WO2014083903A1 - 石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法 - Google Patents

石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法 Download PDF

Info

Publication number
WO2014083903A1
WO2014083903A1 PCT/JP2013/073472 JP2013073472W WO2014083903A1 WO 2014083903 A1 WO2014083903 A1 WO 2014083903A1 JP 2013073472 W JP2013073472 W JP 2013073472W WO 2014083903 A1 WO2014083903 A1 WO 2014083903A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
selenium
coal gasification
compound
fluorine
Prior art date
Application number
PCT/JP2013/073472
Other languages
English (en)
French (fr)
Inventor
元喜 田中
鳥羽 裕一郎
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to EP13859161.5A priority Critical patent/EP2927197A4/en
Priority to KR1020157012779A priority patent/KR101957548B1/ko
Priority to US14/647,648 priority patent/US20150315054A1/en
Priority to JP2014550055A priority patent/JP5828969B2/ja
Publication of WO2014083903A1 publication Critical patent/WO2014083903A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • the present invention relates to a treatment system and a treatment method for coal gasification wastewater mainly discharged from a coal-fired power generation facility including a cyanide compound, a fluorine compound, a selenium compound, ammonia nitrogen, and a COD component.
  • coal gasification wastewater contains cyanide compounds, fluorine compounds, selenium compounds, ammonia nitrogen, and COD components. It is necessary to treat to the quality of water that can be discharged or water that can be reused. As a treatment of coal gasification wastewater, it has been studied to construct a wastewater treatment system by combining treatment methods corresponding to each component included.
  • Patent Document 1 describes a method for treating coal gasification wastewater, which includes the following steps (1) to (4) and in which step (1) is performed before step (2).
  • Fluorine removal step for removing fluorine by coagulation precipitation
  • Cyanide decomposition step for decomposing cyanide by wet oxidation or thermal hydrolysis
  • Selenium treatment step (4) for reducing selenate ions by metal reductant COD / ammonia removal step for removing COD and / or ammonia
  • Patent Document 2 discloses a method of treating wastewater discharged when a gas obtained by partial oxidation of fossil fuel is wet-cleaned, and is included in wastewater by adjusting the wastewater to the acidic side and aeration. It comprises a free cyan removal process for removing cyan, a biological treatment process for biologically treating the wastewater treated in the free cyanide removal process, and a decomposition treatment process for decomposing COD components contained in the wastewater treated in the biological treatment process. The wastewater treatment method is described.
  • agglomeration precipitation is adopted as a fluorine removing step before the cyan treatment.
  • sludge containing a fluorine compound is generated.
  • the sludge contains cyanide, it is necessary to deal with specially managed industrial waste in the disposal of the sludge.
  • the object of the present invention is to efficiently remove cyanide compounds, fluorine compounds, selenium compounds, ammonia nitrogen, and COD components contained in coal gasification wastewater to obtain treated water with good water quality, and to prevent harmful sludge generated.
  • An object of the present invention is to provide a coal gasification wastewater treatment system and a coal gasification wastewater treatment method which have a low substance content and are easy to dispose of waste.
  • the present invention is a coal gasification wastewater treatment system for treating coal gasification wastewater containing a cyanide compound, a fluorine compound, a selenium compound, ammonia nitrogen, and a COD component, comprising: (1) adding an oxidizing agent A cyan / ammonia / COD treatment means for decomposing at least the cyanide compound, ammonia nitrogen and COD components by a high temperature alkali chlorine treatment to be reacted under heating; and (2) at least one of a coagulation precipitation treatment and an adsorption treatment.
  • the fluorine treatment means removes the fluorine compound by coagulation sedimentation treatment.
  • the selenium treatment means removes the reduced selenium compound after the reduction of the selenium compound with at least one of a metal and a metal salt, thereby reducing the selenium compound. It is preferable to remove.
  • the metal and the metal salt are preferably iron or iron salt.
  • the iron salt is preferably a divalent iron salt.
  • the selenium treatment means removes the reduced selenium compound after the reduction of the selenium compound with at least one of a metal and a metal salt, thereby reducing the selenium compound.
  • the fluorine treatment means is provided after the selenium treatment means.
  • the selenium treatment means removes the selenium compound by a reduction removal treatment for removing the reduced selenium compound after the reduction of the selenium compound by biological treatment. preferable.
  • the selenium treatment means removes the selenium compound by reduction removal treatment for removing the reduced selenium compound after the reduction of the selenium compound by biological treatment
  • the selenium treatment means is provided after the fluorine treatment means.
  • an adsorption treatment means using an adsorbent capable of adsorbing at least one of a fluorine compound and a selenium compound is provided on a subsequent stage side of the fluorine treatment means and the selenium treatment means. It is preferable to provide.
  • a fluorine treatment means for removing the fluorine compound by adsorption treatment is used, and the coal gasification wastewater
  • a selenium treatment means for removing the selenium compound by an adsorption treatment is preferably used.
  • the coal gasification wastewater treatment system preferably includes a salt water electrolysis means for supplying sodium hypochlorite as the oxidant.
  • this invention is a processing method of the coal gasification waste_water
  • the fluorine compound is removed by coagulation sedimentation treatment in the fluorine treatment step.
  • the selenium compound is removed by reduction removal treatment for removing the reduced selenium compound. It is preferable to remove.
  • the metal and the metal salt are preferably iron or iron salt.
  • the iron salt is preferably a divalent iron salt.
  • the selenium compound is removed by reduction removal treatment for removing the reduced selenium compound.
  • the said fluorine treatment process is performed after the said selenium treatment process.
  • the selenium treatment step after the selenium compound is reduced by biological treatment, the selenium compound is removed by a reduction removal treatment for removing the reduced selenium compound.
  • the fluorine treatment is performed when the selenium compound is removed by a reduction removal treatment that removes the reduced selenium compound. It is preferable that the selenium treatment step is performed after the step.
  • an adsorption treatment step with an adsorbent capable of adsorbing at least one of a fluorine compound and a selenium compound is provided on the subsequent stage side of the fluorine treatment step and the selenium treatment step. It is preferable to include.
  • a fluorine treatment step is performed to remove the fluorine compound by adsorption treatment, and the coal gasification wastewater
  • the concentration of the selenium compound is 3 ppm or less, it is preferable to perform a selenium treatment step of removing the selenium compound by adsorption treatment.
  • cyan / ammonia / COD treatment by high-temperature alkali chlorine treatment, fluorine treatment by at least one treatment among coagulation precipitation treatment and adsorption treatment, and at least one treatment among reduction removal treatment and adsorption treatment of selenium compounds.
  • fluorine treatment and selenium treatment cyanide compound, fluorine compound, selenium compound, ammonia nitrogen and COD component contained in coal gasification wastewater It can be removed efficiently and treated water with good water quality can be obtained. Further, since the content of harmful substances in the generated sludge is small, it is not necessary to dispose of as specially managed waste, etc., and waste disposal becomes easy.
  • the present inventors diligently studied to obtain a coal gasification wastewater treatment system having sufficient performance while suppressing the equipment cost.
  • cyan / ammonia / COD treatment by high-temperature alkali chlorine treatment, coagulation precipitation treatment and adsorption treatment are performed.
  • Fluorine treatment and selenium treatment are performed after the cyan / ammonia / COD treatment by combining fluorine treatment by at least one of the above and selenium treatment by at least one of the reduction removal treatment and adsorption treatment of selenium compounds.
  • a coal gasification wastewater treatment system was developed.
  • FIG. 1 shows an outline of an example of a coal gasification wastewater treatment system according to an embodiment of the present invention, and the configuration thereof will be described.
  • the coal gasification wastewater treatment system 6 includes a high-temperature alkali chlorine treatment apparatus 10 as a cyan / ammonia / COD treatment means, a fluorine treatment apparatus 50 as a fluorine treatment means, and a selenium treatment apparatus 52 as a selenium treatment means. Further, a fluorine treatment device 50 and a selenium treatment device 52 are provided in the subsequent stage of the high-temperature alkali chlorine treatment device 10.
  • raw water piping is connected to the inlet of the high temperature alkaline chlorination apparatus 10, the outlet of the high temperature alkaline chlorination apparatus 10, the inlet of the fluorine treatment apparatus 50, and the outlet of the fluorine treatment apparatus 50.
  • the inlet of the selenium treatment device 52 is connected by a pipe or the like, and the treated water piping is connected to the outlet of the selenium treatment device 52.
  • the coal gasification wastewater as raw water is fed to the high-temperature alkali chlorination apparatus 10, and in the high-temperature alkali chlorination apparatus 10, an oxidizing agent is added and the reaction is carried out under heating to perform at least a cyanide and ammonia-based reaction.
  • Nitrogen and COD components are decomposed (cyan / ammonia / COD treatment step).
  • the cyan / ammonia / COD-treated cyan / ammonia / COD-treated water is sent to the fluorine treatment device 50, where at least one fluorine compound is removed by at least one of coagulation precipitation treatment and adsorption treatment. (Fluorine treatment step).
  • the fluorine-treated water subjected to the fluorine treatment is sent to the selenium treatment device 52, and in the selenium treatment device 52, after reduction of the selenium compound, at least one treatment among a reduction removal treatment for removing the reduced selenium compound and an adsorption treatment.
  • the selenium compound is removed by (selenium treatment step), and treated water is obtained.
  • the treated water is further treated by filtration, activated carbon adsorption, neutralization or the like as necessary, and then discharged or reused.
  • FIG. 2 shows an outline of another example of the coal gasification wastewater treatment system according to this embodiment.
  • raw water piping is connected to the inlet of the high-temperature alkali chlorination apparatus 10, the outlet of the high-temperature alkali chlorination apparatus 10, the inlet of the selenium treatment apparatus 52, and the outlet of the selenium treatment apparatus 52
  • the inlet of the fluorine treatment apparatus 50 is connected by a pipe or the like, and the treated water pipe is connected to the outlet of the fluorine treatment apparatus 50.
  • the coal gasification wastewater which is raw water is sent to the high-temperature alkali chlorination apparatus 10 where cyan / ammonia / COD treatment is performed (cyan / ammonia / COD treatment step).
  • the cyan / ammonia / COD-treated cyan / ammonia / COD-treated water is sent to the selenium treatment device 52, and in the selenium treatment device 52, after reduction of the selenium compound, reduction reduction treatment for removing the reduced selenium compound, and
  • the selenium compound is removed by at least one of the adsorption treatments (selenium treatment step).
  • the selenium-treated water that has been subjected to selenium treatment is sent to the fluorine treatment device 50, where at least one fluorine compound is removed by at least one of coagulation sedimentation treatment and adsorption treatment (fluorine treatment step). Water is obtained. The treated water is further treated by filtration, activated carbon adsorption, neutralization or the like as necessary, and then discharged or reused.
  • coal gasification wastewater treatment method By using the coal gasification wastewater treatment method and the coal gasification wastewater treatment systems 6 and 7 according to this embodiment, cyanide compounds, fluorine compounds, selenium compounds, ammonia nitrogen, and COD components contained in the coal gasification wastewater are efficiently obtained. It is possible to obtain treated water with good water quality that can be removed, discharged, or reused.
  • the coal gasification wastewater to be treated in this embodiment is a coal gasification combined power generation that uses both gas turbine power generation and steam turbine power generation, and coal gasification fuel cell combined power generation that incorporates fuel cell power generation.
  • Examples of the cyanide compound contained in the coal gasification wastewater to be treated include cyanide, hydrogen cyanide, and a cyanide metal complex.
  • Examples of the fluorine compound include fluorine ions and calcium fluoride.
  • Examples of the selenium compound include hexavalent selenium such as selenate (SeO 4 2 ⁇ ), tetravalent selenium such as selenite (SeO 3 2 ⁇ ), and selenium alone. Ammonia nitrogen is an ammonium ion etc., for example.
  • the COD component refers to an oxidizable substance measured as CODMn or CODCr regardless of whether it is organic or inorganic. Examples of the COD component contained in the coal gasification wastewater include, but are not limited to, low molecular organic acids such as formic acid.
  • a feature of the coal gasification wastewater treatment method and the coal gasification wastewater treatment system according to the present embodiment is that high-temperature alkali chlorine treatment is used for the treatment of cyanide compounds in the coal gasification wastewater.
  • the “high temperature alkali chlorination” referred to here is the addition of an alkaline agent to the cyanate-containing effluent to adjust the pH value to a range of 8 to 13.5, preferably 9 to 13.5, and the addition of an oxidizing agent.
  • the cyanide-containing waste liquid is decomposed at a liquid temperature in the range of 70 to 95 ° C.
  • the temperature of coal gasification wastewater is raised within the range of 70 ° C to the boiling point from room temperature, and the temperature is maintained within that range, and the oxidation-reduction potential of the coal gasification wastewater is measured from room temperature.
  • the oxidant may be added continuously or intermittently from room temperature to 70 ° C. or higher until the redox potential of the oxidant reaches the redox potential of the oxidant.
  • the high temperature alkaline chlorination has the following advantages. -The heating may be 100 ° C. or less, and the amount of energy used is small compared to wet oxidation or thermal hydrolysis that requires heating of 150 ° C. or more. -Since the decomposition reaction of the cyanide proceeds under normal pressure, the structure of the reaction vessel is simple compared to wet oxidation or thermal hydrolysis that requires high pressure. -Substantially complete decomposition is possible regardless of the form of the cyanide compound. Complex cyanide compounds, which are well known as cyan wastewater treatment technology and cannot normally be decomposed by the alkali chlorine method (without heating operation), can also be decomposed by high temperature alkali chlorine treatment.
  • the treatment by the high temperature alkali chlorine treatment may be a continuous treatment or a batch treatment.
  • the pH before the addition of the oxidizing agent is preferably in the range of 8 to 13.5, more preferably in the range of pH 9 to 13.5. If the pH before the addition of the oxidant is less than 8, cyan gas may be diffused. If it exceeds 13.5, the change in the oxidation-reduction potential is poor, and drug injection control may be difficult.
  • the reaction temperature may be 70 ° C. or higher for the decomposition of cyanide ions and COD, and preferably 80 ° C. or higher when the water to be treated contains complex cyanide.
  • the reaction is performed at a temperature at which the coal gasification wastewater does not boil, and is preferably 95 ° C. or lower.
  • Examples of the oxidizing agent that can be used in the high-temperature alkaline chlorination include sodium hypochlorite, hydrogen peroxide, potassium permanganate, and the like. From the viewpoint of ease of handling and availability at low cost. Sodium hypochlorite is preferred.
  • the addition amount of the oxidant is preferably 1.01 times or more of the theoretical amount necessary for the reaction with cyanides, ammonia nitrogen and COD contained in the coal gasification wastewater, and the viewpoint of suppressing the use of the oxidant, etc. To 1.5 times or less is preferable.
