAは、例えば、天然型の重鎖をコードするDNAのFc領域部分を取得し、該Fc領域中の特定のアミノ酸をコードするコドンが目的の他のアミノ酸をコードするよう、適宜置換を導入することによって得ることが出来る。
 また、あらかじめ、天然型重鎖のFc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換されたタンパク質をコードするDNAを設計し、該DNAを化学的に合成することによって、Fc領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAを得ることも可能である。アミノ酸の置換部位、置換の種類としては、特に限定されるものではない。また置換に限られず、欠損、付加、挿入、又は修飾のいずれか、又はそれらの組み合わせであってもよい。
 また、Fc領域中において1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAは、部分DNAに分けて製造することができる。部分DNAの組み合わせとしては、例えば、可変領域をコードするDNAと定常領域をコードするDNA、あるいはFab領域をコードするDNAとFc領域をコードするDNAなどが挙げられるが、これら組み合わせに限定されるものではない。軽鎖をコードするDNAもまた、同様に部分DNAに分けて製造することができる。
 上記DNAを発現させる方法としては、以下の方法が挙げられる。例えば、重鎖可変領域をコードするDNAを、重鎖定常領域をコードするDNAとともに発現ベクターに組み込み重鎖発現ベクターを構築する。同様に、軽鎖可変領域をコードするDNAを、軽鎖定常領域をコードするDNAとともに発現ベクターに組み込み軽鎖発現ベクターを構築する。これらの重鎖、軽鎖の遺伝子を単一のベクターに組み込むことも出来る。
 目的とする抗体をコードするDNAを発現ベクターへ組み込む際、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる。その際には、適当な宿主と発現ベクターの組み合わせを使用することができる。
 ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などを用いることができる。
 本発明の抗体を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427、参照によりその全体が本明細書に組み込まれる)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043、参照によりその全体が本明細書に組み込まれる)、またはT7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(QIAGEN社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。
 また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4397、参照によりその全体が本明細書に組み込まれる)を使用すればよい。宿主細胞へのベクターの導入は、例えばリポフェクチン法、リン酸カルシウム法、DEAE-Dextran法を用いて行うことができる。
 大腸菌発現ベクターの他、例えば、本発明のポリペプチドを製造するためのベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3(Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322、参照によりその全体が本明細書に組み込まれる)、pEF、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovirus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(Invitrogen社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。
 CHO細胞、COS細胞、NIH3T3細胞、HEK293細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108、参照によりその全体が本明細書に組み込まれる)、MMTV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322、参照によりその全体が本明細書に組み込まれる)、CAGプロモーター(Gene. (1991) 108, 193、参照によりその全体が本明細書に組み込まれる)、CMVプロモーターなどを持っていることが不可欠であり、形質転換細胞を選抜するための遺伝子(例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。さらに遺伝子のコピー数を増やす目的でEBNA1タンパク質を共発現させる場合もあるが、この場合、複製開始点OriPを有するベクターを用いる。(Biotechnol Bioeng. 2001 Oct 20;75(2):197-203.、Biotechnol Bioeng. 2005 Sep 20;91(6):670-7.)
 さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
 抗体の回収は、例えば、形質転換した細胞を培養した後、分子形質転換した細胞の細胞内又は培養液より分離することによって行うことが出来る。抗体の分離、精製には、遠心分離、硫安分画、塩析、限外濾過、1q、FcRn、プロテインA、プロテインGカラム、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの方法を適宜組み合わせて行うことができる。
 二重特異性抗体の効率的な作製方法として、Knobs-into-holes技術を用いることができる。具体的には、本発明のヘテロ二量化ポリペプチドを作製するには互いに異なるアミノ酸を有するポリペプチド同士を会合化させる、あるいは目的のヘテロ二量化ポリペプチドを他のホモ二量化ポリペプチドから分離する必要がある。
 Fc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には、抗体H鎖の第二の定常領域(CH2)又はH鎖の第三の定常領域(CH3)の界面に電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術を適用することができる(WO2006/106905)。
 CH2又はCH3の界面に電荷的な反発を導入して意図しないH鎖同士の会合を抑制させる技術において、H鎖の他の定常領域の界面で接触するアミノ酸残基としては、例えばCH3領域におけるEUナンバリング356番目の残基、EUナンバリング439番目の残基、EUナンバリング357番目の残基、EUナンバリング370番目の残基、EUナンバリング399番目の残基、EUナンバリング409番目の残基に相対する領域を挙げることができる。
 より具体的には、例えば、2種のH鎖CH3領域を含む抗体においては、第1のH鎖CH3領域における以下の(1)~(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体とすることができる;
(1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、
(2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、
(3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。
 更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)~(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)~(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体とすることができる。
 上記(1)~(3)に記載のそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域について、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)~(3)に記載のアミノ酸残基に対応する部位を見出すことができ、適宜、該部位のアミノ酸残基を改変に供することが可能である。
 上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の(X)または(Y)のいずれかの群に含まれるアミノ酸残基から選択されることが好ましい;
(X)グルタミン酸(E)、アスパラギン酸(D)、
(Y)リジン(K)、アルギニン(R)、ヒスチジン(H)。
 上記抗体において、「同種の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記(X)または(Y)のいずれか1の群に含まれるアミノ酸残基を有することを意味する。「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のなかの少なくとも1つのアミノ酸残基が、上記(X)または(Y)のいずれか1の群に含まれるアミノ酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有することを意味する。
 好ましい態様において上記抗体は、第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。
 本発明において改変に供するアミノ酸残基としては、上述した抗体の可変領域または抗体の定常領域のアミノ酸残基に限られない。当業者であれば、ポリペプチド変異体または異種多量体について、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を見出すことができ、会合を制御するように、該部位のアミノ酸残基を改変に供することが可能である。
 本発明のFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖の可変領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖の相対する可変領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することによって、突起が空隙に配置され得るようにすることで効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681)。
 これに加えて、Fc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖のCH3の一部をその部分に対応するIgA由来の配列にし、もう一方のH鎖のCH3の相補的な部分にその部分に対応するIgA由来の配列を導入したstrand-exchange engineered domain CH3を用いることで、異なる配列を有するポリペプチドの会合化をCH3の相補的な会合化によって効率的に引き起こすことができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を使っても効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる。
 他にもWO2011/028952に記載の抗体のCH1とCLの会合化、VH、VLの会合化を利用したヘテロ二量化抗体作製技術も用いることができる。
 また、ヘテロ二量化ポリペプチドを効率的に形成することができない場合であっても、ヘテロ二量化ポリペプチドをホモ二量化ポリペプチドと分離、精製することによってもヘテロ二量化ポリペプチドを得ることが可能である。互いに配列の異なる第一のポリペプチドおよび第二のポリペプチドからなるヘテロ二量化ポリペプチドを作製する際には、2つの第一のポリペプチドのみからなるホモ二量化ポリペプチド、2つの第二のポリペプチドのみからなるホモ二量化ポリペプチドが不純物として混入する。これら2種類のホモ二量化ポリペプチドを効率的に除去する方法として、公知技術を使うことができる。2種類のH鎖の可変領域にアミノ酸置換を導入し等電点の差を付与することで、2種類のホモ体と目的のヘテロ二量化抗体をイオン交換クロマトグラフィーで精製可能にする方法が報告されている(WO2007114325)。
 等電点の差を付与するためのアミノ酸改変は、会合する2つのポリペプチドの等電点に差が生じているかぎり、導入されるアミノ酸改変は特に限定されず、免疫原性の低下等、他の目的のアミノ酸改変が含まれていても良い。改変されるアミノ酸は、Fcγレセプターへの結合活性に影響の少ない位置のアミノ酸であることが好ましい。また、所望のFcγレセプターへの結合活性を高めるアミノ酸改変であってもよい。そのような改変のためのアミノ酸の位置としては、具体的には、例えば、第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、196番目のGln、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、364番目のSer、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、387番目のPro、390番目のAsn、397番目のVal及び422番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることが好ましい。更に、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、196番目のGln、199番目のIle、203番目のAsn、214番目のLys、272番目のGlu、274番目のLys、288番目のLys、290番目のLys、358番目のLeu、360番目のLys、362番目のGln、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、390番目のAsn、397番目のVal及び422番目のValからなる群から選択される少なくとも一つのアミノ酸変異が導入されていることが好ましく、更に、EUナンバリング137番目のGly、138番目のGly、147番目のLys、192番目のSer、193番目のLeu、196番目のGln、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、288番目のLys、358番目のLeu、384番目のAsn及び397番目のValからなる群より選択される少なくとも一つのアミノ酸変異が導入されていることがより好ましい。
 より具体的には、第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、EUナンバリング196番目のGln、199番目のIle、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、316番目のGly、358番目のLeu、364番目のSer、383番目のSer、387番目のPro及び397番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、390番目のAsn及び422番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることが好ましい。更に、一方のポリペプチドのアミノ酸配列において、EUナンバリング196番目のGln、199番目のIle、272番目のGlu、358番目のLeu、383番目のSer及び397番目のValからなる群より選択される、少なくとも1つのアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、288番目のLys、290番目のLys、358番目のLeu、360番目のLys、362番目のGln、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、390番目のAsn及び422番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることが好ましい。更に、一方のポリペプチドのアミノ酸配列において、EUナンバリング196番目のGln、199番目のIle、358番目のLeu及び397番目のValからなる群より選択される、少なくとも1つのアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、147番目のLys、192番目のSer、193番目のLeu、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、288番目のLys及び384番目のAsnからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることがより好ましい。
 アミノ酸の改変は、改変後に、会合する2つのポリペプチドの等電点に差が生じるように改変されていれば、特に限定されない。
 等電点を高くするための好ましい改変としては、例えば、EUナンバリング196番目のアミノ酸のLysへの置換、231番目のアミノ酸のLysへの置換、242番目のアミノ酸のLysへの置換、263番目のアミノ酸のLysへの置換、272番目のアミノ酸のLysへの置換、316番目のアミノ酸のLysへの置換、364番目のアミノ酸のLysへの置換、358番目のアミノ酸のLysへの置換、383番目のアミノ酸のLysへの置換、387番目のアミノ酸のLysへの置換、397番目のアミノ酸のLysへの置換が挙げられる。また、等電点を低くするための好ましい改変としては、例えば、EUナンバリング137番目のアミノ酸のGluへの置換、138番目のアミノ酸のGluへの置換、139番目のアミノ酸のGluへの置換、147番目のアミノ酸のGluへの置換、198番目のアミノ酸のGluへの置換、203番目のアミノ酸のAspへの置換、214番目のアミノ酸のThrへの置換、274番目のアミノ酸のGlnへの置換、278番目のアミノ酸のGluへの置換、288番目のアミノ酸のGluへの置換、290番目のアミノ酸のGluへの置換、316番目のアミノ酸のGluへの置換、317番目のアミノ酸のGluへの置換、320番目のアミノ酸のGluへの置換、324番目のアミノ酸のGluへの置換、335番目のアミノ酸のGluへの置換、337番目のアミノ酸のAspへの置換、338番目のアミノ酸のGluへの置換、340番目のアミノ酸のGluへの置換、341番目のアミノ酸のGluへの置換、358番目のアミノ酸のGluへの置換、360番目のアミノ酸のGluへの置換、362番目のアミノ酸のGluへの置換、383番目のアミノ酸のGluへの置換、384番目のアミノ酸のGluへの置換、385番目のアミノ酸のGluへの置換、386番目のアミノ酸のGluへの置換、390番目のアミノ酸のGluへの置換、422番目のアミノ酸のGluへの置換が挙げられる。
 等電点に差が生じさせる目的以外のアミノ酸改変を組み合わせる場合、例えば、免疫原性を低下させる場合には、EUナンバリング138番目のアミノ酸のSerへの置換、192番目のアミノ酸のAsnへの置換、193番目のアミノ酸のPheへの置換及び199番目のアミノ酸のThrへの置換を組み合わせてもよい。
 ここで、免疫原性が低下しているとは、抗体が投与される個体の少なくとも過半数において、治療効果を達成するのに十分な時間にわたって、抗体投与の継続された効果を低下させるのに十分な量の抗体の産生を惹起しないことを意味する。
 ヒトにおける免疫原性のレベルは、MHCクラスII結合予測プログラムPropred(http://www.imtech.res.in/raghava/propred)を用い、すべての対立遺伝子の1%閾値解析を用いて予測することができる。使用可能な他のプログラムとしては:
-Rankpep(http://bio.dfci.harvard.edu/Tools/rankpep.html)
-Epibase(Algonomics proprietary software: algonomics.com)
が含まれる。
 免疫原性が低減されたポリペプチドは、初期のドナー分子と比較し、標的集団において高度に発現されるMHCクラスII対立遺伝子に結合すると予測されるぺプチドを含まないか、当該ぺプチドの数が低減されている(Flowerら(Drug Discov. Today (2004) 9(2), 82-90))。
 MHCクラスII結合の機能分析は、当該タンパク質に対応する、重複するぺプチドを生成し、T細胞活性化を惹起するそれらの能力を試験するか(T細胞増殖分析)、またはレポーターぺプチドである、既知のMHCクラスII結合ぺプチドを置き換えることにより実施することができる(Hammerら(J. Exp. Med. (1994) 180, 2353-2358))。
 また、ヘテロ二量化抗体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖からなるヘテロ二量化抗体をプロテインAを用いて精製する方法が報告されている(WO98050431, WO95033844)。
 また、IgGとProteinAの結合部位であるEUナンバリング435番目および436番目のアミノ酸残基を、Tyr、HisなどのProteinAへの結合力の異なるアミノ酸に置換したH鎖を用いることで、各H鎖とProtein Aとの相互作用を変化させ、Protein Aカラムを用いることで、ヘテロ二量化抗体のみを効率的に精製することもできる。 これらの置換、技術を複数、例えば2個以上組合せて用いることができる。またこれらの改変は、第一のポリペプチドと第二のポリペプチドに適宜別々に加えることができる。なお、本発明のポリペプチドは、上記改変が加えられたものをベースにして作製したものであってもよい。
 さらに本発明は、Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、アミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、Fc領域を含むポリペプチドを製造する方法を提供する。
 例えば以下の工程を含む製造方法を挙げることができる;
(a)Fc領域を含むポリペプチドにおいて、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入する工程、
(b)前記工程(a)で変異が導入された第一のポリペプチド及び第二のポリペプチドからなるヘテロ二量体の、Fc領域の機能を測定する工程、および
(c)親ポリペプチド又はアミノ酸変異の導入により該Fc領域がホモ二量体となった場合と比較して、Fc領域の機能が改変されたポリペプチドを選択する工程。
 なお、本製造方法において、以下の工程を(a)の工程の後に行ってもよい。
(d)Fc領域を有する第一のポリペプチドと第二のポリペプチドからなるヘテロ二量化ポリペプチドを、提示したリボソーム、ファージ、イーストにディスプレイさせる工程
 好ましい態様としては、Fc領域を含むポリペプチドの製造方法であって、
(a)親ポリペプチド又はアミノ酸変異の導入により該Fc領域がホモ二量体となった場合と比較して、Fc領域の機能が改変されるように、当該ポリペプチドをコードする核酸を改変する工程、
(b)宿主細胞に当該核酸を導入しポリペプチドを発現するように培養する工程、
(c)宿主細胞培養物から当該ポリペプチドを回収する工程、を含む方法である。
 さらに当該製造方法によって製造される抗体及びFc融合タンパク質分子も本発明に含まれる。
 本方法によって導入されるアミノ酸変異の種類や範囲は特に限定されるものではないが、明細書に記載された各Fc領域の機能の改変に関与するアミノ酸変異(より具体的には、実施例の表に具体的に開示されたアミノ酸変異)を例示することができる。
 また本発明は、Fc領域を含むポリペプチドの機能を改変する方法であって、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、アミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、ポリペプチドの機能を改変する方法を提供する。
 例えば以下の工程を含む改変方法を挙げることができる;
(a)Fc領域を含むポリペプチドにおいて、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入する工程、
(b)前記工程(a)で変異が導入された第一のポリペプチド及び第二のポリペプチドからなるヘテロ二量体の、Fc領域の機能を測定する工程、および
(c)親ポリペプチド又はアミノ酸変異の導入により該Fc領域がホモ二量体となった場合と比較して、Fc領域の機能が改変されたポリペプチドを選択する工程。
 なお、本改変方法において、以下の工程を(a)の工程の後に行ってもい。
(d)Fc領域を有する第一のポリペプチドと第二のポリペプチドからなるヘテロ二量化ポリペプチドを、提示したリボソーム、ファージ、イーストにディスプレイさせる工程
好ましい態様としては、Fc領域を含むポリペプチドの改変方法であって、
(a)親ポリペプチド又はアミノ酸変異の導入により該Fc領域がホモ二量体となった場合と比較して、Fc領域の機能が改変されるように、当該ポリペプチドをコードする核酸を改変する工程、
(b)宿主細胞に当該核酸を導入しポリペプチドを発現するように培養する工程、
(c)宿主細胞培養物から当該ポリペプチドを回収する工程、を含む方法である。
 さらに当該改変方法によって改変される抗体及びFc融合タンパク質分子も本発明に含まれる。
 本方法によって導入されるアミノ酸変異の種類や範囲は、特に限定されるものではないが、明細書に記載された各Fc領域の機能の改変に関与するアミノ酸変異(より具体的には、実施例の表に具体的に開示されたアミノ酸変異)を例示することができる。
 さらに本発明は、第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチドおよび第二のポペプチドが、変異が導入されているFc領域を含み、変異が導入されていないFc領域を含むポリペプチドと比べて、Fc領域の機能が改変されていることを特徴とするポリペプチドをコードする核酸を提供する。本発明の該核酸はDNA、RNAなど、如何なる形態でもよい。
 さらに本発明は、上記本発明の核酸を含むベクターを提供する。ベクターの種類はベクターが導入される宿主細胞に応じて当業者が適宜選択することができ、例えば上述のベクターを用いることができる。
 さらに本発明は、上記本発明のベクターにより形質転換された宿主細胞に関する。宿主細胞は当業者が適宜選択することができ、例えば上述の宿主細胞を用いることができる。
<医薬組成物>
 本発明は、本発明のポリペプチドを含有する医薬組成物を提供する。
 本発明の医薬組成物は、本発明のポリペプチドである抗体又はFc融合タンパク質分子に加えて医薬的に許容し得る担体を導入し、公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る溶液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。
 投与は好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。
 また、患者の年齢、症状により適宜投与方法を選択することができる。ポリペプチドまたはポリペプチドをコードするポリヌクレオチドを含有する医薬組成物の投与量としては、例えば、一回につき体重1kgあたり0.0001 mgから1000 mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。
 本発明においては、上記本発明のポリペプチドを含有する医薬組成物は、がん、免疫炎症性疾患などの治療剤又は予防剤の有効成分として有用である。
 なお本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。
アラニン:Ala:A
アルギニン:Arg:R
アスパラギン:Asn:N
アスパラギン酸:Asp:D
システイン:Cys:C
グルタミン:Gln:Q
グルタミン酸:Glu:E
グリシン:Gly:G
ヒスチジン:His:H
イソロイシン:Ile:I
ロイシン:Leu:L
リジン:Lys:K
メチオニン:Met:M
フェニルアラニン:Phe:F
プロリン:Pro:P
セリン:Ser:S
スレオニン:Thr:T
トリプトファン:Trp:W
チロシン:Tyr:Y
バリン:Val:V
 なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
 以下本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例に制限されるものではない。
〔実施例1〕ヘテロ二量化抗体によるFcγR認識能向上のコンセプトの説明
 抗体はFc領域を介してFcRn、FcγR、補体など、様々な分子と相互作用している。FcのリガンドのひとつであるFcRnは抗体の各H鎖(重鎖)に対してそれぞれ1分子が結合しているため、1分子の抗体に対して2分子のFcRnが結合する(図1)。生体内においてFcRnは細胞膜上に発現しているため、生体内において抗体は各H鎖の同じ部分を介して対照的に2分子のFcRnを認識している(Nature, 372: 379-383, 1994)。また、IgGと同じ免疫グロブリンファミリーに属するIgAも、IgGとFcRnの関係と同様に、1分子のIgAが対称的に2分子のIgAレセプターであるFcαRを認識している(図2)(Nature, 423:614 - 620, 2003)。
 しかし、FcRn等と異なり、FcγRは抗体 1分子に対して1分子しか結合しない(図3)(JBC, 276: 16469-16477, 2001)。IgGは両H鎖のCH2ドメインを介してFcγRを認識しているが、FcγRと相互作用している部位は各H鎖において異なる。例えば、図3の左側のH鎖をHA鎖、右側をHB鎖とすると、EUナンバリング327番目のAlaはHA鎖、HB鎖の各鎖でFcγRと相互作用しているが、各H鎖において相互作用する相手側の残基の性質が異なる(図4)。HA鎖においてはFcγRIIIのEUナンバリング87番目とEUナンバリング110番目のTrpと疎水的に相互作用しているが、HB鎖においてはEUナンバリング131番目のHisと相互作用している。そのため、EUナンバリング327番目のAlaをTrp等の疎水性の高いアミノ酸と置換した場合、HA鎖ではFcγRとの結合活性を向上させる効果があっても、HB鎖ではFcγRとの結合活性を低減させる可能性がある。このことから、アミノ酸改変によってIgGのFc領域のFcγRに対する相互作用を最適化するためには、各H鎖におけるFcγRに対する非対称的な効果を考慮する必要があると考えられる。それにも関わらず、従来技術ではIgGのFc領域のFcγRに対する相互作用を最適化する際には両H鎖に同じ改変を導入していた(WO2006/019447、WO2000/042072)。しかし、IgGのFc領域がFcγRと非対称に相互作用することを考慮すると、各H鎖に異なる改変を導入した方がIgGとFcγRとの相互作用をより精密に最適化することができると考えられる。すなわち、Fc領域のFcγRに対する相互作用を最適化するために各H鎖に異なる改変を加えた抗体であるヘテロ二量化抗体を使うことで、従来技術で実施されてきた各H鎖に同じ改変を加えた抗体であるホモ二量化抗体と比べて、FcγRとの相互作用を一層最適化できる可能性がある。
〔実施例2〕ヘテロ二量化抗体によるFcγR認識能向上のコンセプトの証明
 抗体の各H鎖に異なる改変を導入したヘテロ二量化抗体を用いることにより、従来技術であるホモ二量化抗体と比べて、抗体とFcγRに対する結合活性をより最適化できるか検討した。
 従来は、抗体の各H鎖に同じ改変を導入したホモ二量化抗体を用いることで、FcγRに対する結合が増強する改変を探索していた。しかし、実施例1で言及したように抗体とFcγRとが非対称に相互作用することから、両H鎖に同じ改変を導入した場合、その改変が一方のH鎖ではFcγRに対する結合活性を増強するが、もう一方のH鎖では結合を阻害している可能性がある。このような改変を両H鎖に導入したホモ二量化抗体では、FcγRに対する結合活性を必ずしも増強しないが、一方のH鎖にのみ改変を導入したヘテロ二量化抗体ではFcγRに対する結合活性を増強する可能性がある。
 この仮説を検証するために、FcγRに対する結合活性を改変すると考えられる改変を一方のH鎖にのみ導入した第一のポリペプチドと、その改変を加えていない第二のポリペプチドからなるヘテロ二量化抗体と、FcγRに対する結合活性を改変すると考えられる改変を一方のH鎖にのみ導入した第一のポリペプチドからなるホモ二量化抗体のFcγRに対する結合を比較した。従来の考えに基づくと、その改変がFcγRに対する結合活性を増強するのであれば、必ずホモ二量化抗体の方がヘテロ二量化抗体よりも優れているはずである。しかし、仮に抗体のFcがFcγRを非対称に認識しているのであれば、改変の種類によっては、ヘテロ二量化抗体の方がホモ二量化抗体よりもFcγRに対して強い結合活性を示すはずである。
 抗体のH鎖の可変領域としては、WO2009/041062に開示される血漿中動態が改善した抗グリピカン3抗体のpH7のCDRを含むグリピカン3抗体の可変領域を使用し、GpH7(配列番号:1)と呼ぶ。抗体H鎖定常領域として、以下のものを使用し、それをGpH7と組み合わせて使用した。なお、抗体H鎖定常領域の名称をH1とした場合、可変領域にGpH7を持つ抗体のH鎖に対応する配列はGpH7-H1と呼ぶ。なお、アミノ酸の改変を示す場合には、D356Kのように示す。最初のアルファベット(D356KのDに該当)は、改変前のアミノ酸残基を一文字表記で示した場合のアルファベットを意味し、それに続く数字(D356Kの356に該当)はその改変箇所のEUナンバリングを意味し、最後のアルファベット(D356KのKに該当)は改変後のアミノ酸残基を一文字表記で示した場合のアルファベットを意味する。GpH7を可変領域に持つIgG1のC末端のGlyおよびLysを除去したGpH7-G1d(配列番号:2)、GpH7-G1dにD356K及びH435Rの変異を導入したGpH7-A5(配列番号:3)、GpH7-G1dにK439Eの変異を導入したGpH7-B3(配列番号:4)を参考実施例1の方法にしたがって調製した。それぞれのH鎖に導入したD356KおよびK439Eの変異は、2つのH鎖からなるヘテロ二量化抗体を産生する際に、各H鎖のヘテロ体を効率的に形成させるために導入した(WO2006/106905)。H435RはProtein Aへの結合を妨げる改変であり、ヘテロ体とホモ体を効率よく分離するために導入した(参考実施例3、4、5を参照)。同様に、抗体のL鎖にはWO2009/041062に開示される血漿中動態が改善したグリピカン3抗体のL鎖であるGpL16-k0(配列番号:5)を使用した。
 GpH7-A5、GpH7-B3を親ポリペプチドとして、ヘテロ二量化抗体のコンセプトを証明するための変異を導入し、改変体を調製し、評価した。作製した発現ベクターは、参考実施例1の方法に従い、FreeStyle293細胞(invitrogen)へのトランスフェクションに用いた。発現した抗体は参考実施例1の方法に従い、精製した。ホモ二量化抗体を発現させる際には、抗体L鎖であるGpL16-k0が挿入された発現ベクターと一種類の抗体H鎖配列が挿入された発現ベクターを用いた。ヘテロ二量化抗体を発現させる際には抗体L鎖としてはホモ二量化抗体と同様にGpL16-k0が挿入された発現ベクターを用い、抗体H鎖の1つとしてD356Kの改変を導入したGpH7-A5に更に改変を加えた配列を挿入した発現ベクターを用い、抗体H鎖のもう1つとしてK439Eの改変を導入したGpH7-B3に更に改変を導入した配列を挿入した発現ベクターを用い、ヘテロ二量化抗体が効率的に発現するようにした。発現後に精製して得られた抗体は、例えばヘテロ二量化抗体の発現に用いた抗体H鎖に対応する発現ベクターの一つがGpH7-H1、もう一つの抗体H鎖がGpH7-H2、抗体L鎖に対応する発現ベクターがGpL16-k0である場合、GpH7-H1/GpH7-H2/GpL16-k0と表記する。この際にD356K、H435Rの改変が導入されている配列をH1、K439Eの改変が導入されている配列をH2に対応させた。例えば、ホモ二量化抗体の発現に用いた抗体H鎖に対応する発現ベクターがGpH7-H1、抗体L鎖に対応する発現ベクターがGpL16-k0であるホモ二量化抗体の場合、GpH7-H1/GpL16-k0と表記する。調製した抗体を用いて、FcγRに対する結合活性を参考実施例2に記した方法で測定した。
 まずはじめに、ヘテロ二量化体を形成、精製するためにGpH7-A5に導入されたD356KおよびH435R、および、GpH7-B3に導入されたK439Eの改変が、天然型IgGと比較して、FcγRに対する結合活性に影響を及ぼすか否かを評価した。コントロールとして、抗体H鎖としてGpH7-G1d、抗体L鎖としてGpL16-k0を挿入したプラスミドを用いて、参考実施例1の方法にしたがって、GpH7-G1d/GpL16-k0(配列番号:2、5)を発現、精製した。同様にしてD356KおよびH435Rが両H鎖に導入されたホモ二量化抗体GpH7-A5/GpL16-k0(配列番号:3、5)を、K439Eが両H鎖に導入されたホモ二量化抗体GpH7-B3/GpL16-k0(配列番号:4、5)を、D356KおよびH435Rが一方のH鎖に導入され、K439Eがもう一方のH鎖に導入されたヘテロ二量化抗体GpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)を調製した。参考実施例2の方法にしたがって、これらの抗体と各FcγRに対する結合活性を比較した結果を図5にまとめた。
 測定の結果、GpH7-G1d/GpL16-k0とGpH7-A5/GpH7-B3/GpL16-k0を比較すると、両者で各FcγRに対する結合活性に大きな変化は観察されなかった。また、GpH7-A5/GpL16-k0およびGpH7-B3/GpL16-k0はGpH7-G1d/GpL16-k0と比べていずれのFcγRに対しても少なくとも8割程度の結合活性を維持していた。これらの結果から、GpH7-A5/GpH7-B3/GpL16-k0、GpH7-A5/GpL16-k0、GpH7-B3/GpL16-k0はGpH7-G1d/GpL16-k0と比較してFcγRに対する結合が著しく損なわれておらず、これらの抗体の各H鎖に対して変異を導入した改変体の各FcγRに対する結合活性を比較することが可能であると判断した。
 次に、GpH7-A5にG237Aの変異を導入したGpH7-A26(配列番号:6)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A26、GpH7-B3、L鎖としてGpL16-k0を用いて、G237Aが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A26/GpH7-B3/GpL16-k0(配列番号:6、4、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-A26、L鎖としてGpL16-k0を用いて、G237Aが両H鎖に導入されたホモ二量化抗体GpH7-A26/GpL16-k0(配列番号:6、5)を参考実施例1の方法にしたがって発現させた。これらを参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価した(図6)。その結果、ヘテロ二量化抗体GpH7-A26/GpH7-B3/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が増強した。それにも関わらず、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-A26/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が減弱していた。このことから、G237Aは両H鎖に導入すると FcγRIIa R、FcγRIIbに対する結合活性を減弱させるにも関わらず、片方のH鎖のみに導入するとFcγRIIa R、FcγRIIbに対する結合活性を増強させる改変であることが明らかとなった。
 次に、GpH7-A5にG237Lの変異を導入したGpH7-A29(配列番号:7)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A29、GpH7-B3、L鎖としてGpL16-k0を用いて、G237Lが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A29/GpH7-B3/GpL16-k0(配列番号:7、4、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-A29、L鎖としてGpL16-k0を用いて、G237Lが両H鎖に導入されたホモ二量化抗体GpH7-A29/GpL16-k0(配列番号:7、5)を参考実施例1の方法にしたがって発現させた。参考実施例2の方法にしたがって、これらの抗体と各FcγRに対する結合活性を評価した(図7)。ヘテロ二量化抗体GpH7-A29/GpH7-B3/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が増強した。それにも関わらず、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-A29/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が減弱していた。このことから、G237Lは両H鎖に導入すると FcγRIIa R、FcγRIIbに対する結合活性を減弱させるにも関わらず、一方のH鎖のみに導入するとFcγRIIa R、FcγRIIbに対する結合活性を増強させる効果のある改変であることが明らかとなった。
 次に、GpH7-A5にL328Eの変異を導入したGpH7-A42(配列番号:8)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A42、GpH7-B3、L鎖としてGpL16-k0を用いて、L328Eが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A42/GpH7-B3/GpL16-k0(配列番号:8、4、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-A42、L鎖としてGpL16-k0を用いて、L328Eが両H鎖に導入されたホモ二量化抗体GpH7-A42/GpL16-k0(配列番号:8、5)を参考実施例1の方法にしたがって発現させた。これらを参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価した(図8)。ヘテロ二量化抗体GpH7-A42/GpH7-B3/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が増強した。一方で、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-A42/GpL16-k0では、FcγRIIa Rに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0よりも減弱しており、FcγRIIbに対する結合活性は増強していたが、その増強の程度はL328Eを一方のH鎖にのみ導入したGpH7-A42/GpH7-B3/GpL16-k0の方が大きかった。このことから、L328Eは両H鎖に導入するよりも一方のH鎖のみに導入した方が、FcγRIIa R、FcγRIIbに対する結合活性を増強させる効果が高い改変であることが明らかとなった。
 次に、GpH7-A5にL328Dの変異を導入したGpH7-A43(配列番号:9)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A43、GpH7-B3、L鎖としてGpL16-k0を用いて、L328Dが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A43/GpH7-B3/GpL16-k0(配列番号:9、4、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-A43、L鎖としてGpL16-k0を用いて、L328Dが両H鎖に導入されたホモ二量化抗体GpH7-A43/GpL16-k0(配列番号:9、5)を参考実施例1の方法にしたがって発現させた。これらを参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価した(図9)。ヘテロ二量化抗体GpH7-A43/GpH7-B3/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が増強した。一方で、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-A43/GpL16-k0では、FcγRIIa Rに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0よりも減弱しており、FcγRIIbに対する結合活性は増強していたが、その増強の程度はL328Dを一方のH鎖にのみ導入したGpH7-A43/GpH7-B3/GpL16-k0の方が大きかった。このことから、L328Dは両H鎖に導入するよりも一方のH鎖のみに導入した方が、FcγRIIa R、FcγRIIbに対する結合活性を増強させる効果のある改変であることが明らかとなった。
 次に、GpH7-B3にL234Eの変異を導入したGpH7-B16(配列番号:10)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A5、GpH7-B16、L鎖としてGpL16-k0を用いて、L234Eが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A5/GpH7-B16/GpL16-k0(配列番号:3、10、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-B16、L鎖としてGpL16-k0を用いて、L234Eが両H鎖に導入されたホモ二量化抗体GpH7-B16/GpL16-k0(配列番号:10、5)を参考実施例1の方法にしたがって発現させた。これらを参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価した(図10)。ヘテロ二量化抗体GpH7-A5/GpH7-B16/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIIa F、FcγRIIbに対する結合活性が増強した。それにも関わらず、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-B16/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIIa F、FcγRIIbに対する結合活性が減弱していた。このことから、L234Eは両H鎖に導入すると FcγRIIIa F、FcγRIIbに対する結合活性を減弱させるが、一方のH鎖のみに導入するとFcγRIIIa F、FcγRIIbに対する結合活性を増強させる効果のある改変であることが明らかとなった。
 次に、GpH7-B3にL234Dの変異を導入したGpH7-B17(配列番号:11)を参考実施例1の方法にしたがって作製した。H鎖としてGpH7-A5、GpH7-B17、L鎖としてGpL16-k0を用いて、L234Dが一方のH鎖のみに導入されたヘテロ二量化抗体GpH7-A5/GpH7-B17/GpL16-k0(配列番号:3、11、5)を参考実施例1の方法にしたがって発現させた。同様にして、H鎖としてGpH7-B17、L鎖としてGpL16-k0を用いて、L234Dが両H鎖に導入されたホモ二量化抗体GpH7-B17/GpL16-k0(配列番号:11、5)を参考実施例1の方法にしたがって発現させた。これらを参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価した(図11)。ヘテロ二量化抗体GpH7-A5/GpH7-B17/GpL16-k0では、GpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が増強した。それにも関わらず、同じ改変を両H鎖に加えたホモ二量化抗体GpH7-B17/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、FcγRIIbに対する結合活性が減弱していた。このことから、L234Dは両H鎖に導入すると FcγRIIa R、FcγRIIbに対する結合活性を減弱させるが、一方のH鎖のみに導入するとFcγRIIa R、FcγRIIbに対する結合活性を増強させる効果のある改変であることが明らかとなった。
 これらの結果から、2つのH鎖に同じ改変を導入したホモ二量化抗体ではFcγRに対する結合活性が減弱する場合であっても、抗体の一方のH鎖にのみにその改変を導入したヘテロ二量化抗体を作製することにより、FcγRに対する結合活性を増強させることが可能であることが明らかとなった。
 すなわち、これらの結果から、抗体の各H鎖に異なる改変を加えたヘテロ二量化抗体を用いることで、従来の方法であった2つのH鎖に同じ改変を導入するホモ二量化抗体と比較して、より優れた抗体のFc領域のFcγRに対する結合特性を付与することが可能であることが明らかとなった。
〔実施例3〕ヘテロ二量化抗体によるFcγR認識方向の確認
 実施例2で示した通り、ヘテロ二量化抗体を用いることで、ホモ二量化抗体よりもFcγRに対する結合活性を増強させられることが明らかとなった。実施例2の改変を抗体の両H鎖に導入した場合には、むしろ天然型抗体よりもFcγRに対する結合活性が減少していた。この結果からは、ヘテロ二量化抗体に導入した改変が、一方のH鎖に導入されたときはFcγRに対する結合活性を増強するが、両鎖に導入した場合には、FcγRが結合した状態で、一方の鎖では改変後の残基が結合を増強するものの、もう一方の鎖ではFcγRとの相互作用を阻害していると考えられた。すなわち、図3のFcγRが図の奥側から結合している状態を「X方向からの結合」と呼び、それとは反対に図の表側からの結合を「Y方向からの結合」と呼ぶと、ホモ二量化抗体はX方向、Y方向の両方向からのFcγRに対する結合活性を等しく変化させるが、ヘテロ二量化抗体はX方向、Y方向のいずれか一方向からの結合に偏ってFcγRに対する結合活性を変化させていると考えられた。
 この仮説を実験によって検証するために、FcγRとの結合を主にX方向、Y方向のいずれか一方向からのみ阻害する改変を見出し、H鎖のいずれか一方ににここで見出した改変を導入し、同じH鎖、あるいは異なるもう一方のH鎖にFcγRに対する結合活性を増強する改変を導入することで、FcγRに対する結合活性がどのように阻害されるかを検証した。この改変と組み合わせる方法を検討した。抗体とFcγRとの結合に関与しているが、一方のH鎖でのみ結合に関与している改変を立体構造情報から探索し、P329をその候補として見出した。HA鎖のP329はFcγRIIIの87番目と110番目のTrpと疎水コアを形成しているが、HB鎖のP329はFcγRIIIとは直接相互作用していない(Nature, 372:379 - 383, 1994) (図12)。例えば、HA鎖のP329を電荷を有する残基に置換すると、この疎水コアが崩壊し、図12に表示されているX方向からの結合は阻害されると考えられるが、反対のY方向からの結合に関与していないHB鎖のP329は置換されず、そのままであるため、Y方向からの結合には大きな影響を与えないと予想した。
 GpH7-B3のP329に電荷を有するR、K、D、Eの変異をそれぞれ導入した配列GpH7-B12、GpH7-B13、GpH7-B14、GpH7-B15(配列番号:12~15)を挿入した発現ベクターを参考実施例1に記した方法で作製した。作製した発現ベクターは、それぞれGpH7-A5、GpL16-k0と組み合わせてヘテロ二量化抗体として発現するか、他のH鎖とは組み合わせずにGpL16-k0のみと合わせてホモ二量化抗体として、参考実施例1の方法にしたがって発現させ、精製した。精製して得られた抗体はヘテロ二量化抗体としてはGpH7-A5/GpH7-B12/GpL16-k0、GpH7-A5/GpH7-B13/GpL16-k0、GpH7-A5/GpH7-B14/GpL16-k0、GpH7-A5/GpH7-B15/GpL16-k0であり、ホモ二量化抗体としてはGpH7-B12/GpL16-k0、GpH7-B13/GpL16-k0、GpH7-B14/GpL16-k0、GpH7-B15/GpL16-k0であった。調製した抗体を用いて、各FcγRに対する結合を参考実施例2に記した方法で測定し、その結果を図13に示した。
 P329R、P329Kを導入したヘテロ二量化抗体GpH7-A5/GpH7-B12/GpL16-k0、GpH7-A5/GpH7-B13/GpL16-k0のFcγRに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の各FcγRに対する結合活性の1/5から1/4程度になり、ホモ二量化抗体GpH7-B12/GpL16-k0、GpH7-B13/GpL16-k0ではFcγRとの結合が観察されなかった。また、P329D、P329Eを導入したヘテロ二量化抗体GpH7-A5/GpH7-B14/GpL16-k0、 GpH7-A5/GpH7-B15/GpL16-k0のFcγRに対する結合活性はFcγRIaについてはGpH7-A5/GpH7-B3/GpL16-k0の各FcγRに対する結合活性の1/5から1/4程度になり、FcγRIa 以外は1/2以上の結合活性を維持していた。ホモ二量化抗体GpH7-B14/GpL16-k0、GpH7-B15/GpL16-k0ではFcγRIaに対する結合活性のみ残存していたが、GpH7-A5/GpH7-B3/GpL16-k0のFcγRIaに対する結合活性の1/5以下であった。GpH7-B12、GpH7-B13には塩基性残基を、GpH7-B14、GpH7-B15には酸性残基を導入していることから、P329はArg、Lysなどの塩基性残基に置換した方がFcγRに対する結合活性をより強力に阻害すると考えられた。今回、一方のH鎖にのみ改変を導入した場合にはFcγRに対する結合活性が残存しているが、両鎖に同じ改変を導入するとほぼ結合が観察されなくなったという結果は、一方のH鎖のP329を親水性の残基に置換すれば一方向からの結合は阻害されるが、もう一方向からの結合は維持されるという仮説を支持するものと考えられた。
 次に、実施例2で見出したヘテロ二量化することでFcγRに対する結合活性を増強する改変G237A、L234DがFcγRとの相互作用を一方向に偏って増強しているかを、各改変とP329Rの改変とを組み合わせた改変体を作製し、各改変体の各FcγRに対する結合活性を比較することで検証した。K439Eと同じH鎖にP329Rの変異が導入されるようにGpH7-B3にP329Rの変異を導入したGpH7-B12(配列番号:12)、D356K、H435Rと同じH鎖にP329Rの変異を導入されるようにGpH7-A5にP329Rを導入したGpH7-A48(配列番号:16)、GpH7-A5にG237AとP329Rの変異を導入した配列GpH7-A45(配列番号:17)、GpH7-B5にL234DとP329Rの変異を導入したGpH7-B41(配列番号:18)を挿入した発現ベクターを参考実施例1に記した方法で作製した。参考実施例1の方法にしたがって、これらの発現ベクターと抗体L鎖に対応する発現ベクターであるGpL16-k0とを用いてG237AまたはL234DとP329Rとがいずれか一方のH鎖に導入されるように発現させた(表1)。
Figure JPOXMLDOC01-appb-T000001
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 G237AとP329Rの組み合わせの評価には、改変を導入するポリペプチドとしてGpH7-A5/GpH7-B3/GpL16-k0、P329Rを一方のH鎖に導入した改変体としてGpH7-A5/GpH7-B12/GpL16-k0およびGpH7-A48/GpH7-B3/GpL16-k0、P329Rと同じH鎖にG237Aを導入した改変体としてGpH7-A45/GpH7-B3/GpL16-k0、P329Rと異なるH鎖にG237Aを導入した改変体としてGpH7-A26/GpH7-B12/GpL16-k0を用い、参考実施例2の方法にしたがって各FcγRへの結合活性を比較した(図14)。
 P329Rを片方のH鎖に導入したGpH7-A5/GpH7-B12/GpL16-k0とGpH7-A48/GpH7-B3/GpL16-k0を比較すると、FcγRに対する結合パターンに大きな違いは観察されなかった。このことから、P329RはD356K、H435Rが導入されたH鎖に導入されても、K439Eが導入されたH鎖に導入されても、FcγRに対する結合には影響を及ぼさないと考えられた。
 次に、G237Aを一方のH鎖にのみ導入したヘテロ二量化抗体であるGpH7-A26/GpH7-B3/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、IIbに対する結合が増強していた。しかし、P329Rを一方のH鎖のみに導入したGpH7-A5/GpH7-B12/GpL16-k0と比べて、G237Aをもう一方のH鎖に導入したGpH7-A26/GpH7-B12/GpL16-k0ではFcγRに対する結合が減弱し、G237AのFcγRIIa R、IIbに対する結合増強の効果が観察されなかった。その一方で、P329Rを一方のH鎖のみに導入したGpH7-A48/GpH7-B3/GpL16-k0と比べて、G237AをP329Rと同じH鎖に導入したGpH7-A45/GpH7-B3/GpL16-k0ではFcγRIIa R、IIbに対する結合が増強しており、G237AのFcγRIIa R、IIbに対する増強効果が観察された。この結果から、G237AはP329Rを導入した鎖と異なる鎖に導入すると、抗体とFcγRとの結合が強力に阻害されたため、GpH7-A5に導入したG237AとGpH7-B3に導入したP329Rとを組み合わせると、抗体とFcγRとの結合を同じ方向で認識することが示された。
 L234Dの改変についても同様の評価を実施した(図15)。L234Dを一方のH鎖にのみ導入したヘテロ二量化抗体であるGpH7-A5/GpH7-B17/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりもFcγRIIa R、IIbに対する結合が増強していた。しかし、P329Rのみを一方のH鎖に導入したGpH7-A48/GpH7-B3/GpL16-k0と比べて、L234Dをもう一方のH鎖に導入したGpH7-A48/GpH7-B17/GpL16-k0ではFcγR Ia以外のFcγRに対する結合が減弱し、L234DのFcγRIIa R、IIbに対する結合増強の効果が観察されなかった。その一方で、P329Rのみを一方のH鎖に導入したGpH7-A5/GpH7-B12/GpL16-k0と比べて、L234DをP329Rと同じH鎖に導入したGpH7-A5/GpH7-B41/GpL16-k0ではFcγRIIa R、IIbに対する結合が増強しており、L234DのFcγRIIa R、IIbに対する増強効果が観察された。この結果から、L234DはP329Rを導入した鎖と異なる鎖に導入すると、抗体とFcγRとの結合が強力に阻害されたため、GpH7-B3に導入したL234DとGpH7-A5に導入したP329Rとを組み合わせると、抗体とFcγRとの結合を同じ方向で認識することが示された。
 つまり、G237AおよびL234Dのいずれも、P329Rとは抗体とFcγRに対する結合活性を強める(/弱める)方向が同じであった。
 このように、ヘテロ改変はFcγRに対する結合をX方向、Y方向のいずれか一方に偏って強めていた。この結果から、ヘテロ二量化抗体はFcγRとの相互作用を非対称に増強していることが示された。
〔実施例4〕ヘテロ二量化抗体とホモ二量化抗体のFcγRに対する結合比較
 実施例2より、抗体の2つのH鎖に異なる改変を加えることにより、2つのH鎖に同じ改変を加えるよりも、抗体のFc領域を介したFcγRに対する結合を増強することが可能であることを見出した。そこで、このような性質を持つ改変を見出すために、以下の実験を行った。
