WO2014062536A1 - Antistatic liquid crystalline polymer composition - Google Patents

Antistatic liquid crystalline polymer composition Download PDF

Info

Publication number
WO2014062536A1
WO2014062536A1 PCT/US2013/064760 US2013064760W WO2014062536A1 WO 2014062536 A1 WO2014062536 A1 WO 2014062536A1 US 2013064760 W US2013064760 W US 2013064760W WO 2014062536 A1 WO2014062536 A1 WO 2014062536A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer composition
liquid crystalline
polymer
composition
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/064760
Other languages
English (en)
French (fr)
Inventor
Young Shin Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ticona LLC
Original Assignee
Ticona LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ticona LLC filed Critical Ticona LLC
Priority to JP2015537754A priority Critical patent/JP6462576B2/ja
Priority to CN201380053722.7A priority patent/CN104736672B/zh
Priority to KR1020157009445A priority patent/KR102246137B1/ko
Publication of WO2014062536A1 publication Critical patent/WO2014062536A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/582Electrically active dopants, e.g. charge transfer agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/528Surfactants

Definitions

  • liquid crystalline polymers for the molded parts of a compact camera module ("CCM"), such as the lens barrel or the base on which it is mounted.
  • CCM compact camera module
  • various problems are often experienced when attempting to form such molded parts from liquid crystalline polymers.
  • a static electric charge may be created that results in the attachment of dust particles to a surface of the part.
  • these dust particles are detrimental and can lead to significant product defects.
  • a polymer composition that comprises an ionic liquid that is distributed within a liquid crystalline polymer matrix.
  • the ionic liquid has a melting
  • a molded part that comprises a polymer composition.
  • the polymer composition comprises an ionic liquid distributed within a liquid crystalline polymer matrix.
  • the part exhibits a surface resistivity of about 1 x 10 15 ohms or less as determined in accordance with IEC 60093.
  • a compact camera module comprises a generally planar base on which is mounted a lens barrel.
  • the base, barrel, or both have a thickness of about 500 micrometers or less and are formed from a part that contains a polymer composition comprising a liquid crystalline polymer matrix.
  • the part exhibits a surface resistivity of about 1 x 10 15 ohms or less as determined in accordance with IEC 60093.
  • Fig. 1 is an exploded perspective view of one embodiment of a fine pitch electrical connector that may be formed according to the present invention
  • Fig. 2 is a front view of opposing walls of the fine pitch electrical connector of Fig. 1 ;
  • Fig. 3 is a schematic illustration of one embodiment of an extruder screw that may be used to form the polymer composition of the present invention
  • FIGs. 4-5 are respective front and rear perspective views of an electronic component that can employ an antenna structure formed in accordance with one embodiment of the present invention.
  • Figs. 6-7 are perspective and front views of a compact camera module (“CCM”) that may be formed in accordance with one embodiment of the present invention.
  • CCM compact camera module
  • the present invention is directed to a liquid crystalline polymer composition having a reduced tendency to create a static electric charge during a molding operation.
  • the composition contains an ionic liquid that is distributed within a liquid crystalline polymer matrix.
  • the ionic liquid can exist in liquid form during melt processing, which allows it to be more uniformly blended within the liquid crystalline polymer matrix. This improves electrical connectivity and thereby enhances the ability of the composition to rapidly dissipate static electric charges from its surface.
  • This antistatic behavior can be characterized by a relatively low surface and/or volume resistivity as determined in accordance with IEC 60093.
  • a molded part formed from the polymer composition may exhibits a surface resistivity of about 1 x 10 15 ohms or less, in some embodiments about 1 x 10 14 ohms or less, in some embodiments from about 1 x 10 10 ohms to about 9 x 10 13 ohms, and in some embodiments, from about 1 x 10 11 to about 1 x
  • the molded part may also exhibit a volume resistivity of about 1 x 10 15 ohm-m or less, in some embodiments from about 1 x 10 10 ohm-m to about 9 x 10 14 ohm-m, and in some embodiments, from about 1 x 10 11 to about 5 x
  • ionic liquids typically constitute from about 0.1 wt.% to about 10 wt.%, in some embodiments from about 0.3 wt.% to about 5 wt.%, in some embodiments from about 0.4 wt.% to about 3 wt.%, and in some
  • the concentration of the liquid crystalline polymers may generally vary based on the presence of other optional components, they are typically present in an amount of from about 25 wt.% to about 95 wt.%, in some embodiments from about 30 wt.% to about 80 wt.%, and in some embodiments, from about 40 wt.% to about 70 wt.%.
  • thermotropic liquid crystalline polymer generally has a high degree of crystallinity that enables it to effectively fill the small spaces of a mold.
  • Suitable thermotropic liquid crystalline polymers may include aromatic polyesters, aromatic poly(esteramides), aromatic poly(estercarbonates), aromatic
  • polyamides, etc. may likewise contain repeating units formed from one or more aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic aminocarboxylic acids, aromatic amines, aromatic diamines, etc., as well as combinations thereof.
  • Liquid crystalline polymers are generally classified as "thermotropic” to the extent that they can possess a rod-like structure and exhibit a crystalline behavior in its molten state (e.g., thermotropic nematic state). Such polymers may be formed from one or more types of repeating units as is known in the art.
  • the liquid crystalline polymer may, for example, contain one or more aromatic ester repeating units, typically in an amount of from about 60 mol.% to about 99.9 mol.%, in some embodiments from about 70 mol.% to about 99.5 mol.%, and in some embodiments, from about 80 mol.% to about 99 mol.% of the polymer.
  • the aromatic ester repeating units may be generally represented by the following Formula (I):
  • ring B is a substituted or unsubstituted 6-membered aryl group (e.g., 1 ,4- phenylene or 1 ,3-phenylene), a substituted or unsubstituted 6-membered aryl group fused to a substituted or unsubstituted 5- or 6-membered aryl group (e.g., 2,6-naphthalene), or a substituted or unsubstituted 6-membered aryl group linked to a substituted or unsubstituted 5- or 6-membered aryl group (e.g., 4,4- biphenylene); and
  • Yi and Y 2 are independently O, C(O), NH, C(O)HN, or NHC(O).
  • At least one of Yi and Y 2 are C(O).
  • aromatic ester repeating units may include, for instance, aromatic dicarboxylic repeating units (Yi and Y 2 in Formula I are C(O)), aromatic hydroxycarboxylic repeating units (Yi is O and Y 2 is C(O) in Formula I), as well as various
  • Aromatic dicarboxylic repeating units may be employed that are derived from aromatic dicarboxylic acids, such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, 1 ,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'- dicarboxybiphenyl, bis(4-carboxyphenyl)ether, bis(4-carboxyphenyl)butane, bis(4- carboxyphenyl)ethane, bis(3-carboxyphenyl)ether, bis(3-carboxyphenyl)ethane, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof, and
  • aromatic dicarboxylic acids may include, for instance, terephthalic acid (“TA”), isophthalic acid (“IA”), and 2,6- naphthalenedicarboxylic acid (“NDA”).
  • TA terephthalic acid
  • IA isophthalic acid
  • NDA 2,6- naphthalenedicarboxylic acid
  • repeating units derived from aromatic dicarboxylic acids typically constitute from about 5 mol.% to about 60 mol.%, in some embodiments from about 10 mol.% to about 55 mol.%, and in some embodiments, from about 15 mol.% to about 50% of the polymer.
  • Aromatic hydroxycarboxylic repeating units may also be employed that are derived from aromatic hydroxycarboxylic acids, such as, 4-hydroxybenzoic acid; 4-hydroxy-4'-biphenylcarboxylic acid; 2-hydroxy-6-naphthoic acid; 2-hydroxy- 5-naphthoic acid; 3-hydroxy-2-naphthoic acid; 2-hydroxy-3-naphthoic acid; 4'- hydroxyphenyl-4-benzoic acid; 3'-hydroxyphenyl-4-benzoic acid; 4'-hydroxyphenyl- 3-benzoic acid, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof, and combination thereof.
  • Particularly suitable aromatic hydroxycarboxylic acids are 4-hydroxybenzoic acid (“HBA”) and 6-hydroxy-2-naphthoic acid (“HNA").
  • repeating units derived from hydroxycarboxylic acids typically constitute from about 10 mol.% to about 85 mol.%, in some embodiments from about 20 mol.% to about 80 mol.%, and in some embodiments, from about 25 mol.% to about 75% of the polymer.
  • repeating units may also be employed in the polymer.
  • repeating units may be employed that are derived from aromatic diols, such as hydroquinone, resorcinol, 2,6- dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1 ,6-dihydroxynaphthalene, 4,4'- dihydroxybiphenyl (or 4,4'-biphenol), 3,3'-dihydroxybiphenyl, 3,4'- dihydroxybiphenyl, 4,4'-dihydroxybiphenyl ether, bis(4-hydroxyphenyl)ethane, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof, and combinations thereof.
  • aromatic diols may include, for instance,
  • repeating units derived from aromatic diols typically constitute from about 1 mol.% to about 30 mol.%, in some embodiments from about 2 mol.% to about 25 mol.%, and in some embodiments, from about 5 mol.% to about 20% of the polymer.
  • Repeating units may also be employed, such as those derived from aromatic amides (e.g., acetaminophen (“APAP”)) and/or aromatic amines (e.g., 4- aminophenol (“AP”), 3-aminophenol, 1 ,4-phenylenediamine, 1 ,3- phenylenediamine, etc.).
  • aromatic amides e.g., APAP
  • aromatic amines e.g., AP
  • repeating units derived from aromatic amides (e.g., APAP) and/or aromatic amines (e.g., AP) typically constitute from about 0.1 mol.% to about 20 mol.%, in some embodiments from about 0.5 mol.% to about 15 mol.%, and in some embodiments, from about 1 mol.% to about 10% of the polymer.
  • the polymer may contain one or more repeating units derived from non-aromatic monomers, such as aliphatic or cycloaliphatic hydroxycarboxylic acids, dicarboxylic acids, diols, amides, amines, etc.
  • non-aromatic monomers such as aliphatic or cycloaliphatic hydroxycarboxylic acids, dicarboxylic acids, diols, amides, amines, etc.
  • the polymer may be "wholly aromatic” in that it lacks repeating units derived from non-aromatic (e.g., aliphatic or cycloaliphatic) monomers.
  • the liquid crystalline polymer may be a "low naphthenic" polymer to the extent that it contains a minimal content of repeating units derived from naphthenic hydroxycarboxylic acids and naphthenic dicarboxylic acids, such as naphthalene-2,6-dicarboxylic acid (“NDA”), 6-hydroxy- 2-naphthoic acid (“HNA”), or combinations thereof.
  • NDA naphthalene-2,6-dicarboxylic acid
  • HNA 6-hydroxy- 2-naphthoic acid
  • the total amount of repeating units derived from naphthenic hydroxycarboxylic and/or dicarboxylic acids is typically no more than 30 mol.%, in some embodiments no more than about 15 mol.%, in some embodiments no more than about 10 mol.%, in some embodiments no more than about 8 mol.%, and in some embodiments, from 0 mol.% to about 5 mol.% of the polymer (e.g., 0 mol.%).
  • the resulting "low naphthenic" polymers are still capable of exhibiting good thermal and mechanical properties.
  • the liquid crystalline polymer may be formed from repeating units derived from 4-hydroxybenzoic acid (“HBA”) and terephthalic acid (“TA”) and/or isophthalic acid (“IA”), as well as various other optional constituents.
  • the repeating units derived from 4-hydroxybenzoic acid (“HBA”) may constitute from about 10 mol.% to about 80 mol.%, in some embodiments from about 30 mol.% to about 75 mol.%, and in some embodiments, from about 45 mol.% to about 70% of the polymer.