  • alkali agent examples include sodium hydroxide, potassium hydroxide, calcium hydroxide and the like.
  • cyanide compound, ammonia nitrogen and COD components are treated by high-temperature alkali chlorine treatment, so that they can be applied to coal gasification wastewater having a high concentration in these wastewaters. Is expected to require a large amount of oxidant. Therefore, in order to avoid transporting a large amount of oxidant, when using sodium hypochlorite as the oxidant, a salt water electrolyzer that supplies on-site the required sodium hypochlorite is treated with coal gasification wastewater treatment. It is preferable that it is supplied in the system.
  • Fig. 3 shows the schematic configuration of a coal gasification wastewater treatment system equipped with a salt water electrolysis device.
  • the coal gasification wastewater treatment system 8 includes a salt water electrolysis device 20 as salt water electrolysis means in addition to the configuration of FIG.
  • the salt water electrolysis apparatus 20 is an apparatus for synthesizing sodium hypochlorite by generating chlorine and caustic soda from salt water by electrolysis.
  • Sodium hypochlorite produced by the salt water electrolysis apparatus 20 is supplied to the high temperature alkali chlorination apparatus 10 as an oxidizing agent for high temperature alkali chlorination.
  • energy costs may be reduced by adopting a heat exchanger, a heat pump system, or the like.
  • ⁇ Fluorine treatment process At least the fluorine compound is removed by at least one of a coagulation sedimentation treatment and an adsorption treatment.
  • a coagulation sedimentation treatment for example, a calcium agent is added to the water to be treated in a reaction tank to form poorly soluble calcium fluoride (calcium agent addition step). Aggregate and precipitate with a polymer flocculant (flocculant addition step), and separate and remove in a sedimentation tank (precipitation step).
  • the number of stages of the fluorine coagulation precipitation treatment there is no particular limitation on the number of stages of the fluorine coagulation precipitation treatment, and two-stage coagulation precipitation may be adopted in order to enhance the fluorine removal ability.
  • two-stage coagulation precipitation may be adopted in order to enhance the fluorine removal ability.
  • the fluorine removal ability It is possible to increase the amount of chemicals used and reduce the amount of sludge generated.
  • the pH of the calcium agent addition step is preferably in the range of 7-11.
  • the pH in the subsequent flocculant addition step and precipitation step is preferably in the neutral range of pH 6-8.
  • Calcium agents include calcium salts such as calcium chloride and slaked lime.
  • the flocculant examples include aluminum-based flocculants such as polyaluminum chloride, iron-based flocculants such as ferric chloride, and the like, and aluminum-based flocculants are preferable from the viewpoint of fluorine removal ability and the like.
  • polymer flocculant examples include anionic polyacrylamide.
  • pH adjusters used for pH adjustment include acids such as hydrochloric acid, and alkalis such as sodium hydroxide and potassium hydroxide.
  • the addition amount of calcium agent, flocculant and polymer flocculant, treatment temperature and the like may be determined appropriately based on conventionally known techniques.
  • the fluorine compound may be removed by adsorption treatment (fluorine adsorption treatment) instead of the coagulation sedimentation treatment.
  • the concentration of the fluorine compound in the water to be treated which may be subjected to fluorine adsorption treatment is, for example, 50 ppm or less, preferably 30 ppm or less.
  • Examples of the adsorption treatment means in the fluorine adsorption treatment include treatment using an anion exchange resin, an adsorbent mainly composed of activated alumina, zirconium hydroxide, zirconium ferrite, or the like. When saturation adsorption is reached, the adsorbent may be exchanged or regenerated.
  • the SS component When the concentration of the SS component in the water to be treated is high (for example, 10 mg / L or more), the SS component may be removed by a coagulation sedimentation treatment, a filtration treatment, or the like before the adsorption treatment.
  • the concentration of the SS component when the concentration of the SS component is high and the concentration of the fluorine compound is low, the high-temperature alkali chlorine treatment ⁇ selenium treatment (reduction + coagulation precipitation treatment) ⁇ fluorine adsorption treatment may be performed in this order.
  • the selenium compound is removed by at least one of a reduction removal treatment for removing the reduced selenium compound and an adsorption treatment.
  • a reduction removal treatment for example, hexavalent selenium or tetravalent selenium in the water to be treated is reduced using at least one of a metal and a metal salt, and hexavalent selenium is converted into tetravalent selenium and tetravalent selenium is used alone.
  • Reduced to selenium and insolubilized physical reduction.
  • the reduced selenium compound is removed by agglomeration treatment or the like.
  • the reduced selenium compound includes selenium alone.
  • biological treatment is carried out under the anaerobic condition of hexavalent selenium or tetravalent selenium in the water to be treated, and the hexavalent selenium is reduced to tetravalent selenium, and the tetravalent selenium is reduced to simple selenium (bioreduction).
  • bioreduction biological treatment
  • the reduced selenium compound is removed by agglomeration treatment or the like.
  • fluorine treated water that has been subjected to fluorine treatment in a fluorine treatment apparatus 50 is converted into at least one of a metal and a metal salt of hexavalent selenium or tetravalent selenium in treated water in a selenium treatment apparatus 52.
  • a reduction treatment is performed using one of them, and hexavalent selenium is reduced to tetravalent selenium and tetravalent selenium is reduced to simple selenium to be insolubilized. Thereafter, the insolubilized selenium is removed by coagulation precipitation, filtration treatment or the like (selenium physical reduction aggregation treatment).
  • hexavalent selenium or tetravalent selenium in the water to be treated is reduced using at least one of a metal and a metal salt to obtain hexavalent selenium.
  • Tetravalent selenium is reduced to insoluble by reducing tetravalent selenium to simple selenium.
  • fluorine treatment is performed in the fluorine treatment apparatus 50.
  • the excess of oxidant used in high-temperature alkali chlorination is usually preferably reduced by adding a reducing agent, but it was used in high-temperature alkali chlorination due to the metal or metal salt having a reducing action used in selenium treatment. Since the reduction of the surplus oxidant can be performed at the same time, the efficiency is good. In addition, since a part of the fluorine compound in the water to be treated is removed by the coagulation sedimentation operation in the selenium treatment process, the amount of chemicals used can be reduced when the fluorine treatment process is performed later.
  • Examples of the metal used in physical reduction include metal reductants such as iron.
  • Examples of the metal salt include a flocculant having a reducing function, for example, an iron salt such as a divalent iron salt (ferrous salt) such as ferrous chloride and ferrous sulfate.
  • the physical reduction of selenium with a metal or metal salt is preferably performed at a high temperature of 40 ° C. or higher, and the fluorine treatment by aggregation is preferably performed at a normal temperature of 40 ° C. or lower. Since the wastewater is usually heated to 70 to 95 ° C in the high-temperature alkaline chlorine treatment in the previous stage, the heat energy used for heating in the previous stage is effective by treating in the order of physical reduction treatment of selenium ⁇ aggregation treatment of fluorine. Can be used.
  • the fluorinated water subjected to the fluorination treatment in the fluorination treatment apparatus 50 is subjected to reduction treatment using hexagonal selenium or tetravalent selenium in the for-treatment water using living organisms.
  • the hexavalent selenium is reduced to tetravalent selenium and the tetravalent selenium is reduced to single selenium to be insolubilized.
  • the insolubilized selenium is removed by a coagulation sedimentation treatment or the like.
  • the coagulation precipitation treatment of fluorine and the bioreduction treatment of selenium are preferably performed in the vicinity of pH neutrality.
  • the high temperature alkali chlorine treatment is performed in the vicinity of pH alkali, it is desirable to adjust the pH after the high temperature alkali chlorine treatment. .
  • the pH at the selenium treatment step inlet can be made near pH neutral, and thus the reduction treatment by the organism can be stably performed.
  • hexavalent selenium or tetravalent selenium in the water to be treated is subjected to reduction treatment using a living organism, and hexavalent selenium is converted to tetravalent selenium. Is reduced to simple selenium and insolubilized. After removing the insolubilized selenium by coagulation sedimentation treatment or the like, fluorine treatment is performed in the fluorine treatment apparatus 50.
  • FIG. 6 shows an outline of an example of a coal gasification wastewater treatment system used when performing reduction treatment and removal of a selenium compound using a living organism after fluorine treatment.
  • the coal gasification wastewater treatment system 1 includes a high-temperature alkali chlorine treatment device 10 as a cyan / ammonia / COD treatment means, a first coagulation precipitation device 12 as a fluorine treatment means, a selenium reduction device 14 as a selenium treatment means,
  • the organic substance processing apparatus 16 as an organic substance processing means and the second coagulating sedimentation apparatus 18 as a selenium / SS processing means are provided in this order.
  • raw water piping is connected to the inlet of the high-temperature alkali chlorination apparatus 10, the outlet of the high-temperature alkali chlorination apparatus 10, the inlet of the first coagulation precipitation apparatus 12, and the first coagulation precipitation apparatus.
  • 12 outlet and the inlet of the selenium reducing device 14, the outlet of the selenium reducing device 14 and the inlet of the organic matter processing device 16, the outlet of the organic matter processing device 16 and the inlet of the second coagulating sedimentation device 18 are respectively connected by piping
  • a treated water pipe is connected to the outlet of the second coagulating sedimentation apparatus 18.
  • the coal gasification wastewater as raw water is fed to the high-temperature alkali chlorination apparatus 10, and in the high-temperature alkali chlorination apparatus 10, an oxidizing agent is added and the reaction is carried out under heating to perform at least a cyanide and ammonia-based reaction.
  • Nitrogen and COD components are decomposed (cyan / ammonia / COD treatment step).
  • the cyan / ammonia / COD-treated cyan / ammonia / COD-treated water is sent to the first coagulation / precipitation apparatus 12, and at least the fluorine compound is removed by the coagulation / precipitation in the first coagulation / precipitation apparatus 12 (fluorine treatment step). ).
  • the fluorine-treated water subjected to the fluorine treatment is sent to the selenium reducing device 14 where a hydrogen donor such as methanol is supplied and at least the selenium compound is reduced by the action of the selenium reducing bacteria (selenium treatment).
  • Selenium-treated water that has been subjected to selenium treatment is sent to the organic matter treatment device 16, where aeration or the like is performed in the organic matter treatment device 16, and an organic matter containing at least an excess hydrogen donor is obtained by decomposition treatment by a living organism under aerobic conditions. Decomposed (organic matter processing step).
  • the organic matter-treated water subjected to the organic matter treatment is sent to the second flocculation / precipitation device 18, and at least the selenium compound and the SS component reduced by the reduction treatment by the flocculation / precipitation are removed (selenium / SS). Treatment step), treated water is obtained.
  • the treated water is further treated by filtration, activated carbon adsorption, neutralization or the like as necessary, and then discharged or reused.
  • hexavalent selenium is reduced to tetravalent selenium and tetravalent selenium is reduced to simple selenium by the action of selenium-reducing bacteria that grow under anaerobic conditions (bioreduction treatment step).
  • a hydrogen donor is supplied to the selenium reducing apparatus 14 as a nutrient source for selenium reducing bacteria. If the nitrate ion concentration in the fluorinated water is high and selenium reduction under anaerobic conditions is insufficient, an anaerobic biological treatment (biological denitrification treatment step) may be provided before the bioreduction treatment step. .
  • ammonia nitrogen (including surplus that could not be removed in the cyan / ammonia / COD treatment process) contained in the fluorinated water was oxidized to nitrate ions by the action of nitrifying bacteria in the previous stage of the selenium reduction unit 14. After the (biological nitrification treatment step), reduction treatment may be performed. When the fluorinated water contains almost no ammonia nitrogen, the biological nitrification treatment step may be omitted.
  • FIG. 7 shows a schematic configuration of a coal gasification wastewater treatment system including a biological nitrification treatment process and a biological denitrification treatment process.
  • the coal gasification wastewater treatment system 3 includes a nitrification device 22 as ammoniacal nitrogen treatment means and a denitrification device 24 as nitrate ion treatment means in addition to the configuration of FIG. 6.
  • nutrients such as nitrogen compounds and phosphorus compounds may be added as nutrient sources for nitrifying bacteria.
  • the pH in the biological nitrification treatment process, the biological denitrification treatment process, and the bioreduction treatment process is preferably in the neutral range of pH 7-8.
  • Examples of the hydrogen donor that is introduced into the selenium reduction apparatus 14 include alcohols such as methanol and ethanol.
  • pH adjusters used for pH adjustment include acids such as hydrochloric acid, and alkalis such as sodium hydroxide and potassium hydroxide.
  • the addition amount of the nutrient and hydrogen donor, the processing temperature, and the like may be appropriately determined based on conventionally known techniques.
  • Organic treatment process In the organic matter treatment step, oxygen is supplied and at least the organic matter is decomposed by aerobic bacteria.
  • Examples of the method for supplying oxygen include aeration for supplying air or the like, and organic substances such as excess hydrogen donor (such as methanol) in the selenium-treated water are aerobically decomposed to remove the organic substances.
  • the pH in the organic substance treatment step is preferably a neutral range of pH 7-8.
  • Processing temperature and the like may be appropriately determined based on conventionally known techniques.
  • selenium / SS treatment process (selenium coagulation precipitation treatment)
  • insoluble selenium and SS components brought from the biological treatment of the selenium treatment step are precipitated by agglomeration and precipitation treatment (selenium aggregation and precipitation treatment).
  • a flocculant and a polymer flocculant are added to the organic substance treated water in the coagulation tank to cause coagulation precipitation (coagulant addition process), and separated and removed in the precipitation tank (precipitation process).
  • the pH in the selenium coagulation precipitation treatment is preferably in the range of pH 5-9.
  • an iron-based aggregating agent such as ferric chloride having a high ability to agglomerate tetravalent selenium or simple selenium is preferable.
  • polymer flocculant examples include anionic polyacrylamide.
  • pH adjusters used for pH adjustment include acids such as hydrochloric acid, and alkalis such as sodium hydroxide and potassium hydroxide.
  • the addition amount of the flocculant and the polymer flocculant, the processing temperature, and the like may be appropriately determined based on a conventionally known technique.
  • the selenium compound may be removed by an adsorption treatment (selenium adsorption treatment) instead of the aggregation precipitation treatment.
  • the concentration of the selenium compound in the water to be treated that may be subjected to selenium adsorption treatment is, for example, 5 ppm or less, preferably 3 ppm or less.
  • Examples of the adsorption treatment means in the selenium adsorption treatment include treatment using an anion exchange resin, an adsorbent mainly composed of activated alumina, zirconium hydroxide, zirconium ferrite or the like. When saturation adsorption is reached, the adsorbent may be exchanged or regenerated.
  • the reason why the cyan / ammonia / COD treatment process by the high-temperature alkali chlorination is provided in the front stage of the coal gasification wastewater treatment system is to suppress the generation of sludge containing a cyanide compound in the first stage.
