WO2013187292A1 - ボンディング装置および半導体装置の製造方法 - Google Patents

ボンディング装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2013187292A1
WO2013187292A1 PCT/JP2013/065575 JP2013065575W WO2013187292A1 WO 2013187292 A1 WO2013187292 A1 WO 2013187292A1 JP 2013065575 W JP2013065575 W JP 2013065575W WO 2013187292 A1 WO2013187292 A1 WO 2013187292A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor chip
bonding
electrode
image
Prior art date
Application number
PCT/JP2013/065575
Other languages
English (en)
French (fr)
Inventor
大輔 谷
高橋 浩一
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to CN201380027777.0A priority Critical patent/CN104335337B/zh
Priority to SG11201408122RA priority patent/SG11201408122RA/en
Priority to KR1020147022686A priority patent/KR101630249B1/ko
Publication of WO2013187292A1 publication Critical patent/WO2013187292A1/ja
Priority to US14/561,572 priority patent/US9385104B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/70Automated, e.g. using a computer or microcomputer
    • B32B2309/72For measuring or regulating, e.g. systems with feedback loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/5448Located on chip prior to dicing and remaining on chip after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/32146Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the layer connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75754Guiding structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/75901Means for monitoring the connection process using a computer, e.g. fully- or semi-automatic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81908Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/83122Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors by detecting inherent features of, or outside, the semiconductor or solid-state body
    • H01L2224/83123Shape or position of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/83122Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors by detecting inherent features of, or outside, the semiconductor or solid-state body
    • H01L2224/83129Shape or position of the other item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8313Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06593Mounting aids permanently on device; arrangements for alignment