  • the repeating units derived from terephthalic acid (“TA”) and/or isophthalic acid (“IA”) may likewise constitute from about 5 mol.% to about 40 mol.%, in some embodiments from about 10 mol.% to about 35 mol.%, and in some embodiments, from about 15 mol.% to about 35% of the polymer.
  • Repeating units may also be employed that are derived from 4,4'-biphenol (“BP”) and/or hydroquinone (“HQ”) in an amount from about 1 mol.% to about 30 mol.%, in some embodiments from about 2 mol.% to about 25 mol.%, and in some embodiments, from about 5 mol.% to about 20% of the polymer.
  • repeating units may include those derived from 6- hydroxy-2-naphthoic acid (“HNA”), 2,6-naphthalenedicarboxylic acid (“NDA”), and/or acetaminophen (“APAP”).
  • HNA 6- hydroxy-2-naphthoic acid
  • NDA 2,6-naphthalenedicarboxylic acid
  • APAP acetaminophen
  • repeating units derived from HNA, NDA, and/or APAP may each constitute from about 1 mol.% to about 35 mol.%, in some embodiments from about 2 mol.% to about 30 mol.%, and in some embodiments, from about 3 mol.% to about 25 mol.% when employed.
  • the liquid crystalline polymer may be prepared by initially introducing the aromatic monomer(s) used to form ester repeating units (e.g., aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, etc.) and/or other repeating units (e.g., aromatic diol, aromatic amide, aromatic amine, etc.) into a reactor vessel to initiate a polycondensation reaction.
  • ester repeating units e.g., aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, etc.
  • other repeating units e.g., aromatic diol, aromatic amide, aromatic amine, etc.
  • the vessel employed for the reaction is not especially limited, although it is typically desired to employ one that is commonly used in reactions of high viscosity fluids.
  • a reaction vessel may include a stirring tank-type apparatus that has an agitator with a variably-shaped stirring blade, such as an anchor type, multistage type, spiral- ribbon type, screw shaft type, etc., or a modified shape thereof.
  • Further examples of such a reaction vessel may include a mixing apparatus commonly used in resin kneading, such as a kneader, a roll mill, a Banbury mixer, etc.
  • the reaction may proceed through the acetylation of the monomers as known the art. This may be accomplished by adding an acetylating agent (e.g., acetic anhydride) to the monomers.
  • acetylation is generally initiated at temperatures of about 90°C. During the initial stage of the acetylation, reflux may be employed to maintain vapor phase temperature below the point at which acetic acid byproduct and anhydride begin to distill. Temperatures during acetylation typically range from between 90°C to 150°C, and in some
  • the vapor phase temperature typically exceeds the boiling point of acetic acid, but remains low enough to retain residual acetic anhydride.
  • acetic anhydride vaporizes at temperatures of about 140°C.
  • providing the reactor with a vapor phase reflux at a temperature of from about 1 10°C to about 130°C is particularly desirable.
  • an excess amount of acetic anhydride may be employed. The amount of excess anhydride will vary depending upon the particular acetylation conditions employed, including the presence or absence of reflux. The use of an excess of from about 1 to about 10 mole percent of acetic anhydride, based on the total moles of reactant hydroxyl groups present is not uncommon.
  • Acetylation may occur in in a separate reactor vessel, or it may occur in situ within the polymerization reactor vessel.
  • one or more of the monomers may be introduced to the acetylation reactor and subsequently transferred to the polymerization reactor.
  • one or more of the monomers may also be directly introduced to the reactor vessel without undergoing pre-acetylation.
  • a catalyst may be optionally employed, such as metal salt catalysts (e.g., magnesium acetate, tin(l) acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, etc.) and organic compound catalysts (e.g., N-methylimidazole).
  • metal salt catalysts e.g., magnesium acetate, tin(l) acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, etc.
  • organic compound catalysts e.g., N-methylimidazole
  • the reaction mixture is generally heated to an elevated temperature within the polymerization reactor vessel to initiate melt polycondensation of the reactants.
  • Polycondensation may occur, for instance, within a temperature range of from about 250°C to about 400°C, in some embodiments from about 280°C to about 395°C, and in some embodiments, from about 300°C to about 380°C.
  • one suitable technique for forming the liquid crystalline polymer may include charging precursor monomers and acetic anhydride into the reactor, heating the mixture to a temperature of from about 90°C to about 150°C to acetylize a hydroxyl group of the monomers (e.g., forming acetoxy), and then increasing the temperature to from about 250°C to about 400°C to carry out melt polycondensation. As the final polymerization temperatures are approached, volatile byproducts of the reaction (e.g., acetic acid) may also be removed so that the desired molecular weight may be readily achieved.
  • the reaction mixture is generally subjected to agitation during polymerization to ensure good heat and mass transfer, and in turn, good material homogeneity.
  • the rotational velocity of the agitator may vary during the course of the reaction, but typically ranges from about 10 to about 100 revolutions per minute ("rpm"), and in some embodiments, from about 20 to about 80 rpm.
  • the polymerization reaction may also be conducted under vacuum, the application of which facilitates the removal of volatiles formed during the final stages of polycondensation.
  • the vacuum may be created by the application of a suctional pressure, such as within the range of from about 5 to about 30 pounds per square inch (“psi”), and in some embodiments, from about 10 to about 20 psi.
  • the molten polymer may be discharged from the reactor, typically through an extrusion orifice fitted with a die of desired configuration, cooled, and collected. Commonly, the melt is
  • melt polymerized polymer may also be subjected to a subsequent solid-state polymerization method to further increase its molecular weight.
  • Solid-state polymerization may be
  • the solid-state polymerization reactor vessel can be of virtually any design that will allow the polymer to be maintained at the desired solid-state polymerization temperature for the desired residence time. Examples of such vessels can be those that have a fixed bed, static bed, moving bed, fluidized bed, etc.
  • the temperature at which solid-state polymerization is performed may vary, but is typically within a range of from about 250°C to about 350°C.
  • the polymerization time will of course vary based on the temperature and target molecular weight. In most cases, however, the solid-state polymerization time will be from about 2 to about 12 hours, and in some embodiments, from about 4 to about 10 hours.
  • the ionic liquid of the present invention is generally a salt that has a low enough melting temperature so that it can be in the form of a liquid when melt processed with the liquid crystalline polymer.
  • the melting temperature for example, the melting
  • the temperature of the ionic liquid may be about 400°C or less, in some embodiments about 350°C or less, in some embodiments from about 1 °C to about 100°C, and in some embodiments, from about 5°C to about 50°C.
  • the salt contains a cationic species and counterion.
  • the cationic species contains a compound having at least one heteroatom (e.g., nitrogen or phosphorous) as a "cationic center.” Examples of such heteroatomic compounds include, for instance, quaternary oniums having the following structures:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of hydrogen; substituted or unsubstituted Ci- Cio alkyl groups (e.g., methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, etc.); substituted or unsubstituted C3-C M cycloalkyl groups (e.g., adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, cyclohexenyl, etc.); substituted or unsubstituted C Ci 0 alkenyl groups (e.g., ethylene, propylene, 2-methypropylene, pentylene, etc.); substituted or unsubstit
  • the cationic species may be an ammonium compound having the structure N + R 1 R 2 R 3 R 4 , wherein R 1 , R 2 , and/or R 3 are independently a Ci-C 6 alkyl (e.g., methyl, ethyl, butyl, etc.) and R 4 is hydrogen or a Ci-C 4 alkyl group (e.g., methyl or ethyl).
  • the cationic component may be tri- butylmethylammonium, wherein R 1 , R 2 , and R 3 are butyl and R 4 is methyl.
  • Suitable counterions for the cationic species may include, for example, halogens (e.g., chloride, bromide, iodide, etc.); sulfates or sulfonates
  • borates e.g., tetrafluoroborate, tetracyanoborate, bis[oxalato]borate, bis[salicylato]borate, etc.
  • phosphates or phosphinates e.g., hexafluorophosphate, diethylphosphate, bis(pentafluoroethyl)phosphinate, tris(pentafluoroethyl)-trifluorophosphate, tris(nonafluorobutyl)trifluorophosphate, etc.
  • antimonates e.g., hexafluoroantimonate
  • aluminates e.g.,
  • fatty acid carboxylates e.g., oleate, isostearate,
  • hydrophobic counterions may include, for instance,
  • conductive fillers may also be employed in the polymer composition to help improve its antistatic characteristics.
  • Suitable conductive fillers may include, for instance, metal particles
  • a synergistic affect may be achieved by using the ionic liquid and conductive fillers in combination. Without intending to be limited by theory, the present inventor believes that the ionic liquid is able to readily flow during melt processing to help provide a better connection and electrical pathway between certain conductive fillers (e.g., carbon fibers, graphite, etc.) and the liquid crystalline polymer matrix, thereby further reducing surface resistivity.
  • conductive fillers e.g., carbon fibers, graphite, etc.
  • the conductive fillers typically constitute from about 0.5 wt.% to about 30 wt.%, in some embodiments from about 1 wt.% to about 25 wt.%, and in some embodiments, from about 2 wt.% to about 20 wt.% of the polymer composition.
  • Fibrous fillers which are not generally conductive, may also be employed in the polymer composition to help improve strength.
  • fibrous fillers may include those formed from glass, ceramics (e.g., alumina, silica, titanium dioxide, etc.), minerals (e.g., wollastonite, xonotlite, dawsonite, etc.), polymers, such as aramids (e.g., Kevlar® marketed by E.I. DuPont de Nemours,
  • Particularly suitable glass fibers may include, for instance, E-glass,
  • the volume average length of such glass fibers may be relatively small, such as from about 10 to about 500 micrometers, in some embodiments from about 100 to about 400 micrometers, in some embodiments from about 150 to about 350 micrometers, and in some embodiments, from about
  • the glass fibers may also have a narrow length distribution. That is, at least about 70% by volume of the fibers, in some embodiments at least about 80% by volume of the fibers, and in some
  • the fibers have a length within the ranges noted above. Such a small length and/or narrow distribution can further help achieve a desirable combination of strength, flowability, and surface quality, which enables it to be uniquely suited for molded parts with a small dimensional tolerance.
  • the glass fibers may also have a relatively high aspect ratio (average length divided by nominal diameter) to help improve the mechanical properties and surface quality of the resulting polymer composition.
  • the fibers may have an aspect ratio of from about 1 to about 100, in some embodiments from about
  • the fibers may, for example, have a nominal diameter of from about 1 to about 35 micrometers, in some embodiments from about 2 to about 20 micrometers, and in some embodiments, from about 3 to about 10 micrometers.
  • Mineral fibers are also suitable for use in the present invention.
  • Particularly suitable are anhydrous calcium sulfate and wollastonite fibers, such as those available from Nyco Minerals under the trade designation NYGLOS® (e.g., NYGLOS® 4W or NYGLOS® 8).