  • agglomeration precipitation is employed as a fluorine removal step before the cyan treatment.
  • sludge containing a fluorine compound is generated in this step, since the sludge also contains cyanide, it is necessary to deal with specially managed industrial waste in the disposal of sludge.
  • the high-temperature alkali chlorine treatment capable of almost completely decomposing the cyanide is first performed, so that the cyanide is hardly contained in the subsequent system. Since there is almost no generation of cyan gas due to pH change and the inclusion of cyanide compounds in the sludge, it is excellent in terms of equipment operation, safety and cost.
  • an effective coal gasification wastewater treatment can be performed by first removing cyanide, ammonia nitrogen and COD components by high-temperature alkali chlorine treatment, followed by fluorine treatment and selenium treatment.
  • ⁇ Adsorption treatment process> when it is necessary to further reduce the concentration of at least one of selenium and fluorine in the treated water, a combined treatment of the biological treatment and polishing with an adsorbent may be employed for the selenium treatment.
  • the coal gasification wastewater treatment system 9 in FIG. 4 includes an adsorption treatment device 26 as an adsorption treatment means on the rear stage side of the selenium treatment device 52 in addition to the configuration in FIG.
  • the coal gasification wastewater treatment system 11 of FIG. 5 includes an adsorption treatment device 26 as an adsorption treatment means on the rear stage side of the fluorine treatment device 50 in addition to the configuration of FIG.
  • FIG. 8 shows a schematic configuration of a coal gasification wastewater treatment system equipped with an adsorption treatment apparatus.
  • the coal gasification wastewater treatment system 4 of FIG. 8 includes an adsorption treatment device 26 as an adsorption treatment means on the rear stage side of the second coagulation sedimentation device 18 in addition to the configuration of FIG.
  • the adsorption processing device 26 includes an adsorbent capable of adsorbing at least one of a fluorine compound and a selenium compound as a filler.
  • the selenium / SS treated water treated by the second coagulation sedimentation is sent to the adsorption treatment device 26, and at least one of the fluorine compound and the selenium compound is adsorbed in the adsorption treatment device 26 (adsorption treatment step).
  • an adsorbent capable of adsorbing at least one of a fluorine compound and a selenium compound there is an adsorbent mainly composed of activated alumina, zirconium hydroxide, zirconium ferrite or the like.
  • adsorbents mainly composed of zirconium ferrite are preferable because they can remove not only fluorine compounds but also selenium compounds with high efficiency.
  • Examples of the adsorbent mainly composed of zirconium ferrite include Allite F (product of Organo Corporation).
  • the pH in the adsorption treatment step is preferably in the range of pH 3 to 5.5. Even if the pH is lower than 3, the adsorption capacities of hexavalent selenium and tetravalent selenium are almost the same, but the amount of the chemical for adjusting the pH is increased.
  • FIG. 9 shows a schematic configuration of another example in the coal gasification wastewater treatment system according to the present embodiment.
  • the coal gasification wastewater treatment system 5 in FIG. 9 includes, in addition to the configuration in FIG. 6, a salt water electrolysis device 20 as salt water electrolysis means, and an adsorption treatment device 26 as adsorption treatment means on the rear stage side of the second coagulation sedimentation device 18. Is provided. Further, between the high-temperature alkaline chlorination apparatus 10 and the first coagulating sedimentation apparatus 12, a cyan removing apparatus 28 as a cyan removing means, and between the first coagulating sedimentation apparatus 12 and the selenium reducing apparatus 14, as a softening means.
  • the nitrification device 22 as the ammoniacal nitrogen treatment means As the ammoniacal nitrogen treatment means, the denitrification device 24 as the nitrate ion treatment means, the second coagulation sedimentation device 18 and the adsorption treatment device 26.
  • a filtration device 32, an activated carbon adsorption device 34 as activated carbon adsorption means, and a neutralization device 36 as neutralization means are provided on the rear side of the adsorption treatment device 26.
  • a cyan removal device 28 that precipitates and removes cyan as a sparingly soluble compound may be installed by, for example, bitumen method (cyan removal step).
  • bitumen method is a method in which iron ions are added to form a sparingly soluble complex with a cyanide, which is precipitated and separated.
  • the amount of iron ion added in the cyan removal step, the processing temperature, etc. may be determined as appropriate based on conventionally known techniques.
  • the amount of carbonate and polymer flocculant added in the softening step, the treatment temperature, and the like may be appropriately determined based on a conventionally known technique.
  • the filtration device 32 polishes the remaining SS components and the like (filtration process).
  • the remaining COD components and the like are polished (activated carbon adsorption process).
  • neutralization is performed with a pH adjuster such as an alkali or an acid (neutralization step).
  • a pH adjuster such as an alkali or an acid
  • the treatment liquid after pH adjustment is discharged or reused.
  • Coal gasification power generation effluent was prepared, and this was used as water to be treated for batch treatment experiments in the order of the following steps to measure the quality of treated water in each step.
  • sludge generated in the coagulation sedimentation process that removes suspended matter and fluorine, and sludge mixed with sludge generated in all processes are dehydrated, and a sludge elution test is performed to confirm the presence or absence of cyanides. did.
  • Example 1 High-temperature alkali chlorine treatment step ⁇ Fluorine treatment (fluorine coagulation precipitation treatment) step ⁇ Selenium treatment (selenium bioreduction treatment ⁇ organic matter treatment step ⁇ selenium coagulation precipitation treatment step) ⁇ Adsorption treatment (fluorine / selenium adsorption) step 2: High-temperature alkali chlorine treatment step ⁇ Fluorine treatment (fluorine coagulation precipitation treatment) step ⁇ Physical reduction treatment (selenium physical reduction coagulation treatment) step ⁇ Adsorption treatment (fluorine / selenium adsorption) step
  • Example 3 High-temperature alkali chlorine treatment step ⁇ Physical Reduction treatment (selenium physical reduction aggregation treatment) step ⁇ Fluorine treatment (fluorine aggregation precipitation treatment) step
  • (B) Fluorine treatment (fluorine coagulation precipitation treatment) step In Examples 1 and 2, 30 L (40 ° C.) of the high-temperature alkaline chlorinated water of (a) above, and in Example 3 selenium-removed agglomeration of (d) described later Add PAC 2000 mg / L to 25 L (40 ° C.) of the precipitation treated water, adjust the pH to 7.0 and react for 10 minutes with rapid stirring, then add 2 mg / L of organic polymer (anionic polyacrylamide). Slow stirring was performed for 5 minutes to form a floc. Subsequently, it left still for 15 minutes, the floc was settled, 81 L of supernatant water was extract
  • Example 1 The remaining water containing floc after removing the supernatant water was further subjected to gravity sedimentation for 24 hours to remove the supernatant water above the interface to obtain a sludge sample for dehydration.
  • This sample was divided into three equal parts and used as samples for the dehydration / sludge elution test of Example 1, Example 2 and Example 3, respectively.
  • (C) Selenium treatment step ((c) -1) Selenium bioreduction treatment
  • 27 L of the fluorine-removed coagulation sedimentation treated water of (b) was allowed to cool to 35 ° C. and conditioned with water of the same water quality in advance.
  • 5 L of the microbial sludge was added, methanol was injected at 40 mg / L, and phosphoric acid was injected at 1 mg-P / L, and the microbial sludge was stirred so as to float in water. After stirring for 6 hours under anaerobic conditions without blowing oxygen or air, microbial sludge was removed from the water by sedimentation to obtain reduced treated water. The water quality of this reduced treated water was analyzed.
  • ((C) -3) Selenium coagulation sedimentation treatment process
  • 60 mg-Fe / L of ferric chloride (FeCl 3 ) is added to adjust the pH to 7.0.
  • 2 mg / L of organic polymer anionic polyacrylamide
  • the floc was allowed to settle for 15 minutes, and 24 L of supernatant water was collected.
  • the water quality of this supernatant was analyzed.
  • the remaining water 3L containing floc after removing the supernatant water was further subjected to gravity sedimentation for 24 hours to remove the supernatant water above the interface to obtain a sludge sample for dehydration.
  • Example 2 Physical reduction treatment (selenium physical reduction flocculation treatment) step
  • 25 L (70 ° C) of the fluorine-removed flocculation sedimentation treated water of (b) above and in Example 3 of the high-temperature alkali chlorine of (a) Ferrous chloride (FeCl 2 ) 300 mg-Fe / L was added to treated water 30 L (70 ° C.), adjusted to pH 9.0, stirred for 10 minutes, and then organic polymer (anionic polyacrylamide) 2 mg / L was added and the mixture was gently stirred for 5 minutes to form a floc. Next, the floc was allowed to settle for 15 minutes, and 20 L of supernatant water was collected.
  • Ferrous chloride FeCl 2
  • organic polymer anionic polyacrylamide
  • Example 1 Adsorption treatment (fluorine / selenium adsorption) step Column ( ⁇ 25 ⁇ packing height 600 mm) 3 packed with an adsorbent mainly composed of zirconium treated with hydrochloric acid (Orlite F manufactured by Organo Corp.) 3 A tower was prepared.
  • Example 1 the coagulated sediment treated water obtained in (c) -3, in Example 2, the selenium-removed coagulated sediment treated water in (d), and in Example 3, the coagulated sediment treated (b) above. Water was adjusted to 25 ° C. and pH 4.0 with hydrochloric acid, and then downward water was circulated to each tower at 12 L / h to obtain adsorption-treated water. The water quality of these adsorption-treated water was analyzed.
  • Analysis items and analysis methods were the following items related to substances contained in treated water and those substances among the wastewater standard items. The analysis was performed based on JIS K0102. Analysis items: Total cyanide (T-CN), Total nitrogen (TN), CODMn, Suspended matter (SS), Total fluorine (TF), Total selenium (T-Se), pH
  • the test apparatus includes a pressure tank 100 (20 L) capable of sending compressed air to the inside as shown in FIG. 10, a filter chamber 102 (70 mm long ⁇ 100 mm wide ⁇ 10 mm thick) composed of a filter frame 110 and a filter cloth 106. And a pipe 104 connecting the bottom of the pressure tank 100 to the filter chamber 102.
  • a filter cloth 106 is sandwiched on one side of the filter chamber 102, and a groove 108 is cut on the outer wall surface of the filter cloth 106, so that the dehydrated filtrate is discharged out of the filter chamber 102. It is.
  • Example 1 Sludge: A mixture of all the sludges of 24-hour gravity sedimentation concentrated sludge generated by the coagulation sedimentation in steps (b) and (c) -3 of Example 1 ((b) (c) mixed sludge)
  • Example 2 sludge a mixture of all of the 24-hour gravity sedimentation sludge generated in the coagulation sedimentation in steps (b) and (d) of Example 2 ((b) (d) mixed sludge)
  • Example 3 Sludge: A mixture of all of the 24-hour gravity sedimentation sludge generated in the coagulation sedimentation of step (d) and step (b) of Example 3 ((d) (b) mixed sludge) Comparative Example 1 Sludge: 24-hour gravity sedimentation sludge generated in Comparative Example 1 ((f) sludge)
  • Example> Quality of treated water in each step (Example 1)
  • T-CN what was 175 mg / L in the simulated waste water was reduced to less than 0.1 mg / L at the time of the high-temperature alkali chlorine treatment.
  • TN it was 1100 mg / L in simulated waste water, and most of this was ammoniacal nitrogen, but it was reduced to 13 mg / L as TN at the time of high-temperature alkali chlorine treatment.
  • CODMn it was 450 mg / L in simulated waste water, most of which was formic acid and cyanides, but it could be reduced to 6 mg / L at the time of high-temperature alkali chlorine treatment.
  • coal gasification power generation wastewater containing any of cyanide, ammonia nitrogen, and COD components can be treated to a level of water quality that does not cause any problems with wastewater standards with a system equipped with high-temperature alkaline chlorination. It was done.
  • TF As for TF, it was 100 mg / L for the simulated waste water, and it could be reduced to 7.8 mg / L with the fluorine coagulation precipitation treated water. Although it is a level which satisfies the wastewater standard at this time, it was further reduced to less than 4 mg / L with the adsorption treated water. From this, it was confirmed that coal gasification wastewater further containing fluorine can be treated to a level of water quality that does not have any problem with respect to wastewater standards by a system that sequentially includes high-temperature alkali chlorine treatment and fluorine coagulation sedimentation treatment. It was also confirmed that fluorine can be further reduced by using an adsorption process.
  • T-Se was 1.0 mg / L equivalent to the simulated waste water at the time of the selenium bioreduction treatment water, but was reduced to 0.08 mg / L in the selenium coagulation precipitation treatment process using ferric chloride.
  • hexavalent selenium was reduced to tetravalent selenium or simple selenium, so it was considered that tetravalent selenium and simple selenium that were easily aggregated into ferric chloride were effectively removed in the selenium coagulation precipitation treatment. It is done.
  • T-Se was further reduced and the value surely satisfied the wastewater standard value of 0.1 mg / L.
  • selenium can also be treated with a system equipped with selenium bioreduction treatment at a later stage of high-temperature alkali chlorination treatment and fluorine treatment for coal gasification power generation wastewater containing selenium. Furthermore, it was also confirmed that by adopting a system equipped with an adsorption process in the subsequent stage, selenium can be treated to a level of water quality that does not have any problem with respect to the drainage standard.
  • Example 2 The processes up to the high-temperature alkali chlorine treatment step and the fluorine coagulation precipitation treatment step are the same as those in Example 1.
  • T-Se is reduced from 1.1 mg / L to 0.09 mg / L of fluorine coagulation precipitation treated water in the selenium physical reduction coagulation treatment process using ferrous chloride for fluorine coagulation precipitation treatment water. It had been.
  • T-Se was further reduced, and the value was surely below the drainage standard value of 0.1 mg / L.
  • fluorine could be reduced to less than 4 mg / L.
  • coal gasification wastewater containing fluorine and selenium can also be treated by a system that sequentially includes a high-temperature alkali chlorine treatment + fluorine coagulation precipitation treatment + selenium physical reduction coagulation treatment. Furthermore, it was confirmed that by adopting a system equipped with an adsorption treatment in the latter stage, selenium and fluorine can be treated to a level of water quality that does not cause any problems with respect to the drainage standard.
  • Example 3 The process up to the high-temperature alkali chlorine treatment step is the same as that in Example 1.
  • T-Se is reduced from 1.2 mg / L of high-temperature alkaline chlorinated water to 0.08 mg / L in the selenium physical reduction aggregation process using ferrous chloride for high-temperature alkaline chlorinated water. It had been. Further, in the adsorption treated water obtained by passing the treated water through the adsorbent column after the fluorine coagulation sedimentation treatment, T-Se is further reduced, and is surely below the drainage standard value of 0.1 mg / L. It was.
  • TF was reduced from 120 mg / L to 7.5 mg / L of selenium physical reduction coagulation treated water. Further, in the adsorption treated water obtained by passing the treated water through the adsorbent column, TF was reduced to less than 4 mg / L, and was surely below the drainage standard value of 8 mg / L. .
  • coal gasification power generation wastewater containing fluorine and selenium can also be treated by a system that sequentially includes high-temperature alkali chlorine treatment + selenium physical reduction aggregation treatment + fluorine aggregation precipitation treatment. Furthermore, it was confirmed that this system can also treat selenium and fluorine to a water quality of a level that does not have any problem with respect to the drainage standard by providing an adsorption treatment in the subsequent stage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を効率よく除去し、良好な処理水質を得るとともに、発生する汚泥の有害物質含有量が少なく廃棄物処分が容易な石炭ガス化排水の処理システムを提供する。酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくともシアン化合物、アンモニア性窒素およびCOD成分を分解する高温アルカリ塩素処理装置10と、凝集沈澱処理および吸着処理のうち少なくとも1つの処理により少なくともフッ素化合物を除去するフッ素処理装置50と、セレン化合物の還元後に還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理によりセレン化合物を除去するセレン処理装置52を有し、高温アルカリ塩素処理装置10の後段に、フッ素処理装置50およびセレン処理装置52を備える石炭ガス化排水の処理システムである。

