WO2005099984A1 - 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法 - Google Patents

繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法 Download PDF

Info

Publication number
WO2005099984A1
WO2005099984A1 PCT/JP2005/007368 JP2005007368W WO2005099984A1 WO 2005099984 A1 WO2005099984 A1 WO 2005099984A1 JP 2005007368 W JP2005007368 W JP 2005007368W WO 2005099984 A1 WO2005099984 A1 WO 2005099984A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
fibrous filler
extruder
producing
Prior art date
Application number
PCT/JP2005/007368
Other languages
English (en)
French (fr)
Inventor
Kei Aoki
Masayuki Sakai
Kazufumi Watanabe
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Priority to US10/594,679 priority Critical patent/US7641833B2/en
Priority to JP2006512401A priority patent/JP4343223B2/ja
Publication of WO2005099984A1 publication Critical patent/WO2005099984A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/535Screws with thread pitch varying along the longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature

Definitions

  • the present invention uses an extruder to economically produce a resin composition pellet having a specific weight-average fiber length and a specific fiber length distribution by adding a fibrous filler to a resin.
  • the pellet is suitable for molding a socket of a pin of a semiconductor device, particularly a socket having a pitch interval of 2 mm or less in a lattice portion provided with a large number of pin holes.
  • the ratio of glass fibers whose weight average fiber length is in the range of 0.02 to 0.55 mm and whose fiber length exceeds l mm is 0 to 15% by weight of the glass fibers, and Injection molding a pellet obtained from a glass fiber reinforced liquid crystalline resin composition having a fiber length of 0.1 mm or less and a glass fiber ratio of 0 to 50% by weight of the glass fiber,
  • the flow length during injection molding, shrinkage of molded products, surface impact strength, etc. are required.
  • this technique is not a technique for freely controlling the weight ratio and the average fiber length of glass fibers in a desired glass fiber filling. Disclosure of the invention
  • An object of the present invention is to provide a fibrous filler in which a fibrous filler is uniformly blended, has a desired weight-average fiber length (1), and has a specific performance when formed into an injection molded article.
  • An object of the present invention is to provide a method for economically producing resin composition pellets by suppressing resin deterioration by using a simple method by using an ordinary extruder to fill the resin composition pellets in a large amount.
  • fibrous fillers are used for flat sockets with a grid pitch of 2.0 mm or less, a grid thickness of 0.5 mm or less, and a socket height of 5.0 mm or less.
  • An object of the present invention is to provide a method for producing a resin composition pellet. The present inventors have found that the above problem can be solved by supplying a small amount of resin from the main feed port and side feeding the fibrous filler together with the remaining large amount of resin, and completed the present invention. I came to.
  • the first aspect of the present invention is that the resin (A) is 80 to 55% by weight, the weight average fiber length (L) is 1 mm or more, and the fibrous filler (B) is 20 to 45% by weight (where the resin (A) The total amount of the fibrous filler (B) is 100% by weight.) Is supplied to the extruder, and the weight average fiber length (1) of the fibrous filler (B) in the resin composition pellets is 180 to 180%. 3 When producing a resin composition pellet of 60 m,
  • a part of the resin (A) (X) is fed from the main feed port of the extruder,
  • the remaining amount (1 X) of fibrous filler (B) and resin (A) is reduced by xZ (1—X) from the side feed port provided in the extrusion direction rear of the main feed port to 50
  • xZ (1—X) is reduced by xZ (1—X) from the side feed port provided in the extrusion direction rear of the main feed port to 50
  • a second aspect of the present invention is the resin composition according to the first aspect, wherein the fibrous filler (B) in the resin composition pellets has a fiber length of more than 300 im in a proportion of 5 to 40% by weight.
  • a method for producing a pellet is provided.
  • a third aspect of the present invention provides the method for producing a resin composition pellet according to the first or second aspect of the present invention, wherein the resin composition pellet is obtained by single-pass treatment with an extruder.
  • a fourth aspect of the present invention provides the method for producing a resin composition pellet according to any one of the first to third aspects of the present invention, wherein the resin (A) is a liquid crystalline polymer.
  • a fifth aspect of the present invention provides the method for producing a resin composition pellet according to any one of the first to fourth aspects of the present invention, wherein the fibrous filler (B) is glass fiber and Z or carbon fiber. ..
  • the sixth aspect of the present invention is a planar shape in which a pitch interval of a grid portion provided with a large number of pin holes is 2.0 mm or less, a grid thickness is 0.5 mm or less, and a socket height is 5.0 mm or less.
  • a seventh aspect of the present invention is that the extruder is a twin-screw extruder, and the screw length / crew diameter is
  • (L / D) ratio is 20 or more, wherein the screw has a plasticizing section and a kneading section, and the side-feed is located downstream of the plasticizing section.
  • the present invention also provides a method for producing the resin composition pellet described in (1).
  • An eighth aspect of the present invention provides the method for producing a resin composition pellet according to any one of the first to seventh aspects of the present invention, wherein the melt viscosity of the resin composition pellet is 10 to 55 Pa's.
  • a molded product obtained by injection-molding a resin composition pellet has a flexural modulus of 15,000 MPa or more, a flatness before solder reflow treatment of 0.09 mm or less, and a peak temperature. Heating equivalent to solder reflow treatment at 230 to 280 ° C
  • FIG. 1 is a diagram showing an example of an extruder used in the present invention.
  • FIG. 2 is a diagram showing an example of an injection molded product according to the present invention.
  • 1 is a main feed port
  • 2 is a plasticizing section
  • 3 is a side feed port
  • 4 is a kneading section
  • 5 is a die
  • 6 is a screw
  • 7 is a cylinder
  • 8 is a vent port
  • 9 is a decompression device
  • 10 Denotes a resin pool
  • 11 denotes a pitch interval
  • 12 denotes a lattice portion.
  • the extruder according to the present invention comprises a main feed port 1, a plasticizing section 2, a side feed port 3, a kneading section 4, an extrusion die 5, a screw 6, a cylinder 7, and, if necessary, an obtained resin composition. And a pressure reducing device 9.
  • One or more side feed ports 3 may be provided.
  • a conventionally used extruder can be used as it is.
  • it may be either a single axis type or a biaxial type.
  • a biaxial type it can be used from a single-thread screw to a triple-screw that rotate in the same direction.
  • it may be an oblique axis or an incompletely meshed type.
  • the screw elements that determine the screw design include a transport element consisting of a normal flotation, an element for the plasticizing section and an element for the kneading section.
  • the screw design of the plasticizing section and the kneading section in the extruder should be appropriately designed according to the properties of the resin and the type of the filler.
  • the screw length of the extruder is controlled.
  • L / D plasticizing section length (LZD), kneading section length (LZD), and screw design are also affected, so they are selected so that the present invention can be implemented.
  • the plasticizing section and the kneading section are generally formed by combining screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk.
  • a seal portion in which the molten resin composition is completely filled in the extruder.
  • a screw having a geometrically pressurizing ability with respect to screw rotation such as a seal ring and reverse kneading, is preferably used in the case of a twin-screw extruder.
  • elements such as a knee disk may be combined.
  • the pressure is reduced and exhausted downstream of the kneading section, and the kneading section also serves as the seal section.
  • the LZD (screw length Z screw diameter) of the extruder is 20 or more, preferably 20 to 80, and more preferably 25 to 60.
  • the LZD of the plasticizing section is preferably 2 to 15, and more preferably 3 to 10, although it depends on the screw design and operating conditions.
  • the L / D of the kneading section is preferably 2 to 25, more preferably 5 to 15, although it depends on the screw design and operating conditions. If the length (L / D) of the kneading portion is too short, the fibrous filler will be insufficiently broken and the fluidity will be undesirably low. Problems such as carbonization and gas generation occur.
  • the supply of the resin to the main feed port 1 and the supply of the filler and the resin to the side feed port 3 are performed via a constant mass or constant volume supply device.
  • the metering device may be any of a belt type, a screw type, a vibration type, and the like.
  • the supply of the filler and the resin at the side feed port 3 using the above-described apparatus is performed separately or in a mixed manner, preferably using a separate quantitative supply apparatus.
  • a side feed method in which a screw feeder feeds from the side of the cylinder and barrel of the extruder, a method in which a vertical screw feeder feeds the extruder from the top of the cylinder, and an auxiliary material in the feed port A method of directly dropping is used.
  • the side feed port 3 is preferably provided at the top.
  • a water cooling jacket may be provided as necessary to suppress changes in resin and filler.
  • the resin (A) used in the present invention is not particularly limited, but preferably has a melt viscosity at a temperature 15 higher than the melting point and a shear rate of 100 O Pa-s in terms of a shear rate of 100 / s.
  • the resin is more preferably 50 to 500 Pa's, particularly preferably 10 to 100 Pa's.
  • liquid crystal polymer linear PPS, nylon 6, nylon 6 6, nylon 610 and the like, and preferably a liquid crystalline polymer.
  • liquid crystal polymer examples include liquid crystal polyester and liquid crystal polyamide. More specifically, a combination of a residue of parahydroxybenzoic acid / 2,6-hydroxynaphthylenesulfonic acid and a residue of parahydroxybenzoic acid Residues Aromatic dihydric hydroxy compound residues such as nobiphenol and hydroquinone Z Combination of aromatic dicarboxylic acid residues such as terephthalic acid, isophthalic acid, and naphthylene dicarponic acid, parahydroxybenzoic acid residue Z aliphatic diol Residue Z A combination of aromatic dicarboxylic acid residues, and further a combination of these with a p-aminophenol residue or the like, or a polyethylene terephthalate partially having an aliphatic group and a p-hydroxy ammonium residue. Those obtained by copolymerizing benzoic acid are exemplified.
  • At least the resin (A) supplied from the side feed port 3 is powder having a particle size of 50 im or more, preferably powder having a particle size of 500 xm or more, and more preferably having a minimum side length or diameter of 1 mm or more. Pellets. If the particle size is smaller than the above range, it melts immediately after the side feed, feeds a fibrous filler having a weight average fiber length (L), kneads the mixture uniformly, and mixes in a predetermined range. (1) is difficult, and furthermore, it is difficult to obtain a predetermined fiber length distribution.
  • the type of the resin supplied from the main feed port 1 and the type of the resin supplied from the side feed port 3 are different even if they are the same. You may.
  • the resin (A) is a mixture of the liquid crystal polymer 1 and the liquid crystal polymer 2
  • the liquid crystal polymer 1 is supplied from the main feed port 1
  • the liquid crystal polymer 2 and the fibrous filler are supplied to the side feed port 3. It may be supplied from. Fibrous filler