  • NYGLOS® e.g., NYGLOS® 4W or NYGLOS® 8
  • the volume average length of such mineral fibers may be relatively small, such as from about 1 to about 200 micrometers, in some embodiments from about 2 to about 150 micrometers, in some embodiments from about 5 to about 100 micrometers, and in some embodiments, from about 10 to about 50 micrometers.
  • the mineral fibers may also have a relatively high aspect ratio (average length divided by nominal diameter) to help further improve the mechanical properties and surface quality of the resulting polymer composition.
  • the mineral fibers may have an aspect ratio of from about 1 to about 50, in some embodiments from about 2 to about 20, and in some embodiments, from about 4 to about 15.
  • the whiskers may, for example, have a nominal diameter of from about 1 to about 35 micrometers, in some embodiments from about 2 to about 20 micrometers, and in some embodiments, from about 3 to about 15 micrometers.
  • the relative amount of the fibrous filler in the polymer composition may be selectively controlled to help achieve the desired mechanical properties without adversely impacting other properties of the composition, such as its flowability.
  • fibrous fillers e.g., glass fibers, mineral fibers, etc., as well as combinations thereof
  • fibrous fillers typically constitute from about 2 wt.% to about 40 wt.%, in some embodiments from about 5 wt.% to about 35 wt.%, and in some embodiments, from about 6 wt.% to about 30 wt.% of the polymer composition.
  • the fibers may be employed within the ranges noted above, one particularly beneficial aspect of the present invention is that small fiber contents may be employed while still achieving the desired mechanical properties. Without intending to be limited by theory, it is believed that the narrow length distribution of the fibers can help achieve excellent mechanical properties, thus allowing for the use of a smaller amount of fibers.
  • Particulate fillers which are not generally conductive, may also be employed in the polymer composition to help achieve the desired properties and/or color.
  • such particulate fillers typically constitute from about 5% by weight to about 40% by weight, in some embodiments from about 10% by weight to about 35% by weight, and in some embodiments, from about 10% by weight to about 30% by weight of the polymer composition.
  • Clay minerals may be particularly suitable for use in the present invention.
  • clay minerals include, for instance, talc (Mg 3 Si 4 Oio(OH) 2 ), halloysite (AI 2 Si 2 O 5 (OH) 4 ), kaolinite (AI 2 Si 2 O 5 (OH) 4 ), illite ((K,H 3 O)(AI,Mg,Fe) 2
  • silicate fillers may also be employed, such as calcium silicate, aluminum silicate, mica, diatomaceous earth, wollastonite, and so forth. Mica, for instance, may be a particularly suitable mineral for use in the present invention. There are several chemically distinct mica species with considerable variance in geologic occurrence, but all have essentially the same crystal structure.
  • the term "mica” is meant to generically include any of these species, such as muscovite (KAI 2 (AISi 3 )Oi 0 (OH) 2 ), biotite (K(Mg,Fe) 3 (AISi 3 )Oi 0 (OH) 2 ), phlogopite (KMg 3 (AISi 3 )Oio(OH) 2 ), lepidolite (K(Li,AI) 2-3 (AISi 3 )Oi 0 (OH) 2 ), glauconite
  • the polymer composition of the present invention may contain a functional aromatic compound.
  • a functional aromatic compound typically contain one or more carboxyl and/or hydroxyl functional groups that can react with the polymer chain to shorten its length, thus reducing the melt viscosity.
  • the compound may also be able to combine smaller chains of the polymer together after they have been cut to help maintain the mechanical properties of the composition even after its melt viscosity has been reduced.
  • the functional aromatic compound may have the general structure provided below in Formula (II):
  • ring B is a 6-membered aromatic ring wherein 1 to 3 ring carbon atoms are optionally replaced by nitrogen or oxygen, wherein each nitrogen is optionally oxidized, and wherein ring B may be optionally fused or linked to a 5- or 6- membered aryl, heteroaryl, cycloalkyl, or heterocyclyl;
  • R 4 is OH or COOH
  • R 5 is acyl, acyloxy (e.g., acetyloxy), acylamino (e.g., acetylamino), alkoxy, alkenyl, alkyl, amino, aryl, aryloxy, carboxyl, carboxyl ester, cycloalkyl,
  • cycloalkyloxy hydroxyl, halo, haloalkyi, heteroaryl, heteroaryloxy, heterocyclyl, or heterocycloxy;
  • m is from 0 to 4, in some embodiments from 0 to 2, and in some
  • n is from 1 to 3, and in some embodiments, from 1 to 2.
  • suitable metal counterions may include transition metal counterions (e.g., copper, iron, etc.), alkali metal counterions (e.g., potassium, sodium, etc.), alkaline earth metal counterions (e.g., calcium, magnesium, etc.), and/or main group metal counterions (e.g., aluminum).
  • B is phenyl in Formula (II) such that the resulting phenolic compounds have the following general formula (III):
  • R 4 is OH or COOH
  • R6 is acyl, acyloxy, acylamino, alkoxy, alkenyl, alkyl, amino, carboxyl, carboxyl ester, hydroxyl, halo, or haloalkyl;
  • q is from 0 to 4, in some embodiments from 0 to 2, and in some
  • phenolic compounds include, for instance, benzoic acid (q is 0); 4-hydroxybenzoic acid (R 4 is COOH, R 6 is OH, and q is 1 ); phthalic acid (R 4 is COOH, R 6 is COOH, and q is 1 ); isophthalic acid (R 4 is COOH, R 6 is COOH, and q is 1 ); terephthalic acid (R 4 is COOH, R 6 is COOH, and q is 1 ); 2-methylterephthalic acid (R 4 is COOH, R 6 is COOH, and CH 3 and q is 2); phenol (R 4 is OH and q is 0); sodium phenoxide (R 4 is OH and q is 0); hydroquinone (R 4 is OH, R 6 is OH, and q is 1 ); resorcinol (R 4 is OH, R 6 is OH, and q is 1 ); 4-hydroxybenzoic acid (R 4 is OH, R 6 is OH, and q
  • B is phenyl and R 5 is phenyl in Formula (II) above such that the diphenolic compounds have the following general formula (IV):
  • R 4 is COOH or OH
  • R6 is acyl, acyloxy, acylamino, alkoxy, alkenyl, alkyl, amino, aryl, aryloxy, carboxyl, carboxyl ester, cycloalkyl, cycloalkyloxy, hydroxyl, halo, haloalkyl, heteroaryl, heteroaryloxy, heterocyclyl, or heterocycloxy; and
  • q is from 0 to 4, in some embodiments from 0 to 2, and in some
  • diphenolic compounds include, for instance, 4-hydroxy-4'-biphenylcarboxylic acid (R 4 is COOH, R 6 is OH, and q is 1 ); 4'-hydroxyphenyl-4-benzoic acid (R 4 is COOH, R 6 is OH, and q is 1 ); 3'-hydroxyphenyl-4-benzoic acid (R is COOH, R 6 is OH, and q is 1 ); 4'- hydroxyphenyl-3-benzoic acid (R 4 is COOH, R 6 is OH, and q is 1 ); 4,4'-bibenzoic acid (R 4 is COOH, R 6 is COOH, and q is 1 ); (R 4 is OH, R 6 is OH, and q is 1 ); 3,3'- biphenol (R 4 is OH, R 6 is OH, and q is 1 ); 3,4'-biphenol (R 4 is OH, R 6 is OH, and q is 1 ); 3,4'-biphenol (R
  • B is naphthenyl in Formula (II) above such that the resulting naphthenic compounds have the following general formula (V):
  • R 4 is OH or COOH
  • R6 is acyl, acyloxy, acylamino, alkoxy, alkenyl, alkyl, amino, aryl, aryloxy, carboxyl, carboxyl ester, cycloalkyl, cycloalkyloxy, hydroxyl, halo, haloalkyl, heteroaryl, heteroaryloxy, heterocyclyl, or heterocycloxy; and
  • q is from 0 to 4, in some embodiments from 0 to 2, and in some
  • naphthenic compounds from 0 to 1 .
  • naphthenic compounds include, for instance, 1 -naphthoic acid (R 4 is COOH and q is 0); 2-naphthoic acid
  • R 4 is COOH and q is 0; 2-hydroxy-6-naphthoic acid (R 4 is COOH, R 6 is OH, and q is 1 ); 2-hydroxy-5-naphthoic acid (R 4 is COOH, R 6 is OH, and q is 1 ); 3-hydroxy-
  • R 4 is COOH, R 6 is OH, and q is 1 ); 2,6-naphthalenedicarboxylic acid (R 4 is
  • R 6 is COOH, and q is 1 ); 2,3-naphthalenedicarboxylic acid (R 4 is COOH,
  • R 6 is COOH, and q is 1 ); 2-hydroxy-naphthelene (R 4 is OH and q is 0); 2-hydroxy-
  • 6-naphthoic acid (R 4 is OH, R 6 is COOH, and q is 1 ); 2-hydroxy-5-naphthoic acid
  • the polymer composition may contain an aromatic diol, such as hydroquinone, resorcinol, 4,4'-biphenol, etc., as well as combinations thereof.
  • aromatic diols may constitute from about 0.01 wt.% to about 1 wt.%, and in some embodiments, from about 0.05 wt.% to about 0.4 wt.% of the polymer composition.
  • An aromatic carboxylic acid may also be employed in certain embodiments, either alone or in conjunction with the aromatic diol.
  • Aromatic carboxylic acids may constitute from about 0.001 wt.% to about 0.5 wt.%, and in some embodiments, from about 0.005 wt.% to about 0.1 wt.% of the polymer composition.
  • a combination of an aromatic diol (R 4 and R6 are OH in the formulae above) (e.g., 4,4'-biphenol) and an aromatic dicarboxylic acid (R 4 and R6 are COOH in the formulae above) (e.g., 2,6- naphthelene dicarboxylic acid) is employed in the present invention to help achieve the desired viscosity reduction.
  • non-aromatic functional compounds may also be employed in the present invention. Such compounds may serve a variety of purposes, such as reducing melt viscosity.
  • One such non- aromatic functional compound is water.
  • water can be added in a form that under process conditions generates water.
  • the water can be added as a hydrate that under the process conditions (e.g., high temperature) effectively "loses" water.
  • hydrates include alumina trihydrate, copper sulfate pentahydrate, barium chloride dihydrate, calcium sulfate dehydrate, etc., as well as combinations thereof.
  • the hydrates When employed, the hydrates may constitute from about 0.02 wt.% to about 2 wt.%, and in some embodiments, from about 0.05 wt.% to about 1 wt.% of the polymer composition.
  • a mixture of an aromatic diol, hydrate, and aromatic dicarboxylic acid are employed in the composition.
  • the weight ratio of hydrates to aromatic diols is typically from about 0.5 to about 8, in some embodiments from about 0.8 to about 5, and in some embodiments, from about 1 to about 5.
  • Still other additives that can be included in the composition may include, for instance, antimicrobials, pigments, antioxidants, stabilizers, surfactants, waxes, solid solvents, flame retardants, anti-drip additives, and other materials added to enhance properties and processability.
  • Lubricants may also be employed in the polymer composition that are capable of withstanding the processing conditions of the liquid crystalline polymer without substantial decomposition. Examples of such lubricants include fatty acids esters, the salts thereof, esters, fatty acid amides, organic phosphate esters, and hydrocarbon waxes of the type commonly used as lubricants in the processing of engineering plastic materials, including mixtures thereof.
  • Suitable fatty acids typically have a backbone carbon chain of from about 12 to about 60 carbon atoms, such as myristic acid, palmitic acid, stearic acid, arachic acid, montanic acid, octadecinic acid, parinric acid, and so forth.
  • Suitable esters include fatty acid esters, fatty alcohol esters, wax esters, glycerol esters, glycol esters and complex esters.
  • Fatty acid amides include fatty primary amides, fatty secondary amides, methylene and ethylene bisamides and alkanolamides such as, for example, palmitic acid amide, stearic acid amide, oleic acid amide, ⁇ , ⁇ '- ethylenebisstearamide and so forth.
  • metal salts of fatty acids such as calcium stearate, zinc stearate, magnesium stearate, and so forth; hydrocarbon waxes, including paraffin waxes, polyolefin and oxidized polyolefin waxes, and microcrystalline waxes.
  • Particularly suitable lubricants are acids, salts, or amides of stearic acid, such as pentaerythritol tetrastearate, calcium stearate, or ⁇ , ⁇ '-ethylenebisstearamide.
  • the lubricant(s) typically constitute from about 0.05 wt.% to about 1 .5 wt.%, and in some embodiments, from about 0.1 wt.% to about 0.5 wt.% (by weight) of the polymer composition.
  • the liquid crystalline polymer, ionic liquid, and other optional additives may be melt processed or blended together within a temperature range of from about 250°C to about 450°C, in some embodiments, from about 280°C to about 400°C, and in some embodiments, from about 300°C to about 380°C to form the polymer composition.