Description

石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法
 本発明は、シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む、主に石炭火力発電設備から排出される石炭ガス化排水の処理システムならびに処理方法に関する。
 石炭をガス化して生成する水素、炭化水素、一酸化炭素等を含むガスを利用して、ガスタービン等による発電を行うことが検討されている。例えば、従来型の火力発電に比べて効率の高いこのガスタービン発電と蒸気タービン発電とを併用する石炭ガス化複合発電や、さらに燃料電池発電を組み入れた石炭ガス化燃料電池複合発電等の石炭火力発電が知られている。
 石炭ガス化複合発電設備等において発生するガス洗浄排水、すなわち、石炭ガス化排水には、シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分等が含まれるため、これらを除去して、放流可能な水質または再利用可能な水質まで処理する必要がある。石炭ガス化排水の処理として、含まれる各成分に対応する処理方法を組み合わせて排水処理システムを構築することが検討されている。
 例えば、特許文献1には、下記(1)~(4)の工程を含み、工程(1)を工程(2)よりも先に行う石炭ガス化排水の処理方法が記載されている。
(1)凝集沈殿によりフッ素を除去するフッ素除去工程
(2)湿式酸化または熱加水分解によりシアンを分解するシアン分解工程
(3)金属還元体によりセレン酸イオンを還元処理するセレン処理工程
(4)CODおよび/またはアンモニアを除去するCOD/アンモニア除去工程
 特許文献2には、化石燃料を部分酸化して得られるガスを湿式洗浄した際に排出される排水の処理方法であって、排水を酸性側に調整して曝気することによって排水に含まれる遊離シアンを除去する遊離シアン除去工程と、遊離シアン除去工程で処理された排水を生物処理する生物処理工程と、生物処理工程で処理された排水に含まれるCOD成分を分解する分解処理工程とからなる排水の処理方法が記載されている。
 シアン処理については、例えば特許文献1の方法では、シアン処理の前段にフッ素除去工程として凝集沈殿を採用している。この工程においてフッ素化合物を含む汚泥が発生するが、汚泥にはシアン化合物も含まれてしまうため、汚泥の処分において特別管理産業廃棄物としての対応が必要になる。
 また、シアン/COD処理については、特許文献1の方法のように湿式酸化または熱加水分解を行う場合、高温高圧処理となることから装置を耐熱耐圧仕様としなければならず、設備初期費用および維持費用、すなわち設備コストの増大が懸念される。また、熱加水分解では分解生成物としてギ酸(COD)とアンモニアまでしか分解できないことから、別途COD/アンモニア除去工程を設ける必要がある。したがって、装置構成が複雑となり設備コスト上昇の要因となりうる。
 一方、特許文献2の方法に記載の曝気による遊離シアン除去については、石炭ガス化排水のように排水中のSS成分が多い場合は、ストリッピング塔の充填剤の目詰まりによる性能低下が懸念される。さらに、シアンガスの回収・分解設備が別途必要となる。
 セレン処理については、特許文献1の方法では、金属還元体による還元処理を行っているが、セレン酸の化学的な還元では、高価な金属系還元剤を使用するため、よりランニングコストの低い処理方法が求められている。
 このように、石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を、適切に処理可能な排水処理技術が求められている。
特開2010-221151号公報 特開2012-076058号公報
 本発明の目的は、石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を効率よく除去し、良好な水質の処理水を得るとともに、発生する汚泥の有害物質含有量が少なく廃棄物処分が容易な石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法を提供することにある。
 本発明は、シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む石炭ガス化排水を処理するための石炭ガス化排水の処理システムであって、(1)酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくとも前記シアン化合物、アンモニア性窒素およびCOD成分を分解するシアン/アンモニア/COD処理手段と、(2)凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくとも前記フッ素化合物を除去するフッ素処理手段と、(3)前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理により前記セレン化合物を除去するセレン処理手段と、を有し、前記シアン/アンモニア/COD処理手段の後段に、前記フッ素処理手段および前記セレン処理手段を備える石炭ガス化排水の処理システムである。
 また、前記石炭ガス化排水の処理システムにおいて、前記フッ素処理手段が、凝集沈殿処理により前記フッ素化合物を除去するものであることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記セレン処理手段が、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものであることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記金属および金属塩が、鉄または鉄塩であることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記鉄塩が、2価の鉄塩であることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記セレン処理手段が、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものである場合、前記セレン処理手段の後段に前記フッ素処理手段を備えることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記セレン処理手段が、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものであることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記セレン処理手段が、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものである場合、前記フッ素処理手段の後段に前記セレン処理手段を備えることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記フッ素処理手段および前記セレン処理手段の後段側に、フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤による吸着処理手段を備えることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記石炭ガス化排水中のフッ素化合物の濃度が30ppm以下の場合に、吸着処理によりフッ素化合物を除去するフッ素処理手段が用いられ、前記石炭ガス化排水中のセレン化合物の濃度が3ppm以下の場合に、吸着処理によりセレン化合物を除去するセレン処理手段が用いられることが好ましい。
 また、前記石炭ガス化排水の処理システムにおいて、前記酸化剤として次亜塩素酸ソーダを供給する塩水電解手段を備えることが好ましい。
 また、本発明は、シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む石炭ガス化排水を処理する石炭ガス化排水の処理方法であって、(1)酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくとも前記シアン化合物、アンモニア性窒素およびCOD成分を分解するシアン/アンモニア/COD処理工程と、(2)凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくとも前記フッ素化合物を除去するフッ素処理工程と、(3)前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理により前記セレン化合物を除去するセレン処理工程と、を含み、前記シアン/アンモニア/COD処理工程の後段で、前記フッ素処理工程および前記セレン処理工程が行われる石炭ガス化排水の処理方法である。
 また、前記石炭ガス化排水の処理方法において、前記フッ素処理工程において、凝集沈殿処理により前記フッ素化合物を除去することが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記セレン処理工程において、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去することが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記金属および金属塩が、鉄または鉄塩であることが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記鉄塩が、2価の鉄塩であることが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記セレン処理工程において、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去する場合、前記セレン処理工程の後段で、前記フッ素処理工程が行われることが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記セレン処理工程において、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去することが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記セレン処理工程において、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去する場合、前記フッ素処理工程の後段で、前記セレン処理工程が行われることが好ましい。
 また、前記石炭ガス化排水の処理方法において、フッ素処理工程および前記前記セレン処理工程の後段側に、フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤による吸着処理工程を含むことが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記石炭ガス化排水中のフッ素化合物の濃度が30ppm以下の場合に、吸着処理によりフッ素化合物を除去するフッ素処理工程を行い、前記石炭ガス化排水中のセレン化合物の濃度が3ppm以下の場合に、吸着処理によりセレン化合物を除去するセレン処理工程を行うことが好ましい。
 また、前記石炭ガス化排水の処理方法において、前記シアン/アンモニア/COD処理工程において、前記酸化剤として塩水電解により生成させた次亜塩素酸ソーダを供給することが好ましい。
 本発明では、高温アルカリ塩素処理によるシアン/アンモニア/COD処理と、凝集沈殿処理および吸着処理のうち少なくとも1つの処理によるフッ素処理と、セレン化合物の還元除去処理および吸着処理のうち少なくとも1つの処理によるセレン処理とを組み合わせ、シアン/アンモニア/COD処理の後段で、フッ素処理およびセレン処理を行うことにより、石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を効率よく除去し、良好な水質の処理水を得ることができる。また、発生する汚泥の有害物質含有量が少ないため、特別管理廃棄物等として処分しなくてもよく、廃棄物処分が容易となる。
本発明の実施形態に係る石炭ガス化排水処理システムの一例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る石炭ガス化排水処理システムの他の例を示す概略構成図である。 実施例で用いたフィルタプレス型脱水試験装置の概略構成を示す図である。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 設備コストを抑えながらも十分な性能を有する石炭ガス化排水処理システムを得るために本発明者らが鋭意検討したところ、高温アルカリ塩素処理によるシアン/アンモニア/COD処理と、凝集沈殿処理および吸着処理のうち少なくとも1つの処理によるフッ素処理と、セレン化合物の還元除去処理および吸着処理のうち少なくとも1つの処理によるセレン処理とを組み合わせ、シアン/アンモニア/COD処理の後段で、フッ素処理およびセレン処理を行う石炭ガス化排水処理システムを開発した。
 本発明の実施形態に係る石炭ガス化排水の処理システムの一例の概略を図1に示し、その構成について説明する。石炭ガス化排水処理システム6は、シアン/アンモニア/COD処理手段としての高温アルカリ塩素処理装置10と、フッ素処理手段としてのフッ素処理装置50と、セレン処理手段としてのセレン処理装置52と、を備え、高温アルカリ塩素処理装置10の後段に、フッ素処理装置50およびセレン処理装置52を備える。
 図1の石炭ガス化排水処理システム6において、高温アルカリ塩素処理装置10の入口に原水配管が接続され、高温アルカリ塩素処理装置10の出口とフッ素処理装置50の入口、フッ素処理装置50の出口とセレン処理装置52の入口とは、それぞれ配管等により接続され、セレン処理装置52の出口には処理水配管が接続されている。
 本実施形態に係る石炭ガス化排水の処理方法および石炭ガス化排水処理システム6の動作について説明する。
 原水である石炭ガス化排水は、高温アルカリ塩素処理装置10に送液され、高温アルカリ塩素処理装置10において、酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくともシアン化合物、アンモニア性窒素およびCOD成分が分解される(シアン/アンモニア/COD処理工程)。シアン/アンモニア/COD処理されたシアン/アンモニア/COD処理水は、フッ素処理装置50に送液され、フッ素処理装置50において、凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくともフッ素化合物が除去される(フッ素処理工程)。フッ素処理されたフッ素処理水は、セレン処理装置52に送液され、セレン処理装置52において、セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理によりセレン化合物が除去され(セレン処理工程)、処理水が得られる。処理水は、必要に応じてろ過、活性炭吸着、中和等によりさらに処理された後、放流または再利用される。
 本実施形態に係る石炭ガス化排水の処理システムの他の例の概略を図2に示す。図2の石炭ガス化排水処理システム7において、高温アルカリ塩素処理装置10の入口に原水配管が接続され、高温アルカリ塩素処理装置10の出口とセレン処理装置52の入口、セレン処理装置52の出口とフッ素処理装置50の入口とは、それぞれ配管等により接続され、フッ素処理装置50の出口には処理水配管が接続されている。
 原水である石炭ガス化排水は、高温アルカリ塩素処理装置10に送液され、高温アルカリ塩素処理装置10において、シアン/アンモニア/COD処理が行われる(シアン/アンモニア/COD処理工程)。シアン/アンモニア/COD処理されたシアン/アンモニア/COD処理水は、セレン処理装置52に送液され、セレン処理装置52において、セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理によりセレン化合物が除去される(セレン処理工程)。セレン処理されたセレン処理水は、フッ素処理装置50に送液され、フッ素処理装置50において、凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくともフッ素化合物が除去され(フッ素処理工程)、処理水が得られる。処理水は、必要に応じてろ過、活性炭吸着、中和等によりさらに処理された後、放流または再利用される。
 本実施形態に係る石炭ガス化排水の処理方法および石炭ガス化排水処理システム6,7により、石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を効率よく除去し、放流可能な、または再利用可能な良好な水質の処理水を得ることができる。
 本実施形態において処理対象となる石炭ガス化排水は、ガスタービン発電と蒸気タービン発電とを併用する石炭ガス化複合発電、さらに燃料電池発電を組み入れた石炭ガス化燃料電池複合発電等の、石炭をガス化して生成する水素、炭化水素、一酸化炭素等を含むガスを利用して発電を行う石炭火力発電設備等で発生するガス洗浄排水を含む排水である。
 処理対象となる石炭ガス化排水に含まれるシアン化合物は、例えば、シアンイオン、シアン化水素、シアンの金属錯体等である。フッ素化合物は、例えば、フッ素イオン、フッ化カルシウム等である。セレン化合物は、例えば、セレン酸(SeO 2-)等の6価セレン、亜セレン酸(SeO 2-)等の4価セレン、セレン単体等である。アンモニア性窒素は、例えば、アンモニウムイオン等である。COD成分とは、有機物、無機物を問わずCODMnあるいはCODCrとして測定される被酸化性物質を示す。石炭ガス化排水に含まれるCOD成分としては、例えば、ギ酸等の低分子有機酸が挙げられるが、これに限定されるものではない。
<シアン/アンモニア/COD処理工程(高温アルカリ塩素処理)>
 本実施形態に係る石炭ガス化排水の処理方法および石炭ガス化排水処理システムの特徴は、石炭ガス化排水中のシアン化合物の処理に高温アルカリ塩素処理を用いることである。
 ここでいう「高温アルカリ塩素処理」は、シアン含有排液にアルカリ剤を添加してpH値を例えば8~13.5、好ましくは9~13.5の範囲に調整すると共に、酸化剤を添加して例えば70~95℃の範囲の液温で反応させるシアン含有排液の分解処理法である。例えば、石炭ガス化排水を、室温から70℃~沸点の範囲内に昇温し、かつその範囲内で温度を維持し、室温から石炭ガス化排水の酸化還元電位を測定し、石炭ガス化排水の酸化還元電位が酸化剤の酸化還元電位に達するまで、酸化剤を室温から70℃以上まで連続的または断続的に添加すればよい。
 高温アルカリ塩素処理には、以下の利点がある。
・加温が100℃以下でよく、150℃以上の加温が必要な湿式酸化または熱加水分解に比べて使用エネルギー量が小さい。
・シアン化合物の分解反応は常圧下で進むため、反応容器の構造が、高圧が必要な湿式酸化または熱加水分解に比べて簡素となる。
・シアン化合物の形態によらず実質的に完全分解処理が可能である。シアン排水処理技術としてよく知られる、(加温操作のない)アルカリ塩素法では通常分解できないとされる錯体状のシアン化合物も高温アルカリ塩素処理では分解処理が可能である。