 実施例2で作製したGpH7-B3(配列番号:4)において、FcγRとの結合に関与すると考えられるアミノ酸とその周辺のアミノ酸、具体的にはEUナンバリング234番目のLeu、EUナンバリング235番目のLeu、EUナンバリング236番目のGly、EUナンバリング237番目のGly、EUナンバリング238番目のPro、EUナンバリング329番目のSer、EUナンバリング265番目のAsp、EUナンバリング266番目のVal、EUナンバリング267番目のSer、EUナンバリング268番目のHis、EUナンバリング269番目のGlu、EUナンバリング270番目のAsp、EUナンバリング271番目のPro、EUナンバリング295番目のGln、EUナンバリング296番目のTyr、EUナンバリング298番目のSer、EUナンバリング300番目のTyr、EUナンバリング324番目のSer、EUナンバリング325番目のAsn、EUナンバリング326番目のLys、EUナンバリング327番目のAla、EUナンバリング328番目のLeu、EUナンバリング329番目のPro、EUナンバリング330番目のAla、EUナンバリング331番目のPro、EUナンバリング番目の、EUナンバリング332番目のIle、EUナンバリング333番目のGlu、EUナンバリング334番目のLys、EUナンバリング335番目のThr、EUナンバリング336番目のIle、EUナンバリング337番目のSerの部分を、元のアミノ酸とシステインを除く18種類のアミノ酸にそれぞれ置換したGpH7-B3 variantを作製した。各GpH7-B3 variantの名称は、A_Bと表現し、Aには改変する残基のEUナンバリング、アミノ酸の種類の情報を一文字表記で記載し、Bには置換後のアミノ酸の情報を示した。例えばEUナンバリング234番目のLeuをGlyにしたB3_variantはL234_01Gと命名される。なお、置換後のアミノ酸の情報に関しては一文字表記の前にそのアミノ酸特有の数値を便宜上記載した。具体的には、Glyの場合は01G、Alaの場合は02A、Valの場合は03V、Pheの場合は04F、Proの場合は05P、Metの場合は06M、Ileの場合は07I、Leuの場合は08L、Aspの場合は09D、Gluの場合は10E、Lysの場合は11K、Argの場合は12R、Serの場合は13S、Thrの場合は14T、Tyrの場合は15Y、Hisの場合は16H、Asnの場合は18N、Glnの場合は19Q、Trpの場合は20Wという記号を用いた。
 2本のH鎖に変異を導入したホモ二量化抗体は以下の手順で調製した。抗体の発現にはH鎖としてGpH7-B3 variant、L鎖としてGpL16-k0(配列番号:5)を用い、参考実施例1の方法に従って抗体を調製した。このようにして調製した両H鎖に変異を導入したホモ二量化抗体をHo Abと呼ぶ。
 一方のH鎖のみに変異を導入したヘテロ二量化抗体は以下の手順で調製した。抗体の発現にはH鎖としてGpH7-B3 variant、GpH7-A5(配列番号:3)、L鎖としてGpL16-k0(配列番号:5)を用い、参考実施例1の方法に従って抗体を調製した。このようにして調製した一方のH鎖にのみ変異を導入したヘテロ二量化抗体をHe Abと呼ぶ。
 ホモ二量化抗体のコントロールとして、H鎖にGpH7-B3(配列番号:4)、L鎖にGpL16-k0(配列番号:5)を用いて調製した抗体GpH7-B3/GpL16-k0を、参考実施例1の方法に従って調製した。このホモ二量化抗体のコントロールとなる抗体をHoCon Abと呼ぶ。実施例2で検討したように、HoCon Abは天然型IgG1と比べて各FcγRに対する結合活性は大きく変化していない。
 ヘテロ二量化抗体のコントロールとして、H鎖にGpH7-A5(配列番号:3)、GpH7-B3(配列番号:4)、L鎖にGpL16-k0(配列番号:5)を用いて調製した抗体GpH7-A5/GpH7-B3/GpL16-k0を、参考実施例1の方法に従って調製した。このヘテロ二量化抗体のコントロールとなる抗体をHeCon Abと呼ぶ。HeCon Abは実施例2で検討したように、天然型IgG1と比べて各FcγRに対する結合は大きく変化していない。
 調製したHo Ab、He Ab、HeCon AbおよびHoCon Abを用いて、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIaに対する結合活性を参考実施例2の方法に従って測定した。それぞれのFcγRの測定結果について、以下の方法に従って図を作製した。He Abの各FcγRに対する結合活性を、HeCon Abの各FcγRに対する結合活性で割り、100をかけた値をHe/Conとした。Ho Abの各FcγRに対する結合活性を、HoCon Abの各FcγRに対する結合活性で割り、100をかけた値をHo/Conとした。目的の改変を含むGpH7-B3variantを用いて作製したホモ二量化抗体、ヘテロ二量化抗体について、横軸にHo/Con、縦軸にHe/Conの値をとった。FcγRIa, FcγRIIa(R)、FcγRIIa(H), FcγRIIb、FcγRIIIaのそれぞれのFcγRについての結果を図16、図17、図18、図19、図20にまとめた。各改変について、He/ConおよびHo/Conの値によって次のように解釈できる。
1. He/ConおよびHo/Conの値が100である場合:その変異を導入したGpH7-B3 variantを含むヘテロ二量化抗体He Ab、ホモ二量化抗体Ho AbのFcγRに対する結合活性が、それぞれヘテロ二量化抗体のコントロール、ホモ二量化抗体のコントロールのFcγRに対する結合活性と同等であることを示す。
2. He/Con、Ho/Conの値が100以下である場合:その変異を導入したGpH7-B3 variantを含むヘテロ二量化抗体He Ab、ホモ二量化抗体Ho AbのFcγRに対する結合活性が、それぞれヘテロ二量化抗体のコントロール、ホモ二量化抗体のコントロールのFcγRに対する結合活性より弱いことを示す。
3. He/Con、Ho/Conの値が100以上を示す場合:その変異を導入したGpH7-B3 variantを含むヘテロ二量化抗体He Ab、ホモ二量化抗体Ho AbのFcγRに対する結合活性が、それぞれヘテロ二量化抗体のコントロール、ホモ二量化抗体のコントロールのFcγRに対する結合活性より強いことを示す。
4. He/Conの値がHo/Conの値より大きい場合:その変異を導入したGpH7-B3 variantを含むヘテロ二量化抗体He AbのFcγRに対する結合活性が、ホモ二量化抗体Ho AbのFcγRに対する結合活性より強いことを示す。
5.  He/Conの値がHo/Conの値より小さい場合:変異を導入したGpH7-B3 variantを含むヘテロ二量化抗体He AbのFcγRに対する結合活性が、変異を導入したGpH7-B3 variantを含むホモ二量化抗体Ho AbのFcγRに対する結合活性より弱いことを示す。
 この1から5の解釈に基づき、図16から図20の各図の点を図21のように分類することができる。
 その改変が、図21のiの領域に存在した場合は、その改変は2つのH鎖に導入されたホモ二量化抗体においてはFcγRに対する結合を減弱するが、同じ改変が一方のH鎖にのみ導入されたヘテロ二量化抗体においてはFcγRに対する結合を増強する効果があることを意味する。すなわち、その改変はヘテロ二量化抗体でのみFcγRに対する結合を増強する改変である。iの領域に含まれる改変を各FcγRについて表2(表2-1~2-3)、表3(表3-1及び3-2)、表4、表5、表6にまとめた。
 その改変が、図21のiiの領域に存在した場合は、その点に対応する改変は両H鎖に導入されたホモ二量化抗体、同じ改変が一方のH鎖にのみ導入されたヘテロ二量化抗体のいずれにおいてもFcγRに対する結合を増強するが、その結合増強効果はヘテロ二量化抗体においての方が大きいことを意味する。すなわち、この領域内の改変はホモ二量化抗体よりも、ヘテロ二量化抗体においての方が、FcγRに対する結合増強効果の高い改変である。iiの領域に含まれる改変を各FcγRについて表2(表2-1~2-3)、表3(表3-1及び3-2)、表4、表5、表6にまとめた。
 なお、各表において、FcγRIa、FcγRIIa H、FcγRIIa R、FcγRIIb、FcγRIIIaに対する結合活性に関わるHe/ConをそれぞれHe/Con _1a、He/Con _2aH、He/Con _2aR、He/Con _2b、He/Con_3aとし、FcγRIa、FcγRIIa H、FcγRIIa R、FcγRIIb、FcγRIIIaに対する結合活性に関わるHo/ConをそれぞれHo/Con _1a、Ho/Con _2aH、Ho/Con _2aR、Ho/Con _2b、Ho/Con_3aとした。
 その改変が、図21のiiiの領域に存在した場合は、その点に対応する改変は両H鎖に導入されたホモ二量化抗体、同じ改変が一方のH鎖にのみ導入されたヘテロ二量化抗体のいずれにおいてもFcγRに対する結合を増強するが、その結合増強効果がホモ二量化抗体においての方が大きいことを意味する。すなわち、この領域内の改変はヘテロ二量化抗体よりも、ホモ二量化抗体においての方が、FcγRに対する結合増強効果の高い改変である。
 尚、以下の表において、アミノ酸の改変を示す場合には、A327_03Vのように示す。最初のアルファベット(A327_03VのAに該当)は、改変前のアミノ酸残基を一文字表記で示した場合のアルファベットを意味する。それに続く数字(A327_03Vの327に該当)はその改変箇所のEUナンバリングを意味する。最後の数字+アルファベット(A327_03Vの03Vに該当)は、改変後のアミノ酸残基を一文字表記で示した場合のアルファベット(アミノ酸の種類を示す数字+アルファベット)を意味する。それぞれ、01G(Gly)、02A(Ala)、03V(Val)、04F(Phe)、05P(Pro)、06M(Met)、07I(Ile)、08L(Leu)、09D(Asp)、10E(Glu)、11K(Lys)、12R(Arg)、13S(Ser)、14T(Thr)、15Y(Tyr)、16H(His)、17C(Cys)、18N(Asn)、19Q(Gln)、20W(Trp)で表される。以上のことから、例えば、「A327_03V」は「EUナンバリング327番目のアミノ酸AのVへの置換」を意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 FcγRIaについて i,iiの領域(図21)に含まれる改変を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 FcγRIIa R について i,iiの領域 (図21) に含まれる改変を示す。
Figure JPOXMLDOC01-appb-T000007
 FcγRIIa Hについて i,iiの領域(図21)に含まれる改変を示す。
Figure JPOXMLDOC01-appb-T000008
 FcγRIIbについて i,iiの領域(図21)に含まれる改変を示す。
Figure JPOXMLDOC01-appb-T000009
 FcγRIIIaについて i,iiの領域(図21)に含まれる改変を示す。
 本実施例で見出された改変は実施例2に加えて、実施例1に示したヘテロ二量化抗体によるFcγR認識能向上のコンセプトを支持すると考えられた。図21のiの領域にある改変は従来のように2つのH鎖の双方に導入した際にはFcγRに対する結合活性を減弱させる改変として考えられ、結合を増強する改変としては認識されてこなかった。しかし、2つのH鎖の一方にのみ導入することで、このような改変についてもFcγRに対する結合活性を向上させる改変として見出すことに成功した。
〔実施例5〕ヘテロ二量化抗体の改変の組み合わせの決定方法
 実施例3で示したように、ヘテロ二量化抗体において、ある改変がFcγRに対する結合に及ぼす効果は、改変によって方向が異なる。そのため、ヘテロ二量化抗体において複数の改変を組み合わせてFcγRに対する結合を一層増強あるいは減弱させようとする場合には、各改変のFcγRとの結合に及ぼす効果の方向をそろえる必要がある。仮に二つの改変が抗体のFcγRに対する結合に及ぼす増強効果の方向が異なる状態で各改変を導入した場合、各改変の効果が互いに打ち消しあい、FcγRに対する結合増強改変を組み合わせたにもかかわらず、結合増強効果が観察されないと考えられる。しかし、通常は各改変をどちらのH鎖に導入すべきかを事前に見分ける方法がないため、適切な組み合わせ方法を見出すためには、目的の改変を同じH鎖あるいは異なるH鎖に導入した抗体を調製し、FcγRに対する結合活性を比較しなければならない。例えば、ホモ二量化抗体の場合、3種類の異なる改変を全て導入する際には、両H鎖に各改変を導入した抗体を一種類作製すればよい。しかし、ヘテロ二量化抗体の場合、各改変をいずれかのH鎖に導入するかを判断する必要がある。その場合、図22に示した通り、最大で4通りの組み合わせを試す必要がある。すなわち、改変の組み合わせの検討をする際に作製すべき改変体の数が多大になり、非効率的である。そこで抗体とFcγRの結合を一方向からのみ阻害するP329Rを、導入を検討する改変と組み合わせることでその改変が抗体とFcγRとの結合に影響を及ぼす方向を見出す方法を検討した。
 実施例4で見出されたヘテロ二量化抗体においてFcγRIIIaに対する結合を増強する改変であるL234Y、G236W、S298AをそれぞれP329Rが導入されたのと同じH鎖、あるいは異なるH鎖に導入した場合に、FcγRIIIaに対する結合がどのように変化するかを評価した。まず、H鎖としてP329R改変を導入したGpH7-B12に、L234Y、G236W、S298Aをそれぞれ導入したGpH7-HA5(配列番号:19)、GpH7-HA6(配列番号:20)、GpH7-HA11(配列番号:21)、もう一つのH鎖としてGpH7-A5、L鎖としてGpL16-k0を用いて参考実施例1の方法に従って、目的の改変体を発現、調製した。また、H鎖としてL234Y、G236W、S298AをそれぞれGpH7-B3に導入したGpH7-B3-01-15Y(配列番号:22)、GpH7-B3-03-20W(配列番号:23)、GpH7-B3-15-02A(配列番号:24)、もう一つのH鎖としてGpH7-A5にP329Rを導入したGpH7-A48(配列番号:16)、L鎖としてGpL16-k0を用いて、参考実施例1の方法に従って、目的の抗体を発現、調製した。ここで得られた抗体をそれぞれGpH7-A5/GpH7-HA5/GpL16-k0(配列番号:3、19、5)、GpH7-A5/GpH7-HA6/GpL16-k0(配列番号:3、20、5)、GpH7-A5/GpH7-HA11/GpL16-k0(配列番号:3、21、5)、GpH7-A48/GpH7-B3-01-15Y/GpL16-k0(配列番号:16、22、5)、GpH7-A48/GpH7-B3-03-20W/GpL16-k0(配列番号:16、23、5)、GpH7-A48/GpH7-B3-15-02A/GpL16-k0(配列番号:16、24、5)とした。参考実施例2の方法に従って各改変体のFcγRIIIaに対する結合活性を比較し、L234Y、G236W、S298AのP329Rとの組み合わせの効果を表7にまとめた。
Figure JPOXMLDOC01-appb-T000010
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0(配列番号:3、4、5)の FcγRIIIaに対する結合を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 この結果から、各改変について、各改変をP329Rと同じH鎖に導入した場合、異なるH鎖に導入した場合について、FcγRIIIaに対する結合活性を比較した。L234Yの場合、前者に対応するGpH7-A5/GpH7-HA5/GpL16-k0の結合活性は60、後者に対応するGpH7-A48/GpH7-B3-01-15Y/GpL16-k0の結合活性は11であり、P329Rと異なるH鎖に改変が導入された場合の方がFcγRに対する結合が阻害されていた。G236Wの場合、前者に対応するGpH7-A5/GpH7-HA6/GpL16-k0の結合活性は56、後者に対応するGpH7-A48/GpH7-B3-03-20W/GpL16-k0の結合活性は13であり、P329Rと異なるH鎖に改変が導入された場合の方がFcγRに対する結合が阻害されていた。S298Aの場合、前者に対応するGpH7-A5/GpH7-HA11/GpL16-k0の結合活性は84、後者に対応するGpH7-A48/GpH7-B3-15-02A/GpL16-k0の結合活性は47であり、P329Rと異なるH鎖に改変が導入された場合の方がFcγRに対する結合活性が阻害されていた。いずれの改変についても後者のP329Rと異なるH鎖に導入した場合の方がFcγRIIIaに対する結合が阻害されていた。P329Rを導入したH鎖が図3のHA鎖に対応すると仮定すると、P329RはX方向からの結合を阻害すると考えられる。結合が顕著に阻害された組み合わせは、L234Y、G236W、S298AをP329Rと異なるH鎖に導入したときであったので、この場合これらの改変をHB鎖に導入したことになる。L234Y、G236W、S298Aのいずれの改変も、P329Rと異なるH鎖に導入したときにFcγRIIIa に対する結合増強効果が顕著に阻害されたことから、HB鎖に導入した場合にはいずれの改変もP329RがFcγRIIIaの結合を阻害するX方向からの結合を強めていたと考えられる。よって、これらの改変を同じH鎖に導入することで、FcγRIIIaに対する結合をさらに増強することができると考えられた。
 L234Y、G236W、S298Aのうち2つをそれぞれ同じH鎖あるいは異なるH鎖に導入することでFcγRに対する結合が増強するのかを評価し、上記の仮説を検証した。L234Y、G236W、S298AのそれぞれをGpH7-A5に導入したGpH7-TA1(配列番号:25)、GpH7-TA2(配列番号:26)、GpH7-TA3(配列番号:27)と、L234Y、G236W、S298AのそれぞれをGpH7-B3に導入したGpH7-B3-01-15Y(配列番号:22)、GpH7-B3-03-20W(配列番号:23)、GpH7-B3-15-02A(配列番号:24)を挿入した発現ベクターを参考実施例1の方法にしたがい作製した。また、L234YとG236WをGpH7-A5に導入したGpH7-TA4(配列番号:28)、L234YとS298AをGpH7-A5に導入したGpH7-TA5(配列番号:29)、G236WとS298AをGpH7-A5に導入したGpH7-TA6(配列番号:30)を挿入した発現ベクターを作製した。これらを表8のように組み合わせ、それぞれの組み合わせに対してGpL16-k0をL鎖として加えて、参考実施例1の方法に従って目的の抗体の発現、調製を実施した。発現したサンプルのH鎖、変異箇所に関する情報、抗体のFcγRIIIaに対する結合を測定した結果を表8にまとめた。
Figure JPOXMLDOC01-appb-T000011
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の FcγRIIIaに対する結合を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表8の結果から、L234YとG236Wの組み合わせ効果について検証した。L234YとG236Wを異なるH鎖に導入したGpH7-TA2/GpH7-B3-01-15Y/GpL16-k0はFcγRIIIaに対する結合活性が130であり、L234Yのみを導入したGpH7-A5/GpH7-B3-01-15Y/GpL16-k0の結合活性131と比べて増加しておらず、G236Wのみを導入したGpH7-A5/GpH7-B3-03-20W/GpL16-k0の結合活性140と比べて減少していた。しかし、L234YとG236Wを同じH鎖に導入したGpH7-TA4/GpH7-B3/GpL16-k0は結合活性が168であり、L234Yのみを導入したGpH7-A5/GpH7-B3-01-15Y/GpL16-k0、G236Wのみを導入したGpH7-A5/GpH7-B3-03-20W/GpL16-k0と比べて結合活性が増加していた。この結果から、L234YとG236Wは予測した通り、同じH鎖に導入することでFcγRIIIaに対する結合活性をより増強することが明らかとなった。
 次に、表8より、L234YとS298Aの組み合わせ効果について検証した。L234YとS298Aを異なるH鎖に導入したGpH7-TA1/GpH7-B3-15-02A/GpL16-k0はFcγRIIIaに対する結合活性が142であり、L234Yのみを導入したGpH7-A5/GpH7-B3-01-15Y/GpL16-k0の結合活性131と比べて増加していたが、S298Aのみを導入したGpH7-A5/GpH7-B3-15-02A/GpL16-k0の結合活性である163より減少していた。つまり、GpH7-TA1/GpH7-B3-15-02A/GpL16-k0はS298Aのみを導入した場合よりも結合活性が増強していないことからS298AとL234Yとを異なるH鎖に導入しては、FcγRIIIaに対する結合活性をより増強する効果を付与できなかったと言える。しかし、L234YとS298Aを同じH鎖に導入したGpH7-TA5/GpH7-B3/GpL16-k0は結合活性が208であり、L234Yのみを導入したGpH7-A5/GpH7-B3-01-15Y/GpL16-k0、S298Aのみを導入したGpH7-A5/GpH7-B3-15-02A/GpL16-k0のいずれと比べてもFcγRIIIaへの結合活性が増加していた。この結果から、L234YとS298Aとは予測した通り、同じH鎖に導入することでFcγRIIIaに対する結合活性をより増強することが明らかとなった。
 次に、表8より、G236WとS298Aの組み合わせ効果について検証した。G236WとS298Aを異なるH鎖に導入したGpH7-TA3/GpH7-B3-03-20W/GpL16-k0はFcγRIIIaに対する結合活性が70であり、G236Wのみを導入したGpH7-A5/GpH7-B3-03-20W/GpL16-k0の結合活性である140と比べて減少しており、S298Aのみを導入したGpH7-A5/GpH7-B3-15-02A/GpL16-k0の結合活性である163よりも減少していた。しかし、G236WとS298Aを同じH鎖に導入したGpH7-TA6/GpH7-B3/GpL16-k0は結合活性が228であり、G236Wのみを導入したGpH7-A5/GpH7-B3-03-20W/GpL16-k0、S298Aのみを導入したGpH7-A5/GpH7-B3-15-02A/GpL16-k0のいずれと比べても結合活性が増加していた。この結果から、G236WとS298Aとは予測した通り、同じH鎖に導入することでFcγRIIIaに対する結合活性をより増強することが明らかとなった。
 これらの結果から、最初に予測した通り、L234Y、G236W、S298A はそれぞれ同じH鎖に導入されたときにのみ、結合が増強することが示された。これはL234Y、G236W、S298A が同じ鎖に存在する場合には、FcγRとの結合を同じ方向から増強していることを支持するデータである。つまり、各改変とP329Rとを組み合わせ、FcγRIIIaに対する結合活性を比較した結果から予測された結果に従うことで、2つの改変を適切に組み合わせる方法を決定できることを示している。すなわち、P329Rとの組み合わせはヘテロ二量化抗体における改変の組み合わせ方法を予測する有用な方法であり、この方法を用いることで、その他の有用な改変の組み合わせを明らかにすることが可能である。
 各改変とP329Rとを組み合わせ、FcγRIIIaに対する結合活性を比較した結果から、2つ以上の改変の組み合わせを考えた場合、L234YとG236W、G236WとS298A、S298AとL234Yは同じH鎖に導入した場合、それぞれ同じ方向からFcγRIIIaとの相互作用を増強していることが明らかとなった。すなわち、この結果からL234Y、G236W、S298Aは全て同じ方向からFcγRIIIaに対する結合活性を増強していると考えられるため、これらの改変は同じH鎖に導入した場合に、FcγRIIIaに対する結合活性が最も強くなると予想された。この仮説を検証するために、L234YとG236W、L234YとS298A、G236WとS298Aのそれぞれの改変群をGpH7-A5に導入したGpH7-TA4、GpH7-TA5、GpH7-TA6とL234Y、G236W、S298AをそれぞれGpH7-B3に導入したGpH7-B3-01-15Y、GpH7-B3-03-20W、GpH7-B3-15-02Aを挿入した発現ベクターを参考実施例1にしたがって調製し、L234Y、G236W、S298Aの3つの改変がいずれかのH鎖には導入されるように組み合わせ、L鎖としてGpL16-k0を加えて、参考実施例1の方法に従って目的の抗体を発現、精製した。また、L234Y、G236W、S298Aの3つの改変をGpH7-A5に導入したGpH7-TA7(配列番号:31)を作製し、GpH7-B3、GpL16-k0と合わせて、参考実施例1の方法に従って目的の抗体を発現、精製した。ここで調製した抗体のリストと、それぞれの抗体のFcγRIIIaに対する結合活性を比較した結果を表9にまとめた。
Figure JPOXMLDOC01-appb-T000012
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の FcγRIIIaに対する結合活性を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 その結果、各改変とP329Rとを組み合わせ、FcγRIIIaに対する結合活性を比較した結果から予測した通り、L234Y、G236W、S298Aが同じH鎖に導入されたGpH7-TA7/GpH7-B3/GpL16-k0が最もFcγRIIIaに対する結合が増強していた。すなわち、この結果から各改変とP329Rとを組み合わせ、FcγRIIIaに対する結合活性を比較することで、2つ以上の改変の適切な組み合わせ方法を予想することができることが明らかとなった。
〔実施例6〕ヘテロ二量化抗体における従来のホモ二量化抗体と新規ヘテロ二量化抗体の比較
 実施例5の表7、表8、表9の結果から、単独でFcγRIIIaに対する結合活性を増強するヘテロ改変は、適切に組み合わせることで、FcγRIIIaへの結合をさらに増強することが可能であることが示された。具体的には、L234Y、G236W、S298Aは同じH鎖に改変を加えることで、FcγRに対する結合活性がより増強することが示された。
 次に、複数の改変を組み合わせても、対応する複数の改変を導入した場合にヘテロ二量化抗体の方がホモ二量化抗体よりもFcγRに対する結合が増強しているというヘテロ二量化抗体の性質が維持されているかを確認した。具体的には、GpH7-A5、GpH7-B3のそれぞれにL234Y、G236W、S298Aを導入したGpH7-TA7およびGpH7-TA45(配列番号:32)を参考実施例1の方法にしたがって作製し、表10に示すようにL234Y、G236W、S298Aが一方のH鎖にのみ導入されたヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0およびGpH7-A5/GpH7-TA45/GpL16-k0、L234Y、G236W、S298Aが両H鎖に導入されたホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0を参考実施例1の方法にしたがって発現、精製した。これらを参考実施例2の方法にしたがって、そのFcγRIIIaに対する結合を比較した(表10)。
Figure JPOXMLDOC01-appb-T000013
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の FcγRIIIaに対する結合活性を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表10の結果から、L234Y、G236W、S298Aが一方のH鎖にのみ導入されたヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0およびGpH7-A5/GpH7-TA45/GpL16-k0のいずれと比べても、L234Y、G236W、S298Aが両H鎖に導入されたホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0は、FcγRIIIaに対する結合が減少していた。このことから、ヘテロ二量化抗体においてはFcγRに対する結合活性を増強するが、ホモ二量化抗体においてはFcγRに対する結合活性を減弱するという、L234Y、G236W、S298Aの各改変の性質が、複数の改変を組み合わせた場合であっても維持されることが明らかとなった。
 次に、L234Y、G236W、S298A が一方のH鎖にのみ導入されたヘテロ二量化抗体において、実施例3で考察したようなFcγRIIIaとの結合の方向性が維持されているか否かを検証した。
 GpH7-TA7、GpH7-B3のそれぞれにP329Rを導入したGpH7-TA8(配列番号:33)、GpH7-B12(配列番号:12)を参考実施例1の方法にしたがって作製し、表11に示すようにL234Y、G236W、S298A とP329Rを同じH鎖に導入したヘテロ二量化抗体GpH7-TA8/GpH7-B3/GpL16-k0、異なる鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B12/GpL16-k0を参考実施例1の方法にしたがって調製した。これらの抗体とL234Y、G236W、S298Aを一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0のFcγRIIIに対する結合活性を参考実施例2の方法にしたがって比較した(表11)。
Figure JPOXMLDOC01-appb-T000014
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の FcγRIIIaに対する結合を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表11の結果、L234Y、G236W、S298Aの改変群をP329Rと同じH鎖に導入したヘテロ二量化抗体GpH7-TA8/GpH7-B3/GpL16-k0とL234Y、G236W、S298Aの改変群をP329Rと異なるH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B12/GpL16-k0のいずれも、GpH7-TA7/GpH7-B3/GpL16-k0に比べてFcγRIIIaに対する結合活性が減弱していたが、GpH7-TA7/GpH7-B12/GpL16-k0ではFcγRIIIaに対する結合活性が11であり、GpH7-TA8/GpH7-B3/GpL16-k0の150に比べて顕著に減弱していた。この結果から、L234Y、G236W、S298Aの改変を複数H鎖に導入しても、P329Rと異なるH鎖に導入した場合には著しくFcγRに対する結合活性が著しく減弱されるという、実施例3においてL234Y、G236W、S298Aの各改変の場合に観察された性質と同様の性質が観察された。
 これらの結果から、FcγRに対する結合を増強する改変を適切に組み合わせることによって、ヘテロ二量化抗体の性質を維持したまま、FcγRに対する結合活性を一層増強することが可能であることが明らかとなった。
〔実施例7〕従来技術との比較:FcγRIIIa結合増強アミノ酸改変抗体とヘテロ改変体の比較
 これまでにもFcγRIIIaに対する結合を増強することでADCC活性を増強する改変が知られている。例えば、S239D、I332E、A330Lの改変は両抗体のH鎖に導入した場合に、最もFcγRIIIaに対する結合を増強する改変であることが知られている(Proc. Natl. Acad. Sci. USA, 103, 4005-4010, 2006)。抗体依存的細胞障害(ADCC)活性が増強することで、抗体の抗腫瘍活性が増強することが示されており、抗体のFcγRIIIaに対する結合を増強することは抗体の医薬品としての有用性を高めるために有効な手段である。しかしながら、これまでの実施例で示されている通り、ホモ二量化抗体を用いたFcγRに対する結合活性の増強には限界があると考えられ、ヘテロ改変により、更なる増強が可能と考えられた。
 実施例1で述べたように、抗体のFc領域とFcγRとは非対称的に相互作用している。S239D、I332E、A330Lの改変を導入した抗体の場合、その立体構造からHA鎖においてはS239D、I332E、A330Lの改変された全ての残基がFcγRとの相互作用の増強に関与しているが、HB鎖においてS239D以外はFcγRと接しておらず、FcγRに対する結合活性増強に寄与していないと考えられた(図23)。すなわち、Fc領域とFcγRとの相互作用の非対称性を考慮すると、従来の抗体改変技術で導入した各改変はFcγRと十分に相互作用できず、抗体とFcγRとの相互作用を最適化するのには不十分と考えられる。例えば、上記のS239D、I332E、A330Lの改変の場合、HB鎖にこれらの改変の代わりにFcγRIIIaとの相互作用をHB鎖側から増強する改変を導入することで、FcγRIIIaに対する結合を更に増強することが可能になると考えられる。すなわち、抗体の各H鎖に異なる改変を加える本発明のヘテロ二量化抗体を作製する技術(以下、本明細書において「ヘテロ二量化抗体技術」という)を用いることで、抗体の各H鎖に同じ改変を加える技術(以下、本明細書において、「従来技術」または「ホモ二量化抗体技術」という)よりもさらにFcγRに対する結合を増強させられる可能性がある。
 FcとFcγRIIIaの複合体の立体構造から、S239D、I332E、A330L とは反対に、S298はFcγRとは図23のHB鎖でしか相互作用していないと考えられる(JBC, 276: 16469-16477, 2001)。このことから、S298に改変を導入した場合、置換された変異もHB鎖側でFcγRIIIaと相互作用すると考えられる。実施例5で見たように、L234Y、G236WはS298Aと同じ方向からFcγRとの相互作用を増強していると考えられた。つまり、S239D、A330L、I332E を同じH鎖に導入し、L234Y、G236W、S298Aを反対のH鎖に導入すれば、導入した全ての改変がFcγRと同時に相互作用することが可能になり、その結果としてFcγRとの相互作用を一層増強することができると考えられる。
 この仮説を検証するために以下の実験を行った。L234Y、G236W、S298A、S239D、A330L、I332Eの改変をそれぞれ導入したH鎖と、P329Rを同じH鎖、あるいは異なるH鎖に導入した抗体を利用して、実施例5の方法にしたがって各改変がFcγRを認識する方向を決定した。参考実施例1の方法にしたがって、GpH7-A5、GpH7-A5にP329Rを導入したGpH7-A48(配列番号:16)、GpH7-B3にS239DおよびP329Rを導入したGpH7-HA7(配列番号:34)、GpH7-B3にA330LおよびP329Rを導入したGpH7-HA15(配列番号:35)、GpH7-B3にI332EおよびP329Rを導入したGpH7-HA18(配列番号:36)、GpH7-B3にL234YおよびP329Rを導入したGpH7-HA5(配列番号:19)、GpH7-B3にG236WおよびP329Rを導入したGpH7-HA6(配列番号:20)、GpH7-B3にS298AおよびP329Rを導入したGpH7-HA11(配列番号:21)、GpH7-B3にS239Dを導入したGpH7-B3-06-09D(配列番号:37)、GpH7-B3にA330Lを導入したGpH7-B3-20-08L(配列番号:38)、GpH7-B3にI332Eを導入したGpH7-B3-22-10E(配列番号:39)、GpH7-B3にL234Yを導入したGpH7-B3-01-15Y(配列番号:22)、GpH7-B3にG236Wを導入したGpH7-B3-03-20W(配列番号:23)、GpH7-B3にS298Aを導入したGpH7-B3-15-02A(配列番号:24)を挿入した発現ベクターを作製した。L234Y、G236W、S298A、S239D、A330L、I332Eの各改変とP329Rとが同じH鎖あるいは異なるH鎖に存在するように、各H鎖に対応する発現ベクターを組み合わせ、L鎖に対応する発現ベクターのGpL16-k0と合わせて、参考実施例1の方法に従って目的の抗体を発現、調製した。調製した抗体を使ってFcγRIIIaに対する結合活性を測定し、P329Rを用いたL234Y、G236W、S298A,S239D、A330L、I332EのFcγRIIIa認識方向を検討した結果を表12にまとめた。
Figure JPOXMLDOC01-appb-T000015
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、FcγRIIIaに対する結合活性はGpH7-A5/GpH7-B3/GpL16-k0の FcγRIIIaに対する結合活性を100としたときの相対的な結合活性を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 その結果から、各改変について、各改変をP329Rと同じH鎖に導入した場合、異なるH鎖に導入した場合で、FcγRIIIaに対する結合活性を比較した。S239Dの場合、前者に対応するGpH7-A5/GpH7-HA7/GpL16-k0の結合活性は3、後者に対応するGpH7-A48/GpH7-B3-06-09D/GpL16-k0の結合活性は123であり、P329Rと同じH鎖に改変が導入された場合の方がFcγRIIIaに対する結合が阻害されていた。A330Lの場合、前者に対応するGpH7-A5/GpH7-HA15/GpL16-k0の結合活性は32、後者に対応するGpH7-A48/GpH7-B3-20-08L/GpL16-k0の結合活性は60であり、P329Rと同じH鎖に改変が導入された場合の方がFcγRIIIaに対する結合が阻害されていた。I332Eの場合、前者に対応するGpH7-A5/GpH7-HA18/GpL16-k0の結合活性は35、後者に対応するGpH7-A48/GpH7-B3-22-10E/GpL16-k0の結合活性は189であり、P329Rと同じH鎖に改変が導入された場合の方がFcγRIIIaに対する結合が阻害されていた。いずれの改変についても前者のP329Rが同じH鎖に導入されていた場合の方がFcγRIIIaに対する結合が阻害されていた。P329Rを導入したH鎖が図23のHA鎖に対応すると仮定すると、P329RはX方向からの結合を阻害すると考えられる。結合が顕著に阻害された組み合わせは、S239D、A330L、I332EをP329Rと同じH鎖に導入したときであったので、この場合これらの改変をHA鎖に導入したことになる。S239D、A330L、I332Eのいずれの改変も、P329Rと同じH鎖に導入したときにFcγRIIIa に対する結合増強効果が顕著に阻害されたことから、HA鎖に導入した場合にはいずれの改変もP329RがFcγRIIIaの結合を阻害するX方向からの結合を強めていたと考えられる。よって、これらの改変を同じH鎖に導入することで、FcγRIIIaに対する結合をさらに増強することができると考えられる。実施例5より、L234Y、G236W、S298AはいずれもHB鎖に導入した場合にX方向からの結合を強めていると考察された。実施例5、実施例6で考察したように、P329Rと組み合わせることで各改変を適切に組み合わせる方法を見出すことが可能である。今回の結果から、図3のX方向からのFcγRIIIaに対する結合を増強するためにはS239D、A330L、I332EはHA鎖、L234Y、G236W、S298AはHB鎖に導入する必要があり、それぞれの改変群を異なるH鎖に導入することで、X方向からのFcγRIIIaに対する結合をより増強することが可能であると考えられた。
 この仮説を検証するために、参考実施例1の方法にしたがってS239D、A330L、I332Eを全てGpH7-A5に導入したGpH7-A57(配列番号:40)、GpH7-B3に導入したGpH7-B78(配列番号:41)およびL234Y、G236W、S298Aを全てGpH7-A5に導入したGpH7-TA7(配列番号:31)、GpH7-B3に導入したGpH7-TA45(配列番号:32)を挿入した発現ベクターを調製した。これらの発現ベクターとGpH7-A5、GpH7-B3、GpL16-k0を使って、一方のH鎖にL234Y、G236W、S298Aを、もう一方のH鎖にS239D、A330L、I332Eを導入したヘテロGpH7-TA7/GpH7-B78/GpL16-k0、L234Y、G236W、S298Aのみを一方のH鎖に導入したGpH7-TA7/GpH7-B3/GpL16-k0、L234Y、G236W、S298Aを両方のH鎖に導入したGpH7-TA7/GpH7-TA45/GpL16-k0、S239D、A330L、I332Eのみを一方のH鎖に導入したGpH7-A5/GpH7-B78/GpL16-k0、S239D、A330L、I332Eを両方のH鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0を参考実施例1の方法に従って発現、調製した。調製した抗体は参考実施例2の方法に従って測定したFcγRIIIaに対するKDを指標に、FcγRIIIaに対する結合活性を比較し、L234Y、G236W、S298AとS239D、A330L、I332Eの組み合わせの効果の検証結果を表13にまとめた。
Figure JPOXMLDOC01-appb-T000016
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-G1d/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratio 1とし、GpH7-A5/GpH7-B3/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratio 2とした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表13の結果から、天然型IgG1であるGpH7-G1d/GpL16-k0と、D356K、H435RおよびK439Eをそれぞれ一方のH鎖に導入したGpH7-A5/GpH7-B3/GpL16-k0とを比較すると、そのFcγRIIIaに対する結合活性の変化は0.75倍であり、大きな差異は観察されなかった。このことから、D356K、H435RおよびK439Eの改変はFcγRIIIaに対する結合活性に対して影響を与えないと考えられた。
 従来技術を用いたホモ二量化抗体について、各改変の効果を検証した。S239D、A330L、I332Eを両H鎖に導入したホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が約260倍増強していたが、反対にL234Y、G236W、S298Aを両H鎖に導入したホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0では0.49倍に減弱していた。この結果から、ホモ二量化抗体においてはS239D、A330L、I332Eの改変群にのみFcγRIIIaに対する結合活性増強効果があることが明らかとなった。
 各改変群を一方のH鎖にのみ導入したヘテロ二量化抗体について、各改変群の効果を検証した。S239D、A330L、I332Eを一方のH鎖に導入したヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が30倍増強し、L234Y、G236W、S298Aを一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0では5.1倍増強した。この結果から、S239D、A330L、I332Eの改変群の方がFcγRIIIaに対する結合活性増強効果が高いことが明らかとなった。
 各改変群のホモ二量化抗体とヘテロ二量化抗体における効果の違いを検証した。S239D、A330L、I332Eについては、そのヘテロ二量化抗体においてはGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が30倍増強し、ホモ二量化抗体では約260倍増強しており、ホモ二量化抗体に導入したほうがFcγRIIIaに対する結合活性の増強を一層高められることが明らかとなった。一方で、L234Y、G236W、S298Aについては、そのヘテロ二量化抗体においてはGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が5.1倍増強したにも関わらず、ホモ二量化抗体では0.49倍に減弱していた。この結果は実施例5で考察したのと同様に、L234Y、G236W、S298Aの改変群はヘテロ二量化抗体においてのみ、FcγRIIIaに対する結合活性増強効果が見出されることを示している。
 ホモ二量化抗体においてはS239D、A330L、I332Eの改変群のみがFcγRIIIaに対する結合増強効果を示し、ヘテロ二量化抗体においてもS239D、A330L、I332Eの改変群のほうFcγRIIIaに対する結合増強が高いことが示されてきた。これらの結果から、S239D、A330L、I332Eの改変群とL234Y、G236W、S298Aの改変群を組み合わせを考えた場合、従来の考えに基づいて考えれば、ヘテロ二量化抗体、ホモ二量化抗体のいずれにおいてもFcγRIIIaに対する結合増強が高いS239D、A330L、I332Eの改変群のみを両H鎖に導入したホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0がFcγRIIIaに対する結合増強効果が最も高いと予測される。しかし、S239D、A330L、I332Eを一方のH鎖に導入し、L234Y、G236W、S298Aをもう一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が約350倍増強し、S239D、A330L、I332Eを両H鎖に導入したホモ二量化抗体よりも高い結合増強効果を示していた。これはS239D、A330L、I332Eの改変群とL234Y、G236W、S298Aの改変群を異なるH鎖に導入することで、導入された全ての改変がHA鎖、HB鎖の両方からFcγRIIIaに対する結合活性を増強させ、S239D、A330L、I332Eの改変群を両H鎖に導入した場合よりも高い効果を発揮するという仮説を裏付ける結果であると考えられた。
 すなわち、ヘテロ二量化抗体を用いることで、従来のホモ二量化抗体を用いるよりも、Fc領域とFcγRIIIaとの非対称な相互作用をより最適化することができ、より高い結合活性を有するFc領域をデザインすることができることが示された。
 図23よりA330L、I332EはHA鎖でしかFcγRと相互作用していないが、S239DはHA鎖、HB鎖の両方においてFcγRと相互作用していると考えられた。実際、S239D、A330L、I332Eを一方のH鎖のみに導入したヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0ではFcγRIIIaに対するKDは5.4E-8であるが、ホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0ではKDが6.2E-9であり、FcγRIIIaに対する結合活性が8.7倍増強していた。この結合活性の差はS239Dが両H鎖から結合増強に関与していることに起因すると考えると、S239Dを両H鎖に導入することでこの差が解消すると考えられた。この仮説を検証するために、GpH7-A5にS239Dを導入したGpH7-A53(配列番号:42)を作製し、S239D、A330L、I332Eを導入したGpH7-B78と組み合わせて参考実施例1の方法に従って発現、調製をし、参考実施例2の方法に従ってS239D、A330L、I332Eのヘテロ二量化抗体およびホモ二量化抗体とFcγRIIIaに対する結合を比較し、S239DとS239D、A330L、I332Eの組み合わせの効果の検証を行った(表14)。
Figure JPOXMLDOC01-appb-T000017
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-A5/GpH7-B78/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表14から、S239D、A330L、I332Eを一方のH鎖に、S239Dをもう一方のH鎖に導入したGpH7-A53/GpH7-B78/GpL16-k0ではS239D、A330L、I332Eを一方のH鎖のみに導入したGpH7-A5/GpH7-B78/GpL16-k0と比べてFcγRIIIaに対する結合活性が4.9倍増強し、S239D、A330L、I332Eを両H鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0と比べてFcγRIIIaに対する結合活性は1.8倍しか減弱していなかった。この結果から、上記の仮説の通り、S239Dは両H鎖においてFcγRIIIaと相互作用し、この改変を導入することでFcγRIIIaと相互作用を一層増強することができると考えられた。
 一方のH鎖にL234Y、G236W、S298Aを、もう一方のH鎖にS239D、A330L、I332Eを導入したヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0にS239Dを導入することで、更なるFcγRIIIaに対する結合活性の増強が可能か検証した。参考実施例1の方法にしたがって、GpH7-TA7に対してS239Dを導入したGpH7-TA22(配列番号:43)を挿入した発現ベクターを調製し、GpH7-B3にS239D、A330L、I332Eを導入したGpH7-B78、GpL16-k0と合わせて、目的の抗体を発現、調整した。さらに、一方のH鎖にL234Y、G236W、S239D、S298Aを、もう一方のH鎖にS239D、A330L、I332Eを導入したヘテロ二量化抗体GpH7-TA22/GpH7-B78/GpL16-k0を調製した。参考実施例2の方法に従ってFcγR IIIa に対する結合活性を比較し、S239DとS239D、A330L、I332Eの組み合わせの効果の検証を行った(表15)。
Figure JPOXMLDOC01-appb-T000018
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-TA7/GpH7-B78/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表15より、一方のH鎖にL234Y、G236W、S298Aを、もう一方のH鎖にS239D、A330L、I332Eを導入したヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0において、S239Dを含まない側の鎖にS239Dを導入したGpH7-TA22/GpH7-B78/GpL16-k0ではGpH7-TA7/GpH7-B78/GpL16-k0よりも3.2倍結合活性が増強していた。この結果、S239Dを用いることで、FcγRIIIaに対する結合の更なる増強が可能であることが示された。
 次に、実施例4で見出したFcγRIIIaに対する結合増強改変の一つであるY296W、K334Gを更に加えること検討を実施した。
 まず、Y296WをいずれのH鎖に導入するかを検討した。GpH7-TA7にY296Wの変異を導入したGpH7-TA52(配列番号:44)を作製し、GpH7-B78と組み合わせて参考実施例1の方法に従って、発現、調製した。また、GpH7-B78にY296Wを導入したGpH7-TA58(配列番号:45)を作製し、GpH7-TA22と組み合わせて参考実施例1の方法に従って発現、調製した。調製した抗体について参考実施例2の方法に従って、FcγRIIIaに対する結合活性を比較し、Y296Wの組み合わせの効果の検証を行った(表16)。
Figure JPOXMLDOC01-appb-T000019
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-TA7/GpH7-B78/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 この結果から、Y296WはL234Y、G236W、S298Aと異なるH鎖に導入した場合、導入前後でFcγRIIIaに対する結合活性が1.2倍しか増強しないが、同じH鎖に導入した場合、GpH7-TA7/GpH7-B78/GpL16-k0と比べてFcγRIIIaに対する結合活性が1.8倍増強した。この結果から、Y296WはL234Y、G236W、S298Aと同じH鎖に導入することで、FcγRIIIaに対する結合増強効果があると考えられる。
 次に、GpH7-TA22にY296Wを導入したGpH7-TA54(配列番号:46)を作製し、GpH7-B78と組み合わせて参考実施例1の方法に従って、発現、調製した。また、GpH7-B78にY296Wを導入したGpH7-TA58(配列番号:45)を作製し、GpH7-TA22と組み合わせて参考実施例1の方法に従って発現、調製した。調製した抗体について参考実施例2の方法に従って、FcγRIIIaに対する結合活性を比較し、Y296Wの組み合わせの効果の検証を行った(表17)。
Figure JPOXMLDOC01-appb-T000020
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-TA22/GpH7-B78/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表17の結果から、Y296WはL234Y、G236W、S298Aと異なるH鎖に導入した場合、導入前後でFcγRIIIaに対する結合活性が変化しないが、同じH鎖に導入した場合、GpH7-TA22/GpH7-B78/GpL16-k0と比べてFcγRIIIaに対する結合活性が1.3倍増強した。この結果から、Y296WはL234Y、G236W、S298Aと同じH鎖に導入することで、FcγRIIIaに対する結合活性増強効果があると考えられる。
 次に、K334Gについても同様の検討を行った。GpH7-TA7にK334Gを導入したGpH7-TA40(配列番号:47)を作製し、GpH7-B78と組み合わせて参考実施例1の方法に従って、発現、調製した。また、GpH7-B78にK334Gを導入したGpH7-TA50(配列番号:48)を作製し、GpH7-TA7と組み合わせて参考実施例1の方法に従って発現、調製した。調製した抗体について参考実施例2の方法に従って、FcγRIIIaに対する結合を比較し、K334Gの組み合わせの効果の検証を行った(表18)。
Figure JPOXMLDOC01-appb-T000021
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-TA7/GpH7-B78/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表18の結果から、K334GはL234Y、G236W、S298Aと同じH鎖に導入した場合、導入前後でFcγRIIIaに対する結合活性が半分に低下してしまうが、異なるH鎖に導入した場合、GpH7-TA7/GpH7-B78/GpL16-k0と比べてFcγRIIIaに対する結合活性が1.2倍増強した。この結果から、K334GはL234Y、G236W、S298Aと異なるH鎖に導入することで、FcγRIIIaに対する結合活性増強効果があると考えられた。
〔実施例8〕活性型FcγRおよび抑制型FcγRに対する選択性の向上
 FcγRは、ITAMをもつ活性型とITIMをもつ抑制型が存在する。代表的な活性型FcγR (Activating receptor)としてFcγRIa、FcγRIIa、FcγRIIIaが挙げられ、また代表的な抑制型FcγR(Inhibitory receptor)としてFcγRIIbが挙げられる。がんを標的にした抗体において、ADCC活性や抗体依存的細胞貪食(ADCP)活性を作用機序にもつ活性型FcγRに対する結合活性と抑制型FcγRに対する結合活性の比率が重要な役割を果たすと考えられている(Nature Medicine, 6: 443-446, 2000)。
 がんを標的にした抗体は、活性型FcγRに対する結合活性を増強させ、抑制型FcγRに対する結合活性を減弱させることが望ましいと考えられる。具体的には、図24に示したaの領域に含まれる改変のように、活性型FcγRに対し天然型抗体より強く結合し、かつ抑制型FcγRに対して天然型抗体より弱く結合する、すなわち活性型FcγRに選択的に結合増強する改変であることが望ましい。また、図25に示したbの領域にある改変のように、活性型FcγRと抑制型FcγRに対する結合活性の比率を、天然型抗体と比較して大きくなる改変であることが望ましい。このような改変は抑制型FcγRと比べて活性型FcγRに対して選択的に結合活性を増強した改変と言える。
 改変を一方のH鎖に導入したヘテロ二量化抗体He Abのそれぞれの活性型FcγRおよび抑制型FcγRに対する結合活性を実施例4の方法に準じて測定した。それぞれのヘテロ二量化抗体のそれぞれの活性型FcγRおよび抑制型FcγRに対する結合活性の比率を評価するために、その結果を図26、図27、図28、図29にまとめた。図26の活性型FcγRはFcγRIa、図27の活性型FcγRはFcγRIIa (R)、図28の活性型FcγRはFcγRIIa (H)、図29の活性型FcγRはFcγRIIIaである。
 図26の中で図24、図25のaおよびbに対応する領域に存在する改変を表19(表19-1~19-5)にまとめた。同様にして、FcγRIIa (R)(図27)、FcγRIIa (H) (図28)、FcγRIIIa(図29)についてもaおよびbに対応する領域に存在する改変のリストをそれぞれ表20(表20-1~20-3)、表21(表21-1~21-3)、表22(表22-1~22-3)にまとめた。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 FcγRIIbと比べてFcγRIaに対する結合を選択的に増強する改変のリストを示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 FcγRIIbと比べてFcγRIIa (R)に対する結合を選択的に増強する改変のリストを示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 FcγRIIbと比べてFcγRIIa (H)に対する結合を選択的に増強する改変のリストを示す。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 FcγRIIbと比べてFcγRIIIaに対する結合を選択的に増強する改変のリストを示す。
 一方、唯一の抑制型FcγRであるFcγRIIbは、自己免疫疾患や炎症性疾患において重要な役割を果たしている(J.Exp.Med., 203, 2157-2164, 2006、J.immunol., 178, 3272-3280, 2007)。FcγRIIbに対する結合活性を増強させたFc領域を有する抗体がB細胞が病因となっている自己免疫疾患の治療に有効である可能性も示されている(Mol. Immunology 45, 3926-3933, 2008)。自己免疫疾患や炎症性疾患の治療を目的にした抗体の場合、活性型FcγRを介したADCC活性やADCP活性が病態を悪化させる可能性があるため、活性型FcγRに対する結合活性は可能な限り減弱させ、抑制型FcγRに対する結合活性を増強させることが望ましい。具体的には、図24のcの領域に存在する改変のように、抑制型FcγRに対する結合活性を天然型抗体と比較して増強させ、活性型FcγRに対する結合活性を減弱させる効果があることが望ましい。このような改変は抑制型FcγRに選択的に結合増強する効果があると言える。また、図25のdの領域に存在する改変のように、抑制型FcγRに対する結合活性と活性型FcγRに対する結合活性の比率が天然型抗体と比較して大きくする効果があることが望ましい。このような改変は活性型FcγRと比べて抑制型FcγRに対して選択的に結合活性を増強した改変と言える。
 そこで上述した各ヘテロ二量化抗体の抑制型FcγRおよび活性型FcγRに対する結合活性の比率を評価した図26、図27、図28、図29を用い、各図中の改変について図24、図25のcおよびdに対応する領域に存在する改変のリストをそれぞれ表23(表23-1及び23-2)、表24(表24-1及び24-2)、表25(表25-1~25-3)、表26(表26-1~26-4)にまとめた。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 FcγRIaと比べてFcγRIIbに対して選択的に結合増強した改変のリストを示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 FcγRIIa(R)と比べてFcγRIIbに対して選択的に結合増強した改変のリストを示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 FcγRIIa(H)と比べてFcγRIIbに対して選択的に結合増強した改変のリストを示す。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 FcγRIIIaと比べてFcγRIIbに対して選択的に結合増強した改変のリストを示す。
〔実施例9〕ヘテロ二量化抗体の物理化学的安定性の評価