Definitions

  • the present invention relates to a bonding apparatus, in particular, a structure of a flip chip bonding apparatus and a method of manufacturing a semiconductor device using the flip chip bonding apparatus.
  • Flip chip bonding devices are often used as devices for bonding semiconductor chips to circuit boards.
  • the flip chip bonding machine holds the circuit board on the bonding stage by suction, holds the semiconductor chip on the tip of the bonding tool with the bonding surface (surface on which the bumps are formed) facing down, and the bonding tool is connected to the circuit.
  • the semiconductor chip is bonded to the circuit board by being lowered toward the surface of the board, pressing bumps of the semiconductor chip against the circuit board, and heating.
  • a two-field camera with different focal lengths of the camera on the bonding tool side and the circuit board is used, and a clear image can be obtained even when the distance between the two-field camera and the semiconductor chip and the circuit board is different.
  • a method of imaging has been proposed (see, for example, Patent Document 2).
  • JP 2002-110742 A Japanese Patent No. 4642565
  • a method of manufacturing a multilayer semiconductor device by stacking semiconductor chips provided with through electrodes has been used.
  • a plurality of through electrodes penetrating a semiconductor chip are arranged at the same position of each stacked semiconductor chip, and when the semiconductor chips are stacked, the through electrodes are electrically connected to each other and extend in the stacking direction. It is configured as a common electrode.
  • the stacked semiconductor chips are electrically connected by a plurality of through electrodes.
  • a plurality of semiconductor chips are electrically connected without using other wiring and connecting means such as wires. can do.
  • Patent Document 1 Since several to several tens of through electrodes are provided in a semiconductor chip used in such a multilayer semiconductor device and each through electrode needs to be securely connected, for example, Patent Document 1 , 2, it is necessary to make the positional deviation of each semiconductor chip to be stacked smaller than in the case of bonding a semiconductor chip to a circuit board as in the prior art described in (2).
  • the through electrodes are joined by solder, the through electrodes are placed on the molten solder even if the semiconductor chips of the upper and lower layers are aligned and bonded. The position may shift in the meantime. Further, there is a case in which a positional shift to the extent that the through electrode is displaced due to unclearness of the alignment mark or the like may occur. Further, there may be a case where a shift occurs in the bonding position of the through electrode due to a shift in bonding conditions such as temperature during the continuous bonding.
  • the bonding surface of the through electrodes becomes invisible from the outside, so that it is not possible to easily detect whether the through electrodes are accurately connected to each other. It is necessary to determine the bonding conditions by peeling the semiconductor chip and confirming the connection state of the through electrodes, or cutting the connected multi-layer semiconductor device and confirming the connection state of the through electrodes. Also, once the bonding conditions have been determined, if there is a shift in the connection position of the through electrode during bonding, a through electrode connection failure will be discovered until a product inspection after bonding results in a defective connection. I could't.
  • an object of the present invention is to accurately connect through electrodes by a simple method.
  • the bonding apparatus of the present invention includes a camera that captures an image of a semiconductor chip, image processing of an image captured by the camera, and a first through electrode on a first layer semiconductor chip on which the first through electrode is provided. And a control unit that performs bonding control for laminating and bonding a second layer semiconductor chip in which a second through electrode is provided at a corresponding position.
  • a relative position detecting means for detecting the relative position of the semiconductor chip.
  • the relative position is the position of the semiconductor chip of the second layer in the direction along the reference axis on the surface of the semiconductor chip of the first layer or the direction orthogonal to the reference axis, or relative to the reference axis. It is also preferable that the rotation angle of the semiconductor chip of the second layer is any one or a combination of a plurality of rotation angles.
  • the first-layer semiconductor chip and the second-layer semiconductor chip are preferably semiconductor chips of two adjacent layers, or the first-layer semiconductor chip. It is also preferable that the chip is a first-layer semiconductor chip, and the second-layer semiconductor chip is another semiconductor chip laminated and bonded to the upper side of the first-layer semiconductor chip.
  • the control unit includes a first imaging unit that captures an image of the first through electrode on the surface of the semiconductor chip of the first layer with a camera before the lamination bonding, and a camera before the lamination bonding.
  • the first alignment mark on the front surface of the semiconductor chip of the first layer imaged by the second alignment mark on the back surface of the semiconductor chip of the second layer imaged by the camera before the lamination bonding is aligned with the second alignment mark.
  • First bonding means for laminating and bonding the semiconductor chip of the layer on the semiconductor chip of the first layer, and second penetration of the surface of the semiconductor chip of the second layer by the camera after the lamination bonding by the first bonding means
  • a second image pickup means for picking up an image of the electrode and an image of the first through electrode picked up by the first image pickup means;
  • Offset amount setting means for detecting the relative position of the semiconductor chip of each layer based on the image of the second through electrode picked up by the second imaging means and setting the detected relative position as an offset amount at the time of lamination bonding It is also preferable to have
  • the control unit shifts the semiconductor chip of the second layer by the offset amount set by the offset amount setting means from the position where the second alignment mark is aligned with the first alignment mark.
  • a second bonding means for laminating and bonding on the semiconductor chip, and a third bonding for taking an image of the second through electrode on the surface of the semiconductor chip of the second layer by a camera after the laminating bonding by the second bonding means Based on the imaging means, the image of the first through electrode picked up by the first imaging means and the image of the second through electrode picked up by the third imaging means, the shift amount of the relative position of the semiconductor chip of each layer is determined. It is also preferable to include a deviation amount detecting means for detecting.
  • control unit corrects the offset amount by a predetermined ratio of the deviation amount when the deviation amount detected by the deviation amount detection means is less than the first threshold value and is equal to or larger than the second threshold value. It is also preferable to include an amount correction means.
  • the method for manufacturing a semiconductor device includes a second layer in which a second through electrode is provided at a position corresponding to the first through electrode on a semiconductor chip of the first layer in which the first through electrode is provided.
  • the second layer semiconductor chip is shifted by an offset amount from the position where the second alignment mark is aligned with the first alignment mark, and laminated bonding is performed on the first layer semiconductor chip.
  • a second imaging step, a third imaging step of imaging an image of the second through electrode on the surface of the semiconductor chip of the second layer by a camera after the second bonding step, and imaging by the first imaging means A displacement amount detecting step of detecting a displacement amount of the relative position of the semiconductor chip of each layer based on the image of the first through electrode and the image of the second through electrode taken by the third imaging means. It is also suitable.
  • the first layer semiconductor chip and the second layer semiconductor chip are preferably semiconductor chips of two adjacent layers. It is also preferable that the semiconductor chip of the first layer is a semiconductor chip of the first layer, and the semiconductor chip of the second layer is another semiconductor chip laminated and bonded on the upper side of the semiconductor chip of the first layer.
  • the present invention has an effect that the through electrodes can be accurately connected by a simple method.
  • a flip chip bonding apparatus 500 supports a bonding stage 11 that sucks and fixes a semiconductor chip 20 of a first layer, and supports the bonding stage 11 so as to be movable in the XY directions (horizontal directions).
  • a control unit 50 that performs processing and bonding control is provided.
  • the horizontal direction of the paper is the XY direction
  • the vertical direction of the paper is the Z direction
  • the rotation direction around the Z axis is ⁇ .
  • the control unit 50 includes a CPU 51 that performs signal processing therein, a memory 52 that stores a control program, control data, and the like, and a bonding tool drive mechanism that inputs and outputs control signals to and from the bonding tool drive mechanism.
  • the computer includes an interface 64, a two-field camera interface 65 for inputting / outputting control signals and image signals to / from the two-field camera 16, and a bonding stage driving mechanism interface 66 for inputting / outputting a bonding stage driving mechanism and control signals. .
  • the CPU 51, the memory 52, and the interfaces 64, 65, 66 are connected by a data bus 70.
  • the bonding tool drive mechanism 15, the two-field camera 16, and the bonding stage drive mechanism 13 are configured to be driven by a command from the CPU 51 of the control unit 50.
  • the memory 52 includes a relative position detection program 53 that is a relative position detection unit, a first imaging program 54 that is a first imaging unit, and a first bonding program that is a first bonding unit. 55, a second imaging program 56 as a second imaging means, an offset amount setting program 57 as an offset amount setting means, a second bonding program 58 as a second bonding means, and a third imaging means as a third imaging means.
  • the programs 53 to 62 will be described later.
  • FIG. 7 is a diagram showing a step of stacking and bonding the second layer semiconductor chip 30 on the first layer semiconductor chip 20 (semiconductor device manufacturing step) by the flip chip bonding apparatus 500 of the present embodiment configured as described above. This will be described with reference to FIGS.
  • step S101 to step S108 in FIG. 3 First, the teaching operation from step S101 to step S108 in FIG. 3 will be described. First, the first layer semiconductor chip 20 is sucked and fixed on the bonding stage 11, and the second layer semiconductor chip 30 is sucked from the wafer to the tip of the bonding tool 14 by a pickup unit (not shown).
  • cross-shaped alignment marks 21a are provided at the upper right corner and the lower left corner of the surface 20a (the surface on the plus side in the Z direction in FIG. 1) of the semiconductor chip 20 of the first layer.
  • the first layer semiconductor chip 20 is provided with a plurality of first through electrodes 22.
  • the first through electrode 22 is provided so as to penetrate between the front surface 20a and the back surface 20b of the first layer semiconductor chip 20 perpendicularly to the front surface 20a and the back surface 20b.
  • the surface 22a of the first through electrode 22 is exposed on the surface 20a of the semiconductor chip 20 of the first layer, and the first through electrode 22 is exposed on the back surface 20b of the semiconductor chip 20 of the first layer.
  • the back surface 22b of the first through electrode 22 is exposed at the same position as the front surface 22a.
  • the second layer semiconductor chip 30 is also provided with a second through electrode 32 at the same position as the first layer semiconductor chip 20. That is, the second through electrode 32 is provided at the same position when the semiconductor chip 30 of the second layer is inverted and the back surface 30b is overlapped with the front surface 20a of the semiconductor chip 20 of the first layer. It has been.
  • the second through electrode 32 has a surface 30a between the surface 30a and the back surface 30b of the semiconductor chip 30 of the second layer. The surface 32a of the second through electrode 32 is exposed on the surface 30a of the semiconductor chip 30 of the second layer, and the semiconductor of the second layer.
  • FIG. 2C is a view of the second layer semiconductor chip 30 as viewed from the back surface 30b side.
  • a cross-shaped alignment mark 31b is provided in each of the same positions when the chip 30 is inverted and the back surface 30b is overlapped with the front surface 20a of the semiconductor chip 20 of the first layer.
  • the control unit 50 uses the two-field camera driving mechanism (not shown) to connect the two-field camera 16 to the bonding tool 14 and the bonding stage. 11 in the middle. Then, the first field including the alignment mark 21a and the surface 22a of the first through electrode 22 is shown in the lower field of view of the two-field camera 16 shown by the downward white arrow in FIG. 1 as shown in FIG. An image of the surface 20a of the semiconductor chip 20 of the second layer is captured, and in the upper visual field of the two-field camera 16 indicated by the upward white arrow in FIG. 1, the alignment mark 31b and the first mark are shown in FIG. An image of the back surface 30b of the second layer semiconductor chip 30 including the back surface 32b of the second through electrode 32 is captured.
  • the control unit 50 executes the first imaging program 54 shown in FIG. 1, operates the two-field camera 16 as shown in step S101 of FIG. 3, and performs the first layer semiconductor chip shown in FIG. An image of the surface 22a of the first through electrode 22 on the surface 20a of the 20 is captured and stored in the control data 63 of the memory 52 (first imaging step).
  • control unit 50 executes the first bonding program 55 shown in FIG. As shown in step S102 of FIG. 3, the control unit 50 operates the two-field camera 16 to image the alignment mark 21a on the surface 20a of the semiconductor chip 20 of the first layer shown in FIG. 52, and the two-field camera 16 is operated to image the alignment mark 31b on the back surface 30b of the second-layer semiconductor chip 30 shown in FIG. 2C, as shown in step S103 of FIG. And stored in the control data 63 of the memory 52.
  • the controller 50 processes the images of the alignment marks 21a and 31b, detects the amount of displacement of the positions of the alignment marks 21a and 31b in the XY direction or ⁇ direction, and the bonding stage drive mechanism 13 and the bonding tool drive mechanism 15.
  • the control unit 50 controls the semiconductor chip 20 of the first layer and the second layer. It is determined that the alignment marks 21a and 31b of the semiconductor chip 30 are aligned, and a command to lower the bonding tool 14 is output by the bonding tool drive mechanism 15 as shown in step S104 of FIG. By this command, the bonding tool 14 is lowered as shown in FIG. 4, and the second layer semiconductor chip 30 is laminated and bonded on the first layer semiconductor chip 20 as shown in FIG.
  • the semiconductor device 40 is used (first bonding step).
  • the surface 22a of the first layer through electrode 22 and the second layer A fixed layer 41 in which molten solder is hardened is formed between the through electrode 32 and the back surface 32 b of the through electrode 32, and the through electrodes 22 and 32 are connected by the fixed layer 41.
  • the control unit 50 raises the bonding tool 14 to the standby position, and the two-field camera 16 is moved to the second layer semiconductor by a two-field camera driving mechanism (not shown). Move onto device chip 30.
  • a two-field camera driving mechanism not shown.
  • FIG. 5A an image in which the second layer semiconductor chip 30 is stacked on the first layer semiconductor chip 20 is captured.
  • the alignment mark 21a of the semiconductor chip 20 on the lower first layer and the surface 22a of the first through electrode are shown by broken lines, but what is actually displayed in the field of view of the two-field camera 16 is shown.
  • 5A are the solid line portions, that is, the surface 30a of the semiconductor chip 30 and the surface 32a of the second through electrode 32 of the second layer.
  • the control unit 50 executes the second imaging program 56 shown in FIG. 1, and as shown in step S105 of FIG. 3, the surface of the second through electrode 32 of the surface 30a of the semiconductor chip 30 of the second layer.
  • the image 32a is captured and stored in the control data 63 (second imaging step).
  • the control unit 50 executes the relative position detection program 53 shown in FIG. 1, and, as shown in step S106 shown in FIG. 3, the through electrode of the first-layer semiconductor chip 20 previously imaged in the first imaging process.
  • the image of the through electrode 32a of the semiconductor chip 30 of the second layer imaged in the second imaging process is superimposed on the image of the surface 22a of 22.
  • FIG. 5A the surface 20a of the first layer semiconductor chip 20 and the surface 22a of the first through electrode 22 that are overlapped are indicated by broken lines.
  • the positions of the surfaces 22a and 32a of the respective through electrodes are displayed shifted.
  • the through electrodes 22 and 32 are formed perpendicular to the surfaces 20a and 30a of the semiconductor chips 20 and 30 in the respective layers, the positions of the surfaces 22a and 32a of the through electrodes are determined. That is, it is determined that the semiconductor chips 20 and 30 of the respective layers are stacked while being shifted as shown in FIG. 5B.
  • the control unit 50 sets the amount of deviation ⁇ X, ⁇ Y in the XY direction between the surface 22a of the first through electrode 22 and the surface 32a of the second through electrode 32 that overlap each other as shown in FIG.
  • the relative position between the semiconductor chip 20 of the first layer and the semiconductor chip 30 of the second layer is determined. In the example shown in FIG.
  • the positions of the alignment mark 21a provided on the front surface 20a of the first layer semiconductor chip 20 and the alignment mark 31b provided on the back surface 30b of the second layer semiconductor chip 30 are also shown.
  • the deviation amounts ⁇ X and ⁇ Y are, for example, the positions of the through electrodes 22 and 32 in the X and Y directions caused by errors when the control unit 50 recognizes the positions of the alignment marks from the images of the alignment marks 21a and 31b. It is determined that the position is shifted or a position shift caused by the molten solder sandwiched between the through electrodes at the time of laminated bonding.
  • the control unit 50 repeats each step of steps S101 to S106 shown in FIG. 3 a predetermined number of times, for example, n times, and then, as shown in step S108 of FIG.
  • the average deviation amount or the median value is set as the offset amount (offset amount setting step).
  • the reference axis of the semiconductor chip 20 is a direction parallel to the lateral side X of the semiconductor chip 20 of the first layer shown in FIG. 5A
  • Y is a direction orthogonal to the X direction.
  • the relative position may be determined including not only the displacement amounts ⁇ X and ⁇ Y in the XY directions but also the positional displacement ⁇ in the rotational direction of the semiconductor chip of the second layer with respect to the semiconductor chip 20 of the first layer.
  • the positional deviation ⁇ in the rotation direction is, for example, the deviation amounts ⁇ X 1 , ⁇ Y 1 in the XY directions of the respective surfaces 22a, 32a of the uppermost left through electrodes 22, 32 shown in FIG. X-axis serving as a reference using the amounts of deviation ⁇ X 2 and ⁇ Y 2 in the XY directions of the respective surfaces 22a and 32a of the lowermost through electrodes 22 and 32 (the diagonal through electrodes 22 and 32) shown in FIG.
  • the average value or the median value of the deviation amounts ⁇ X, ⁇ Y, ⁇ is set as each offset amount in the XY ⁇ direction.
  • the semiconductor chips 20 and 30 of the first and second layers that have been laminated and bonded are peeled off to confirm the bonding surfaces, or the multilayered layers that have been laminated.
  • a destructive inspection such as cutting the semiconductor device 40 and exposing the cross section as shown in FIG. 5B to confirm the positions of the first and second through electrodes 22, 32, for example.
  • a positional deviation amount (relative position) between the semiconductor chips 20 and 30 of the first layer and the second layer during the lamination bonding is detected, and an offset amount during the lamination bonding is determined based on the deviation amount (relative position).
  • Teaching of the flip chip bonding apparatus can be performed by a simple method of setting, and the through electrodes 22 and 32 can be bonded with high accuracy.
  • step S109 to step S119 in FIG. 3 the lamination bonding operation (step S109 to step S119 in FIG. 3) when manufacturing the multilayer semiconductor device 40 after teaching will be described.
  • the description of the same steps as the teaching operation described above is omitted.
  • the control unit 50 first fixes the semiconductor chip 20 of the first layer on the bonding stage 11 by suction and fixes the semiconductor of the second layer from the wafer by a pickup unit (not shown).
  • the chip 30 is attracted to the tip of the bonding tool 14, and the two-field camera 16 is inserted between the bonding stage 11 and the bonding tool 14.
  • the control unit 50 executes the first imaging program 54 shown in FIG. 1, operates the two-field camera 16 as shown in Step S109 of FIG. 3, and performs the first layer shown in FIG.
  • An image of the surface 22a of the first through electrode 22 on the surface 20a of the semiconductor chip 20 is captured and stored in the control data 63 of the memory 52 (first imaging step).
  • control unit 50 executes the second bonding program 58 shown in FIG.
  • the control unit 50 operates the two-field camera 16 to image the alignment mark 21a on the surface 20a of the semiconductor chip 20 of the first layer shown in FIG. 52, and the two-field camera 16 is operated to image the alignment mark 31b on the back surface 30b of the second-layer semiconductor chip 30 shown in FIG. 2C, as shown in step S111 of FIG. And stored in the control data 63 of the memory 52.
  • the control unit 50 processes the images of the alignment marks 21a and 31b, and detects the amount of deviation of the positions of the alignment marks 21a and 31b in the XY direction or the ⁇ direction. Then, as shown in step S112 of FIG.
  • the control unit 50 makes the deviation amounts of the positions of the alignment marks 21a and 31b in the XY direction or the ⁇ direction become the offset amounts set in step S108 of FIG.
  • the bonding stage drive mechanism 13 and the bonding tool drive mechanism 15 adjust the position of the bonding stage 11 in the XY direction and the position of the bonding tool 14 in the ⁇ direction, respectively, and the deviation amounts of the alignment marks 21a and 31b become offset amounts.
  • the bonding tool driving mechanism 15 outputs a command to lower the bonding tool 14.
  • the bonding tool 14 is lowered as shown in FIG. 4, and the second layer semiconductor chip 30 is laminated and bonded onto the first layer semiconductor chip 20 as shown in FIG.
  • the semiconductor device 40 is assumed (second bonding step).
  • control unit 50 raises the bonding tool 14 to the standby position as shown in FIG. 6, and the two-field camera 16 is moved to the second layer semiconductor by a two-field camera driving mechanism (not shown).
  • the second through electrode on the surface 30a of the semiconductor chip 30 of the second layer is moved on the chip 30 and the third imaging program 59 shown in FIG. 1 is executed, as shown in step S113 of FIG. An image of the surface 32a of 32 is taken and stored in the control data 63 (third imaging step).
  • the second layer semiconductor chip 30 is previously shifted from the first layer semiconductor chip 20 by the offset amount set by the teaching operation shown in steps S101 to S108 of FIG. Therefore, after the lamination bonding, the deviation amounts ⁇ X, ⁇ Y or ⁇ appearing in the teaching operation shown in FIGS. 5A and 5B are zero, and FIG. As shown in FIG. 7B, the through electrodes 22 and 32 should be overlapped without deviation.
  • the offset amount is set by the teaching operation (steps S101 to S108 in FIG. 3)
  • the through electrodes as shown in FIGS. 5A and 5B are provided after the second bonding operation. 22 and 32 misalignment may occur.
  • the controller 50 performs the second through electrode 32 of the second layer semiconductor chip 30 after the lamination bonding by the two-field camera 16 as shown in Step S113 of FIG.
  • An image of the surface 32a is acquired, the displacement amount detection program 60 shown in FIG. 1 is executed, and the first layer of the semiconductor chip 20 of the first layer imaged in step S109 in FIG. 3 is captured as shown in step S114 in FIG.
  • the amount of displacement ⁇ X, ⁇ Y, ⁇ between the position of the first through electrode 22 and the second through electrode 32 is detected by superimposing the image on the surface 22a of the through electrode 22 (displacement amount detection step).
  • the deviation amount detection program 60 is the same as that shown in FIG. 1 described above except that it is executed after the second bonding in which the semiconductor chips 20 and 30 of the first layer and the second layer are shifted by the offset amount. This is the same as the relative position detection program 53 shown.
  • step S115 of FIG. 3 when the detected deviation amount is less than the first threshold value which is the allowable deviation amount and is equal to or larger than the second threshold value which is the necessary deviation amount, the offset amount is set. It is determined that correction is necessary, and the offset amount correction program 61 shown in FIG. 1 is executed as shown in step S116 of FIG.
  • the offset amount correction program 61 increases or decreases the offset amount by a predetermined ratio of the deviation amount detected in step S114 of FIG. 3, for example, 50%.
  • the control unit 50 returns to step S109 to perform the next bonding as shown in step S117 of FIG. Thereby, each penetration electrode 22 and 32 can be joined accurately (offset amount correction process).
  • step S109 may be omitted and the process may return to step S110 when shifting to the next bonding.
  • step S118 in FIG. 3 when the detected deviation amount exceeds the first threshold value which is the allowable deviation amount, the control unit 50 determines that the laminated bonding is defective.
  • the stop program 62 shown in FIG. 1 is executed and the flip chip bonding apparatus 500 is stopped as shown in step S119 of FIG. 3, for example, a warning lamp is turned on to notify that an abnormal state has occurred (stop). Process).
  • the offset amount during manufacturing can be corrected and the bonding apparatus can be stopped when a defect occurs without performing a destructive inspection of the semiconductor chips 20 and 30 of each layer to be stacked.
  • the quality of laminated bonding can be improved.
  • the semiconductor chip is laminated and bonded to two layers.
  • the present invention can also be applied to a multi-layer laminated bonding.
  • the offset amount may be changed between the offset amount when bonding the first layer and the second layer and the offset amount when bonding the second layer and the third layer.
  • the alignment mark 21a of the semiconductor chip 20 of the first layer and the alignment mark 31b of the semiconductor chip 30 of the second layer are aligned and bonded together during the teaching operation. Even if the alignment marks 21a and 31b are not overlapped, when the relative distance between the alignment marks is known, the alignment marks are shifted by the relative distance, and the lamination bonding is performed, or the alignment marks are combined and bonded. Included in that.
  • the bonding stage 11 moves in the X and Y directions and the bonding tool moves in the Z and ⁇ directions.
  • the bonding stage 11 may be configured to move only in the X direction while moving in the Y, Z, and ⁇ directions, or the bonding tool 11 may be configured to move in the XYZ and ⁇ directions without moving the bonding stage 11. May be.
  • FIG. 8 to FIG. 11 a step of stacking and bonding semiconductor chips in three or more layers using the flip chip bonding apparatus 500 shown in FIG. 1 ((Semiconductor device in which semiconductor chips are stacked in three or more layers) Will be described.
  • the same parts as those described with reference to FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • step S201 to step S208 in FIG. 8 The teaching operation from step S201 to step S208 in FIG. 8 will be described.
  • This teaching operation is the same as the operation in steps S101 to S108 in FIG. 3, and the first layer (first layer) semiconductor chip 100 shown in FIG.
  • This is an operation for determining an offset amount between the second layer semiconductor chips 200 laminated and bonded to the upper side of the first layer.
  • the control unit 50 acquires an image of the surface 102a of the first through electrode 102 of the first (first layer) semiconductor chip 100 shown in FIG. After acquiring the image of the alignment mark on the front surface 100a of the (first layer) semiconductor chip 100, as shown in step S203 of FIG. 8, the image of the alignment mark on the back surface 200b of the semiconductor chip 200 of the second layer shown in FIG. To get. Then, as shown in step S ⁇ b> 204 of FIG. 8, the control unit 50 bonds the second layer semiconductor chip 200 on the first layer (first layer) semiconductor chip 100 shown in FIG.
  • the control unit 50 acquires an image of the surface 202a of the second through electrode 202 of the second-layer semiconductor chip 200 as shown in Step S205 of FIG. 8, and acquired in Step S201 of FIG. Based on the image of the surface 102a of the first through electrode 102 and the image of the surface 202a of the second through electrode 202 acquired in step S205 of FIG. 8, as shown in step S206 of FIG. And a deviation amount ⁇ X in the X direction between the first semiconductor chip 200 and the second layer semiconductor chip 200 are detected. Then, the control unit 50 sets the amount of deviation between the first layer (first layer) and the second layer semiconductor chips 100 and 200 a predetermined number of times when the semiconductor chips are stacked in two layers as in steps S201 to S206. If it is detected and it is determined that it has been repeated a predetermined number of times, as shown in step S207 of FIG. The offset amount may be set manually by the operator without executing the offset amount setting program 57 stored in the control unit 50.
  • the control unit 50 starts manufacturing the actual multilayer semiconductor device 40 as shown in steps S209 to S220 in FIG. To do.
  • This operation is the same as the operation in steps S109 to S114 in FIG. 3, and as shown in FIG. 11B, the inter-layer displacement amounts ⁇ X12 and ⁇ X23 of the stacked semiconductor chips 100 to 300 are detected and simultaneously detected.
  • the integrated deviation amount ⁇ X13 of the third-layer semiconductor chip 300 with respect to the one-layer semiconductor chip 100 is detected, and the bonding is stopped when each of the interlayer deviation amounts ⁇ X12, ⁇ X23 or the accumulated deviation amount ⁇ X13 becomes a predetermined threshold value or more. Is.
  • the control unit 50 sets an initial value 1 to the counter N as shown in step S209 of FIG.
  • the offset amount is the same as the displacement amount at the time of laminated bonding, the relative position between the first and second layer semiconductor chips is the same and the interlayer displacement amount ⁇ X12 is zero. There is also a slight error between the amount of deviation and the amount of misalignment during lamination bonding. For this reason, as shown in FIG. 11A, even if the second-layer semiconductor chip 200 is shifted and offset by an offset amount, the first-layer semiconductor chip 100 and the second-layer semiconductor chip 200 are not bonded. Causes a slight interlayer displacement amount ⁇ X12.
  • step S217 in FIG. 9 the control unit 50 compares the interlayer shift amount ⁇ X12 between the first layer and the second layer semiconductor chips 100 and 200 with the third threshold value, and determines the interlayer shift amount. If ⁇ 12 is greater than or equal to the third threshold, it is determined that the bonding is defective, and the bonding operation is stopped as shown in step S221 of FIG. Further, as shown in step S218 of FIG. 9, the control unit 50 compares the accumulated deviation amount between the first layer and the second layer semiconductor chips 100 and 200 with the fourth threshold value, and the accumulated deviation amount is determined. If it is equal to or greater than the fourth threshold, it is determined that the bonding is defective, and the bonding operation is stopped as shown in step S221 of FIG. As described above, when the number of stacked layers is two, the integrated deviation amount is the same as the interlayer deviation amount ⁇ X12.
  • the amount of misalignment ⁇ X23 in the X direction is detected.
  • the X direction accumulated deviation amount ⁇ X13 is detected.
  • the integrated deviation amount ⁇ X13 is obtained by adding the interlayer deviation amount ⁇ X23 between the second layer and the third layer semiconductor chips 200, 300 to the interlayer deviation amount ⁇ X12 between the first layer and the second layer semiconductor chips 100, 200.
  • step S217 of FIG. 9 the control unit 50 compares the interlayer shift amount ⁇ X23 between the second layer and the third layer semiconductor chips 200 and 300 with the third threshold value to determine the interlayer shift amount. If ⁇ 23 is greater than or equal to the third threshold, it is determined that bonding is defective, and the bonding operation is stopped as shown in step S221 of FIG. Further, as shown in step S218 in FIG. 9, the control unit 50 compares the integrated deviation amount ⁇ X13 between the first layer and the third layer semiconductor chips 100, 300 with the fourth threshold value, and calculates the integrated deviation amount. If ⁇ X13 is equal to or greater than the fourth threshold, it is determined that the bonding is defective, and the bonding operation is stopped as shown in step S221 of FIG.
  • the bonding is stopped when both of the interlayer displacement amounts ⁇ X12, ⁇ X23 and the integrated displacement amount ⁇ X13 are equal to or greater than a predetermined threshold value. Therefore, the quality of the multilayer semiconductor device 40 manufactured by multilayer bonding is improved. Can be improved.
  • the shift amount has been described as the shift amounts ⁇ X12, ⁇ X23, and ⁇ X13 in the X direction.
  • the shift amounts in both the Y direction and the ⁇ direction are the same in both the interlayer shift amount and the integrated shift amount. Bonding may be stopped when a predetermined threshold value is exceeded.

Abstract

 第一の貫通電極が設けられる第一の層の半導体チップ(20)の上に第一の貫通電極に対応する位置に第二の貫通電極が設けられる第二の層の半導体チップ(30)を積層ボンディングするフリップチップボンディング装置(500)において、半導体チップ(20),(30)の画像を撮像する二視野カメラ(16)と、制御部(50)と、を備え、制御部(50)は、積層ボンディングする前に二視野カメラ(16)によって撮像した第一の層の半導体チップ(20)の表面の第一の貫通電極の画像と、積層ボンディングした後に二視野カメラ(16)によって撮像した第二の層の半導体チップ(30)の表面の第二の貫通電極の画像とに基づいて積層ボンディングされた各層の半導体チップ(20),(30)の相対位置を検出する相対位置検出プログラム(53)を備える。これにより、簡便な方法で貫通電極を精度よく接続する。

Description

ボンディング装置および半導体装置の製造方法
 本発明は、ボンディング装置、とくにフリップチップボンディング装置の構造及びフリップチップボンディング装置を用いた半導体装置の製造方法に関する。
 半導体チップを回路基板にボンディングする装置としてフリップチップボンディング装置が多く用いられている。フリップチップボンディング装置は、ボンディングステージの上に回路基板を吸着固定しておき、ボンディングツールの先端に接合面(バンプが形成されている面)を下向きに半導体チップを吸着保持し、ボンディングツールを回路基板の表面に向かって降下させ、半導体チップのバンプを回路基板に押し付け、加熱することによって半導体チップを回路基板にボンディングするものである。
 フリップチップボンディング装置では、ボンディングツールに吸着された半導体チップの位置を回路基板のボンディング位置に合わせた状態で半導体チップを回路基板に押し付けることが必要となる。このため、ボンディングツールに吸着された半導体チップの下面と、回路基板の上面との間に上下二視野カメラを挿入し、ボンディングツールに吸着された半導体チップの下面の画像と回路基板の上面の画像とを撮像し、各画像に写しこまれている半導体チップ、回路基板それぞれのアライメントマークの位置に基づいて半導体チップと回路基板との相対位置を合わせる方法が用いられている(例えば、特許文献1参照)。また、フリップチップボンディング装置において、ボンディングツール側と回路基板とでカメラの焦点距離が異なる二視野カメラを用い、二視野カメラと半導体チップ、回路基板との距離が異なっている場合でもクリアな画像を撮像する方法が提案されている(例えば、特許文献2参照)。
特開2002-110742号公報 特許第4642565号明細書
 ところで、近年、貫通電極が設けられた半導体チップを積層して多層の半導体装置を製造する方法が用いられるようになってきている。この方法は、半導体チップを貫通する複数の貫通電極を積層される各半導体チップの同一位置に配置し、各半導体チップを積層した際に、貫通電極同士が電気的に接続され、積層方向に伸びる共通電極として構成されるようにしたものである。この方法では、積層された各半導体チップの間は、複数の貫通電極によって電気的に接続されるので、例えば、ワイヤなど他の配線、接続手段を用いずに複数の半導体チップを電気的に接続することができる。
 このような多層半導体装置に用いられる半導体チップには数個から数十個の貫通電極が設けられ、各貫通電極がそれぞれ確実に接続されていることが必要となることから、例えば、特許文献1,2に記載された従来技術のように半導体チップを回路基板にボンディングする場合よりも積層する各半導体チップの位置ずれを小さくする必要がある。
 しかし、貫通電極間の接合は、はんだにより行っているので、上下の各層の半導体チップの位置を合わせてボンディングしても貫通電極は溶融状態のはんだの上に載るため、はんだが固化するまでの間にその位置がずれてしまう場合がある。また、アライメントマークの不明確さ等により貫通電極がずれる程度の位置ずれが発生する場合があった。さらに、連続ボンディングの途中で温度等のボンディングの条件のずれによって貫通電極の接合位置にずれが発生する場合があった。
 また、半導体チップを積層してしまうと貫通電極の接合面は外部から見えなくなってしまうので、貫通電極同士が正確に接続されているかどうかを容易に検出することができず、例えば、一旦ボンディングした半導体チップを剥がして貫通電極の接続状態を確認したり、接続後の多層半導体装置を切断して貫通電極の接続状態を確認したりしてボンディングの条件を決めることが必要であった。また、一旦ボンディング条件を決めた後、ボンディングの途中で貫通電極の接続位置にずれが発生した場合には、ボンディング後の製品検査によって導通不良などの結果が出るまで、貫通電極の接続不良を発見することができなかった。
 そこで、本発明は、簡便な方法で貫通電極を精度よく接続することを目的とする。
 本発明のボンディング装置は、半導体チップの画像を撮像するカメラと、カメラが撮像した画像の画像処理と第一の貫通電極が設けられる第一の層の半導体チップの上に第一の貫通電極に対応する位置に第二の貫通電極が設けられる第二の層の半導体チップを積層ボンディングするボンディング制御とを行う制御部と、を含み、制御部は、積層ボンディングする前にカメラによって撮像した第一の層の半導体チップ表面の第一の貫通電極の画像と、積層ボンディングした後にカメラによって撮像した第二の層の半導体チップ表面の第二の貫通電極の画像とに基づいて積層ボンディングされた各層の半導体チップの相対位置を検出する相対位置検出手段を含むこと、を特徴とする。
 本発明のボンディング装置において、相対位置は、第一の層の半導体チップ表面上の基準軸に沿った方向または基準軸と直交する方向の第二の層の半導体チップの位置ずれ、または基準軸に対する第二の層の半導体チップの回転角度のいずれか一つまたは複数の組み合わせであること、としても好適である。
 本発明のボンディング装置において、第一の層の半導体チップと第二の層の半導体チップは、隣接する2つの層の各半導体チップであること、としても好適であるし、第一の層の半導体チップは、初層の半導体チップであり、第二の層の半導体チップは、初層の半導体チップの上側に積層ボンディングされた他の半導体チップであること、としても好適である。
 本発明のボンディング装置において、制御部は、積層ボンディングする前にカメラによって第一の層の半導体チップ表面の第一の貫通電極の画像を撮像する第一の撮像手段と、積層ボンディングする前にカメラによって撮像した第一の層の半導体チップ表面の第一のアライメントマークと積層ボンディングする前にカメラによって撮像した第二の層の半導体チップ裏面の第二のアライメントマークとの位置を合わせて第二の層の半導体チップを第一の層の半導体チップの上に積層ボンディングする第一のボンディング手段と、第一のボンディング手段によって積層ボンディングした後にカメラによって第二の層の半導体チップ表面の第二の貫通電極の画像を撮像する第二の撮像手段と、第一の撮像手段によって撮像した第一の貫通電極の画像と第二の撮像手段によって撮像した第二の貫通電極の画像とに基づいて各層の半導体チップの相対位置を検出し、検出した相対位置を積層ボンディングの際のオフセット量として設定するオフセット量設定手段と、を有することとしても好適である。
 本発明のボンディング装置において、制御部は、第一のアライメントマークに第二のアライメントマークが合う位置からオフセット量設定手段で設定したオフセット量だけ第二の層の半導体チップをずらして第一の層の半導体チップの上に積層ボンディングする第二のボンディング手段と、第二のボンディング手段によって積層ボンディングした後にカメラによって第二の層の半導体チップ表面の第二の貫通電極の画像を撮像する第三の撮像手段と、第一の撮像手段によって撮像した第一の貫通電極の画像と第三の撮像手段によって撮像した第二の貫通電極の画像とに基づいて各層の半導体チップの相対位置のずれ量を検出するずれ量検出手段と、を含むこと、としても好適である。
 本発明のボンディング装置において、制御部は、ずれ量検出手段で検出したずれ量が第一の閾値未満で、第二の閾値以上の場合には、ずれ量の所定割合だけオフセット量を補正するオフセット量補正手段を含むこと、としても好適である。
 本発明の半導体装置の製造方法は、第一の貫通電極が設けられる第一の層の半導体チップの上に第一の貫通電極に対応する位置に第二の貫通電極が設けられる第二の層の半導体チップを積層ボンディングするボンディング装置を準備する工程と、積層ボンディングする前にカメラによって第一の層の半導体チップ表面の第一の貫通電極の画像を撮像する第一の撮像工程と、積層ボンディングする前にカメラによって撮像した第一の層の半導体チップ表面の第一のアライメントマークと積層ボンディングする前にカメラによって撮像した第二の層の半導体チップ裏面の第二のアライメントマークとの位置を合わせて第二の層の半導体チップを第一の層の半導体チップの上に積層ボンディングする第一のボンディング工程と、第一のボンディング工程の後にカメラによって第二の層の半導体チップ表面の第二の貫通電極の画像を撮像する第二の撮像工程と、第一の貫通電極の画像と第二の貫通電極の画像とに基づいて各層の半導体チップの相対位置を検出し、検出した相対位置を積層ボンディングの際のオフセット量として設定するオフセット量設定工程と、を含むことを特徴とする。
 本発明の半導体装置の製造方法において、第一のアライメントマークに第二のアライメントマークが合う位置からオフセット量だけ第二の層の半導体チップをずらして第一の層の半導体チップの上に積層ボンディングする第二のボンディング工程と、第二のボンディング工程の後にカメラによって第二の層の半導体チップ表面の第二の貫通電極の画像を撮像する第三の撮像工程と、第一の撮像手段によって撮像した第一の貫通電極の画像と第三の撮像手段によって撮像した第二の貫通電極の画像とに基づいて各層の半導体チップの相対位置のずれ量を検出するずれ量検出工程と、を含むこととしても好適である。
 本発明の半導体装置の製造方法において、第一の層の半導体チップと第二の層の半導体チップは、隣接する2つの層の各半導体チップであること、としても好適であるし、第一の層の半導体チップは、初層の半導体チップであり、第二の層の半導体チップは、初層の半導体チップの上側に積層ボンディングされた他の半導体チップであること、としても好適である。
 本発明は、簡便な方法で貫通電極を精度よく接続することができるという効果を奏する。
本発明の実施形態におけるボンディング装置の構成を示す系統図である。 第一の層の半導体チップ表面の画像と、第二の層の半導体チップの裏面の画像及び各層の半導体チップの断面を示す説明図である。 本発明の実施形態におけるボンディング装置の動作を示すフローチャートである。 本発明の実施形態におけるボンディング装置の積層ボンディング動作を示す説明図である。 ティーチングの際に積層ボンディングにより第一の層の半導体チップと第二の層の半導体チップが積層された多層半導体装置の平面と、断面とを示す説明図である。 本発明のボンディング装置において、積層ボンディング後に第二の層の半導体チップ表面の画像を撮像する状態を示す説明図である。 多層半導体装置製造の際の積層ボンディングにより第一の層の半導体チップと第二の層の半導体チップが積層された多層半導体装置の平面と、断面とを示す説明図である。 本発明の実施形態におけるボンディング装置の他の動作を示すフローチャートである。 本発明の実施形態におけるボンディング装置の他の動作を示すフローチャートである。 ティーチングの際に積層ボンディングにより第1層と第2層の半導体チップが積層された多層半導体装置の断面図である。 多層半導体装置製造の際の積層ボンディングにより第1層と第2層の半導体チップが積層された状態と、第1層から第3層の半導体チップが積層された状態とを示す断面図である。
 以下、図面を参照しながら本発明の実施形態のボンディング装置の実施形態について説明する。図1に示すように、本実施形態のフリップチップボンディング装置500は、第一の層の半導体チップ20を吸着固定するボンディングステージ11と、ボンディングステージ11をXY方向(水平方向)に移動可能に支持するXYテーブル12と、XYテーブル12に接続されボンディングステージ11をXY方向に駆動するボンディングステージ駆動機構13と、先端に第二の層の半導体チップ30を吸着するボンディングツール14と、ボンディングツール14をZ方向(上下方向)及びθ方向に移動させるボンディングツール駆動機構15と、図中白抜き矢印に示すように上下方向を同時に撮像できる二視野カメラ16と、二視野カメラ16の撮像した画像の画像処理とボンディング制御を行う制御部50を備えている。なお、図1では、紙面の左右方向がXY方向、紙面の上下方向がZ方向、Z軸周りの回転方向がθである。
 図1に示すように、制御部50は、内部に信号処理を行うCPU51と、制御プログラム、制御データなどを記憶するメモリ52と、ボンディングツール駆動機構と制御信号の入出力を行うボンディングツール駆動機構インターフェース64と、二視野カメラ16と制御信号、画像信号の入出力を行う二視野カメラインターフェース65と、ボンディングステージ駆動機構と制御信号の入出力を行うボンディングステージ駆動機構インターフェース66とを含むコンピュータである。CPU51と、メモリ52と、各インターフェース64,65,66とは、データバス70によって接続されている。そして、ボンディングツール駆動機構15、二視野カメラ16、ボンディングステージ駆動機構13は制御部50のCPU51の指令によって駆動されるよう構成されている。
 図1に示すように、メモリ52には、相対位置検出手段である相対位置検出プログラム53、第一の撮像手段である第一の撮像プログラム54、第一のボンディング手段である第一のボンディングプログラム55、第二の撮像手段である第二の撮像プログラム56、オフセット量設定手段であるオフセット量設定プログラム57、第二のボンディング手段である第二のボンディングプログラム58、第三の撮像手段である第三の撮像プログラム59、ずれ量検出手段であるずれ量検出プログラム60、オフセット量補正手段であるオフセット量補正プログラム61、停止手段である停止プログラム62、及び、二視野カメラ16によって取得した画像や画像処理した画像データやオフセット量などの制御データ63が記憶されている。なお、各プログラム53~62については、後で説明する。
 以上のように構成された本実施形態のフリップチップボンディング装置500によって第一の層の半導体チップ20の上に第二の層の半導体チップ30を積層ボンディングする工程(半導体装置の製造工程)について図2~図6を参照しながら説明する。
 最初に、図3のステップS101からステップS108のティーチング動作について説明する。まず、ボンディングステージ11の上に第一の層の半導体チップ20を吸着固定させ、図示しないピックアップユニットによってウエハから第二の層の半導体チップ30をボンディングツール14の先端に吸着させる。
 図2(a)に示すように、第一の層の半導体チップ20の表面20a(図1においてZ方向プラス側の面)の右上角と左下角にはそれぞれ十字型のアライメントマーク21aが設けられている。また、第一の層の半導体チップ20には複数の第一の貫通電極22が設けられている。図2(b)に示すように、第一の貫通電極22は第一の層の半導体チップ20の表面20aと裏面20bとの間を表面20a、裏面20bに対して垂直に貫通するように設けられており、第一の層の半導体チップ20の表面20aには、第一の貫通電極22の表面22aが露出し、第一の層の半導体チップ20の裏面20bには第一の貫通電極22の表面22aと同一位置に第一の貫通電極22の裏面22bが露出している。