・シアン化合物がほぼ完全に分解され、後段処理で発生する汚泥にはシアン化合物がほとんど含まれることがないため、汚泥の処分が容易である(特別管理廃棄物として処分しなくてもよい)。
・シアンガスを発生しないアルカリ性領域での反応であり、安全性が高い。
 高温アルカリ塩素処理によればシアン化合物だけでなく石炭ガス化排水中のアンモニア性窒素やCOD成分もともに分解除去できる。このため、アンモニア除去設備、COD除去設備を設けなくてもよいことから、設備の簡素化による設備のコンパクト化、設備コストの低減等が期待できる。なお、石炭ガス化排水中に、アンモニア性窒素、COD成分が含まれない場合であっても、シアン/アンモニア/COD処理、すなわち高温アルカリ塩素処理を適用することができる。
 高温アルカリ塩素処理による処理は、連続処理であっても、バッチ処理であってもよい。
 酸化剤添加前のpHとしては、8~13.5の範囲であることが好ましく、pH9~13.5の範囲がより好ましい。酸化剤添加前のpHが8未満であると、シアンガスが気散する可能性があり、13.5を超えると、酸化還元電位の変化が乏しく、薬注制御が困難となる場合がある。
 反応温度は、シアンイオンおよびCODの分解であれば70℃以上であればよく、被処理水が錯体状シアンを含む場合は80℃以上が好ましい。また、反応は石炭ガス化排水が沸騰しない温度とし、95℃以下が好ましい。
 高温アルカリ塩素処理で用いることができる酸化剤としては、例えば、次亜塩素酸ソーダ、過酸化水素、過マンガン酸カリウム等が挙げられ、取り扱いのし易さや安価なコストで入手できる等の点から、次亜塩素酸ソーダが好ましい。
 酸化剤の添加量は、石炭ガス化排水に含まれるシアン類、アンモニア性窒素およびCODとの反応に必要な理論量の1.01倍以上であることが好ましく、酸化剤使用量抑制等の観点から1.5倍以下が好ましい。
 アルカリ剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられる。
 本実施形態に係る石炭ガス化排水の処理方法では、シアン化合物、アンモニア性窒素およびCOD成分を高温アルカリ塩素処理で処理することから、これらの排水中の濃度が高い石炭ガス化排水への適用には多量の酸化剤が必要になると想定される。そこで多量の酸化剤を輸送することを回避するため、酸化剤として次亜塩素酸ソーダを用いる場合には、必要な次亜塩素酸ソーダをオンサイトで供給する塩水電解装置を石炭ガス化排水処理システムに組み込み供給することが好ましい。
 図3に塩水電解装置を備えた石炭ガス化排水処理システムの概略構成を示す。石炭ガス化排水処理システム8は、図1の構成に加えて、塩水電解手段として塩水電解装置20を備える。塩水電解装置20は、食塩水から電気分解で塩素と苛性ソーダを発生させ、次亜塩素酸ソーダを合成する装置である。この塩水電解装置20により生成させた次亜塩素酸ソーダを高温アルカリ塩素処理の酸化剤として高温アルカリ塩素処理装置10に供給する。
 高温アルカリ塩素処理装置10では、熱交換器、ヒートポンプシステム等の採用によりエネルギーコストの低減を図ってもよい。
<フッ素処理工程>
 フッ素処理工程では、凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくともフッ素化合物を除去する。被処理水にSS成分および重金属等が含まれる場合は、このフッ素処理工程で除去することができる。凝集沈殿処理(フッ素凝集沈殿処理)では、例えば、反応槽において被処理水にカルシウム剤を添加して難溶性のフッ化カルシウムを生成させ(カルシウム剤添加工程)、これを凝集槽において凝集剤および高分子凝集剤により凝集沈殿させ(凝集剤添加工程)、沈殿槽において分離、除去する(沈殿工程)。
 フッ素凝集沈殿処理の段数に特に制限はなく、フッ素除去能を高めるため二段凝集沈殿を採用してもよい。また、凝集沈殿汚泥の一部を引き抜き、汚泥再生槽にてアルカリ剤で汚泥を再溶解させてこれを反応槽または凝集槽に返送することにより凝集剤として再利用することで、フッ素除去能力を高め、薬品使用量および汚泥発生量の低減を図ってもよい。
 フッ素凝集沈殿処理において、カルシウム剤を添加する場合は、カルシウム剤添加工程のpHは7~11の範囲が好ましい。後段の凝集剤添加工程および沈殿工程でのpHは、pH6~8の範囲の中性域が好ましい。
 カルシウム剤としては、塩化カルシウム、消石灰等のカルシウム塩等が挙げられる。
 凝集剤としては、ポリ塩化アルミニウム等のアルミニウム系凝集剤、塩化第二鉄等の鉄系凝集剤等が挙げられ、フッ素除去能力等の点からアルミニウム系凝集剤が好ましい。
 高分子凝集剤としては、アニオン系ポリアクリルアミド等が挙げられる。
 pH調整に用いるpH調整剤としては、塩酸等の酸、または水酸化ナトリウム、水酸化カリウム等のアルカリが挙げられる。
 カルシウム剤、凝集剤および高分子凝集剤の添加量や、処理温度等は、従来公知の技術に基づき適宜決めればよい。
 被処理水中のフッ素化合物の濃度が低い場合には、凝集沈殿処理の代わりに、吸着処理(フッ素吸着処理)によりフッ素化合物を除去してもよい。
 フッ素吸着処理を行ってもよい被処理水中のフッ素化合物の濃度は、例えば、50ppm以下、好ましくは30ppm以下である。
 フッ素吸着処理における吸着処理手段としては、例えば、陰イオン交換樹脂や、活性アルミナ、水酸化ジルコニウム、ジルコニウムフェライト等のいずれかを主体とする吸着剤等を用いた処理が挙げられる。飽和吸着に達した場合は吸着剤等の交換、あるいは再生処理を行ってもよい。
 被処理水中のSS成分の濃度が高い場合(例えば、10mg/L以上の場合)は、吸着処理の前段で凝集沈殿処理、ろ過処理等によりSS成分を除去してもよい。例えば、SS成分の濃度が高く、フッ素化合物の濃度が低い場合は、高温アルカリ塩素処理→セレン処理(還元+凝集沈殿処理)→フッ素吸着処理の順序とすればよい。
<セレン処理工程>
 セレン処理工程では、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理によりセレン化合物を除去する。還元除去処理では、例えば、被処理水中の6価セレンまたは4価セレンを金属および金属塩のうち少なくとも1つを用いて還元処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する(物理還元)。被処理水中の6価セレンまたは4価セレンを還元した後、凝集処理等により、還元したセレン化合物を除去する。なお、還元したセレン化合物には、セレン単体も含まれる。
 または、被処理水中の6価セレンまたは4価セレンを通性嫌気性下で生物処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する(生物還元)。被処理水中の6価セレンまたは4価セレンを還元した後、凝集処理等により、還元したセレン化合物を除去する。生物還元によるセレン処理では高価な金属系還元剤を用いなくてもよく、また反応は中性付近で行われるため薬剤費の低減も期待できる。
(物理還元)
 例えば、図1に示すように、フッ素処理装置50においてフッ素処理を行ったフッ素処理水を、セレン処理装置52において、被処理水中の6価セレンまたは4価セレンを金属および金属塩のうち少なくとも1つを用いて還元処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する。その後、不溶化したセレンを凝集沈殿、ろ過処理等により除去する(セレン物理還元凝集処理)。被処理水のSS成分が多い場合は、前段のフッ素処理工程でSS成分を同時に除去することで、後段のセレン処理でのSS成分による反応阻害を回避できるため、この順序での処理に利点がある。
 または、例えば、図2に示すように、セレン処理装置52において、被処理水中の6価セレンまたは4価セレンを金属および金属塩のうち少なくとも1つを用いて還元処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する。不溶化したセレンを凝集沈殿、ろ過処理等により除去した(セレン物理還元凝集処理)後、フッ素処理装置50においてフッ素処理を行う。
 高温アルカリ塩素処理で使用した酸化剤の余剰分は、通常還元剤を投入して還元することが望ましいが、セレン処理に使用する還元作用を有する金属または金属塩により、高温アルカリ塩素処理で使用した余剰の酸化剤の還元も同時に行うことができることから効率が良い。また、セレン処理工程での凝集沈殿操作により、被処理水中のフッ素化合物が一部除去されることから、後段にフッ素処理工程を行う場合は、薬品使用量が削減できる。
 物理還元で用いられる金属としては、例えば、鉄等の金属還元体等が挙げられる。金属塩としては、還元機能を有する凝集剤、例えば塩化第一鉄、硫酸第一鉄等の2価の鉄塩(第一鉄塩)等の鉄塩等が挙げられる。
 金属または金属塩によるセレンの物理還元は、40℃以上の高温で行うことが好ましく、凝集によるフッ素処理は40℃以下の常温が好ましい。前段の高温アルカリ塩素処理で排水は通常70~95℃に加熱されていることから、セレンの物理還元処理→フッ素の凝集処理の順に処理することで、前段で加温に供した熱エネルギーを有効に利用することができる。
(生物還元)
 例えば、図1に示すように、フッ素処理装置50においてフッ素処理を行ったフッ素処理水を、セレン処理装置52において、被処理水中の6価セレンまたは4価セレンを生物を用いて還元処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する。その後、不溶化したセレンを凝集沈殿処理等により除去する。フッ素処理を先に行うことで、フッ素とともに後段の生物還元反応の阻害要因となるSS成分を除去することができるため、この順序での処理に利点がある。
 また、フッ素の凝集沈殿処理およびセレンの生物還元処理はpH中性付近で行うことが好ましいが、高温アルカリ塩素処理はpHアルカリ付近で行うため、高温アルカリ塩素処理後にpHの調整を行うことが望ましい。ここで、フッ素の凝集沈殿工程→セレン生物還元処理工程の順に行うことで、セレン処理工程入口ではpH中性付近とできることから、生物による還元処理が安定的に可能となる。
 または、例えば、図2に示すように、セレン処理装置52において、被処理水中の6価セレンまたは4価セレンを生物を用いて還元処理を行い、6価セレンを4価セレンに、4価セレンを単体セレンに還元して不溶化する。不溶化したセレンを凝集沈殿処理等により除去した後、フッ素処理装置50においてフッ素処理を行う。
 フッ素処理を行った後、生物を用いてセレン化合物の還元処理、除去を行う場合に用いられる石炭ガス化排水の処理システムの一例の概略を図6に示す。石炭ガス化排水処理システム1は、シアン/アンモニア/COD処理手段としての高温アルカリ塩素処理装置10と、フッ素処理手段としての第1凝集沈殿装置12と、セレン処理手段としてのセレン還元装置14と、有機物処理手段としての有機物処理装置16と、セレン/SS処理手段としての第2凝集沈殿装置18とをこの順序で備える。
 図6の石炭ガス化排水処理システム1において、高温アルカリ塩素処理装置10の入口に原水配管が接続され、高温アルカリ塩素処理装置10の出口と第1凝集沈殿装置12の入口、第1凝集沈殿装置12の出口とセレン還元装置14の入口、セレン還元装置14の出口と有機物処理装置16の入口、有機物処理装置16の出口と第2凝集沈殿装置18の入口とは、それぞれ配管等により接続され、第2凝集沈殿装置18の出口には処理水配管が接続されている。
 原水である石炭ガス化排水は、高温アルカリ塩素処理装置10に送液され、高温アルカリ塩素処理装置10において、酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくともシアン化合物、アンモニア性窒素およびCOD成分が分解される(シアン/アンモニア/COD処理工程)。シアン/アンモニア/COD処理されたシアン/アンモニア/COD処理水は、第1凝集沈殿装置12に送液され、第1凝集沈殿装置12において、凝集沈殿により少なくともフッ素化合物が除去される(フッ素処理工程)。フッ素処理されたフッ素処理水は、セレン還元装置14に送液され、セレン還元装置14において、メタノール等の水素供与剤が供給され、セレン還元菌の作用により少なくともセレン化合物が還元される(セレン処理工程)。セレン処理されたセレン処理水は、有機物処理装置16に送液され、有機物処理装置16において、曝気等が行われ、好気性下での生物による分解処理により少なくとも余剰の水素供与剤を含む有機物が分解される(有機物処理工程)。有機物処理された有機物処理水は、第2凝集沈殿装置18に送液され、第2凝集沈殿装置18において、凝集沈殿により少なくとも還元処理により還元されたセレン化合物およびSS成分が除去され(セレン/SS処理工程)、処理水が得られる。処理水は、必要に応じてろ過、活性炭吸着、中和等によりさらに処理された後、放流または再利用される。
[生物によるセレン還元処理]
 例えば、フッ素処理水等の被処理水をセレン還元装置14に送液する。ここでは嫌気条件にて生育するセレン還元菌の作用により6価セレンを4価セレンに、4価セレンを単体セレンに還元させる(生物還元処理工程)。セレン還元菌の栄養源としてセレン還元装置14には水素供与剤を供給する。フッ素処理水の硝酸イオン濃度が高く、嫌気下でのセレン還元が不十分となる場合は、生物還元処理工程の前段に別途嫌気下での生物処理(生物脱窒処理工程)を設けてもよい。
 必要に応じてセレン還元装置14の前段で、硝化菌の作用によりフッ素処理水に含まれるアンモニア性窒素(シアン/アンモニア/COD処理工程で除去できなかった余剰分を含む)を硝酸イオンに酸化した(生物硝化処理工程)後、還元処理を行ってもよい。フッ素処理水中にアンモニア性窒素をほとんど含まない場合には、生物硝化処理工程を省略してもよい。
 図7に生物硝化処理工程と生物脱窒処理工程とを備えた石炭ガス化排水処理システムの概略構成を示す。石炭ガス化排水処理システム3は、図6の構成に加えて、アンモニア性窒素処理手段として硝化装置22を備え、硝酸イオンの処理手段として脱窒装置24を備える。
 生物硝化処理工程において、硝化菌の栄養源として窒素化合物やリン化合物等の栄養剤を添加してもよい。
 生物硝化処理工程、生物脱窒処理工程および生物還元処理工程におけるpHは、pH7~8の範囲の中性域が好ましい。
 セレン還元装置14に投入する水素供与剤としては、メタノール、エタノール等のアルコール類等が挙げられる。
 pH調整に用いるpH調整剤としては、塩酸等の酸、または水酸化ナトリウム、水酸化カリウム等のアルカリが挙げられる。
 栄養剤および水素供与剤の添加量や、処理温度等は、従来公知の技術に基づき適宜決めればよい。
[有機物処理工程]
 有機物処理工程では、酸素を供給し好気性菌により少なくとも有機物を分解する。酸素の供給方法としては、例えば、空気等を供給する曝気等が挙げられ、セレン処理水中の余剰の水素供与剤(メタノール等)等の有機物が好気的に分解され、有機物が除去される。
 有機物処理工程におけるpHは、pH7~8の範囲の中性域が好ましい。
 処理温度等は、従来公知の技術に基づき適宜決めればよい。
[セレン/SS処理工程(セレン凝集沈殿処理)]
 セレン/SS処理工程では、凝集沈殿処理(セレン凝集沈殿処理)により、不溶性セレンおよびセレン処理工程の生物処理から持ち込まれたSS成分等を沈殿処理する。例えば、凝集槽において有機物処理水に凝集剤および高分子凝集剤を添加して凝集沈殿させ(凝集剤添加工程)、沈殿槽において分離、除去する(沈殿工程)。
 セレン凝集沈殿処理におけるpHは、pH5~9の範囲が好ましい。
 凝集剤としては、4価セレンや単体セレン等を凝集する能力の高い、塩化第二鉄等の鉄系凝集剤が好ましい。
 高分子凝集剤としては、アニオン系ポリアクリルアミド等が挙げられる。
 pH調整に用いるpH調整剤としては、塩酸等の酸、または水酸化ナトリウム、水酸化カリウム等のアルカリが挙げられる。
 凝集剤および高分子凝集剤の添加量や、処理温度等は、従来公知の技術に基づき適宜決めればよい。
 被処理水中のセレン化合物の濃度が低い場合には、凝集沈殿処理の代わりに、吸着処理(セレン吸着処理)によりセレン化合物を除去してもよい。
 セレン吸着処理を行ってもよい被処理水中のセレン化合物の濃度は、例えば、5ppm以下、好ましくは3ppm以下である。
 セレン吸着処理における吸着処理手段としては、例えば、陰イオン交換樹脂や、活性アルミナ、水酸化ジルコニウム、ジルコニウムフェライト等のいずれかを主体とする吸着剤等を用いた処理が挙げられる。飽和吸着に達した場合は吸着剤等の交換、あるいは再生処理を行ってもよい。
<処理操作の順序について>
 高温アルカリ塩素処理によるシアン/アンモニア/COD処理工程を石炭ガス化排水処理システムの前段に設けるのは、第1に後段処理とすることでシアン化合物を含む汚泥が発生することを抑制するためである。例えば特許文献1の方法では、シアン処理の前段にフッ素除去工程として凝集沈殿を採用している。この工程でフッ素化合物を含む汚泥が発生するが、汚泥にはシアン化合物も含まれてしまうため、汚泥の処分において特別管理産業廃棄物としての対応が必要になる。
 一方、本実施形態に係る石炭ガス化排水処理システムでは、シアン化合物をほぼ完全に分解可能な高温アルカリ塩素処理を最初に行うことで、以降のシステム内にシアン化合物が含まれることはほとんどなく、pH変化によるシアンガスの発生や汚泥へのシアン化合物の含有はほとんどないことから、装置運用面、安全面およびコスト面等に優れている。
 第2に高温アルカリ塩素処理では石炭ガス化排水がSS成分を含む場合でも、SS成分による装置のシアン化合物等の除去性能への制約はほとんどないことが挙げられる。特許文献2の方法では初めにアンモニア処理、次いでシアンの曝気処理を行っているが、石炭ガス化排水のSS成分によるストリッピング塔の充填剤の目詰まりに起因した処理性能低下が懸念される。高温アルカリ塩素処理ではシアン化合物およびアンモニア性窒素の処理がSS成分の有無にかかわらず可能であり、排水の適用範囲が広いといえる。
 よって初めに高温アルカリ塩素処理でシアン化合物、アンモニア性窒素およびCOD成分を除去し、次いでフッ素処理、セレン処理を行うことで、効果的な石炭ガス化排水処理が可能となる。
<吸着処理工程>
 本実施形態において、処理水のセレンおよびフッ素のうち少なくとも1つの濃度をさらに低減する必要がある場合において、セレン処理に上記生物処理と吸着剤によるポリッシングの組み合わせ処理を採用してもよい。
 図4の石炭ガス化排水処理システム9は、図1の構成に加えて、セレン処理装置52の後段側に吸着処理手段としての吸着処理装置26を備える。図5の石炭ガス化排水処理システム11は、図2の構成に加えて、フッ素処理装置50の後段側に吸着処理手段としての吸着処理装置26を備える。
 図8に吸着処理装置を備えた石炭ガス化排水処理システムの概略構成を示す。図8の石炭ガス化排水処理システム4は、図6の構成に加えて、第2凝集沈殿装置18の後段側に、吸着処理手段としての吸着処理装置26を備える。吸着処理装置26は、フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤を充填剤として含む。