 抗体を医薬品として開発する際には、高度な物理化学的安定性を有することも期待される。例えば、上記で言及したS239D、A330L、I332Eを抗体の両鎖に導入した改変の場合、この改変を導入すると、抗体のFc領域が熱力学的に不安定になることが報告されており、熱安定性の低下は医薬品としての開発を困難にさせる(Molecular Immunology, 45, 1872-1882, 2008)。抗体の医薬品としての有用性および開発の容易さを高めるためには、FcγRに対する結合活性を増強する一方で、物理化学的な安定性を維持することも重要である。ホモ二量化抗体では改変を両H鎖に導入するために、1種類の改変を導入すると抗体1分子あたり2箇所改変を導入することになる。しかし、ヘテロ二量化抗体では各H鎖に対して改変を導入するか否か選択できるために、1種類の改変を導入するとしても抗体1分子あたりに1箇所改変を導入するのに留めることが可能である。実施例7で考察したように、改変の種類によってはFcγRIIIaに対する結合活性の増強効果に関しては一方のH鎖に導入すれば十分な場合がある。仮にその改変が抗体の物理化学的な安定性を減じる効果を持っていた場合には、一方のH鎖にのみその改変を導入することでFcγRIIIaに対する結合活性増強効果を付与する一方で、抗体の物理化学的な不安定化を最小限にとどめることが可能であると考えられる。
 この仮説を検証するために、S239D、A330L、I332Eのどの残基が実際にCH2領域の不安定化に寄与しているかを検討した。S239D、A330L、I332Eの改変をそれぞれGpH7-B3に導入したGpH7-B3-06-09D(配列番号:37)、GpH7-B3-20-08L(配列番号:38)、GpH7-B3-22-10E(配列番号:39)を挿入した発現ベクターを参考実施例1の方法にしたがって作製し、L鎖としてGpL16-k0を用いて参考実施例1の方法で目的の抗体を発現、調製した。またコントロールとして改変を加えていないGpH7-B3とGpL16-k0を用いて目的の抗体を発現、調製した。各抗体のCH2領域のTmを参考実施例5の方法にしたがってThermal shift assayによって比較した(表27)。なお、以下では特別に断らない限り、TmとはCH2領域のTmを指す。
Figure JPOXMLDOC01-appb-T000047
 サンプルの欄には抗体の名称、Hの欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、Tmの欄には各抗体のTm、△Tmの欄には各抗体のTmとGpH7-B3/GpL16-k0のTmとの差を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 S239Dを導入したホモ二量化抗体GpH7-B3-06-09D/GpL16-k0、A330Lを導入したホモ二量化抗体GpH7-B3-20-08L/GpL16-k0、I332Eを導入したホモ二量化抗体GpH7-B3-22-10E/GpL16-k0とGpH7-B3/GpL16-k0を比較すると、それぞれTmが3℃、1℃、8℃減少していた。この結果から、これら3つの改変の中でI332EがCH2のTmを減少させる効果が最も高く、I332EがS239D、A330L、I332Eの改変群を導入した抗体においてもTmの減少に最も寄与していると考えられた。
 I332Eは側鎖の周囲をV240、V323、L328などの疎水的なアミノ酸に囲まれている。I332Eを導入した抗体では、疎水性の高いIleから親水性の高いGluへ置換しているため、周辺の残基との疎水的な相互作用が消失し、Fc領域の不安定化に寄与していると考えられた。一方で、実施例7で考察したように、I332Eは一方のH鎖でしかFcγRIIIaと相互作用していない。そのため、FcγRIIIaとの相互作用に関与していないもう一方のH鎖のI332についてはIleのままにすることで、FcγRIIIaに対する結合の増強効果を付与しつつも、熱力学的な安定性を維持することが可能であると考えられた。そこで、I332Eを一方のH鎖にしか導入しないことで、両鎖に導入した場合に比べてTmが上昇するかを検証した。I332EをGpH7-A5に導入したGpH7-A44(配列番号:49)、GpH7-B3に導入したGpH7-B80(配列番号:50)を挿入した発現ベクターを作製し、GpH7-B3、GpH7-A5、GpL16-k0と合わせて、I332Eを一方のH鎖のみに導入したヘテロ二量化抗体GpH7-A5/GpH7-B80/GpL16-k0、GpH7-A44/GpH7-B3/GpL16-k0、I332Eを両H鎖に導入したホモ二量化抗体GpH7-A44/GpH7-B80/GpL16-k0を参考実施例1の方法に従ってそれぞれ発現、調製した。コントロールとして、GpH7-A5/GpH7-B3/GpL16-k0を調製した。 各抗体のFcγRIIIaに対する結合活性を参考実施例2の方法にしたがって評価した。また各抗体のCH2領域のTmを参考実施例5の方法にしたがってThermal shift assayによって比較した(表28及び表29)。
Figure JPOXMLDOC01-appb-T000048
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-A5/GpH7-B3/GpL16-k0のFcγRIIIaに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
Figure JPOXMLDOC01-appb-T000049
 I332Eを一方のH鎖に置換した抗体および両鎖に置換した抗体のCH2のTmを示す。
 Sampleの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、Tmの欄には各抗体のTm、△Tmの欄には各抗体のTmとGpH7-B3/GpL16-k0のTmとの差を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表28の結果から、I332Eを一方のH鎖のみに導入したヘテロ二量化抗体GpH7-A5/GpH7-B80/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が約3倍、および GpH7-A44/GpH7-B3/GpL16-k0では約4倍増強していた。このことから、GpH7-A5あるいはGpH7-B3のいずれにI332Eを導入してもI332EのFcγRIIIa結合活性増強効果は大きく変わらないと考えられた。また、I332Eを両H鎖に導入したGpH7-A44/GpH7-B80/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてFcγRIIIaに対する結合活性が約7倍増強していた。これらの結果からI332Eはその立体構造から考察した通り、両H鎖に導入せずとも、一方のH鎖にのみ導入しただけでも、十分にFcγRIIIaに対する結合活性増強効果を有することが明らかとなった。
 次に、表29の結果から、I332Eを一方のH鎖のみに導入したヘテロ二量化抗体GpH7-A5/GpH7-B80/GpL16-k0と GpH7-A44/GpH7-B3/GpL16-k0ではいずれもその親Fc分子であるGpH7-A5/GpH7-B3/GpL16-k0からTmが4℃減少していたことから、GpH7-A5あるいはGpH7-B3のいずれにI332Eを導入してもI332Eの抗体のTmに与える影響は変わらないと考えられた。一方でI332Eを両H鎖に導入したホモ二量化抗体GpH7-A44/GpH7-B80/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0からTmが10℃減少していた。I332Eを一方のH鎖のみに導入したヘテロ二量化抗体はI332Eを両H鎖に導入したホモ二量化抗体よりもTmが6℃高く維持されていた。この結果から、I332Eを両H鎖ではなく、一方のH鎖にのみ導入したヘテロ二量化抗体を用いることで、Tmの低下抑制が可能であることが明らかとなった。ヘテロ二量化抗体は抗体の物理化学的な安定性を維持するためにも有用な技術であることを示している。
 I332Eの改変はFcγRIIIaに対する結合増強効果については優れているものの、従来のホモ二量化抗体を使った場合には熱力学的な安定性を著しく損ねてしまい、抗体を医薬品として用いる場合に問題になると考えられた。しかし、表28及び表29の結果からヘテロ二量化抗体を用いることで、I332EのFcγRIIIaに対する結合増強活性を利用しつつも、抗体の物理化学的な安定性を維持することが可能となることが示された。この結果から、ヘテロ二量化抗体は抗体のFcγR結合活性と抗体の物理化学的な安定性をより精緻に調整するのに優れた技術であると考えられる。
 GpH7-TA7/GpH7-B78/GpL16-k0はS239D、A330L、I332Eを一方のH鎖にしか持たないため、S239D、A330L、I332Eを両方のH鎖に有するGpH7-A57/GpH7-B78/GpL16-k0と比べてTmを高く維持している可能性がある。そこで、実施例7に示したL234Y、G236W、S298Aの改変群とS239D、A330L、I332Eの改変群をそれぞれ組み合わせたヘテロ二量化抗体、ホモ二量化抗体のTmの測定を参考実施例5に記載の方法に従って実施した。
 これを検証するために、一方のH鎖にL234Y、G236W、S298Aの改変群を、もう一方のH鎖にS239D、A330L、I332Eの改変群を導入したヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0、L234Y、G236W、S298Aの改変群のみを一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0、両H鎖に導入したホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0、S239D、A330L、I332Eのみを一方のH鎖に導入したヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0、両H鎖に導入したホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0を参考実施例1の方法に従って調製した。各抗体のCH2領域のTmを参考実施例5の方法にしたがってThermal shift assayによって比較し、L234Y、G236W、S298AとS239D、A330L、I332Eの組み合わせのTmに与える影響を検討した(表30)。
Figure JPOXMLDOC01-appb-T000050
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-G1d/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)、Tmの欄には各抗体のTm、△Tmの欄には各抗体のTmとGpH7-A5/GpH7-B3/GpL16-k0のTmとの差を表記した。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 ヘテロ二量化抗体形成効率を高める改変D356K/H435RおよびK439Eを導入したGpH7-A5/GpH7-B3/GpL16-k0を天然型IgG1であるGpH7-G1d/GpL16-k0と比較すると、CH2のTmの低下は1℃であった。
 従来技術であるホモ二量化抗体について、各改変群の効果を検証した。S239D、A330L、I332Eを両H鎖に導入したホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてTmが20℃低下し、L234Y、G236W、S298Aの改変群を両H鎖に導入したホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0ではTmの低下が観察されなかったことから、ホモ二量化抗体においてはL234Y、G236W、S298Aの改変群自体にはTmを低減する効果がないと考えられた。
 各改変群を一方のH鎖にのみ導入したヘテロ二量化抗体について、各改変群の効果を検証した。S239D、A330L、I332Eを一方のH鎖に導入したヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べてTmが8℃低下し、L234Y、G236W、S298Aを一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0ではTmの低下は観察されなかった。この結果から、ヘテロ二量化抗体においてもL234Y、G236W、S298Aの改変群自体にはTmを低減する効果がないと考えられた。
 S239D、A330L、I332Eを両H鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0では天然型IgG1と比べてTmが21℃減少していたが、一方のH鎖にのみS239D、A330L、I332Eの改変を有するGpH7-A5/GpH7-B78/GpL16-k0ではTmは60℃であり、ホモ二量化抗体よりも10℃以上高いTmを維持していた。実施例7の表13より、S239D、A330L、I332Eのホモ二量化抗体の方が、ヘテロ二量化抗体よりも約9倍FcγRIIIaに対する結合が増強していた。S239D、A330L、I332Eは両H鎖に導入することで、FcγRIIIaに対する結合を大きく増強するが、Tmも著しく低下させてしまう。
 次に、L234Y、G236W、S298Aを両H鎖に導入したGpH7-TA7/GpH7-TA45/GpL16-k0では天然型抗体と比べてTmが1℃のみ減少しており、これはL234Y、G236W、S298AによるTmの減少ではなく、先に考察した通りヘテロ二量化抗体を作るために利用したD356K/H435RおよびK439Eの影響であると考えられた。これは、L234Y、G236W、S298Aを一方のH鎖に導入したGpH7-TA7/GpH7-B3/GpL16-k0でも同様にTmが1℃しか減少していないことからも示される。
 最後に、L234Y、G236W、S298Aを一方のH鎖に、S239D、A330L、I332Eをもう一方のH鎖に持つGpH7-TA7/GpH7-B78/GpL16-k0のTmは天然型抗体から10℃低下しており、S239D、A330L、I332Eを一方のH鎖に導入したGpH7-A5/GpH7-B78/GpL16-k0とほぼ同一である。しかし、実施例7の表13よりGpH7-TA7/GpH7-B78/GpL16-k0はGpH7-A5/GpH7-B78/GpL16-k0よりもFcγRIIIaに対する結合が10倍以上増強している。
 すなわち、L234Y、G236W、S298Aを一方のH鎖に、S239D、A330L、I332Eをもう一方のH鎖にしたヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0を用いることで、S239D、A330L、I332Eのホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0と比べて、FcγRIIIaに対する結合を増強させることができる上に、Tmも10℃以上向上させることが可能であることが明らかとなった。
 次に、上記のTmの測定をしたサンプルについて、更に熱力学的な安定性を参考実施例6に記載の熱加速試験(40℃ 2週間または4週間) によって評価した(図30)。
 GpH7-A5/GpH7-B3/GpL16-k0と天然型抗体GpH7-G1d/GpH7-G1d/GpL16-k0を比較すると、4週間後に前者は1.27 %、後者は1.86 %と単量体比率が減少しており、大きな差異は認められなかった。つまり、ヘテロ二量化抗体を調製するのに用いている改変D356K/H435RおよびK439Eが熱加速試験における単量体比率の変化に与える影響はほとんどないと考えられた。
 S239D、A330L、I332Eを両H鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0では四週間後には約16%単量体比率が減少していたのに対して、一方のH鎖にのみS239D、A330L、I332Eの改変を有するGpH7-A5/GpH7-B78/GpL16-k0では4週間後には9.63 %単量体比率が減少していた。すなわち、S239D、A330L、I332Eを一方のH鎖にのみ導入したヘテロ二量化抗体を用いることで、より安定して単量体比率を維持する効果があることが明らかとなった。
 次に、L234Y、G236W、S298Aを両H鎖に導入したGpH7-TA7/GpH7-TA45/GpL16-k0および一方のH鎖に導入したGpH7-TA7/GpH7-B3/GpL16-k0ではは4週間後に1.78 %、1.42 %単量体比率が減少するのみで、いずれも天然型抗体と比べて単量体比率の変化に明確な差異を見出すことはできなかった。すなわち、L234Y、G236W、S298Aは一方のH鎖に導入しようとも、両鎖に導入しようとも熱加速試験における単量体比率には影響を及ぼさないと考えられた。
 最後に、L234Y、G236W、S298Aを一方のH鎖に、S239D、A330L、I332Eをもう一方のH鎖に持つGpH7-TA7/GpH7-B78/GpL16-k0では4週間後に2.47 %単量体比率が減少しており、天然型抗体の1.86 %よりもわずかに単量体比率が減少するのみであった。すなわち、L234Y、G236W、S298Aを一方のH鎖に、S239D、A330L、I332Eをもう一方のH鎖にしたヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0を用いることで、S239D、A330L、I332Eのホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0と比べて、FcγRIIIaに対する結合を増強させることができる上に、熱加速試験においても単量体比率を高く維持する効果をもたらすことが可能であることが明らかとなった。
 すなわち、ヘテロ二量化抗体は通常のホモ二量化抗体と比較して、FcγRに対する結合を増強できるだけでなく、安定性も改善することで、抗体の医薬品としての価値をホモ二量化抗体よりもさらに高めることのできる技術であることが示された。
〔実施例10〕FcγRに対する結合が向上し、安定性を低下させない改変の探索
 実施例9に記載したように、H鎖に改変を導入するとFcγRに対する結合活性を増強するが、CH2の物理化学的な安定性、すなわちTmを低下させる可能性がある。しかしながら、実施例9で述べたように、特に抗体を医薬品として用いる場合にはそのような性質は好ましくない。実施例9で述べたように、FcγRに対する結合活性を増強する一方で、CH2の不安定化を抑制するためには一方のH鎖のみに改変を導入するヘテロ二量化抗体を用いることが有用である。すなわち、図21のiiおよびiiiの領域に該当するような従来のホモ二量化抗体においてもFcγRに対する結合活性の増強が観察されていたにもかかわらず、ホモ二量化抗体においてはTmが低下してしまっている改変については、ヘテロ二量化することで天然型抗体と比べてFcγRに対する結合活性は増強した上に、ホモ二量化抗体よりもTmを向上させることが可能である。
 このような改変を見出すために、図21のii、iiiにある領域のホモ二量化抗体のTmを参考実施例5の方法に従って測定し、Tmが天然型抗体と比較して低下した改変のリストを表31~35にまとめた。
 表31(表31-1~31-3)に領域ii,iiiでTmが68℃以下のIaのデータ、表32(表32-1及び32-2)に領域ii,iiiでTmが68℃以下のIIaRのデータ、表33(表33-1及び33-2)に領域ii,iiiでTmが68℃以下のIIaHのデータ、表34(表34-1及び表34-2)に領域ii,iiiでTmが68℃以下のIIbのデータ、表35(表35-1及び35-2)に領域ii,iiiでTmが68℃以下のIIIaのデータを示す。
 これらの改変を一方のH鎖にのみ導入したヘテロ二量化抗体を用いることによって、天然型抗体と比較して、FcγRに対する結合が向上し、かつ安定性が大きく低下しない抗体を作製できる可能性がある。
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
〔実施例11〕FcγRIIIaに対する認識能を向上したヘテロ二量化抗体のADCC活性の測定
 実施例7で考察したように、ヘテロ二量化抗体を用いることで、従来のホモ二量化抗体技術によって創製された改変体よりもFcγRIIIaに対する結合活性を増強することに成功した。抗体はFcγRIIIaを介してNK細胞を誘導し、標的抗原を発現する細胞に対する抗体依存的細胞障害活性を発揮する。ヘテロ二量化抗体においてFcγRIIIaに対する結合活性だけでなく、ADCC活性も同様に増強していることを確認するために、実施例7の表13に記載したFcγRIIIaに対する結合活性が上昇したヘテロ二量化抗体、ホモ二量化抗体、および天然型IgG1について、参考実施例7の方法に従ってADCC活性を測定した。その結果を図31に示す。
 図31の結果より、天然型IgG1であるGpH7-G1d/GpL16-k0と、D356K、H435RおよびK439Eをそれぞれ一方のH鎖に導入したGpH7-A5/GpH7-B3/GpL16-k0とを比較すると、そのADCC活性には大きな差異は観察されなかった。このことから、D356K、H435RおよびK439Eの改変はADCC活性に対して影響を与えないと考えられた。
 次に、従来通りFcγRIIIaに対する結合活性を増強する改変を抗体の両H鎖に同じく導入したホモ二量化抗体について、その結合増強効果がADCC活性においても同様の傾向が観察されるかを検証した。L234Y、G236W、S298Aを両H鎖に導入したGpH7-TA7/GpH7-TA45/GpL16-k0と、S239D、A330L、I332Eを両H鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0を比較した。FcγRIIIaに対する結合活性に関しては、GpH7-A57/GpH7-B78/GpL16-k0ではGpH7-A5/GpH7-B3/GpL16-k0と比べて顕著に結合が増強していたが、GpH7-TA7/GpH7-TA45/GpL16-k0では結合が低下していた。ADCC活性においてもGpH7-A57/GpH7-B78/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりも活性が上昇していたが、GpH7-TA7/GpH7-TA45/GpL16-k0はGpH7-A5/GpH7-B3/GpL16-k0よりも活性が減少していた。このようにホモ二量化抗体については、FcγRIIIaに対する結合活性の強さとADCC活性の強さとに相関が観察された。
 次に、抗体の一方のH鎖にのみFcγRIIIaに対する結合活性を増強する改変を導入したヘテロ二量化抗体について、その結合増強効果がADCC活性においても同様の傾向が観察されるかを検証した。L234Y、G236W、S298Aを一方のH鎖に導入したGpH7-TA7/GpH7-B3/GpL16-k0と、S239D、A330L、I332Eを一方のH鎖に導入したGpH7-A5/GpH7-B78/GpL16-k0を比較した。FcγRIIIaに対する結合活性に関しては、GpH7-A5/GpH7-B78/GpL16-k0とGpH7-TA7/GpH7-B3/GpL16-k0のいずれも、GpH7-A5/GpH7-B3/GpL16-k0と比べて増強しており、ADCC活性においても同様の傾向が観察された。加えて、GpH7-A5/GpH7-B78/GpL16-k0の方がGpH7-TA7/GpH7-B3/GpL16-k0よりもFcγRIIIaに対する結合活性が増強しているが、ADCC活性においても同様の傾向が保たれており、ホモ二量化抗体と同様にヘテロ二量化抗体においてもFcγRIIIaに対する結合活性の強さとADCC活性の強さとが相関することが示された。
 次に、L234Y、G236W、S298AおよびS239D、A330L、I332Eの各改変群について、それぞれのヘテロ二量化抗体、ホモ二量化抗体におけるFcγRIIIaに対する結合活性とADCC活性増強効果に相関が観察されるか検証した。まずS239D、A330L、I332Eの改変群を一方のH鎖にのみ導入したヘテロ二量化抗体であるGpH7-A5/GpH7-B78/GpL16-k0と両H鎖に導入したホモ二量化抗体であるGpH7-A57/GpH7-B78/GpL16-k0とを比較すると、FcγRIIIaに対する結合活性に関してはヘテロ二量化抗体よりもホモ二量化抗体の方が結合を増強する効果は高かったが、ADCC活性に関して差は認められなかった。次に、L234Y、G236W、S298Aの改変群を一方のH鎖にのみ導入したヘテロ二量化抗体であるGpH7-TA7/GpH7-B3/GpL16-k0と両H鎖に導入したホモ二量化抗体であるGpH7-TA7/GpH7-TA45/GpL16-k0とを比較すると、FcγRIIIaに対する結合活性に関してはヘテロ二量化抗体の方がGpH7-A5/GpH7-B3/GpL16-k0よりも結合を増強しているのに対して、ホモ二量化抗体では結合が減弱していた。ADCC活性についても、同様の傾向が観察された。このことから、L234Y、G236W、S298Aの改変群が有するFcγRIIIaに対する結合活性を一方向のみから増強するという効果がADCC活性にも反映されたと考えられた。これらの結果から、ある改変群を一方のH鎖にのみ導入したヘテロ二量化抗体と、両H鎖に導入したホモ二量化抗体とのFcγRIIIaに対する結合活性の強さとADCC活性の強さとが相関すると考えられた。
 次に、L234Y、G236W、S298Aを一方のH鎖に、S239D、A330L、I332Eをもう一方のH鎖に導入したヘテロ二量化抗体であるGpH7-TA7/GpH7-B78/GpL16-k0とS239D、A330L、I332Eを両H鎖に導入したホモ二量化抗体であるGpH7-A57/GpH7-B78/GpL16-k0とを比較した。FcγRIIIaに対する結合活性に関しては、いずれもGpH7-A5/GpH7-B3/GpL16-k0と比べて顕著に増強しており、ADCC活性においても同様の傾向が観察された。加えて、GpH7-TA7/GpH7-B78/GpL16-k0の方がGpH7-A57/GpH7-B78/GpL16-k0よりもFcγRIIIaに対する結合活性が増強しており、ADCC活性においてもGpH7-TA7/GpH7-B78/GpL16-k0の方が強いADCC活性を示していた。
 前述の通り、L234Y、G236W、S298AとS239D、A330L、I332Eの各改変群については、それぞれを一方のH鎖に導入した場合にも、両H鎖に導入した場合にも、後者のS239D、A330L、I332Eの改変群の方がADCC活性をより増強する効果が観察されていた。しかし、L234Y、G236W、S298AとS239D、A330L、I332Eの各改変群を異なるH鎖に導入することにより、ヘテロ二量化抗体およびホモ二量化抗体のそれぞれにおいてADCC活性増強効果の高いS239D、A330L、I332Eを両H鎖に加えるよりも、ADCC活性増強効果を示すことが明らかとなった。
 すなわち、従来技術であるホモ二量化抗体で観察されてきたようなFcγRIIIaに対する結合活性の強さとADCC活性の強さとの相関は、ヘテロ二量化抗体同士の比較、ヘテロ二量化抗体とホモ二量化抗体との比較のいずれにおいても同様に観察されることが明らかとなった。このことから、ヘテロ二量化抗体技術を利用することで、従来技術よりも優れたADCC活性を有する抗体を創製することが可能であることが明らかとなった。
〔実施例12〕FcγRIIaにおける従来のホモ二量化抗体と新規ヘテロ二量化抗体の比較
 実施例1で述べたように、FcγRIIIaは抗体医薬の薬効において重要な役割を果たしていると考えられている。更に、FcγRIIIaに加えて、IgG1由来の抗体医薬の薬効において、FcγRIIaの果たす役割も注目されている。
 FcγRIIaには131番目のアミノ酸がArgまたはHisであるR型、H型とそれぞれ呼ばれるアロタイプが存在し、それぞれヒトIgG2に対する結合活性が異なることが知られている(Tissue Antigens 2003: 61: 189-202)。このFcγRIIaのアロタイプの違いによって、感染症への罹患のしやすさが異なることが知られている(Tissue Antigens 2003: 61: 189-202)。これはアロタイプの違いによってFcγRIIaとIgG2に対する結合活性が異なる結果、IgG2を介した病原体に対する抵抗機構が異なることに起因するためと考えられる(Infection and Immunitiy 1995: 63: 73-81)。また、マウスFcγRIVはヒトFcγRIIaと発現細胞が対応することが知られているが、このFcγRIVが抗CD20抗体のマウスモデルにおける薬効に重要な役割を果たすことが報告されている。このことから、ヒトにおいてはFcγRIIaが同様の役割を果たしているのではないかと推察される(The Journal of Experimental Medicine 2004: 199: 1659-1669、 The Journal of Experimental Medicine 2006: 203: 743-753、 Immunity 2005: 23: 41-51)。実際に、抗体のFc領域のFcγRIIaに対する結合活性をIgG1より増強した抗体はIgG1に比べて、macrophageを介した抗体依存的細胞貪食活性(ADCP活性)が増強することが報告されている(Molecular Cancer Therapeutics 2008: 7: 2517-2527)。また、ADCPが増強したFc領域を有する抗CD19抗体はmouse xenograft modelにおいてもIgG1より強い抗腫瘍効果を示している(Nature Medicine 2000: 6: 443-446)。この抗体のFc領域はサルのFcγRIIaに対する結合活性も増強している。CD19はB細胞表面に発現しているが、この抗体をサルに投与すると、IgG1のFc領域を有する抗CD19抗体と比べて、B細胞の消失が増強することが報告されている(Science 2005: 310: 1510-1512)。
 これらの報告から、FcγRIIIaに対する結合活性を増強させることに加えて、FcγRIIaに対する結合活性も増強させることで、抗体医薬の薬効、特に抗腫瘍効果の更なる向上が期待される。このような特徴を持つ抗体は従来技術を用いて過去に作製されていた(Molecular Cancer Therapeutics 2008: 7: 2517-2527)。しかし、FcγRIIaも抗体のFc領域とは非対称に結合すると考えられるため、実施例11で考察したこと同様にヘテロ二量化抗体技術を用いることでFcγRIIaに対する結合活性をより一層増強することが可能であると考えられる。これを検証するために、実施例4の結果から天然型IgGと比べてFcγRIIIaおよびFcgRIIa R型、H型のいずれにも結合活性が増強するような改変を選択し、それらを組み合わせてFcγRIIIaおよびFcgRIIa R型、H型のいずれにも結合活性が増強した変異を導入し、FcγRに対する結合が異なるH鎖を組み合わせたヘテロ二量化抗体を作製し、その各FcγRに対する結合活性を評価した。
 また、これらの活性型FcγRと対照的に、抑制型FcγRであるFcγRIIbは免疫反応を抑制する細胞内シグナルを誘発する。FcγRIIbをノックアウトしたマウスにおいては、抗体の抗腫瘍効果が亢進する(Nature Medicine 2000: 6: 443-446)、あるいは抗体を介したB細胞の消失が促進する(The Journal of Experimental Medicine 2006: 203: 743-753)という報告がされていることから、FcγRIIbの抗体の生体内における薬効に重要な役割を果たしていることが示されている。また、マウスIgGサブクラスの抗腫瘍効果と各IgGサブクラスの活性型FcγRと抑制型FcγRに対する結合の比率(A/I ratio)との間には相関が観察されている(Science 2005: 310: 1510-1512)。これらの報告から、A/I ratioが抗体の免疫を介したエフェクター機能に重要であると考えられる。すなわち、A/I ratioの高い抗体を創製すれば、そのエフェクター機能が増強し、有用であると考えられる。しかし、活性型FcγRであるFcγRIIaと抑制型FcγRであるFcγRIIbとはその細胞外ドメインにおいて93%の配列相同性があり、極めて配列相同性が高いため、FcγRIIaに対する結合活性を増強しつつも、FcγRIIbに対する結合活性を増強させずに、A/I ratioを高くすることは極めて困難であると予想された。FcγRIIbと抗体のFc領域とはFcγRIIIa、FcγRIIaと同様に非対称に結合すると考えられる。従来技術であると、抗体の両H鎖に同じ改変を導入することでしか、FcγRとの相互作用を制御できなかったが、ヘテロ二量化抗体技術を使えば、より精緻な制御が可能となり、ひいては極めて配列が類似している、FcγRIIaとFcγRIIbとのA/I ratioも向上させることができると考えられた。そこで、この点についてもヘテロ二量化抗体技術が従来技術と比較して優れているかを検証した。
 ここでの検討ではヘテロ二量化抗体を効率的に形成させるために、抗体H鎖定常領域にKnobs-into-Holes技術を用いた。Knobs-into-Holes技術は一方のH鎖のCH3領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖のCH3領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することにより、突起が空隙内に配置されるようにして、H鎖のヘテロ二量化を促進し、目的のヘテロ二量化抗体を効率的に取得できる技術である(Nature, 372: 379-383 (1994))。CH3領域にあるアミノ酸側鎖をより大きくすることを目的にしたY349C、T366Wの改変を定常領域に導入したH鎖をKnob鎖と呼び、これに更に改変を導入した定常領域については、そのH鎖定常領域の名称はKnという記号で始め、その後に三桁の数字を付けてKn001のように呼ぶ。CH3領域にあるアミノ酸側鎖をより小さくすることを目的にしたD356C、T366S、L368A、Y407VのHole改変を定常領域に導入したH鎖をHole鎖と呼び、これに更に改変を導入したものについては、そのH鎖定常領域の名称はHlという記号で始め、その後に三桁の数字を付けて、Hl001のように呼ぶ。また、抗体H鎖定常領域の名称をそれぞれKn001、Hl001とした場合、可変領域にGpH7を持つ抗体のH鎖に対応する配列はGpH7-Kn001、GpH7-Hl001と呼ぶ。発現後に精製して得られた抗体は、例えばヘテロ二量化抗体の発現に用いた抗体H鎖に対応する配列がGpH7-Kn001、もう一つの抗体H鎖に対応する配列がGpH7-Hl001、抗体L鎖に対応する配列がGpL16-k0である場合、GpH7-Kn001/GpH7-Hl001/GpL16-k0と表記した。
 まず、GpH7-G1dに対してY349C、T366Wの改変を定常領域に導入したGpH7-Kn033(配列番号:51)、GpH7-G1dに対してD356C、T366S、L368A、Y407Vの改変を定常領域に導入したGpH7-Hl033(配列番号:56)を参考実施例1の方法にしたがって調製した。ヘテロ二量化抗体を発現させる際には抗体L鎖としてはGpL16-k0が挿入された発現ベクターを用い、抗体H鎖の1つとしてY349C、T366Wの改変を導入したGpH7-Kn033(配列番号:51)に更に改変を加えた配列を挿入した発現ベクターを用い、もう一方の抗体H鎖としてD356C、T366S、L368A、Y407Vの改変を導入したGpH7-Hl033(配列番号:56)に更に改変を導入した配列を挿入した発現ベクターを用い、ヘテロ二量化抗体が効率的に発現するようにした。
 実施例4で得られた各改変が抗体と各FcγRに対する結合に与える影響に関する情報に基づいて、FcγRIIIa、FcγRIIa R型、H型のいずれに対しても結合が増強するように意図した抗体を以下のように作製した。抗体の各H鎖の定常領域に異なる改変を導入する際には、GpH7-Kn033、GpH7-Hl033を親ポリペプチドとして用いた。GpH7-Kn033にL234Y、L235Y、G236A、H268D、S298Aを導入したGpH7-Kn045(配列番号:54)、L234Y、L235Y、G236A、H268D、Q295L、S298Aを導入したGpH7-Kn056(配列番号:55)、GpH7-Hl033にG236A、S239D、A330K、I332Eを導入したGpH7-Hl048(配列番号:59)、G236A、S239D、Q295L、A330M、I332Eを導入したGpH7-Hl055(配列番号:60)を参考実施例1の方法にしたがって作製した。
 次に、以下のように各H鎖を組み合わせて、参考実施例1にしたがって抗体を発現させた。H鎖としてGpH7-Kn033、GpH7-Hl033、L鎖としてGpL16-k0を用いて、G1dに対してKnobs-into-Holes技術のみを適用したGpH7-Kn033/GpH7-Hl033/GpL16-k0を発現させた。H鎖としてGpH7-Kn045、GpH7-Hl048、L鎖としてGpL16-k0を用いて、ヘテロ二量化抗体であるGpH7-Kn045/GpH7-Hl048/GpL16-k0を発現させた。H鎖としてGpH7-Kn045、GpH7-Hl055、L鎖としてGpL16-k0を用いて、ヘテロ二量化抗体であるGpH7-Kn045/GpH7-Hl055/GpL16-k0を発現させた。H鎖としてGpH7-Kn056、GpH7-Hl055、L鎖としてGpL16-k0を用いて、ヘテロ二量化抗体であるGpH7-Kn056/GpH7-Hl055/GpL16-k0を発現させた。
 比較対象となる既存技術を用いた抗体を(Pro. Nat. Acad. Sci., 103, 4005-4010 (2006))を参考にして、以下のように調製した。FcγRIIIa、FcγRIIa R型、H型のいずれに対しても結合が増強すると報告されている改変G236A/S239D/I332EをGpH7-Kn033、GpH7-Hl033のそれぞれに導入し、GpH7-Kn037(配列番号:52)、GpH7-Hl036(配列番号:57)を作製した。また、FcγRIIIaに対して結合が増強すると報告されている改変S239D/A330L/I332EをGpH7-Kn033、GpH7-Hl033のそれぞれに導入し、GpH7-Kn032(配列番号:53)、GpH7-Hl032(配列番号:58)を作製した。これらのH鎖を組み合わせて、参考実施例1にしたがって抗体を発現させた。H鎖としてGpH7-Kn037、GpH7-Hl036、L鎖としてGpL16-k0を用いて、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0の両H鎖にG236A/S239D/I332Eを導入したホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0を発現させた。H鎖としてGpH7-Kn032、GpH7-Hl032、L鎖としてGpL16-k0を用いて、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0の両H鎖にS239D/A330L/I332Eを導入したホモ二量化抗体GpH7-Kn032/GpH7-Hl032/GpL16-k0を発現させた。
 これらの抗体について参考実施例2の方法にしたがって、各FcγRに対する結合活性を評価し、その結果を表36にまとめた。また、各抗体のKD ratioを表37にFcγRIIIaに対するKDの比率であるA/I ratioを表38にまとめた。
Figure JPOXMLDOC01-appb-T000062
 FcγRIIa、IIIaに対する結合増強ヘテロ二量化抗体の各FcγRに対する結合活性を示す。
 サンプルの欄には抗体の名称、Kn、Hlの欄にはそれぞれ各抗体のKnob鎖、Hole鎖定常領域の名称、変異箇所の欄にはGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。
Figure JPOXMLDOC01-appb-T000063
 FcγRIIa、IIIaに対する結合増強ヘテロ二量化抗体の各FcγRに対する結合活性を示す。
 サンプルの欄には抗体の名称、Kn、Hlの欄にはそれぞれ各抗体のKnob鎖、Hole鎖定常領域の名称、変異箇所の欄にはGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-Kn033/GpH7-Hl033/GpL16-k0のFcγRに対するKDを各抗体のKDで割った値をKD ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
Figure JPOXMLDOC01-appb-T000064
 活性型FcγRと抑制型FcγRに対する結合活性の比率を示す。
 サンプルの欄には抗体の名称、Kn、Hlの欄にはそれぞれ各抗体のKnob鎖、Hole鎖定常領域の名称、変異箇所の欄にはGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。GpH7-Kn033/GpH7-Hl033/GpL16-k0のFcγRIIbに対するKDを各抗体のFcγRIIa H型、R型のKDで割った値をそれぞれのA/I ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表36及び37の結果から、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して、G236A/S239D/I332Eを両H鎖に導入したGpH7-Kn037/GpH7-Hl036/GpL16-k0はFcγRIIa H型に対する結合が22倍、FcγRIIa R型に対する結合が43倍、FcγRIIIa Fに対する結合が161倍に増強していた。また、表38の結果から、GpH7-Kn037/GpH7-Hl036/GpL16-k0のA/I ratioはFcγRIIa H型に対して8.6、FcγRIIa R型に対して13であり、GpH7-Kn033/GpH7-Hl033/GpL16-k0の6.2、4.9と比較して向上していた。
 表36及び37の結果から、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して、S239D/A330L/I332Eを両H鎖に導入したGpH7-Kn032/GpH7-Hl032/GpL16-k0はFcγRIIa H型に対する結合が1.2倍、FcγRIIa R型に対する結合が3.0倍、FcγRIIIa Fに対する結合が381倍に増強していた。また、表38の結果から、GpH7-Kn032/GpH7-Hl032/GpL16-k0のA/I ratioはFcγRIIa H型に対して0.93、FcγRIIa R型に対して1.8であり、GpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して低下していた。
 表36及び37の結果から、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して、L234Y/L235Y/G236A/H268D/S298Aを一方のH鎖に、G236A/S239D/A330K/I332Eをもう一方のH鎖に導入したGpH7-Kn045/GpH7-Hl048/GpL16-k0はFcγRIIa H型に対する結合が52倍、FcγRIIa R型に対する結合が154倍、FcγRIIIa Fに対する結合が419倍に増強していた。また、この結果から、FcγRIIaに対する結合活性は、H型、R型のいずれについてもG236A/S239D/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0と比べて増強していた。加えて、FcγRIIIa Fに対する結合活性も、S239D/A330L/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn032/GpH7-Hl032/GpL16-k0と比べてもわずかに増強していた。表38の結果からGpH7-Kn045/GpH7-Hl048/GpL16-k0のA/I ratioはFcγRIIa H型に対して9.5、FcγRIIa R型に対して22であり、GpH7-Kn033/GpH7-Hl033/GpL16-k0、GpH7-Kn037/GpH7-Hl036/GpL16-k0、GpH7-Kn032/GpH7-Hl032/GpL16-k0のいずれと比較しても向上していた。この結果から、ヘテロ二量化抗体技術を用いることで、GpH7-Kn045/GpH7-Hl048/GpL16-k0は従来技術と比べて、FcγRIIa、FcγRIIIa Fに対する結合活性を増強するとともに、より選択的に活性型FcγRに対して結合することが示された。
 表36及び37の結果から、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して、L234Y/L235Y/G236A/H268D/S298Aを一方のH鎖に、G236A/S239D/Q295L/A330M/I332Eをもう一方のH鎖に導入したGpH7-Kn045/GpH7-Hl055/GpL16-k0はFcγRIIa H型に対する結合が21倍、FcγRIIa R型に対する結合が56倍、FcγRIIIa Fに対する結合が985倍に増強していた。また、この結果から、FcγRIIaに対する結合増活性は、H型、R型のいずれについてもG236A/S239D/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0と比べてほぼ同等であった。FcγRIIIa Fに対する結合活性は、S239D/A330L/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn032/GpH7-Hl032/GpL16-k0と比べて増強していた。表38の結果からGpH7-Kn045/GpH7-Hl055/GpL16-k0のA/I ratioはFcγRIIa H型に対して8.3、FcγRIIa R型に対して18であり、GpH7-Kn033/GpH7-Hl033/GpL16-k0、GpH7-Kn032/GpH7-Hl032/GpL16-k0より向上し、GpH7-Kn037/GpH7-Hl036/GpL16-k0と比較してFcγRIIa H型についてはほぼ同等であり、FcγRIIa R型については向上していた。この結果から、ヘテロ二量化抗体技術を用いることで、GpH7-Kn045/GpH7-Hl055/GpL16-k0は従来技術と比べて、FcγRIIaに対する結合活性を同程度に向上させつつ、FcγRIIIaに対する結合活性をより増強するとともに、より選択的に活性型FcγRに対して結合することが示された。
 表36及び37の結果から、G1dに対してKnobs-into-Holes技術のみを適用した分子であるGpH7-Kn033/GpH7-Hl033/GpL16-k0と比較して、L234Y/L235Y/G236A/H268D/Q295L/S298Aを一方のH鎖に、G236A/S239D/Q295L/A330M/I332Eをもう一方のH鎖に導入したGpH7-Kn056/GpH7-Hl055/GpL16-k0はFcγRIIa H型に対する結合が20倍、FcγRIIa R型に対する結合が44倍、FcγRIIIa Fに対する結合が1114倍に増強していた。また、この結果から、FcγRIIaに対する結合増活性は、H型、R型のいずれについてもG236A/S239D/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0と比べてほぼ同等であった。FcγRIIIa Fに対する結合活性は、S239D/A330L/I332Eを両H鎖に導入した従来技術であるホモ二量化抗体GpH7-Kn032/GpH7-Hl032/GpL16-k0と比べて増強していた。表38の結果からGpH7-Kn056/GpH7-Hl055/GpL16-k0のA/I ratioはFcγRIIa H型に対して8.7、FcγRIIa R型に対して16であり、GpH7-Kn033/GpH7-Hl033/GpL16-k0、GpH7-Kn032/GpH7-Hl032/GpL16-k0より向上し、GpH7-Kn037/GpH7-Hl036/GpL16-k0と比較してFcγRIIa H型についてはほぼ同等であり、FcγRIIa R型については向上していた。この結果から、ヘテロ二量化抗体技術を用いることで、GpH7-Kn056/GpH7-Hl055/GpL16-k0は従来技術と比べて、FcγRIIaに対する結合活性を同程度に向上させつつ、FcγRIIIaに対する結合活性をより増強するとともに、より選択的に活性型FcγRに対して結合することが示された。
〔実施例13〕従来技術との比較:FcγRIIa、FcγRIIIaに対する結合活性が増強したヘテロ二量化抗体の熱安定性の評価
 実施例9にあるように、従来技術で得られたホモ二量化抗体はFcγRへの結合活性が増強しているものの、物理化学的に不安定であるため、医薬品としての価値を損ねていた。しかし、ヘテロ二量化抗体技術は各改変のFcγRに対する結合活性の増強効果と物理化学的な面での影響とを制御しやすく、FcγRに対する結合活性を増強しつつも物理化学的な安定性を損なわないことが可能であることが明らかとなった。この実施例では活性型FcγRであるFcγRIIaとFcγRIIIaに対する結合活性が増強した抗体についても同様に物理化学的な安定性、特に熱力学的安定性が減じていないか検証した。実施例11でFcγRに対する結合活性を評価した抗体について、参考実施例5の方法にしたがって各抗体のCH2領域のTmを測定し、その結果をに表39まとめた。
Figure JPOXMLDOC01-appb-T000065
 FcγRIIa、FcγRIIIaに対する結合活性を増強した抗体のTmを示す。
 表39の結果から、ヘテロ二量化抗体であるGpH7-Kn045/GpH7-Hl048/GpL16-k0、GpH7-Kn045/GpH7-Hl055/GpL16-k0、GpH7-Kn056/GpH7-Hl055/GpL16-k0のいずれも、従来技術であるホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0、GpH7-Kn032/GpH7-Hl032/GpL16-k0と比べて高いTmを維持していた。実施例11で述べたように、これらのヘテロ二量化抗体は従来のホモ二量化抗体と比べて、FcγRを介したエフェクター機能を発揮するのにより適した性質を有している。すなわち、この結果からヘテロ二量化抗体技術を用いることで、抗体の物理化学的な安定性を損ねることなく、FcγRに対する結合を精緻に制御することが可能であることが明らかとなった。
〔実施例14〕活性型FcγRであるFcγRIIIa Fに対する選択性を向上した改変の組み合わせの効果
 実施例8で述べたように、活性型FcγRおよび抑制型FcγRに対する選択性を向上させる技術は有用である。ここでは実施例8で見出した活性型FcγであるFcγRIIIa Fに対する結合と抑制型FcγRであるFcγRIIbに対する結合の比率を向上させるのに、すなわち選択性の向上にヘテロ二量化が有効であるか検証した。具体的には活性型FcγであるFcγRIIIa Fに対する結合と抑制型FcγRであるFcγRIIbに対する結合の比率を向上させる改変であるL234Y、G236W、S298A(表22-1領域a)と実施例7で検討したS239D、A330L、I332Eと組み合わせて、ヘテロ二量化抗体でホモ二量化抗体と比べて、選択性の向上の効果が得られるのかを検証した。
 この検証のために、参考実施例1の方法にしたがってS239D、A330L、I332Eを全てGpH7-A5に導入したGpH7-A57(配列番号:40)、GpH7-B3に導入したGpH7-B78(配列番号:41)およびL234Y、G236W、S298Aを全てGpH7-A5に導入したGpH7-TA7(配列番号:31)、GpH7-B3に導入したGpH7-TA45(配列番号:32)を挿入した発現ベクターを調製した。これらの発現ベクターとGpH7-A5、GpH7-B3、GpL16-k0を使って、一方のH鎖にL234Y、G236W、S298Aを、もう一方のH鎖にS239D、A330L、I332Eを導入したヘテロGpH7-TA7/GpH7-B78/GpL16-k0、L234Y、G236W、S298Aのみを一方のH鎖に導入したGpH7-TA7/GpH7-B3/GpL16-k0、L234Y、G236W、S298Aを両方のH鎖に導入したGpH7-TA7/GpH7-TA45/GpL16-k0、S239D、A330L、I332Eのみを一方のH鎖に導入したGpH7-A5/GpH7-B78/GpL16-k0、S239D、A330L、I332Eを両方のH鎖に導入したGpH7-A57/GpH7-B78/GpL16-k0を参考実施例1の方法に従って発現、調製した。調製した抗体は参考実施例2の方法に従ってFcγRIIIaに対するKDおよびFcγRIIbに対するKDを測定した。各抗体のFcγRIIbに対するKDをFcγRIIIaに対するKDで割った値であるFcγRIIIa/FcγRIIb ratioを指標に、各抗体のFcγRIIIaに対する結合活性の選択性が向上したか否かを検証した。検証結果を表40にまとめた。
Figure JPOXMLDOC01-appb-T000066
 サンプルの欄には抗体の名称、H1、H2の欄には各抗体のH鎖定常領域の名称、変異箇所の欄にはGpH7-A5/GpH7-B3/GpL16-k0と比較して異なる変異(特に変異がない場合には「-」)を表記した。各抗体のFcγRIIbに対するKDをFcγRIIIa Fに対するKDで割った値をFcγRIIIa F/FcγRIIb ratioとした。各抗体のH鎖、L鎖に対応するアミノ酸配列の配列番号を併記した。
 表40の結果から、天然型IgG1であるGpH7-G1d/GpL16-k0と、D356K、H435RおよびK439Eをそれぞれ一方のH鎖に導入したGpH7-A5/GpH7-B3/GpL16-k0とを比較すると、FcγRIIIa/FcγRIIb ratioはそれぞれ2.5、1.9であり、大きな差異は観察されなかった。このことから、D356K、H435RおよびK439Eの改変はFcγRIIIaに対する結合活性の選択性に対して影響を与えないと考えられた。
 従来技術を用いたホモ二量化抗体について、各改変の効果を検証した。S239D、A330L、I332Eを両H鎖に導入したホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0ではFcγRIIIa/FcγRIIb ratioが100であり、GpH7-A5/GpH7-B3/GpL16-k0と比べて向上していた。一方で、L234Y、G236W、S298Aを両H鎖に導入したホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0では5.3であり、ホモ二量化抗体においてはS239D、A330L、I332Eの組み合わせの方がFcγRIIIaに対する結合活性の選択性を向上させる効果が高いことが明らかとなった。
 次に、各改変群を一方のH鎖にのみ導入したヘテロ二量化抗体について、各改変群の効果を検証した。S239D、A330L、I332Eを一方のH鎖に導入したヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0ではFcγRIIIa/FcγRIIb ratioが7.9であり、GpH7-A5/GpH7-B3/GpL16-k0と比べて向上していた。一方で、L234Y、G236W、S298Aを一方のH鎖に導入したヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0では14であった。この結果から、ヘテロ二量化抗体においてはL234Y、G236W、S298Aの改変群の方がFcγRIIIaに対する結合活性の選択性を向上させる効果が高いことが明らかとなった。 
 各改変群のホモ二量化抗体とヘテロ二量化抗体における効果の違いを検証した。S239D、A330L、I332Eについては、そのヘテロ二量化抗体においてはFcγRIIIa/FcγRIIb ratioが7.9であり、ホモ二量化抗体では100であった。この結果から、S239D、A330L、I332Eについてはヘテロ二量化すると、FcγRIIIaに対する結合活性の選択性を向上させる効果があるが、ホモ二量化すると、その効果が更に増強されることが明らかとなった。反対に、L234Y、G236A、S298Aについては、そのヘテロ二量化抗体においてはFcγRIIIa/FcγRIIb ratioが14であり、ホモ二量化抗体では5.3であった。この結果から、L234Y、G236A、S298Aについてはヘテロ二量化すると、FcγRIIIaに対する結合活性の選択性を向上させる効果があるが、ホモ二量化すると、その効果が減弱することが明らかとなった。これらの結果から、ホモ二量化抗体においてはS239D、A330L、I332Eの改変群の方がL234Y、G236A、S298Aの改変群よりもFcγRIIIaに対する結合活性の選択性を向上させる効果が高いが、ヘテロ二量化抗体においてはL234Y、G236A、S298Aの改変群の方がS239D、A330L、I332Eの改変群よりもFcγRIIIaに対する結合活性の選択性を向上させる効果が高いことが明らかとなった。
 L234Y、G236A、S298Aの改変群とS239D、A330L、I332Eの改変群とを組み合わせたヘテロ二量化抗体GpH7-TA7/GpH7-B78/GpL16-k0ではFcγRIIIa/FcγRIIb ratioが244と、L234Y、G236A、S298Aの改変群を一方のH鎖にのみ有するヘテロ二量化抗体GpH7-TA7/GpH7-B3/GpL16-k0、両H鎖に有するホモ二量化抗体GpH7-TA7/GpH7-TA45/GpL16-k0、S239D、A330L、I332Eの改変群を一方のH鎖にのみ有するヘテロ二量化抗体GpH7-A5/GpH7-B78/GpL16-k0、両H鎖に有するホモ二量化抗体GpH7-A57/GpH7-B78/GpL16-k0のいずれと比べてFcγRIIIaに対する結合活性の選択性を向上させる効果が高いことが明らかとなった。この結果はL234Y、G236A、S298Aの改変群のヘテロ二量化抗体でのFcγRIIIaに対する結合活性の選択性の向上効果と、S239D、A330L、I332Eの改変群のヘテロ二量化抗体での効果とを合わせたものと考えられる。すなわち、ヘテロ二量化抗体では、ホモ二量化抗体と比べて、優れたFcγRIIIaに対する結合活性の選択性の向上効果が観察されることが明らかとなった。
 すなわち、ヘテロ二量化抗体を用いることで、従来のホモ二量化抗体を用いるよりも、Fc領域とFcγRIIIaとの非対称な相互作用をより最適化することができ、より高いFcγRIIIaに対する結合活性の選択性を有するFc領域をデザインすることが可能であることが示された。
〔実施例15〕FcgRIIa結合増強ヘテロ二量化抗体のADCC活性の測定
 実施例12で調製したGpH7-G1d/GpL16-k0、GpH7-Kn033/GpH7-Hl033/GpL16-k0、GpH7-Kn037/GpH7-Hl036/GpL16-k0、GpH7-Kn032/GpH7-Hl032/GpL16-k0、GpH7-Kn045/GpH7-Hl048/GpL16-k0、GpH7-Kn056/GpH7-Hl055/GpL16-k0について、参考実施例7の方法にしたがってADCC活性を評価し、その結果を図33にまとめた。
 図33においてGpH7-G1d/GpL16-k0とGpH7-Kn033/GpH7-Hl033/GpL16-k0のADCC活性の比較をすると、両者はほぼ同等の活性を有していた。この結果から、Knobs-into-Holesを抗体のFc領域に導入してもFcgRに対する結合に加えてADCC活性においても影響がないことが明らかとなった。
 実施例12に記載したヘテロ二量化抗体GpH7-Kn045/GpH7-Hl048/GpL16-k0、GpH7-Kn056/GpH7-Hl055/GpL16-k0はいずれも改変導入前の抗体GpH7-Kn033/GpH7-Hl033/GpL16-k0と比較してより強いADCC活性を示した。また、ヘテロ二量化抗体GpH7-Kn045/GpH7-Hl048/GpL16-k0、GpH7-Kn056/GpH7-Hl055/GpL16-k0はFcgRIIa RおよびFcgRIIa Hに対する結合を増強し、ADCP活性を増強したと報告のあるG236A/S239D/I332Eの改変を両H鎖に有するホモ二量化抗体GpH7-Kn037/GpH7-Hl036/GpL16-k0および、既存のADCC活性増強を適用した抗体であるGpH7-Kn032/GpH7-Hl032/GpL16-k0と同程度のADCC活性を示した。