 第二の層の半導体チップ30も第一の層の半導体チップ20と同様の位置に第二の貫通電極32が設けられている。つまり、第二の貫通電極32は、第二の層の半導体チップ30を反転させてその裏面30bを第一の層の半導体チップ20の表面20aに重ねた際に同一の位置となる位置に設けられている。そして、第一の層の半導体チップ20と同様、図2(d)に示すように、第二の貫通電極32は第二の層の半導体チップ30の表面30aと裏面30bとの間を表面30a,裏面30bに対して垂直に貫通するように設けられており、第二の層の半導体チップ30の表面30aには、第二の貫通電極32の表面32aが露出し、第二の層の半導体チップ30の裏面30bには第二の貫通電極32の表面22aと同一位置に第二の貫通電極32の裏面32bが露出している。図2(c)は第二の層の半導体チップ30を裏面30bの側から見た図であり、第二の層の半導体チップ30の裏面30bの左上角と右下角(第二の層の半導体チップ30を反転させて裏面30bを第一の層の半導体チップ20の表面20aに重ねた際に同一の位置となる位置)にはそれぞれ十字型のアライメントマーク31bが設けられている。
 図1に示すように、積層ボンディング前の初期状態では、ボンディングツール14は上方の待機位置にあるので、制御部50は図示しない二視野カメラ駆動機構によって二視野カメラ16をボンディングツール14とボンディングステージ11の中間に挿入する。すると、図1の下向きの白抜き矢印で示す二視野カメラ16の下側の視野には、図2(a)に示すようにアライメントマーク21aと第一の貫通電極22の表面22aを含む第一の層の半導体チップ20の表面20aの画像が捉えられ、図1の上向きの白抜き矢印で示す二視野カメラ16の上側の視野には、図2(c)に示すようにアライメントマーク31bと第二の貫通電極32の裏面32bを含む第二の層の半導体チップ30の裏面30bの画像が捉えられる。
 制御部50は、図1に示す第一の撮像プログラム54を実行し、図3のステップS101に示すように二視野カメラ16を作動させて図2(a)に示す第一の層の半導体チップ20の表面20aの第一の貫通電極22の表面22aの画像を撮像しメモリ52の制御データ63に格納する(第一の撮像工程)。
 また、制御部50は、図1に示す第一のボンディングプログラム55を実行する。制御部50は、図3のステップS102に示すように、二視野カメラ16を作動させて図2(a)に示す第一の層の半導体チップ20の表面20aのアライメントマーク21aを撮像してメモリ52の制御データ63に格納し、図3のステップS103に示すように、二視野カメラ16を作動させて図2(c)に示す第二層の半導体チップ30の裏面30bのアライメントマーク31bを撮像し、メモリ52の制御データ63に格納する。制御部50は、各アライメントマーク21a,31bの画像を処理し、各アライメントマーク21a,31bの位置のXY方向、あるいはθ方向のずれ量を検出し、ボンディングステージ駆動機構13、ボンディングツール駆動機構15によってそれぞれボンディングステージ11のXY方向の位置、ボンディングツール14のθ方向の位置を調整する。そして、各アライメントマーク21a,31bの位置のXY方向、あるいはθ方向のずれ量がそれぞれゼロあるいは所定の閾値以下となったら、制御部50は、第一の層の半導体チップ20と第二の層の半導体チップ30の各アライメントマーク21a,31bの位置が合ったと判断し、図3のステップS104に示す様に、ボンディングツール駆動機構15によってボンディングツール14を降下させる指令を出力する。この指令によって図4に示す様にボンディングツール14が降下し、図5(a)に示す様に第一の層の半導体チップ20の上に第二の層の半導体チップ30を積層ボンディングし、多層半導体装置40とする(第一のボンディング工程)。
 図5(b)に示す様に第一の層の半導体チップ20の上に第二の層の半導体チップ30を積層ボンディングすると、第一の層の貫通電極22の表面22aと、第二の層の貫通電極32の裏面32bとの間には溶融したはんだが固まった固着層41が形成され、この固着層41によって各貫通電極22,32が接続されている。
 図6に示す様に、第一のボンディング工程が終了したら、制御部50は、ボンディングツール14を待機位置まで上昇させ、図示しない二視野カメラ駆動機構によって二視野カメラ16を第二の層の半導体装置チップ30の上に移動させる。二視野カメラ16の視野には、図5(a)に示す様に第一の層の半導体チップ20の上に第二の層の半導体チップ30が積層された状態の画像が捉えられる。図5(a)では、下側の第一の層の半導体チップ20のアライメントマーク21a、第一の貫通電極の表面22aは破線で示すが、実際に二視野カメラ16の視野に映し出されるのは、図5(a)に示す実線の部分、すなわち、第二の層の半導体チップ30の表面30aおよび第二の貫通電極32の表面32aである。
 制御部50は、図1に示す第二の撮像プログラム56を実行させて、図3のステップS105に示す様に、第二の層の半導体チップ30の表面30aの第二の貫通電極32の表面32aの画像を撮像し、制御データ63に格納する(第二の撮像工程)。
 制御部50は、図1に示す相対位置検出プログラム53を実行し、図3に示すステップS106に示す様に、先に第一の撮像工程で撮像した第一の層の半導体チップ20の貫通電極22の表面22aの画像に第二の撮像工程で撮像した第二の層の半導体チップ30の貫通電極32aの画像を重ね合わせる。図5(a)では、重ね合わせた第一層の半導体チップ20の表面20a、第一の貫通電極22の表面22aは破線で示されている。重ね合わせた画像には、各貫通電極の表面22a,32aの位置がずれて表示される。
 先に説明したように、各貫通電極22,32は各層の半導体チップ20,30の各表面20a,30aに対して垂直に形成されていることから、各貫通電極の表面22a,32aの位置がずれているということは、図5(b)に示す様に、各層の半導体チップ20,30がずれて積層されていると判断される。
 また、各層の半導体チップ20,30の各アライメントマーク21a,31bの位置を合わせて積層ボンディングしていることから、各層の半導体チップ20,30の相対位置は大きくずれておらず、複数の各貫通電極22,32の位置は互いに対応する位置にある電極が重なりあっている状態となっている。そこで、制御部50は、図5(a)に示す様に重なりあっている第一の貫通電極22との表面22aと第二の貫通電極32の表面32aのXY方向のずれ量ΔX、ΔYを第一の層の半導体チップ20と第二の層の半導体チップ30との相対位置であると判断する。図5(a)に示す例では、第一の層の半導体チップ20の表面20aに設けられたアライメントマーク21aと第二の層の半導体チップ30の裏面30bに設けられたアライメントマーク31bの位置もずれているので、各ずれ量ΔX、ΔYは、例えば、制御部50がアライメントマーク21a,31bの画像からアライメントマークの位置を認識する際の誤差によって生じる各貫通電極22,32のXY方向の位置ずれ、あるいは、積層ボンディングの際に貫通電極の間に挟まっている溶融はんだによって生じた位置のずれと判断される。そして、制御部50は、図3のステップS107に示す様に、図3に示すステップS101~S106の各ステップを所定の回数、例えば、n回繰り返した後、図3のステップS108に示す様に、例えば、その平均ずれ量、あるいは中央値などをオフセット量として設定する(オフセット量設定工程)。
 上記の実施形態では、図5(a)に示す第一の貫通電極22との表面22aと第二の貫通電極32の表面32aのXY方向のずれ量ΔX、ΔY(Xは第一の層の半導体チップ20の基準軸で例えば、図5(a)に示す第一の層の半導体チップ20の横方向の辺Xと平行な方向であり、YはX方向に対して直交する方向)を第一の層の半導体チップ20と第二の層の半導体チップ30との相対位置であると判断することとして説明したが、複数の各貫通電極22,32の各表面22a,32aの画像を用いて、XY方向のずれ量ΔX、ΔYのみでなく、第一の層の半導体チップ20に対する第二の層の半導体チップの回転方向の位置ずれΔθを含めて相対位置と判断することとしてもよい。回転方向の位置ずれΔθは、例えば、図5(a)に示す最上部の左側の貫通電極22,32の各表面22a,32aのXY方向のずれ量ΔX、ΔYと、図5(a)に示す最下部右側の貫通電極22,32(対角方向にある貫通電極22,32)の各表面22a,32aのXY方向のずれ量ΔX、ΔYとを用いて基準となるX軸に対する回転角度Δθとして求めるようにしてもよい。この場合、各ずれ量ΔX、ΔY、Δθの平均値あるいは中央値をXYθ方向の各オフセット量として設定する。
 以上説明した本実施形態のティーチング動作(図3に示すステップS106~S108)は、積層ボンディングした第一、第二の層の半導体チップ20,30を剥がして接合面を確認したり、積層した多層半導体装置40を切断し、例えば、図5(b)に示すような断面を露出させて第一、第二の貫通電極22,32の位置を確認したりするような破壊検査を行わずに、積層ボンディングの際の第一の層と第二の層の半導体チップ20,30の位置ずれ量(相対位置)を検出し、そのずれ量(相対位置)に基づいて積層ボンディングの際のオフセット量を設定するという簡便な方法でフリップチップボンディング装置のティーチングを行うことができ、各貫通電極22,32を精度よく接合することができる。
 次に、ティーチング後の多層半導体装置40を製造する場合の積層ボンディング動作(図3のステップS109~ステップS119)について説明する。先に説明したティーチング動作と同様の工程については、説明を省略する。
 先にティーチングの動作で説明したと同様、制御部50は、まず、ボンディングステージ11の上に第一の層の半導体チップ20を吸着固定させ、図示しないピックアップユニットによってウエハから第二の層の半導体チップ30をボンディングツール14の先端に吸着させ、二視野カメラ16をボンディングステージ11とボンディングツール14との間に挿入する。そして、制御部50は、図1に示す第一の撮像プログラム54を実行し、図3のステップS109に示すように二視野カメラ16を作動させて図2(a)に示す第一の層の半導体チップ20の表面20aの第一の貫通電極22の表面22aの画像を撮像しメモリ52の制御データ63に格納する(第一の撮像工程)。
 次に、制御部50は、図1に示す第二のボンディングプログラム58を実行する。制御部50は、図3のステップS110に示すように、二視野カメラ16を作動させて図2(a)に示す第一の層の半導体チップ20の表面20aのアライメントマーク21aを撮像してメモリ52の制御データ63に格納し、図3のステップS111に示すように、二視野カメラ16を作動させて図2(c)に示す第二層の半導体チップ30の裏面30bのアライメントマーク31bを撮像し、メモリ52の制御データ63に格納する。制御部50は、各アライメントマーク21a,31bの画像を処理し、各アライメントマーク21a,31bの位置のXY方向、あるいはθ方向のずれ量を検出する。そして、制御部50は、図3のステップS112に示す様に、各アライメントマーク21a,31bの位置のXY方向、あるいはθ方向のずれ量がそれぞれ図3のステップS108で設定したオフセット量となるように、ボンディングステージ駆動機構13、ボンディングツール駆動機構15によってそれぞれボンディングステージ11のXY方向の位置、ボンディングツール14のθ方向の位置を調整し、各アライメントマーク21a、31bのずれ量がオフセット量になったら、図3のステップS112に示す様に、ボンディングツール駆動機構15によってボンディングツール14を降下させる指令を出力する。この指令によって図4に示す様にボンディングツール14が降下し、図7(a)に示す様に第一の層の半導体チップ20の上に第二の層の半導体チップ30を積層ボンディングし、多層半導体装置40とする(第二のボンディング工程)。
 第二のボンディング工程が終了したら、制御部50は、図6に示す様に、ボンディングツール14を待機位置まで上昇させ、図示しない二視野カメラ駆動機構によって二視野カメラ16を第二の層の半導体チップ30の上に移動させ、図1に示す第三の撮像プログラム59を実行させて、図3のステップS113に示す様に、第二の層の半導体チップ30の表面30aの第二の貫通電極32の表面32aの画像を撮像し、制御データ63に格納する(第三の撮像工程)。
 上記の第二のボンディング動作では、図3のステップS101~S108に示したティーチング動作によって設定されたオフセット量だけあらかじめ第二の層の半導体チップ30を第一の層の半導体チップ20に対してずらしているので、積層ボンディングをした後には、図5(a)、図5(b)に示したティーチング動作の際に現れたずれ量ΔX、ΔYあるいはΔθはゼロなっており、図7(a)、図7(b)に示す様に、各貫通電極22,32はずれなく重なっているはずである。しかし、各層の半導体チップ20,30の各アライメントマーク21a,31bの不正確さあるいは、フリップチップボンディング装置500の温度変化、あるいは各層の半導体チップ20,30の貫通電極22,32の位置の製造誤差などによって、ティーチング動作(図3のステップS101~S108)によりオフセット量を設定しても、第二のボンディング動作の後に、図5(a),図5(b)に示したような各貫通電極22,32の位置ずれが発生することがある。
 そこで、制御部50は、第二のボンディング動作の後、図3のステップS113に示す様に、二視野カメラ16により積層ボンディング後の第二の層の半導体チップ30の第二の貫通電極32の表面32aの画像を取得し、図1に示すずれ量検出プログラム60を実行し、図3のステップS114に示す様に、図3のステップS109で撮像した第一の層の半導体チップ20の第一の貫通電極22の表面22aの画像に重ねあわせることによって、第一の貫通電極22の位置と第二の貫通電極32のずれ量ΔX、ΔY、Δθを検出する(ずれ量検出工程)。
 なお、ずれ量検出プログラム60は、オフセット量だけ第一の層と第二の層の半導体チップ20,30をずらした第二のボンディングの後に実行する点を除けば、先に説明した図1に示す相対位置検出プログラム53と同様である。
 そして、図3のステップS115に示す様に、検出したずれ量が許容ずれ量である第一の閾値未満であり、且つ補正必要ずれ量である第二の閾値以上の場合には、オフセット量を補正する必要があると判断し、図3のステップS116に示すように図1に示すオフセット量補正プログラム61を実行する。オフセット量補正プログラム61は、図3のステップS114で検出したずれ量の所定の割合、例えば50%など、だけオフセット量を増減するものである。そして、オフセット量の補正が終了したら、制御部50は、図3のステップS117に示す様に、次のボンディングを行うためにステップS109に戻る。これにより、各貫通電極22,32を精度よく接合することができる(オフセット量補正工程)。
 なお、次のボンディングの際に図3のステップS109で取得する第一の層の半導体チップの第一の貫通電極表面の画像は、その前のボンディングの際に図3のステップS113で取得した第二の層の半導体チップの第二の貫通電極表面の画像であり、この画像は、メモリ52に格納されている。したがって、実際の積層ボンディングでは、次のボンディングに移行する場合にステップS109を省略してステップS110に戻るようにしてもよい。
 また、図3のステップS118に示す様に、制御部50は、検出したずれ量が許容ずれ量である第一の閾値を越えていた場合には、その積層ボンディングは不良であると判断して図1に示す停止プログラム62を実行し、図3のステップS119に示す様に、フリップチップボンディング装置500を停止させ、例えば、警告灯を点灯させて異常状態が発生したことを発報する(停止工程)。
 以上説明した本実施形態のボンディング装置では、積層する各層の半導体チップ20,30の破壊検査を行うことなく製造中のオフセット量の補正、不良発生の際のボンディング装置の停止を行うことができるので、積層ボンディングの品質を向上させることができる。
 以上の説明した実施形態では、二層に半導体チップを積層ボンディングすることについて説明したが、本発明は、より多層の積層ボンディングにも適用することが可能である。また、オフセット量は、第一層と、第二層のボンディングの際のオフセット量と第二の層と第三の層のボンディングの際のオフセット量を変化させる様にしてもよい。また、本実施形態では、ティーチング動作の際に第一の層の半導体チップ20のアライメントマーク21aと第二の層の半導体チップ30のアライメントマーク31bの位置を合わせて積層ボンディングすることとして説明したが、各アライメントマーク21a,31bが重なっていなくとも、各アライメントマーク間の相対距離がわかっている場合には、その相対距離だけアライメントマークをずらして積層ボンディングすることも、アライメントマークを合わしてボンディングすること、に含まれる。
 さらに、本実施形態のフリップチップボンディング装置500では、ボンディングステージ11がXY方向に移動し、ボンディングツールがZ,θ方向に移動することとして説明したが、この構成にとらわれず、例えば、ボンディングツールがY,Z,θの方向に移動、ボンディングステージ11がX方向のみ移動するように構成してもよいし、ボンディングステージ11が移動せず、ボンディングツールがXYZ,θ方向に移動するように構成してもよい。
 次に、図8から図11を参照しながら、図1に示したフリップチップボンディング装置500を用いて三層以上に半導体チップを積層ボンディングする工程((三層以上に半導体チップを積層する半導体装置の製造工程))について説明する。図1から図7を参照して説明した部分と同様の部分には同様に符号を付してその説明は省略する。
 図8のステップS201からステップS208のティーチング動作について説明する。このティーチング動作は、図3のステップS101~ステップS108と動作と同様の動作により、図10に示す第1層(初層)の半導体チップ100と、初層に隣接し、初層の半導体チップ100の上側に積層ボンディングされている第2層の半導体チップ200の間のオフセット量を決定する動作である。
 制御部50は、図8のステップS201、S202に示すように、図10に示す第1層(初層)の半導体チップ100の第1貫通電極102の表面102aの画像の取得と、第1層(初層)の半導体チップ100の表面100aのアライメントマークの画像を取得した後、図8のステップS203に示すように、図10に示す第2層の半導体チップ200の裏面200bのアライメントマークの画像を取得する。そして、制御部50は、図8のステップS204に示すように、図10に示す第1層(初層)の半導体チップ100の上に第2層の半導体チップ200を積層ボンディングする。積層ボンディングの後、制御部50は、図8のステップS205に示すように、第2層の半導体チップ200の第2貫通電極202の表面202aの画像を取得し、図8のステップS201で取得した第1貫通電極102の表面102aの画像と図8のステップS205で取得した第2貫通電極202の表面202aの画像に基づいて、図8のステップS206に示すように、第1層の半導体チップ100と第2層の半導体チップ200との間のX方向のずれ量ΔXを検出する。そして、制御部50は、ステップS201からS206のように半導体チップを二層に積層した場合の初層(第1層)と第2層の各半導体チップ100,200のずれ量を所定の回数だけ検出し、図8のステップS207に示すように、所定の回数繰り返したと判断したら、例えば、所定の回数のずれ量ΔXの平均値をオフセット量として設定する。なお、オフセット量の設定は、制御部50に格納されたオフセット量設定プログラム57を実行させず、オペレータが手動で設定してもよい。
 図8のステップS201~S208に示すティーチング動作によって積層ボンディングの際のオフセット量を設定したら、制御部50は、図9のステップS209~S220に示すように、実際の多層半導体装置40の製造を開始する。この動作は、図3のステップS109~ステップS114と動作と同様の動作により、図11(b)に示すように、積層した半導体チップ100~300の各層間ずれ量ΔX12,ΔX23を検出すると同時に第1層の半導体チップ100に対する第3層の半導体チップ300の積算ずれ量ΔX13を検出し、各層間ずれ量ΔX12,ΔX23あるいは積算ずれ量ΔX13が所定の閾値以上となった場合にはボンディングを停止するものである。
 まず、制御部50は、図9のステップS209に示すように、カウンタNに初期値1をセットする。次に制御部50は、図9のステップS210,211に示すように、図11(a)に示す第1層(N=1)の半導体チップ100の第1貫通電極(N=1)102の表面102aの画像の取得と、第1層(N=1)の半導体チップ100表面100aのアライメントマークの画像を取得した後、図9のステップS212に示すように、図11(a)に示す第2層(N+1=2)の半導体チップ200の裏面200bのアライメントマークの画像を取得する。そして、制御部50は、図9のステップS213に示すように、所定のオフセット量だけ各アライメントマークの位置をずらして図11(a)に示す第1層(N=1)の半導体チップ100の上に第2層(N+1=2)の半導体チップ200を積層ボンディングする。
 積層ボンディングの後、制御部50は、図9のステップS214に示すように、第2層(N+1=2)の半導体チップ200の第2貫通電極202の表面202aの画像を取得し、図9のステップS210で取得した第1貫通電極102の表面102aの画像と図9のステップS214で取得した第2貫通電極202の表面202aの画像とに基づいて、図9のステップS215に示すように、第1層(N=1)の半導体チップ100と第2層(N+1=2)の半導体チップ200との間のX方向の層間ずれ量ΔX12を検出する。オフセット量と積層ボンディングの際のずれ量とが同一の場合には第1層と第2層の半導体チップの間の相対位置は同一で層間ずれ量ΔX12はゼロとなるが、実際にはオフセット量と積層ボンディングの際のずれ量との間にも若干の誤差がある。このため、図11(a)に示すように、オフセット量だけ第2層の半導体チップ200をずらして積層ボンディングしても第1層の半導体チップ100と第2層の半導体チップ200との間には、若干の層間ずれ量ΔX12が発生する。
 また、制御部50は、図9のステップS216に示すように、図9のステップS210で取得した第1貫通電極102の表面102aの画像と図9のステップS214で取得した第2貫通電極202の表面202aの画像に基づいて、第1層の半導体チップ100と第2層(N+1=2)の半導体チップ200との間のX方向の積算ずれ量を検出する。積層数が二層の場合、この積算ずれ量は先の層間ずれ量ΔX12と同一となる。
 次に制御部50は、図9のステップS217に示すように、第1層と第2層の半導体チップ100,200の間の層間ずれ量ΔX12と第三の閾値とを比較し、層間ずれ量Δ12が第三の閾値以上となった場合には、ボンディング不良と判断し、図9のステップS221に示すようにボンディング動作を停止する。また、制御部50は、図9のステップS218に示すように、第1層と第2層の半導体チップ100,200の間の積算ずれ量と第四の閾値とを比較し、積算ずれ量が第四の閾値以上となった場合には、ボンディング不良と判断し、図9のステップS221に示すようにボンディング動作を停止する。先に説明したとおり、積層数が二層の場合には、積算ずれ量は層間ずれ量ΔX12と同様である。
 そして、制御部50は、層間ずれ量、積算ずれ量ともに第三、第四の閾値未満の場合には、図9のステップS219に示すように、所定の層数だけ半導体チップをボンディングしたかどうかを判断し、所定の層数だけ積層ボンディングした場合には、制御部50は、図9のステップS221に示すようにボンディングを停止する。また、所定の層数だけ積層ボンディングしていないと判断した場合には、図9のステップS220に示すように、カウンタNを1だけインクレメントして、N=2とし、図9のステップS211に戻り、第2層の半導体チップ200の上に図11(b)に示すように第3層の半導体チップ300を積層ボンディングする。
 制御部50は、図9のステップ211に示すように、図11(b)に示す第2層(N=2)の半導体チップ200の表面200aのアライメントマークの画像を取得した後、図9のステップS212に示すように、図11(b)に示す第3層(N+1=3)の半導体チップ300の裏面300bのアライメントマークの画像を取得する。そして、制御部50は、図9のステップS213に示すように、所定のオフセット量だけ各アライメントマークの位置をずらして図11(b)に示す第2層(N=2)の半導体チップ200の上に第3層(N+1=3)の半導体チップ300を積層ボンディングする。
 積層ボンディングの後、制御部50は、図9のステップS214に示すように、第3層(N+1=3)の半導体チップ300の第3貫通電極302の表面302aの画像を取得し、前回のループ(N=1)の際の図9のステップS214で取得した第2貫通電極202の表面202aの画像と今回のループ(N=2)の際の図9のステップS214で取得した第3貫通電極302の表面302aの画像とに基づいて、図9のステップS215に示すように、第2層(N=2)の半導体チップ200と第3層(N+1=3)の半導体チップ300との間のX方向の層間ずれ量ΔX23を検出する。第1層と第2層と層間の場合と同様、オフセット量と積層ボンディングの際のずれ量との間に若干の誤差があるので図11(b)に示すように、オフセット量だけ第3層の半導体チップ300をずらして積層ボンディングしても第2層の半導体チップ200と第3層の半導体チップ300との間には、若干の層間ずれ量ΔX23が発生する。
 また、制御部50は、図9のステップS216に示すように、図9のステップS210で取得した第1貫通電極102の表面102aの画像と今回のループ(N=2)の図9のステップS214で取得した第3貫通電極302の表面302aの画像に基づいて、図11(b)に示すように、第1層の半導体チップ100と第3層(N+1=3)の半導体チップ300との間のX方向の積算ずれ量ΔX13を検出する。積算ずれ量ΔX13は、第1層と第2層の各半導体チップ100,200の間の層間ずれ量ΔX12に第2層と第3層の各半導体チップ200,300の間の層間ずれ量ΔX23を加えたものである(ΔX13=ΔX12+ΔX23)。図11(b)に示すように、第1層に対する第2層のずれの方向をマイナス方向(図中左方向)とすると、第2層に対する第3層のずれの方向はプラス方向(図中右方向)となるので、第1層に対する第3層の積算ずれ量ΔX13=ΔX12+ΔX23の絶対値は、第1層と第2層との間の層間ずれ量ΔX12の絶対値よりも小さくなっている。また、逆に、第2層に対する第3層のずれの方向もマイナス方向(図中左方向)の場合には、第1層に対する第3層の積算ずれ量ΔX13=ΔX12+ΔX23の絶対値は、第1層と第2層との間の層間ずれ量ΔX12の絶対値よりも大きくなる。
 次に制御部50は、図9のステップS217に示すように、第2層と第3層の半導体チップ200,300の間の層間ずれ量ΔX23と第三の閾値とを比較し、層間ずれ量Δ23が第三の閾値以上となった場合には、ボンディング不良と判断し、図9のステップS221に示すようにボンディング動作を停止する。また、制御部50は、図9のステップS218に示すように、第1層と第3層の半導体チップ100,300の間の積算ずれ量ΔX13と第四の閾値とを比較し、積算ずれ量ΔX13が第四の閾値以上となった場合には、ボンディング不良と判断し、図9のステップS221に示すようにボンディング動作を停止する。
 そして、制御部50は、層間ずれ量ΔX23、積算ずれ量ΔX13ともに第三、第四の閾値未満の場合には、図9のステップS219に示すように、所定の層数だけ半導体チップをボンディングしたかどうかを判断し、所定の層数だけ積層ボンディングした場合には、制御部50は、図9のステップS221に示すようにボンディングを停止する。また、所定の層数だけ積層ボンディングしていないと判断した場合には、図9のステップS220に示すように、カウンタNを1だけインクレメントして、N=3とし、図9のステップS211に戻り、第3層の半導体チップ300の上に第4層の半導体チップを積層ボンディングする。
 以上説明した実施形態では、層間ずれ量ΔX12,ΔX23と、積算ずれ量ΔX13の両方が所定の閾値以上となった場合にはボンディングを停止するので、積層ボンディングにより製造する多層半導体装置40の品質を向上させることができる。
 なお、本実施形態では、ずれ量はX方向のずれ量ΔX12,ΔX23,ΔX13として説明したが、Y方向、θ方向のずれ量についても同様に層間ずれ量、積算ずれ量の両方のずれ量が所定の閾値以上となった場合にボンディングを停止するようにしてもよい。
 本発明は以上説明した実施形態に限定されるものではなく、請求の範囲により規定されている本発明の技術的範囲ないし本質から逸脱することない全ての変更及び修正を包含するものである。
 11 ボンディングステージ、12 XYテーブル、13 ボンディングステージ駆動機構、14 ボンディングツール、15 ボンディングツール駆動機構、16 二視野カメラ、20 第一の層の半導体チップ、20a,22a,30a,32a 表面、20b,22b,30b,32b 裏面、21a,31a,31b アライメントマーク、22 第一の貫通電極、30 第二の層の半導体チップ、32 第二の貫通電極、40 多層半導体装置、41 固着層、50 制御部、51 CPU、52 メモリ、53 相対位置検出プログラム、54 第一の撮像プログラム、55 第一のボンディングプログラム、56 第二の撮像プログラム、57 オフセット量設定プログラム、58 第二のボンディングプログラム、59 第三の撮像プログラム、60 ずれ量検出プログラム、61 オフセット量補正プログラム、62 停止プログラム、63 制御データ、64 ボンディングツール駆動機構インターフェース、65 二視野カメラインターフェース、66 ボンディングステージ駆動機構インターフェース、70 データバス、100,200,300 半導体チップ、100a,102a,200a,202a,300a,302a 表面、102,202,302 貫通電極、100b,200b,300b 裏面、500 フリップチップボンディング装置。

Claims (15)

  1.  ボンディング装置であって、
     半導体チップの画像を撮像するカメラと、
     前記カメラが撮像した画像の画像処理と第一の貫通電極が設けられる第一の層の前記半導体チップの上に前記第一の貫通電極に対応する位置に第二の貫通電極が設けられる第二の層の前記半導体チップを積層ボンディングするボンディング制御とを行う制御部と、を含み、
     前記制御部は、
     積層ボンディングする前に前記カメラによって撮像した第一の層の半導体チップ表面の前記第一の貫通電極の画像と、積層ボンディングした後に前記カメラによって撮像した第二の層の半導体チップ表面の前記第二の貫通電極の画像とに基づいて積層ボンディングされた前記各層の半導体チップの相対位置を検出する相対位置検出手段を含むボンディング装置。
  2.  請求項1に記載のボンディング装置であって、
     前記相対位置は、前記第一の層の半導体チップ表面上の基準軸に沿った方向または前記基準軸と直交する方向の前記第二の層の半導体チップの位置ずれ、または前記基準軸に対する前記第二の層の半導体チップの回転角度のいずれか一つまたは複数の組み合わせであるボンディング装置。
  3.  請求項1に記載のボンディング装置であって、
     前記第一の層の半導体チップと前記第二の層の半導体チップは、隣接する2つの層の各半導体チップであるボンディング装置。
  4.  請求項2に記載のボンディング装置であって、
     前記第一の層の半導体チップと前記第二の層の半導体チップは、隣接する2つの層の各半導体チップであるボンディング装置。
  5.  請求項1に記載のボンディング装置であって、
     前記第一の層の半導体チップは、初層の半導体チップであり、前記第二の層の半導体チップは、前記初層の半導体チップの上側に積層ボンディングされた他の半導体チップであるボンディング装置。
  6.  請求項2に記載のボンディング装置であって、
     前記第一の層の半導体チップは、初層の半導体チップであり、前記第二の層の半導体チップは、前記初層の半導体チップの上側に積層ボンディングされた他の半導体チップであるボンディング装置。
  7.  請求項1に記載のボンディング装置であって、
     前記制御部は、
     積層ボンディングする前に前記カメラによって第一の層の半導体チップ表面の前記第一の貫通電極の画像を撮像する第一の撮像手段と、
     積層ボンディングする前に前記カメラによって撮像した第一の層の半導体チップ表面の第一のアライメントマークと積層ボンディングする前に前記カメラによって撮像した第二の層の半導体チップ裏面の第二のアライメントマークとの位置を合わせて前記第二の層の半導体チップを前記第一の層の半導体チップの上に積層ボンディングする第一のボンディング手段と、
     前記第一のボンディング手段によって積層ボンディングした後に前記カメラによって第二の層の半導体チップ表面の前記第二の貫通電極の画像を撮像する第二の撮像手段と、
     前記第一の撮像手段によって撮像した前記第一の貫通電極の画像と前記第二の撮像手段によって撮像した前記第二の貫通電極の画像とに基づいて前記各層の半導体チップの相対位置を検出し、検出した相対位置を積層ボンディングの際のオフセット量として設定するオフセット量設定手段と、
     を含むボンディング装置。
  8.  請求項7に記載のボンディング装置であって、
     前記制御部は、
     前記第一のアライメントマークに前記第二のアライメントマークが合う位置から前記オフセット量設定手段で設定したオフセット量だけ前記第二の層の半導体チップをずらして前記第一の層の半導体チップの上に積層ボンディングする第二のボンディング手段と、
     前記第二のボンディング手段によって積層ボンディングした後に前記カメラによって第二の層の半導体チップ表面の前記第二の貫通電極の画像を撮像する第三の撮像手段と、
     前記第一の撮像手段によって撮像した前記第一の貫通電極の画像と前記第三の撮像手段によって撮像した前記第二の貫通電極の画像とに基づいて前記各層の半導体チップの相対位置のずれ量を検出するずれ量検出手段と、
     を含むボンディング装置。
  9.  請求項8に記載のボンディング装置であって、
     前記制御部は、
     前記ずれ量検出手段で検出したずれ量が第一の閾値未満で、第二の閾値以上の場合には、前記ずれ量の所定割合だけ前記オフセット量を補正するオフセット量補正手段を含むボンディング装置。
  10.  半導体装置の製造方法であって、
     第一の貫通電極が設けられる第一の層の半導体チップの上に前記第一の貫通電極に対応する位置に第二の貫通電極が設けられる第二の層の半導体チップを積層ボンディングするボンディング装置を準備する工程と、
     積層ボンディングする前にカメラによって第一の層の半導体チップ表面の前記第一の貫通電極の画像を撮像する第一の撮像工程と、
     積層ボンディングする前に前記カメラによって撮像した第一の層の半導体チップ表面の第一のアライメントマークと積層ボンディングする前に前記カメラによって撮像した第二の層の半導体チップ裏面の第二のアライメントマークとの位置を合わせて前記第二の層の半導体チップを前記第一の層の半導体チップの上に積層ボンディングする第一のボンディング工程と、
     前記第一のボンディング工程の後に前記カメラによって第二の層の半導体チップ表面の前記第二の貫通電極の画像を撮像する第二の撮像工程と、
     前記第一の貫通電極の画像と前記第二の貫通電極の画像とに基づいて前記各層の半導体チップの相対位置を検出し、検出した相対位置を積層ボンディングの際のオフセット量として設定するオフセット量設定工程と、
     を含む半導体装置の製造方法。
  11.  請求項10に記載の半導体装置の製造方法であって、
     前記第一のアライメントマークに前記第二のアライメントマークが合う位置から前記オフセット量だけ前記第二の層の半導体チップをずらして前記第一の層の半導体チップの上に積層ボンディングする第二のボンディング工程と、
     前記第二のボンディング工程の後に前記カメラによって第二の層の半導体チップ表面の前記第二の貫通電極の画像を撮像する第三の撮像工程と、
     前記第一の撮像手段によって撮像した前記第一の貫通電極の画像と前記第三の撮像手段によって撮像した前記第二の貫通電極の画像とに基づいて前記各層の半導体チップの相対位置のずれ量を検出するずれ量検出工程と、
     を含む半導体装置の製造方法。
  12.  請求項10に記載の半導体装置の製造方法であって、
     前記第一の層の半導体チップと前記第二の層の半導体チップは、隣接する2つの層の各半導体チップである半導体装置の製造方法。
  13.  請求項11に記載の半導体装置の製造方法であって、
     前記第一の層の半導体チップと前記第二の層の半導体チップは、隣接する2つの層の各半導体チップである半導体装置の製造方法。
  14.  請求項10に記載の半導体装置の製造方法であって、
     前記第一の層の半導体チップは、初層の半導体チップであり、前記第二の層の半導体チップは、前記初層の半導体チップの上側に積層ボンディングされた他の半導体チップである半導体装置の製造方法。
  15.  請求項11に記載の半導体装置の製造方法であって、
     前記第一の層の半導体チップは、初層の半導体チップであり、前記第二の層の半導体チップは、前記初層の半導体チップの上側に積層ボンディングされた他の半導体チップである半導体装置の製造方法。
PCT/JP2013/065575 2012-06-11 2013-06-05 ボンディング装置および半導体装置の製造方法 WO2013187292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380027777.0A CN104335337B (zh) 2012-06-11 2013-06-05 接合装置及半导体装置的制造方法
SG11201408122RA SG11201408122RA (en) 2012-06-11 2013-06-05 Bonding apparatus and method of manufacturing semiconductor device
KR1020147022686A KR101630249B1 (ko) 2012-06-11 2013-06-05 본딩 장치 및 반도체 장치의 제조 방법
US14/561,572 US9385104B2 (en) 2012-06-11 2014-12-05 Bonding apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012131510 2012-06-11
JP2012-131510 2012-06-11
JP2013-061589 2013-03-25
JP2013061589A JP5876000B2 (ja) 2012-06-11 2013-03-25 ボンディング装置およびボンディング方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/561,572 Continuation US9385104B2 (en) 2012-06-11 2014-12-05 Bonding apparatus

Publications (1)

Publication Number Publication Date
WO2013187292A1 true WO2013187292A1 (ja) 2013-12-19

Family

ID=49758118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065575 WO2013187292A1 (ja) 2012-06-11 2013-06-05 ボンディング装置および半導体装置の製造方法

Country Status (7)

Country Link
US (1) US9385104B2 (ja)
JP (1) JP5876000B2 (ja)
KR (1) KR101630249B1 (ja)
CN (1) CN104335337B (ja)
SG (1) SG11201408122RA (ja)
TW (1) TWI511215B (ja)
WO (1) WO2013187292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567859B (zh) * 2014-02-10 2017-01-21 新川股份有限公司 安裝裝置及其偏移量修正方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673166B2 (en) 2013-11-27 2017-06-06 Toray Engineering Co., Ltd. Three-dimensional mounting method and three-dimensional mounting device
JP6363854B2 (ja) * 2014-03-11 2018-07-25 キヤノン株式会社 形成方法、および物品の製造方法
JP6305887B2 (ja) * 2014-09-16 2018-04-04 東芝メモリ株式会社 半導体装置の製造方法及び半導体製造装置
WO2016098691A1 (ja) * 2014-12-18 2016-06-23 ソニー株式会社 半導体装置、製造方法、電子機器
US10014272B2 (en) * 2015-05-11 2018-07-03 Asm Technology Singapore Pte Ltd Die bonding with liquid phase solder
JP6478939B2 (ja) * 2016-03-31 2019-03-06 東レエンジニアリング株式会社 実装装置および実装方法
JP6731577B2 (ja) * 2016-06-23 2020-07-29 パナソニックIpマネジメント株式会社 部品実装方法および部品実装装置
CN106409724B (zh) * 2016-09-30 2019-05-21 西安微电子技术研究所 一种PoP自动堆叠系统及方法
US10410892B2 (en) * 2016-11-18 2019-09-10 Taiwan Semiconductor Manufacturing Company Ltd. Method of semiconductor wafer bonding and system thereof
WO2020103025A1 (en) * 2018-11-21 2020-05-28 Yangtze Memory Technologies Co., Ltd. Bonding alignment marks at bonding interface
KR102330658B1 (ko) * 2019-11-26 2021-11-23 세메스 주식회사 다이 본딩 방법
KR20210088305A (ko) 2020-01-06 2021-07-14 삼성전자주식회사 반도체 패키지 및 그의 제조 방법
US11362038B2 (en) * 2020-05-28 2022-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Photolithography alignment process for bonded wafers
DE102020126211A1 (de) 2020-05-28 2021-12-02 Taiwan Semiconductor Manufacturing Co. Ltd. Photolithographie-Ausrichtungsprozess für gebondete Wafer
TWI756881B (zh) * 2020-10-27 2022-03-01 均華精密工業股份有限公司 黏晶機之定位系統、黏晶機之定位裝置以及黏晶機置放晶粒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197682A (ja) * 2001-12-28 2003-07-11 Nippon Avionics Co Ltd アライメント補正機能付きフリップチップ実装装置
JP2004146776A (ja) * 2002-08-29 2004-05-20 Shinko Electric Ind Co Ltd フリップチップ実装装置及びフリップチップ実装方法
JP2006041006A (ja) * 2004-07-23 2006-02-09 Matsushita Electric Ind Co Ltd 半導体チップのボンディング方法及び装置
WO2006062091A1 (ja) * 2004-12-06 2006-06-15 Matsushita Electric Industrial Co., Ltd. 部品実装装置及び部品実装方法
WO2011087003A1 (ja) * 2010-01-15 2011-07-21 東レエンジニアリング株式会社 3次元実装方法および装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899921A (en) * 1988-10-28 1990-02-13 The American Optical Corporation Aligner bonder
US5654204A (en) * 1994-07-20 1997-08-05 Anderson; James C. Die sorter
JP2002110742A (ja) 2000-10-02 2002-04-12 Hitachi Ltd 半導体装置の製造方法および半導体製造装置
JP4074862B2 (ja) * 2004-03-24 2008-04-16 ローム株式会社 半導体装置の製造方法、半導体装置、および半導体チップ
JP4642565B2 (ja) 2005-06-29 2011-03-02 東レエンジニアリング株式会社 実装方法および実装装置
JP5024369B2 (ja) * 2007-03-28 2012-09-12 富士通株式会社 超音波接合装置
JP5259211B2 (ja) * 2008-02-14 2013-08-07 ルネサスエレクトロニクス株式会社 半導体装置
JP4343989B1 (ja) 2008-04-10 2009-10-14 株式会社新川 ボンディング装置およびボンディング装置に用いられるボンディング領域の位置認識方法及びプログラム
JP2010272707A (ja) 2009-05-22 2010-12-02 Panasonic Corp アライメント接合方法
JP5503208B2 (ja) * 2009-07-24 2014-05-28 ルネサスエレクトロニクス株式会社 半導体装置
US8987896B2 (en) * 2009-12-16 2015-03-24 Intel Corporation High-density inter-package connections for ultra-thin package-on-package structures, and processes of forming same
JP2011124523A (ja) 2010-02-02 2011-06-23 Napura:Kk 電子デバイス用基板、電子デバイス用積層体、電子デバイス及びそれらの製造方法
JP5515024B2 (ja) * 2010-11-24 2014-06-11 株式会社日本マイクロニクス チップ積層デバイス検査方法及びチップ積層デバイス再配列ユニット並びにチップ積層デバイス用検査装置
JP2012222161A (ja) * 2011-04-08 2012-11-12 Elpida Memory Inc 半導体装置
US8710654B2 (en) * 2011-05-26 2014-04-29 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
JP2013065835A (ja) * 2011-08-24 2013-04-11 Sumitomo Bakelite Co Ltd 半導体装置の製造方法、ブロック積層体及び逐次積層体
JP5780228B2 (ja) * 2011-11-11 2015-09-16 住友ベークライト株式会社 半導体装置の製造方法
CN104145328A (zh) * 2012-03-07 2014-11-12 东丽株式会社 半导体装置的制造方法及半导体装置的制造装置
JP6207190B2 (ja) * 2013-03-22 2017-10-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2014187185A (ja) * 2013-03-22 2014-10-02 Renesas Electronics Corp 半導体装置の製造方法
US9093549B2 (en) * 2013-07-02 2015-07-28 Kulicke And Soffa Industries, Inc. Bond heads for thermocompression bonders, thermocompression bonders, and methods of operating the same
JP6189181B2 (ja) * 2013-11-06 2017-08-30 東芝メモリ株式会社 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197682A (ja) * 2001-12-28 2003-07-11 Nippon Avionics Co Ltd アライメント補正機能付きフリップチップ実装装置
JP2004146776A (ja) * 2002-08-29 2004-05-20 Shinko Electric Ind Co Ltd フリップチップ実装装置及びフリップチップ実装方法
JP2006041006A (ja) * 2004-07-23 2006-02-09 Matsushita Electric Ind Co Ltd 半導体チップのボンディング方法及び装置
WO2006062091A1 (ja) * 2004-12-06 2006-06-15 Matsushita Electric Industrial Co., Ltd. 部品実装装置及び部品実装方法
WO2011087003A1 (ja) * 2010-01-15 2011-07-21 東レエンジニアリング株式会社 3次元実装方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567859B (zh) * 2014-02-10 2017-01-21 新川股份有限公司 安裝裝置及其偏移量修正方法

Also Published As

Publication number Publication date
KR101630249B1 (ko) 2016-06-14
SG11201408122RA (en) 2015-01-29
TW201413843A (zh) 2014-04-01
CN104335337A (zh) 2015-02-04
US9385104B2 (en) 2016-07-05
JP5876000B2 (ja) 2016-03-02
US20150087083A1 (en) 2015-03-26
JP2014017471A (ja) 2014-01-30
KR20140117543A (ko) 2014-10-07
CN104335337B (zh) 2017-05-10
TWI511215B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5876000B2 (ja) ボンディング装置およびボンディング方法
JP6256486B2 (ja) 実装装置及びそのオフセット量補正方法
TWI593046B (zh) Bonding device and bonding method
US20130027542A1 (en) Electronic component carrying device and electronic component carrying method
JP4768731B2 (ja) フリップチップ実装ずれ検査方法および実装装置
JP2010272707A (ja) アライメント接合方法
JP5232460B2 (ja) 半導体パッケージ
JP4654829B2 (ja) 部品実装状態検査装置及び方法
KR102354344B1 (ko) 반도체 소자 접착 기기
JP2004146776A (ja) フリップチップ実装装置及びフリップチップ実装方法
CN109155304B (zh) 半导体装置的制造方法和半导体装置的制造装置
JP5157364B2 (ja) 接合対象物のアライメント方法、これを用いた部品接合方法および部品接合装置
JP5006357B2 (ja) ボンディング方法およびボンディング装置
JP2013093509A (ja) 半導体装置の製造方法、及び半導体製造装置
JP2012243987A (ja) 半導体装置の製造方法
JP2006073814A (ja) 半導体チップの実装装置及び実装方法
JP5576219B2 (ja) ダイボンダおよびダイボンディング方法
JP6167412B2 (ja) 積層パッケージの製造システムおよび製造方法
KR101507145B1 (ko) 위치인식홀을 이용한 실리콘관통전극 플립칩 얼라인먼트 검사 장치 및 방법
JP4802909B2 (ja) 位置合わせ方法および位置合わせ装置
WO2018198196A1 (ja) 検査装置、搭載装置、検査方法
TW202218102A (zh) 顯示裝置的製造方法
JP2002314249A (ja) 多層基板の製造方法
JP2009246271A (ja) 電子素子内蔵基板への配線方法および電子素子内蔵基板の製造方法
JP2008098410A (ja) 半導体チップ実装機及び実装システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803717

Country of ref document: EP

Kind code of ref document: A1