 第2凝集沈殿により処理されたセレン/SS処理水は、吸着処理装置26に送液され、吸着処理装置26において、フッ素化合物およびセレン化合物のうち少なくとも1つが吸着される(吸着処理工程)。
 フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤として、活性アルミナ、水酸化ジルコニウム、ジルコニウムフェライト等のいずれかを主体とする吸着剤がある。これらのうちジルコニウムフェライトを主体とする吸着剤は、高効率でフッ素化合物だけではなくセレン化合物を除去することができるため好ましい。ジルコニウムフェライトを主体とする吸着剤としては、例えば、オルライトF(オルガノ株式会社商品)等が挙げられる。
 吸着処理工程におけるpHは、pH3~5.5の範囲が好ましい。pHが3より低くても6価セレンおよび4価セレンの吸着能力はほとんど変わらず高いが、pH調整用薬品の使用量増大を招くため、低くてもpH3程度で反応させるのがよい。
<他の実施形態>
 図9に本実施形態に係る石炭ガス化排水処理システムにおける、他の例の概略構成を示す。図9の石炭ガス化排水処理システム5は、図6の構成に加えて、塩水電解手段として塩水電解装置20を、第2凝集沈殿装置18の後段側に、吸着処理手段としての吸着処理装置26を備える。さらに、高温アルカリ塩素処理装置10と第1凝集沈殿装置12との間に、シアン除去手段としてのシアン除去装置28と、第1凝集沈殿装置12とセレン還元装置14との間に、軟化手段としての軟化装置30と、アンモニア性窒素処理手段としての硝化装置22と、硝酸イオン処理手段としての脱窒装置24と、第2凝集沈殿装置18と吸着処理装置26との間に、ろ過手段としてのろ過装置32と、活性炭吸着手段としての活性炭吸着装置34と、吸着処理装置26の後段側に、中和手段としての中和装置36とを備える。
 シアン化合物、特に錯体状シアンをさらに確実に除去したい場合には、例えば紺青法等により、シアンを難溶性の化合物として沈殿除去するシアン除去装置28を設置してもよい(シアン除去工程)。紺青法は、鉄イオンを加え、シアン化合物と難溶性の錯体を形成させ、沈殿、分離させる方法である。
 シアン除去工程における鉄イオンの添加量や、処理温度等は、従来公知の技術に基づき適宜決めればよい。
 軟化装置30では、炭酸塩および高分子凝集剤を添加し、カルシウムを除去する(軟化工程)。第1凝集沈殿装置12で添加したカルシウム剤等に起因するカルシウムイオンが後段の硝化、シアン還元、脱窒、酸化処理における生物反応を阻害すると考えられる場合に設置すればよい。
 軟化工程における炭酸塩および高分子凝集剤の添加量や、処理温度等は、従来公知の技術に基づき適宜決めればよい。
 ろ過装置32では、残存したSS成分等のポリッシングを行う(ろ過工程)。
 活性炭吸着装置34では、残存したCOD成分等のポリッシングを行う(活性炭吸着工程)。
 中和装置36では、アルカリ、酸等のpH調整剤により中和する(中和工程)。pH調整後の処理液は、放流または再利用される。
 図9に示すような石炭ガス化排水処理システムにより、シアン等の有害物質を含む汚泥をほとんど発生させることなく、石炭ガス化排水に含まれるシアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を効率よく除去し、良好な水質の処理水を得ることができる。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
 石炭ガス化発電排水の模擬排水を調製し、これを被処理水として下記の工程順で回分処理実験を行い、各工程の処理水質を測定した。また、懸濁物質・フッ素を除去する凝集沈殿工程で発生する汚泥、および全工程で発生した汚泥を混合した汚泥をそれぞれ脱水し、汚泥の溶出試験を行い、シアン類等の溶出の有無を確認した。
 比較例として、従来技術で最初の工程で懸濁物質・フッ素を除去する凝集沈殿ろ過を行うシステムを想定し、実施例と同じ排水を用い、凝集沈殿ろ過の回分処理を行った。ここで発生した汚泥を脱水し、前記と同様の汚泥溶出試験を行った。
[実験方法]
(1)被処理水の調製
 表1に示す濃度となるように各物質を純水に溶解し、被処理水とした。主成分は、ギ酸(HCOOH)、アンモニア性窒素(NH-N)、シアンイオン(CN)およびフェリシアン(Fe(CN) 3-)からなるシアン類であり、その他フッ素(F)やセレン(Se)などが含まれ、石炭ガス化発電排水を模擬した排水となっている。なお、pHは水酸化ナトリウムで調整し、セレンはセレン酸(6価Se)の形態で添加した。
Figure JPOXMLDOC01-appb-T000001
(2)処理操作
<実施例1~3>
 下記の工程順で回分処理を行った。
 実施例1:高温アルカリ塩素処理工程→フッ素処理(フッ素凝集沈殿処理)工程→セレン処理(セレン生物還元処理→有機物処理工程→セレン凝集沈殿処理工程)→吸着処理(フッ素・セレン吸着)工程
 実施例2:高温アルカリ塩素処理工程→フッ素処理(フッ素凝集沈殿処理)工程→物理還元処理(セレン物理還元凝集処理)工程→吸着処理(フッ素・セレン吸着)工程
 実施例3:高温アルカリ塩素処理工程→物理還元処理(セレン物理還元凝集処理)工程→フッ素処理(フッ素凝集沈殿処理)工程
 以下に、各工程の操作方法を示す。
(a)高温アルカリ塩素処理工程
 被処理水90Lにスチームを吹き込み、水温を常温(20℃)から上昇させた。92℃に達した時点で、スチーム吹き込み量を調整し、水温をこの値に保持した。加温開始後、水の酸化還元電位(ORP)を計測しながら、次亜塩素酸ナトリウム溶液(有効塩素濃度12%)をORPが620mVに達するまで注入し続けた。ORPが620mVに達するようになった時点で、次亜塩素酸ナトリウム溶液の注入量を調整し、ORPを620mVに保持した。ORPが5分で1mVも変化しなくなった時点で次亜塩素酸ナトリウムの注入を停止し、同時に、温度調整も停止し、放冷した。処理水の残量は103Lであり、処理水の一部を採取し、水質分析を行った。
(b)フッ素処理(フッ素凝集沈殿処理)工程
 実施例1,2においては前記(a)の高温アルカリ塩素処理水各30L(40℃)に、実施例3においては後述(d)のセレン除去凝集沈殿処理水25L(40℃)に対し、PAC2000mg/Lを添加し、pH7.0に調整して急速撹拌で10分反応させた後、有機ポリマ(アニオン性ポリアクリルアミド)を2mg/L添加して緩速撹拌を5分行い、フロック形成させた。次いで、15分静置してフロックを沈降させ、上澄水81Lを採取し、この上澄水の水質分析を行った。
 なお、上澄水を除去したあとのフロックを含有した残り水は、さらに24時間重力沈降濃縮して、界面より上の上澄水を除去し、脱水用の汚泥試料とした。この試料を3等分し、それぞれ実施例1、実施例2および実施例3の脱水・汚泥溶出試験の試料とした。
(c)セレン処理工程
((c)-1)セレン生物還元処理
 実施例1において、前記(b)のフッ素除去凝集沈殿処理水27Lを35℃まで放冷し、あらかじめ同様の水質の水で馴養した微生物汚泥を5L投入し、メタノールを40mg/L、リン酸を1mg-P/Lとなるよう注入し、微生物汚泥が水中を浮遊するよう撹拌した。酸素や空気の吹き込みは行わず嫌気下で6時間の撹拌の後、水中から微生物汚泥を沈降分離で取り除き、還元処理水を得た。この還元処理水の水質分析を行った。
((c)-2)有機物処理工程
 前記(c)-1の還元処理水25Lに、あらかじめ同様の水質の水で馴養した微生物汚泥を5L投入し、微生物担体が水中を上下略均一に浮遊するようにエアポンプで空気を吹込みながら撹拌した。1.5時間の撹拌の後、水中から微生物汚泥を沈降分離で取り除き、有機物酸化分解処理水を得た。この酸化処理水の水質分析を行った。
((c)-3)セレン凝集沈殿処理工程
 前記(c)-2で得られた生物酸化処理水20Lに、塩化第二鉄(FeCl)60mg-Fe/Lを添加し、pH7.0に調整して10分間急速撹拌した後、有機ポリマ(アニオン性ポリアクリルアミド)を2mg/L添加して緩速撹拌を5分行い、フロック形成させた。次いで、15分静置してフロックを沈降させ、上澄水24Lを採取した。この上澄水の水質分析を行った。なお、上澄水を除去したあとのフロックを含有した残り水3Lはさらに24時間重力沈降濃縮して、界面より上の上澄水を除去し脱水用の汚泥試料とした。
(d)物理還元処理(セレン物理還元凝集処理)工程
 実施例2においては前記(b)のフッ素除去凝集沈殿処理水25L(70℃)に、実施例3においては前記(a)の高温アルカリ塩素処理水30L(70℃)に、塩化第一鉄(FeCl)300mg-Fe/Lを添加し、pH9.0に調整し、10分間撹拌した後、有機ポリマ(アニオン性ポリアクリルアミド)を2mg/L添加して緩速撹拌を5分行い、フロック形成させた。次いで、15分静置してフロックを沈降させ、上澄水20Lを採取した。この上澄水の水質分析を行った。なお、上澄水を除去したあとのフロックを含有した残り水3Lはさらに24時間重力沈降濃縮して、界面より上の上澄水を除去し、脱水用の汚泥試料とした。
(e)吸着処理(フッ素・セレン吸着)工程
 塩酸での活性化処理を施したジルコニウムを主成分とする吸着材(オルガノ(株)製オルライトF)を充填したカラム(φ25×充填高600mm)3塔を用意した。実施例1においては前記(c)-3で得られた凝集沈殿処理水、実施例2においては前記(d)のセレン除去凝集沈殿処理水、実施例3においては前記(b)の凝集沈殿処理水を25℃、pH4.0に塩酸で調整後、各塔にそれぞれ12L/hで下向流通水し、吸着処理水を得た。これら吸着処理水の水質分析を行った。
<比較例1>
(f)凝集沈殿
 被処理水30L(20℃)に、PAC2000mg/Lを添加し、pH7.5に調整して急速撹拌で10分反応させた後、有機ポリマ(アニオン性ポリアクリルアミド)を2mg/L添加して緩速撹拌を5分行い、フロック形成させた。次いで、15分静置してフロックを沈降させ、上澄水27Lを採取した。なお、上澄水を除去したあとのフロックを含有した残り水3Lはさらに24時間重力沈降濃縮して、界面より上の上澄水を除去し、脱水用の汚泥試料とした。
(3)分析項目および分析方法
 分析項目は、排水基準項目のうち被処理水に含まれる物質およびそれら物質に関係する下記の項目とした。分析はJIS K0102に基づいて行った。
 分析項目:全シアン(T-CN)、全窒素(T-N)、CODMn、懸濁物質(SS)、全フッ素(T-F)、全セレン(T-Se)、pH
(4)汚泥脱水操作
 下記の汚泥を対象に、フィルタプレス型脱水試験装置で脱水を行った。試験装置は、図10のように内部に圧縮空気を送ることができる圧力タンク100(20L)と、ろ枠110とろ布106で構成されるろ室102(縦70mm×横100mm×厚10mm)と、圧力タンク100の底部からろ室102までつなぐ配管104とを備える。ろ室102の片面にはろ布106が挟み込まれており、ろ布106の外側の壁面には溝108が切られており、脱水ろ液がろ室102の外に排出されるようになったものである。圧力タンク100に汚泥を入れ、圧縮空気で押しながら汚泥をろ室102に圧入(圧力0.5MPa)し、ろ布106を透過したろ液をろ室102の外に排出させ脱水を行った。ろ室102内の脱水ケーキの含水率が65%程度となった時点で圧入を停止し、ろ室102内から脱水ケーキを取り出し、溶出試験の試料とした。
(脱水操作試料)
  実施例1汚泥:実施例1の工程(b)と工程(c)-3の凝集沈殿で発生した24時間重力沈降濃縮殿汚泥各全量を混合したもの((b)(c)混合汚泥)
  実施例2汚泥:実施例2の工程(b)と工程(d)の凝集沈殿で発生した24時間重力沈降濃縮殿汚泥各全量を混合したもの((b)(d)混合汚泥)
  実施例3汚泥:実施例3の工程(d)と工程(b)の凝集沈殿で発生した24時間重力沈降濃縮殿汚泥各全量を混合したもの((d)(b)混合汚泥)
  比較例1汚泥:比較例1で発生した24時間重力沈降濃縮殿汚泥((f)汚泥)
(5)汚泥溶出試験
 前記(4)で得られた脱水ケーキを対象に「産業廃棄物に含まれる金属等の検定方法」(環境省告示)に基づいて溶出操作を行った。得られた溶出液を検水として、「金属等を含む産業廃棄物に係る判定基準」の基準項目のうち本実験の汚泥に含有される可能性のある全シアン、全セレンの分析を行った。
[実験結果]
<実施例>
(1)各工程の処理水質
(実施例1)
 T-CNについては、模擬排水で175mg/Lあったものが、高温アルカリ塩素処理の時点で0.1mg/L未満まで低減できていた。T-Nについては、模擬排水で1100mg/Lあり、この大部分がアンモニア性窒素であるが、高温アルカリ塩素処理の時点でT-Nとして13mg/Lにまで低減できていた。CODMnについては、模擬排水で450mg/Lあり、この大部分がギ酸とシアン類であるが、高温アルカリ塩素処理の時点で6mg/Lにまで低減できていた。このことから、シアン化合物、アンモニア性窒素、COD成分のいずれかを含む石炭ガス化発電排水に対して、高温アルカリ塩素処理を備えるシステムで排水基準に対し問題ないレベルの水質にまで処理できることが確認された。
 T-Fについては、模擬排水で100mg/Lあり、フッ素凝集沈殿処理水で7.8mg/Lまで低減できていた。この時点で排水基準を満たすレベルであるが、さらに、吸着処理水では4mg/L未満にまで低減できていた。このことから、フッ素をさらに含む石炭ガス化排水に対し、高温アルカリ塩素処理とフッ素凝集沈殿処理を順次備えるシステムで排水基準に対して問題ないレベルの水質にまで処理できることが確認された。また、吸着工程を用いることでフッ素をさらに低減できることが確認された。
 T-Seは、セレン生物還元処理水の時点では模擬排水と同等の1.0mg/Lであったが、塩化第二鉄を使用したセレン凝集沈殿処理工程では0.08mg/Lまで低減した。このセレン生物還元処理工程において6価セレンが4価セレンや単体セレンにまで還元されたため、セレン凝集沈殿処理において塩化第二鉄に凝集されやすい4価セレンや単体セレンが効果的に除去されたと考えられる。
 また、そのろ過水をジルコニウム系吸着材カラムに通水して得られた吸着処理水では、T-Seはさらに低減され、排水基準値0.1mg/Lを確実に満たす値であった。
 この結果から、セレンも含む石炭ガス化発電排水に対し、高温アルカリ塩素処理とフッ素処理の後段でセレン生物還元処理を備えるシステムでセレンをも処理できることが確認された。さらに、その後段に吸着処理を備えるシステムとすることで、セレンを排水基準に対し確実に問題ないレベルの水質にまで処理できることも確認された。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 高温アルカリ塩素処理工程とフッ素凝集沈殿処理工程までは実施例1と同じである。フッ素凝集沈殿処理水を対象とし、塩化第一鉄を使用したセレン物理還元凝集処理工程において、T-Seは、フッ素凝集沈殿処理水の1.1mg/Lから、0.09mg/Lにまで低減されていた。さらに、その水を吸着材カラムに通水して得られた吸着処理水では、T-Seはさらに低減され、確実に排水基準値0.1mg/Lを下回る値となっていた。また、フッ素も4mg/L未満にまで低減できていた。
 この結果から、フッ素およびセレンも含む石炭ガス化排水に対し、高温アルカリ塩素処理+フッ素凝集沈殿処理+セレン物理還元凝集処理する処理を順次備えるシステムでも処理できることが確認された。さらに、後段に吸着処理を備えるシステムとすることで、セレンおよびフッ素を排水基準に対し確実に問題ないレベルの水質にまで処理できることが確認された。
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 高温アルカリ塩素処理工程までは実施例1と同じである。高温アルカリ塩素処理水を対象とし、塩化第一鉄を使用したセレン物理還元凝集処理工程において、T-Seは、高温アルカリ塩素処理水の1.2mg/Lから、0.08mg/Lにまで低減されていた。さらに、フッ素凝集沈殿処理後、その処理水を吸着材カラムに通水して得られた吸着処理水では、T-Seはさらに低減され、確実に排水基準値0.1mg/Lを下回る値となっていた。
 フッ素凝集沈殿処理工程において、T-Fは、セレン物理還元凝集処理水の120mg/Lから7.5mg/Lにまで低減されていた。さらに、その処理水を吸着材カラムに通水して得られた吸着処理水では、T-Fは4mg/L未満にまで低減され、確実に排水基準値8mg/Lを下回る値となっていた。
 この結果から、フッ素およびセレンも含む石炭ガス化発電排水に対し、高温アルカリ塩素処理+セレン物理還元凝集処理+フッ素凝集沈殿処理を順次備えるシステムでも処理できることが確認された。さらに、このシステムも後段に吸着処理を備えることで、セレンおよびフッ素を排水基準に対し確実に問題ないレベルの水質にまで処理できることが確認された。
Figure JPOXMLDOC01-appb-T000004
(2)汚泥脱水および溶出試験結果
(実施例1~3)
 表5に示すように実施例1~3の脱水ケーキとも溶出液中のT-CNは0.1mg/L未満、T-Seも0.1mg/L未満であり、「金属等を含む産業廃棄物に係る判定基準」(T-CN:1mg/L、T-Se:0.3mg/L)を満たすことが確認された。このことから本発明のシステムで発生する汚泥は、通常の埋立処分等が可能な産業廃棄物として処分可能であることが確認された。
Figure JPOXMLDOC01-appb-T000005
<比較例1>
 処理水質は、表6に示すように凝集沈殿処理が目的とするSSおよびT-Fについては排水基準値を満たすレベルにまで低減できたが、この処理で発生した汚泥の脱水ケーキからは、溶出試験において、表7に示すようにT-CNが判定基準値1.0mg/Lを大きく上回る7.9mg/L検出された(セレンは基準値0.3mg/Lより低い0.06mg/Lであった)。このことから、シアン分解処理の前に凝集沈殿処理を行う従来技術では、特別管理廃棄物となる汚泥が発生することが確認された。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む石炭ガス化排水に対し、実施例のシステムは排水基準を満たす処理性能が得られるとともに、処理で発生した汚泥に有害物質であるシアンの溶出がほとんどなく、実施例では、比較例でシアン溶出のため特別管理廃棄物とせざるを得なかった汚泥がほとんど発生しないことが確認された。
 1,3,4,5,6,7,8,9,11 石炭ガス化排水処理システム、10 高温アルカリ塩素処理装置、12 第1凝集沈殿装置、14 セレン還元装置、16 有機物処理装置、18 第2凝集沈殿装置、20 塩水電解装置、22 硝化装置、24 脱窒装置、26 吸着処理装置、28 シアン除去装置、30 軟化装置、32 ろ過装置、34 活性炭吸着装置、36 中和装置、50 フッ素処理装置、52 セレン処理装置、100 圧力タンク、102 ろ室、104 配管、106 ろ布、108 溝、110 ろ枠。