  • Any of a variety of melt processing techniques may generally be employed in the present invention. For example, the
  • components may be supplied separately or in combination to an extruder that includes at least one screw rotatably mounted and received within a barrel (e.g., cylindrical barrel) and may define a feed section and a melting section located downstream from the feed section along the length of the screw.
  • a barrel e.g., cylindrical barrel
  • the extruder may be a single screw or twin screw extruder.
  • a single screw extruder 80 contains a housing or barrel 1 14 and a screw 120 rotatably driven on one end by a suitable drive 124 (typically including a motor and gearbox).
  • a twin-screw extruder may be employed that contains two separate screws.
  • the configuration of the screw is not particularly critical to the present invention and it may contain any number and/or orientation of threads and channels as is known in the art.
  • the screw 120 contains a thread that forms a generally helical channel radially extending around a core of the screw 120.
  • a hopper 40 is located adjacent to the drive 124 for supplying the liquid crystalline polymer and/or other materials (e.g., inorganic particles and/or functional compound) through an opening in the barrel 1 14 to the feed section 132.
  • the drive 124 Opposite the drive 124 is the output end 144 of the extruder
  • a feed section 132 and melt section 134 are defined along the length of the screw 120.
  • the feed section 132 is the input portion of the barrel
  • the melt section 134 is the phase change section in which the liquid crystalline polymer is changed from a solid to a liquid. While there is no precisely defined delineation of these sections when the extruder is manufactured, it is well within the ordinary skill of those in this art to reliably identify the feed section 132 and the melt section 134 in which phase change from solid to liquid is occurring.
  • the extruder 80 may also have a mixing section 136 that is located adjacent to the output end of the barrel 1 14 and downstream from the melting section 134.
  • a mixing section 136 that is located adjacent to the output end of the barrel 1 14 and downstream from the melting section 134.
  • one or more distributive and/or dispersive mixing elements may be employed within the mixing and/or melting sections of the extruder.
  • Suitable distributive mixers for single screw extruders may include, for instance, Saxon, Dulmage, Cavity Transfer mixers, etc.
  • suitable dispersive mixers may include Blister ring,
  • the mixing may be further improved by using pins in the barrel that create a folding and reorientation of the polymer melt, such as those used in Buss Kneader extruders, Cavity Transfer mixers, and Vortex Intermeshing Pin mixers.
  • fibers e.g., conductive fillers, such as carbon fibers, and/or fibrous fillers, such as glass fibers
  • fibers may also be added to the hopper 40 or at a location downstream therefrom.
  • fibers may be added a location downstream from the point at which the liquid crystalline polymer is supplied, but yet prior to the melting section.
  • a hopper 42 is shown that is located within a zone of the feed section 132 of the extruder 80.
  • the fibers supplied to the hopper 42 may be initially relatively long, such as having a volume average length of from about 1 ,000 to about 5,000 micrometers, in some embodiments from about 2,000 to about 4,500 micrometers, and in some embodiments, from about 3,000 to about 4,000 micrometers. Nevertheless, by supplying these long fibers at a location where the liquid crystalline polymer is still in a solid state, the polymer can act as an abrasive agent for reducing the size of the fibers to a volume average length and length distribution as indicated above. It should be understood, however, any optional fibers may simply be supplied to the extruder at the desired length. In such embodiments, the fibers may, for example, be supplied at the mixing and/or melting sections of the extruder, or even at the feed section in conjunction with the liquid crystalline polymer. In yet other embodiments, fibers may not be employed at all.
  • the melt viscosity of the polymer composition may be low enough so that it can readily flow into the cavity of a mold having small dimensions.
  • the polymer composition may have a melt viscosity of from about 0.1 to about 80 Pa-s, in some embodiments from about 0.5 to about 50 Pa-s, and in some embodiments, from about 1 to about 30 Pa-s, determined at a shear rate of 1000 seconds .
  • Melt viscosity may be determined in accordance with ISO Test No. 1 1443 at a temperature that is 15°C higher than the melting temperature of the composition (e.g., 350°C).
  • the composition may also have a relatively high melting
  • the melting temperature of the polymer may be from about 250°C to about 400°C, in some embodiments from about 280°C to about 395°C, and in some embodiments, from about 300°C to about 380°C.
  • the polymer composition may be molded into any of a variety of different shaped parts using techniques as is known in the art.
  • the shaped parts may be molded using a one-component injection molding process in which dried and preheated plastic granules are injected into the mold. Regardless of the molding technique employed, it has been
  • the polymer composition of the present invention which possesses the unique combination of good antistatic properties, high flowability and good mechanical properties, is particularly well suited for electronic parts having a small dimensional tolerance.
  • Such parts generally contain at least one micro-sized dimension (e.g., thickness, width, height, etc.), such as from about 500 micrometers or less, in some embodiments from about 50 to about 450 micrometers, and in some embodiments, from about 100 to about 400 micrometers.
  • One such part is a fine pitch electrical connector. More particularly, such electrical connectors are often employed to detachably mount a central processing unit (“CPU") to a printed circuit board.
  • the connector may contain insertion passageways that are configured to receive contact pins. These passageways are defined by opposing walls, which may be formed from a thermoplastic resin.
  • the pitch of these pins is generally small to accommodate a large number of contact pins required within a given space. This, in turn, requires that the pitch of the pin insertion passageways and the width of opposing walls that partition those passageways are also small.
  • the walls may have a width of from about 500 micrometers or less, in some embodiments from about 50 to about 450 micrometers, and in some embodiments, from about 100 to about 400 micrometers.
  • FIG. 1 One particularly suitable fine pitch electrical connector is shown in Fig. 1 .
  • An electrical connector 200 is shown that a board-side portion C2 that can be mounted onto the surface of a circuit board P.
  • the connector 200 may also include a wiring material-side portion C1 structured to connect discrete wires 3 to the circuit board P by being coupled to the board-side connector C2.
  • the board- side portion C2 may include a first housing 10 that has a fitting recess 10a into which the wiring material-side connector C1 is fitted and a configuration that is slim and long in the widthwise direction of the housing 10.
  • the wiring material-side portion C1 may likewise include a second housing 20 that is slim and long in the widthwise direction of the housing 20.
  • a plurality of terminal-receiving cavities 22 may be provided in parallel in the widthwise direction so as to create a two-tier array including upper and lower terminal- receiving cavities 22.
  • a terminal 5, which is mounted to the distal end of a discrete wire 3, may be received within each of the terminal-receiving cavities 22.
  • locking portions 28 may also be provided on the housing 20 that correspond to a connection member (not shown) on the board- side connector C2.
  • the interior walls of the first housing 10 and/or second housing 20 may have a relatively small width dimension, and can be formed from the polymer composition of the present invention.
  • the walls are, for example, shown in more detail in Fig. 2.
  • insertion passageways or spaces 225 are defined between opposing walls 224 that can accommodate contact pins.
  • the walls 224 have a width "w" that is within the ranges noted above.
  • fibers e.g., element 400
  • such fibers may have a volume average length and narrow length distribution within a certain range to best match the width of the walls.
  • the ratio of the width of at least one of the walls to the volume average length of the fibers is from about 0.8 to about 3.2, in some embodiments from about 1 .0 to about 3.0, and in some embodiments, from about 1 .2 to about 2.9.
  • any other portion of the housing may also be formed from the polymer
  • the connector may also include a shield that encloses the housing.
  • Some or all of the shield may be formed from the polymer composition of the present invention.
  • the housing and the shield can each be a one-piece structure unitarily molded from the polymer composition.
  • the shield can be a two-piece structure that includes a first shell and a second shell, each of which may be formed from the polymer composition of the present invention.
  • the polymer composition may also be used in a wide variety of other components.
  • the polymer composition may be molded into a planar substrate for use in an electronic component.
  • the substrate may be thin, such as having a thickness of about 500 micrometers or less, in some embodiments from about 50 to about 450 micrometers, and in some embodiments, from about 100 to about 400 micrometers.
  • the planar substrate may be applied with one or more conductive elements using a variety of known techniques (e.g., laser direct structuring, electroplating, etc.).
  • the conductive elements may serve a variety of different purposes.
  • the conductive elements form an integrated circuit, such as those used in SIM cards.
  • the conductive elements form antennas of a variety of different types, such as antennae with resonating elements that are formed from patch antenna
  • antenna structures inverted-F antenna structures, closed and open slot antenna structures, loop antenna structures, monopoles, dipoles, planar inverted-F antenna structures, hybrids of these designs, etc.
  • the resulting antenna structures may be incorporated into the housing of a relatively compact portable electronic component, such as described above, in which the available interior space is relatively small.
  • a handheld device 410 with cellular telephone capabilities is shown in Figs. 4-5.
  • the device 410 may have a housing 412 formed from plastic, metal, other suitable dielectric materials, other suitable conductive materials, or combinations of such materials.
  • a display 414 may be provided on a front surface of the device 410, such as a touch screen display.
  • the device 410 may also have a speaker port 440 and other input-output ports.
  • One or more buttons 438 and other user input devices may be used to gather user input. As shown in Fig.
  • an antenna structure 426 is also provided on a rear surface 442 of device 410, although it should be understood that the antenna structure can generally be positioned at any desired location of the device.
  • the antenna structure 426 may contain a planar substrate that is formed from the polymer composition of the present invention.
  • the antenna structure may be electrically connected to other components within the electronic device using any of a variety of known techniques.
  • the housing 412 or a part of housing 412 may serve as a conductive ground plane for the antenna structure 426.
  • a planar substrate that is formed form the polymer composition of the present invention may also be employed in other applications.
  • the planar substrate may be used to form a base of a compact camera module ("CCM"), which is commonly employed in wireless communication devices (e.g., cellular phone).
  • CCM compact camera module
  • FIGs. 6-7 for example, one particular embodiment of a compact camera module 500 is shown in more detail.