  • Types of fibrous filler (B) include glass fiber, carbon fiber, polyethylene fiber, polypropylene fiber, polyester fiber, polyamide fiber, and fluorine fiber. And the like, and preferred are glass fibers and carbon fibers. These may be a mixture of two or more.
  • These fibrous fillers (B) may be pretreated with various types of silane-based or titanium-based cutting agents.
  • the glass fiber may be an epoxy-based, urethane-based, or acrylic-based coating or treated with a sizing agent.
  • the weight average fiber length (L) of the fibrous filler (B) before the side feed is 1 mm or more, preferably 1 to 10 mm, more preferably 2 to 10 mm.
  • the fiber diameter is usually used, for example 3 to 15 / m. If the average diameter of the fibers is smaller than 3, the effect as a reinforcing material is small, and in the case of a liquid crystalline polymer, the effect of relaxing anisotropy is small. On the other hand, if it is larger than 15 m, the moldability will be reduced and the surface appearance will be deteriorated.
  • the mass ratio of the resin (A) and the fibrous filler (B) in the obtained resin composition pellets is 55-80% by weight of the resin (A) and 45-2'0% by weight of the fibrous filler (B).
  • the ratio of the fibrous filler (B) is too large, the rigidity of the obtained molded article increases, but the flowability of the resin composition deteriorates and molding becomes difficult. If the ratio is too small, the rigidity of the molded article increases. Physical properties are reduced and warpage is worse.
  • the resin (A) is supplied from the main feed port of the extruder, and the fibrous filler (B) and the resin (A) are supplied from a side feed port provided in the extrusion direction rearward from the main feed port.
  • the weight ratio (1—X) of the rest of () Supplied so as to be 50 to 10Z90, preferably 40Z60 to 15Z85. If the amount of resin ( ⁇ ) supplied from the side feed port is too large or too small, it will break or bend insufficiently, and the fibrous filler ( ⁇ ) will be specified. It becomes difficult to fold the fiber into a weight average fiber length (1) and a predetermined fiber length distribution. In order to supply the fibrous filler ( ⁇ ) from the side feed port, it is appropriate to feed it at the same time as the resin or at a position upstream of the resin, so that the bending is appropriate.
  • the number of the side feed ports 3 may be one or two.If two, the fibrous filler is supplied from the upstream side feed port and the resin is supplied from the downstream side feed port. Is preferred. It is preferable that the screw located between the two side feeders be a transfer zone by full flight, and the kneading unit be located further downstream than the downstream side feeder. It is also possible to slightly adjust the weight average fiber length (1) ′ and further finely adjust the fiber length distribution by slightly changing the supply ratio of the resin ( ⁇ ) at each feed port to make it within the target property range.
  • the weight average fiber length (1) of the fibrous filler ( ⁇ ) in the obtained pellets is 180 to 360 ⁇ , preferably 200 to 300 im, more preferably 200 to 270. m.
  • the weight-average fiber length (1) in the pellets is too short, the high-temperature rigidity cannot be obtained. If the weight-average fiber length is longer than the above range, the flow will be insufficient when molding a product with narrow channels. .
  • the fibrous filler (B) in the resin composition pellets has a fiber length of more than 300 at a ratio of 5 to 40% by weight, preferably 10 to 30% by weight. % By weight.
  • the proportion of the fiber having a fiber length of more than 300 m is too large, the flow will be insufficient when molding a molded article having a narrow flow path. If the proportion is less than the above range, the rigidity of the injection molded article will be reduced. Physical properties such as flatness are reduced.
  • the weight-average fiber length (1) and its distribution were determined after burning or melting the resin. ⁇
  • the residue of the side-feed resin ( ⁇ ) (1 X ) A part of the strand obtained from the extruder die 5 or a part of the pellet obtained therefrom can be circulated, but is preferably obtained by single-pass treatment by an extruder. is there. In the case of a single pass, the physical properties of the resin are not easily reduced.
  • the cylinder temperature may be, for example, the melting point temperature of the base resin ( ⁇ ) (by DSC measurement at a heating rate of 20 ° C / min) to the melting point temperature + 50 ° C.
  • the screw rotation speed is determined, for example, at 150 to 500 rpm.
  • the resin may contain a resin additive or the like as an auxiliary material.
  • Resin additives other than the low bulk density powder described below include plasticizers, stabilizers, lubricants, antiblocking agents, crystallization nucleating agents, antioxidants, ultraviolet stabilizers, antistatic agents, Flame retardants, dripping agents, water-proofing agents, antibacterial agents, deodorants, deodorants, fillers other than the fibrous filler (B) (inorganic or organic additives), extenders, colorants, etc. These mixtures may be mentioned.
  • These auxiliary materials are supplied from the main feed port 1 and / or the side feeder 3 as needed.
  • resin composition pellets obtained above are not particularly limited in molding method, but are preferably used for injection molding and the like.
  • the melt viscosity of the resin composition pellet (temperature higher than the melting point by 15 ° C., shear rate: 1000 / s) is 55 Pa's or less as measured by the method described in the section of Examples. If the melt viscosity is too high, the filling pressure becomes too high and injection molding becomes difficult. If the melt is forcibly filled, the amount of warpage of the molded article increases.
  • the molded product obtained by injection molding of the resin composition pellets has a flexural modulus of not less than 1,500 MPa, a flatness before solder reflow treatment of not more than 0.09 mm, and a peak temperature of 230.
  • the difference in flatness before and after the heating corresponding to the solder reflow treatment at 2280 ° C. is 0.02 mm or less.
  • the peak temperature is the maximum temperature reached in the solder reflow process.
  • a treatment by infrared (IR) heating can be preferably used.
  • Heating equivalent to the solder reflow process means heating at the above temperature for the time required for reflow without soldering or mounting components to be soldered.
  • the required heating time depends on the size of the molded product, the shape, the type and amount of solder to be printed, the shape and size of the mounted components, the It may be determined appropriately in consideration of productivity and the like. Molding sockets for semiconductor devices
  • a molding machine The temperature of the cylinder is preferably above the melting point of the resin (A), T ° C. If the temperature of the cylinder is too high, the resin will decompose, etc., causing problems such as dripping from the cylinder nozzle.
  • the cylinder temperature is T ⁇ (T + 30) ° C, preferably T ° C ⁇ (T + 15) ° C.
  • the mold temperature is preferably 70 to 100 ° C. If the mold temperature is low, the resin composition to be filled causes poor flow, which is not preferable. If the mold temperature is too high, problems such as generation of burrs occur, which is not preferable.
  • the injection speed is preferably 150 mm / s or more. When the injection speed is low, only unfilled molded products can be obtained, or when completely forcibly filled, the filling pressure is high and the resulting molded products have large residual internal stress, resulting in sockets with poor flatness There is.
  • the pitch interval of the grid portion provided with a large number of pin holes for semiconductor devices is 2.0 mm or less, preferably 1.5 mm or less, and the thickness of the grid portion is 0.5 mm or less.
  • the height of the socket is not more than 0.2 mm, the height of the socket is not more than 5.0 mm, and preferably not more than 3.0 mm.
  • Glass fiber (abbreviated as GF): manufactured by Asahi Fiber One Glass Co., Ltd., CS 03 JA419 (chopped strand with a fiber diameter of 10 m and a fiber length of 3 mm)
  • Lubricants UNISTAR H—476, manufactured by NOF Corporation
  • Plasticizing section 2 C4 to C5 (Composition: Kneading from upstream, reverse kneading, length 300 mm)
  • Kneading part 4 C8 ⁇ C11 (Constitution: Forward kneading, reverse kneading, forward kneading, reverse kneading, reverse kneading, reverse flight, junior singing, ⁇ kneeding, reverse flight, length 520mm from the upstream side)
  • Screw type loss-in-weight feeder manufactured by Kupo Yusha
  • Cylinder temperature 20 for cylinder C 1 with main feed port 1 only 0 ° C and all other cylinder temperatures are 350 ° C.
  • a pellet of a liquid crystalline polymer was supplied from the main feed 1 and the side feed port 3
  • a lubricant was supplied from the main feed port 1
  • a glass fiber was supplied from the side feed port 3.
  • the auxiliary raw material feed port was supplied using a biaxial side feeder, and the supply amounts of liquid crystalline polymer pellets, lubricant, and glass fiber were controlled using a weight feeder so that the proportions were as shown in Table 1. .
  • the screw rotation speed and extrusion rate were set as shown in Table 1.
  • the molten resin composition discharged from the die 5 in the form of a strand was conveyed on a mesh belt conveyor manufactured by Yu-Naka Manufacturing Co., Ltd. and cooled by spray water. Then, it was cut into pellets. .
  • test pieces were prepared from the pellets obtained by the extrusion molding using an injection molding machine, It was evaluated and the results shown in Table 2 were obtained.
  • Injection molding machine FANUC Co., Ltd., FANUC HI 50C (using medium diameter long nozzle)
  • Screw back pressure 0.5 MPa ⁇ (Bending elastic modulus of molded product)
  • the overall size was 39.82mmX 36.82mmX1mm (thickness), and a hole of 19.02mmX1. It has a lattice part with a number of pin holes on the side of the perforated side, and a 1.2 mm pitch interval between lattice parts (494 pin holes, The thickness of the lattice part was 0.18 mm).
  • the gate used was a film gate from the opposite side of the resin pool, and the gate thickness was 3 mm.
  • Fig. 2 (a) is a top view of a socket in which a large number of pin holes are provided in a grid pattern
  • Fig. 2 (d) is a detail of section A in Fig. 2 (a)
  • Fig. 2 (b) is from the film gate side.
  • Viewed side view Fig. 2 (c) is a side view with a resin reservoir above
  • Fig. 2 (e) is Fig. 2
  • part B of (c) The obtained socket was allowed to stand on a horizontal desk, and the height of the socket was measured with a Mitutoyo QuickVision PROCNC image measuring device. At that time, the position 0.5 mm from the socket end face was measured at 10 mm intervals, and the difference between the maximum height and the minimum height was defined as flatness.
  • Example 1 29.7 0.3 0.3 40 40 49.7 / 50.3 290 350
  • Example 2 19.7 0.3.40 40 33/67 290 350
  • Example 3 9.7 0.3 0.3 50 40 16.2 / 83. 7 290 350
  • Example 4 19.7 0.3.50 30 24.6 / 75.4 290 250
  • Comparative Example 1 34.7 0.3.25 40 58.1 / 41.9 290 350
  • Example 1 337 34.2 47 16.0 0.075 0.014
  • Example 2 245 22.5 40 15.6 0.047 0.010
  • the fibrous filler in a resin composition pellet of a fibrous filler having a desired filling amount, is uniformly blended, has a desired weight average fiber length (1), and is obtained by injection molding.
  • a resin composition pellet having a specific performance when it is made into a product can be produced by a simple method using an ordinary extruder to suppress the deterioration of the resin and economically produce resin composition pellets.
  • resin composition pellets used in planar sockets for semiconductor devices with a grid pitch of 2.Omm or less, a grid thickness of 0.5mm or less, and a total product height of 5.Omm or less can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明の目的は、繊維状充填剤が、所定充填量で、均一に配合され、所定重量平均繊維長を有する樹脂組成物ペレットを通常の押出機により、樹脂の劣化を抑え、経済的に製造することであり、特に格子部ピッチ間隔が2.0mm以下、格子部肉厚が0.5mm以下、ソケットの高さが5.0mm以下の半導体装置用平面状ソケットの成形に用いられる樹脂組成物ペレットを製造することであり、目的を解決するために、樹脂80~55重量%と重量平均繊維長1mm以上の繊維状充填剤20~45重量%を押出機に供給して、樹脂組成物ペレット中の繊維状充填剤の重量平均繊維長が180~360μmの樹脂組成物ペレットを製造する際、押出機のメインフィード口から樹脂の一部の量(x)を供給し、サイドフィード口から繊維状充填剤及び上記樹脂の残りの量(1-x)をx/(1-x)が50/50~10/90重量%比となるように供給する。