Claims (22)

  1.  シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む石炭ガス化排水を処理するための石炭ガス化排水の処理システムであって、
     (1)酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくとも前記シアン化合物、アンモニア性窒素およびCOD成分を分解するシアン/アンモニア/COD処理手段と、
     (2)凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくとも前記フッ素化合物を除去するフッ素処理手段と、
     (3)前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理により前記セレン化合物を除去するセレン処理手段と、
     を有し、
     前記シアン/アンモニア/COD処理手段の後段に、前記フッ素処理手段および前記セレン処理手段を備えることを特徴とする石炭ガス化排水の処理システム。
  2.  請求項1に記載の石炭ガス化排水の処理システムであって、
     前記フッ素処理手段が、凝集沈殿処理により前記フッ素化合物を除去するものであることを特徴とする石炭ガス化排水の処理システム。
  3.  請求項1または2に記載の石炭ガス化排水の処理システムであって、
     前記セレン処理手段が、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものであることを特徴とする石炭ガス化排水の処理システム。
  4.  請求項3に記載の石炭ガス化排水の処理システムであって、
     前記金属および金属塩が、鉄または鉄塩であることを特徴とする石炭ガス化排水の処理システム。
  5.  請求項4に記載の石炭ガス化排水の処理システムであって、
     前記鉄塩が、2価の鉄塩であることを特徴とする石炭ガス化排水の処理システム。
  6.  請求項3~5のいずれか1項に記載の石炭ガス化排水の処理システムであって、
     前記セレン処理手段の後段に前記フッ素処理手段を備えることを特徴とする石炭ガス化排水の処理システム。
  7.  請求項1または2に記載の石炭ガス化排水の処理システムであって、
     前記セレン処理手段が、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去するものであることを特徴とする石炭ガス化排水の処理システム。
  8.  請求項7に記載の石炭ガス化排水の処理システムであって、
     前記フッ素処理手段の後段に前記セレン処理手段を備えることを特徴とする石炭ガス化排水の処理システム。
  9.  請求項1~8のいずれか1項に記載の石炭ガス化排水の処理システムであって、
     前記フッ素処理手段および前記セレン処理手段の後段側に、フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤による吸着処理手段を備えることを特徴とする石炭ガス化排水の処理システム。
  10.  請求項1に記載の石炭ガス化排水の処理システムであって、
     前記石炭ガス化排水中のフッ素化合物の濃度が30ppm以下の場合に、吸着処理によりフッ素化合物を除去するフッ素処理手段が用いられ、
     前記石炭ガス化排水中のセレン化合物の濃度が3ppm以下の場合に、吸着処理によりセレン化合物を除去するセレン処理手段が用いられることを特徴とする石炭ガス化排水の処理システム。
  11.  請求項1~10のいずれか1項に記載の石炭ガス化排水の処理システムであって、
     前記酸化剤として次亜塩素酸ソーダを供給する塩水電解手段を備えることを特徴とする石炭ガス化排水の処理システム。
  12.  シアン化合物、フッ素化合物、セレン化合物、アンモニア性窒素、およびCOD成分を含む石炭ガス化排水を処理するための石炭ガス化排水の処理方法であって、
     (1)酸化剤を加えて加温下で反応させる高温アルカリ塩素処理により少なくとも前記シアン化合物、アンモニア性窒素およびCOD成分を分解するシアン/アンモニア/COD処理工程と、
     (2)凝集沈殿処理および吸着処理のうち少なくとも1つの処理により少なくとも前記フッ素化合物を除去するフッ素処理工程と、
     (3)前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理、および吸着処理のうち少なくとも1つの処理により前記セレン化合物を除去するセレン処理工程と、
     を含み、
     前記シアン/アンモニア/COD処理工程の後段で、前記フッ素処理工程および前記セレン処理工程が行われることを特徴とする石炭ガス化排水の処理方法。
  13.  請求項12に記載の石炭ガス化排水の処理方法であって、
     前記フッ素処理工程において、凝集沈殿処理により前記フッ素化合物を除去することを特徴とする石炭ガス化排水の処理方法。
  14.  請求項12または13に記載の石炭ガス化排水の処理方法であって、
     前記セレン処理工程において、金属および金属塩のうち少なくとも1つによる前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去することを特徴とする石炭ガス化排水の処理方法。
  15.  請求項14に記載の石炭ガス化排水の処理方法であって、
     前記金属および金属塩が、鉄または鉄塩であることを特徴とする石炭ガス化排水の処理方法。
  16.  請求項15に記載の石炭ガス化排水の処理方法であって、
     前記鉄塩が、2価の鉄塩であることを特徴とする石炭ガス化排水の処理方法。
  17.  請求項14~16のいずれか1項に記載の石炭ガス化排水の処理方法であって、
     前記セレン処理工程の後段で、前記フッ素処理工程が行われることを特徴とする石炭ガス化排水の処理方法。
  18.  請求項12または13に記載の石炭ガス化排水の処理方法であって、
     前記セレン処理工程において、生物処理による前記セレン化合物の還元後に、還元したセレン化合物を除去する還元除去処理により前記セレン化合物を除去することを特徴とする石炭ガス化排水の処理方法。
  19.  請求項18に記載の石炭ガス化排水の処理方法であって、
     前記フッ素処理工程の後段で、前記セレン処理工程が行われることを特徴とする石炭ガス化排水の処理方法。
  20.  請求項12~19のいずれか1項に記載の石炭ガス化排水の処理方法であって、
     前記フッ素処理工程および前記セレン処理工程の後段側に、フッ素化合物およびセレン化合物のうち少なくとも1つを吸着することが可能な吸着剤による吸着処理工程を含むことを特徴とする石炭ガス化排水の処理方法。
  21.  請求項12に記載の石炭ガス化排水の処理方法であって、
     前記石炭ガス化排水中のフッ素化合物の濃度が30ppm以下の場合に、吸着処理によりフッ素化合物を除去するフッ素処理工程を行い、
     前記石炭ガス化排水中のセレン化合物の濃度が3ppm以下の場合に、吸着処理によりセレン化合物を除去するセレン処理工程を行うことを特徴とする石炭ガス化排水の処理方法。
  22.  請求項12~21のいずれか1項に記載の石炭ガス化排水の処理方法であって、
     前記シアン/アンモニア/COD処理工程において、前記酸化剤として塩水電解により生成させた次亜塩素酸ソーダを供給することを特徴とする石炭ガス化排水の処理方法。
PCT/JP2013/073472 2012-11-30 2013-09-02 石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法 WO2014083903A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13859161.5A EP2927197A4 (en) 2012-11-30 2013-09-02 SYSTEM FOR TREATING RESIDUAL WATER FROM GASIFICATION OF COAL, AND PROCESS FOR TREATING RESIDUAL WATER FROM GASIFICATION OF COAL
KR1020157012779A KR101957548B1 (ko) 2012-11-30 2013-09-02 석탄 가스화 배수의 처리 시스템 및 석탄 가스화 배수의 처리 방법
US14/647,648 US20150315054A1 (en) 2012-11-30 2013-09-02 System for treating coal gasification wastewater, and method for treating coal gasification wastewater
JP2014550055A JP5828969B2 (ja) 2012-11-30 2013-09-02 石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012261913 2012-11-30
JP2012-261913 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083903A1 true WO2014083903A1 (ja) 2014-06-05