  • the compact camera module 500 contains a lens assembly 504 that overlies a base 506.
  • the lens assembly 504 may have any of a variety of configurations as is known in the art, and may include fixed focus-type lenses and/or auto focus-type lenses.
  • the lens assembly 504 is in the form of a hollow barrel that houses lenses 604, which are in communication with an image sensor 602 positioned on the main board 508 and controlled by a circuit 601 .
  • the barrel may have any of a variety of shapes, such as rectangular, cylindrical, etc.
  • the barrel may also be formed from the polymer composition of the present invention and have a wall thickness within the ranges noted above. It should be understood that other parts of the camera module may also be formed from the polymer composition of the present invention.
  • a polymer film 510 e.g., polyester film
  • thermal insulating cap 502 may cover the lens assembly 504.
  • the film 510 and/or cap 502 may also be formed from the polymer composition of the present invention.
  • Yet other possible electronic components that may employ the polymer composition include, for instance, cellular telephones, laptop computers, small portable computers (e.g., ultraportable computers, netbook computers, and tablet computers), wrist-watch devices, pendant devices, headphone and earpiece devices, media players with wireless communications capabilities, handheld computers (also sometimes called personal digital assistants), remote controllers, global positioning system (GPS) devices, handheld gaming devices, battery covers, speakers, camera modules, integrated circuits (e.g., SIM cards), housings for electronic devices, electrical controls, circuit breakers, switches, power electronics, printer parts, etc.
  • GPS global positioning system
  • a molded part formed from the polymer composition of the present invention can have excellent mechanical and thermal properties. As indicated above, this is due in part to the unique ability of the ionic liquid to be uniformly blended and dispersed within the liquid crystalline polymer matrix.
  • the molded part may, for instance, possess a relatively high impact strength (Charpy notched impact strength), such as about 4 kJ/m 2 or more, in some embodiments from about 2 to about 60 kJ/m 2 , in some embodiments, from about 2 to about 40 kJ/m 2 , and in some embodiments, from about 3 to about 30 kJ/m 2 , measured at 23°C according to ISO Test No.
  • the tensile and flexural mechanical properties of the part may also be good.
  • the part may exhibit a tensile strength of from about 20 to about 500 MPa, in some embodiments from about 50 to about
  • a tensile break strain of about 0.5% or more, in some embodiments from about 0.6% to about 20%, and in some embodiments, from about 0.8% to about 3.5%; and/or a tensile modulus of from about 5,000 MPa to about 30,000 MPa, in some
  • tensile properties may be determined in accordance with ISO Test No. 527 (technically equivalent to ASTM D638) at 23°C.
  • the molded part may also exhibit a flexural strength of from about 20 to about 500 MPa, in some embodiments from about 50 to about 400 MPa, and in some embodiments, from about 100 to about 350 MPa; a flexural break strain of about 0.5% or more, in some embodiments from about 0.6% to about 20%, and in some embodiments, from about 0.8% to about 3.5%; and/or a flexural modulus of from about 5,000 MPa to about 30,000 MPa, in some embodiments from about 8,000 MPa to about 20,000 MPa, and in some
  • the flexural properties may be determined in accordance with ISO Test No. 178 (technically equivalent to ASTM D790) at 23°C.
  • the molded part may also exhibit a deflection temperature under load (DTUL) of about 200°C or more, and in some
  • the molded part may also possess improved flame resistance performance, even in the absence of conventional flame retardants.
  • the flame resistance of the composition may, for instance, be determined in accordance the procedure of Underwriter's Laboratory Bulletin 94 entitled “Tests for Flammability of Plastic Materials, UL94.” Several ratings can be applied based on the time to extinguish (total flame time) and ability to resist dripping as described in more detail below. According to this procedure, for example, a molded part formed from the composition of the present invention may achieve a V0 rating, which means that the part has a total flame time of 50 seconds or less and a total number of drips of burning particles that ignite cotton of 0, determined at a given part thickness (e.g., 0.25 or 0.8 mm).
  • a molded part formed from the composition of the present invention when exposed to an open flame, may exhibit a total flame time of about 50 seconds or less, in some embodiments about 45 seconds or less, and in some embodiments, from about 1 to about 40 seconds.
  • the total number of drips of burning particles produced during the UL94 test may be 3 or less, in some embodiments 2 or less, and in some embodiments, 1 or less (e.g., 0).
  • Such testing may be performed after conditioning for 48 hours at 23°C and 50% relative humidity.
  • Antistatic Test To test for antistatic behavior, molded disks/plaques are gently rubbed against paper to create an electrostatic charge on the molded part surface. The parts are then brought near the small pieces of papers. If an electrostatic charge is created on the part surface, an attractive force between the part and the paper is created. Likewise, if there is no electrostatic charge created, no movement for the paper occurs as the part is moved closer to the paper. If there is movement in the paper, it is recorded as "no" and if there is no movement in the paper, then it is recorded as "yes.”
  • the surface and volume resistivity values are generally determined in accordance with IEC 60093 (similar to ASTM D257-07). According to this procedure, a standard specimen (e.g., 1 meter cube) is placed between two electrodes. A voltage is applied for sixty (60) seconds and the resistance is measured. The surface resistivity is the quotient of the potential gradient (in V/m) and the current per unit of electrode length (in A/m), and generally represents the resistance to leakage current along the surface of an insulating material.
  • volume resistivity is also determined as the ratio of the potential gradient parallel to the current in a material to the current density. In SI units, volume resistivity is numerically equal to the direct-current resistance between opposite faces of a one- meter cube of the material (ohm-m).
  • melt Viscosity The melt viscosity (Pa-s) may be determined in accordance with ISO Test No. 1 1443 at a shear rate of 1000 s "1 and temperature
  • the rheometer orifice (die) had a diameter of 1 mm, length of
  • Tm The melting temperature
  • DSC differential scanning calorimetry
  • the melting temperature is the differential scanning calorimetry (DSC) peak melt temperature as determined by ISO Test No. 1 1357. Under the DSC procedure, samples were heated and cooled at 20°C per minute as stated in ISO Standard 10350 using DSC measurements conducted on a TA Q2000 Instrument.
  • DTUL Deflection Temperature Under Load
  • test strip sample having a length of 80 mm, thickness of 10 mm, and width of 4 mm was subjected to an edgewise three-point bending test in which the specified load (maximum outer fibers stress) was 1 .8 Megapascals.
  • the specimen was lowered into a silicone oil bath where the temperature is raised at 2°C per minute until it deflects 0.25 mm (0.32 mm for ISO Test No. 75-2).
  • Tensile Modulus, Tensile Stress, and Tensile Elongation Tensile properties are tested according to ISO Test No. 527 (technically equivalent to ASTM D638). Modulus and strength measurements are made on the same test strip sample having a length of 80 mm, thickness of 10 mm, and width of 4 mm. The testing temperature is 23°C, and the testing speeds are 1 or 5 mm/min.
  • Flexural Modulus, Flexural Stress, and Flexural Strain Flexural properties are tested according to ISO Test No. 178 (technically equivalent to ASTM D790). This test is performed on a 64 mm support span. Tests are run on the center portions of uncut ISO 3167 multi-purpose bars. The testing
  • Notched Charpy Impact Strength Notched Charpy properties are tested according to ISO Test No. ISO 179-1 ) (technically equivalent to ASTM D256, Method B). This test is run using a Type A notch (0.25 mm base radius) and Type 1 specimen size (length of 80 mm, width of 10 mm, and thickness of 4 mm). Specimens are cut from the center of a multi-purpose bar using a single tooth milling machine. The testing temperature is 23°C.
  • UL94 A specimen is supported in a vertical position and a flame is applied to the bottom of the specimen. The flame is applied for ten (10) seconds and then removed until flaming stops, at which time the flame is reapplied for another ten (10) seconds and then removed.
  • Two (2) sets of five (5) specimens are tested. The sample size is a length of 125 mm, width of 13 mm, and thickness of 0.8 mm. The two sets are conditioned before and after aging. For unaged testing, each thickness is tested after conditioning for 48 hours at 23°C and 50% relative humidity. For aged testing, five (5) samples of each thickness are tested after conditioning for 7 days at 70°C.
  • Samples 1 -6 are formed from various percentages of a liquid crystalline polymer, lubricant (GlycolubeTM P), and ionic liquid as indicated in Table 1 below. Compounding is performed using an 18-mm single screw extruder. A comparative sample (Comp. Sample 1 ) is also formed from the liquid crystalline polymer and the lubricant. The liquid crystalline polymer in each of the samples is formed from HBA, HNA, TA, BP, and APAP, such as described in U.S. Patent No. 5,508,374 to Lee, et al.
  • the ionic liquid is tri-n- butylmethylammonium bis-(trifluoromethanesulfonyl)imide (FC-4400 from 3M). Parts are injection molded from Sample 1 and Control Sample 1 into plaques (60 mm x 60 mm) and tested for resistivity (surface and volume), antistatic behavior, and thermal properties. The results are set forth below in Table 1 .
  • an increased amount of the ionic liquid generally resulted in a decrease in surface resistivity, but without a substantial impact on the physical properties of the composition.
  • a sample (Sample 7) is formed from a liquid crystalline polymer (as described above), glass fibers, talc, lubricant (GlycolubeTM P), ionic liquid, black color masterbatch, aluminum trihydrate ("ATH"), 4,4'-biphenol (“BP”), and 2,6- naphthelene dicarboxylic acid (“NDA”).
  • the black color masterbatch contains 80 wt.% liquid crystalline polymer and 20 wt.% carbon black.
  • the liquid crystalline polymer and ionic liquid are the same as described in Example 1 , and the fibers are obtained from Owens Corning and have an initial length of 4 millimeters. Compounding is performed using a 25-mm twin screw extruder.
  • a comparative sample is also formed without any antistatic additive (Comp. Sample 2) and with a carbon fiber masterbatch as an antistatic additive (Comp. Samples 3-6).
  • the carbon fiber masterbatch contains 30 wt.% carbon fibers and 70 wt.% liquid crystalline polymer. Parts are injection molded from Sample 7 and Comparative Samples 2-6 into plaques (60 mm x 60 mm) and tested for resistivity (surface and volume), antistatic behavior, thermal properties, mechanical properties, and flammability. The results are set forth below in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
PCT/US2013/064760 2012-10-16 2013-10-14 Antistatic liquid crystalline polymer composition Ceased WO2014062536A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015537754A JP6462576B2 (ja) 2012-10-16 2013-10-14 静電気防止液晶ポリマー組成物
CN201380053722.7A CN104736672B (zh) 2012-10-16 2013-10-14 抗静电液晶聚合物组合物
KR1020157009445A KR102246137B1 (ko) 2012-10-16 2013-10-14 대전방지성 액체 결정질 중합체 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261714337P 2012-10-16 2012-10-16
US61/714,337 2012-10-16
US201361779260P 2013-03-13 2013-03-13
US61/779,260 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014062536A1 true WO2014062536A1 (en) 2014-04-24