Description

明 細 書 繊維状充填剤の長さが制御された樹脂組成物べレットの製造方法 技術分野
本発明は、 押出機を使用して、 樹脂に繊維状充填剤を添加して、 特定の重量平 均繊維長、 さらには特定の繊維長分布を有する樹脂組成物ペレットを、 経済的に 製造する方法に関する。 該ペレツ卜は、 半導体装置のピンのソケット、 特に、 多 数のピン孔が設けられた格子部のピッチ間隔が 2 mm以下のソケットの成形に適 する。 背景技術
従来、 押出機を用いて樹脂にガラス繊維などを混練する場合に、 樹脂の溶融粘 度が非常に低い場合には、 樹脂をメインフィード口から投入し、 繊維をサイドフ イードして得られたペレツ卜を用いて射出成形すると、 ピッチ間隔の狭い半導体 装置のソケットなどを成形した場合に、 十分な流動性が得られないために完全に 充填した成形品が得られないか、 又は無理に充填させると充填圧が高いために得 られるソケットの反り変形量が大きくなると言う問題があつた。 '
特開平 6— 2 4 0 1 1 4号公報 (請求項 1、 実施例の表 1参照) では、 (A) 異方性溶融相を形成する液晶ポリエステル樹脂および液晶ポリエステルアミド樹 脂から選ばれた少なくとも 1種の液晶性樹脂 1 0 0重量部に対して、 (B ) 平均 繊維径が 3〜1 5 ^ mのガラス繊維 5〜3 0 0重量部を充填してなり、 該組成物 ペレツ卜中の重量平均繊維長が 0 . 0 2〜0 . 5 5 mmの範囲にあって、 かつ、 繊維長が l mmを越えるガラス繊維の比率が該ガラス繊維の 0〜1 5重量%、 か つ、 繊維長が 0 . 1 mm以下のガラス繊維の比率が該ガラス繊維の 0〜 5 0重量 %であるガラス繊維強化液晶性樹脂組成物から得られたペレットを射出成形して、 射出成形時の流動長さ、 及び成形品の収縮率、 面衝撃強度等を求めている。
しかし、 この技術は、 所望のガラス繊維充填において、 ガラス繊維の重量比や 平均繊維長を自由に制御する技術ではない。 発明の開示
本発明の目的は、 繊維状充填剤が、 均一に配合され、 求める重量平均繊維長 (1) を有し、 射出成形品にした場合に特定の性能を有する、 繊維状充填剤が所 望の量充填された樹脂組成物ペレットを、 通常の押出機により簡便な方法で、 樹 脂の劣化を抑え、 経済的に、 樹脂組成物ペレットを製造する方法を提供すること である。
特に、 格子部のピッチ間隔が 2. 0mm以下、 格子部の肉厚が 0. 5mm以下、 ソケットの高さが 5. 0 mm以下の平面状ソケットに用いられる、 繊維状充填剤 が配合された樹脂組成物ペレツトを製造する方法を提供することである。 本発明者らは、 メインフィード口から少量の樹脂を供給し、 繊維状充填剤を残 りの多量の樹脂と共にサイドフィ一ドすることにより、 上記課題が解決できるこ とを見い出し、 本発明を完成するに至った。 すなわち本発明の第 1は、 樹脂 (A) 80〜55重量%と、 重量平均繊維長 (L) 1mm以上の繊維状充填剤 (B) 20〜45重量% (ここで、 樹脂 (A) と繊維状充填剤 (B) の合計は 100重量%である。 ) を押出機に供給して、 樹 脂組成物ペレット中の繊維状充填剤 (B) の重量平均繊維長 (1) が 180〜3 60 mである樹脂組成物ペレツトを製造する際に、
押出機のメインフィード口から樹脂 (A) の一部の量 (X) を供給し、
メインフィード口より押出方向後方に設けられたサイドフィード口から繊維状充 填剤 (B) および樹脂 (A) の残りの量 (1一 X) を xZ (1— X) が 50 5 0〜10/90重量%比となるように供給する樹脂組成物ペレットの製造方法を 提供する。
本発明の第 2は、 樹脂組成物ペレット中の繊維状充填剤 (B) が、 繊維長 30 0 im超のものの割合が 5〜40重量%である本発明の第 1に記載の樹脂組成物 ペレツ卜の製造方法を提供する。
本発明の第 3は、 樹脂組成物ペレツ卜が、 押出機により単通処理されて得られ たものである本発明の第 1又は 2に記載の樹脂組成物ペレツトの製造方法を提供 する。
本発明の第 4は、 樹脂 (A) が液晶性ポリマーである本発明の第 1〜3のいず れか 1項に記載の樹脂組成物ペレツ卜の製造方法を提供する。
本発明の第 5は、 繊維状充填剤 (B) が、 ガラス繊維及び Z又はカーボン繊維 である本発明の第 1〜 4のいずれか 1項に記載の樹脂組成物ペレツトの製造方法 を提供する .。
本発明の第 6は、 多数のピン孔が設けられた格子部のピッチ間隔が 2. 0 mm 以下、 格子部の肉厚が 0. 5mm以下、 ソケットの高さが 5. 0mm以下の平面 状ソケッ卜に用いられる本発明の第 1〜 5のいずれか 1項に記載の樹脂組成物べ レツ卜の製造方法を提供する。
本発明の第 7は、 押出機が 2軸押出機であり、 スクリュー長さ / クリュー径
(L/D) の比が 20以上であり、 スクリューが可塑化部と混練部を有し、 サイ ドフィ一ドロが可塑化部の下流に位置する本発明の第 1〜 6のいずれか 1項に記 載の樹脂組成物ペレツ卜の製造方法を提供する。
本発明の第 8は、 樹脂組成物ペレツトの溶融粘度が 10〜55Pa'sである本発 明の第 1 ~ 7のいずれか 1項に記載の樹脂組成物ペレツ卜の製造方法を提供する。 本発明の第 9は、 樹脂組成物ペレツ卜を射出成形して得られた成形品が、 曲げ弾性率 15000MP a以上、 及びハンダリフロ一処理前の平面度が 0. 0 9 mm以下、 及びピーク温度 230〜280 °Cでのハンダリフロー処理相当加熱 前後の平面度の差が 0 . 0 2 mm以下である本発明の第 1〜8のいずれか 1項に 記載の樹脂組成物ペレツトの製造方法を提供する。 図面の簡単な説明
第 1図は、 本発明で用いる押出機の一例を示す図である。
第 2図は、 本発明に係る射出成形品の一例を示す図である。
符号の説明: 1はメインフィード口、 2は可塑化部、 3はサイドフィード口、 4は混練部、 5はダイ、 6はスクリユー、 7はシリンダー、 8はベント口、 9は 減圧装置、 10は樹脂溜まり、 11はピッチ間隔、 12は格子部を表す。 発明を実施するための最良の形態
以下に本発明の実施の形態を説明する。 . . 押出機
本発明に係る押出機は、 メインフィード口 1、 可塑化部 2、 サイドフィード口 3、 混練部 4、 得られた樹脂組成物の押出しダイ 5、 スクリュー 6、 シリンダー 7、 及び必要に応じて設けられるベントロ 8および減圧装置 9を有する。
サイドフィード口 3は 1個所であっても複数個所であってもよい。
押出機としては、 特別な構造のものを用いる必要はなく、 例えば; 従来使用さ れているものがそのまま使用できる。 具体的には、 単軸型、 二軸型の何れでもよ く、 二軸型では、 同方向回転の 1条ネジのものから 3条ネジのものまで使用可能 であり、 異方向回転の平行軸もしくは斜軸、 不完全嚙み合い型でもよい。
押出機のスクリュー径、 スクリュー長さ/スクリュー径比 (L ZD) 、 スクリ リューデザイン、 スクリユー回転数、 同駆動力、 加熱冷却能力には特に制限はな く、 本発明が実施できるものを選択すればよい。
通常、 スクリューデザインを決定するスクリューエレメントとしては、 順フラ ィ卜からなる搬送用エレメントと、 可塑化部用エレメントおよび混練部用エレメ ン卜からなるが、 本発明において、 押出機における可塑化部および混練部のスク リューデザインは、 樹脂の性質や充填剤の種類に応じて適宜、 設計されるべきも のである。
しかし、 重量平均繊維長 (L) の繊維状充填剤 (B ) を所定の重量平均繊維長 ( 1 ) 及び繊維長分布に制御するには、 後述するように、 押出機に関してはスク リュー長さ (L/D) 、 可塑化部長さ (L ZD) 、 混練部長さ (LZD) 、 スク リユーデザインも影響するので、 本発明が実施できるように選択する。