 すなわち、GpH7-Kn045/GpH7-Hl048/GpL16-k0、GpH7-Kn056/GpH7-Hl055/GpL16-k0は実施例12で示したようにFcgRIIa RおよびFcgRIIa Hに対する結合が既存技術と比較して一層増強していることに加えて、既存のADCC活性増強技術と比較して同等のADCC活性増強効果を有している。すなわち、ここで評価したヘテロ二量化抗体はADCC活性増強効果については既存技術と同程度の効果を有する上にFcgRIIa HおよびFcgRIIa Rに対する結合の増強があるという点で、既存技術と比較して優れていると考えられる。
〔実施例16〕FcgRIIIaに対する結合を増強したヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0の創出
 また、実施例11で示したように、FcγRIIIaに対する結合活性を増強したヘテロ二量化抗体はADCC活性も増強していることが明らかとなった。実施例11では、GPC3に対する抗体において効果が確認されたが、他の抗原においても同様の効果が観察されるか確認するため、抗Epiregulin (EREG) 抗体を用いて同様の実験を行った。ここで、EREGに対する抗体のH鎖可変領域の配列をH240(配列番号:80)、可変領域、定常領域を含むL鎖の配列をL73-k0(配列番号:106)とする。
 実施例4の結果をもとにH鎖に新たにFcgRIIIaに対して結合を増強した改変体を作製した。ここではヘテロ二量化技術としては実施例12に記載のKnobs-into-Holes技術を用いた。具体的には、H240-G1d (配列番号:83)に対してY349C、T366Wの改変を定常領域に導入したH240-Kn033(配列番号:84)、H240-G1dに対してD356C、T366S、L368A、Y407Vの改変を定常領域に導入したH240-Hl033(配列番号:85)を参考実施例1の方法にしたがって調製した。次に、H240-Kn033(配列番号:84)にL234Y、L235Y、G236W、H268D、S298Aを導入し、H240-Kn061(配列番号:81)を参考実施例1の方法にしたがって作製し、H240-Hl033(配列番号:85)にK326D、A330M、K334Eを導入し、H240-Hl071(配列番号:82)を参考実施例1の方法にしたがって作製した。H240-Kn061、H240-Hl071、L73-k0を組み合わせて、参考実施例1の方法にしたがってヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0を発現させた。
 実施例12と同様に、FcgRIIIaに対する結合を増強すると報告のあるS239D、A330L、I332Eを導入した改変体を比較対象として用いるために作製した。具体的には参考実施例1の方法にしたがってS239D、A330L、I332EをH240-Kn033(配列番号:84)、H240-Hl033(配列番号:85)のそれぞれに導入した、H240-Kn032(配列番号:86)、H240-Hl032(配列番号:87)を作製した。H240-Kn032、H240-Hl032、L73-k0を組み合わせて、参考実施例1の方法にしたがってホモ二量化抗体H240-Kn032/H240-Hl032/L73-k0を発現させた。
 次に、FcgRIIIaに対する結合を増強する(Glycobiol. Vol.17 no.1 pp. 104-118 (2006)など)と報告のあるアフコシル化抗体を比較のために作製した。相同染色体上の両方のフコーストランスポーター遺伝子の発現が人為的に抑制されている細胞ではフコーストランスポーターの機能が阻害される。この細胞を用いることでフコースが欠損した抗体を得ることが可能である(WO2006/067913等)。また、beta 1, 4-N-acetylglucosaminyltransferase IIIとGolgi alpha-mannosidase IIが強制発現される細胞で抗体を産生させてもフコースが欠損した抗体を得ることが可能である(Ferrara ら、 Biotechnol. Bioeng. (2006) 93 (5), 851-861)。これら同業者公知の手法により、H240-G1d(配列番号:83)およびL73-k0(配列番号:106)を組み合わせて発現させ、H240-G1d/L73-k0をアフコシル化した抗体H240-afucosyl_G1d/L73-k0(配列番号:83、106)を得た。
 また、参考実施例1の方法にしたがって、コントロールとしてH240-Kn033(配列番号:84)、H240-Hl033(配列番号:85)、L73-k0(配列番号:106)を組み合わせてH240-Kn033/H240-Hl033/L73-k0を発現させた。
 これらについて、参考実施例8の方法にしたがって、各FcgRに対する結合活性を評価し、その結果を表41にまとめた。
Figure JPOXMLDOC01-appb-T000067
 表41の結果から、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0はH240-Kn033/H240-Hl033/L73-k0と比較して、特にFcgRIIIa F、FcgRIIIa Vに対する結合が増強していた。ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0はH240-Kn033/H240-Hl033/L73-k0にL234Y/L235Y/G236W/H268D/S298AおよびK326D/A330M/K334Eを導入した改変体であることから、これらの導入された改変のFcgRに対する結合が増強されたと言える。
 表41の結果から、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0は既存のADCC活性増強技術を適用したH240-afucosyl_G1d/L73-k0およびH240-Kn032/H240-Hl032/L73-k0と比較してFcgRIIIa F、FcgRIIIa Vに対する結合が増強していた。この結果から、ヘテロ二量化抗体は従来のホモ二量化抗体によるADCC活性増強技術およびアフコシル化によるADCC活性増強技術と比較して、FcgRIIIaに対する結合増強効果が高いことが明らかとなった。
加えて、ヘテロ二量化抗体ではADCP活性増強に重要と考えられるFcgRIIaに対する結合も、FcgRIIa Hについては両抗体よりも増強しており、FcgRIIa RについてはH240-afucosyl_G1d/L73-k0よりも結合が増強し、H240-Kn032/H240-Hl032/L73-k0と同程度であった。
 次にヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0がその各H鎖からなるホモ二量化抗体よりもFcgRに対する結合活性を増強するというヘテロ二量化抗体の特徴を有するかを確認した。ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0の一方のH鎖であるH240-Kn061にはL234Y/L235Y/G236W/H268D/S298Aが、もう一方のH鎖であるH240-Hl071にはK326D/A330M/K334Eが導入されている。このヘテロ二量化抗体が、各H鎖からなるホモ二量化抗体と比較して、各FcgRに対してより強い結合活性を有することを確認した。具体的には、L234Y/L235Y/G236W/H268D/S298AをH240-Hl033に導入したH240-Hl134(配列番号:88)、およびK326D/A330M/K334EをH240-Kn033に導入したH240-Kn132(配列番号:89)を参考実施例1の方法にしたがって作製した。この発現ベクターを用いて、参考実施例1の方法にしたがい、L234Y/L235Y/G236W/H268D/S298Aを両H鎖に有するようなホモ二量化抗体H240-Kn061/H240-Hl134/L73-k0を発現させ、K326D/A330M/K334Eを両H鎖に有するようなホモ二量化抗体H240-Kn132/H240-Hl071/L73-k0を発現させた。これらのホモ二量化抗体と、L234Y/L235Y/G236W/H268D/S298A、K326D/A330M/K334Eを各H鎖に有するヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0のFcgRIIIaFおよびFcgRIIIa Vに対する結合を参考実施例8の方法にしたがって測定した。その結果を表42にまとめた。
Figure JPOXMLDOC01-appb-T000068
 表42の結果から、L234Y/L235Y/G236W/H268D/S298Aを一方のH鎖に有し、K326D/A330M/K334Eをもう一方のH鎖に有するヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0の方が、L234Y/L235Y/G236W/H268D/S298Aを両H鎖に有するようなホモ二量化抗体H240-Kn061/H240-Hl134/L73-k0および、K326D/A330M/K334Eを両H鎖に有するようなホモ二量化抗体H240-Kn132/H240-Hl071/L73-k0のいずれよりも、FcgRIIIa FおよびFcgRIIIa Vに対する強い結合活性を有することが確認された。すなわち、H240-Kn061/H240-Hl071/L73-k0はその各H鎖からなるホモ二量化抗体よりもFcgRに対する結合活性を増強するというヘテロ二量化抗体の特徴を有することが明らかとなった。
 次に、参考実施例9の方法にしたがって、H240-Kn033/H240-Hl033/L73-k0、H240-Kn032/H240-Hl032/L73-k0、H240-afucosyl_G1d/L73-k0、H240-Kn061/H240-Hl071/L73-k0のADCC活性を比較し、その結果を図34にまとめた。
 図34の結果から、H240-Kn061/H240-Hl071/L73-k0はH240-Kn033/H240-Hl033/L73-k0と比べて著しく強いADCC活性を示した。それに加えて、既存のADCC活性増強技術を適用したH240-Kn032/H240-Hl032/L73-k0およびH240-afucosyl_G1d/L73-k0よりも強いADCC活性を示した。すなわち、ADCC活性においてもH240-Kn061/H240-Hl071/L73-k0は既存のADCC活性増強技術より強いADCC活性を示すことが明らかとなった。
〔実施例17〕ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0をテンプレートにした更なる改変体の作製と評価
 先の実施例16において、優れたADCC活性を示すH240-Kn061/H240-Hl071/L73-k0を見出した。更に優れた活性を有する改変体を見出すため、H240-Kn061/H240-Hl071/L73-k0をテンプレートとして、参考実施例1の方法にしたがって、H240-Kn061およびH240-Hl071の各H鎖のEUナンバリング231番目から242番目をそれぞれCysおよび元のアミノ酸以外の異なる18種類のアミノ酸に置換した改変体を合計約420種類調製し、各FcgRに対する結合を評価した。具体的には、参考実施例8に記載の方法にしたがって各改変体のFcgRI、FcgRIIa R、FcgRIIa H、FcgRIIb、FcgRIIIa F、FcgRIIIa Vに対するKD値をそれぞれ算出し、そのKD値でH240-Kn061/H240-Hl071/L73-k0の FcgRI、FcgRIIa R、FcgRIIa H、FcgRIIb、FcgRIIIa F、FcgRIIIa Vに対するKD値を割った値をRelative KDとし、評価の指標とした。すなわち、H240-Kn061/H240-Hl071/L73-k0のKD値を1とした場合に、各改変体の各FcgRに対するKD値が何倍変動したかを評価の指標とした。Relative KDが大きいほど、その改変体がH240-Kn061/H240-Hl071/L73-k0と比べて各FcgRに対する結合がより増強していることを示している。
 各改変体のFcgRI、FcgRIIa R、FcgRIIa H、FcgRIIb、FcgRIIIa F、FcgRIIIa Vに対するRalative KDを縦軸に、Relative KDが小さい順になるようにした際の順位を横軸にした図をそれぞれ図35、図36、図37、図38、図39、図40に示した。
 これらの結果の解析から、H240-Kn061/H240-Hl071/L73-k0よりもFcgRIIbへの結合を増強することなく、FcgRIIa R、FcgRIIIa F、FcgRIIIa Vのいずれか、あるいはいくつかに対する結合を増強した改変体を見出した。その改変を導入したH鎖およびその改変を表43(FcgRIIbへの結合を増強することなく、FcgRIIa RおよびFcgRIIIaに対する結合を増強する改変)にまとめた。FcgRIIbに対するRelative KDが1以下となり、FcgRIIa R、FcgRIIIa F、FcgRIIIa Vのいずれか、あるいはいくつかに対するRelative KDが1.3以上となる改変を選択した。
Figure JPOXMLDOC01-appb-T000069
 上記表43中の数値は、各改変体の各FcgRに対するRelative KDを表す。
 これらの改変は抑制型FcgRであるFcgRIIbに対する結合を増強せず、ADCP活性に重要な役割を果たすFcgRIIaやADCC活性に重要な役割を果たすFcgRIIIaに対する結合を増強する効果がある。そのため、これらの改変を導入することで、抗体の免疫抑制的な作用を増強することなく、ADCC活性やADCP活性を増強させ、より強い抗腫瘍活性を発揮することが期待される。
 次に、H240-Kn061/H240-Hl071/L73-k0よりもFcgRIIIaへの結合を減弱することなく、FcgRIIa HおよびFcgRIIa Rに対する結合を増強する改変体を見出した。その改変を導入したH鎖およびその改変を表44(FcgRIIIaへの結合を減弱することなく、FcgRIIaへの結合を増強する改変)にまとめた。FcgRIIIa FおよびFcgRIIIa Vに対するRelative KDが0.7以上であり、FcgRIIa HおよびFcgRIIa Rに対するRelative KDが1.5以上となる改変を選択した。
Figure JPOXMLDOC01-appb-T000070
 上記表44中の数値は、各改変体の各FcgRに対するRelative KDを表す。
 これらの改変はADCC活性に重要な役割を果たすFcgRIIIaに対する結合を減弱することなく、改変によってはFcgRIIIaに対する結合を増強し、ADCP活性に重要な役割を果たすFcgRIIaに対する結合を増強する改変である。そのため、この改変を導入することで、ADCC活性およびADCP活性、ADCC活性またはADCP活性を増強させ、より強い抗腫瘍活性を発揮することが期待される。
 次に、H240-Kn061/H240-Hl071/L73-k0よりもFcgRIIIaへの結合を減弱することなく、FcgRIIbに対する結合を減弱する改変体を見出した。その改変を導入したH鎖およびその改変を表45(FcgRIIIaへの結合を維持したまま、FcgRIIbへの結合を減弱させる改変)にまとめた。FcgRIIIa FおよびFcgRIIIa Vに対するRelative KDが1以上であり、FcgRIIbに対するRelative KDが0.5以下となる改変を選択した。
Figure JPOXMLDOC01-appb-T000071
 上記表45中の数値は、各改変体の各FcgRに対するRelative KDを表す。
 これらの改変はADCC活性に重要な役割を果たすFcgRIIIaに対する結合を減弱することなく、抑制型FcgRであるFcgRIIbに対する結合を減弱させている。そのため、この改変を導入することで、ADCC活性を低減することなく、抗体の免疫抑制的な作用が低減されているため、より強い抗腫瘍活性を発揮することが期待される。
 また、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0が各H鎖からなるホモ二量化抗体よりもFcgRに対して強く結合するというヘテロ二量化抗体の性質を有することから、これらの改変をH240-Kn061/H240-Hl071/L73-k0に導入して得られる改変体も同様のヘテロ二量化抗体の性質を有すると考えられる。
〔実施例18〕ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0に導入した改変と置き換え可能な改変
 実施例17で得られた図35、図36、図37、図38、図39、図40の結果から、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0のこれらの改変箇所をその他の改変に置き換えることが可能かを検証した。ここで、置換可能な改変とは、その改変を導入することで、導入前と比較して、FcgRIIIa FおよびFcgRIIIa Vに対する結合が0.7倍以上であり、FcgRIIbに対する結合が1.3倍以下であるような改変を指す。
 実施例17で調製した改変体は抗体のEUナンバリング231番目から242番目のアミノ酸に改変を導入している。ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0の、H240-Kn061のH鎖にはL234Y/L235Y/G236W/H268D/S298A、H240-Hl071のH鎖にはK326D/A330M/K334Eを導入しているため、実施例17の結果からH240-Kn061のH鎖に導入された改変のうちL234Y、L235Y、G236Wが他のアミノ酸に置換可能かを検証することができる。
 H240-Kn061/H240-Hl071/L73-k0の一方のH鎖であるH240-Hl071に導入した改変箇所は含まれず、もう一方のH鎖であるH240-Kn061のH鎖のEUナンバリング234番目、235番目、236番目が含まれる。今回調製した改変体の中で、H240-Kn061のH鎖のEUナンバリング234番目、235番目、236番目に改変を導入したもので、H240-Kn061/H240-Hl071/L73-k0と比較して、FcgRIIIa FおよびFcgRIIIa Vに対する結合が0.7倍以上であり、FcgRIIbに対する結合が1.3倍以下であるような改変体はH240-Kn061/H240-Hl071/L73-k0と同等かより優れた活性を有すると考えられるため、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0の優れた性質を損なうことなく置き換えることが可能であると考えられた。このような条件を満たす改変について、導入したH鎖およびその改変を表46(H240-Kn061/H240-Hl071/L73-k0と同等の活性を維持する、あるいはより優れた性質を付与する改変)にまとめた。
Figure JPOXMLDOC01-appb-T000072
 上記表46中の「改変を導入したH鎖」とは、H240-Kn061/H240-Hl071/L73-k0のH鎖のうち、いずれのH鎖に置換可能であるかを表し、「改変」は数字がEUナンバリングで表したときの残基番号、最初のアルファベットがH240-Kn061/H240-Hl071/L73-k0のその残基番号に対応するアミノ酸、最後のアルファベットが置換可能なアミノ酸を表す。
 この結果から、H240-Kn061のH鎖定常領域に導入した改変のうち、置換可能な部位、および置換可能なアミノ酸は表47(H240-Kn061/H240-Hl071/L73-k0と同等の活性を維持したまま置換可能なH240-Kn061の改変部位と、置換可能なアミノ酸)のようにまとめられる。
Figure JPOXMLDOC01-appb-T000073
 上記表47中の「改変部位」とは、H240-Kn061のEUナンバリングで表したときの残基番号EUナンバリングで表したときの残基番号、置換可能なアミノ酸とはその部位を表中のアミノ酸に置換しても、H240-Kn061/H240-Hl071/L73-k0と同等の活性を持つような、すなわち置換可能なアミノ酸を表す。
 H240-Kn061/H240-Hl071/L73-k0に導入した改変のうち、H240-Kn061のH268D、S298A、およびH240-Hl071のK326D、A330M、K334Eについては実施例17では対応する部位について改変を導入していない。以下では、これらの部位についても置き換え可能な改変の有無を実施例4の結果から考察した。具体的には、実施例4の結果のうち、H鎖の一方のみに改変を導入したヘテロ二量化抗体において、FcgRIIIa Fに対する結合の指標であるHe/Con_3aFが改変導入前に比べて1.3倍以上増強、すなわちHe/Con_3aFの値が130以上であり、かつその部位で最も強い効果を示す3つの改変を選択した。その結果をまとめると、表48(H240-Kn061/H240-Hl071/L73-k0の改変H268D、S298A、K326D、A330M、K334Eと置換可能な改変の改変部位、置換可能なアミノ酸、およびそのFcgRIIIa Fに対する結合活性)のようになる。
Figure JPOXMLDOC01-appb-T000074
 上記表48中の「改変部位」とは、EUナンバリングで表したときの残基番号を表す。「置換可能なアミノ酸」とは実施例4においてH鎖の一方のみに改変を導入したヘテロ二量化抗体において、FcgRIIIa Fに対する結合の指標であるHe/Con_3aFが改変導入前に比べて1.3倍以上増強しており、かつその部位で最も強い効果を示す3つの改変を表す。「He/Con_3aF」は実施例4で定義される値である。
 表48の結果を改変部位ごとに、置換可能なアミノ酸でまとめると表49(H240-Kn061/H240-Hl071/L73-k0の改変H268D、S298A、K326D、A330M、K334Eの置換可能な改変部位と、置換可能なアミノ酸)のようになる。
Figure JPOXMLDOC01-appb-T000075
 表49から、H240-Kn061/H240-Hl071/L73-k0のH268DはDの代わりにEまたはAに置換しても、同等の活性を発揮すると考えられる。同様にして、K326DはDの代わりにTまたはIであっても、A330MはMの代わりにPまたはFであっても、K334DはDの代わりに、EまたはIであっても同等の活性を発揮すると考えられる。一方で、S298Aについては改変しても、同等の活性を発揮すると考えられる改変は見出すことができなかった。
 また、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0がその各H鎖からなるホモ二量化抗体よりもFcgRに対する結合活性を増強するというヘテロ二量化抗体の特徴を有することから、これらの改変をH240-Kn061/H240-Hl071/L73-k0に導入して得られる改変体も同様にヘテロ二量化抗体の性質を有すると考えられる。
〔実施例19〕ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0へのD270Eの導入とその評価
 次に、H240-Kn061/H240-Hl071を更に改良するために、ADCC活性を増強すると考えられるFcgRIIIaに対する結合を更に増強し、免疫抑制的なシグナルを通じて抗体の抗腫瘍活性を低減すると考えられるFcgRIIbに対する結合を更に減弱することを試みた。具体的には、実施例4で見出されたFcgRIIIaに対する結合を増強し、かつFcgRIIbに対する結合を減弱する改変であるD270EをH240-Kn061/H240-Hl071/L73-k0の両H鎖に導入した。H240-Kn061、H240-Hl071のそれぞれにD270Eを導入した配列をそれぞれH240-Kn072 (配列番号:90)、H240-Hl076 (配列番号:91)とし、実施例1の方法にしたがい、L73-k0と組み合わせヘテロ二量化抗体H240-Kn072/H240-Hl076/L73-k0を発現、調製した。この抗体と、H240-Kn033/H240-Hl033/L73-k0、H240-Kn032/H240-Hl032/L73-k0、H240-afucosyl_G1d/L73-k0、H240-Kn061/H240-Hl071/L73-k0とを、参考実施例8の方法にしたがって、各FcgRに対する結合活性を評価し、その結果を表50にまとめた。
Figure JPOXMLDOC01-appb-T000076
 表50から、H240-Kn072/H240-Hl076/L73-k0はH240-Kn061/H240-Hl071/L73-k0と同様に既存のADCC活性増強技術を適用したH240-Kn032/H240-Hl032/L73-k0およびH240-afucosyl_G1d/L73-k0よりもFcgRIIIa FおよびFcgRIIIa Vに強く結合し、加えてH240-Kn061/H240-Hl071/L73-k0よりも強く結合した。FcgRIIbに対して、H240-Kn072/H240-Hl076/L73-k0は既存のADCC活性増強技術により作製したH240-Kn032/H240-Hl032/L73-k0およびH240-afucosyl_G1d/L73-k0よりも結合が減弱し、更にH240-Kn061/H240-Hl071/L73-k0よりも減弱していた。
 すなわち、D270Eを導入することで、ADCC活性を増強するFcgRIIIaに対する結合が増強されていることからより強いADCC活性を有することが期待され、免疫抑制的なシグナルを伝達するFcgRIIbに対する結合が減弱されていることから抗体の免疫抑制的な作用を低減することが期待されるため、H240-Kn072/H240-Hl076/L73-k0はH240-Kn061/H240-Hl071/L73-k0よりも優れた抗腫瘍効果を発揮すると考えられる。
 次に、H240-Kn072/H240-Hl076/L73-k0のADCC活性をH240-Kn061/H240-Hl071/L73-k0、H240-Kn033/H240-Hl033/L73-k0およびH240-afucosyl_G1d/L73-k0と比較した。その結果を図41に示す。
 図41の結果からH240-Kn072/H240-Hl076/L73-k0はH240-Kn033/H240-Hl033/L73-k0よりも著しく強いADCC活性を示した。また、H240-Kn072/H240-Hl076/L73-k0は既存のADCC活性増強技術を適用したアフコシル化抗体H240-afucosyl_G1d/L73-k0よりも強いADCC活性を示し、H240-Kn061/H240-Hl071/L73-k0とは同程度のADCC活性を示した。
 この結果から、ヘテロ二量化抗体H240-Kn072/H240-Hl076/L73-k0は既存のADCC活性増強技術よりも強いADCC活性を有することに加えて、FcgRIIbに対する結合も減弱した既存技術よりも優れた抗体である。
 また、ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0が各H鎖からなるホモ二量化抗体よりもFcgRに対して強く結合するというヘテロ二量化抗体の性質を有することから、D270EをH240-Kn061/H240-Hl071/L73-k0の両H鎖に導入して得られたH240-Kn072/H240-Hl076/L73-k0も同様にヘテロ二量化抗体の性質を有すると考えられる。
〔実施例20〕ヘテロ二量化抗体H240-Kn072/H240-Hl076/L73-k0の更なる改良
 実施例19において見出されたH240-Kn072/H240-Hl076/L73-k0の更なる改良を試みた。具体的には、実施例18において見出されたH240-Kn061/H240-Hl071/L73-k0に更に優れた性質をH240-Kn061に導入することで付与する改変Y234E、Y235N、Y235Q、S239Mを、H240-Kn072/H240-Hl076/L73-k0と組み合わせた。
 参考実施例1の方法にしたがって、H240-Kn072にY234E、Y235Nを導入したH240-Kn113(配列番号:92)、H240-Kn072にS239Mを導入したH240-Kn115(配列番号:93)、H240-Kn072にY235Q、S239Mを導入したH240-Kn125(配列番号:94)を作製した。参考実施例1の方法にしたがって、一方のH鎖としてH240-Hl076、L鎖としてL73-k0を、もう一方のH鎖としてH240-Kn113、H240-Kn115、H240-Kn125をそれぞれ組み合わせ、H240-Kn113/H240-Hl076/L73-k0、H240-Kn115/H240-Hl076/L73-k0、H240-Kn125/H240-Hl076/L73-k0を調製した。これらについて、参考実施例8の方法にしたがって、各FcgRに対する結合を、天然型IgG1であるH240-G1d/L73-k0、それにKnobs-into-Holesを加えたH240-Kn033/H240-Hl033/L73-k0、既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0およびADCC活性増強改変であるS239D/A330L/I332Eを両H鎖に導入したホモ二量化抗体H240-Kn032/H240-Hl032/L73-k0とともに評価した結果を表51にまとめた。
Figure JPOXMLDOC01-appb-T000077
 H240-Kn113/H240-Hl076/L73-k0は、H240-Kn072/H240-Hl076/L73-k0と比較して、抑制型FcgRであるFcgRIIbに対する結合は同程度を維持し、かつADCC活性に重要な役割を果たすFcgRIIIa FおよびFcgRIIIa Vに対する結合が増強していた。抑制型FcgRであるFcgRIIbに対する結合については、天然型抗体であるIgG1と比較しても結合が同程度であった。FcgRIIIaについてはFcgRIIIa FおよびFcgRIIIa Vに対する結合が既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0およびADCC活性増強改変であるS239D/A330L/I332Eを両H鎖に導入したホモ二量化抗体H240-Kn032/H240-Hl032/L73-k0よりも増強していた。このことから、H240-Kn113/H240-Hl076/L73-k0は天然型のIgG1と比べて免疫抑制的な作用が増強されることなく、かつ既存のADCC活性増強改変を適用したアフコシル化抗体、ホモ二量化抗体以上に強い抗腫瘍効果を有する可能性がある。
 H240-Kn115/H240-Hl076/L73-k0は、H240-Kn113/H240-Hl076/L73-k0と比較してADCC活性に重要な役割を果たすFcgRIIIa FおよびFcgRIIIa Vに対する結合が更に増強していた。加えて、ADCP活性に重要なFcgRIIa RおよびFcgRIIa Hに対する結合も、天然型IgG1であるH240-G1d/L73-k0、それにKnobs-into-Holesを加えたH240-Kn033/H240-Hl033/L73-k0、既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0およびADCC活性増強改変であるS239D/A330L/I332Eを両H鎖に導入したホモ二量化抗体H240-Kn032/H240-Hl032/L73-k0よりも増強していた。
 H240-Kn125/H240-Hl076/L73-k0は、H240-Kn113/H240-Hl076/L73-k0と同様に、抑制型FcgRであるFcgRIIbに対する結合がIgG1と同程度に維持されたまま、ADCC活性に重要な役割を果たすFcgRIIIa FおよびFcgRIIIa Vに対する結合がH240-Kn115/H240-Hl076/L73-k0以上に増強していた。既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0およびADCC活性増強改変であるS239D/A330L/I332Eを両H鎖に導入したホモ二量化抗体H240-Kn032/H240-Hl032/L73-k0と比べた場合、FcgRIIaのアロタイプの一つであるFcgRIIa Hに対する結合がより増強し、FcgRIIbに対する結合が減弱し、FcgRIIIaについては両アロタイプに対する結合が増強していることから、H240-Kn125/H240-Hl076/L73-k0は既存のADCC活性増強改変を適用したアフコシル化抗体、ホモ二量化抗体以上にADCP活性増強、ADCC活性増強が期待され、加えて免疫抑制的な作用の減弱が期待できる。
 次に、H240-Kn113/H240-Hl076/L73-k0、H240-Kn115/H240-Hl076/L73-k0、H240-Kn125/H240-Hl076/L73-k0のADCC活性をH240-Kn033/H240-Hl033/L73-k0、既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0と比較した。その結果を図42に示す。
 図42から、いずれのヘテロ二量化抗体も既存のADCC活性増強技術であるアフコシル化抗体よりも優れたADCC活性を示すことが明らかとなった。
 各FcgRに対する結合プロファイル、および既存技術と比較したADCC活性の結果から、今回H240-Kn072/H240-Hl076/L73-k0のH240-Kn072に導入したY234E、Y235N、Y235Q、S239MはH240-Kn072/H240-Hl076/L73-k0により優れた性質を付与する改変であることが明らかとなった。
 ヘテロ二量化抗体H240-Kn061/H240-Hl071/L73-k0が各H鎖からなるホモ二量化抗体よりもFcgRに対して強く結合するというヘテロ二量化抗体の性質を有することから、D270EをH240-Kn061/H240-Hl071/L73-k0の両H鎖に導入して得られたH240-Kn072/H240-Hl076/L73-k0も同様にヘテロ二量化抗体の性質を有し、そこに更に改変を導入したH240-Kn113/H240-Hl076/L73-k0、H240-Kn115/H240-Hl076/L73-k0、H240-Kn125/H240-Hl076/L73-k0も同様にヘテロ二量化抗体の性質を有すると考えられた。
〔実施例21〕FcgRIIa、FcgRIIIaに対する結合を増強したヘテロ二量化抗体の作製
 実施例4の結果をもとにH鎖にFcgRIIIaおよびFcgRIIaに対して結合を増強した改変体を作製した。具体的には、参考実施例1の方法にしたがってH240-Kn033(配列番号:84)にL234Y、L235Y、G236W、H268D、S298A、A327Dを導入し、H240-Kn067(配列番号:95)を作製し、H240-Hl033(配列番号:85)にD270E、K326D、A330K、K334Eを導入し、H240-Hl068(配列番号:96)を作製した。H240-Kn067、H240-Hl068、L73-k0を組み合わせて、参考実施例1の方法にしたがってヘテロ二量化抗体H240-Kn067/H240-Hl068/L73-k0を発現させた。
 まず、このヘテロ二量化抗体H240-Kn067/H240-Hl068/L73-k0がその各H鎖からなるホモ二量化抗体よりもFcgRに対する結合活性を増強するというヘテロ二量化抗体の特徴を有するかを確認した。ヘテロ二量化抗体H240-Kn067/H240-Hl068/L73-k0の一方のH鎖であるH240-Kn067にはL234Y/L235Y/G236W/H268D/S298A/A327Dが、もう一方のH鎖であるH240-Hl068にはD270E/K326D/A330K/K334Eが導入されている。そこで、L234Y/L235Y/G236W/H268D/S298A/A327DをH240-Hl033に導入したH240-Hl136(配列番号:97)、およびD270E/K326D/A330K/K334EをH240-Kn033に導入したH240-Kn133(配列番号:98)を参考実施例1の方法にしたがって作製した。この発現ベクターを用いて、参考実施例1の方法にしたがい、L234Y/L235Y/G236W/H268D/S298A/A327Dを両H鎖に有するようなホモ二量化抗体H240-Kn067/H240-Hl136/L73-k0、D270E/K326D/A330K/K334Eを両H鎖に有するようなホモ二量化抗体H240-Kn113/H240-Hl068/L73-k0を発現させた。これらのホモ二量化抗体と、L234Y/L235Y/G236W/H268D/S298A/A327Dを一方のH鎖に有し、D270E/K326D/A330K/K334Eをもう一方のH鎖に有するヘテロ二量化抗体H240-Kn067/H240-Hl068/L73-k0のFcgRIIa H、FcgRIIa R、FcgRIIIaFおよびFcgRIIIa Vに対する結合を参考実施例8の方法にしたがって測定した。その結果を表52にまとめた。
Figure JPOXMLDOC01-appb-T000078
 更にこの改変体に対して、実施例18において見出されたH240-Kn061に導入することでH240-Kn061/H240-Hl071/L73-k0に更に優れた性質を付与する改変Y235Q、S239Mを、H240-Kn067/H240-Hl068/L73-k0と組み合わせた。具体的には、参考実施例1の方法にしたがって、H240-Kn067にS239Mを導入したH240-Kn120(配列番号:99)、H240-Kn120にY235Qを導入したH240-Kn126(配列番号:100)、を作製した。参考実施例1の方法にしたがって、一方のH鎖としてH240-Hl068、L鎖としてL73-k0を、もう一方のH鎖としてH240-Kn067、H240-Kn120、H240-Kn126をそれぞれ組み合わせ、H240-Kn067/H240-Hl068/L73-k0、H240-Kn120/H240-Hl068/L73-k0、H240-Kn126/H240-Hl068/L73-k0を調製した。これらについて、参考実施例8の方法にしたがって、各FcgRに対する結合を評価した結果を表53にまとめた。
Figure JPOXMLDOC01-appb-T000079
 この結果から、H240-Kn067/H240-Hl068/L73-k0、H240-Kn120/H240-Hl068/L73-k0、H240-Kn126/H240-Hl068/L73-k0のいずれも既存のADCC活性増強抗体であるH240-afucosyl_G1d/L73-k0およびH240-Kn032/H240-Hl032/L73-k0と比較してFcgRIIIaに対する結合を同等か、それ以上に増強していた。また、いずれの既存技術と比較しても、ADCP活性に重要な役割を果たすFcgRIIa RおよびFcgRIIa Hに対する結合が増強していた。このことから、今回作製したH240-Kn067/H240-Hl068/L73-k0、H240-Kn120/H240-Hl068/L73-k0、H240-Kn126/H240-Hl068/L73-k0のいずれのヘテロ二量化抗体も既存技術と同等かそれ以上のADCC活性を有し、かつそれらよりも優れたADCP活性を有する可能性が示唆された。
 特に、H240-Kn120/H240-Hl068/L73-k0はFcgRIIa RおよびFcgRIIa Hに対する結合を増強し、ADCP活性を増強したと報告のあるG236A/S239D/I332Eの改変を両H鎖に有するホモ二量化抗体H240-Kn037/H240-Hl036/L73-k0と比較しても、FcgRIIa HおよびFcgRIIa Rに対する結合がより増強している。すなわち、H240-Kn120/H240-Hl068/L73-k0は既存のADCC活性増強技術を使った抗体よりもFcgRIIIa FおよびFcgRIIIa Vに対する結合を増強し、かつ既存のADCP活性増強技術を使った抗体よりもFcgRIIa RおよびFcgRIIa Hに対する結合が増強している。そのため、H240-Kn120/H240-Hl068/L73-k0は既存技術を使った抗体以上に強いADCC活性およびADCP活性を有する可能性のある優れた抗体である。
 次に、参考実施例9にしたがって各改変体のADCC活性を既存のADCC活性増強技術であるアフコシル化抗体H240-afucosyl_G1d/L73-k0と比較した。その結果を図43に示す。
 図43の結果から、今回作製したいずれのヘテロ二量化抗体も既存のADCC活性増強技術であるアフコシル化抗体と同等かそれ以上に優れたADCC活性を示すことが明らかとなった。
 各FcgRに対する結合プロファイル、および既存技術と比較したADCC活性の結果から、今回調製したH240-Kn067/H240-Hl068/L73-k0、H240-Kn120/H240-Hl068/L73-k0、H240-Kn126/H240-Hl068/L73-k0のいずれも既存のADCC活性増強技術と同程度かそれ以上のADCC活性を有しつつも、FcgRIIa結合を介したADCP活性も増強する可能性の高いヘテロ二量化抗体であることが明らかとなった。
〔実施例22〕ヘテロ二量化抗体H240-AK072/H240-BH076/L73-k0の各FcgRに対する結合活性、ADCC活性の評価
 これまでKnobs-into-Holesを利用したヘテロ二量化抗体としてH240-Kn072/H240-Hl076/L73-k0の各FcgRに対する結合、ADCC活性を評価してきた。ここで、別のヘテロ二量化抗体作製技術であるD356K、H435RおよびK439Eを使った場合にも、異なる二つのH鎖からなるヘテロ二量化抗体がその各H鎖からなるホモ二量化抗体よりもFcgRに対する結合活性を増強するというヘテロ二量化抗体の特徴が同様に観察されるかを確認した。
 まず、H240-Kn072/H240-Hl076/L73-k0の片方のH鎖であるH240-Kn072に導入されている改変であるL234Y/L235Y/G236W/H268D/D270E/S298Aを、H240-G1d(配列番号:83)のアロタイプであるH240-G1dE(配列番号:101)にD356K、H435Rを導入したH240-A5E (配列番号:102)に導入しH240-AK072(配列番号:104)を作製した。次に、もう片方のH鎖であるH240-Hl076に導入されているD270E/K326D/A330M/K334Eを、H240-G1dEにK439Eを導入したH240-B3E(配列番号:103)に導入し、H240-BH076 (配列番号:105)を作製した。実施例1の方法にしたがって、H240-AK072、H240-BH076、L73-k0を組み合わせて、ヘテロ二量化抗体H240-AK072/H240-BH076/L73-k0を発現、調製した。同様にして、H240-AK072とL73-k0、H240-BH076とL73-k0をそれぞれ組み合わせて、ホモ二量化抗体H240-AK072/L73-k0、H240-BH076/L73-k0を発現、調製した。これらの抗体の各FcgRに対する結合活性を参考実施例8の方法にしたがって比較した結果を表54にまとめた。
Figure JPOXMLDOC01-appb-T000080
 この結果より、ヘテロ二量化抗体H240-AK072/H240-BH076/L73-k0はその各H鎖からなるホモ二量化抗体H240-AK072 /L73-k0、H240-BH076/L73-k0のいずれよりも強くFcgRに結合するというヘテロ二量化抗体の特徴を有することが確認された。
 次に、参考実施例1の方法にしたがって、H240-A5E、H240-B3E、L73-k0を組み合わせて発現し、H240-A5E/H240-B3E/L73-k0を調製した。参考実施例8の方法にしたがって、H240-G1d/L73-k0、H240-A5E/H240-B3E/L73-k0、H240-afucosyl_G1d/L73-k0、ヘテロ二量化抗体H240-AK072/H240-BH076/L73-k0の各FcgRに対する結合を評価し、その結果を表55にまとめた。
Figure JPOXMLDOC01-appb-T000081
 その結果、H240-AK072/H240-BH076/L73-k0ではH240-G1d/L73-k0および既存のADCC活性増強技術であるアフコシル抗体H240-afucosyl_G1d/L73-k0と比較してFcgRIIIa F、FcgRIIIa Vに対する結合が増強していた。また、H240-G1d/L73-k0とH240-A5E/H240-B3E/L73-k0のFcgRに対する結合活性は同等であることから、H240-AK072/H240-BH076/L73-k0の結合活性の増強は各H鎖に導入したL234Y/L235Y/G236W/H268D/D270E/S298AおよびD270E/K326D/A330M/K334Eの改変に由来すると考えられる。
〔実施例23〕Fc (Kn120/Hl068)とFcgRIIb細胞外領域との複合体のX線結晶構造解析
 実施例21で作製したH240-Kn120/H240-Hl068/L73-k0では、FcgRIIIaならびにFcgRIIa H型にくわえ、アロタイプであるFcgRIIa R型に対する結合活性の増強を果たしたが、抑制型レセプターであるFcgRIIbに対する結合活性の増強も同時に観察された。FcgRIIbに対する結合増強は、免疫抑制的な効果をもたらすと考えられるため、このFcgRIIbとの結合を低減させることで、本発明の目的であるADCC活性を一層増強させることができる可能性がある。
 しかしながら、FcgRIIaとFcgRIIbは細胞外領域のアミノ酸配列の93%が一致し、非常に高い相同性を有している。さらに天然型IgG1のFc (以下Fc (WT))とFcgRIIa R型の細胞外領域複合体の結晶構造(J. Imunol. 2011, 187, 3208-3217)から分析すると、両者の相互作用界面付近においては、FcgRIIa R型はFcgRIIbと比べてわずか3アミノ酸(Gln127, Leu132, Phe160)にしか違いが見いだせなかった(図44)。このためFcgRIIa R型に対する結合活性を維持しつつ、FcgRIIbに対する結合活性のみを減弱させることは、非常に困難であると予想された。そのため、H240-Kn120/H240-Hl068/L73-k0のFc部分 (Fc (Kn120/Hl068) )とFcgRIIb細胞外領域との複合体の結晶構造情報を取得し、より詳細に導入するアミノ酸変異を検討することで、FcgRIIbに対する結合活性を選択的に低減する改変を見出せる可能性がより高まると考え、Fc (Kn120/Hl068)とFcgRIIb細胞外領域との複合体のX線結晶構造解析をおこなった。
 その結果、Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体についてX線結晶構造解析により分解能2.78Åで立体構造を決定することに成功した。その解析の結果取得された構造を図45に示す。2つのFc CH2ドメインの間にFcgRIIb細胞外領域が挟まれるように結合しており、これまで解析されたFc (WT)とFcgRIIIa(Proc.Natl.Acad.Sci.USA, 2011, 108, 12669-126674)、FcgRIIIb(Nature, 2000, 400, 267-273; J.Biol.Chem. 2011, 276, 16469-16477)、FcgRIIaの各細胞外領域との複合体の立体構造と類似していることが明らかとなった。
 次に、Fcとの結合面近くにあり、FcgRIIa R型とFcgRIIbとで異なる3つのアミノ酸残基周辺の構造を示す。図46ではLys127(FcgRIIa R型においてはGln)周辺の構造を示した。もっとも近いFcgRIIbの残基は、図46に示したFcのCH2ドメインBにあるEUナンバリング298番目のAlaであるが、この残基は結合の境界面においてFcgRIIbと直接接しているため、Lys127と相互作用可能な大きな残基の導入は困難であると考えられた。その他の周囲のアミノ酸残基も、このLys127からは距離が遠く、直接的に相互作用できる変異を見出すことはできなかった。図47にはSer132(FcgRIIa R型においてはLeu)周辺の構造を示した。やはり、この残基もFcからの距離が遠く、このSerと直接相互作用が可能となる変異を見出すことはできなかった。最後に図48にはTyr160(FcgRIIa R型においてはPhe)周辺の構造を示した。このTyrは、FcのCH2ドメインAにあるEUナンバリング236番目のGlyの主鎖カルボニル酸素と水素結合を形成している。そこでEUナンバリング236番目のGly236に変異を導入し、ループ構造を変化させることで、その結果としてこの水素結合を消失することができれば、FcgRIIbに対する結合活性のみを低減できる可能性がある。また、EUナンバリング236番目のGlyの位置に、側鎖の大きな変異を導入した場合、その側鎖がFcgRIIaおよびFcgRIIbの160番の側鎖と直接相互作用することが予想され、FcgR2a R型のPhe160とFcgRIIbのTyr160との違いを利用して、FcgRIIbに対して選択的に結合活性を低減することができる可能性も考えられた。
実験方法
[Fc (Kn0120/Hl068) の発現精製]
Fc (Kn0120/Hl068) の調製は以下のように行った。まず、H240-Kn120(配列番号99)およびH240-Hl068 (配列番号96)のEUナンバリング220番目のCysをSerに置換し、EUナンバリング236番目のGluからそのC末端をPCRによってクローニングした遺伝子配列Fc (Kn0120)および Fc (Hl068)を参考例1に記載の方法にしたがって発現ベクターの作製、発現、精製を行った。なお、EUナンバリング220番目のCysは通常のIgG1においては、L鎖のCysとdisulfide bondを形成しているが、Fcのみを調製する場合、L鎖を共発現させないため、不要なdisulfide bond形成を回避するためにSerに置換した。
[FcgRIIb細胞外領域の発現精製]
参考例8の方法にしたがって調製した。
[Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体の精製]
結晶化用に得られたFcgRIIb細胞外領域サンプル 1.5mgに対し、glutathione S-transferaseとの融合蛋白として大腸菌により発現精製したEndo F1(Protein Science 1996, 5, 2617-2622) 0.15mgを加え、0.1M Bis-Tris pH6.5のBuffer条件で、室温にて3日間静置することにより、N型糖鎖をAsnに直接結合したN-acetylglucosamineを残して切断した。次にこの糖鎖切断処理を施したFcgRIIb細胞外領域サンプルを10000MWCOの限外ろ過膜により濃縮し、20mM HEPES pH7.5, 0.1M NaClで平衡化したゲルろ過カラムクロマトグラフィー(Superdex200 10/300)により精製した。さらに得られた糖鎖切断FcgRIIb細胞外領域画分にFc (Kn0120/Hl068) をモル比でFcgRIIb細胞外領域のほうが若干過剰となるよう加え、10000MWCOの限外ろ過膜により濃縮後、25mM HEPES pH7.5, 0.1M NaClで平衡化したゲルろ過カラムクロマトグラフィー(Superdex200 10/300)により精製し、Fc (Kn0120/Hl068) / FcgRIIb細胞外領域複合体のサンプルを得た。
[Fc (Kn120/Hl068) / FcgRIIb複合体細胞外領域複合体の結晶化]
 Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体のサンプルを10000MWCOの限外ろ過膜により約10mg/mlまで濃縮し、ハンギングドロップ蒸気拡散法にてSeeding法を併用しつつ結晶化をおこなった。結晶化にはVDXmプレート(Hampton Research)を用い、0.1M Bis-Tris pH6.0, 14.4% PEG3350, 0.2M Ammonium Sulfatecのリザーバー溶液に対し、リザーバー溶液:結晶化サンプル=0.85μl:0.85μlで混合して結晶化ドロップを作成、さらに同様な条件で得られた同複合体の結晶からSeeding Tool(Hampton Research)を用いて種結晶を移植するStreak Seedingをおこない、20℃に静置したところ、柱状の結晶を得ることに成功した。
[Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体結晶からのX線回折データの測定]
 得られたFc (Kn120/Hl068) / FcgRIIb細胞外領域複合体の単結晶一つを0.1M Bis-Tris pH6.0, 17.5% PEG3350, 0.2M Ammonium Sulfate, Glycerol 16%(v/v) の溶液に浸した後、微小なナイロンループ付きのピンで溶液ごとすくいとり、液体窒素中で凍結させ、高エネルギー加速器研究機構の放射光施設フォトンファクトリーBL-17AにてX線回折データの測定をおこなった。なお、測定中は常に-178℃の窒素気流中に置くことで凍結状態を維持し、ビームライン備え付けのCCDディテクタQuantum 315r (ADSC)により、結晶を0.5°ずつ回転させながらトータル360枚のX線回折画像を収集した。得られた回折画像からの格子定数の決定、回折斑点の指数付け、ならびに回折データの処理には、プログラムXia2(J. Appl. Cryst. 2010, 43, 186-190)、XDS Package(Acta Cryst. 2010, D66, 125-132)ならびにScala(Acta Cryst. 2006, D62, 72-82)を用い、最終的に分解能2.78Åまでの回折強度データを得た。本結晶は、空間群P41212に属し、格子定数a=152.94Å、b=152.94Å、c=82.24Å、α=90°、β=90°、γ=90°であった。
[Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体のX線結晶構造解析]
構造決定は、プログラムPhaser(J. Appl. Cryst. 2007, 40, 658-674)を用いた分子置換法によりおこなった。得られた結晶格子の大きさとFc (Kn120/Hl068) / FcgRIIb細胞外領域複合体の分子量から非対称単位中の複合体の数は一個と予想された。Fc(WT) / FcgRIIIa細胞外領域複合体の結晶構造であるPDB code:3SGJの構造座標から、A鎖239-340番ならびにB鎖239-340番のアミノ酸残基部分を別座標として取り出し、それぞれをFc CH2ドメインの探索用モデルとした。同じくPDB code:3SGJの構造座標から、A鎖341-444番とB鎖341-443番のアミノ酸残基部分を一つの座標として取り出し、Fc CH3ドメインの探索用モデルとした。最後にFcgRIIb細胞外領域の結晶構造であるPDB code:2FCB の構造座標からA鎖6-178番のアミノ酸残基部分を取り出しFcgRIIbの探索用モデルとした。Fc CH3ドメイン、FcgRIIb細胞外領域、Fc CH2ドメインの各探索用モデルの結晶格子内での向きと位置を、回転関数および並進関数から決定し、Fc (Kn120/Hl068) / FcgRIIb細胞外領域複合体結晶構造の初期モデルを得た。得られた初期モデルに対し2つのFcのCH2ドメイン、2つのFcのCH3ドメインならびにFcgRIIb細胞外領域を動かす剛体精密化をおこなったところ、この時点で25-3.0Åの回折強度データに対し、結晶学的信頼度因子R値は41.4%、Free R値は42.6%となった。さらにプログラムREFMAC5(Acta Cryst. 2011, D67, 355-367)を用いた構造精密化と、実験的に決定された構造因子Foとモデルから計算された構造因子Fcならびにモデルから計算された位相をもとに算出した2Fo-Fc、Fo-Fcを係数とする電子密度マップを見ながらのモデル修正をプログラムCoot(Acta Cryst. 2010, D66, 486-501)でおこない、これらを繰り返すことでモデルの精密化をおこなった。最後に2Fo-Fc、Fo-Fcを係数とする電子密度マップをもとに水分子をモデルに組み込み、精密化をおこなうことで、最終的に分解能25-2.78Åの24274個の回折強度データを用い、4964個の非水素原子を含むモデルに対し、結晶学的信頼度因子R値は22.8%、Free R値は27.7%となった。
〔実施例24〕FcgRIIaRに対する結合活性を維持または増強し、FcgRIIbに対する結合活性を低減した抗体の作製
 実施例21で見出された改変体H240-Kn120/H240-Hl068/L73-k0はADCP活性に重要なFcgRIIaR, FcgRIIaHに対する結合活性が増強されると共に、抑制型のFcgRIIbに対する結合活性も天然型IgG1と比較して約50倍増強されていた。高いADCP活性を示すためには、抑制型FcgRIIbに対する結合活性を可能な限り低減できることが好ましい。そこで、活性型FcgRIIaR, FcgRIIaHへの結合活性を維持したままFcgRIIbへの結合活性を低減できる改変を探索した。実施例23に示したように、H240-Kn120/H240-Hl068/L73-k0のFcとFcgRIIb細胞外領域の複合体の結晶構造解析結果から、FcgRIIbのTyr160とFc(Kn120/Hl068)のCH2ドメインAに存在するGly236の主鎖カルボニル酸素との間で水素結合が形成されていることが示された。FcgRIIaR, FcgRIIaHにおいてはこの部位がPhe160となっており、上述の相互作用は存在しないと考えられるため、Gly236に改変を導入し、FcgRIIbのTyr160との相互作用を消失させることができれば、FcgRIIa R型に対する結合活性は維持しつつも、FcgRIIbに対する結合活性を低下させる、すなわちFcgRIIbに対して選択的に結合活性を低減できる可能性がある。具体的には、H240-Kn120/H240-Hl068/L73-k0とFcgRIIbとの結合においてFcgRIIbのY160と相互作用しているH240-Hl068に由来するH鎖存在するG236を、Ser, Val, Ile, Thrに置換することで、G236を反転させ、ループ構造を変化させ、Y160との相互作用を消失させることができないかと考えた。また、FcgRIIbのLys127とFc(Kn120/Hl068)のCH2ドメインAのE294とは、遠位ながらも静電相互作用している可能性がある。従って、E294を正電荷をもつLys、Argに置換することで、静電反発を誘起し、FcgRIIbとの相互作用を減弱できる可能性があると考えた。
 参考実施例1の方法に従ってH240-Kn120(配列番号99)に対し、それぞれE294R、E294Kを導入したH240-Kn179(配列番号107)、H240-Kn180(配列番号108)を、H240-Hl068(配列番号96)にそれぞれG236S, G236V, G236I, G236Tを導入したH240-Hl073(配列番号109)、H240-Hl085(配列番号110)、H240-Hl086(配列番号111)、H240-Hl089(配列番号112)を作製した。参考実施例1の方法に従って、一方のH鎖としてH240-Kn120、H240-Kn180を、L鎖としてL73-k0を、もう一方のH鎖としてH240-Hl073、H240-Hl085、H240-Hl086、H240-Hl089をそれぞれ組み合わせ、H240-Kn120/H240-Hl073/L73-k0、H240-Kn120/H240-Hl085/L73-k0、H240-Kn120/H240-Hl086/L73-k0、H240-Kn120/H240-Hl089/L73-k0、H240-Kn179/H240-Hl068/L73-k0、H240-Kn180/H240-Hl068/L73-k0を調製した。これらの改変体のFcgRに対する結合を参考実施例8の方法に従って評価した結果を表56に示す。なお、表中に灰色で網掛けしたH240-Kn120/H240-Hl073/L73-k0のKDは、このときのFcgRIaに対するkdが本測定で使用したBiacore4000の解離定数(kd)の測定可能範囲5x10-5s-1から1s-1の範囲測定限界である5x10-5s-1よりも小さい値を示していたため、kdを5x10-5s-1以下として算出したKDである。
Figure JPOXMLDOC01-appb-T000082
また、H240-Kn120/H240-Hl068/L73-k0のFcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを各改変体のKDで割った値、H240-Kn120/H240-Hl068/L73-k0のFcgRIIaR, FcgRIIaH, FcgRIIbに対するKDを1としたときの、相対的なKDであるrelative KDを表57に示した。
Figure JPOXMLDOC01-appb-T000083
これらの結果から、本検討で作製した6種類の改変はいずれもH240-Kn120/H240-Hl068/L73-k0 と比較して、FcgRIIaR, FcgRIIaHに対する結合活性を維持または増強し、FcgRIIbに対する結合活性を減弱させることが示された。
 次に、表57で検討した改変を組み合わせることでさらにFcgRIIbに対する結合活性を減弱させることを試みた。ここでは、H240-Kn120へのE294KあるいはE294Rの導入、および、H240-Hl068へのG236Tの導入を併用することでさらなるFcgRIIbに対する結合活性の抑制を試みた。表57に示した通り、これらの改変はいずれもFcgRIIIaF, FcgRIIIaVに対する結合活性を減弱させる。そこで、これらの改変に加えて、FcgRIIIaに対する結合活性を増強されることが報告されているI332Eおよび、実施例18で示したFcgRIIIaに対する結合活性を増強させる改変であるY235Nを導入し、さらなるFcgRIIbに対する結合活性の抑制、およびFcgRIIIaに対する結合活性の増強を試みた。
 参考実施例1の方法に従ってH240-Kn120(配列番号99)に対し、Y235NとE294Kを導入したH240-Kn192(配列番号113)、Y235NとE294Rを導入したH240-Kn193(配列番号114)を、H240-Hl068(配列番号96)にG236TとI332Eを導入したH240-Hl204(配列番号115)を作製した。参考実施例1の方法に従って、一方のH鎖としてH240-Kn192、H240-Kn193を、L鎖としてL73-k0を、もう一方のH鎖としてH240-Hl089、H240-Hl204をそれぞれ組み合わせ、H240-Kn179/H240-Hl089/L73-k0、H240-Kn180/H240-Hl089/L73-k0、H240-Kn192/H240-Hl204/L73-k0、H240-Kn193/H240-Hl204/L73-k0を調製した。これらの改変体のFcgRに対する結合活性を参考実施例8の方法に従って評価した結果を表58に示す。なお、表中に灰色で網掛けしたH240-Kn120/H240-Hl073/L73-k0のKDは、このときのFcgRIaに対するkdが本測定で使用したBiacore4000の解離定数(kd)の測定可能範囲5x10-5s-1から1s-1の範囲測定限界である5x10-5s-1よりも小さい値を示していたため、kdを5x10-5s-1以下として算出したKDである。
Figure JPOXMLDOC01-appb-T000084
また、H240-Kn120/H240-Hl068/L73-k0のFcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを各改変体のKDで割った値、H240-Kn120/H240-Hl068/L73-k0のFcgRIIaR, FcgRIIaH, FcgRIIbに対するKDを1としたときの、相対的なKDであるrelative KDを表59に示した。
Figure JPOXMLDOC01-appb-T000085
H240-Kn120にE294KもしくはE294Rを導入し、H240-Hl068にG236Tを導入したH240-Kn179/H240-Hl089/L73-k0、およびH240-Kn180/H240-Hl089/L73-k0はいずれもH240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaR, FcgRIIaHへの結合を増強しつつFcgRIIbへの結合を0.4倍に低減していた。またそれぞれの改変をどちらか片方の鎖にしか持たないH240-Kn120/H240-Hl089/L73-k0、H240-Kn179/H240-Hl068/L73-k0、H240-Kn180/H240-Hl068/L73-k0と比較して1.5倍から2倍のFcgRIIbへの結合低減効果を示した。
これらの改変体に対してさらに、I332EおよびY235Nを導入したH240-Kn192/H240-Hl204/L73-k0、およびH240-Kn193/H240-Hl204/L73-k0はいずれも改変導入前のH240-Kn179/H240-Hl089/L73-k0、およびH240-Kn180/H240-Hl089/L73-k0と比較してFcgRIIaR, FcgRIIaH、FcgRIIbへの結合を維持したままFcgRIIIaFへの結合を2倍に、またFcgRIIIaVへの結合を約8倍向上させることができた。
〔実施例25〕ヘテロ二量化抗体H240-Kn120/H240-Hl068/L73-k0の活性型FcgRに対する結合活性の増強
実施例24においてH240-Kn120/H240-Hl068/L73-k0に対して改変を導入することで、FcgRIIaR, FcgRIIaHに対する結合を維持または増強し、抑制型FcgRIIbに対する結合活性を低減した改変体を作製した。本検討では、活性型のFcgRであるFcgRIIaR, FcgRIIaH, FcgRIIIaF, FcgRIIIaVに対する結合活性の増強を試みた。
 参考実施例1の方法に従ってH240-Kn120にL328Wを導入したH240-Kn138(配列番号116)、I332Qを導入したH240-Kn173(配列番号117)、K334Yを導入したH240-Kn178(配列番号118)、L328Aを導入したH240-Kn166(配列番号119)、I332Mを導入したH240-Kn172(配列番号120)、L328WとK334Lを導入したH240-Kn149(配列番号121)を作製した。またもう一方のH鎖として、H240-Hl068にL328Wを導入したH240-Hl147(配列番号122)、L328Aを導入したH240-Hl170(配列番号123)、I332Eを導入したH240-Hl174(配列番号124)、I332Tを導入したH240-Hl150(配列番号125)、A231Hを導入したH240-Hl182(配列番号126)、I332Qを導入したH240-Hl177(配列番号127)を作製した。参考実施例1の方法に従い、片方のH鎖としてH240-Kn138(配列番号116)、H240-Kn173(配列番号117)、H240-Kn178(配列番号118)H240-Kn149(配列番号121)、H240-Kn166(配列番号119)、H240-Kn172(配列番号120)を、またもう一方のH鎖としてH240-Hl170(配列番号123)、H240-Hl150(配列番号125)、H240-Hl174(配列番号124)、H240-Hl182(配列番号126)、H240-Hl147(配列番号122)、H240-Hl177(配列番号127)を、L鎖としてL73-k0(配列番号106)を用いてH240-Kn120/H240-Hl170/L73-k0、H240-Kn120/H240-Hl150/L73-k0、H240-Kn138/H240-Hl068/L73-k0、H240-Kn120/H240-Hl174/L73-k0、H240-Kn173/H240-Hl068/L73-k0、H240-Kn178/H240-Hl068/L73-k0、H240-Kn120/H240-Hl182/L73-k0、H240-Kn138/H240-Hl147/L73-k0、H240-Kn166/H240-Hl170/L73-k0、H240-Kn172/H240-Hl177/L73-k0、H240-Kn149/H240-Hl068/L73-k0を調製した。これらの改変体のFcgRに対する結合を参考実施例8の方法に従って評価した結果を表60に示す。
Figure JPOXMLDOC01-appb-T000086
また、H240-Kn120/H240-Hl068/L73-k0のFcgRIa FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIa F, FcgRIIIa Vに対する各KDを各改変体のKDで割った値、H240-Kn120/H240-Hl068/L73-k0のFcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを1としたときの相対的なKDであるrelative KDを表61に示した。
Figure JPOXMLDOC01-appb-T000087
 ここに示した改変体は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaR, FcgRIIaH, FcgRIIIaF, FcgRIIIaVのうち少なくとも一つのFcgRに対する結合が増強されている改変体である。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Hl068に対してL328Aを導入したH240-Kn120/H240-Hl170/L73-k0はH240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaR, FcgRIIaHに対する結合活性が2.3倍向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Hl068に対してI332Tを導入したH240-Kn120/H240-Hl150/L73-k0はH240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaRに対する結合活性を維持したままFcgRIIaHに対する結合活性が1.2倍向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Kn120にL328Wを導入したH240-Kn138/H240-Hl068/L73-k0はH240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaRに対する結合活性を維持したまま、FcgRIIaHに対する結合活性が1.6倍に向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Hl068に対してI332Eを導入したH240-Kn120/H240-Hl174/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIIaFに対する結合活性が4.3倍、FcgRIIIaVに対する結合活性が10倍向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Kn120に対してI332Qを導入したH240-Kn173/H240-Hl068/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIIaVに対する結合活性を維持したままFcgRIIIaFに対する結合活性を1.2倍向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Kn120に対してK334Yを導入したH240-Kn178/H240-Hl068/L73-k0はH240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIIaFに対する結合活性が1.6倍に、FcgRIIIaVに対する結合活性が1.9倍に向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Hl068に対してA231Hを導入したH240-Kn120/H240-Hl182/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIIaVに対する結合活性が1.2倍に向上した。
 H240-Kn120/H240-Hl068/L73-k0の両方のH鎖にL328Wを導入したH240-Kn138/H240-Hl147/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaRに対する結合活性が1.8倍に向上した。
 H240-Kn120/H240-Hl068/L73-k0の両方のH鎖にL328Aを導入したH240-Kn166/H240-Hl170/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaHに対する結合活性が1.9倍に向上した。
 H240-Kn120/H240-Hl068/L73-k0の片方のH鎖であるH240-Kn120にI332Mを、もう一方のH鎖であるH240-Hl068に対してI332Qを導入したH240-Kn172/H240-Hl177/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIIaFに対する結合活性を維持したままFcgRIIIaVに対する結合活性が1.6倍向上した。
 H240-Kn120/H240-Hl068/L73-k0の一方のH鎖であるH240-Kn120にL328W, K334Lを導入したH240-Kn149/H240-Hl068/L73-k0は、H240-Kn120/H240-Hl068/L73-k0と比較してFcgRIIaR, FcgRIIIaVに対する結合活性を維持したまま、FcgRIIaHに対する結合活性が1.6倍向上した。
 以上の結果からこれらの改変体はH240-Kn120/H240-Hl068/L73-k0と比較して高いADCP活性もしくはADCC活性を有すると考えられた。
〔実施例26〕FcgRIIbに対する結合活性を増強したヘテロ二量化抗体の創出
  ヒトでは、FcγRのタンパク質ファミリーには、FcγRIa (CD64A)、FcγRIIa (CD32A)、FcγRIIb (CD32B)、FcγRIIIa (CD16A)、FcγRIIIb (CD16B)のアイソフォームが報告されており、それぞれのアロタイプも報告されている(Immunol Lett, 82(1-2), 57-65, 2002)。FcγRIa、FcγRIIa、FcγRIIIaは免疫活性的な機能を有するため活性型FcγRと呼ばれ、FcγRIIbは免疫抑制的な機能を有し、抑制型FcγRと呼ばれる(Nat Rev Immunol, 10, 328-343, 2010)。
 FcγRIIbはB細胞に発現している唯一のFcγRである(Eur J Immunol 19, 1379-1385, 1989)。FcγRIIbに対して抗体のFc領域が相互作用することで、B細胞の初回免疫が抑制されることが報告されている(J Exp Med 129, 1183-1201, 1969)。また、B細胞上のFcγRIIbとB細胞受容体(B cell receptor:BCR)とが血中の免疫複合体を介して架橋されると、B細胞の活性化が抑制され、B細胞の抗体産生が抑制されることが報告されている(Immunol Lett 88, 157-161, 2003)。このBCRとFcγRIIbを介した免疫抑制的なシグナルの伝達にはFcγRIIbの細胞内ドメインに含まれるimmunoreceptor tyrosine-based inhibitory motif(ITIM)が必要である(Science, 256, 1808-1812, 1992、Nature, 368, 70-73, 1994)。シグナルが入り、ITIMがリン酸化されると、SH2-containing inositol polyphosphate 5-phosphatase(SHIP)がリクルートされ、他の活性型FcγRのシグナルカスケードの伝達を阻害し、炎症性免疫反応を抑制する(Science, 290, 84-89, 2000)。また、FcgRIIbのみを会合化することによっても、BCR非依存的にIgM産生B細胞をアポトーシスすることなく、B細胞の増殖とBCRの架橋によるカルシウム流入を一過的に抑制することが報告されている (J Imunol, 181, 5350-5359, 2008)
 また、FcγRIIbは樹状細胞、マクロファージ、活性化された好中球、マスト細胞、好塩基球でも発現している。これらの細胞においても、FcγRIIbはphagocytosisや炎症性サイトカインの放出等の活性型FcγRの機能を阻害し、炎症性免疫反応を抑制する(Nat Rev Immunol, 10, 328-343, 2010)。
 FcγRIIbの免疫抑制的な機能の重要性については、これまでにFcγRIIbノックアウトマウスを用いた研究により明らかにされてきた。FcγRIIbノックアウトマウスでは、液性免疫が適切に制御されず(J Immunol, 163, 618-622, 1999)、コラーゲン誘導関節炎(CIA)に対する感受性が増加したり(J Exp Med, 189, 187-194, 1999)、ループス(lupus)様の症状を呈したり、グッドパスチャー(Goodpasture)シンドローム様の症状を呈したりする(J Exp Med, 191, 899-906, 2000)ことが報告されている。
 また、FcγRIIbの調節不全はヒトの自己免疫疾患との関連も報告されている。例えば、FcγRIIbのプロモーター領域や細胞膜貫通領域における遺伝子多型と、全身性エリテマトーデス(SLE)の発症頻度との関連(Hum, Genet, 117, 220-227, 2005、J Biol Chem, 282, 1738-1746, 2007、Arthritis Rheum, 54, 3908-3917, 2006、Nat Med, 11, 1056-1058, 2005、J Immunol, 176, 5321-5328, 2006)や、SLE患者のB細胞表面におけるFcγRIIbの発現低下が報告されている(J Exp Med, 203, 2157-2164, 2006、J Immunol. 178, 3272-3280, 2007)。
 このようにマウスモデルおよび臨床上の知見から、FcγRIIbはB細胞との関与を中心に、自己免疫疾患、炎症性疾患を制御する役割を果たしていると考えられ、自己免疫疾患、炎症性疾患を制御するための有望な標的分子である。
 市販の抗体医薬として主に用いられているIgG1はFcγRIIbだけでなく、活性型FcγRにも強く結合することが知られている(Blood, 113, 3716-3725, 2009)。FcγRIIbに対する結合を増強した、あるいは活性型FcγRと比較してFcγRIIbに対する結合活性の選択性を向上させたFc領域を利用することで、IgG1と比べて免疫抑制的な性質を有した抗体医薬の開発可能性が考えられる。例えば、BCRに結合する可変領域と、FcγRIIbに対する結合を増強したFcを有する抗体を利用することで、B細胞の活性化を阻害する可能性が示唆されている(Mol Immunol, 45, 3926-3933, 2008)。B細胞上のFcγRIIbとB-cell receptorに結合したIgEとが架橋されることで、B細胞のプラズマ細胞への分化、その結果として起こるIgE産生が抑制され、ヒトPBMCを移植したマウスにおいてヒトIgGやIgM濃度は維持されているが、ヒトIgE濃度は減少することが報告されている(Acad News, doi: 10.1016, jaci.2011.11.029)。IgEだけではなく、B-cell receptor複合体を形成するCD79bとFcgRIIBとを抗体で架橋した場合にはin vitroにおいてB細胞の増殖が抑制され、コラーゲン関節炎モデルにおいて症状を緩和したことが報告されている (Arthritis Rheum, 62, 1933-1943, 2010)。
 B細胞以外にも、IgEの受容体であるFcεRIと結合するIgEのFc部分とFcgRIIbに対する結合を増強したIgGのFc部分とを融合させた分子を使って、マスト細胞上のFcεRIとFcgRIIbとを架橋することで、FcgRIIbのリン酸化を引き起こし、FcεRI依存的なカルシウムの流入を抑制することが報告されており、これはFcgRIIbに対する結合を増強することでFcgRIIbの刺激を介した脱顆粒の阻害が可能であることを示唆している (Immunol let, doi: 10.1016/j.imlet.2012.01.008)。
これらのことから、FcγRIIbに対する結合活性を向上させたFcを持つ抗体が自己免疫疾患等の炎症性疾患の治療薬として有望であることが示唆される。
 また、FcgRIIbに対する結合を増強した変異体は、自己免疫疾患等の炎症性疾患の治療薬に加えてがん治療薬としても有望であることが示唆されている。これまでに、FcgRIIbは 抗TNFレセプターファミリーに対するアゴニスト抗体のアゴニスト活性においても重要な役割を果たすことが明らかにされて いる。具体的にはTNFレセプターファミリーに含まれるCD40、DR4、DR5、CD30、CD137に対する抗体のアゴニスト活性にはFcgRIIbとの相互作用が必要であることが示唆されている (Science, 333, 1030-1034, 2011、Cancer Cell 19, 101-1113, 2011、J Clin Invest 2012; doi:10.1172/JCI61226、J Immunol 171, 562-, 2003、Blood, 108, 705-, 2006、J Immunol 166, 4891, 2001)。非特許文献(Science, 333, 1030-1034, 2011)においては、FcgRIIbに対する結合を増強した抗体を用いることで、抗CD40抗体の抗腫瘍効果が増強することが示されている。このことから、FcgRIIbに対する結合を増強した抗体は抗TNFレセプターファミリーに対する抗体を始めとするアゴニスト抗体のアゴニスト作用を増強する効果があると期待される。
 これまでにFcγRIIbに対する結合活性を向上させたFcを持つ抗体についての報告はなされている(Mol Immunol, 45, 3926-3933, 2008)。この文献中では、抗体のFc領域にS267E/L328F、G236D/S267E、S239D/S267E等の改変を加えることで、FcγRIIbに対する結合活性を向上させていた。この文献の中で、S267E/L328Fの変異を導入した抗体が最も強くFcγRIIbに対して結合していた。このFcγRIIbに対する結合を一層増強することで、上述のFcγRIIbを介した作用を更に増強することが期待できる。
 また、S267E/L328Fの変異を導入した抗体はFcγRIaおよびFcγRIIaのH型に対する結合は天然型IgG1と同程度に維持していた。しかし、別の報告によると、この改変はFcγRIIaのR型に対する結合がFcγRIIbに対する結合と同程度に数百倍増強しており、FcγRIIa R型と比較した場合、FcγRIIbに対する結合活性の選択性が向上していない(Eur J Immunol 23, 1098-1104, 1993)。
 FcγRIIbに対する結合がIgG1と比べて増強していたとしても、FcγRIIbを発現せずFcγRIIaを発現している血小板のような細胞(Nat Rev Immunol, 10, 328-343, 2010)に関しては、FcγRIIbに対する結合の増強ではなく、FcγRIIaに対する結合の増強の効果のみが影響すると考えられる。例えば、VEGFに対する抗体であるbevacizumabを投与された患者群では血栓塞栓症のリスクが上昇することが知られている(J Natl Cancer Inst, 99, 1232-1239, 2007)。また、CD40 ligandに対する抗体の臨床開発試験においても同様に血栓塞栓症が観察され、臨床試験が中止された(Arthritis Rheum, 48, 719-727, 2003)。これらのいずれの抗体の場合も、動物モデルなどを使ったその後の研究により、投与した抗体が血小板上のFcgRIIaに対する結合を介して血小板を凝集し、血栓を形成することが示唆されている(J Thromb Haemost, 7, 171-181, 2008, J Immunol, 185, 1577-1583, 2010)。自己免疫疾患の一つである全身性エリテマトーデスにおいてはFcγRIIa依存的な機構によって血小板が活性化し、血小板の活性化が重症度と相関するという報告がある(Sci Transl Med, vol 2, issue 47, 47-63, 2010)。このような血栓塞栓症を発症するリスクが元々高い患者に対して、FcgRIIaに対する結合を増強させた抗体を投与することは、仮にFcgRIIbに対する結合が増強されていたとしても、血栓塞栓症の発症リスクを一層高めることになり、極めて危険である。
 また、FcgRIIaに対する結合を増強させた抗体はマクロファージを介した抗体依存的貪食活性 (ADCP)が増強することが報告されている(Mol Cancer Ther 7, 2517-2527, 2008)。抗体の抗原がマクロファージによって貪食されると同時に抗体自身も貪食されることになるが、その場合その抗体由来のペプチド断片も抗原提示され、抗原性が高くなると考えられ、抗体に対する抗体(抗抗体)の産生リスクを上昇させると考えられる。すなわち、FcgRIIaに対する結合を増強すると、抗体に対する抗体の産生リスクを高め、医薬品としての価値を著しく減じてしまう。
 すなわち、FcgRIIaに対する結合を増強すると、血小板凝集を介した血栓形成のリスクを上昇させてしまい、また抗原性が高くなり、抗抗体産生のリスクを高めてしまうという点で、医薬品としての価値を著しく減じてしまう。
 このような観点から先のFcgRIIbに対する結合を増強したFcについてみると、FcgRIIa R型に対する結合は天然型IgG1と比較して著しく増強されているため、FcgRIIa R型を保有する患者への医薬品としては価値を著しく減じている。FcγRIIaのH型とR型とはCaucasianやAfrican-Americanでほぼ同程度の頻度で観察される(J Clin Invest, 97, 1348-1354, 1996、Arthritis Rheum, 41, 1181-1189, 1998)。このことから、このFcを自己免疫疾患の治療に用いる場合に、医薬品としての効果を享受しつつ、安全に利用できる患者の数は限定的である。
 また、FcgRIIbを欠損した樹状細胞、あるいは抗FcgRIIb抗体によりFcgRIIbと抗体のFc部分との相互作用が阻害された樹状細胞においては、樹状細胞の成熟が自発的に起こることが報告されている(J Clin Invest 115, 2914-2923, 2005,Proc Natl Acad Sci USA, 102, 2910-2915, 2005)。この報告から、FcgRIIbは炎症などが生じていない定常状態において、積極的に樹状細胞の成熟を抑制していることが示唆される。樹状細胞表面にはFcgRIIbに加えて、FcgRIIaも発現していることから、例え抑制型のFcgRIIbに対する結合を増強したとしても、活性型のFcgRIIa等に対する結合も増強されていれば、結果として樹状細胞の成熟を促してしまうと考えられる。すなわち、FcgRIIbに対する結合活性だけではなく、FcgRIIaに対する結合活性に対してFcgRIIbに対する結合活性の比率を改善することが、抗体に免疫抑制的な作用をもたらす上では重要であると考えられる。
 このことから、FcgRIIbの結合を介した免疫抑制的な作用を利用した医薬品の創出を考えた場合、FcgRIIbに対する結合活性を増強するのみならず、FcgRIIa H型、R型いずれの遺伝子多型に対しても結合を天然型IgG1と同程度に維持するか、それ以下に減弱したFcが求められている。
 これに対して、これまでにFc領域にアミノ酸改変を導入することで、FcγRIIbに対する結合活性の選択性を上昇させた例が報告されている(Mol Immunol, 40, 585-593, 2003)。しかし、この文献中で報告されているFcγRIIbに対する選択性が改善したとされるいずれの変異体においても、天然型IgG1と比べてFcγRIIbに対する結合が減少していた。そのため、これらの変異体が実際にFcγRIIbを介した免疫抑制的な反応をIgG1以上に引き起こすことは困難であると考えられる。
また先に述べたアゴニスト抗体においてもFcgRIIbは重要な役割を果たしているため、その結合活性の増強をすることで、アゴニスト活性の増強も期待される。しかしながら、FcgRIIaに対する結合も同様にして増強してしまうと、目的としないADCC活性やADCP活性などを発揮してしまい、副作用が出てしまう恐れがある。そのような観点からも、FcgRIIbに対して選択的に結合活性を増強できることが好ましい。
 これらの結果から、FcγRIIbを利用した自己免疫疾患治療やがんの治療を目的とした抗体医薬を創製するにあたっては、天然型IgGと比較して、FcγRIIaのいずれの遺伝子多型に対しても結合活性が維持あるいは減少し、かつFcγRIIbに対する結合活性が増強していることが重要である。しかし、FcγRIIbは活性型FcγRの1つであるFcγRIIaと、細胞外領域の配列が93%一致し、極めて構造が類似し、さらにFcγRIIaには遺伝子多型として131番目のアミノ酸がHisであるH type(H型)とArgであるR type(R型)とが存在し、それぞれで抗体との相互作用が異なる(J Exp Med, 172, 19-25, 1990)。そのため、FcγRIIbに対して選択的に結合するFc領域を創製するには、これらの類似する配列を区別し、FcγRIIaの各遺伝子多型に対する結合活性を増加させない、あるいは減少させる一方で、FcγRIIbに対する結合活性を増加させるという、FcγRIIbに対する結合活性を選択的に向上させた性質を抗体のFc領域に付与することが、最も困難な課題であると考えられ、これまでにFcgRIIbに対する十分な選択性を有する変異体は得られてこなかった。US2009/0136485には、FcγRIIbに対する結合活性が増強した変異体も報告されているが、その程度は弱く、上記のような性質を持つ変異体の開発が求められていた。
 本検討では、ヘテロ二量化抗体を用いてFcgRIIb選択的に結合活性を増強した改変体の作製を検討した。抗体H鎖可変領域としては、WO2009/125825に開示されているヒトインターロイキン6レセプターに対する抗体の可変領域であるIL6Rの可変領域IL6R(配列番号:128)を用いた。また、ヒトIgG1のC末端のGlyおよびLysを除去したG1dを有するIL6R-G1d(配列番号:129)を作製した。次に、IL6R-G1dに対してK439Eを導入したIL6R-B3(配列番号:130)を作製した。さらにIL6R-B3に対してE233D、G237D、P238D、H268D、P271G、A330Rを導入したIL6R-BP208(配列番号:131)を作製した。またIL6R-B3に対してS267E、L328Fを導入し、既存のFcgRIIb結合活性増強Fcを有するIL6R-BP253(配列番号:132)を作製した。抗体L鎖としてはtocilizumabのL鎖であるIL6R-L(配列番号:133)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従ってホモ二量体IL6R-B3/IL6R-L、IL6R-BP208/IL6R-L、IL6R-BP253/IL6R-Lを作製した。参考実施例8に記載の方法に従い、これらの改変体のFcgR Ia, FcgR IIaR, FcgR IIaH, FcgR IIb, FcgR IIIaVに対する結合活性を評価した結果を表62に示す。なお、表62中灰色で塗りつぶしたセルはFcgRのIgGに対する結合が微弱であり、速度論的な解析では正しく解析できないと判断された。このように、各改変抗体とFcgRとの相互作用が微弱で、上記の速度論的な解析では正しく解析できないと判断された場合、その相互作用についてはBiacore T100 Software Handbook BR1006-48 Edition AEに記載の以下の1:1結合モデル式を利用してKDを算出した。
 1:1 binding modelで相互作用する分子のBiacore上での挙動は以下の式1によって表わすことができる。
 〔式1〕
Figure JPOXMLDOC01-appb-I000088
 Req:a plot of steady state binding levels against analyte concentration
C: concentration
RI:bulk refractive index contribution in the sample
Rmax:analyte binding capacity of the surface
 この式を変形すると、KDは以下の式2のように表わすことができる。
〔式2〕
Figure JPOXMLDOC01-appb-I000089
 この式にRmax、RI、Cの値を代入することで、KDを算出することが可能である。RI、Cについては測定結果のセンサーグラム、測定条件から値を求めることができる。Rmaxの算出については、以下の方法にしたがった。その測定回に同時に評価した比較対象となる相互作用が十分強い抗体について、上記の1:1 Langmuir binding modelでglobal fittingさせた際に得られたRmaxの値を、比較対象となる抗体のセンサーチップへのキャプチャー量で除し、評価したい改変抗体のキャプチャー量で乗じて得られた値をRmaxとした。
Figure JPOXMLDOC01-appb-T000090
また、IL6R-B3/IL6R-LのFcgRIa FcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを各改変体の対応するKDで割った値、IL6R-B3/IL6R-LのFcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを1としたときの相対的なKDであるrelative KDを表63に示す。
Figure JPOXMLDOC01-appb-T000091
表63に示すように、既存のFcgRIIb結合活性増強抗体であるIL6R-BP253/IL6R-Lは、改変導入前のヒトIgG1型の抗体(IL6R-B3/IL6R-L)と比較してFcgRIIbに対する結合活性を約350倍増強すると共に、FcgRIIaRに対する結合活性も約500倍増強されている。一方、IL6R-BP208/IL6R-LはFcgRIIbに対する結合活性は約100倍と既存のFcgRIIb結合活性増強抗体に及ばないが、FcgRIIaRに対する結合活性はIgG1型と比較して1.3倍と、同程度の結合活性を保っており、FcgRIIbへの選択性に優れた抗体である。
 次に、FcgR2bに対する活性増強と選択性の向上を図るために、IL6R-BP208/IL6R-L のFcであるFc (BP208) とFcgRIIb細胞外領域との複合体の結晶構造情報を取得し、より詳細に導入するアミノ酸変異を検討が必要と考え、以下の実験方法にしたがってFc (BP208)とFcgRIIb細胞外領域との複合体のX線結晶構造解析をおこなった。
[Fc (BP208) の発現精製]
Fc (BP208)の調製は以下のように行った。まず、IL6R-BP208のEUナンバリング220番目のCysをSerに置換し、EUナンバリング236番目のGluからそのC末端をPCRによってクローニングした遺伝子配列Fc(BP208)を参考例1に記載の方法にしたがって発現ベクターの作製、発現、精製を行った。なお、EUナンバリング220番目のCysは通常のIgG1においては、L鎖のCysとdisulfide bondを形成しているが、Fcのみを調製する場合、L鎖を共発現させないため、不要なdisulfide bond形成を回避するためにSerに置換した。
[FcgRIIb細胞外領域の発現精製]
参考例8の方法にしたがって調製した。
[Fc (BP208) / FcgRIIb細胞外領域複合体の精製]
 結晶化用に得られたFcgRIIb細胞外領域サンプル 1.5mgに対し、glutathione S-transferaseとの融合蛋白として大腸菌により発現精製したEndo F1(Protein Science 1996, 5, 2617-2622) 0.15mgを加え、0.1M Bis-Tris pH6.5のBuffer条件で、室温にて3日間静置することにより、N型糖鎖をAsnに直接結合したN-acetylglucosamineを残して切断した。次にこの糖鎖切断処理を施したFcgRIIb細胞外領域サンプルを5000MWCOの限外ろ過膜により濃縮し、20mM HEPES pH7.5, 0.1M NaClで平衡化したゲルろ過カラムクロマトグラフィー(Superdex200 10/300)により精製した。さらに得られた糖鎖切断FcgRIIb細胞外領域画分にFc (BP208) をモル比でFcgRIIb細胞外領域のほうが若干過剰となるよう加え、10000MWCOの限外ろ過膜の限外ろ過膜により濃縮後、25mM HEPES pH7.5, 0.1M NaClで平衡化したゲルろ過カラムクロマトグラフィー(Superdex200 10/300)により精製し、Fc (BP208) / FcgRIIb細胞外領域複合体のサンプルを得た。
[Fc (BP208) / FcgRIIb細胞外領域複合体の結晶化]
 Fc (BP208) / FcgRIIb細胞外領域複合体のサンプルを10000MWCOの限外ろ過膜 により約10mg/mlまで濃縮し、ハンギングドロップ蒸気拡散法にてSeeding法を併用しつつ結晶化をおこなった。結晶化にはVDXmプレート(Hampton Research)を用い、0.1M Bis-Tris pH6.5、19% PEG3350, 0.2M Potassium Phosphate dibasicのリザーバー溶液に対し、リザーバー溶液:結晶化サンプル=0.85μl:0.85μlで混合して結晶化ドロップを作成、そこに同様な条件で得られた同複合体の結晶をSeed Bead(Hampton Research)を用いて砕いた種結晶溶液から作成した希釈溶液0.15ulを添加し、リザーバーの入ったウェルに密閉、20℃に静置したところ、板状の結晶を得ることに成功した。
[Fc (BP208) / FcgRIIb細胞外領域複合体結晶からのX線回折データの測定]
 得られたFc (BP208) / FcgRIIb細胞外領域複合体の単結晶一つを0.1M Bis-Tris pH6.5, 24% PEG3350, 0.2M Potassium Phosphate dibasic, Ethlene glycol 20%(v/v) の溶液に浸した後、微小なナイロンループ付きのピンで溶液ごとすくいとり、液体窒素中で凍結させ、Spring-8のBL32XUにてX線回折データの測定をおこなった。なお、測定中は常に-178℃の窒素気流中に置くことで凍結状態を維持し、ビームライン備え付けのCCDディテクタMX-225HE(RAYONIX) により、結晶を0.6°ずつ回転させながらトータル300枚のX線回折画像を収集した。得られた回折画像からの格子定数の決定、回折斑点の指数付け、ならびに回折データの処理には、プログラムXia2(J. Appl. Cryst. 2010, 43, 186-190)、XDS Package(Acta Cryst. 2010, D66, 125-132)ならびにScala(Acta Cryst. 2006, D62, 72-82)を用い、最終的に分解能2.81Åまでの回折強度データを得た。本結晶は、空間群C2221に属し、格子定数a=156.69Å、b=260.17Å、c=56.85Å、α=90°、β=90°、γ=90°であった。
[Fc (BP208) / FcgRIIb細胞外領域複合体のX線結晶構造解析]
 構造決定は、プログラムPhaser(J. Appl. Cryst. 2007, 40, 658-674)を用いた分子置換法によりおこなった。得られた結晶格子の大きさとFc (BP208) / FcgRIIb細胞外領域複合体の分子量から非対称単位中の複合体の数は一個と予想された。Fc(WT) / FcgRIIIa細胞外領域複合体の結晶構造であるPDB code:3SGJの構造座標から、A鎖239-340番ならびにB鎖239-340番のアミノ酸残基部分を別座標として取り出し、それぞれをFcのCH2ドメインの探索用モデルとした。同じくPDB code:3SGJの構造座標から、A鎖341-444番とB鎖341-443番のアミノ酸残基部分を一つの座標として取り出し、Fc CH3ドメインの探索用モデルとした。最後にFcgRIIb細胞外領域の結晶構造であるPDB code:2FCB の構造座標からA鎖6-178番のアミノ酸残基部分を取り出しFc (BP208) の探索用モデルとした。Fc CH3ドメイン、FcgRIIb細胞外領域、Fc CH2ドメインの各探索用モデルの結晶格子内での向きと位置を、回転関数および並進関数から決定しようとしたところ、CH2ドメインのひとつについてはその位置決定がうまくいかなかった。そこで残りの3つの部分から計算された位相をもとに計算した電子密度マップに対し、Fc(WT) / FcgRIIIa細胞外領域複合体の結晶構造構造を参考にしながら最後のCH2ドメインAの位置を決定、Fc (BP208) / FcgRIIb細胞外領域複合体結晶構造の初期モデルを得た。得られた初期モデルに対し2つのFcのCH2ドメイン、2つのFcのCH3ドメインならびにFcgRIIb細胞外領域を動かす剛体精密化をおこなったところ、この時点で25-3.0Åの回折強度データに対し、結晶学的信頼度因子R値は42.6%、Free R値は43.7%となった。さらにプログラムREFMAC5(Acta Cryst. 2011, D67, 355-367)を用いた構造精密化と、実験的に決定された構造因子Foとモデルから計算された構造因子Fcならびにモデルから計算された位相をもとに算出した2Fo-Fc、Fo-Fcを係数とする電子密度マップを見ながらのモデル修正をプログラムCoot(Acta Cryst. 2010, D66, 486-501)でおこない、これらを繰り返すことでモデルの精密化をおこなった。最後に2Fo-Fc、Fo-Fcを係数とする電子密度マップをもとに水分子をモデルに組み込み、精密化をおこなうことで、最終的に分解能25-2.81Åの27259個の回折強度データを用い、4794個の非水素原子を含むモデルに対し、結晶学的信頼度因子R値は24.4%、Free R値は27.9%となった。
 構造解析の結果、Fc (BP208) / FcgRIIb細胞外領域複合体の立体構造を分解能2.81Åで決定、その解析の結果取得された構造を図49に示す。2つのFc CH2ドメインの間にFcgRIIb細胞外領域が挟まれるように結合しており、これまで解析された天然型IgGのFcであるFc (WT)とFcgRIIIa(Proc.Natl.Acad.Sci.USA, 2011, 108, 12669-126674)、FcgRIIIb(Nature, 2000, 400, 267-273; J.Biol.Chem. 2011, 276, 16469-16477)、FcgRIIaの各細胞外領域との複合体の立体構造と類似していた。
 しかし細部を見ると、Fc(BP208)はG237DならびにP238Dの変異の導入の影響により、FcgRIIaと結合したFc(WT)と比較してCH2ドメインAにおいてヒンジ領域から続く233-239のループ構造が変化していた(図50)。この結果、Fc(BP208) のG237主鎖のアミドとFcgRIIbのTyr160側鎖との間に強固な水素結合の形成が認められた。このTyr160はFcgRIIaにおいてはPheであり、水素結合の形成は不可能なことから、この水素結合はFcgRIIbに対する結合活性の向上ならびにFcgRIIaに対する結合の低減という選択性の獲得に重要な寄与をしていると考えられた。
 本構造解析結果をもとにさらなる活性向上を目指した改変の可能性を精査したところ、改変導入部位の候補のひとつとしてS239を見出した。図51に示す通り、FcgRIIbのLys117が構造的に見てもっとも自然な形で伸びる方向にこのCH2ドメインBのSer239は位置している。ただ、今回の解析ではFcgRIIbのLys117の電子密度は観察されていないことから、一定の構造はとっておらず、現状ではFc (BP208)との相互作用へのこのLys117の関与は限定的であると考えられるが、このCH2ドメインBのS239を負電荷を有するDまたはEへと改変した場合、正電荷をもつFcgRIIbのLys117との間に静電相互作用が期待でき、その結果としてFcgRIIへの結合活性の向上が期待された。
 一方、CH2ドメインAにおけるS239の構造を見てみると、本アミノ酸側鎖は、G236の主鎖と水素結合を形成、ヒンジ領域から続き、FcgRIIb Tyr160側鎖と水素結合を形成するD237を含む233番目から239番にかけてのループ構造を安定化させていると考えられた(図52)。ループ構造を結合時のコンフォメーションに安定化させることは、結合にともなうエントロピーの低下を抑制し、結果として結合自由エネルギーの増加つまり結合活性の向上につながる。一方、このCH2ドメインAのS239をDまたはEへと改変した場合、G236主鎖との水素結合が失われ、ループ構造の不安定化につながる。さらにすぐ近くに存在するD265と静電反発をも招く可能性があり、さらなるループ構造の不安定化が起きると考えられた。この不安定化された分のエネルギーは、FcgRIIbとの相互作用エネルギーの減少に働くため、結果として結合活性の低下を招くことになる。つまり、S239DまたはS239Eを両H鎖に導入したホモ二量化抗体ではCH2 ドメインBにおけるFcgRIIbのLys117との静電相互作用による結合活性を増強する効果が、CH2 ドメインAにおけるループ構造の不安定化による結合活性を減弱する効果により相殺され、結合活性の増強にはつながらない可能性があるが、S239DまたはS239Eを一方のH鎖にのみ導入したヘテロ二量化抗体であれば、CH2ドメインAのS239によるループ構造の安定化が維持されたままなので、CH2ドメインBに導入されたS239DまたはS239Eにより新たに形成されたFcgRIIbのLys117との静電相互作用の分だけ、結合活性が増強する可能性が考えられた。
 この仮説を検証するために、次にIL6R-BP208/IL6R-Lを鋳型とし、一方のH鎖のFc領域にだけS239D又はS239Eの改変を導入することで、FcgRIIbに対する結合活性をさらに増強した抗体の作製を検討した。抗体H鎖として、IL6R-BP208に対してS239Dを導入したIL6R-BP256(配列番号:134)および、S239Eを導入したIL6R-BP257(配列番号:135)を作製した。またもう一方のH鎖として、IL6R-G1dにD356K及びH435Rの変異を導入したIL6R-A5(配列番号:136)を作製し、これに対してさらにE233D、G237D、P238D、H268D、P271G、A330Rを導入したIL6R-AP002(配列番号:137)を作製した。抗体L鎖としてはtocilizumabのL鎖であるIL6R-L(配列番号:133)を共通に用い、それぞれのH鎖と共に参考実施例1の方法に従ってホモ二量化抗体IL6R-B3/IL6R-L、IL6R-BP208/IL6R-L、IL6R-BP253/IL6R-L、IL6R-BP256/IL6R-L、IL6R-BP257/IL6R-Lおよびヘテロ二量化抗体IL6R-AP002/IL6R-BP256/IL6R-L、IL6R-AP002/IL6R-BP257/IL6R-Lを作製した。参考実施例8に記載の方法に従い、これらの改変体のFcgR Ia, FcgR IIaR, FcgR IIaH, FcgR IIbに対する結合活性を評価した結果を表64に示す。
Figure JPOXMLDOC01-appb-T000092
 なお、表64中灰色で塗りつぶしたセルはFcgRのIgGに対する結合が微弱であり、速度論的な解析では正しく解析できないと判断された。このように、各改変抗体とFcgRとの相互作用が微弱で、上記の速度論的な解析では正しく解析できないと判断された場合、その相互作用についてはBiacore T100 Software Handbook BR1006-48 Edition AEに記載の以下の1:1結合モデル式を利用してKDを算出した。
 1:1 binding modelで相互作用する分子のBiacore上での挙動は以下の式1によって表わすことができる。
 〔式1〕
Figure JPOXMLDOC01-appb-I000093
 Req:a plot of steady state binding levels against analyte concentration
C: concentration
RI:bulk refractive index contribution in the sample
Rmax:analyte binding capacity of the surface
 この式を変形すると、KDは以下の式2のように表わすことができる。
〔式2〕
Figure JPOXMLDOC01-appb-I000094
 この式にRmax、RI、Cの値を代入することで、KDを算出することが可能である。RI、Cについては測定結果のセンサーグラム、測定条件から値を求めることができる。Rmaxの算出については、以下の方法にしたがった。その測定回に同時に評価した比較対象となる相互作用が十分強い抗体について、上記の1:1 Langmuir binding modelでglobal fittingさせた際に得られたRmaxの値を、比較対象となる抗体のセンサーチップへのキャプチャー量で除し、評価したい改変抗体のキャプチャー量で乗じて得られた値をRmaxとした。
また、IL6R-B3/IL6R-LのFcgRIa FcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを各改変体のKDで割った値、IL6R-B3/IL6R-LのFcgRIIaR, FcgRIIaH, FcgRIIbに対する各KDを1としたときの相対的なKDであるrelative KDおよび、各改変体のFcgRIIaRに対するKDをFcgRIIbに対するKDで割った値を表65に示す。
Figure JPOXMLDOC01-appb-T000095
表65に示すように、IL6R-BP208/IL6R-Lの両H鎖に対してS239DもしくはS239Eを導入したIL6R-BP256/IL6R-L、IL6R-BP257/IL6R-Lでは、導入前の改変体IL6R-BP208/IL6R-Lと比較してFcgRIIbに対する結合活性、FcgRIIaRに対する結合活性がともに減弱していた。一方、IL6R-BP208/IL6R-Lの片方のH鎖に対してS239D、もしくはS239Eを導入したIL6R-AP002/IL6R-BP256/IL6R-L、IL6R-AP002/IL6R-BP257/IL6R-Lでは、FcgRIIbへの結合がそれぞれ752倍、657倍に向上し、既存技術よりも高いFcgRIIbに対する結合活性を示した。またFcgRIIaRに対する結合活性も、IL6R-BP208/IL6R-Lの1.3倍からそれぞれ7.7倍、8.3倍に増加した。ここで、表中のKD(IIaR)/KD(IIb)は、各改変体のFcgRIIaRに対するKDをFcgRIIbに対するKDで割った値であり、この値が大きいほどFcgRIIbに対する選択性が高いことを示す。既存のFcgRIIb結合活性増強抗体であるIL6R-BP253/IL6R-Lはこの値が0.3と、IgG1型と比較して選択性が改善していないのに対して、IL6R-BP208/IL6R-Lは26.3と高いFcgRIIb選択性を有する。今回、IL6R-BP208/IL6R-Lの片方のH鎖に対してS239D、もしくはS239Eを導入したIL6R-AP002/IL6R-BP256/IL6R-L、IL6R-AP002/IL6R-BP257/IL6R-LではKD(IIaR)/KD(IIb)の値がそれぞれ34.3および27.7と、IL6R-BP208/IL6R-Lよりも改善していた。
 ここで、実施例4で行ったIgG1型(GpH7-B3/GpL16-k0)を鋳型にした網羅的改変体の評価結果において、S239D, S239Eの効果は表66に示したようであった。表中のHo/Con_2aRおよびHo/Con_2bは、ホモ二量化抗体のコントロールを100とした時のFcgRIIaRおよびFcgRIIbに対する結合活性の強さの程度を示す。また、He/Con_2aRおよびHe/Con_2bは、ヘテロ二量化抗体のコントロールを100とした時のFcgRIIaRおよびFcgRIIbに対する結合の強さの程度を示す。
Figure JPOXMLDOC01-appb-T000096
表66からは、今回導入したS239DおよびS239Eは、天然型IgG1に対して導入した際には、両鎖に導入するか、片方の鎖に導入するかに関わらずFcgRIIaRおよびFcgRIIbに対する結合を増強する改変であった。しかしながら、これらの改変をIL6R-BP208/IL6R-Lの両H鎖に導入すると、FcgRIIaR, FcgRIIbに対する結合活性が減弱し、片方のH鎖に導入した場合にのみFcgRIIaR, FcgRIIbに対する結合活性が増強した。この結果はIgG1型を鋳型にした際に得られた改変の効果とは異なるものであり、これらの改変はIL6R-BP208/IL6R-Lに導入して初めて上記の効果を有することが明らかとなった。
〔実施例27〕ホモ二量体とヘテロ二量体の分離精製能向上を目指した定常領域アミノ酸配列のデザイン
[残基置換部位の選択]
 ヘテロ二量化抗体の製造において二種類のH鎖(それぞれをA鎖およびB鎖とする)を共発現させた場合、各H鎖であるA鎖が二量体化したホモ二量化抗体およびB鎖が二量化したホモ二量化抗体と、異なる二つのH鎖であるA鎖、B鎖が二量化したヘテロ二量化抗体が生成する。目的とするヘテロ二量化抗体を効率的に分離精製する手法として、各々の可変領域についてアミノ酸残基を置換し、抗体の等電点およびイオン交換カラムでの保持能と分離能を制御する方法が知られている(WO2007/114325)。しかしながら、可変領域、特にCDR領域は抗体毎に配列が異なることから、該当技術の汎用性には限界があると考えられる。そこで、ヘテロ二量化抗体精製のためのより汎用的な抗体残基置換手法として、抗体の定常領域のみの残基置換により、等電点およびイオン交換カラムでの保持能と分離能を制御する方法が検討された。
 一般的に、イオン交換カラムでの分離は、分子表面の電荷に依存すると考えられており、多くの場合、目的分子の等電点を考慮した分離条件が検討される。よって、本実施例においても、分離したいホモ二量化抗体とヘテロ二量化抗体の等電点に差が生じるように抗体定常領域を構成するアミノ酸残基を置換することで、イオン交換カラムでの分離が改善すると期待された。
 なお、イオン交換クロマトグラフィーでの分離は純粋なイオン交換モードのみならず、疎水性相互作用も関与することが示唆されている(Peng Liu et al., J Chromatogr A. 2009 Oct 30;1216(44):7497-504)。このため、上記手法による分離精製には、イオン交換クロマトグラフィーに加え、疎水クロマトグラフィーも利用可能である。
 等電点を変化させる残基置換としては、中性残基を塩基性残基あるいは酸性残基に置換する、および、塩基性残基あるいは酸性残基を中性残基に置換する、という方法がある。より効果的な対応として、正電荷を持つ残基を負電荷を持つ残基に置換する、および、負電荷を持つ残基を正電荷を持つ残基に置換する、という方法がある。
 上記方法によれば、抗体配列の全ての部分が等電点を変化させうる残基置換部位の候補となる。しかしながら、非天然配列へのランダムな置換は免疫原性のリスクを高める危険性があり、医薬品としての使用を考えた場合に適切な方法ではない。
 免疫原性リスクをできるだけ増大させないようにするため、免疫原性に関与するT-cell epitopeの数ができるだけ少なくなるように残基置換を行う方法が考えられる。一つの手段として、IgGサブクラス配列の利用が挙げられる。ヒトIgGのサブクラスにはIgG1、IgG2、IgG3およびIgG4が存在する。WO2007/114325で開示されている方法に基づき、抗体配列の一部を異なるサブクラスの配列に置換することで、T-cell epitopeの増加を抑制しながら等電点を変化させることが可能である。
 別な手段として、Epibase等のT-cell epitopeを予測するin silicoツールが利用できる。
 Epibase Light (Lonza)はFASTER algorism (Expert Opin Biol Ther. 2007 Mar;7(3):405-18.)を用いて、9-merペプチドとmajor DRB1アレルとの結合能を計算するin silicoツールである。本ツールはMHC classIIに対する強い結合および中程度の結合となるT-cell epitopeを同定することができる。
 計算にはDRB1アロタイプの存在比が反映され、これには以下に示すCaucasianにおける存在比が使用できる。
 DRB1*1501(24.5%)、DRB1*0301(23.7%)、DRB1*0701(23.3%)、DRB1*0101(15.0%)、DRB1*1101(11.6%)、DRB1*1302(8.2%)、DRB1*1401/1454(4.9%)、DRB1*0901(2.3%)、DRB1*1502(0.5%)、DRB1*1202(0.1%)
 各改変抗体配列中に含まれる強い結合と中程度の結合の全てのエピトープをFASTER algorismにより求めた後、ヒトジャームライン配列及び可変領域と定常領域の境界配列を除外したものがcritical epitopeとして提示される。本ツールのrandomized機能を用いることで、任意の配列に含まれる残基一つずつについて、それぞれ任意のアミノ酸残基に置換した場合のT-cell epitope増加数が算出される。これにより、等電点変化をもたらすがT-cell epitopeは増加しない残基置換部位を選択することが可能である。
 H240-AK072(配列番号:104)、およびH240-BH076(配列番号:105)について、Epibaseによる解析が実施された。表67はH240-AK072について、表68はH240-BH076について、任意の残基の置換により変化しうるT-cell epitopeの数が示されている。この結果を基に、T-cell epitopeを増加させず、かつ、等電点を変化させる残基置換を選択することが可能である。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
 以上の方法およびその組み合わせにより、等電点改変のための残基置換部位として、以下に示されるH240-AK072、およびH240-BH076改変体がデザインされた(表69、70)。
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
[H240-AK072/H240-BH076/L73-k0改変抗体発現用ベクターの構築]
 初めに、H240-AK072/H240-BH076/L73-k0の改変抗体のcDNAを作製するため、H240-AK072またはH240-BH076を鋳型として、選択された各アミノ酸残基が変異するようデザインされた合成オリゴDNAがそれぞれ設計された。次に、各合成オリゴDNAを使って、参考実施例1の方法にしたがい、目的の遺伝子を含む動物細胞発現ベクターを作製した。
[H240-AK072/H240-BH076/L73-k0改変抗体の発現、精製]
 H240-AK072/H240-BH076/L73-k0の改変抗体を評価するため、H240-AK072またはH240-BH076に改変を導入した各H鎖(H240-AK072に改変を導入したH鎖をA鎖、H240-BH076に改変を導入したH鎖をB鎖と呼ぶ)およびL鎖(L73-k0、配列番号:106)を任意の組み合わせで共発現させることによって、参考実施例1の方法にしたがい、A鎖およびB鎖が任意の組み合わせとなるような改変抗体が得られた。代表的なA鎖およびB鎖の配列番号を表71に示した。
Figure JPOXMLDOC01-appb-T000111
〔実施例28〕H240-AK072/H240-BH076/L73-k0改変体の物理化学的評価
[陽イオン交換クロマトグラフィーによる保持時間差の測定]
 各抗体について、下記の条件で測定が実施された。
 Mobile phase A: 20 mM MES-NaOH, pH6.0
 Mobile phase B: 20 mM MES-NaOH, 200 mM NaCl, pH6.0
 Column: Bio Pro SP-F (YMC)
 Flow rate: 0.5 mL/min
 Gradient: 10%B(0-5 min), 10-60%B(5-55 min)
 Detection: Abs. 280 nm
 図53は代表的なクロマトグラムを示す。溶出時間が早い位置に出現するピークはB鎖-B鎖のホモ二量化抗体、主要なピークはA鎖-B鎖のヘテロ二量化抗体由来である。A鎖にはProteinAとの結合を減弱させる残基置換(H435R)が導入されており、ここで用いた抗体は参考実施例1の方法で調製される過程でrProtein A SepharoseTM Fast Flow (GEヘルスケア)による精製過程で除去されてしまうため、A鎖-A鎖ホモ二量化抗体は本条件ではほとんど検出されない。ヘテロ二量化抗体とホモ二量化抗体の分離を評価する指標として、保持時間差ΔRT(分)=(ヘテロ抗体ピークの保持時間)-(B鎖ホモ抗体ピークの保持時間)、が算出された。表72は各種改変体の評価結果を示す。以上より、デザインした残基置換の導入、およびその組み合わせによってヘテロ抗体とホモ抗体の保持時間差が拡大することが示された。
[ゲルろ過クロマトグラフ法による会合体含有量の評価]
 ACQUITY UPLC H-Class system(Waters)を用いたSEC分析により、精製抗体中の会合体含有量が評価された。移動相には300 mMの塩化ナトリウムを含む50 mMリン酸緩衝液, pH7.0(伊勢久)を、分析カラムにはBEH200 SEC(waters)を用い、215 nmの波長で測定が行われた。Empower2(Waters)を用いてデータ解析を実施し、単量体よりも高分子量側に溶出した成分を一括して会合体としてその含有量が算出された。表72は各種改変体の評価結果を示す。これより、各種改変体は改変前のH240-AK072/H240-BH076/L73-k0に比べ、大幅に会合体量が増加しているものはなく、会合化に関する安定性が確保されていると考えられた。
[示査走査型蛍光定量法による改変抗体の熱変性中点(Tm)評価]
 Rotor-Gene Q(QIAGEN)を用いた示査走査型蛍光定量法を用いて抗体の熱変性中点(Tm)を測定することにより熱安定性が評価された。なお、本手法は、抗体の熱安定性評価法として広く知られている示査走査型熱量計を用いたTm評価と良好な相関を示すことが既に報告されている(Journal of Pharmaceutical Science 2010 ; 4 : 1707-1720)。
5000倍濃度のSYPRO orange(Molecular Probes)をPBS(Sigma)により希釈後、抗体溶液と混和することにより測定サンプルが調製された。各サンプルを20 μLずつ測定用チューブにセットし、30℃から99℃まで温度を上昇させた。0.4℃昇温して約6秒静止後に蛍光強度が470 nm(励起波長)/ 555 nm(蛍光波長)において検出された。
 データはRotor-Gene Q Series Software(QIAGEN)を用いて蛍光遷移が認められた温度を算出し、この値がTm値とされた。Molecular Immunology 37 (2000) 697-706等で報告されているように、CH2ドメインのTm値はFirst transition に該当するTm1とした。一方、検討した抗体ではCH3とFabのTm値が近く、これらを分離した比較をすることが困難であると判断し、本評価に用いるTm値はTm1の値を採用した。表72は各種改変体の評価結果を示す。これより、各種改変体は改変前のH240-AK072/H240-BH076/L73-k0に比べ、大幅にTm値が低下しているものはなく、構造的な安定性が維持されていると考えられた。
Figure JPOXMLDOC01-appb-T000112
[イオン交換クロマトグラフィー精製における分離の評価]
 AKTA avant25 (GE healthcare)を用いたイオン交換クロマトグラフィー精製法において、各検体の分離が評価された。移動相には20 mM MES緩衝液, pH6.0ならびに500 mMの塩化ナトリウムを含む20 mM MES緩衝液, pH6.0を、カラムはHi Trap SP HP 1mL (GE healthcare)を用い、2液混合グラジエント法により精製が実施された。精製データの取得は280 nmの波長で実施し、Unicorn6.1 (GE healthcare)を用いて溶出結果が評価された。図54はH240-FA021/H240-BF084/L73-k0改変体の評価結果を示す。これより、ラージスケールで使用されるカラム担体を用いた精製により、本検討において新規に見出された残基置換を導入することで、ホモ二量化抗体とヘテロ二量化抗体が分離精製可能であることが示された。
〔実施例29〕H240-AK072/H240-BH076/L73-k0改変体の免疫学的評価
[表面プラズモン散乱法によるFcγRに対する結合活性の評価]
 参考実施例8の方法にしたがって、目的の抗体とFcgRとの相互作用解析が行われた。
各種改変体の評価結果を表73に示した。これより、図54で分離が確認されたH240-FA021/H240-BF084/L73-k0改変体のFcγRへの結合能は改変前のH240-AK072/H240-BH076/L73-k0と同等であることが示された。
Figure JPOXMLDOC01-appb-T000113
[in silico免疫原性予測ツールEpibaseを用いた免疫原性リスク評価]
 臨床における抗体医薬品の有用性と薬効は抗医薬品抗体(ADAs)により制限される。ADAsは抗体医薬品の薬効および動態に影響を及ぼし、時に重篤な副作用をもたらすことがある。免疫原性に影響する因子は多数報告されているが、特にT cell epitopeが抗原に含まれることが重要であるとされる。このT cell epitopeを予測するin silicoツールとしてはEpibase(Lonza)、iTope/TCED(Antitope)およびEpiMatrix(EpiVax)等が利用可能である。これらのツールを用いることで目的とするタンパク質に存在するT CELL EPITOPEを含む配列を予測できることが報告されている(Expert Opin Biol Ther. 2007 Mar;7(3):405-18.)。
 Epibase Light (Lonza)はFASTER algorism (Expert Opin Biol Ther. 2007 Mar;7(3):405-18.)を用いて、9-merペプチドとmajor DRB1アレルとの結合能を計算するin silicoツールである。本ツールはMHC classIIに対する強い結合および中程度の結合となるT cell epitopeを同定することができる。
 各改変抗体のin silico免疫原性スコアはEpibase Light (Lonza)システム内の以下の計算式(式4)により求められる。
(式4)
 免疫原性スコア = Sum (each DRB1 allotype population frequency X number of critical epitopes)
 計算にはDRB1アロタイプの存在比が反映され、これには以下に示すCaucasianにおける存在比が使用できる。
 DRB1*1501(24.5%)、DRB1*0301(23.7%)、DRB1*0701(23.3%)、DRB1*0101(15.0%)、DRB1*1101(11.6%)、DRB1*1302(8.2%)、DRB1*1401/1454(4.9%)、DRB1*0901(2.3%)、DRB1*1502(0.5%)、DRB1*1202(0.1%)
 各改変抗体配列中に含まれる強い結合と中程度の結合の全てのエピトープをFASTER algorismにより求めた後、ヒトジャームライン配列及び可変領域と定常領域の境界配列を除外したものがcritical epitopeとして免疫原性スコア計算に使用される。スコアが低いほど、免疫原性リスクが小さい配列と考えられる。表74にH240-AK072およびH240-BH076、さらにそれらの改変体について計算されたリスクスコアを示す。これより、A鎖およびB鎖の任意の組み合わせを選択することで、H240-AK072/H240-BH076/L73-k0に比べてホモ二量体とヘテロ二量体の分離精製能を向上させ、さらに、免疫原性のリスクが大きく変化しない改変体を作製することが可能である。
Figure JPOXMLDOC01-appb-T000114
〔実施例30〕
 実施例20および実施例21において、活性型FcgRへの結合を増強したヘテロ二量化抗体H240-Kn125/H240-Hl076/L73-k0、H240-Kn120/H240-Hl068/L73-k0が見出された。そこでこれらのヘテロ二量化抗体に用いられている改変のうち、H240-Kn125とH240-Kn120の234番目、239番目、またH240-Hl076の330番目を他のアミノ酸に置換することで、さらに優れたヘテロ二量化抗体が得られるかどうかを検証した。
(30-1) 234番目のアミノ酸の検討
 H240-Kn125およびH240-Kn120に含まれるEUナンバリング234番目のYを天然型のLおよびV, D, Q, I, M, T, A, G, H, S, F, Eに置換し、もう一方の鎖としてH240-Hl076およびH240-Hl068をもつヘテロ二量化改変体を参考実施例1の方法に従って作製した。既存技術との比較のため、アフコシル化抗体(H240-afucosyl_G1d/L73-k0)および両鎖にS239D/A330L/I332Eを有するH240-Kn032/H240-Hl032/L73-k0を作製した。また、WO 2012/125850に記載されている改変体のうち、FcγRIIIaに対するアフィニティーが最も高く、最も優れた改変と考えられるW187(S239D/A330M/K334Vを一方のH鎖に有し、L234Y/K290Y/Y296Wをもう一方のH鎖に有する改変体)、M81(S239D/K334Vを一方のH鎖に有し、L234Y/ Y296W/S298Cをもう一方のH鎖に有する改変体)に対応する改変体をそれぞれ作製した。具体的には参考実施例1の方法に従ってH240-Kn033にL234Y/K290Y/Y296Wを導入したH240-Kn204、H240-Hl033にS239D/A330M/K334Vを導入したH240-Hl211、H240-Kn033にL234Y/ Y296W/S298Cを導入したH240-Kn205、H240-Hl033にS239D/K334Vを導入したH240-Hl212を作製した。参考実施例1の方法に従って、一方のH鎖としてH240-Kn204を、L鎖としてL73-k0を、もう一方のH鎖としてH240-Hl211、また、一方のH鎖としてH240-Kn205を、L鎖としてL73-k0を、もう一方のH鎖としてH240-Hl212をそれぞれ組み合わせて発現させ、H240-Kn204/H240-Hl211/L73-k0、H240-Kn205/H240-Hl212/L73-k0を調製した。作製した改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVへの結合を、参考実施例8の方法に従って測定した。これらの測定結果を表75にまとめた。
Figure JPOXMLDOC01-appb-T000115
 表75においてtemplateには、234番目のアミノ酸を置換するにあたり鋳型とした鎖がH240-Kn125あるいはH240-Kn120のどちらであるかを示す。また、「234番目のアミノ酸」とは、H240-Kn125あるいはH240-Kn120のEUナンバリング234番目のアミノ酸を置換した後のアミノ酸の種類を示す。「fold 2aR」、「fold 2aH」、「fold 2b」、「fold 3aF」、「fold 3aV」とはそれぞれFcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVに対する天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0の結合活性を1とした時の、各改変体の相対的な結合活性を表したものである。具体的には、H240-Kn033/H240-Hl033/L73-k0の各FcgRに対するKDを、各改変体の各FcgRに対するKDで割った値である。
 IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えたH240-Kn033/H240-Hl033/L73-k0と比較してアフコシル化抗体(H240-afucosyl_G1d/L73-k0)はFcgRIIIaFに対して4倍、FcgRIIIaVに対して7倍結合が増強されていた。また、両鎖にS239D/A330L/I332Eを有するH240-Kn032/H240-Hl032/L73-k0はFcgRIIIaFに対して32倍、FcgRIIIaVに対して16倍増強されていた。既存のヘテロ二量化抗体であるH240-Kn204/H240-Hl211(S239D/A330M/K334Vを一方のH鎖に有し、L234Y/K290Y/Y296Wをもう一方のH鎖に有する改変体)はFcgRIIIaFに対して21倍、FcgRIIIaVに対して7倍増強されており、H240-Kn205/H240-Hl212(S239D/K334Vを一方のH鎖に有し、L234Y/ Y296W/S298Cをもう一方のH鎖に有する改変体)は、FcgRIIIaFに対して24倍、FcgRIIIaVに対して11倍結合が増強されていた。一方、本検討において作製された改変体はFcgRIIIaFに対して69倍から223倍、FcgRIIIaVに対して60倍から185倍増強されており、全ての改変体が既存技術よりも高いFcgRIIIaへの結合活性を有していた。この中で最もFcgRIIIaFへの結合が高かったのはH240-Kn125/H240-Hl076/L73-k0のH240-Kn125のEUナンバリング234番目を天然型のLに置換したH240-Kn198/H240-Hl076/L73-k0であり、H240-Kn033/H240-Hl033/L73-k0と比較して193倍の結合活性であった。また、FcgRIIIaVへの結合が最も高かったのはH240-Kn120/H240-Hl068/L73-k0のH240-Kn120の234番目をEに置換したH240-Kn184/H240-Hl068/L73-k0であり、H240-Kn033/H240-Hl033/L73-k0と比較して141倍の結合活性であった。FcgRIIIaF, FcgRIIIaVともにH240-Kn033/H240-Hl033/L73-k0と比較して100倍以上の結合活性を有する改変体はH240-Kn125/H240-Hl076/L73-k0のH240-Kn125の234番目をFに置換したH240-Kn201/H240-Hl076/L73-k0、Eに置換したH240-Kn202/H240-Hl076/L73-k0、Dに置換したH240-Kn208/H240-Hl076/L73-k0、H240-Kn120/H240-Hl068/L73-k0のH240-Kn120の234番目をEに置換したH240-Kn184/H240-Hl068/L73-k0、Dに置換したH240-Kn217/H240-Hl068/L73-k0、Tに置換したH240-Kn221/H240-Hl068/L73-k0、Lに置換したH240-Kn199/H240-Hl068/L73-k0であった。これらの中でH240-Kn125/H240-Hl076/L73-k0のH240-Kn125の234番目をLに置換したH240-Kn198/H240-Hl076/L73-k0、Fに置換したH240-Kn201/H240-Hl076/L73-k0、Eに置換したH240-Kn202/H240-Hl076/L73-k0、Dに置換したH240-Kn208/H240-Hl076/L73-k0はいずれも抑制性のFcgRIIbに対する結合がH240-Kn033/H240-Hl033/L73-k0と比較して同等以下に抑えられており、エフェクター機能を誘起する上で優れたヘテロ二量化抗体である。
 また、既存のFcgRIIa結合増強技術であるH240-Kn037/H240-Kn036/L73-k0よりも高いFcgRIIaR、FcgRIIaHへの結合活性を示した改変体は、H240-Kn120/H240-Hl068/L73-k0の234番目をVに置換したH240-Kn216/H240-Hl068/L73-k0、Iに置換したH240-Kn219/H240-Hl068/L73-k0、Tに置換したH240-Kn221/H240-Hl068/L73-k0、Mに置換したH240-Kn220/H240-Hl068/L73-k0、Lに置換したH240-Kn199/H240-Hl068/L73-k0であった。この中でもIに置換したH240-Kn219/H240-Hl068/L73-k0、Tに置換したH240-Kn221/H240-Hl068/L73-k0、Lに置換したH240-Kn199/H240-Hl068/L73-k0はFcgRIIIaへの結合活性も高く、優れた改変体である。
 以上の結果から、ここで検討された改変体はいずれもFcgRIIIaへの結合が既存技術を上回り、加えて、いくつかの改変体についてはFcgRIIbに対する結合活性が増強されておらず、あるいはFcgRIIaに対する結合活性が既存技術より上回っており、抗体のエフェクター機能を誘起する上で既存技術よりも優れたヘテロ二量化抗体であることが示された。
(30-2) 330番目のアミノ酸の検討
 次に330番目のアミノ酸の検討を行った。H240-Kn125/H240-Hl076/L73-k0において、H240-Hl076はA330M改変が導入されている。この330番目のアミノ酸をAla(天然型)、Phe, Pro, Ile, Tyr, Hisに置換した鎖を参考実施例1の方法に従って作製し、H240-Kn125と組み合わせて発現した。抗体L鎖としてはL73-k0を共通して用いた。作製した改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVへの結合を、参考実施例8の方法に従って測定した。これらの測定結果を表76にまとめた。
Figure JPOXMLDOC01-appb-T000116
 表中の「330番目のアミノ酸」とはH240-Hl076の330番目を置換した後のアミノ酸の種類を示す。また、「fold 2aR」、「fold 2aH」、「fold 2b」、「fold 3aF」、「fold 3aV」とはそれぞれFcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVに対する天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0の結合活性を1とした時の、各改変体の相対的な結合活性を表したものである。具体的には、H240-Kn033/H240-Hl033/L73-k0の各FcgRに対するKDを、各改変体の各FcgRに対するKDで割った値である。
 本検討で作製したいずれの改変体も既存のFcgRIIIa結合増強技術よりも高いFcgRIIIa結合活性を有しており、検討した中では330番目をPheに置換したH240-Kn125/H240-Hl214/L73-k0がFcgRIIIaFへの結合が最も高く、330番目をYに置換したH240-Kn125/H240-Hl217/L73-k0がFcgRIIIaVへの結合が最も高かった。FcgRIIbへの結合に関しては、今回検討した改変体は最も低かった330番目をIleに置換したH240-Kn125/H240-Hl216/L73-k0で天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0の0.4倍、最も高かった330番目をHisに置換したH240-Kn125/H240-Hl218/L73-k0で1.1倍であり、いずれもH240-Kn033/H240-Hl033/L73-k0のFcgRIIbに対する結合活性と同等あるいは低減しているという結果であった。FcgRIIaRに関してはH240-Kn125/H240-Hl076/L73-k0がH240-Kn033/H240-Hl033/L73-k0の1.8倍であったのに対し、今回検討した改変体は最も低かった330番目をIleに置換したH240-Kn125/H240-Hl216/L73-k0で1.0倍、最も高かった330番目をHisに置換したH240-Kn125/H240-Hl218/L73-k0で2.4倍であった。またFcgRIIaHに関しては330番目をIleに置換したH240-Kn125/H240-Hl216/L73-k0が最も低く2.5倍、330番目をHisに置換したH240-Kn125/H240-Hl218/L73-k0が最も高く、4.7倍であった。以上の結果から、H240-Kn125/H240-Hl076/L73-k0のH240-Hl076に対して330番目をAla, Phe, Ile, Tyr, Hisに置換した改変体はいずれもFcgRIIIaへの結合が既存技術を上回り、かつFcgRIIbに対する結合活性も増強されておらず、加えて、いくつかの改変体についてはFcgRIIaに対する結合活性も既存技術より上回っており、抗体のエフェクター機能を誘起する上で既存技術よりも優れたヘテロ二量化抗体ことが示された。
(30-3) 239番目のアミノ酸の検討
 H240-Kn125、H240-Kn120にはいずれも239番目のSerをMetに置換する改変が導入されている。本検討では、このMetをIleに置換可能かどうか検討した。239番目のIleへの置換は、実施例17の表44で示した通り、MetよりもFcgRIIbへの結合を増強してしまうものの、FcgRIIaおよびFcgRIIIaへの結合に関してもより高い増強効果がある改変である。
 具体的には、H240-Kn120/H240-Hl068/L73-k0のH240-Kn120と、H240-Kn125/H240-Hl076/L73-k0のH240-Kn125の239番目をそれぞれIleに置換したH240-Kn229/H240-Hl068/L73-k0およびH240-Kn225/H240-Hl076/L73-k0を参考実施例1に記載の方法に従って作製した。作製した改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVへの結合を、参考実施例8の方法に従って測定した。これらの測定結果を表77にまとめた。
Figure JPOXMLDOC01-appb-T000117
 表中の「fold 2aR」、「fold 2aH」、「fold 2b」、「fold 3aF」、「fold 3aV」とはそれぞれFcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVに対する天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0の結合活性を1とした時の、各改変体の相対的な結合活性を表したものである。具体的には、H240-Kn033/H240-Hl033/L73-k0の各FcgRに対するKDを、各改変体の各FcgRに対するKDで割った値である。
 H240-Kn125/H240-Hl076/L73-k0のH240-Kn125の239番目をIleに置換したH240-Kn225/H240-Hl076/L73-k0は、FcgRIIIaF, FcgRIIIaVへの結合がH240-Kn033/H240-Hl033/L73-k0と比較してそれぞれ264倍、253倍に増強されていた。また、FcgRIIbへの結合もH240-Kn033/H240-Hl033/L73-k0の0.6倍に抑制されていた。H240-Kn120/H240-Hl068/L73-k0のH240-Kn120の239番目をIleに置換したH240-Kn229/H240-Hl068/L73-k0は、H240-Kn033/H240-Hl033/L73-k0と比較してFcgRIIIaF、FcgRIIIaVへの結合がそれぞれ138倍、62倍に向上しており、本検討で作製した二種類の改変体はいずれも既存のFcgRIIIa結合増強技術より優れていた。また、H240-Kn229/H240-Hl068/L73-k0はFcgRIIaR、FcgRIIaHへの結合がH240-Kn033/H240-Hl033/L73-k0と比較してそれぞれ46倍、13倍であり、FcgRIIaへの結合を増強する既存技術H240-Kn037/H240-Hl036/L73-k0を上回っていた。
(30-4) 組み合わせ改変の検討
 これまでの検討で、H240-Kn125, H240-Kn120の234番目、および239番目のアミノ酸、また、H240-Hl076の330番目のアミノ酸について検討を行ってきた。そこで本検討では、これまで得られた改変体の中で抗体のエフェクター機能を増強する上で高い効果を示すと思われる改変同士を組み合わせ、より優れたヘテロ二量化抗体の作製を検討した。
 具体的には、H240-Kn125の234番目にはF, E, D, S, Lを、239番目にはIあるいはMを導入した抗体重鎖遺伝子を作製した。またH240-Kn120の234番目にはV, E, D, T, I, L, Fを、239番目にはMあるいはIを導入した抗体重鎖を作製した。もう一方の抗体H鎖としては、H240-Hl076の330番目にAあるいはFを導入したもの、あるいはH240-Hl068を用いた。抗体L鎖としてはL73-k0を共通して用いた。作製した改変体のFcgRIa, FcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVへの結合を、参考実施例8の方法に従って測定した。これらの測定結果を表78にまとめた。
Figure JPOXMLDOC01-appb-T000118
 表中の「Kn template」とは、改変を加える際にH240-Kn120あるいはH240-Kn125のどちらを鋳型としたかを示しており、「Hl template」とは、H240-Hl068あるいはH240-Hl076のどちらを鋳型としたかを示したものである。また「Hl template」が灰色に塗りつぶされた改変体は片方のH鎖としてH240-Hl068を用いたものである。「234番目のアミノ酸」および「239番目のアミノ酸」とは、Kn鎖の234番目、239番目のアミノ酸を示し、「330番目のアミノ酸」とは、Hl鎖の330番目のアミノ酸を置換した後のアミノ酸の種類を示す。「fold 2aR」、「fold 2aH」、「fold 2b」、「fold 3aF」、「fold 3aV」とはそれぞれFcgRIIaR, FcgRIIaH, FcgRIIb, FcgRIIIaF, FcgRIIIaVに対する天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0の結合活性を1とした時の、各改変体の相対的な結合活性を表したものである。具体的には、H240-Kn033/H240-Hl033/L73-k0の各FcgRに対するKDを、各改変体の各FcgRに対するKDで割った値である。
 本検討で作製した改変体のFcgRIIIaFに対する結合活性は天然型IgG1にヘテロ二量化抗体の形成を促進させるための改変のみを加えた改変体であるH240-Kn033/H240-Hl033/L73-k0と比較して51倍から161倍、またFcgRIIIaVに対する結合活性は34倍から107倍であり、いずれの改変体も既存のFcgRIIIa結合増強技術と比較して高い結合活性を有していた。FcgRIIIaFに対して最も結合活性が増強されていたのは、H240-Kn125の234番目をEに、239番目をIに置換し、H240-Hl076の330番目をFに置換したH240-Kn227/H240-Hl214/L73-k0であった。FcgRIIIaVに対して最も結合活性が増強されていたのは、H240-Kn120の234番目をFに置換し、H240-Hl076の330番目をAに置換したH240-Kn203/H240-Hl210/L73-k0であった。FcgRIIIaF、FcgRIIIaV共に結合活性が増強されていた改変体としては、H240-Kn226/H240-Hl214/L73-k0 (H240-Kn125の234番目をFに、239番目をIに、H240-Hl076の330番目をFに置換)、H240-Kn227/H240-Hl214/L73-k0 (H240-Kn125の234番目をEに、239番目をIに、H240-Hl076の330番目をFに置換)、H240-Kn228/H240-Hl214/L73-k0 (H240-Kn125の234番目をDに、239番目をIに、H240-Hl076の330番目をFに置換) が挙げられる。これらの改変体はFcgRIIbへの結合に関してもH240-Kn033/H240-Hl033/L73-k0と同程度(1.0倍から1.4倍)に維持されていた。
 FcgRIIaRに対する結合活性は、天然型のH240-Kn033/H240-Hl033/L73-k0と比較して0.9倍から83倍、またFcgRIIaHに対する結合活性は1.2倍から33倍であり、最も結合活性が増強されていたのはH240-Kn120の234番目および239番目をIにしたH240-Kn231/H240-Hl068/L73-k0であった。既存のFcgRIIaへの結合増強改変を導入したH240-Kn037/H240-Kn036/L73-k0と比較してFcgRIIaR, FcgRIIaHともに結合活性が上回っている改変体はH240-Kn230/H240-Hl068/L73-k0 (H240-Kn120の234番目をV、239番目をIに置換)、H240-Kn236/H240-Hl068/L73-k0 (H240-Kn120の234番目をT、239番目をIに置換)、H240-Kn231/H240-Hl068/L73-k0 (H240-Kn120の234番目をI、239番目をIに置換)、H240-Kn232/H240-Hl068/L73-k0 (H240-Kn120の234番目をL、239番目をIに置換)、H240-Kn235/H240-Hl068/L73-k0 (H240-Kn120の234番目をF、239番目をIに置換)であった。
 以上の結果から、ここで検討された改変体はいずれも、FcgRIIIaへの結合活性は既存技術を上回り、かついくつかの改変体についてはFcgRIIaに対する結合活性も既存技術より上回っており、抗体のエフェクター機能を誘起する上で既存技術よりも優れたヘテロ二量化抗体であることが示された。
 ここで検討された改変体のH鎖の配列番号を表79に示した。
Figure JPOXMLDOC01-appb-T000119
〔参考実施例1〕抗体の発現ベクターの作製および抗体の発現と精製
 アミノ酸置換の導入はQuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCRまたはIn fusion Advantage PCR cloning kit (TAKARA)等を用いて当業者公知の方法で行い、発現ベクターを構築した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製したプラスミドをヒト胎児腎癌細胞由来HEK293H株(Invitrogen)、またはFreeStyle293細胞(Invitrogen社)に、一過性に導入し、抗体の発現を行った。得られた培養上清から、rProtein A SepharoseTM Fast Flow(GEヘルスケア)を用いて当業者公知の方法で、抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔参考実施例2〕FcγRの調製とFcγRに対する結合活性の評価
 FcgRの細胞外ドメインを以下の方法で調製した。まずFcgRの細胞外ドメインの遺伝子の合成を当業者公知の方法で実施した。その際、各FcgRの配列はNCBIに登録されている情報に基づき作製した。具体的には、FcgRIについてはNCBIのaccession # NM_000566.3の配列、FcgRIIaについてはNCBIのaccession # NM_001136219.1の配列、FcgRIIbについてはNCBIのaccession # NM_004001.3の配列、FcgRIIIaについてはNCBIのaccession # NM_001127593.1の配列、FcgRIIIbについてはNCBIのaccession # NM_000570.3の配列に基づいて作製し、C末端にHisタグを付加した。またFcgRIIa、FcgRIIIa、FcgRIIIbについては多型が知られているが、多型部位についてはFcgRIIaについてはJ. Exp. Med., 1990, 172: 19-25、FcgRIIIaについてはJ. Clin. Invest., 1997, 100 (5): 1059-1070, FcgRIIIbについてはJ. Clin. Invest., 1989, 84, 1688-1691を参考にして作製した。
 得られた遺伝子断片を動物細胞発現ベクターに挿入し、発現ベクターを作製した。作製した発現ベクターをヒト胎児腎癌細胞由来FreeStyle293細胞(Invitrogen社)に、一過性に導入し、目的タンパク質を発現させた。なお、結晶構造解析用に用いたFcgRIIbについては、終濃度10 ug/mLのKifunesine存在下で目的タンパク質を発現させ、FcgRIIbに付加される糖鎖が高マンノース型になるようにした。培養し、得られた培養上清を回収した後、0.22μmフィルターを通して培養上清を得た。得られた培養上清は原則として次の4ステップで精製した。第1ステップは陽イオン交換カラムクロマトグラフィー(SP Sepharose FF)、第2ステップはHisタグに対するアフィニティカラムクロマトグラフィー(HisTrap HP)、第3ステップはゲルろ過カラムクロマトグラフィー(Superdex200)、第4ステップは無菌ろ過、を実施した。ただし、FcgRIについては、第1ステップにQ sepharose FFを用いた陰イオン交換カラムクロマトグラフィーを実施した。精製したタンパク質については分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて精製タンパク質の濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
 Biacore T100 (GE Healthcare) を用いて、目的の抗体とFcγRとの相互作用解析を行った。ランニングバッファーにはHBS-EP+ (GE Healthcare)を用い、測定温度は25℃とした。Series S Sencor Chip CM5(GEヘルスケア)に、アミンカップリング法により抗原ペプチドを固定化したチップ、あるいはSeries S Sensor Chip SA(certified)(GEヘルスケア)に対して予めビオチン化しておいた抗原ペプチドを相互作用させ、固定化したチップを用いた。抗原ペプチドを固定化したチップへ目的の抗体をキャプチャーさせ、ランニングバッファーで希釈した各FcγRを相互作用させた。10 mM glycine-HCl、pH1.5を反応させることで、チップにキャプチャーした抗体を洗浄し、チップを再生して繰り返し用いた。
 各抗体のFcγRに対する結合活性は主にFcγRに対する結合活性およびFcγRに対する解離定数を指標として評価した。
 FcγRに対する結合活性はFcγRに対する相対的な結合活性を意味する。FcγRに対する相対的な結合活性は各測定時におけるコントロールとなるサンプルの結合活性を100 (%)として、他の抗体の結合活性を算出した。ここでいう結合活性には、キャプチャーさせた抗体にFcγRを相互作用させた前後でのセンサーグラムの変化量を各抗体のキャプチャー量で割った値を用いた。FcγRの結合活性はキャプチャーした抗体の量に依存するためである。
 各抗体のFcγRに対する解離定数は、Biacoreの測定結果に対して速度論的解析を実施することで算出した。具体的には、Biacore Evaluation Softwareにより測定して得られたセンサーグラムを1:1 Langmuir binding modelでglobal fittingさせることで結合速度定数ka (L/mol/s)、解離速度定数kd(1/s)を算出し、その値から解離定数KD (mol/L) を算出した。
〔参考実施例3〕ヘテロ二量化抗体遺伝子発現ベクターの作製と各抗体の発現
 抗体H鎖可変領域として、次のものが使用された。Q153(抗ヒトF.IX抗体のH鎖可変領域、配列番号:61)、Q407(抗ヒトF.IX抗体のH鎖可変領域、配列番号:62)、J142(抗ヒトF.X抗体のH鎖可変領域、配列番号:63)、J300(抗ヒトF.X抗体のH鎖可変領域、配列番号:64)、MRA-VH(抗ヒトインターロイキン-6受容体抗体のH鎖可変領域、配列番号:65)。
 抗体L鎖として、次のものが使用された。L180-k(抗ヒトF.IX抗体/抗ヒトF.X抗体共通L鎖、配列番号:66)、L210-k(抗ヒトF.IX抗体/抗ヒトF.X抗体共通L鎖、配列番号:67)、MRA-k(抗ヒトインターロイキン-6受容体抗体のL鎖、配列番号:68)。
 抗体H鎖定常領域として、次のものが使用された。IgG4にEUナンバリング228番目のSerをProに置換する変異を導入してC末端のGly及びLysを除去したG4d(配列番号:69)、G4dにEUナンバリング435番目のHisをArgに置換する変異、EUナンバリング436番目のTyrをPheに置換する変異及びEUナンバリング445番目のLeuをProに置換する変異を導入したz72(配列番号:70)、G4dにEUナンバリング356番目のGluをLysに置換する変異を導入したz7(配列番号:71)、z72にEUナンバリング439番目のLysをGluに置換する変異を導入したz73(配列番号:72)、z7にEUナンバリング196番目のLysをGlnに置換する変異、EUナンバリング296番目のPheをTyrに置換する変異及びEUナンバリング409番目のArgをLysに置換する変異を導入したz106(配列番号:73)、z73にEUナンバリング196番目のLysをGlnに置換する変異、EUナンバリング296番目のPheをTyrに置換する変異、EUナンバリング409番目のArgをLysに置換する変異およびEUナンバリング436番目のPheをTyrに置換する変異を導入したz107(配列番号:74)、IgG1のC末端のGly及びLysを除去したG1d(配列番号:75)。EUナンバリング356番目のGluをLysに置換する変異及びEUナンバリング439番目のLysをGluに置換する変異は、ヘテロ抗体を産生する際に、各H鎖のヘテロ分子を効率的に形成させるためである((WO 2006/106905) PROCESS FOR PRODUCTION OF POLYPEPTIDE BY REGULATION OF ASSEMBLY)。
 Q153の下流にG4dあるいはz7を連結することで、抗ヒトF.IX抗体H鎖遺伝子Q153-G4dあるいはQ153-z7が作製された。Q407の下流にz106を連結することで、抗ヒトF.IX抗体H鎖遺伝子Q407-z106が作製された。J142の下流にG4d、z72あるいはz73を連結することで、抗ヒトF. X抗体H鎖遺伝子J142-G4d、J142-z72あるいはJ142-z73が作製された。J300の下流にz107を連結することで、抗ヒトF. X抗体H鎖遺伝子J300-z107が作製された。MRA-VHの下流にG1d、z106あるいはz107を連結することで、抗ヒトインターロイキン-6受容体抗体H鎖遺伝子MRA-G1d、MRA-z106あるいはMRA-z107が作製された。
 各抗体遺伝子(Q153-G4d、Q153-z7、Q407-z106、J142-G4d、J142-z72、J142-z73、J300-z106、MRA-G1d、MRA-z106、MRA-z107、L180-k、L210-k、MRA-k)は、動物細胞発現ベクターに組み込まれた。
 作製した発現ベクターを用いて、以下の抗体をFreeStyle293細胞(invitrogen)へのトランスフェクションにより、一過性に発現させた。以下の通り、トランスフェクションする複数の抗体遺伝子を並べたものを抗体名として表記した。
 MRA-G1d/MRA-k
 MRA-z106/MRA-z107/MRA-k
 Q153-G4d/J142-G4d/L180-k
 Q153-G4d/J142-z72/L180-k
 Q153-z7/J142-z73/L180-k
 Q407-z106/J300-z107/L210-k
〔参考実施例4〕ヘテロ二量化抗体のプロテインAアフィニティクロマトグラフィーの溶出条件の検討と分離精製
 Q153-G4d/J142-G4d/L180-k及びQ153-G4d/J142-z72/L180-kを一過性に発現させ得られたFreeStyle293細胞培養液(以下CMと略す)を試料として、プロテインAアフィニティクロマトグラフィーの溶出条件を検討した。D-PBSで平衡化したrProtein A Sepharose Fast Flowカラム(GE Healthcare)に、φ0.22μmフィルターで濾過したCMを負荷し、表80に示す洗浄1、2、溶出1~5を段階的に実施した。カラムに負荷する抗体量が20 mg/mL resineになるようにCMの負荷量を調節した。各条件の溶出画分を分取し、陽イオン交換クロマトグラフィー分析により、各溶出画分に含まれている成分を同定した。コントロールには各CMをrProtein G Sepharose Fast Flow樹脂 (GE Healthcare)に負荷し、バッチで溶出することにより精製した試料を用いた。プロテインGは抗体のFab部分に結合するため、プロテインGを用いることで、プロテインAへの結合活性とは無関係に、CM中に存在する全ての抗体(目的の2種類のH鎖がヘテロ会合化した二重特異性抗体(ヘテロ抗体)、及び、不純物の1種類のH鎖がホモ会合化した単特異性のホモ抗体)を精製することが可能である。
Figure JPOXMLDOC01-appb-T000120
 Q153-G4d/J142-G4d/L180-k及びQ153-G4d/J142-z72/L180-kを発現させたCMのプロテインAカラムの各溶出画分(溶出1~5)の陽イオン交換クロマトグラフィー分析を行った。 Q153-G4d/J142-G4d/L180-kは、溶出1画分から溶出5画分になるにつれて、つまり溶出に用いた溶媒のpHが下がるにつれて、各画分に含まれる抗体成分が、ホモ抗体J142-G4d/L180-kからヘテロ抗体Q153-G4d/J142-G4d/L180-k、そしてホモ抗体Q153-G4d/L180-kの順に変化していることが判明した。溶出の順番はプロテインAへの結合力の強さに準じていると考えられる。つまり、高pHで溶出したホモ体J142-G4d/L180-k(FXに対するホモ抗体)よりも低pHになるまで結合したままだったホモ抗体Q153-G4d/L180-kの方がプロテインAに対する結合力が強いということになる。可変領域J142はプロテインAに結合しない配列であることが分かっている。つまり、ホモ体J142-G4d/L180-k(FXに対するホモ抗体)はプロテインAへの結合部位が2ヶ所、ヘテロ抗体Q153-G4d/J142-G4d/L180-kは3ヶ所、ホモ抗体Q153-G4d/L180-k(FIXに対するホモ抗体)は4ヶ所となっている。よって、プロテインAへの結合部位数が多いほど、プロテインAに強く結合し、溶出させるために必要なpHが低くなるということが判明した。
 一方Q153-G4d/J142-z72/L180-kでは、溶出1画分から溶出5画分になるにつれて、各画分に含まれる抗体成分が、ヘテロ抗体Q153-G4d/J142-z72/L180-k次いでホモ抗体Q153-G4d/L180-kの順に変化していることが判明した。ホモ抗体J142-z72/L180-k(FXに対するホモ抗体)は各溶出画分においてほとんど検出されなかったため、プロテインAに対する結合が欠失していることが示された。J142-z72に導入されているEUナンバリング435番目のHisをArgに置換する変異により、プロテインAに結合しなくなると考えられる。ホモ抗体J142-z72/L180-k(FXに対するホモ抗体)はプロテインAへの結合部位がなく、ヘテロ抗体Q153-G4d/J142-z72/L180-kは2ヶ所、ホモ抗体Q153-G4d/L180-k(FIXに対するホモ抗体)は4ヶ所となる。ホモ抗体J142-z72/L180-k(FXに対するホモ抗体)はプロテインAに結合せず素通りするため、各溶出画分で検出されなかった。また、Q153-G4d/J142-G4d/L180-k及びQ153-G4d/J142-z72/L180-kともに、pH3.6とそれ以下のpHでヘテロ抗体とホモ抗体Q153-G4d /L180-k(FIXに対するホモ抗体)を分離できる可能性が示された。
 上記で検討した精製条件を使って、プロテインAカラムクロマトグラフィーを使ってヘテロ二量化抗体の精製を実施した。
下記に示す抗体のCMを試料として用いた。
 ・Q153-G4d/J142-G4d/L180-k
 ・Q153-G4d/J142-z72/L180-k
 ・Q153-z7/J142-z73/L180-k
 ・Q407-z106/J300-z107/L210-k
 D-PBSで平衡化したrProtein A Sepharose Fast Flowカラム (GE Healthcare)にφ0.22μmフィルターで濾過したCMを負荷し、表81に示す洗浄1、2、溶出1、2を実施した(Q407-z106/J300-z107/L210-k は溶出1のみの実施)。溶出条件は上述の結果を参考にした。負荷する抗体量が20 mg/mL resineになるようにCMの負荷量を調節した。各条件の溶出画分を分取し、陽イオン交換クロマトグラフィー分析により、各溶出画分に含まれている成分を同定した。コントロールには上述の結果と同様に、各CMをrProtein G Sepharose Fast Flow樹脂 (GE Healthcare)に負荷し、バッチで溶出することにより精製した試料を用いた。
Figure JPOXMLDOC01-appb-T000121
 各溶出画分の陽イオン交換クロマトグラフィー分析の結果を以下の表82~85に示した。値は溶出ピークの面積をパーセントで表記した。Q153-G4d/J142-G4d/L180-k以外の抗体ではFXに対するホモ抗体がいずれの溶出画分にもほとんど検出されなかった。ホモ抗体J142-z72(FXに対するホモ抗体)だけでなく、ホモ抗体J142-z73及びJ300-z107(FXに対するホモ抗体)もプロテインAに結合しなくなっているということが判明した。これは、FXに対する抗体のH鎖定常領域に導入されているEUナンバリング435番目のHisをArgに置換する変異によりFXに対するホモ抗体においてプロテインAに対する結合性が失われているためと考えられた。目的の二重特異性抗体であるヘテロ抗体は大部分が溶出1画分で検出され、FIXに対するホモ抗体は溶出1画分にもわずかに検出されたが、大部分が溶出2で溶出していた。Q153-G4d/J142-z72/L180-kと比較して、Q153-z7/J142-z73/L180-k及びQ407-z106/J300-z107/L210-kにおいて、pH3.6溶出画分の目的の二重特異性抗体であるヘテロ抗体の割合が大幅に向上した。EUナンバリング435番目のHisをArgに置換する変異に加えて、各H鎖のヘテロ分子を効率的に形成させるためのEUナンバリング356番目のGluをLysに置換する変異およびEUナンバリング439番目のLysをGluに置換する変異を導入することで、プロテインA精製工程のみにより、目的の二重特異性抗体であるヘテロ抗体を98%以上の純度で精製可能であることが明らかになった。
 以上より、ホモ抗体とヘテロ抗体のプロテインA結合部位の数の差を利用し、プロテインAクロマトグラフィー工程のみを用いることで、ヘテロ抗体を高純度にかつ効率的に分離精製することが可能であることを見出した。
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
〔参考実施例5〕示査走査型蛍光定量法による改変抗体のTm評価
 本検討では、Rotor-Gene Q(QIAGEN)を用いた示査走査型蛍光定量法を用いて改変抗体のTmを評価した。なお、本手法は、抗体の熱安定性評価法として広く知られている示唆走査型熱量計を用いたTm評価と良好な相関を示すことが既に報告されている(Journal of Pharmaceutical Science 2010 ; 4 : 1707-1720)。
 5000倍濃度のSYPRO orange(Molecular Probes)をPBS(Sigma)により希釈後、抗体溶液と混和することにより測定サンプルを調製した。各サンプルを20 μLずつ測定用チューブにセットし、240℃ /hrの昇温速度で30℃から99℃まで温度を上昇させた。昇温度に伴う蛍光変化を470 nm(励起波長)/ 555 nm(蛍光波長)において検出を行った。
 データはRotor-Gene Q Series Software(QIAGEN)を用いて蛍光遷移が認められた温度を算出し、この値をTm値とした。
〔参考実施例6〕ヘテロ改変抗体の加速試験
 本実施例中の抗体に関して加速試験を実施し、保存安定性の比較をおこなった。
 プロテインA精製後の各抗体を0.2 mM塩酸を含むPBSを用いて1.0 mg/mLに調製し、40℃の恒温槽において保存を行った。各抗体とも、保存開始時、2週間保存後、4週間保存後にG3000 SWXLカラムを用いたサイズ排除クロマトグラフィーを実施し、単量体含有率を観察した。
〔参考実施例7〕ヒト末梢血単核球をエフェクター細胞として用いた各被験抗体のADCC活性
 抗体の片側のH鎖にのみ入れることでFcγRに対する結合活性が増強した改変体について、以下の方法に従ってADCC活性を測定した。
 ヒト末梢血単核球(以下、ヒトPBMCと指称する。)をエフェクター細胞として用いて各被験抗体のADCC活性を以下のように測定した。
(1)ヒトPBMC溶液の調製
 1000単位/mlのヘパリン溶液(ノボ・ヘパリン注5千単位,ノボ・ノルディスク)が予め200μl注入された注射器を用い、中外製薬株式会社所属の健常人ボランティア(成人男性)より末梢血50 mlを採取した。PBS(-)を用いて2倍に希釈された当該末梢血を4等分し、15 mlのFicoll-Paque PLUSが予め注入されて遠心操作が行なわれたLeucosepリンパ球分離管(Greiner bio-one)に加えた。当該末梢血が分注された分離管が2150 rpmの速度によって10分間室温にて遠心分離の操作をした後、単核球画分層を分取した。10%FBSを含むDulbecco's Modified Eagle's Medium(SIGMA)(以下10%FBS/D-MEMと称する。)によって1回当該各分層に含まれる細胞を洗浄した後、当該細胞が10%FBS/D-MEM中にその細胞密度が5x106 細胞/ mlとなるように懸濁した。当該細胞懸濁液をヒトPBMC溶液として以後の実験に供した。
(2)標的細胞の調製
 SK-Hep-1にヒトグリピカン3を強制発現させたSK-pca13aをディッシュから剥離し、3x106cellsに1.85MBqのCr-51を加えたた。Cr-51を加えた細胞を5%炭酸ガスインキュベータ中において37℃で1時間インキュベートした後、10%FBS/D-MEMで1回細胞を洗浄し、当該細胞が10%FBS/D-MEM中にその細胞密度が2x105 細胞/ mlとなるように懸濁した。当該細胞懸濁液を標的細胞として以後の実験に供した。
(3)クロム遊離試験(ADCC活性)
 ADCC活性をクロムリリース法による特異的クロム遊離率にて評価した。まず、各濃度(0、0.004、0.04、0.4、4、40 μg/ml)に調製した抗体溶液を96ウェルU底プレートの各ウェル中に50μlずつ添加した。次に、(2)で調製した標的細胞を50μlずつ播種し(1x104 cells/ウェル)室温にて15分間静置した。各ウェル中に(1)で調製したヒトPBMC溶液各100μl(5x105 cells/ウェル)を加えた当該プレートを、5%炭酸ガスインキュベータ中において37℃で4時間静置した後に、遠心操作した。当該プレートの各ウェル中の100μlの培養上清の放射活性をガンマカウンターを用いて測定した。下式:
 特異的クロム遊離率(%)=(A-C)×100/(B-C)
 に基づいて特異的クロム遊離率を求めた。
 上式において、Aは各ウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。また、Bは標的細胞に100μlの2% NP-40水溶液(Nonidet P-40、ナカライテスク)および50μlの10% FBS/D-MEM培地を添加したウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。さらに、Cは標的細胞に10% FBS/D-MEM培地を150 μl添加したウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。試験はtriplicateにて実施し、各被験抗体のADCC活性が反映される前記試験における特異的クロム遊離率(%)の平均値および標準偏差を算出した。
〔参考実施例8〕FcγRの調製とFcγRに対する結合活性の評価
 FcgRの細胞外ドメインを以下の方法で調製した。まずFcgRの細胞外ドメインの遺伝子の合成を当業者公知の方法で実施した。その際、各FcgRの配列はNCBIに登録されている情報に基づき作製した。具体的には、FcgRIについてはNCBIのaccession # NM_000566.3の配列、FcgRIIaについてはNCBIのaccession # NM_001136219.1の配列、FcgRIIbについてはNCBIのaccession # NM_004001.3の配列、FcgRIIIaについてはNCBIのaccession # NM_001127593.1の配列、FcgRIIIbについてはNCBIのaccession # NM_000570.3の配列に基づいて作製し、C末端にHisタグを付加した。またFcgRIIa、FcgRIIIa、FcgRIIIbについては多型が知られているが、多型部位についてはFcgRIIaについてはJ. Exp. Med., 1990, 172: 19-25、FcgRIIIaについてはJ. Clin. Invest., 1997, 100 (5): 1059-1070, FcgRIIIbについてはJ. Clin. Invest., 1989, 84, 1688-1691を参考にして作製した。
 得られた遺伝子断片を動物細胞発現ベクターに挿入し、発現ベクターを作製した。作製した発現ベクターをヒト胎児腎癌細胞由来FreeStyle293細胞(Invitrogen社)に、一過性に導入し、目的タンパク質を発現させた。なお、結晶構造解析用に用いたFcgRIIbについては、終濃度10 ug/mLのKifunesine存在下で目的タンパク質を発現させ、FcgRIIbに付加される糖鎖が高マンノース型になるようにした。培養し、得られた培養上清を回収した後、0.22μmフィルターを通して培養上清を得た。得られた培養上清は原則として次の4ステップで精製した。第1ステップは陽イオン交換カラムクロマトグラフィー(SP Sepharose FF)、第2ステップはHisタグに対するアフィニティカラムクロマトグラフィー(HisTrap HP)、第3ステップはゲルろ過カラムクロマトグラフィー(Superdex200)、第4ステップは無菌ろ過、を実施した。ただし、FcgRIについては、第1ステップにQ sepharose FFを用いた陰イオン交換カラムクロマトグラフィーを実施した。精製したタンパク質については分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて精製タンパク質の濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
 Biacore T100、Biacore T200、Biacore A100またはBiacore 4000(GE Healthcare) を用いて、目的の抗体とFcγRとの相互作用解析を行った。ランニングバッファーにはHBS-EP+ (GE Healthcare)を用い、測定温度は25℃とした。センサーチップにはSeries S Sencor Chip CM5(GEヘルスケア)にアミンカップリング法により抗原ペプチドを固定化したチップ、Series S Sensor Chip SA(certified)(GEヘルスケア)に対して予めビオチン化しておいた抗原ペプチドを相互作用させ、固定化したチップ、Series S Sencor Chip CM5(GEヘルスケア)にProtein L (ACTIGEN, BioVision) を固定化したチップ、あるいはSeries S Sencor Chip CM5(GEヘルスケア)にProtein A/G (Thermo Scientific) を固定化したチップを用いた。これらのチップへ目的の抗体をキャプチャーさせ、ランニングバッファーで希釈した各FcγRを相互作用させた。10 mM glycine-HCl、pH1.5を反応させることで、チップにキャプチャーした抗体を洗浄し、チップを再生して繰り返し用いた。
 各抗体のFcγRに対する結合活性は主にFcγRに対する結合活性およびFcγRに対する解離定数を指標として評価した。
 FcγRに対する結合活性はFcγRに対する相対的な結合活性を意味する。FcγRに対する相対的な結合活性は各測定時におけるコントロールとなるサンプルの結合活性を100 (%)として、他の抗体の結合活性を算出した。ここでいう結合活性には、キャプチャーさせた抗体にFcγRを相互作用させた前後でのセンサーグラムの変化量を各抗体のキャプチャー量で割った値を用いた。FcγRの結合活性はキャプチャーした抗体の量に依存するためである。
 各抗体のFcγRに対する解離定数は、Biacoreの測定結果に対して速度論的解析を実施することで算出した。具体的には、Biacore Evaluation Softwareにより測定して得られたセンサーグラムを1:1 Langmuir binding modelでglobal fittingさせることで結合速度定数ka (L/mol/s)、解離速度定数kd(1/s)を算出し、その値から解離定数KD (mol/L) を算出した。
〔参考実施例9〕ヒト末梢血単核球をエフェクター細胞として用いた各被験抗体のADCC活性
 Fc改変を適用した各改変体について、以下の方法に従ってADCC活性を測定した。
 ヒト末梢血単核球(以下、ヒトPBMCと指称する。)をエフェクター細胞として用いて各被験抗体のADCC活性を以下のように測定した。
(1)ヒトPBMC溶液の調製
 1000単位/mlのヘパリン溶液(ノボ・ヘパリン注5千単位,ノボ・ノルディスク)が予め200μl注入された注射器を用い、中外製薬株式会社所属の健常人ボランティア(成人男性)より末梢血50 mlを採取した。PBS(-)を用いて2倍に希釈された当該末梢血を4等分し、15 mlのFicoll-Paque PLUSが予め注入されて遠心操作が行なわれたLeucosepリンパ球分離管(Greiner bio-one)に加えた。当該末梢血が分注された分離管が2150 rpmの速度によって10分間室温にて遠心分離の操作をした後、単核球画分層を分取した。10%FBSを含むDulbecco's Modified Eagle's Medium(SIGMA)(以下10%FBS/D-MEMと称する。)によって1回当該各分層に含まれる細胞を洗浄した後、当該細胞が10%FBS/D-MEM中にその細胞密度が5 x 106 細胞/ml又は2.5 x 106 細胞/mlとなるように懸濁した。当該細胞懸濁液をヒトPBMC溶液として以後の実験に供した。
(2)標的細胞の調製
 SK-Hep-1にヒトEpiregulinを強制発現させたSK-pca13a又はSKE18又はヒト大腸癌株DLD-1又はヒト膵癌細胞株MIAPaCa-2をディッシュから剥離し、1 x 106cellsあたり0.2 mg/mLのCalcein溶液200μL又は3 x 106cellsに1.85 MBqのCr-51を加えた。Calcein溶液又はCr-51を加えた細胞を5%炭酸ガスインキュベータ中において37℃で1-2時間インキュベートした後、10%FBS/D-MEMで1回細胞を洗浄し、当該細胞が10%FBS/D-MEM中にその細胞密度が2 x 105 細胞/mlとなるように懸濁した。当該細胞懸濁液を標的細胞として以後の実験に供した。
(3-1)カルセイン又はクロム遊離試験(ADCC活性)
 ADCC活性をカルセイン又はクロムリリース法による特異的カルセイン又はクロム遊離率にて評価した。まず、各濃度(0、0.004、0.04、0.4、4、40μg/ml)に調製した抗体溶液を96ウェルU底プレートの各ウェル中に50μlずつ添加した。次に、(2)で調製した標的細胞を50μlずつ播種し(1 x 104 cells/ウェル)室温にて15分間静置した。各ウェル中に(1)で調製したヒトPBMC溶液各100μl(5 x 105 cells/ウェル又は2.5 x 105 cells/ウェル)を加えた当該プレートを、5%炭酸ガスインキュベータ中において37℃で4時間静置した後に、遠心操作した。当該プレートの各ウェル中の100μlの培養上清のカルセイン蛍光又は放射活性を吸光光度計又はガンマカウンターを用いて測定した。下式:
  特異的カルセイン又はクロム遊離率(%)=(A-C)×100/(B-C)
に基づいて特異的カルセイン又はクロム遊離率を求めた。
 上式において、Aは各ウェル中の100μlの培養上清のカルセイン蛍光(励起波長485 nm、蛍光波長535 nm)又は放射活性(cpm)の平均値を表す。また、Bは標的細胞に100μlの2% NP-40水溶液(Nonidet P-40、ナカライテスク)および50μlの10% FBS/D-MEM培地を添加したウェル中の100μlの培養上清のカルセイン蛍光(励起波長485 nm、蛍光波長535 nm)又は放射活性(cpm)の平均値を表す。さらに、Cは標的細胞に10% FBS/D-MEM培地を150μl添加したウェル中の100μlの培養上清のカルセイン蛍光(励起波長485 nm、蛍光波長535 nm)又は放射活性(cpm)の平均値を表す。試験はtriplicateにて実施し、各被験抗体のADCC活性が反映される前記試験における特異的カルセイン又はクロム遊離率(%)の平均値および標準偏差を算出した。
 本発明により、抗体の定常領域のアミノ酸配列を改変することで結合活性が改変され、及び物性(例えば、安定性、均一性)が改善された、医薬品として適したポリペプチドが提供される。