Family

ID=49514044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/064760 Ceased WO2014062536A1 (en) 2012-10-16 2013-10-14 Antistatic liquid crystalline polymer composition

Country Status (6)

Country Link
US (2) US9284435B2 (enExample)
JP (1) JP6462576B2 (enExample)
KR (1) KR102246137B1 (enExample)
CN (1) CN104736672B (enExample)
TW (1) TWI646135B (enExample)
WO (1) WO2014062536A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157051A1 (en) * 2014-04-09 2015-10-15 Ticona Llc Antistatic polymer composition
US9822254B2 (en) 2014-04-09 2017-11-21 Ticona Llc Camera module
US10829634B2 (en) 2017-12-05 2020-11-10 Ticona Llc Aromatic polymer composition for use in a camera module

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284435B2 (en) * 2012-10-16 2016-03-15 Ticona Llc Antistatic liquid crystalline polymer composition
WO2014088700A1 (en) 2012-12-05 2014-06-12 Ticona Llc Conductive liquid crystalline polymer composition
CN111732821A (zh) 2013-03-13 2020-10-02 提克纳有限责任公司 抗静电液晶聚合物组合物
DE112016000328T5 (de) * 2015-01-13 2017-10-19 Ube Exsymo Co., Ltd. Flexible Verbundplatte und mehrschichtige Leiterplatte
US9862809B2 (en) 2015-07-31 2018-01-09 Ticona Llc Camera module
US10407605B2 (en) 2015-07-31 2019-09-10 Ticona Llc Thermally conductive polymer composition
TWI708806B (zh) * 2015-08-17 2020-11-01 美商堤康那責任有限公司 用於相機模組之液晶聚合物組合物
CN107924039B (zh) * 2015-09-01 2020-10-16 宝理塑料株式会社 照相机模块用液晶性树脂组合物及使用其的照相机模块
US10633535B2 (en) 2017-02-06 2020-04-28 Ticona Llc Polyester polymer compositions
WO2019109595A1 (en) * 2017-12-05 2019-06-13 Ticona Llc Liquid crystalline polymer composition
US11384238B2 (en) 2018-02-08 2022-07-12 Celanese Sales Germany Gmbh Polymer composite containing recycled carbon fibers
EP3755515A4 (en) 2018-02-20 2021-11-10 Ticona LLC THERMAL CONDUCTIVE POLYMER COMPOSITION
KR20210088555A (ko) * 2018-11-09 2021-07-14 스미또모 가가꾸 가부시끼가이샤 액정 폴리에스테르 수지 조성물 및 성형품
US11722759B2 (en) 2019-03-20 2023-08-08 Ticona Llc Actuator assembly for a camera module
KR20210148198A (ko) 2019-03-20 2021-12-07 티코나 엘엘씨 카메라 모듈에서 사용하기 위한 중합체 조성물
CN110746754B (zh) * 2019-09-25 2021-06-29 广东格瑞新材料股份有限公司 一种激光雕刻液晶高分子组合物及其制备方法
CN115151403A (zh) 2019-12-17 2022-10-04 提克纳有限责任公司 采用热致液晶聚合物的三维打印系统
JP2023515975A (ja) * 2020-02-26 2023-04-17 ティコナ・エルエルシー 電子デバイス
EP4110610A4 (en) * 2020-02-26 2024-03-27 Ticona LLC POLYMER COMPOSITION FOR ELECTRONIC DEVICE
JP7737387B2 (ja) 2020-02-26 2025-09-10 ティコナ・エルエルシー 回路構造体
KR20220146567A (ko) * 2020-02-26 2022-11-01 티코나 엘엘씨 전자 디바이스
JP7744146B2 (ja) * 2020-03-30 2025-09-25 日東電工株式会社 粘着剤組成物、粘着シート、及び接合体
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device
CN112126243B (zh) * 2020-09-09 2022-06-07 金发科技股份有限公司 一种液晶聚合物组合物
US20220127499A1 (en) * 2020-10-26 2022-04-28 Ticona Llc Laminate Structure
EP4264742A1 (en) * 2020-12-17 2023-10-25 Ticona LLC Antenna module for a 5g system
EP4263632A4 (en) 2020-12-17 2024-11-20 Ticona LLC FIBER-REINFORCED PROPYLENE POLYMER COMPOSITION
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
US12209163B2 (en) 2021-05-06 2025-01-28 Ticona Llc Polymer composition for use in a camera module
EP4095197A1 (en) * 2021-05-28 2022-11-30 SHPP Global Technologies B.V. Articles and structures with colorable electro-static dissipative (esd) polycarbonate blends
CN118613966A (zh) 2021-12-01 2024-09-06 提克纳有限责任公司 天线模块
TW202340697A (zh) 2021-12-13 2023-10-16 美商堤康那責任有限公司 樣品之滾珠凹部性質之測試技術
US12421453B2 (en) * 2022-08-22 2025-09-23 Orbotech Ltd. Cationic gettering in liquid crystal NCAP and PDLC films

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161470A (en) 1977-10-20 1979-07-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US5508374A (en) 1991-04-19 1996-04-16 Hoechst Celanese Corp. Melt processable poly(ester amide) capable of forming an anisotropic melt containing an aromatic moiety capable of forming an amide linkage
US5616680A (en) 1994-10-04 1997-04-01 Hoechst Celanese Corporation Process for producing liquid crystal polymer
US6114492A (en) 2000-01-14 2000-09-05 Ticona Llc Process for producing liquid crystal polymer
EP1116769A2 (en) * 2000-01-17 2001-07-18 Fuji Photo Film Co., Ltd. Electrolyte composition, electrochemical cell and ionic liquid crystal monomer
US6514611B1 (en) 2001-08-21 2003-02-04 Ticona Llc Anisotropic melt-forming polymers having a high degree of stretchability
WO2004058851A1 (en) 2002-12-18 2004-07-15 E.I. Du Pont De Nemours And Company Process for producing a liquid crystalline polymer
WO2006126861A1 (en) * 2005-05-27 2006-11-30 Busan National University Industry-University Cooperation Foundation Solid-state electrolyte composition containing liquid crystal materials and dye-sensitized solar cells using thereof
US20070219301A1 (en) * 2004-08-03 2007-09-20 Sumitomo Chemical Co., Ltd. Liquid-Crystal Polyester Resin Composition
US20080029735A1 (en) * 2006-07-03 2008-02-07 Gin Douglas L Surfactants and polymerizable surfactants based on room-temperature ionic liquids that form lyotropic liquid crystal phases with water and room-temperature ionic liquids
US20120235089A1 (en) * 2009-09-28 2012-09-20 Jx Nippon Oil & Energy Corporation Liquid crystal polyester resin composition