2軸押出機の場合、 可塑化部や混練部には逆フライト、 シールリング、 順ニー ディングディスク、 逆ニーディングディスク等のスクリューエレメントが組み合 わされて構成されることが一般的である。
液晶性ポリマーのような溶融粘度が比較的低い樹脂 (A) に、 ガラス繊維のよ うな繊維状充填剤 (B) を全体中に 2 0〜4 5重量%配合してストランド状に押 出すためには、 混練部を可塑化部より長く設けることが好ましい。
また、 ベント口を設けて減圧排気を行うには、 溶融された樹脂組成物が押出機 内で完全に充満されるシール部を設けることが好ましい。 シール部を構成するス クリュー形状は、 2軸押出機の場合、 逆フライトのほか、 シールリング、 逆ニー ディング等、 幾何学的にスクリュー回転に対して昇圧能力を有するものが好適に 用いられる。 また、 必要に応じてニーデイングディスク等のエレメシ卜が組み合 わされて構成されても構わない。
通常は混練部下流で減圧排気し、 混練部がシール部を兼ねている。 メインフィ 一ドロより供給され可塑化された樹脂を繊維状充填剤投入前に減圧排気する場合 には、 ベント口とサイドフィ一ドロの間にシール部を設けることが好ましい。 押出機の L ZD (スクリュー長さ Zスクリュー径) は 2 0以上、 好ましくは 2 0 - 8 0 , さらに好ましくは 2 5〜6 0である。
可塑化部の LZDは、 スクリューのデザインや運転条件にもよるが、 好ましく は 2〜1 5、 さらに好ましくは 3〜1 0である。 可塑化部の長さ (LZD) があ W 200
6
まりに短すぎると、 樹脂の可塑化が不十分になり、 サイドフィードされた繊維状 充填剤が折損しすぎて好ましくなく、 可塑化部の長さ (L /D) があまりに長す ぎると、 樹脂が分解して物性低下やガス発生などの不具合が生じる。
混練部の L /Dは、 スクリューのデザインや運転条件にもよるが、 好ましくは 2〜 2 5、 さらに好ましくは 5〜 1 5である。 混練部の長さ (L /D) があまり に短すぎると、 繊維状充填剤の折れが不十分になり流動性が低下して好ましくな く、 あまりに長すぎると発熱が大きくなり樹脂の分解や炭化、 ガス発生などの不 具合が生じる。
メインフィード口 1への樹脂の供給およびサイドフィード口 3への充填剤およ び樹脂の供給は、 定質量または定容量供給装置を介して行われる。 定量供給装置 としては、 ベルト式、 スクリュー式、 振動式などのいずれでもよい。
上記装置を用いて、 サイドフィード口 3における充填剤と樹脂との供給は、.別 々にまたは混合して、 好ましくは別々の定量供給装置を使用して行われる。 具体 的には、 押出機のシリンダ一バレルの側面からスクリユーフィーダ一により供給 する側面フィ一ド法、 シリンダー上部より縦型スクリユーフィーダ一で押出機に 供給する方法、 フィード口に副原料を直接落下させる方法等が用いられる。 サイ ドフィード口 3は、 好ましくは上部に設けられる。
サイドフィード口 3には、 特に限定はないが、 必要に応じて水冷 ャケットを 備えて樹脂や充填剤の変化を抑えるようにしてもよい。 樹脂
本発明において使用される樹脂 (A) は、 特に制限はないが、 好ましくは溶融 粘度が、 融点より 1 5 高い温度で、 ずり速度 1 0 0 /sに換算して 1 0 0 O Pa- s 以下、 さらに好ましくは 5 0〜 5 0 0 Pa' s、 特に好ましくは 1 0〜 1 0 O Pa' sの 樹脂である。
樹脂 (A) としては、 液晶性ポリマー、 直鎖 P P S、 ナイロン 6、 ナイロン 6 6、 ナイロン 6 1 0などが挙げられ、 好ましくは液晶性ポリマーである。
液晶性ポリマ一としては、 液晶ポリエステルや液晶ポリアミドが挙げられ、 具 体的には、 パラヒドロキシ安息香酸残基 / 2 , 6—ヒドロキシナフ夕レン力ルポ ン酸残基の組み合わせ、 パラヒドロキシ安息香酸残基ノビフヱノールやハイドロ キノンのような芳香族二価ヒドロキシ化合物残基 Zテレフタル酸、 イソフタル酸、 ナフ夕レンジカルポン酸のような芳香族ジカルボン酸残基の組み合わせ、 パラヒ ドロキシ安息香酸残基 Z脂肪族ジオール残基 Z芳香族ジカルボン酸残基の組み合 わせ、 さらにはこれらに p—アミノフエノ一ル残基などが加えられた組み合わせ、 あるいは一部脂肪族基を有するポリエチレンテレフ夕レー卜と p—ヒドロキシ安 息香酸を共重合したものなどが挙げられる。
少なくともサイドフィード口 3から供給される樹脂 (A) は、 粒径 5 0 i m以 上の粉末、 好ましくは 5 0 0 x m以上の粉末、 さらに好ましくは最小辺の長さ又 は直径が l mm以上のペレットである。 粒径等が上記範囲より小さすぎると、 サ イドフイード後に直ぐに溶融して、 重量平均繊維長 (L) の繊維状充填剤をフィ ードして、 均一に混練し、 所定範囲の重量平均繊維長 (1 ) とすることが困難で あり、 さらには所定の繊維長分布とすることが困難になる。
なお、 樹脂 (A) が二種以上の混合物である場合には、 メインフィード口 1か ら供給される樹脂とサイドフィード口 3から供給される樹脂の種類'は同じであつ ても、 異なっていてもよい。 例えば、 樹脂 (A) が液晶性ポリマー 1と液晶性ポ リマー 2の混合物である場合、 液晶性ポリマー 1をメインフィード口 1から供給 し、 液晶性ポリマー 2と繊維状充填剤をサイドフィード口 3から供給するなどし てもよい。 繊維状充填剤
繊維状充填剤 (B ) の種類としては、 ガラス繊維、 カーボン繊維、 ポリエチレ ン繊維、 ポリプロピレン繊維、 ポリエステル繊維、 ポリアミド繊維、 フッ素繊維 等が挙げられ、 好ましくはガラス繊維、 カーボン繊維である。 これらは二種以上 の混合物であってもよい。
これらの繊維状充填剤 (B) は予めシラン系やチタン系などの各種のカツプリ ング剤などで前処理されたものであってもよい。
ガラス繊維としては、 エポキシ系、 ウレタン系、 アクリル系などの被覆あるい は集束剤で処理されているものでもよい。
繊維状充填剤 (B) のサイドフィード前の重量平均繊維長 (L) は lmm以上、 好ましくは 1〜10mm、 さらに好ましくは 2〜10 mmである。
繊維の直径は通常のものが使用され、 例えば 3〜15 / mである。 繊維の平均 径が 3 より小さすぎると、 補強材としての効果が小さくまた液晶性ポリマー の場合異方性緩和効果が少ない。 一方、 15 mより大きすぎると成形性が低下 し、 表面外観も悪化する。
また、 サイドフィード前の繊維状充填剤 (B) の長さに分布が無く、 一定に揃 つているチョップドストランドが好ましい。 樹脂組成物
得られる樹脂組成物ペレット中の樹脂 (A) と繊維状充填剤 (B) の質量比率 は、 樹脂 (A) 55-80重量%と、 繊維状充填剤 (B) 45〜 2 '0重量%、 好 ましくは (A) 60〜70重量%と、 (B) 40〜30重量% (ここで、 樹脂 (A) と繊維状充填剤 (B) の合計は 100重量%である。 ) である。
繊維状充填剤 (B) の比率が多すぎると、 得られる成形品の剛性が大きくなる 反面、 樹脂組成物の流動性が悪化して成形が困難になり、 少なすぎると成形品の 剛性等の物性が低下し、 反り変形も悪くなる。
本発明では、 押出機のメインフィード口から樹脂 (A) の一部 ) を供給し、 メインフィード口より押出方向後方に設けられたサイドフィード口から繊維状充 填剤 (B) と樹脂 (A) の残り (1一 X) とを重量比 (1— X) が、 50 5 0〜10Z90、 好ましくは 40Z60~15Z85となるように供給する。 サイドフィード口から供給される樹脂 (Α) の量が上記範囲より多すぎても少 なすぎても、 折れすぎたり、 折れ方が不足したりして、 繊維状充填剤 (Β) を所 定の重量平均繊維長 ( 1 ) に、 更には所定の繊維長分布に折ることが困難になる。 繊維状充填剤 (Β) をサイドフィード口から供給するには、 樹脂と同時かまた は樹脂よりも上流の位置でフィードすることにより、 折れ方が適切となる。
サイドフィード口 3は 1個所であっても 2個所であってもよく、 2個所にする 場合、 上流側サイドフィード口より繊維状充填剤を供給し、 下流側サイドフィー ドロより樹脂を供給することが好ましい。 2個所のサイドフィ一ドロ間に位置す るスクリューはフルフライトによる搬送ゾーンとすることが好ましく、 混練部は 下流のサイドフィ一ドロよりさらに下流に位置することが好ましい。 また、 樹脂 (Α) の各フィード口の供給割合を多少変化させて重量平均繊維長 (1 )'、 更に は繊維長分布を微調整して目標性状範囲内にすることが可能である。
得られたペレット中の繊維状充填剤 (Β) の重量平均繊維長 ( 1 ) は 1 8 0〜 3 6 0 τη, 好ましくは 20 0〜 3 0 0 im、 さらに好ましくは 2 00〜 2 7 0 mである。
ペレット中の重量平均繊維長 (1 ) が上記範囲より短すぎると十分な高温剛性 が得られなくなり、 上記範囲より長すぎると、 細い流路を有する成 品を成形す る場合に流動不足となる。
繊維長分布も考慮することが重要であり、 樹脂組成物ペレット中の繊維状充填 剤 (B) は、 繊維長 3 0 0 超のものの割合が 5〜40重量%、 好ましくは 1 0〜3 0重量%であることが好ましい。
繊維長 3 0 0 m超のものの割合が上記範囲より多すぎると、 細い流路を有す る成形品を成形する場合に流動不足となり、 上記範囲より少なすぎると、 射出成 形品の剛性や平面度等の物性が低下する。
なお、 重量平均繊維長 (1 ) およびその分布は樹脂を燃焼あるいは溶解した後、 ο
質量測定による方法あるいは顕微鏡観察した画像の計算機処理などによって得ら れる。
樹脂組成物ペレット中の繊維状充填剤 (Β ) の重量平均繊維長 (1 ) 及び分布 が前記範囲内に保たれる範囲内において、 サイドフィードされる樹脂 (Α) の残 り (1一 X ) に加える形で、 押出機ダイ 5から得られたストランド又はそれから 得られたペレットの一部を、 循環させることもできるが、 好ましくは押出機によ り単通処理されて得られたものである。 単通処理されて得られたものでは、 樹脂 の物性が低下しにくい。 得られたペレットを循環させる比率が多すぎたり、 循環 回数が多すぎると樹脂が劣化して分子量が低下したりガス発生が生じたり、 繊維 状充填剤 (Β ) が折れすぎて、 重量平均繊維長 (1 ) 及び分布が前記範囲内に保 たれなくなる。 押出機の運転条件としては、 シリンダー温度については、 例えば、 ベースとな る樹脂 (Α) の融点温度 (2 0 °C/分の昇温速度における D S C測定による) 〜 融点温度 + 5 0 °Cの範囲であり、 スクリュー回転数は例えば、 1 5 0〜5 0 0 r p mでめる。
上記樹脂には副原料として、 樹脂添加剤等が配合されていてもよい。 樹脂添加 剤としては、 後述する低嵩密度粉体以外のものであって、 可塑剤、 安定剤、 滑 剤、 ブロッキング防止剤、 結晶化核剤、 酸化防止剤、 紫外線安定剤、 帯電防止剤、 難燃剤、 流滴剤、 耐水化剤、 抗菌剤、 防臭剤、 脱臭剤、 繊維状充填剤 (B ) 以外 の他の充填材 (無機添加剤又は有機添加剤) 、 増量剤、 着色剤等又はこれらの混 合物が挙げられる。 これらの副原料は、 必要に応じてメインフィード口 1及び 又はサイドフィ一ドロ 3から供給される。
これらの添加剤が添加されたものも本発明に係る樹脂組成物の範囲に含まれる。 樹脂組成物ペレツ卜の成形 上記で得られた樹脂組成物ペレットは、 特に成形方法には限定はないが、 好ま しくは射出成形等に使用される。
樹脂組成物ペレツトの溶融粘度 (融点より 1 5 °C高い温度、 ずり速度 1 0 0 0 /s) は、 実施例の項で述べる方法で測定して、 5 5 Pa' s以下である。 該溶融粘度 が高すぎると、 充填圧力が高くなりすぎて射出成形が困難になり、 無理に充填さ せると成形品の反り変形量が大きくなる。
樹脂組成物ペレットを射出成形して得られた成形品は、 曲げ弾性率 1 5 0 0 0 MPa以上であり、 ハンダリフロー処理前の平面度が 0 . 0 9 mm以下、 及びピーク 温度 2 3 0〜2 8 0 °Cでのハンダリフロー処理相当加熱前後の平面度の差が 0 . 0 2 mm以下である。
ここで、 ピ一ク温度とはハンダリフロー処理における最高到達温度のことであ る。 ' . ハンダリフロー処理は、 例えば赤外線 (I R) 加熱によるものが好ましく使用 できる。'
ハンダリフロー処理相当加熱とは、 ハンダを付けず、 またハンダ付けする部品 を搭載せずにリフローに必要な時間、 上記温度で加熱することである。 必要な加 熱時間は、 通常通り実際にハンダ付けする場合を想定して、 成形品の大きさ、 形 状、 印刷されるハンダの種類や印刷量、 搭載部品の形状、 大きさ、 if熱性、 生産 性等を考慮の上、 適宜決めればよい。 半導体装置用ソケッ卜の成形
上記の優れた平面度を有する成形品、 特に半導体装置のソケッ卜を得る方法と しては、 特に制限はないが、 経済的な射出成形方法が好ましく用いられる。 射出 成形で優れた平面度を有するソケッ卜を得るためには、 前記の樹脂組成物を用い ることが重要であるが、 残留内部応力を生じない成形条件を選ぶことが好ましい。 充填圧を低くし、 得られるソケットの残留内部応力を低下させるために、 成形機 のシリンダー温度は、 樹脂 (A) の融点 T°C以上の温度が好ましく、 またシリン ダ一温度が高すぎると樹脂の分解等に伴ぅシリンダーノズルからのはなタレ (湊 垂れ) 等の問題が発生するため、 シリンダー温度は、 Tで〜 (T+30) °C、 好 ましくは T°C〜 (T+ 15) °Cである。 また、 金型温度は 70〜100°Cが好ま しい。 金型温度が低いと充填する樹脂組成物が流動不良を起こし好ましくなく、 金型温度が高すぎるとバリ発生等の問題が生じ好ましくない。 射出速度は 150 mm/ s以上が好ましい。 射出速度が低いと未充填成形品しか得られないか、 無 理に完全に充填させると充填圧が高いために得られる成形品の残留内部応力が大 きくなり、 平面度の悪いソケットとなる場合がある。
本発明の平面状ソケッ卜は、 半導体装置用の多数のピン孔が設けられた格子部 のピッチ間隔が 2. 0mm以下、 好ましくは 1. 5 mm以下、 格子部の肉厚が 0. 5mm以下、 好ましくは 0. 2mm以下、 ソケットの高さが 5. 0mm以下、.好 ましくは 3. 0mm以下である。 本発明によれば、 通常のサイドフィード口を有する押出機で、 市販のガラスフ アイパー等の繊維状充填剤 (B) を一種類使用して、 繊維状充填剤のフィードを 良好に行うことが可能であり、 押出機で単通 (ワンパス) 処理して得られるので 樹脂の劣化が抑えられ、 上記用途に適した樹脂組成物ペレットを、 ¾めて容易に、 安定的に、 且つ経済的に製造することができる。 実施例
以下、 実施例により本発明を更に具体的に説明するが、 本発明はこれらの実施 例によって限定されるものでない。
(実施例 1〜 4および比較例 1〜 4 )
(1) 使用原料
樹脂 (A) 液晶性ポリマーペレツト :ポリプラスチックス (株) 製、 べクトラ E 950 i (融点 335°C、 溶融粘度 30 P a · s (350°C, ずり速度 100/s) 、 ぺ レツ卜寸法:約 5〜3mmx約 3〜2mmX約 3〜: Lmm)
繊維状充填剤 (B)
ガラス繊維 (GFと略す) :旭ファイバ一グラス社製、 CS 03 JA419 (繊維径 10 m、 繊維長 3mmのチョップドストランド)
樹脂添加剤
滑剤: 日本油脂 (株) 製、 ユニスター H— 476
(2) 押出機
三菱重工業 (株) 製、 2軸スクリュー押出機 PTE 65 (スクリユー径 65m m、 L/D 36. 8)
押出機のスクリューの概略を図 1に示す。 ' . メインフィ—ドロ 1 : C 1
可塑化部 2 : C 4〜C 5 (構成:上流側より順ニーディング、 逆二一ディング、 長さ 300 mm)
サイドフィード口 3 : C 7
混練部 4 : C 8〜C 11 (構成:上流側より順ニーディング、 逆ニーディング、 順ニーデイング、 逆ニーデイング、 逆フライト、 順二一ディング、 ^ニーデイン グ、 逆フライト、 長さ 520mm)
メインフィード口へのフィーダ一:クポ夕社製スクリュ式ロスインウェイト式 フィーダ一
サイドフィ一ドロへのフィーダ一
ペレツト樹脂用 :クポ夕社製 2軸スクリュザィドフィーダ一
ガラス繊維用:鎌長製衡社製ベルト式ロスインウェイト式フィーダ一
(3) 押出条件
シリンダー温度:メインフィード口 1が設けられたシリンダー C 1のみが 20 0°Cであり、 他のシリンダー温度は全て 350°Cである。
ダイ温度: 350°C
(4) 樹脂組成物の混練及び押出方法
上記 2軸スクリュー押出機を用い、 液晶性ポリマーのペレツトをメインフィー ドロ 1及びサイドフィード口 3から供給し、 滑剤をメインフィード口 1から、 ガ ラス繊維をサイドフィード口 3から供給した。 副原料フィード口には、 2軸サイ ドフィーダ一を用いて供給し、 液晶性ポリマーペレット、 滑剤、 ガラス繊維の供 給量は、 表 1の割合になるように、 重量フィーダ一を用いて制御した。
スクリユー回転数及び押出量は、 表 1のように設定し、 ダイ 5よりストランド 状に吐出させた溶融樹脂組成物を、 夕ナカ製作所製メッシュベルトコンベアで搬 送しつつ、 スプレー噴霧水により冷却した後、 カッティングされ、 ペレットとし た。 .
(樹脂組成物の溶融粘度)
上記ペレットを用いて、 L=20mm、 d = 1 mmのキヤピラリー式レオメー 夕 ( (株) 東洋精機製キヤピログラフ 1 B型) を使用し、 温度 350°C、 せん断 速度 1000/sで I SO 11443に準拠して、 溶融粘度を測定した。
(ペレツ卜中のガラス繊維の重量平均繊維長 ( の測定) 樹脂組成物ペレット 5 gを 600°Cで 2時間加熱し、 灰化した。 化残渣を 5 %ポリエチレングリコール水溶液に十分分散させた後、 スポィトでシャーレに移 し、 顕微鏡でガラス繊維を観察した。 同時に画像解析装置 (株) 二レコ製 LUZ EX FSを用いてガラス繊維の重量平均繊維長 ( 1) を測定した。 尚、 画像解 祈の際には、 重なり合った繊維を別々の繊維に分離し、 それぞれの長さを求める ようなサブルーチンを適用した。 尚、 50 im以下のガラス繊維は除外して測定 した。
(ペレツトの射出成形)
上記押出成形で得られたペレツ卜から射出成形機により下記試験片を作製し、 評価し、 表 2に示す結果を得た。
射出成形機:ファナック (株) 製、 FANUC ひ— 50 C (中径ロングノズル 使用)
シリンダ一温度: 350°C (ノズル側) —35 O - 340 ー 330 °C 金型温度: 80 °C
射出速度: 200 mm/ s e c
保圧力: 29 M P a
充填時間: 0. 08 s e c
保圧時間: 1 s e c
冷却時間: 5 s e c
スクリュー回転数: 120 r pm
スクリユー背圧: 0. 5 MP a ■ (成形品の曲げ弾性率)
I SO 1 78に準拠して、 測定した。
(ソケットの平面度の測定)
樹脂組成物ペレツ卜から、 下記成形条件で、 図 2に示すような、 全体の大きさ 39. 82mmX 36. 82 mmX 1 mm (厚み) 、 中央部に 19. 02mmX 19. 02mmの孔開き (半導体装置設置用の孔) を有し、 孔開き细辺部に多数 のピン孔が設けられた格子部を有し、 格子部のピッチ間隔 1. 2mmの平面状ソ ケット (ピン孔数 494ピン、 格子部の肉厚 0. 18mm) を射出成形した。 尚、 ゲートは樹脂溜り反対面からのフィルムゲ一トを用い、 ゲート厚みは 3 mmとし た。
図 2 (a) は多数のピン孔が格子状に設けられたソケットの上面図、 図 2 (d) は図 2 (a) の A部詳細であり、 図 2 (b) はフィルムゲート側から見た 側面図、 図 2 (c) は上方に樹脂溜まりを有する側面図、 図 2 (e) は図 2
(c) の B部詳細である。 得られたソケットを水平な机の上に静置し、 ソケットの高さをミツトヨ製クイ ックビジョン 4 0 4 P R O C N C画像測定機により測定した。 その際、 ソケット 端面より 0 . 5 mmの位置を 1 0 mm間隔で測定し、 最大高さと最小高さの差を 平面度とした。
更に、 日本パルス技術研究所製大型卓上リフローハンダ付け装置 R F— 3 0 0 を使用し、 ハンダ印刷及び部品の搭載をしないで、 ハンダリフローに相当する条 件、 即ちピーク温度 2 5 0 °C、 同温度での加熱温度 5分の条件で加熱した後、 上 述の方法で平面度を測定し、 これをハンダリフロー前後の平面度の差とした。
(フィード方法、 組成及び押出し条件)
メインフィ-ト、'口 1から サイドフィード口 3から 樹脂供給比 回転数押出量 の添加量 (重量 « の添加量 (重量 X/ (l-X) (頭) (kg/h) 樹脂 (X) 滑剤 樹脂 (1-X) GF
実施例 1 29. 7 0. 3 30 40 49. 7/50. 3 290 350 実施例 2 19. 7 0. 3 40 40 33/67 290 350 実施例 3 9. 7 0. 3 50 40 16. 2/83. 7 290 350 実施例 4 19. 7 0. 3 50 30 24. 6/75. 4 290 250 比較例 1 34. 7 0. 3 25 40 58. 1/41. 9 290 350 比較例 2 44. 7 0. 3 25 30 55. 9/44. 1 290 250 比較例 3 59. 7 0. 3 0 40 ― 290 250 比較例 4 樹脂 59. 7重量%、 滑剤 0. 3重量%、 GF40重量%を インフィ 290 250
-ド口 1から添加した。
表 2 (樹脂組成 、 同ペレツ卜、 射 ¾成形品の物性等)
重量平均 300 m以上 曲げ リフ D -前 リフ口-前後
繊維長 の繊維比率 弾性率 平面度平面度差
i m) (重量 %) (GPa) (mm) (匪)
実施例 1 337 34.2 47 16.0 0.075 0.014
実施例 2 245 22.5 40 15.6 0.047 0.010
実施例 3 206 19.4 38 14.3 0.057 0.009
実施例 4 279 26.8 44 15.8 0.059 0.010
比較例 1 374 43.6 1敏 ^ 47 16.9 0.092 0.010
比較例 2 415 55.1 1疆H 4 ^ ft9 18.0 完全充:!糞できず
比較例 3 420 57.9 51 18.3 完全充填できず
比較例 4 150 10.4 35 13.2 0.071 0.068 産業上の利用可能性
本発明によれば、 所望の充填量の繊維状充填剤の樹脂組成物ペレツ卜において、 繊維状充填剤が、 均一に配合され、 求める重量平均繊維長 (1) を有し、'射出成 形品にした場合に特定の性能を有する樹脂組成物ペレツ卜を、 通常の押出機によ り簡便な方法で、 樹脂の劣化を抑え、 経済的に、 樹脂組成物ペレットを製造する ことができる。
特に、 格子部のピッチ間隔が 2. Omm以下、 格子部の肉厚が 0. 5mm以下、 製品全体の高さが 5. Omm以下の半導体装置用平面状ソケッ卜に用いられる樹 脂組成物ペレツトを製造することができる。

Claims

請 求 の 範 囲
1. 樹脂 (A) 80〜55重量%と、 重量平均繊維長 (L) 1mm以上の繊維 状充填剤 (B) 20〜45重量% (ここで、 樹脂 (A) と繊維状充填剤 (B) の 合計は 100重量%である。 ) を押出機に供給して、 樹脂組成物ペレット中の繊 維状充填剤 (B) の重量平均繊維長 ( 1 ) が 180〜 360 zmである樹脂組成 物ペレツトを製造する際に、
押出機のメインフィード口から樹脂 (A) の一部の量 (X) を供給し、
メインフィード口より押出方向後方に設けられたサイドフィード口から繊維状充 填剤 (B) および樹脂 (A) の残りの量 (1一 X) を (1— X) が 50Z5 0〜10Z90重量%比となるように供給する樹脂組成物ペレツ卜の製造方法。
2. 樹脂組成物ペレット中の繊維状充填剤 (B) が、 繊維長 300 im超のも のの割合が 5〜40重量%である請求項 1に記載の樹脂組成物ペレツ卜の製造方 法。
3. 樹脂組成物ペレットが、 押出機により単通処理されて得られたものである 請求項 1又は 2に記載の樹脂組成物べレツトの製造方法。
4. 樹脂 (A) が液晶性ポリマーである請求項 1〜3のいずれか 1項に記載の 樹脂組成物べレットの製造方法。 '
5. 繊維状充填剤 (B) が、 ガラス繊維及び 又はカーボン繊維である請求項 1〜 4のいずれか 1項に記載の樹脂組成物べレットの製造方法。
6. 多数のピン孔が設けられた格子鄧のピッチ間隔が 2. 0mm以下、 格子部 の肉厚が 0. 5 mm以下、 ソケットの高さが 5. 0 mm以下の平面状ソケットに 用いられる請求項 1〜 5のいずれか 1項に記載の樹脂組成物べレットの製造方法。
7. 押出機が 2軸押出機であり、 スクリュー長さ/スクリユー径 (LZD) の 比が 20以上であり、 スクリユーが可塑化部と混練部を有し、 サイドフィード口 ' が可塑化部の下流に位置する請求項 1〜 6のいずれか 1項に記載の樹脂組成物べ レツ卜の製造方法。
8. 樹脂組成物ペレツトの溶融粘度が 10〜55 Pa'sである請求項 1〜 7のい ずれか 1項に記載の樹脂組成物ペレツ卜の製造方法。
9. 樹脂組成物ペレツトを射出成形して得られた成形品が、
曲げ弾性率 1500 OMP a以上、 及びハンダリフロー処理前の平面度が 0. 0 9 mm以下、 及びピーク温度 230〜280 °Cでのハンダリフロー処理相当加熱 前後の平面度の差が 0. 02 mm以下である請求項 1〜8のいずれか 1項に記載 の樹脂組成物ペレツトの製造方法。
PCT/JP2005/007368 2004-04-15 2005-04-12 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法 WO2005099984A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,679 US7641833B2 (en) 2004-04-15 2005-04-12 Method for producing a pellet from a fiber-filled resin composition and injection-molded products thereof
JP2006512401A JP4343223B2 (ja) 2004-04-15 2005-04-12 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-120860 2004-04-15
JP2004120860 2004-04-15

Publications (1)

Publication Number Publication Date
WO2005099984A1 true WO2005099984A1 (ja) 2005-10-27

Family

ID=35149846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007368 WO2005099984A1 (ja) 2004-04-15 2005-04-12 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法

Country Status (6)

Country Link
US (1) US7641833B2 (ja)
JP (1) JP4343223B2 (ja)
CN (1) CN100496930C (ja)
MY (1) MY137582A (ja)
TW (1) TWI393620B (ja)
WO (1) WO2005099984A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035677A (ja) * 2004-07-28 2006-02-09 Polyplastics Co 液晶性樹脂組成物の製造方法
WO2006123824A1 (ja) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. 繊維状充填剤高濃度配合樹脂組成物の製造方法及び樹脂組成物ペレット
JP2009215530A (ja) * 2007-09-28 2009-09-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
WO2012137665A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
WO2012137666A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
JP2013071281A (ja) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法
WO2013114787A1 (ja) * 2012-01-30 2013-08-08 住友化学株式会社 樹脂組成物の製造方法
WO2013147069A1 (ja) * 2012-03-30 2013-10-03 宇部興産株式会社 ガラス繊維強化ポリアミド樹脂組成物、それを用いた成形体及び摺動性部品

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506067B1 (de) * 2007-12-21 2009-06-15 Chemiefaser Lenzing Ag Presslinge aus cellulosischen spinnfasern, deren herstellung und verwendung
JP5456983B2 (ja) * 2008-04-17 2014-04-02 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物の製造法
JP5175611B2 (ja) * 2008-05-15 2013-04-03 三和化工株式会社 多軸押出機
TWI524978B (zh) * 2009-07-28 2016-03-11 Polyplastics Co Liquid crystal resin composition, liquid crystal resin composition, and liquid crystal resin manufacturing apparatus
EP2507031B1 (en) * 2009-12-04 2018-03-28 Union Carbide Chemicals & Plastics Technology LLC Extruder screw system and process for producing an aqueous dispersion
JP5632236B2 (ja) * 2010-08-27 2014-11-26 ポリプラスチックス株式会社 シミュレーション装置、プログラム、及び記録媒体
DE102011083356B4 (de) 2011-09-23 2019-05-29 Vemag Maschinenbau Gmbh Vorrichtung und Verfahren zur Verarbeitung eines Lebensmittels, insbesondere zur Verarbeitung von Teig
WO2013074472A1 (en) * 2011-11-15 2013-05-23 Ticona Llc Method of forming a liquid crystalline thermoplastic composition
US20130147085A1 (en) * 2011-12-09 2013-06-13 E.I. Du Pont De Nemours And Company One step production of polyvinyl chloride
JP5302436B1 (ja) * 2012-03-27 2013-10-02 ファナック株式会社 射出成形機の樹脂の状態監視装置
TWI646135B (zh) 2012-10-16 2019-01-01 美商堤康那責任有限公司 抗靜電液晶聚合物組合物
WO2014088700A1 (en) * 2012-12-05 2014-06-12 Ticona Llc Conductive liquid crystalline polymer composition
US11136445B2 (en) 2013-03-13 2021-10-05 Ticona Llc Liquid crystalline polymer composition
KR102366736B1 (ko) 2014-04-09 2022-02-23 티코나 엘엘씨 카메라 모듈
CN114989431A (zh) 2014-04-09 2022-09-02 提克纳有限责任公司 抗静电聚合物组合物
CN106221208B (zh) * 2016-08-19 2019-02-01 经纬智能纺织机械有限公司 一种环锭细纱机用锭脚
US11992973B2 (en) 2017-09-26 2024-05-28 The Japan Steel Works, Ltd. Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
CN111417681B (zh) 2017-12-05 2023-08-22 提克纳有限责任公司 用于摄像模组的芳族聚合物组合物
JP7343520B2 (ja) * 2018-11-09 2023-09-12 住友化学株式会社 液晶ポリエステル樹脂組成物及び成形品
JP2023515976A (ja) 2020-02-26 2023-04-17 ティコナ・エルエルシー 回路構造体
KR20220146567A (ko) 2020-02-26 2022-11-01 티코나 엘엘씨 전자 디바이스
KR20220147110A (ko) 2020-02-26 2022-11-02 티코나 엘엘씨 전자 디바이스를 위한 중합체 조성물
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926237A (ja) * 1982-02-22 1984-02-10 アウトマテイツク・アパラ−テ・マシ−ネンバウ・ハ−・ヘンチ・ゲゼルシヤフト・ミツト・ベシユレンクタ・ハフツング 可塑化可能な物質のための複数軸の連続的に動作する混合および練り装置
JPH06238655A (ja) * 1993-02-17 1994-08-30 Mitsubishi Kasei Corp 熱可塑性樹脂組成物の製造方法
JPH10258424A (ja) * 1997-01-17 1998-09-29 Kishimoto Sangyo Kk ガラス繊維強化ポリプロピレン樹脂及びその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453356A (en) * 1964-02-24 1969-07-01 Dow Chemical Co Mixing of filamentary reinforcing material with thermoplastic resins
DE2751225C3 (de) * 1977-11-16 1981-08-13 Werner & Pfleiderer, 7000 Stuttgart Vorrichtung mit einer nach dem Siebpaket eines Schneckenextruders angeordneten Schmelzindex-Meßeinrichtung und Verfahren zum Regeln der Viskosität von aufgeschmolzenem und auszuformendem Kunststoff
US4252755A (en) * 1979-05-21 1981-02-24 Normanton James K Co-extrusion method and apparatus
US4973439A (en) * 1984-07-13 1990-11-27 Xerox Corporation Process for preparing toner particles
JPH0739534B2 (ja) * 1986-12-10 1995-05-01 ポリプラスチックス株式会社 表面特性の良好な液晶性ポリエステル樹脂組成物
US4976904A (en) * 1989-04-20 1990-12-11 Energy Research Corporation Method and apparatus for continuous formation of fibrillated polymer binder electrode component
US5149486A (en) * 1989-08-23 1992-09-22 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing speaker vibration member
US5185117A (en) * 1989-09-05 1993-02-09 Composite Products, Inc. Process for compounding thermoplastic resin and fibers
US5110896A (en) * 1990-12-10 1992-05-05 E. I. Du Pont De Nemours And Company Thermotropic liquid crystalline polyester compositions
DE4039943A1 (de) * 1990-12-14 1992-06-17 Berstorff Gmbh Masch Hermann Verfahren und vorrichtung zur einstufigen, kontinuierlichen herstellung einer kautschaukgrund- und fertigmischung fuer fahrzeugreifen, antriebsriemen, transportbaender sowie fuer technische gummiartikel in nur einer mischvorrichtung
JP2872466B2 (ja) * 1991-10-07 1999-03-17 チッソ株式会社 複合強化ポリプロピレン樹脂組成物の製造方法
US6221962B1 (en) * 1992-05-29 2001-04-24 Neste Oy Liquid crystal polymer blends, process for the preparation thereof and products manufactured from the blends
DE4322108C2 (de) * 1992-07-03 2001-08-09 Toyoda Gosei Kk Verstärkte Polypropylenharzmischung und daraus hergestellte Radkappe
JP3269207B2 (ja) 1992-09-21 2002-03-25 東レ株式会社 ガラス繊維強化液晶性樹脂組成物
IT1263149B (it) * 1993-02-05 1996-08-01 Giancarlo Colombo Metodo di estrusione ed impianto per esso
US5441801A (en) * 1993-02-12 1995-08-15 Andersen Corporation Advanced polymer/wood composite pellet process
US5401154A (en) * 1993-05-26 1995-03-28 Continental Structural Plastics, Inc. Apparatus for compounding a fiber reinforced thermoplastic material and forming parts therefrom
US5422049A (en) * 1993-11-08 1995-06-06 Friedrich Theysohn Gmbh Method and apparatus for the plastifying of synthetic resins
US5536613A (en) * 1995-02-23 1996-07-16 Xerox Corporation Processes for preparing toner
JP3686718B2 (ja) * 1995-12-27 2005-08-24 ポリプラスチックス株式会社 液晶性ポリマー組成物および成形体
US6121369A (en) * 1997-06-06 2000-09-19 Eastman Chemical Company Liquid crystalline polyester compositions containing carbon black
US5830395A (en) * 1997-08-12 1998-11-03 E. I. Du Pont De Nemours And Company Process for making a uniform dispersion of aramid fibers and polymer
US5938994A (en) * 1997-08-29 1999-08-17 Kevin P. Gohr Method for manufacturing of plastic wood-fiber pellets
JP4092444B2 (ja) * 1997-12-04 2008-05-28 ミサワホーム株式会社 成形品製造方法および成形品製造用混練装置
US6652796B1 (en) * 1998-05-26 2003-11-25 Kishimoto Sangyu Co Ltd Method for manufacturing glass fiber-reinforced resin moldings
FR2789622B1 (fr) * 1999-02-11 2001-06-08 Ecia Equip Composants Ind Auto Installation de fabrication de pieces de structure en matiere thermoplastique, notamment pour vehicules automobiles
DE10010414A1 (de) * 2000-03-03 2001-09-06 Trespa Int Bv Verfahren zur Herstellung eines mattenförmigen Vorprodukts, Vorprodukt und Verwendung eines Vorprodukts
JP4586234B2 (ja) * 2000-04-28 2010-11-24 住友化学株式会社 熱可塑性樹脂組成物の製造方法
US7964128B2 (en) * 2001-12-19 2011-06-21 Pirelli Pneumatici S.P.A. Process and apparatus for continuously producing an elastomeric composition
EP1405874B1 (en) * 2002-10-03 2014-03-26 Mitsubishi Gas Chemical Company, Inc. Process for production of polyamide composite material
JP2006502888A (ja) * 2002-10-15 2006-01-26 ダウ グローバル テクノロジーズ インコーポレイティド 繊維強化熱可塑性ポリマー組成物を含む物品
US20050087904A1 (en) * 2003-10-24 2005-04-28 Bryan Robert J. Manufacture of extruded synthetic wood structural materials
US7410687B2 (en) * 2004-06-08 2008-08-12 Trex Co Inc Variegated composites and related methods of manufacture
US20060103045A1 (en) * 2004-11-17 2006-05-18 O'brien-Bernini Frank C Wet use chopped strand glass as reinforcement in extruded products
US20080093763A1 (en) * 2006-10-06 2008-04-24 Douglas Mancosh Multi-color fiber-plastic composites and systems and methods for their fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926237A (ja) * 1982-02-22 1984-02-10 アウトマテイツク・アパラ−テ・マシ−ネンバウ・ハ−・ヘンチ・ゲゼルシヤフト・ミツト・ベシユレンクタ・ハフツング 可塑化可能な物質のための複数軸の連続的に動作する混合および練り装置
JPH06238655A (ja) * 1993-02-17 1994-08-30 Mitsubishi Kasei Corp 熱可塑性樹脂組成物の製造方法
JPH10258424A (ja) * 1997-01-17 1998-09-29 Kishimoto Sangyo Kk ガラス繊維強化ポリプロピレン樹脂及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035677A (ja) * 2004-07-28 2006-02-09 Polyplastics Co 液晶性樹脂組成物の製造方法
JP4602024B2 (ja) * 2004-07-28 2010-12-22 ポリプラスチックス株式会社 液晶性樹脂組成物の製造方法
WO2006123824A1 (ja) * 2005-05-18 2006-11-23 Polyplastics Co., Ltd. 繊維状充填剤高濃度配合樹脂組成物の製造方法及び樹脂組成物ペレット
JP2009215530A (ja) * 2007-09-28 2009-09-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2013014781A (ja) * 2007-09-28 2013-01-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2012213996A (ja) * 2011-04-01 2012-11-08 Polyplastics Co ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
WO2012137666A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
JP2012213997A (ja) * 2011-04-01 2012-11-08 Polyplastics Co ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
WO2012137665A1 (ja) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
JP2013071281A (ja) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法
WO2013114787A1 (ja) * 2012-01-30 2013-08-08 住友化学株式会社 樹脂組成物の製造方法
US9168675B2 (en) 2012-01-30 2015-10-27 Sumitomo Chemical Company, Limited Method for producing resin composition
WO2013147069A1 (ja) * 2012-03-30 2013-10-03 宇部興産株式会社 ガラス繊維強化ポリアミド樹脂組成物、それを用いた成形体及び摺動性部品

Also Published As

Publication number Publication date
MY137582A (en) 2009-02-27
CN100496930C (zh) 2009-06-10
US7641833B2 (en) 2010-01-05
US20070194478A1 (en) 2007-08-23
TW200606000A (en) 2006-02-16
JP4343223B2 (ja) 2009-10-14
TWI393620B (zh) 2013-04-21
CN1942296A (zh) 2007-04-04
JPWO2005099984A1 (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2005099984A1 (ja) 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法
JP4786648B2 (ja) 繊維状充填剤高濃度配合樹脂組成物の製造方法及び樹脂組成物ペレット
JP5914935B2 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
WO2021029110A1 (ja) 液晶ポリエステル樹脂組成物及び成形体
JP5371683B2 (ja) ポリアミド樹脂組成物ペレットの製造方法
JP7184079B2 (ja) ポリアミド系3次元プリンタ用材料
JP2004137450A5 (ja)
WO2021029265A1 (ja) 液晶ポリエステル樹脂組成物及びその製造方法並びに成形体
WO2005093909A1 (ja) 平面状コネクター
WO2018150599A1 (ja) フィラメント及びその製造方法
KR101737036B1 (ko) 액정성 수지 조성물
WO2018199155A1 (ja) 液晶ポリエステル組成物
US20210086492A1 (en) 3d printer material
JP5736710B2 (ja) ポリアミド樹脂組成物
WO2021029109A1 (ja) 樹脂組成物及び成形体
JP2018188528A (ja) 液晶ポリエステル組成物の製造方法および液晶ポリエステル組成物
KR20160100190A (ko) 열전도성 물질을 이용한 조형성이 향상된 3d프린터용 열가소성필라멘트의 제조방법
JP2007223274A (ja) 重合体組成物の押出装置及び方法
JP2004106506A (ja) 洗浄用熱可塑性樹脂組成物
EP4353437A1 (en) Method and apparatus for manufacturing resin composite material
JP2006088533A (ja) 射出スクリュ
JP2021028154A (ja) 射出成形品及びその製造方法
JP2021030661A (ja) 樹脂組成物の製造方法、樹脂成形体の製造方法
TW202134322A (zh) 含纖維素系原料之樹脂片
JP2010070231A (ja) 包装用シーラントフィルム及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10594679

Country of ref document: US

Ref document number: 2007194478

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580011400.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10594679

Country of ref document: US