Claims (21)

  1.  第一のポリペプチド及び第二のポリペプチドを含むヘテロ二量化体により構成されていることを特徴とするポリペプチドであって、該第一のポリペプチドおよび第二のポリペプチドのいずれか一方が、(i)又は(ii)に記載の変異が導入されているFc領域を含み、変異が導入されていないFc領域を含むポリペプチドと比べて、Fc領域の機能が改変されていることを特徴とする、ポリペプチド:
    (i) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、及び、298番目のアミノ酸がA
    (ii) EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE。
  2.  前記第一のポリペプチドと第二のポリペプチドのいずれか一方が(i)又は(ii)に記載の変異が導入されているFc領域を含み、もう一方が(iii)に記載の変異が導入されていることを特徴とする、請求項1に記載のポリペプチド:
    (i) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、298番目のアミノ酸がA、及び、327番目がD
    (ii) EUナンバリング234番目のアミノ酸がL、S、F、E、V、D、Q、I、M、T、A、G又はH、235番目のアミノ酸がY又はQ、236番目のアミノ酸がW、239番目のアミノ酸がM又はI、268番目のアミノ酸がD、270番目のアミノ酸がE、及び、298番目のアミノ酸がA
    (iii) EUナンバリング270番目のアミノ酸がE、326番目のアミノ酸がD、330番目のアミノ酸がA、K、M、F、I、Y又はH、及び、334番目のアミノ酸がE。
  3.  請求項2(i)のEUナンバリング234番目のアミノ酸がE、D、T又はLである、請求項2に記載のポリペプチド。
  4.  請求項2(ii)のEUナンバリング234番目のアミノ酸がL、F、E又はDである、請求項2に記載のポリペプチド。
  5.  請求項2(i)のEUナンバリング234番目のアミノ酸がV、I、T、M又はLである、請求項2に記載のポリペプチド。
  6.  請求項2(i)のEUナンバリング234番目のアミノ酸がV、E、D、T、I、L又はF、及び、239番目のアミノ酸がM又はIであって、(iii)のEUナンバリング330番目のアミノ酸がA又はKである、請求項2に記載のポリペプチド。
  7.  請求項2(ii)のEUナンバリング234番目のアミノ酸がF、E、D、S又はL、及び、239番目のアミノ酸がM又はIであって、(iii)のEUナンバリング330番目のアミノ酸がA、F又はKである、請求項2に記載のポリペプチド。
  8.  前記Fc領域の機能の改変が、ポリペプチドのFcγレセプターに対する結合活性の増強、結合活性の減弱、及び、結合活性の選択性の向上からなる群より選択される少なくとも一つ以上の改変であることを特徴とする、請求項1~7のいずれかに記載のポリペプチド。
  9.  前記FcγレセプターがFcγRIa、FcγRIIa R、FcγRIIa H、FcγRIIb 、FcγRIIIaF及びFcγRIIIaVからなる群より選択される少なくとも1つ以上のレセプターであることを特徴とする、請求項8に記載のポリペプチド。
  10.  前記Fc領域の機能の改変がFcγレセプターに対する結合活性の選択性の向上であることを特徴とする、請求項8又は9に記載のポリペプチド。
  11.  前記Fcγレセプターに対する結合活性の選択性の向上が、活性型Fcγレセプターと阻害型Fcγレセプターとの間の選択性であることを特徴とする、請求項10に記載のポリペプチド。
  12.  前記Fcγレセプターにおいて、活性型FcγレセプターがFcγRIa、FcγRIIa R、FcγRIIa H、FcγRIIIaF及びFcγRIIIaVからなる群より選択される少なくとも1つ以上のレセプターであり、阻害型FcγレセプターがFcγRIIbであることを特徴とする、請求項11に記載のポリペプチド。
  13.  前記活性型Fcγレセプターに対する結合活性が、前記阻害型Fcγレセプターに対する結合活性に比べて、選択的に増強されたことを特徴とする、請求項11又は12に記載のポリペプチド。
  14.  更に第一のポリペプチドと第二のポリペプチドの等電点に差を付与させるためのアミノ酸改変が導入されている、請求項1から13のいずれかに記載のポリペプチド。
  15.  等電点の差を付与するためのアミノ酸改変が、第一のポリペプチド及び/又は第二のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、196番目のGln、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、364番目のSer、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、387番目のPro、390番目のAsn、397番目のVal及び422番目のValからなる群より選択されるアミノ酸部位において、少なくとも一つのアミノ酸変異が導入されていることを特徴とする、請求項14に記載のポリペプチド。
  16.  等電点の差を付与するためのアミノ酸改変が、第一のポリペプチド又は第二のポリペプチドのどちらか一方のポリペプチドのアミノ酸配列において、EUナンバリング196番目のGln、199番目のIle、231番目のAla、233番目のGlu、242番目のLeu、263番目のVal、272番目のGlu、316番目のGly、358番目のLeu、364番目のSer、383番目のSer、387番目のPro及び397番目のValからなる群より選択される、少なくとも一つ以上のアミノ酸変異が導入されており、もう一方のポリペプチドのアミノ酸配列において、EUナンバリング137番目のGly、138番目のGly、139番目のThr、147番目のLys、192番目のSer、193番目のLeu、198番目のTyr、199番目のIle、203番目のAsn、214番目のLys、274番目のLys、278番目のTyr、288番目のLys、290番目のLys、316番目のGly、317番目のLys、320番目のLys、324番目のLys、335番目のThr、337番目のSer、338番目のLys、340番目のLys、341番目のGly、358番目のLeu、360番目のLys、362番目のGln、383番目のSer、384番目のAsn、385番目のGly、386番目のGln、390番目のAsn及び422番目のValからなる群より選択される、少なくとも一つのアミノ酸変異が導入されていることを特徴とする、請求項15に記載のポリペプチド。
  17.  前記ポリペプチドが、抗原結合分子であることを特徴とする、請求項1~16のいずれかに記載のポリペプチド。
  18.  前記抗原結合分子が、抗体、二重特異性抗体、ペプチドFc融合タンパク質、又はスキャッフォールドFc融合タンパク質などのFc融合分子であることを特徴とする、請求項17に記載のポリペプチド。
  19.  請求項1から18のいずれかに記載のポリペプチド及び医学的に許容し得る担体を含む、医薬組成物。
  20.  Fc領域を含むポリペプチドの機能を改変する方法であって、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、請求項1から7のいずれかに記載のアミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、ポリペプチドの機能を改変する方法。
  21.  Fc領域を含むポリペプチドを製造する方法であって、該Fc領域を構成する第一のポリペプチド及び/又は第二のポリペプチドにアミノ酸変異を導入することにより該Fc領域をヘテロ二量体とし、請求項1から7のいずれかに記載のアミノ酸変異の導入により該Fc領域がホモ二量体となった場合に比べてFc領域の機能を改変する工程を含む、Fc領域を含むポリペプチドを製造する方法。
PCT/JP2013/084809 2012-12-27 2013-12-26 ヘテロ二量化ポリペプチド WO2014104165A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201380073842.3A CN105102618B (zh) 2012-12-27 2013-12-26 异源二聚化多肽
JP2014554530A JP6433297B2 (ja) 2012-12-27 2013-12-26 ヘテロ二量化ポリペプチド
DK13868831.2T DK2940135T5 (da) 2012-12-27 2013-12-26 Heterodimeriseret polypeptid
US14/654,895 US10766960B2 (en) 2012-12-27 2013-12-26 Heterodimerized polypeptide
EP13868831.2A EP2940135B9 (en) 2012-12-27 2013-12-26 Heterodimerized polypeptide
KR1020157019773A KR102249779B1 (ko) 2012-12-27 2013-12-26 헤테로이량화 폴리펩티드
ES13868831T ES2876009T3 (es) 2012-12-27 2013-12-26 Polipéptido heterodimerizado
HK16105820.7A HK1217731A1 (zh) 2012-12-27 2016-05-23 異源二聚化多肽

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012284129 2012-12-27
JP2012-284129 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104165A1 true WO2014104165A1 (ja) 2014-07-03

Family

ID=51021241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084809 WO2014104165A1 (ja) 2012-12-27 2013-12-26 ヘテロ二量化ポリペプチド

Country Status (9)

Country Link
US (1) US10766960B2 (ja)
EP (1) EP2940135B9 (ja)
JP (2) JP6433297B2 (ja)
KR (1) KR102249779B1 (ja)
CN (1) CN105102618B (ja)
DK (1) DK2940135T5 (ja)
ES (1) ES2876009T3 (ja)
HK (1) HK1217731A1 (ja)
WO (1) WO2014104165A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
CN107106632A (zh) * 2014-12-29 2017-08-29 中央研究院 一种治疗a型流感病毒感染的方法
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
WO2019160007A1 (ja) 2018-02-14 2019-08-22 中外製薬株式会社 抗原結合分子および組合せ
WO2020067541A1 (ja) * 2018-09-28 2020-04-02 協和キリン株式会社 抗体組成物
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
WO2021201236A1 (ja) * 2020-04-01 2021-10-07 協和キリン株式会社 抗体組成物
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
JP2022535324A (ja) * 2019-04-05 2022-08-08 セルジーン コーポレイション Cd47の腫瘍選択的結合のための抗体の操作
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
US11680250B2 (en) 2015-07-14 2023-06-20 University Of Copenhagen Light-driven system and methods for chemical modification of an organic substrate
US11780910B1 (en) 2022-05-02 2023-10-10 Novo Nordisk A/S Anti-ANGPTL3 antibodies suitable for high concentration compositions and subcutaneous administration

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436397B1 (en) 2009-05-29 2017-05-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition containing antagonist of egf family ligand as component
MX352889B (es) 2011-02-25 2017-12-13 Chugai Pharmaceutical Co Ltd Anticuerpo de fc especifico para fcyriib.
WO2013062083A1 (ja) 2011-10-28 2013-05-02 ファーマロジカルズ・リサーチ プライベート リミテッド 癌幹細胞特異的分子
US11236168B2 (en) * 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
CN105517571A (zh) * 2013-06-24 2016-04-20 中外制药株式会社 含有人源化抗上皮调节蛋白抗体作为有效成分的腺癌以外的非小细胞肺癌的治疗药
EP3050896B1 (en) 2013-09-27 2021-07-07 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
JPWO2015068847A1 (ja) 2013-11-11 2017-03-09 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
TWI831044B (zh) 2014-11-11 2024-02-01 日商中外製藥股份有限公司 抗原結合分子、包含抗原結合分子的醫藥組合物以及製造及選擇抗原結合分子之方法
SG11201700841QA (en) 2014-12-19 2017-03-30 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
KR102605798B1 (ko) 2015-02-05 2023-11-23 추가이 세이야쿠 가부시키가이샤 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
WO2017165464A1 (en) 2016-03-21 2017-09-28 Elstar Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
MX2019001448A (es) 2016-08-05 2019-09-13 Chugai Pharmaceutical Co Ltd Composicion para profilaxis o tratamiento de enfermedades relacionadas con interleucina 8 (il-8).
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
DK3583120T5 (da) 2017-02-17 2024-09-02 Denali Therapeutics Inc Modificerede transferrinreceptorbindende polypeptider
JP2020522254A (ja) 2017-05-31 2020-07-30 エルスター セラピューティクス, インコーポレイテッド 骨髄増殖性白血病(mpl)タンパク質に結合する多特異性分子およびその使用
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. MULTISPECIFIC MOLECULES BINDING TO BCMA AND USES THEREOF
CN111556895B (zh) 2017-11-14 2024-09-13 中外制药株式会社 抗-c1s抗体及使用方法
TW201938194A (zh) 2017-12-05 2019-10-01 日商中外製藥股份有限公司 包含結合cd3及cd137的改變的抗體可變區之抗原結合分子
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
EP3784699A4 (en) 2018-04-25 2022-04-13 Prometheus Biosciences, Inc. OPTIMIZED ANTI-TL1A ANTIBODIES
AU2019297451A1 (en) 2018-07-03 2021-01-28 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
WO2020154889A1 (zh) * 2019-01-29 2020-08-06 上海鑫湾生物科技有限公司 具有Fc突变体的抗体与效应细胞的组合、用途和制法
WO2020172596A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and thereof
JP2022521937A (ja) 2019-02-21 2022-04-13 マレンゴ・セラピューティクス,インコーポレーテッド NKp30に結合する抗体分子およびその使用
AU2020224154A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
AU2020224680A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Multifunctional molecules that bind to T cells and uses thereof to treat autoimmune disorders
JP2022523197A (ja) 2019-02-21 2022-04-21 マレンゴ・セラピューティクス,インコーポレーテッド T細胞関連のがん細胞に結合する多機能性分子およびその使用
EP4034570A4 (en) * 2019-09-27 2023-10-25 Agenus Inc. HETERODIMERIC PROTEINS
KR20220103721A (ko) 2019-10-24 2022-07-22 프로메테우스 바이오사이언시즈, 인크. Tnf 유사 리간드 1a(tl1a)에 대한 인간화 항체 및 그의 용도
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
KR102505383B1 (ko) 2020-03-31 2023-03-02 추가이 세이야쿠 가부시키가이샤 Dll3 표적 다중 특이성 항원 결합 분자 및 그의 사용
JP2023523011A (ja) 2020-04-24 2023-06-01 マレンゴ・セラピューティクス,インコーポレーテッド T細胞関連のがん細胞に結合する多機能性分子およびその使用
CN116761818A (zh) 2020-08-26 2023-09-15 马伦戈治疗公司 检测trbc1或trbc2的方法
CN116249718A (zh) 2020-08-26 2023-06-09 马伦戈治疗公司 结合至钙网蛋白的多功能性分子及其用途
CN116917316A (zh) 2020-08-26 2023-10-20 马伦戈治疗公司 与NKp30结合的抗体分子及其用途
CA3214757A1 (en) 2021-04-08 2022-10-13 Andreas Loew Multifuntional molecules binding to tcr and uses thereof
CN115873127A (zh) * 2021-11-26 2023-03-31 深圳科兴药业有限公司 重组长效人生长激素融合蛋白及其制备方法和用途
WO2023227790A1 (en) 2022-05-27 2023-11-30 Sanofi Natural killer (nk) cell engagers binding to nkp46 and bcma variants with fc-engineering
WO2024089609A1 (en) 2022-10-25 2024-05-02 Ablynx N.V. Glycoengineered fc variant polypeptides with enhanced effector function
US12030945B2 (en) 2022-10-25 2024-07-09 Seismic Therapeutic, Inc. Variant IgG Fc polypeptides and uses thereof

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995033844A1 (de) 1994-06-03 1995-12-14 GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren zur herstellung von heterologen bispezifischen antikörpern
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2004099249A2 (en) * 2003-05-02 2004-11-18 Xencor, Inc. Optimized fc variants and methods for their generation
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2007114325A1 (ja) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
WO2009041062A1 (ja) 2007-09-28 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 血漿中動態が改善されたグリピカン3抗体
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
US20090136485A1 (en) 2007-05-30 2009-05-28 Xencor, Inc. Methods and compositions for inhibiting CD32B expressing cells
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012125850A1 (en) 2011-03-16 2012-09-20 Amgen Inc. Fc variants

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932411U (ja) 1982-08-24 1984-02-29 エヌオーケー株式会社 離型装置
US5981478A (en) 1993-11-24 1999-11-09 La Jolla Cancer Research Foundation Integrin-binding peptides
US7951917B1 (en) * 1997-05-02 2011-05-31 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
AU759378B2 (en) * 1998-02-06 2003-04-10 Ilexus Pty Limited Three-dimensional structures and models of Fc receptors and uses thereof
US6852318B1 (en) 1998-05-08 2005-02-08 The Regents Of The University Of California Methods for detecting and inhibiting angiogenesis
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US6344443B1 (en) 1998-07-08 2002-02-05 University Of South Florida Peptide antagonists of tumor necrosis factor alpha
CN1189166C (zh) 1998-09-11 2005-02-16 伊来克萨斯独资有限公司 Fc受体调节剂及其应用
RU2236222C2 (ru) 1998-09-11 2004-09-20 Айлексус Пти Лимитед Модуляторы fc-рецептора и их применение
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
CA2427858A1 (en) 2000-11-03 2002-05-10 University Of Vermont And State Agricultural College Compositions for inhibiting grb7
US20040001822A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Y1-isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040001839A1 (en) 2000-12-29 2004-01-01 Avigdor Levanon Multimers - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
US20040002450A1 (en) 2000-12-29 2004-01-01 Janette Lazarovits Y17 - isolated molecules comprising epitopes containing sulfated moieties, antibodies to such epitopes, and uses thereof
EP1383800A4 (en) 2001-04-02 2004-09-22 Idec Pharma Corp RECOMBINANT ANTIBODIES CO-EXPRESSED WITH GNTIII
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20080199471A1 (en) 2002-03-01 2008-08-21 Bernett Matthew J Optimized cd40 antibodies and methods of using the same
US20040110226A1 (en) 2002-03-01 2004-06-10 Xencor Antibody optimization
US8193318B2 (en) 2002-08-14 2012-06-05 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US20050260213A1 (en) 2004-04-16 2005-11-24 Scott Koenig Fcgamma-RIIB-specific antibodies and methods of use thereof
RU2325186C2 (ru) 2002-09-27 2008-05-27 Ксенкор, Инк. АНТИТЕЛО, СОДЕРЖАЩЕЕ Fc-ВАРИАНТНУЮ ЧАСТЬ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ АНТИТЕЛО, И СПОСОБ ЛЕЧЕНИЯ МЛЕКОПИТАЮЩЕГО
EP3502133A1 (en) 2002-09-27 2019-06-26 Xencor, Inc. Optimized fc variants and methods for their generation
EP2368578A1 (en) 2003-01-09 2011-09-28 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7393531B2 (en) 2003-01-21 2008-07-01 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of MCSP
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
KR100973564B1 (ko) 2003-05-02 2010-08-03 젠코어 인코포레이티드 최적화된 Fc 변이체 및 그의 제조 방법
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
WO2005063815A2 (en) * 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
PL1711207T3 (pl) 2003-12-10 2013-08-30 Squibb & Sons Llc Przeciwciała przeciwko interferonowi alfa i ich zastosowania
US20050260711A1 (en) 2004-03-30 2005-11-24 Deepshikha Datta Modulating pH-sensitive binding using non-natural amino acids
RU2006142852A (ru) 2004-05-05 2008-06-10 Ксенкор, Инк. (Us) Оптимизированные fc-варианты
US20070048785A1 (en) 2004-06-09 2007-03-01 Lin Laura L Anti-IL-13 antibodies and complexes
GEP20115195B (en) 2004-07-30 2011-04-11 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide and use thereof
EP1776384B1 (en) 2004-08-04 2013-06-05 Mentrik Biotech, LLC Variant fc regions
RU2398777C2 (ru) 2004-08-05 2010-09-10 Дженентек, Инк. ГУМАНИЗИРОВАННЫЕ АНТАГОНИСТЫ, НАПРАВЛЕННЫЕ ПРОТИВ c-met
JP5017116B2 (ja) 2004-09-24 2012-09-05 アムジエン・インコーポレーテツド 修飾Fc分子
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
JP4937138B2 (ja) 2005-01-05 2012-05-23 エフ−シュタール・ビオテヒノロギシェ・フォルシュングス−ウント・エントヴィックルングスゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 相補性決定領域とは異なる分子の領域に設計された結合性を持つ合成免疫グロブリンドメイン
CA2595169A1 (en) 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
CA2596248A1 (en) 2005-01-31 2006-08-10 Vaxinnate Corporation Method to identify polypeptide toll-like receptor (tlr) ligands
WO2006133486A1 (en) 2005-06-14 2006-12-21 The Macfarlane Burnet Institute For Medical Research And Public Health Limited CRYSTAL STRUCTURES AND MODELS FOR Fc RECEPTOR:Fc COMPLEXES AND USES THEREOF
KR20080073293A (ko) 2005-10-14 2008-08-08 메디뮨 엘엘씨 항체 라이브러리의 세포 디스플레이
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
CN101466733A (zh) 2006-04-14 2009-06-24 特鲁比昂药品公司 包含免疫球蛋白铰链区和Fc效应子功能改变了的Fc区的结合蛋白
EP2021029B1 (en) 2006-05-26 2014-06-11 MacroGenics, Inc. Humanized fc gamma riib-specific antibodies and methods of use thereof
WO2008002933A2 (en) 2006-06-26 2008-01-03 Macrogenics, Inc. Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof
AT503889B1 (de) 2006-07-05 2011-12-15 Star Biotechnologische Forschungs Und Entwicklungsges M B H F Multivalente immunglobuline
ES2402591T3 (es) 2006-08-14 2013-05-07 Xencor Inc. Anticuerpos optimizados que seleccionan como diana CD19
RU2537245C2 (ru) 2006-10-12 2014-12-27 Чугаи Сейяку Кабусики Кайся Диагностика и лечение злокачественной опухоли с использованием антитела против ereg
WO2008140603A2 (en) 2006-12-08 2008-11-20 Macrogenics, Inc. METHODS FOR THE TREATMENT OF DISEASE USING IMMUNOGLOBULINS HAVING FC REGIONS WITH ALTERED AFFINITIES FOR FCγR ACTIVATING AND FCγR INHIBITING
JP5357778B2 (ja) 2007-01-23 2013-12-04 ゼンコー・インコーポレイテッド 最適化cd40抗体および前記を使用する方法
EP2087111A2 (en) 2007-03-19 2009-08-12 Medimmune Limited Polypeptide variants
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
US20120030144A1 (en) * 2007-11-08 2012-02-02 Pikamab, Inc. Methods for doing business using biomarkers
HUE028536T2 (en) 2008-01-07 2016-12-28 Amgen Inc Method for producing antibody to FC heterodimer molecules using electrostatic control effects
WO2009094391A1 (en) 2008-01-23 2009-07-30 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
ES2487846T3 (es) 2008-05-01 2014-08-25 Amgen, Inc. Anticuerpos anti-hepcindina y métodos de uso
JP6146949B2 (ja) 2008-06-20 2017-06-21 ノバルティス アーゲー 凝集が低減された免疫グロブリン
JP5913980B2 (ja) 2008-10-14 2016-05-11 ジェネンテック, インコーポレイテッド 免疫グロブリン変異体及びその用途
WO2010058860A1 (ja) 2008-11-18 2010-05-27 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
BRPI1006998A2 (pt) 2009-01-23 2015-08-25 Biogen Idec Inc Polipeptídeos fc estabilizados com função efetora reduzida e métodos de uso
TWI544077B (zh) 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
EP3916011A1 (en) 2009-06-26 2021-12-01 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
MX340971B (es) * 2009-11-23 2016-08-02 Amgen Inc * Fragmento cristalizable (fc) de anticuerpo monomerico.
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
EP2542577A1 (en) 2010-03-01 2013-01-09 Lostam Biopharmaceuticals Ltd Improved therapeutic antibodies against flagellated pseudomonas aeruginosa
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
AU2011225716A1 (en) 2010-03-11 2012-09-27 Pfizer Inc. Antibodies with pH dependent antigen binding
TWI667346B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
EP2622074B1 (en) 2010-09-30 2014-11-12 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
EP2647706B1 (en) 2010-11-30 2023-05-17 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
EP4303236A3 (en) 2010-11-30 2024-03-20 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
MX352889B (es) 2011-02-25 2017-12-13 Chugai Pharmaceutical Co Ltd Anticuerpo de fc especifico para fcyriib.
WO2012132067A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
EP2698431B1 (en) 2011-03-30 2020-09-09 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
BR112013032630B1 (pt) * 2011-06-30 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Polipeptídeo heterodimerizado compreendendo região fc de igg
US20150050269A1 (en) 2011-09-30 2015-02-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
CA2850322C (en) 2011-09-30 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
WO2013047752A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP6271251B2 (ja) 2011-10-05 2018-01-31 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
WO2013062083A1 (ja) 2011-10-28 2013-05-02 ファーマロジカルズ・リサーチ プライベート リミテッド 癌幹細胞特異的分子
JP6326371B2 (ja) 2011-11-04 2018-05-16 ザイムワークス,インコーポレイテッド Fcドメインにおける変異を有する安定なヘテロ二量体抗体デザイン
TWI593705B (zh) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
JP6226752B2 (ja) 2012-02-09 2017-11-08 中外製薬株式会社 抗体のFc領域改変体
TWI617577B (zh) 2012-02-24 2018-03-11 中外製藥股份有限公司 經FcγRIIB促進抗原消失之抗原結合分子
HUE053310T2 (hu) 2012-03-16 2021-06-28 Regeneron Pharma Hisztidinmódosított könnyûlánc antitestek és genetikailag módosított rágcsálók ugyanennek az elõállítására
PT2825037T (pt) 2012-03-16 2019-08-07 Regeneron Pharma Animais não humanos que expressam sequências de imunoglobulinas sensíveis ao ph
SG10201607727PA (en) 2012-03-16 2016-11-29 Regeneron Pharma Mice that produce antigen-binding proteins with ph-dependent binding characteristics
TWI619729B (zh) 2012-04-02 2018-04-01 再生元醫藥公司 抗-hla-b*27抗體及其用途
EP3892638A1 (en) 2012-05-30 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for eliminating aggregated antigens
MX2014014678A (es) 2012-05-30 2015-02-10 Chugai Pharmaceutical Co Ltd Molecula de union al antigeno especifico para el tejido objetivo.
JP6628966B2 (ja) 2012-06-14 2020-01-15 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
JP6309521B2 (ja) 2012-08-13 2018-04-11 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH依存性結合特性を有する抗PCSK9抗体
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
AU2013306700B2 (en) 2012-08-24 2019-05-02 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIb-specific Fc region variant
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
JO3532B1 (ar) 2013-03-13 2020-07-05 Regeneron Pharma الأجسام المضادة لمضاد انترلوكين-33 واستعمالاتها
JP2016514668A (ja) 2013-03-15 2016-05-23 アムジエン・インコーポレーテツド プロタンパク質コンベルターゼスブチリシンケクシン9型に結合するヒト抗原結合タンパク質
AU2014230018B2 (en) 2013-03-15 2018-02-22 Affibody Ab New polypeptides
WO2014144080A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
SI2970497T1 (en) 2013-03-15 2018-04-30 Bayer Healthcare Llc Variants of anti-TFPI antibodies with differential binding over the pH range for improved pharmacokinetic properties
AU2014250434B2 (en) 2013-04-02 2019-08-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US10111953B2 (en) 2013-05-30 2018-10-30 Regeneron Pharmaceuticals, Inc. Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9)
TR201909967T4 (tr) 2013-09-18 2019-07-22 Regeneron Pharma Histidin ile işlenmiş hafif zincirli antikorlar ve bunu üretmeye yönelik genetik olarak modifiye edilmiş insan olmayan hayvanlar.
EP3050896B1 (en) 2013-09-27 2021-07-07 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
CA2931299C (en) 2013-11-20 2024-03-05 Regeneron Pharmaceuticals, Inc. Aplnr modulators and uses thereof
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
SG11201700841QA (en) 2014-12-19 2017-03-30 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995033844A1 (de) 1994-06-03 1995-12-14 GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren zur herstellung von heterologen bispezifischen antikörpern
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2004099249A2 (en) * 2003-05-02 2004-11-18 Xencor, Inc. Optimized fc variants and methods for their generation
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2007114325A1 (ja) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
US20090136485A1 (en) 2007-05-30 2009-05-28 Xencor, Inc. Methods and compositions for inhibiting CD32B expressing cells
WO2009041613A1 (ja) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
WO2009041062A1 (ja) 2007-09-28 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 血漿中動態が改善されたグリピカン3抗体
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012125850A1 (en) 2011-03-16 2012-09-20 Amgen Inc. Fc variants

Non-Patent Citations (142)

* Cited by examiner, † Cited by third party
Title
"Sequences of proteins of immunological interest", NIH PUBLICATION NO. 91-3242
ACAD NEWS
ACTA CRYST., vol. D66, 2010, pages 486 - 501
ACTA CRYST., vol. D67, 2011, pages 355 - 367
ACTA. CRYST, vol. D62, 2006, pages 72 - 82
ACTA. CRYST., vol. D62, 2006, pages 72 - 82
ACTA. CRYST., vol. D66, 2010, pages 125 - 132
ARTHRITIS RHEUM, vol. 41, 1998, pages 1181 - 1189
ARTHRITIS RHEUM, vol. 48, 2003, pages 719 - 727
ARTHRITIS RHEUM, vol. 54, 2006, pages 3908 - 3917
ARTHRITIS RHEUM, vol. 62, 2010, pages 1933 - 1943
ARTHRITIS. RHEUM, vol. 46, 2002, pages 1242 - 1254
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BIODRUGS, vol. 20, no. 3, 2006, pages 151 - 60
BIOTECHNOL. BIOENG, vol. 75, no. 2, 20 October 2001 (2001-10-20), pages 197 - 203
BIOTECHNOL. BIOENG., vol. 91, no. 6, 20 September 2005 (2005-09-20), pages 670 - 7
BLOOD, vol. 108, 2006, pages 705
BLOOD, vol. 113, 2009, pages 3716 - 3725
BLOOD, vol. 113, 2009, pages 3735 - 3743
BLOOD, vol. 99, 2002, pages 754 - 758
CANCER CELL, vol. 19, 2011, pages 101 - 1113
CANCER RES., vol. 68, 2008, pages 8049 - 8057
CHEMICAL IMMUNOLOGY, vol. 65, 1997, pages 88
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CURRENT OPINION IN BIOTECHNOLOGY, vol. 17, 2006, pages 653 - 658
CURRENT OPINION IN BIOTECHNOLOGY, vol. 18, 2007, pages 1 - 10
CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 7, 1997, pages 463 - 469
EUR J IMMUNOL, vol. 19, 1989, pages 1379 - 1385
EUR J IMMUNOL, vol. 23, 1993, pages 1098 - 1104
EUR. J. IMMUNOL., vol. 23, 1993, pages 1098
EUR. J. PHARM. BIOPHARM, vol. 59, no. 3, 2005, pages 389 - 96
EXPERT OPIN BIOL THER, vol. 7, no. 3, March 2007 (2007-03-01), pages 405 - 18
EXPERT OPIN BIOL THER., vol. 7, no. 3, March 2007 (2007-03-01), pages 405 - 18
FASEB J, vol. 6, 1992, pages 2422 - 2427
FERRARA ET AL., BIOTECHNOL. BIOENG., vol. 93, no. 5, 2006, pages 851 - 861
FLOWER ET AL., DRUG DISCOV TODAY, vol. 9, no. 2, 2004, pages 82 - 90
GENE, vol. 18, 1990, pages 5322
GLYCOBIOL, vol. 17, no. 1, 2006, pages 104 - 118
HAMMER ET AL., J. EXP. MED., vol. 180, 1994, pages 2353 - 2358
HASHIMOTO-GOTOH, T, MIZUNO, T, OGASAHARA, Y, AND NAKAGAWA, M.: "An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis", GENE, vol. 152, - 1995, pages 271 - 275, XP004042690, DOI: doi:10.1016/0378-1119(94)00750-M
HUM, GENET, vol. 117, 2005, pages 220 - 227
IMMUNITY, vol. 23, 2005, pages 41 - 51
IMMUNOL LET
IMMUNOL LETT, vol. 82, no. 1-2, 2002, pages 57 - 65
IMMUNOL LETT, vol. 88, 2003, pages 157 - 161
IMMUNOL. LETT., vol. 82, 2002, pages 57 - 65
IMMUNOLOGY LETTERS, vol. 143, 2012, pages 60 - 69
IMMUNOLOGY, vol. 86, 1995, pages 319
INFECTION AND IMMUNITY, vol. 63, 1995, pages 73 - 81
INT. IMMUNOI., vol. 18, no. 12, December 2006 (2006-12-01), pages 1759 - 69
J BIOL CHEM, vol. 282, 2007, pages 1738 - 1746
J BIOL CHEM., vol. 281, no. 33, 18 August 2006 (2006-08-18), pages 23514 - 24
J CLIN INVEST, 2012
J CLIN INVEST, vol. 115, 2005, pages 2914 - 2923
J CLIN INVEST, vol. 97, 1996, pages 1348 - 1354
J EXP MED, vol. 129, 1969, pages 1183 - 1201
J EXP MED, vol. 172, 1990, pages 19 - 25
J EXP MED, vol. 189, 1999, pages 187 - 194
J EXP MED, vol. 191, 2000, pages 899 - 906
J EXP MED, vol. 203, 2006, pages 2157 - 2164
J IMMUNOL, vol. 163, 1999, pages 618 - 622
J IMMUNOL, vol. 166, 2001, pages 4891
J IMMUNOL, vol. 171, 2003, pages 562
J IMMUNOL, vol. 176, 2006, pages 5321 - 5328
J IMMUNOL, vol. 185, 2010, pages 1577 - 1583
J IMMUNOL., vol. 178, 2007, pages 3272 - 3280
J IMUNOL, vol. 181, 2008, pages 5350 - 5359
J NATL CANCER INST, vol. 99, 2007, pages 1232 - 1239
J THROMB HAEMOST, vol. 7, 2008, pages 171 - 181
J. APPL. CRYST, vol. 40, 2007, pages 658 - 674
J. APPL. CRYST., vol. 40, 2007, pages 658 - 674
J. APPL. CRYST., vol. 43, 2010, pages 186 - 190
J. BIOL. CHEM., vol. 276, 2001, pages 16469 - 16477
J. BIOL. CHEM., vol. 276, 2011, pages 16469 - 16477
J. BIOL. CHEM., vol. 278, 2003, pages 3466 - 3473
J. CLIN. INVEST, vol. 100, no. 5, 1997, pages 1059 - 1070
J. CLIN. INVEST., vol. 100, no. 5, 1997, pages 1059 - 1070
J. CLIN. INVEST., vol. 84, 1989, pages 1688 - 1691
J. CLIN. INVEST., vol. 85, 1990, pages 1287 - 1295
J. EXP. MED, vol. 172, 1990, pages 19 - 25
J. EXP. MED., vol. 172, 1990, pages 19 - 25
J. EXP. MED., vol. 203, 2006, pages 2157 - 2164
J. IMMUNOL., vol. 176, no. 1, 1 January 2006 (2006-01-01), pages 346 - 56
J. IMMUNOL., vol. 178, 2007, pages 3272 - 3280
J. IMUNOL., vol. 187, 2011, pages 3208 - 321
J. IMUNOL., vol. 187, 2011, pages 3208 - 3217
JBC, vol. 276, 2001, pages 16469 - 16477
JOURNAL OF PHARMACEUTICAL SCIENCE, vol. 4, 2010, pages 1707 - 1720
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
KRAMER W; FRITZ HJ: "Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods", ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER; W, DRUTSA; V, JANSEN; HW, KRAMER; B, PFLUGFELDER; FRITZ, HJ: "The gapped duplex DNA approach to oligonucleotide-directed mutation construction", NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456, XP002026371
KUNKEL, TA: "Rapid and efficient site-specific mutagenesis without phenotypic selection", PROC NATL ACAD SCI U S A., vol. 82, 1985, pages 488 - 492, XP002052322, DOI: doi:10.1073/pnas.82.2.488
MABS, no. 5, September 2010 (2010-09-01), pages 519 - 27
MABS, vol. 3, 2011, pages 243 - 247
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
MERCHANT AM ET AL., NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 677 - 681
METHODS ENZYMOL, vol. 100, pages 468 - 500
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MOL CANCER THER, vol. 7, 2008, pages 2517 - 2527
MOL IMMUNOL, vol. 40, 2003, pages 585 - 593
MOL IMMUNOL, vol. 45, 2008, pages 3926 - 3933
MOL. IMMUN., vol. 45, 2008, pages 3926 - 3933
MOL. IMMUNOLOGY, vol. 45, 2008, pages 3926 - 3933
MOLECULAR CANCER THERAPEUTICS, vol. 7, 2008, pages 2517 - 2527
MOLECULAR IMMUNOLOGY, vol. 37, 2000, pages 697 - 706
MOLECULAR IMMUNOLOGY, vol. 45, 2008, pages 1872 - 1882
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
N. BIOTECHNOL., vol. 28, no. 5, 2011, pages 253 - 457
NAT BIOTECHNOL., vol. 28, no. 2, February 2010 (2010-02-01), pages 157 - 9
NAT MED, vol. 11, 2005, pages 1056 - 1058
NAT MED, vol. 9, no. 1, January 2003 (2003-01-01), pages 47 - 52
NAT REV IMMUNOL, vol. 10, 2010, pages 328 - 343
NATURE BIOTECHNOLOGY, vol. 23, 2005, pages 1073 - 1078
NATURE MEDICINE, vol. 6, 2000, pages 443 - 446
NATURE, vol. 368, 1994, pages 70 - 73
NATURE, vol. 372, 1994, pages 379 - 383
NATURE, vol. 400, 2000, pages 267 - 273
NATURE, vol. 423, 2003, pages 614 - 620
NUCLEIC ACIDS. RES., vol. 18, no. 17, 1990, pages 5322
PENG LIU ET AL., J CHROMATOGR A., vol. 1216, no. 44, 30 October 2009 (2009-10-30), pages 7497 - 504
PRO. NAT. ACAD. SCI., vol. 103, 2006, pages 4005 - 4010
PRO. NAT. ACAD. SCI., vol. 95, 1998, pages 652 - 656
PROC NATL ACAD SCI USA, vol. 102, 2005, pages 2910 - 2915
PROC. NATL. ACAD. SCI USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 108, 2011, pages 12669 - 126674
PROTEIN ENGINEERING DESIGN & SELECTION, vol. 23, 2010, pages 195 - 202
PROTEIN SCIENCE, vol. 15, 2006, pages 14 - 27
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
PROTEIN SCIENCE, vol. 5, 1996, pages 2617 - 2622
RIDGWAY JB ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 617 - 621
SCI TRANSL MED, vol. 2, no. 47, 2010, pages 47 - 63
SCIENCE, vol. 256, 1992, pages 1808 - 1812
SCIENCE, vol. 290, 2000, pages 84 - 89
SCIENCE, vol. 291, 2001, pages 484 - 486
SCIENCE, vol. 310, 2005, pages 1510 - 1512
SCIENCE, vol. 333, 2011, pages 1030 - 1034
THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 199, 2004, pages 1659 - 1669
THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 203, 2006, pages 743 - 753
TISSUE ANTIGENS, vol. 61, 2003, pages 189 - 202
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10927163B2 (en) 2007-12-21 2021-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US11673945B2 (en) 2009-06-16 2023-06-13 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US10640555B2 (en) 2009-06-16 2020-05-05 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US10793621B2 (en) 2011-02-28 2020-10-06 Hoffmann-La Roche Inc. Nucleic acid encoding dual Fc antigen binding proteins
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
CN107106632A (zh) * 2014-12-29 2017-08-29 中央研究院 一种治疗a型流感病毒感染的方法
US11680250B2 (en) 2015-07-14 2023-06-20 University Of Copenhagen Light-driven system and methods for chemical modification of an organic substrate
WO2019160007A1 (ja) 2018-02-14 2019-08-22 中外製薬株式会社 抗原結合分子および組合せ
WO2020067541A1 (ja) * 2018-09-28 2020-04-02 協和キリン株式会社 抗体組成物
JPWO2020067541A1 (ja) * 2018-09-28 2021-08-30 協和キリン株式会社 抗体組成物
JP7529568B2 (ja) 2018-09-28 2024-08-06 協和キリン株式会社 抗体組成物
JP2022535324A (ja) * 2019-04-05 2022-08-08 セルジーン コーポレイション Cd47の腫瘍選択的結合のための抗体の操作
JP7503075B2 (ja) 2019-04-05 2024-06-19 セルジーン コーポレイション Cd47の腫瘍選択的結合のための抗体の操作
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
KR20240035914A (ko) 2019-12-27 2024-03-18 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
KR20220119433A (ko) 2019-12-27 2022-08-29 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
JPWO2021131021A1 (ja) * 2019-12-27 2021-07-01
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
JP7373588B2 (ja) 2019-12-27 2023-11-02 中外製薬株式会社 抗ctla-4抗体およびその使用
WO2021201236A1 (ja) * 2020-04-01 2021-10-07 協和キリン株式会社 抗体組成物
WO2022044248A1 (ja) * 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
KR20240024213A (ko) 2021-06-25 2024-02-23 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체
KR20240024255A (ko) 2021-06-25 2024-02-23 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체의 사용
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2023213779A1 (en) 2022-05-02 2023-11-09 Novo Nordisk A/S Novel anti-angptl3 antibodies suitable for high concentration compositions and subcutaneous administration
US11780910B1 (en) 2022-05-02 2023-10-10 Novo Nordisk A/S Anti-ANGPTL3 antibodies suitable for high concentration compositions and subcutaneous administration

Also Published As

Publication number Publication date
DK2940135T5 (da) 2021-09-20
DK2940135T3 (da) 2021-08-09
JP6719507B2 (ja) 2020-07-08
HK1217731A1 (zh) 2017-01-20
US20150344570A1 (en) 2015-12-03
JPWO2014104165A1 (ja) 2017-01-12
EP2940135A1 (en) 2015-11-04
KR20150097786A (ko) 2015-08-26
ES2876009T3 (es) 2021-11-11
US10766960B2 (en) 2020-09-08
KR102249779B1 (ko) 2021-05-07
CN105102618B (zh) 2018-04-17
CN105102618A (zh) 2015-11-25
EP2940135B1 (en) 2021-04-28
JP2018188445A (ja) 2018-11-29
EP2940135A4 (en) 2016-08-03
JP6433297B2 (ja) 2018-12-05
EP2940135B9 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6719507B2 (ja) ヘテロ二量化ポリペプチド
JP6634066B2 (ja) ヘテロ二量化ポリペプチド
JP7245815B2 (ja) 改変されたFc領域を含む抗原結合分子
JP2017029150A (ja) FcγRIIb特異的Fc抗体
TW202237660A (zh) FcγRIIb特異性Fc區域變異體

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073842.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554530

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654895

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019773

Country of ref document: KR

Kind code of ref document: A