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458039A (en) 1983-02-07 1984-07-03 Celanese Corporation Thermotropic liquid crystalline polymer blend with reduced surface abrasion
JPS61285282A (ja) * 1985-06-12 1986-12-16 Polyplastics Co 光伝送路接続端子組成物
AU612707B2 (en) 1987-10-12 1991-07-18 Nippon Paint Co., Ltd. Thermosetting polyester resin and powder coating resinous composition containing the same
US5928589A (en) 1987-12-28 1999-07-27 Teijin Limited Processing for producing shaped wholly aromatic polyamide resin composition article and shaped article produced thereby
JP2830279B2 (ja) 1989-05-11 1998-12-02 住友化学工業株式会社 流動性の改良された液晶ポリエステル樹脂組成物
US5492946A (en) 1990-06-04 1996-02-20 Amoco Corporation Liquid crystalline polymer blends and molded articles therefrom
TW340130B (en) 1993-12-28 1998-09-11 Toray Industries Shaped article of liquid crystalline resin
US5830940A (en) 1993-12-28 1998-11-03 Toray Industries, Inc. Shaped article of liquid crystalline polymer
KR100207568B1 (ko) 1994-08-27 1999-07-15 손욱 전도성 측쇄형 액정화합물 및 이를 사용한 배향막
US6492463B1 (en) 1994-08-31 2002-12-10 E. I. Du Pont De Nemours And Company Liquid crystalline polymer composition
KR100366341B1 (ko) 1994-10-18 2003-05-16 포리프라스치쿠스 가부시끼 가이샤 열가소성수지조성물,그사출성형방법및사출성형체
EP0747422B1 (en) 1995-06-09 2002-09-25 Sumitomo Chemical Company Limited Use of inorganic oxides or hydroxides in liquid crystalline polyester resins
US5691689A (en) * 1995-08-11 1997-11-25 Eaton Corporation Electrical circuit protection devices comprising PTC conductive liquid crystal polymer compositions
US5962122A (en) 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
JP3686718B2 (ja) 1995-12-27 2005-08-24 ポリプラスチックス株式会社 液晶性ポリマー組成物および成形体
DE69712551T3 (de) 1996-02-19 2008-02-21 Sumitomo Chemical Co. Ltd. Flüssigkristalline Polyesterharz-Zusammensetzung
TW515822B (en) 1997-01-31 2003-01-01 Toray Industries Liquid-crystalline resin composition and precision moldings of the composition
US6121369A (en) 1997-06-06 2000-09-19 Eastman Chemical Company Liquid crystalline polyester compositions containing carbon black
US6046300A (en) 1997-12-26 2000-04-04 Toray Industries, Inc. Liquid-crystalline resin and thermoplastic resin composition
US6294618B1 (en) 1998-04-09 2001-09-25 E. I. Du Pont De Nemours And Company Low viscosity liquid crystalline polymer compositions
US6833405B1 (en) 1998-07-31 2004-12-21 E. I. Du Pont De Nemours And Company Compositions containing liquid crystalline polymers
US5969083A (en) 1998-09-18 1999-10-19 Eastman Chemical Company Liquid crystalline polyesters having a surprisingly good combination of a low melting point, a high heat distortion temperature, a low melt viscosity, and a high tensile elongation
TW490478B (en) 1998-11-12 2002-06-11 Sumitomo Chemical Co Liquid crystalline polyester resin for extrusion molding
JP4118425B2 (ja) 1998-12-18 2008-07-16 ポリプラスチックス株式会社 コネクター用液晶性ポリマー組成物およびコネクター
US6379795B1 (en) 1999-01-19 2002-04-30 E. I. Du Pont De Nemours And Company Injection moldable conductive aromatic thermoplastic liquid crystalline polymeric compositions
FI991006L (fi) 1999-05-03 2000-11-04 Optatech Oy Uudet nestekiteiset polymeerit
US6372829B1 (en) 1999-10-06 2002-04-16 3M Innovative Properties Company Antistatic composition
JP4450902B2 (ja) 1999-10-08 2010-04-14 ポリプラスチックス株式会社 液晶性ポリマー組成物
JP2001172479A (ja) 1999-12-16 2001-06-26 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物およびその成形品
CA2393259A1 (en) 2000-01-13 2001-07-19 E.I. Du Pont De Nemours And Company Liquid crystalline polymer compositions containing small particle size fillers
JP2001207054A (ja) 2000-01-24 2001-07-31 Polyplastics Co 液晶性ポリマー成形品
JP2001261946A (ja) 2000-03-14 2001-09-26 Polyplastics Co 液晶性ポリマー組成物および成形方法
US20020064701A1 (en) 2000-09-11 2002-05-30 Hand Doris I. Conductive liquid crystalline polymer film and method of manufacture thereof
CN100406431C (zh) * 2001-03-26 2008-07-30 日清纺织株式会社 离子液体、用于电存储设备的电解质盐、用于电存储设备的液体电解质、双电荷层电容器和二次电池
JP2002294038A (ja) 2001-03-28 2002-10-09 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JP4033678B2 (ja) 2001-03-30 2008-01-16 独立行政法人科学技術振興機構 液晶性イオン伝導体とその製造方法
TWI242027B (en) 2001-06-28 2005-10-21 Sumitomo Chemical Co Liquid crystal polyester resin mixture
JP3969171B2 (ja) 2001-11-12 2007-09-05 住友化学株式会社 液晶性ポリエステルおよびその製造方法
JPWO2003062286A1 (ja) 2002-01-22 2005-05-19 独立行政法人科学技術振興機構 重合可能なイオン伝導性液晶性複合体と異方的イオン伝導性高分子液晶複合体並びにその製造方法
JP4019731B2 (ja) 2002-02-25 2007-12-12 住友化学株式会社 コネクター用液晶性ポリエステル樹脂組成物
JP2005532440A (ja) 2002-07-05 2005-10-27 デグサ アクチエンゲゼルシャフト ポリマーとイオン性液体とからなるポリマー組成物
JP3834528B2 (ja) 2002-07-11 2006-10-18 ポリマテック株式会社 熱伝導性高分子成形体の製造方法
JP2004051852A (ja) 2002-07-22 2004-02-19 Polymatech Co Ltd 熱伝導性高分子成形体及びその製造方法
JP2005537379A (ja) 2002-09-03 2005-12-08 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー 熱伝導性液晶ポリマー組成物及びそれから形成された製品
TWI276660B (en) 2002-12-18 2007-03-21 Sumitomo Chemical Co Aromatic liquid crystal polyester and film thereof
CA2523546A1 (en) 2003-05-15 2004-12-02 Gregory R. Alms Fast crystallizing polyester compositions
KR101086123B1 (ko) 2003-05-15 2011-11-25 이 아이 듀폰 디 네모아 앤드 캄파니 폴리에스테르 조성물
JP2005015573A (ja) * 2003-06-24 2005-01-20 Mitsubishi Engineering Plastics Corp 帯電防止性樹脂組成物
US7547403B2 (en) 2003-07-02 2009-06-16 Polyplastics Co., Ltd. Electroconductive resin composition
US8697817B2 (en) 2003-09-04 2014-04-15 Ticona Llc Manufacturing process for liquid crystalline polymer
US7276284B2 (en) 2003-12-18 2007-10-02 Sgl-Carbon Ag Carbon fiber reinforced coke from the delayed coker
US20050176835A1 (en) 2004-01-12 2005-08-11 Toshikazu Kobayashi Thermally conductive thermoplastic resin compositions
US20050191877A1 (en) 2004-03-01 2005-09-01 Peter Huang Electrical connector
DE602005014218D1 (de) 2004-03-10 2009-06-10 Panasonic Elec Works Co Ltd Metallbeschichteter harzformkörper und herstellungsverfahren dafür
JP4016010B2 (ja) 2004-03-26 2007-12-05 株式会社東芝 リアルタイムスケジューリング可能性判定方法およびリアルタイムシステム
WO2005099984A1 (ja) 2004-04-15 2005-10-27 Polyplastics Co., Ltd. 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法
JP4871495B2 (ja) * 2004-06-11 2012-02-08 三光化学工業株式会社 制電性組成物、その製造方法、及びそれを用いた成形品
JP4664626B2 (ja) 2004-07-05 2011-04-06 ポリマテック株式会社 イオン伝導性高分子電解質膜及びその製造方法
JP4463637B2 (ja) 2004-07-30 2010-05-19 ポリプラスチックス株式会社 液晶性ポリエステル樹脂組成物
JP4763987B2 (ja) * 2004-08-27 2011-08-31 帝人化成株式会社 ポリカーボネート樹脂組成物
JP4665475B2 (ja) 2004-09-30 2011-04-06 住友化学株式会社 芳香族液晶ポリエステルフィルム
JP4498900B2 (ja) 2004-11-29 2010-07-07 ポリプラスチックス株式会社 信号読取装置用樹脂成形部品及びその成形方法
CN1828354A (zh) 2005-03-04 2006-09-06 普立尔科技股份有限公司 照相机模块及其制备方法
US7438832B2 (en) 2005-03-29 2008-10-21 Eastman Kodak Company Ionic liquid and electronically conductive polymer mixtures
US7825176B2 (en) 2005-08-31 2010-11-02 Sabic Innovative Plastics Ip B.V. High flow polyester composition
US20070057236A1 (en) 2005-09-12 2007-03-15 Sumitomo Chemical Company, Limited Conductive resin composition and the use thereof
DE102006048637A1 (de) 2005-10-13 2007-04-19 Polyplastics Co. Ltd. Flüssigkristalline Harzzusammensetzung zum Blasformen
KR20080098031A (ko) 2006-02-13 2008-11-06 폴리플라스틱스 가부시키가이샤 열가소성 수지 조성물 및 그 액정 디스플레이 부품 또는 정보 기록 매체 부품
WO2008005906A2 (en) * 2006-07-03 2008-01-10 Matheson Tri-Gas, Inc. Fluid storage and purification method and system using ionic liquid in particular di-imidazolium cation
JP2008075063A (ja) 2006-08-22 2008-04-03 Sumitomo Chemical Co Ltd 液晶性ポリマー成形体
TWI472574B (zh) 2006-08-24 2015-02-11 Polyplastics Co 非對稱電子零件
JP5332188B2 (ja) 2007-02-26 2013-11-06 住友化学株式会社 樹脂成形体及びその製造方法
JP5384023B2 (ja) 2007-04-23 2014-01-08 上野製薬株式会社 液晶ポリマー組成物およびそれからなる成形品
US8029694B2 (en) 2007-04-24 2011-10-04 E.I. Du Pont De Nemours And Company Thermally conductive and electrically resistive liquid crystalline polymer composition
JP2009030015A (ja) 2007-06-27 2009-02-12 Sumitomo Chemical Co Ltd 液晶性ポリエステル組成物
KR101087695B1 (ko) 2007-07-03 2011-11-30 주식회사 옵토메카 이종재료 일체형 렌즈 유닛 및 이를 구비하는 카메라 모듈
ES2358132T3 (es) 2007-08-24 2011-05-05 Ems-Patent Ag Masas moldeadas de poliamida a alta temperatura reforzadas con fibras de vidrio planas.
US8432484B2 (en) 2007-10-31 2013-04-30 STMicroelectronics (R&D) Ltd. Camera modules
JP2009155623A (ja) 2007-12-03 2009-07-16 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及びその成形体
JP2009231269A (ja) 2008-02-25 2009-10-08 Sumitomo Chemical Co Ltd 反射板及び発光装置
CN101981123B (zh) * 2008-03-28 2012-11-21 吉坤日矿日石能源株式会社 照相机模块用液晶聚酯树脂组合物
JP5325442B2 (ja) * 2008-03-28 2013-10-23 Jx日鉱日石エネルギー株式会社 カメラモジュール用液晶ポリエステル樹脂組成物
JP5165492B2 (ja) 2008-05-23 2013-03-21 ポリプラスチックス株式会社 平面状コネクター
US20100012354A1 (en) 2008-07-14 2010-01-21 Logan Brook Hedin Thermally conductive polymer based printed circuit board
EP2147776A1 (de) 2008-07-23 2010-01-27 SGL Carbon SE Verfahren zur Herstellung eines Fasergelege-verstärkten Verbundwerkstoffs, sowie Fasergelege-verstärkte Verbundwerkstoffe und deren Verwendung
KR101639439B1 (ko) 2008-12-25 2016-07-13 스미또모 가가꾸 가부시키가이샤 액정성 폴리에스테르 수지 조성물 및 이것을 사용한 커넥터
JP5503915B2 (ja) 2009-07-30 2014-05-28 住友化学株式会社 液晶ポリエステル組成物およびこれを用いた電子回路基板
JP2011094116A (ja) * 2009-09-29 2011-05-12 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物、成形体および光ピックアップレンズホルダー
KR101708927B1 (ko) 2009-10-09 2017-02-21 심천 워트 어드밴스드 머티리얼즈 주식회사 내열성이 향상된 전방향족 액정 폴리에스테르 수지 컴파운드 및 그의 제조방법
KR101783477B1 (ko) 2009-10-21 2017-09-29 심천 워트 어드밴스드 머티리얼즈 주식회사 전방향족 액정 폴리에스테르 수지 컴파운드, 상기 수지 컴파운드의 제조방법, 광픽업용 부품, 및 상기 부품의 제조방법
TW201132747A (en) 2009-11-16 2011-10-01 Sumitomo Chemical Co Liquid crystalline polyester composition for connector and connector using the same
KR101004428B1 (ko) 2009-12-30 2010-12-28 주식회사 대림코퍼레이션 대전방지특성 또는 전기전도특성을 가지는 전방향족 폴리이미드 분말의 제조방법
JP2011157422A (ja) 2010-01-29 2011-08-18 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物、その製造方法及びコネクター
JP5504923B2 (ja) 2010-01-29 2014-05-28 住友化学株式会社 液晶ポリエステル組成物の製造方法及びコネクター
SG183459A1 (en) 2010-02-25 2012-09-27 Ticona Llc Thermally conductive and dimensionally stable liquid crystalline polymer composition
KR101792987B1 (ko) 2010-03-16 2017-11-02 제이엑스티지 에네루기 가부시키가이샤 전방향족 서모트로픽 액정 폴리에스테르 수지 조성물, 성형체 및 led 리플렉터
JP2011202062A (ja) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd 摺動用熱可塑性樹脂組成物、摺動用熱可塑性樹脂組成物の製造方法および摺動部品
JP2012046621A (ja) * 2010-08-26 2012-03-08 Panasonic Electric Works Co Ltd 成形品及びコネクタ
JP5695389B2 (ja) 2010-10-15 2015-04-01 Jx日鉱日石エネルギー株式会社 液晶ポリエステル樹脂組成物及びカメラモジュール部品
KR101711214B1 (ko) 2010-11-12 2017-02-28 심천 워트 어드밴스드 머티리얼즈 주식회사 반사체 및 이를 구비하는 발광장치
KR20120052647A (ko) 2010-11-16 2012-05-24 삼성정밀화학 주식회사 유동성이 향상된 전방향족 액정 폴리에스테르 수지 컴파운드
JP5633338B2 (ja) 2010-11-30 2014-12-03 住友化学株式会社 液晶ポリエステル組成物
KR101228705B1 (ko) 2010-12-27 2013-02-01 도레이 카부시키가이샤 전방향족 액정 폴리에스테르 및 그 제조 방법
WO2012090411A1 (ja) 2010-12-28 2012-07-05 東レ株式会社 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
WO2012090410A1 (ja) 2010-12-28 2012-07-05 東レ株式会社 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5723618B2 (ja) 2011-02-04 2015-05-27 日東電工株式会社 粘着シートおよび表面保護フィルム
US9045621B2 (en) 2011-02-28 2015-06-02 Toray Industries, Inc. Liquid crystalline polyester composition and metal composite molded product using the same
TWI586750B (zh) * 2011-02-28 2017-06-11 住友化學股份有限公司 液晶聚酯組成物及其製造方法
KR20120114048A (ko) 2011-04-06 2012-10-16 삼성정밀화학 주식회사 열전도성 고분자 복합소재 및 이를 포함하는 물품
JP5730704B2 (ja) 2011-07-27 2015-06-10 上野製薬株式会社 液晶ポリマー組成物
WO2013032970A1 (en) 2011-08-29 2013-03-07 Ticona Llc Liquid crystalline polymer composition containing a fibrous filler
TWI554594B (zh) 2011-08-29 2016-10-21 堤康那責任有限公司 高流量液晶聚合物組合物
US9045685B2 (en) 2011-08-29 2015-06-02 Ticona Llc Cast molded parts formed from a liquid crystalline polymer
TW201319223A (zh) 2011-08-29 2013-05-16 Ticona Llc 高流量液晶聚合物組合物
WO2013074467A1 (en) 2011-11-15 2013-05-23 Ticona Llc Low naphthenic liquid crystalline polymer composition for use in molded parts of a small dimensional tolerance
US20130123420A1 (en) 2011-11-15 2013-05-16 Ticona Llc Liquid Crystalline Polymer Composition for High Voltage Electronic Components
CN103930464B (zh) 2011-11-15 2016-02-10 提克纳有限责任公司 紧凑型相机模块
WO2013074477A1 (en) 2011-11-15 2013-05-23 Ticona Llc Naphthenic-rich liquid crystalline polymer composition with improved flammability performance
US8932483B2 (en) 2011-11-15 2015-01-13 Ticona Llc Low naphthenic liquid crystalline polymer composition
KR102093832B1 (ko) 2012-02-08 2020-03-26 메르크 파텐트 게엠베하 전도성 첨가제를 포함하는 반응성 메소겐 제제
US9284435B2 (en) * 2012-10-16 2016-03-15 Ticona Llc Antistatic liquid crystalline polymer composition
WO2014088700A1 (en) 2012-12-05 2014-06-12 Ticona Llc Conductive liquid crystalline polymer composition
CN111732821A (zh) * 2013-03-13 2020-10-02 提克纳有限责任公司 抗静电液晶聚合物组合物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161470A (en) 1977-10-20 1979-07-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US5508374A (en) 1991-04-19 1996-04-16 Hoechst Celanese Corp. Melt processable poly(ester amide) capable of forming an anisotropic melt containing an aromatic moiety capable of forming an amide linkage
US5616680A (en) 1994-10-04 1997-04-01 Hoechst Celanese Corporation Process for producing liquid crystal polymer
US6114492A (en) 2000-01-14 2000-09-05 Ticona Llc Process for producing liquid crystal polymer
EP1116769A2 (en) * 2000-01-17 2001-07-18 Fuji Photo Film Co., Ltd. Electrolyte composition, electrochemical cell and ionic liquid crystal monomer
US6514611B1 (en) 2001-08-21 2003-02-04 Ticona Llc Anisotropic melt-forming polymers having a high degree of stretchability
WO2004058851A1 (en) 2002-12-18 2004-07-15 E.I. Du Pont De Nemours And Company Process for producing a liquid crystalline polymer
US20070219301A1 (en) * 2004-08-03 2007-09-20 Sumitomo Chemical Co., Ltd. Liquid-Crystal Polyester Resin Composition
WO2006126861A1 (en) * 2005-05-27 2006-11-30 Busan National University Industry-University Cooperation Foundation Solid-state electrolyte composition containing liquid crystal materials and dye-sensitized solar cells using thereof
US20080029735A1 (en) * 2006-07-03 2008-02-07 Gin Douglas L Surfactants and polymerizable surfactants based on room-temperature ionic liquids that form lyotropic liquid crystal phases with water and room-temperature ionic liquids
US20120235089A1 (en) * 2009-09-28 2012-09-20 Jx Nippon Oil & Energy Corporation Liquid crystal polyester resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUSHENG LIU ET AL: "Immobilization and melting point depression of imidazolium ionic liquids on the surface of nano-SiOx particles", DALTON TRANSACTIONS, vol. 39, no. 13, 1 January 2010 (2010-01-01), pages 3190, XP055095351, ISSN: 1477-9226, DOI: 10.1039/b924042j *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157051A1 (en) * 2014-04-09 2015-10-15 Ticona Llc Antistatic polymer composition
US9822254B2 (en) 2014-04-09 2017-11-21 Ticona Llc Camera module
US10287421B2 (en) 2014-04-09 2019-05-14 Ticona Llc Antistatic polymer composition
US10640648B2 (en) 2014-04-09 2020-05-05 Ticona Llc Camera module
US11208556B2 (en) 2014-04-09 2021-12-28 Ticona Llc Camera module
US12163023B2 (en) 2014-04-09 2024-12-10 Ticona Llc Camera module
US10829634B2 (en) 2017-12-05 2020-11-10 Ticona Llc Aromatic polymer composition for use in a camera module
US11725106B2 (en) 2017-12-05 2023-08-15 Ticona Llc Aromatic polymer composition for use in a camera module

Also Published As

Publication number Publication date
TW201431932A (zh) 2014-08-16
KR102246137B1 (ko) 2021-04-28
US9988519B2 (en) 2018-06-05
TWI646135B (zh) 2019-01-01
JP2015532353A (ja) 2015-11-09
US20160185940A1 (en) 2016-06-30
KR20150073171A (ko) 2015-06-30
US20140105590A1 (en) 2014-04-17
JP6462576B2 (ja) 2019-01-30
CN104736672A (zh) 2015-06-24
CN104736672B (zh) 2017-10-24
US9284435B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US9988519B2 (en) Antistatic liquid crystalline polymer composition
US11884795B2 (en) Liquid crystalline polymer composition
US9355753B2 (en) Conductive liquid crystalline polymer composition
US8906259B2 (en) Naphthenic-rich liquid crystalline polymer composition with improved flammability performance
US8932483B2 (en) Low naphthenic liquid crystalline polymer composition
US20130123420A1 (en) Liquid Crystalline Polymer Composition for High Voltage Electronic Components
WO2013074467A1 (en) Low naphthenic liquid crystalline polymer composition for use in molded parts of a small dimensional tolerance
WO2013074472A1 (en) Method of forming a liquid crystalline thermoplastic composition
US20160152801A1 (en) Polymer Composition with Improved Flammability Performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009445

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015537754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784070

Country of ref document: EP

Kind code of ref document: A1