Family

ID=50827554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073472 WO2014083903A1 (ja) 2012-11-30 2013-09-02 石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法

Country Status (6)

Country Link
US (1) US20150315054A1 (ja)
EP (1) EP2927197A4 (ja)
JP (1) JP5828969B2 (ja)
KR (1) KR101957548B1 (ja)
TW (1) TWI583635B (ja)
WO (1) WO2014083903A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984986A (zh) * 2015-02-02 2016-10-05 湖南华电常德发电有限公司 一种电厂脱硫废水深度处理方法
CN106007047A (zh) * 2016-05-19 2016-10-12 康洪强 一种用于处理煤气化工艺排出黑水的装置与方法
JP2017148728A (ja) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 排水処理方法、排水処理装置およびそれを備えた石炭ガス化発電設備
JP2017196585A (ja) * 2016-04-28 2017-11-02 株式会社片山化学工業研究所 塩化シアンの揮散抑制方法
JP2018083173A (ja) * 2016-11-25 2018-05-31 三菱日立パワーシステムズ環境ソリューション株式会社 排水処理方法、排水処理システムおよびそれを備えた石炭ガス化発電設備
JP2021506563A (ja) * 2017-12-14 2021-02-22 アルセロールミタル 廃水の処理方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105347575A (zh) * 2015-12-11 2016-02-24 武汉钢铁(集团)公司 高炉煤气洗涤排污水处理方法
US20170233274A1 (en) * 2016-02-17 2017-08-17 Phillips 66 Company Contaminant removal from waste water
CN106830164B (zh) * 2017-02-24 2020-09-18 上海宝汇环境科技有限公司 一种含矿渣微粉的焦化废水处理剂、制备方法及处理方法
CN106745466A (zh) * 2017-02-24 2017-05-31 上海宝汇环境科技有限公司 一种焦化废水物化处理剂、处理方法及应用
TWI644725B (zh) * 2018-03-26 2018-12-21 中國鋼鐵股份有限公司 含氟活性氧化鋁的處理方法
CN108640335A (zh) * 2018-05-03 2018-10-12 陈玉丹 一种含氟废水的处理方法
WO2020043813A1 (en) * 2018-08-31 2020-03-05 Shell Internationale Research Maatschappij B.V. Process for removing selenium from waste water streams
CN109502842B (zh) * 2018-12-26 2021-06-25 大连东道尔膜技术有限公司 一种煤气化炉废水处理与资源化利用工艺
CN111807590B (zh) * 2019-04-12 2022-03-08 江苏南大环保科技有限公司 一种煤化工高氨氮废水危险废弃物豁免的资源化处理方法
CN110632246A (zh) * 2019-08-07 2019-12-31 内蒙古大唐国际克什克腾煤制天然气有限责任公司 酚氨回收中酚钠含量的测定分析方法
CN111115661B (zh) * 2020-01-13 2023-02-28 中国神华煤制油化工有限公司 硝酸废水的处理系统和处理方法
CN113019321A (zh) * 2021-03-04 2021-06-25 太原理工大学 一种煤基颗粒及其制备方法和在过滤煤炭废水中的用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289841A (ja) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd 石炭ガス化排水の処理方法及び処理装置
JP2010221151A (ja) 2009-03-24 2010-10-07 Electric Power Dev Co Ltd 石炭ガス化排水の処理方法
JP2012076058A (ja) 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk 難分解性物質を含む排水の処理方法
JP2012076057A (ja) * 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk 難分解性物質を含む排水の処理方法及び処理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118962A (ja) * 1974-03-05 1975-09-18
JPS51121957A (en) * 1975-04-18 1976-10-25 Asahi Chem Ind Co Ltd Method of treating waste liquid
JPH02265696A (ja) * 1989-04-06 1990-10-30 Osaka Gas Co Ltd 廃水の処理方法
JPH08290176A (ja) * 1995-04-19 1996-11-05 Osaka Gas Co Ltd シアン含有廃水の処理方法
JP3739480B2 (ja) * 1995-10-31 2006-01-25 栗田工業株式会社 排煙脱硫排水の処理方法
JP4382167B2 (ja) * 1996-04-26 2009-12-09 電源開発株式会社 火力発電所排水の処理方法
KR100231950B1 (ko) * 1997-02-28 1999-12-01 마스다 노부유키 배수처리방법 및 장치
JP3600458B2 (ja) * 1997-09-08 2004-12-15 三菱重工業株式会社 排煙脱硫排水の処理方法
JP4507267B2 (ja) * 1999-07-15 2010-07-21 栗田工業株式会社 水処理方法
JP2006334508A (ja) * 2005-06-02 2006-12-14 Nippon Parkerizing Co Ltd シアン・アンモニア含有廃液の同時連続処理方法および同時連続処理装置
JP4877103B2 (ja) * 2007-07-03 2012-02-15 栗田工業株式会社 セレン含有排水の処理方法及び処理装置
JP5047715B2 (ja) * 2007-07-19 2012-10-10 電源開発株式会社 石炭ガス化排水の処理方法及び処理装置
WO2009028192A1 (ja) * 2007-08-29 2009-03-05 Toda Kogyo Corporation 吸着剤
WO2009078917A2 (en) * 2007-12-17 2009-06-25 Applied Process Technology, Inc. Removal of selenium in contaminated wastewater streams
KR101708702B1 (ko) * 2009-06-29 2017-02-21 프로테르고 인코포레이션 전기 화학적 폐수 처리 장치 및 방법
EP2559667B8 (en) * 2010-03-26 2018-09-19 Chiyoda Corporation Method and system for the treatment of wastewater containing persistent substances
JP5637713B2 (ja) * 2010-03-26 2014-12-10 千代田化工建設株式会社 排水の処理方法及び処理装置
US20120241376A1 (en) * 2011-03-24 2012-09-27 Baldwin Jr Robert Louis Method of selenium removal from an aqueous source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289841A (ja) * 2006-04-24 2007-11-08 Kurita Water Ind Ltd 石炭ガス化排水の処理方法及び処理装置
JP2010221151A (ja) 2009-03-24 2010-10-07 Electric Power Dev Co Ltd 石炭ガス化排水の処理方法
JP2012076058A (ja) 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk 難分解性物質を含む排水の処理方法
JP2012076057A (ja) * 2010-10-05 2012-04-19 Chiyoda Kako Kensetsu Kk 難分解性物質を含む排水の処理方法及び処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927197A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984986A (zh) * 2015-02-02 2016-10-05 湖南华电常德发电有限公司 一种电厂脱硫废水深度处理方法
JP2017148728A (ja) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 排水処理方法、排水処理装置およびそれを備えた石炭ガス化発電設備
JP2017196585A (ja) * 2016-04-28 2017-11-02 株式会社片山化学工業研究所 塩化シアンの揮散抑制方法
CN106007047A (zh) * 2016-05-19 2016-10-12 康洪强 一种用于处理煤气化工艺排出黑水的装置与方法
JP2018083173A (ja) * 2016-11-25 2018-05-31 三菱日立パワーシステムズ環境ソリューション株式会社 排水処理方法、排水処理システムおよびそれを備えた石炭ガス化発電設備
JP2021506563A (ja) * 2017-12-14 2021-02-22 アルセロールミタル 廃水の処理方法
JP7065184B2 (ja) 2017-12-14 2022-05-11 アルセロールミタル 廃水の処理方法
US11713264B2 (en) 2017-12-14 2023-08-01 Arcelormittal Method for the treatment of wastewaters

Also Published As

Publication number Publication date
JPWO2014083903A1 (ja) 2017-01-05
TWI583635B (zh) 2017-05-21
EP2927197A1 (en) 2015-10-07
KR20150069016A (ko) 2015-06-22
EP2927197A4 (en) 2016-04-13
US20150315054A1 (en) 2015-11-05
KR101957548B1 (ko) 2019-03-12
JP5828969B2 (ja) 2015-12-09
TW201441163A (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
JP5828969B2 (ja) 石炭ガス化排水の処理システムおよび石炭ガス化排水の処理方法
CN104163539B (zh) 一种煤化工废水的处理方法
CN103771650B (zh) 一种煤气化废水的处理方法
WO2011118808A1 (ja) 難分解性物質を含む排水の処理方法
JP5637713B2 (ja) 排水の処理方法及び処理装置
CN103288236B (zh) 含盐废水的处理方法
JP5579414B2 (ja) 還元性セレン含有排水の処理方法
CN104961304A (zh) 一种高浓度氟化工废水处理工艺
Zhao et al. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe (II) catalytic process
CN102964003A (zh) 一种应用组合工艺处理废水中氨氮的方法
CN101172729A (zh) 焦化厂剩余氨水物理化学处理工艺
CN107381892A (zh) 一种高浓度氨氮废水的处理工艺
KR101834438B1 (ko) 탈황 폐수의 처리 장치 및 이를 이용한 처리 방법
CN104787949A (zh) 一种基于改性气体扩散电极的光电芬顿氧化反应处理垃圾渗滤液的方法及装置
CN111018169B (zh) 一种氰氟复合污染废水深度处理方法
KR101543551B1 (ko) 전기분해를 이용한 하·폐수처리시스템
KR101533979B1 (ko) 에탄올아민이 함유된 원자력발전소 2차 계통 폐수 처리 공정
CN109019999A (zh) 一种低浓度含强络合镍废水的处理方法
JP2002030352A (ja) 金属含有排水からの有価金属の回収方法
JP3843052B2 (ja) 金属含有排水中の有価金属の回収方法および利用方法
CN112919709A (zh) 一种高盐高浓度有机废水处理的工艺
CN106630312B (zh) 一种焦化酚氰废水的处理系统和处理方法及应用
KR101279701B1 (ko) 하수재처리시스템
KR20090067970A (ko) 시안 함유 폐수 처리 방법
CN111320302A (zh) 一种半导体行业低浓度含铜废水达标排放及高效沉降工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550055

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013859161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157012779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647648

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE