WO2013183483A1 - 無段変速機及びその油圧制御方法 - Google Patents

無段変速機及びその油圧制御方法 Download PDF

Info

Publication number
WO2013183483A1
WO2013183483A1 PCT/JP2013/064702 JP2013064702W WO2013183483A1 WO 2013183483 A1 WO2013183483 A1 WO 2013183483A1 JP 2013064702 W JP2013064702 W JP 2013064702W WO 2013183483 A1 WO2013183483 A1 WO 2013183483A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
target
line pressure
continuously variable
variable transmission
Prior art date
Application number
PCT/JP2013/064702
Other languages
English (en)
French (fr)
Inventor
高橋 誠一郎
岳 江口
智洋 歌川
知幸 水落
野武 久雄
榊原 健二
孝広 池田
昌之 志水
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020147033862A priority Critical patent/KR101598751B1/ko
Priority to US14/405,289 priority patent/US9441733B2/en
Priority to EP13801326.3A priority patent/EP2860427A4/en
Priority to JP2014519930A priority patent/JP5830167B2/ja
Priority to CN201380029265.8A priority patent/CN104334929B/zh
Publication of WO2013183483A1 publication Critical patent/WO2013183483A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H59/20Kickdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/125Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members characterised by means for controlling the geometrical interrelationship of pulleys and the endless flexible member, e.g. belt alignment or position of the resulting axial pulley force in the plane perpendicular to the pulley axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member

Definitions

  • the present invention relates to hydraulic control of a continuously variable transmission.
  • the primary pressure supplied to the primary pulley is reduced, and the secondary pressure supplied to the secondary pulley is increased to ensure a differential thrust force to achieve the target shift speed. To do.
  • JP59-99148A discloses a technique for quickly increasing the line pressure, which is the primary pressure of the primary pressure and the secondary pressure, in order to ensure the hydraulic pressure required for kickdown.
  • a drain pressure regulating valve is often adopted as a pressure regulating valve for regulating the line pressure, primary pressure, and secondary pressure.
  • a drain pressure regulating valve includes a spool that opens and closes a drain port, and a spring that biases the spool, and based on a signal pressure supplied from a solenoid or the like to the pressure regulating valve, In this configuration, a part of the pressure is drained, and the adjusted hydraulic pressure is controlled to a hydraulic pressure (target hydraulic pressure) corresponding to the signal pressure by a feedback circuit that applies the adjusted hydraulic pressure to the spool.
  • the object of the present invention is to prevent the belt from slipping by preventing the actual hydraulic pressure from undershooting by swinging during kickdown.
  • the primary pulley, the secondary pulley, the power transmission member wound between these pulleys, the primary pressure supplied to the primary pulley, and the secondary pressure supplied to the secondary pulley are changed.
  • a continuously variable transmission that changes speed by changing the groove width of each pulley is provided.
  • This continuously variable transmission is an oil pump driven by an engine, and a drain type pressure regulating valve that reduces the discharge pressure of the oil pump to regulate the line pressure that is the primary pressure of the primary pressure and the secondary pressure.
  • a signal pressure corresponding to a target line pressure and the line pressure act on both ends, and a spool that opens and closes a drain port according to a stroke, and a line pressure regulating valve that includes a spring that biases the spool.
  • the target line reaches the first target pressure corresponding to the input torque to the continuously variable transmission that increases due to the kickdown. Pressure is increased, it is determined whether the line pressure has reached the first target pressure, and when it is determined that the line pressure has reached the first target pressure, the target line pressure is set to be higher than the first target pressure. Boost to a high second target pressure.
  • the line pressure overshoots the first target pressure, but it is recognized that no overshoot has occurred in terms of control due to the target line pressure being increased to the second target pressure.
  • the movement of the line pressure regulating valve is suppressed, and undershoot that occurs as overshoot of overshoot is prevented.
  • FIG. 1 is a schematic configuration diagram of a continuously variable transmission.
  • FIG. 2 is a schematic configuration diagram of a shift control hydraulic circuit.
  • FIG. 3 is a schematic configuration diagram of the line pressure regulating valve.
  • FIG. 4 is a flowchart showing the content of hydraulic control during kickdown.
  • FIG. 5 is a time chart showing changes in the target line pressure and the target secondary pressure during kickdown.
  • FIG. 1 shows a schematic configuration of a continuously variable transmission (hereinafter referred to as “CVT”) 1.
  • CVT continuously variable transmission
  • the primary pulley 2 and the secondary pulley 3 are arranged so that the grooves of both are aligned, and the belt 4 is wound around the grooves of the pulleys 2 and 3.
  • An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in order from the engine 5 side.
  • the torque converter 6 includes a pump impeller 6a connected to the output shaft of the engine 5, a turbine runner 6b connected to the input shaft of the forward / reverse switching mechanism 7, a stator 6c, and a lock-up clutch 6d.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, its sun gear is coupled to the turbine runner 6b of the torque converter 6, and the carrier is coupled to the primary pulley 2.
  • the forward / reverse switching mechanism 7 further includes a starting clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear.
  • the starting clutch 7b When the starting clutch 7b is engaged, the input rotation via the torque converter 6 from the engine 5 is directly transmitted to the primary pulley 2, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
  • the rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the belt 4, and the rotation of the secondary pulley 3 is transmitted to the driving wheel (not shown) via the output shaft 8, the gear set 9 and the differential gear device 10.
  • one of the conical plates forming the grooves of the primary pulley 2 and the secondary pulley 3 is a fixed conical plate 2a, 3a.
  • the other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
  • the speed change is performed by changing the groove width of the pulleys 2 and 3 by the differential pressure between the primary pressure Ppri and the secondary pressure Psec, and continuously changing the winding arc diameter of the belt 4 around the pulleys 2 and 3. .
  • the primary pressure Ppri and the secondary pressure Psec are controlled by the shift control hydraulic circuit 11 together with the hydraulic pressure supplied to the start clutch 7b that is engaged when the forward travel range is selected and the reverse brake 7c that is engaged when the reverse travel range is selected.
  • the shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
  • the transmission controller 12 includes a signal from the input rotation speed sensor 13 that detects the actual input rotation speed Nin of the CVT 1, a signal from the vehicle speed sensor 14 that detects the output rotation speed of the CVT 1, that is, the vehicle speed VSP, and the primary pressure.
  • a signal from the primary pressure sensor 15p that detects Ppri, a signal from the secondary pressure sensor 15s that detects the secondary pressure Psec, a signal from the line pressure sensor 15l that detects the line pressure PL, and the accelerator opening APO are detected.
  • the operating state of the engine 5 from 19 (D Jin rotational speed Ne, engine torque, between the fuel injection time, signal are inputted to a cooling water temperature TMPe etc.).
  • FIG. 2 shows a schematic configuration of the shift control hydraulic circuit 11.
  • the transmission control hydraulic circuit 11 includes an oil pump 40, a line pressure regulating valve 31, a primary pressure regulating valve 32, and a secondary pressure regulating valve 33.
  • the oil pump 40 is driven by the engine 5.
  • the line pressure regulating valve 31 is a drain pressure regulating valve that regulates the line pressure PL to the target line pressure tPL by draining and reducing a part of the discharge pressure of the oil pump 40.
  • the primary pressure regulating valve 32 and the secondary pressure regulating valve 33 drain and reduce a part of the line pressure PL using the line pressure PL as a source pressure, thereby reducing the primary pressure Ppri and the secondary pressure Psec to the target primary pressure tPpri and the target pressure, respectively. It is a drain pressure regulating valve that regulates the secondary pressure tPsec.
  • the line pressure regulating valve 31, the primary pressure regulating valve 32, and the secondary pressure regulating valve 33 are respectively feedback circuits for returning the regulated hydraulic pressure to the regulating valve and performing feedback control of the regulated hydraulic pressure to the target hydraulic pressure. 31f, 32f, 33f.
  • FIG. 3 shows a schematic configuration of the line pressure regulating valve 31.
  • the configuration of the line pressure regulating valve 31 will be described here, the primary pressure regulating valve 32 and the secondary pressure regulating valve 33 have the same configuration.
  • the line pressure regulating valve 31 includes a spool 31s, a housing 31h that accommodates the spool 31s therein, and a spring 31p that is refurbished between the spool 31s and the housing 31h.
  • the ports 31a to 31d are opened in the housing 31h.
  • the port 31a is connected to the port 31b via the feedback circuit 31f.
  • the port 31 b is connected between the oil pump 40 and the primary pressure regulating valve 32 and the secondary pressure regulating valve 33.
  • the port 31c is a drain port.
  • the port 31d is connected to a solenoid valve (not shown).
  • the land portion 31l of the spool 31s is disposed inside the port 31c, and the opening degree of the port 31c is adjusted by the land portion 31l.
  • the signal pressure corresponding to the target line pressure tPL is supplied from the solenoid valve to the port 31d, and the signal pressure acts on the right end surface of the spool 31s.
  • the signal pressure increases, the spool 31s moves to the left in the figure, and the opening degree of the port 31c decreases. Thereby, the drain amount from the port 31c decreases and the line pressure PL increases.
  • the signal pressure supplied to the port 31d decreases
  • the spool 31s moves to the right side in the figure, and the opening degree of the port 31c increases.
  • the amount of drain from the port 31c increases and the line pressure PL decreases.
  • the line pressure PL adjusted in this way is also supplied to the port 31a via the feedback circuit 31f and acts on the left end surface of the spool 31s. If the adjusted line pressure PL matches the target line pressure tPL, the line pressure PL, the signal pressure, and the urging force of the spring 31p are balanced, and the spool 31s holds the stroke at that time.
  • the spool 31s moves to the left in the figure, the opening degree of the port 31c decreases, the drain amount decreases, and the line pressure PL decreases. Go up. Conversely, when the regulated line pressure PL is higher than the target line pressure tPL, the spool 31s moves to the right side in the figure, the opening degree of the port 31c increases, the drain amount increases, and the line pressure PL decreases. .
  • the line pressure PL is feedback-controlled so as to become the target line pressure tPL (self-feedback).
  • the port 31c is not closed in a situation where the oil amount balance is sufficient, but in a situation where the oil amount balance is insufficient, the port 31c is closed so as to obtain the highest possible line pressure PL.
  • the port 31c of the line pressure regulating valve 31 is closed.
  • the line pressure PL is less than the target line pressure tPL. Overshoot. If nothing is treated for this, the line pressure PL undershoots with respect to the target line pressure tPL as a swing, and the belt 4 may slip.
  • FIG. 4 is a flowchart showing the contents of hydraulic control during kickdown. The control at the time of kickdown will be described with reference to this.
  • the transmission controller 12 determines whether the shift is kicked down (downshift performed when the accelerator pedal is depressed suddenly and greatly). The kickdown can be determined based on the change amount and change speed of the accelerator opening APO.
  • the transmission controller 12 increases the target line pressure tPL to the first target pressure (that is, the final target pressure required after the shift) corresponding to the input torque to the CVT 1 that is increased by kickdown (the first stage pressure). Boost). Thereby, the clamping pressure of the belt 4 by the secondary pulley 3 is increased, and the belt 4 is prevented from slipping.
  • the transmission controller 12 determines whether the port 31c of the line pressure regulating valve 31 is closed. As described above, the port 31c is closed when the oil amount balance is insufficient, and the determination is made based on the engine speed Ne, the line pressure PL, and the gear ratio. Specifically, the engine rotational speed Ne is lower than a predetermined value (the discharge pressure of the oil pump 40 is low), the line pressure PL is lower than a predetermined value (the actual pressure is low), and the gear ratio is a predetermined gear ratio. On the other hand, it is determined that the oil amount balance is insufficient and the port 31c is closed when it is on the higher side (the increase in hydraulic pressure required during kickdown is large).
  • the transmission controller 12 determines whether or not the line pressure PL has been increased to the first target pressure. If a positive determination is made, the process proceeds to S5, and if not, the determination of S4 is repeated. This determination is made because the overshoot of the line pressure PL occurs immediately after the line pressure PL is increased to the first target pressure, and in order to perform the processing after S5 to prevent the overshoot from returning, the line pressure PL is This is because it is preferable to start at the timing when the pressure is increased to the first target pressure.
  • the transmission controller 12 increases the target line pressure tPL to a second target pressure higher than the first target pressure (second step pressure increase). This process is performed by setting the lower limit value of the target line pressure tPL to a second target pressure higher than the first target pressure, and performing the lower limit regulation of the target line pressure tPL using the lower limit value.
  • the second target pressure is set to a value higher than the pressure at the time of occurrence of overshoot with respect to the first target pressure of the line pressure PL.
  • the line pressure PL does not overshoot the second target pressure even if the target line pressure tPL is increased to the second target pressure.
  • the transmission controller 12 waits for a predetermined time. As a result, the line pressure PL is kept high, and undershoot due to swinging is reliably prevented.
  • the transmission controller 12 decreases the target line pressure tPL with a predetermined ramp gradient by lowering the lower limit value used in S5. This is because the line pressure PL, which is excessive with respect to the input torque due to the target line pressure tPL being raised to the second target pressure, is reduced to a pressure corresponding to the input torque.
  • the target line pressure tPL is suddenly lowered, the line pressure PL undershoots the target line pressure tPL due to a delay caused by the spring / mass system of the line pressure regulating valve 31. This is to prevent this.
  • the target secondary pressure tPsec when the target secondary pressure tPsec suddenly increases due to kickdown and the oil amount balance is insufficient, the target secondary pressure tPsec is increased to a second target pressure higher than the first target pressure corresponding to the input torque.
  • FIG. 5 shows changes in the target line pressure tPL and the target secondary pressure tPsec during kickdown.
  • the target line pressure tPL and the target secondary pressure are rapidly increased to the first target pressure corresponding to the input torque after the shift, respectively.
  • the oil balance becomes insufficient, and the port 31c of the line pressure regulating valve 31 and the drain port of the secondary pressure regulating valve 33 are closed. Note that the shortage of the oil amount balance is temporary, and when the engine rotation speed Ne increases and the discharge pressure of the oil pump 40 increases, the shortage of the oil amount balance is resolved.
  • the target line pressure tPL and the target secondary pressure are set to a higher second target pressure.
  • the line pressure PL and the secondary pressure Psec each overshoot with respect to the first target pressure, but overshoot has occurred in terms of control due to the target line pressure tPL and the target secondary pressure tPsec being increased to the second target pressure. Since the movement of the line pressure regulating valve 31 and the secondary pressure regulating valve 33 is suppressed, an undershoot that occurs as an overshoot swing back is prevented.
  • the target line pressure tPL and the target secondary pressure tPsec are held at the second target pressure for a predetermined time. As a result, undershoot as a backlash of overshoot can be reliably prevented.
  • the target line pressure tPL and the target secondary pressure tPsec are lowered with a predetermined ramp gradient.
  • the state where the hydraulic pressure is excessive with respect to the input torque is eliminated, and undershoot due to a sudden drop in the target line pressure tPL and the target secondary pressure tPsec is prevented.
  • the second stage boost of the target line pressure tPL and the target secondary pressure tPsec is the first stage boost and the oil amount balance is insufficient, and the port 31c of the line pressure control valve 31 and the drain port of the secondary pressure control valve 33 Since this is performed only when the engine is closed, it is possible to prevent deterioration in fuel consumption due to unnecessary boosting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 変速機コントローラは、変速がキックダウンであるか判断し、変速がキックダウンであると判断された場合に、キックダウンによって増大する無段変速機への入力トルクに対応する第1目標圧まで目標ライン圧を昇圧し、ライン圧が第1目標圧になったか判断し、ライン圧が第1目標圧になったと判断された場合に、目標ライン圧を第1目標圧よりも高い第2目標圧まで昇圧する。

Description

無段変速機及びその油圧制御方法
 本発明は、無段変速機の油圧制御に関する。
 無段変速機のキックダウン制御では、プライマリプーリに供給されるプライマリ圧を減圧し、セカンダリプーリに供給されるセカンダリ圧を増圧することで、目標とする変速速度を達成するための差推力を確保する。
 JP59-99148Aに開示される無段変速機は、キックダウンで必要となる油圧を確保するために、プライマリ圧及びセカンダリ圧の元圧となるライン圧を速やかに増圧する技術を開示している。
 無段変速機においては、ライン圧、プライマリ圧及びセカンダリ圧を調圧する調圧弁として、ドレン調圧式の調圧弁が採用されることが多い。
 ドレン調圧式の調圧弁は、ドレンポートを開閉するスプールと、スプールを付勢するスプリングとを備え、ソレノイド等から調圧弁に供給される信号圧に基づいて、調圧弁に供給される元圧の一部をドレンするとともに、調圧後の油圧をスプールに作用させるフィードバック回路によって、調圧後の油圧を信号圧に対応する油圧(目標とする油圧)に制御する構成である。
 しかしながら、調圧弁をドレン調圧式の調圧弁で構成した場合、キックダウンによって目標とする油圧が急増する状況において、実油圧が目標とする油圧に対してオーバーシュート及びアンダーシュートを繰り返し、アンダーシュートを起こしたタイミングでプーリによるベルト挟持力が不足し、ベルトが滑る可能性があった。
 これは、目標とする油圧が急激に上がって油量収支が不足すると、実油圧がなるべく高くなるように調圧弁のドレンポートが閉じられるが、ドレンポートが閉じたタイミングで油圧が急激に立ち上がり、かつ、エンジンの回転速度が増大してオイルポンプの吐出圧が上昇することを受けて、実油圧が目標とする油圧に対してオーバーシュートするからである。
 そして、オーバーシュートが起こると、今度は、実油圧を下げるべく、フィードバック回路の働きによってスプールがドレンポートを開く方向に押し戻されるが、バネ・マス系に起因する遅れがあるので、実油圧が目標とする油圧まで下がってもドレンポートは直ちには閉じず、この結果、ドレン量が過多となって実油圧のアンダーシュートが発生するからである(揺り返しによるアンダーシュートの発生)。
 本発明の目的は、したがって、キックダウン時に実油圧が揺り返しによってアンダーシュートしないようにすることで、ベルトの滑りを防止することである。
 本発明のある態様によれば、プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機が提供される。
 この無段変速機は、エンジンによって駆動されるオイルポンプと、前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁とを備える。
 そして、変速がキックダウンであるか判断し、変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧し、前記ライン圧が前記第1目標圧になったか判断し、前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する。
 上記態様によれば、ライン圧は第1目標圧に対してオーバーシュートするが、目標ライン圧が第2目標圧に高められたことによって、制御上はオーバーシュートが起こっていないと認識されるので、ライン圧調圧弁の動きが抑制され、オーバーシュートの揺り返しとして起こるアンダーシュートが防止される。
 本発明の実施形態及び本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、無段変速機の概略構成図である。 図2は、変速制御油圧回路の概略構成図である。 図3は、ライン圧調圧弁の概略構成図である。 図4は、キックダウン時の油圧制御の内容を示したフローチャートである。 図5は、キックダウン時の目標ライン圧及び目標セカンダリ圧の変化を示したタイムチャートである。
 図1は、無段変速機(以下、「CVT」という。)1の概略構成を示している。プライマリプーリ2及びセカンダリプーリ3が両者の溝が整列するよう配置され、これらプーリ2、3の溝にはベルト4が巻き掛けられている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間には、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。
 トルクコンバータ6は、エンジン5の出力軸に連結されるポンプインペラ6a、前後進切換え機構7の入力軸に連結されるタービンランナ6b、ステータ6c及びロックアップクラッチ6dを備える。
 前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6のタービンランナ6bに結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤ及びキャリア間を直結する発進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、発進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。
 プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て図示しない駆動輪へと伝達される。
 上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3の溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方の円錐板2b、3bを軸線方向へ変位可能な可動円錐板としている。
 これら可動円錐板2b、3bは、ライン圧PLを元圧として作り出したプライマリ圧Ppri及びセカンダリ圧Psecをプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりベルト4を円錐板に摩擦接合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達が行われる。
 変速は、プライマリ圧Ppri及びセカンダリ圧Psec間の差圧により両プーリ2、3の溝の幅を変化させ、プーリ2、3に対するベルト4の巻き掛け円弧径を連続的に変化させることによって行われる。
 プライマリ圧Ppri及びセカンダリ圧Psecは、前進走行レンジの選択時に締結する発進クラッチ7b、及び後進走行レンジの選択時に締結する後進ブレーキ7cへの供給油圧と共に変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。
 変速機コントローラ12には、CVT1の実入力回転速度Ninを検出する入力回転速度センサ13からの信号と、CVT1の出力回転速度、すなわち、車速VSPを検出する車速センサ14からの信号と、プライマリ圧Ppriを検出するプライマリ圧センサ15pからの信号と、セカンダリ圧Psecを検出するセカンダリ圧センサ15sからの信号と、ライン圧PLを検出するライン圧センサ15lからの信号と、アクセル開度APOを検出するアクセル開度センサ16からの信号と、セレクトレバー位置を検出するインヒビタスイッチ17からの選択レンジ信号と、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ18からの信号と、エンジン5を制御するエンジンコントローラ19からのエンジン5の運転状態(エンジン回転速度Ne、エンジントルク、燃料噴時間、冷却水温TMPe等)に関する信号とが入力される。
 図2は、変速制御油圧回路11の概略構成を示している。
 変速制御油圧回路11は、オイルポンプ40、ライン圧調圧弁31、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33を備える。
 オイルポンプ40は、エンジン5によって駆動される。
 ライン圧調圧弁31は、オイルポンプ40の吐出圧の一部をドレンして減圧することで、ライン圧PLを目標ライン圧tPLに調圧するドレン調圧式の調圧弁である。
 プライマリ圧調圧弁32及びセカンダリ圧調圧弁33は、ライン圧PLを元圧として、ライン圧PLの一部をドレンして減圧することでプライマリ圧Ppri及びセカンダリ圧Psecをそれぞれ目標プライマリ圧tPpri及び目標セカンダリ圧tPsecに調圧するドレン調圧式の調圧弁である。
 ライン圧調圧弁31、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33は、それぞれ、調圧後の油圧を調圧弁に戻し、調圧後の油圧を目標とする油圧にフィードバック制御するためのフィードバック回路31f、32f、33fを有している。
 図3は、ライン圧調圧弁31の概略構成を示している。ここではライン圧調圧弁31の構成について説明するが、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33も同様の構成である。
 ライン圧調圧弁31は、スプール31sと、スプール31sを内部に収容するハウジング31hと、スプール31sとハウジング31hとの間に改装されるスプリング31pを備える。
 ハウジング31hには、ポート31a~31dが開口している。ポート31aは、フィードバック回路31fを介してポート31bと接続している。ポート31bはオイルポンプ40とプライマリ圧調圧弁32及びセカンダリ圧調圧弁33との間に接続している。ポート31cはドレンポートである。ポート31dはソレノイド弁(図示せず)に接続している。
 ポート31cの内側には、スプール31sのランド部31lが配置され、ポート31cはランド部31lによってその開度が調整される。
 ポート31dには、ソレノイド弁から目標ライン圧tPLに対応する信号圧が供給され、信号圧はスプール31sの右側端面に作用する。信号圧が増大すると、スプール31sが図中左側に移動し、ポート31cの開度が減少する。これにより、ポート31cからのドレン量が減ってライン圧PLが上がる。逆に、ポート31dに供給される信号圧が減少すると、スプール31sが図中右側に移動し、ポート31cの開度が増大する。これにより、ポート31cからのドレン量が増えてライン圧PLが下がる。
 また、このようにして調圧されたライン圧PLは、フィードバック回路31fを介してポート31aにも供給され、スプール31sの左側端面に作用する。調圧後のライン圧PLが目標ライン圧tPLに一致していれば、ライン圧PLと信号圧とスプリング31pの付勢力とがバランスし、スプール31sはそのときのストロークを保持する。
 これに対し、調圧後のライン圧PLが目標ライン圧tPLよりも低い場合は、スプール31sが図中左側に移動してポート31cの開度が減少し、ドレン量が減ってライン圧PLが上がる。逆に、調圧後のライン圧PLが目標ライン圧tPLよりも高い場合は、スプール31sが図中右側に移動してポート31cの開度が増大し、ドレン量が増えてライン圧PLが下がる。
 これにより、ライン圧PLは、目標ライン圧tPLになるようにフィードバック制御される(自己フィードバック)。
 ここで、油量収支が足りている状況ではポート31cが閉じられることはないが、油量収支が不足する状況では、できる限り高いライン圧PLが得られるように、ポート31cが閉じられる。
 このため、キックダウンによって目標ライン圧tPLが急激に上がり、油量収支が不足する状況では、ライン圧調圧弁31のポート31cが閉じられるが、この場合、ライン圧PLが目標ライン圧tPLに対してオーバーシュートする。そして、これに対して何も手当をしないと、その揺り返しとしてライン圧PLが目標ライン圧tPLに対してアンダーシュートし、ベルト4が滑る可能性がある。
 そこで、本実施形態では、以下に説明するキックダウン時の油圧制御を行う。
 図4は、キックダウン時の油圧制御の内容を示したフローチャートである。これを参照しながらキックダウン時の制御について説明する。
 まず、S1では、変速機コントローラ12は、変速がキックダウン(アクセルペダルが急激かつ大きく踏み込まれた時に行われるダウンシフト)か判断する。キックダウンかは、アクセル開度APOの変化量及び変化速度に基づき判断することができる。
 変速がキックダウンであると判断された場合は処理がS2に進み、そうでない場合は処理が終了する。
 S2では、変速機コントローラ12は、目標ライン圧tPLをキックダウンによって増大するCVT1への入力トルクに対応する第1目標圧(すなわち、変速後に必要となる最終目標圧)まで上げる(第1段階の昇圧)。これにより、セカンダリプーリ3によるベルト4の挟持圧が高められ、ベルト4が滑るのが防止される。
 S3では、変速機コントローラ12は、ライン圧調圧弁31のポート31cが閉じられたか判断する。上記の通り、ポート31cは、油量収支が不足する場合に閉じられ、その判断は、エンジン回転速度Ne、ライン圧PL及び変速比に基づき行われる。具体的には、エンジン回転速度Neが所定値よりも低く(オイルポンプ40の吐出圧が低い)、ライン圧PLが所定値よりも低く(実圧が低い)、かつ、変速比が所定変速比よりもハイ側(キックダウン時に必要とされる油圧の増分が大きい)の場合に油量収支が不足し、ポート31cが閉じられると判断される。
 ポート31cが閉じられると判断された場合はライン圧PLのオーバーシュートが発生するので、S4以降に進み、その揺り返しによるアンダーシュートを防止するための処理が行われる。そうでない場合は処理が終了する。
 S4では、変速機コントローラ12は、ライン圧PLが第1目標圧まで昇圧したか判断する。肯定的な判断がなされた場合は処理がS5に進み、そうでない場合はS4の判断が繰り返される。かかる判断を行うのは、ライン圧PLのオーバーシュートはライン圧PLが第1目標圧まで昇圧した直後に起こり、オーバーシュートの揺り返しを防止するS5以降の処理を行うには、ライン圧PLが第1目標圧まで昇圧したタイミングで開始するのが好適であるからである。
 S5では、変速機コントローラ12は、目標ライン圧tPLを第1目標圧よりも高い第2目標圧まで上げる(第2段階の昇圧)。この処理は、目標ライン圧tPLの下限値を第1目標圧よりも高い第2目標圧に設定し、当該下限値を用いて目標ライン圧tPLの下限規制を行うことによって行われる。
 第2目標圧は、ライン圧PLの第1目標圧に対するオーバーシュート発生時の圧よりも高い値に設定される。これにより、目標ライン圧tPLがライン圧PLよりも高くなるので、制御上はオーバーシュートが起こっていないと認識され、フィードバック回路31fの働きによってスプール31sがポート31cを開く方向に押し戻されることはなく、したがって、揺り返しによるアンダーシュートも発生しない。
 なお、油量収支が不足する状況であるので、目標ライン圧tPLを第2目標圧まで高めても、ライン圧PLが第2目標圧に対してオーバーシュートすることはない。
 S6では、変速機コントローラ12は、所定時間待機する。これによって、ライン圧PLを高く保持し、揺り返しによるアンダーシュートを確実に防止する。
 S7では、変速機コントローラ12は、S5で用いた下限値を下げることで、目標ライン圧tPLを所定のランプ勾配で低下させる。これは、目標ライン圧tPLを第2目標圧まで上げたことで入力トルクに対して過多になっているライン圧PLを入力トルクに応じた圧まで下げるためである。所定のランプ勾配で下げるのは、急激に目標ライン圧tPLを下げると、ライン圧調圧弁31のバネ・マス系に起因する遅れによってライン圧PLが目標ライン圧tPLに対してアンダーシュートするので、これを防止するためである。
 以上の処理により、キックダウンによって目標ライン圧tPLが急激に上がって油量収支が不足しても、ライン圧PLのオーバーシュートの揺り返しとしてのアンダーシュートを防止し、ベルト滑りを防止することができる。
 なお、セカンダリ圧調圧弁33についても同様の制御を行う。
 すなわち、キックダウンによって目標セカンダリ圧tPsecが急激に上がって油量収支が不足する場合には、目標セカンダリ圧tPsecが入力トルクに対応する第1目標圧よりも高い第2目標圧まで上げられる。
 これにより、セカンダリ圧Psecが第1目標圧をオーバーシュートしても、制御上はオーバーシュートが起こっていないと認識されるようにし、セカンダリ圧Psecを下げるためのセカンダリ圧調圧弁33の動作を抑制して、オーバーシュートの揺り戻しとして起こるアンダーシュートを防止する。
 続いて、上記キックダウン時の油圧制御を行うことによる作用効果について説明する。
 図5は、キックダウン時の目標ライン圧tPL及び目標セカンダリ圧tPsecの変化を示している。
 時刻t1で変速がキックダウンと判断されると、目標ライン圧tPL及び目標セカンダリ圧が、それぞれ変速後の入力トルクに対応した第1目標圧までそれぞれ急激に高められる。これにより、油量収支が不足する状況になり、ライン圧調圧弁31のポート31c及びセカンダリ圧調圧弁33のドレンポートが閉じられる。なお、油量収支の不足は一時的であり、エンジン回転速度Neが増大してオイルポンプ40の吐出圧が上昇すると、油量収支の不足は解消する。
 時刻t2で、ライン圧PL及びセカンダリ圧Psecがそれぞれ第1目標圧になると、目標ライン圧tPL及び目標セカンダリ圧がさらに高い第2目標圧に設定される。ライン圧PL及びセカンダリ圧Psecはそれぞれ第1目標圧に対してオーバーシュートするが、目標ライン圧tPL及び目標セカンダリ圧tPsecが第2目標圧に高められたことによって、制御上はオーバーシュートが起こっていないと認識され、ライン圧調圧弁31及びセカンダリ圧調圧弁33の動きが抑制されるので、オーバーシュートの揺り戻しとして起こるアンダーシュートが防止される。
 時刻t2~t3では、目標ライン圧tPL及び目標セカンダリ圧tPsecは、第2目標圧に所定時間保持される。これにより、オーバーシュートの揺り返しとしてのアンダーシュートを確実に防止することができる。
 そして、時刻t3以降では、目標ライン圧tPL及び目標セカンダリ圧tPsecは所定のランプ勾配で下げられる。これにより、入力トルクに対して油圧が過多の状態を解消するとともに、目標ライン圧tPL及び目標セカンダリ圧tPsecが急激に下がることによるアンダーシュートが防止される。
 なお、上記目標ライン圧tPL及び目標セカンダリ圧tPsecの2段階目の昇圧は、第1段階の昇圧で油量収支が不足し、ライン圧調圧弁31のポート31c及びセカンダリ圧調圧弁33のドレンポートが閉じられる場合にのみ行われるので、不必要な昇圧による燃費の悪化を防止することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的に限定する趣旨ではない。
 本願は日本国特許庁に2012年6月8日に出願された特願2012-130650号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機であって、
     エンジンによって駆動されるオイルポンプと、
     前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁と、
     変速がキックダウンであるか判断するキックダウン判断手段と、
     変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧する第1増圧手段と、
     前記ライン圧が前記第1目標圧になったか判断する昇圧判断手段と、
     前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する第2増圧手段と、
    を備えた無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記第2増圧手段は、前記目標ライン圧を前記第2目標圧に所定時間保持する、
    無段変速機。
  3.  請求項2に記載の無段変速機であって、
     前記第2増圧手段は、前記目標ライン圧を前記第2目標圧に所定時間保持した後、前記目標ライン圧を所定のランプ勾配で低下させる、
    無段変速機。
  4.  請求項1から3のいずれか一つに記載の無段変速機であって、
     前記第2増圧手段は、前記ライン圧が前記第1目標圧になったと判断され、かつ、前記第1増圧手段による前記目標ライン圧の昇圧の結果、前記ドレンポートが前記スプールによって閉じられると判断される場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する、
    無段変速機。
  5.  請求項1から4のいずれか一つに記載の無段変速機であって、
     前記第1増圧手段は、前記ライン圧を昇圧するのに併せて前記セカンダリ圧を昇圧する、
    無段変速機。
  6.  プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更する油圧回路が、エンジンによって駆動されるオイルポンプと、前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁と、を有する無段変速機の油圧制御方法であって、
     変速がキックダウンであるか判断し、
     変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧し、
     前記ライン圧が前記第1目標圧になったか判断し、
     前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する、
    無段変速機の油圧制御方法。
PCT/JP2013/064702 2012-06-08 2013-05-28 無段変速機及びその油圧制御方法 WO2013183483A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147033862A KR101598751B1 (ko) 2012-06-08 2013-05-28 무단 변속기 및 그 유압 제어 방법
US14/405,289 US9441733B2 (en) 2012-06-08 2013-05-28 Continuously variable transmission and a hydraulic control method thereof
EP13801326.3A EP2860427A4 (en) 2012-06-08 2013-05-28 CONTINUOUSLY VARIABLE TRANSMISSION AND HYDRAULIC PRESSURE CONTROL METHOD RELATING THERETO
JP2014519930A JP5830167B2 (ja) 2012-06-08 2013-05-28 無段変速機及びその油圧制御方法
CN201380029265.8A CN104334929B (zh) 2012-06-08 2013-05-28 无级变速器及其油压控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-130650 2012-06-08
JP2012130650 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183483A1 true WO2013183483A1 (ja) 2013-12-12

Family

ID=49711876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064702 WO2013183483A1 (ja) 2012-06-08 2013-05-28 無段変速機及びその油圧制御方法

Country Status (6)

Country Link
US (1) US9441733B2 (ja)
EP (1) EP2860427A4 (ja)
JP (1) JP5830167B2 (ja)
KR (1) KR101598751B1 (ja)
CN (1) CN104334929B (ja)
WO (1) WO2013183483A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047860B2 (en) * 2016-06-02 2018-08-14 GM Global Technology Operations LLC Pump switching control systems and methods for continuously variable transmissions
US9970540B2 (en) * 2016-06-02 2018-05-15 GM Global Technology Operations LLC Transmission fluid pressure control systems and methods for continuously variable transmissions
EP3258140B1 (en) 2016-06-14 2021-08-04 Perkins Engines Company Limited A method of estimating torque in a continuously variable transmission
KR102105888B1 (ko) * 2016-07-01 2020-05-04 쟈트코 가부시키가이샤 하이브리드 차량의 제어 장치
JP6922173B2 (ja) * 2016-08-29 2021-08-18 日産自動車株式会社 無段変速機の制御方法及び制御装置
KR20180071455A (ko) * 2016-12-19 2018-06-28 현대자동차주식회사 무단변속기 변속속도 제어방법
JP6571127B2 (ja) * 2017-05-01 2019-09-04 本田技研工業株式会社 変速機の油圧制御装置及び油圧制御方法
US10571016B2 (en) 2018-01-03 2020-02-25 GM Global Technology Operations LLC Electronic transmission range selection for a continuously variable transmission
KR102532321B1 (ko) * 2018-03-23 2023-05-15 현대자동차주식회사 무단변속기 차량의 풀리 제어방법
JP7412590B2 (ja) * 2020-11-02 2024-01-12 ジヤトコ株式会社 プーリ圧制御弁のダンピング圧供給回路
JP7241124B2 (ja) * 2021-04-21 2023-03-16 本田技研工業株式会社 車両用無段変速機の制御装置及び制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999148A (ja) 1982-11-30 1984-06-07 Aisin Warner Ltd 車両用無段自動変速機の油圧制御装置
JPS6053256A (ja) * 1983-08-31 1985-03-26 Fuji Heavy Ind Ltd 無段変速機のキックダウン制御装置
JPS6228561A (ja) * 1985-07-30 1987-02-06 Daihatsu Motor Co Ltd Vベルト式無段変速機の変速制御装置
JP2005036820A (ja) * 2003-07-15 2005-02-10 Nissan Motor Co Ltd アイドルストップ車両の変速機油圧制御装置
JP2007132420A (ja) * 2005-11-09 2007-05-31 Jatco Ltd 車両用ベルト式無段変速機の油圧制御装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119860A (ja) * 1984-11-16 1986-06-07 Fuji Heavy Ind Ltd 無段変速機の電子制御装置
US4718308A (en) * 1985-03-29 1988-01-12 Borg-Warner Automotive, Inc. Hydraulic control system for continuously variable transmission
JPS624957A (ja) * 1985-06-29 1987-01-10 Fuji Heavy Ind Ltd 無段変速機の油圧制御装置
JPS624640A (ja) * 1985-06-29 1987-01-10 Fuji Heavy Ind Ltd 無段変速機の制御装置
US4731044A (en) * 1985-12-18 1988-03-15 Borg-Warner Automotive, Inc. Tension sensor and control arrangement for a continuously variable transmission
US4853858A (en) * 1986-02-13 1989-08-01 Nissan Motor Co., Ltd. Control for continuously variable transmission
JPH0830529B2 (ja) * 1986-02-18 1996-03-27 富士重工業株式会社 無段変速機の制御装置
JPS62231838A (ja) * 1986-03-31 1987-10-12 Fuji Heavy Ind Ltd 無段変速機の油圧制御装置
JP2794703B2 (ja) * 1987-12-24 1998-09-10 日産自動車株式会社 無段変速機の変速制御装置
US4923433A (en) * 1988-02-22 1990-05-08 Fuji Jukogyo Kabushiki Kaisha Transmission ratio control system for a continuously variable transmission
US4948370A (en) * 1988-09-24 1990-08-14 Fuji Jukogyo Kabushiki Kaisha Transmission ratio control system for a continuously variable transmission
JPH03172674A (ja) * 1989-11-30 1991-07-26 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2900286B2 (ja) * 1990-10-31 1999-06-02 富士重工業株式会社 無段変速機の制御装置
JP2900290B2 (ja) * 1991-01-22 1999-06-02 富士重工業株式会社 車両用無段変速機の圧力制御装置
JP3222937B2 (ja) * 1992-07-28 2001-10-29 浜松ホトニクス株式会社 電荷転送型増倍装置
JPH07259940A (ja) 1994-03-17 1995-10-13 Nissan Motor Co Ltd 無段変速機の制御装置
DE4411628A1 (de) * 1994-04-02 1995-10-05 Bosch Gmbh Robert Schlupfregler für stufenloses Getriebe
JPH08285021A (ja) * 1995-04-10 1996-11-01 Unisia Jecs Corp 無段変速機の制御装置
JP3422227B2 (ja) * 1997-07-16 2003-06-30 日産自動車株式会社 無段変速機の制御装置
JP3524751B2 (ja) * 1998-03-05 2004-05-10 本田技研工業株式会社 変速機の油圧制御装置
JP3498900B2 (ja) * 1998-12-25 2004-02-23 日産自動車株式会社 ベルト式無段変速機の制御装置
US6287227B1 (en) * 1999-09-20 2001-09-11 General Motors Corporation Hydraulic control for a continuously variable transmission
JP3750488B2 (ja) * 2000-05-23 2006-03-01 トヨタ自動車株式会社 車両用無段変速機の制御装置
CA2352991C (en) * 2000-07-24 2009-01-06 Honda Giken Kogyo Kabushiki Kaisha Shift control system for belt-type continuously variable transmission
JP3817412B2 (ja) * 2000-08-02 2006-09-06 ジヤトコ株式会社 無段変速機の変速制御装置
JP2002048232A (ja) * 2000-08-02 2002-02-15 Jatco Transtechnology Ltd 無段変速機の変速制御装置
KR100376714B1 (ko) * 2000-12-28 2003-03-17 현대자동차주식회사 자동차용 무단 변속기의 킥다운 제어방법
JP3835202B2 (ja) * 2001-05-18 2006-10-18 トヨタ自動車株式会社 車両用駆動制御装置
DE10164490A1 (de) * 2001-12-29 2003-07-10 Bosch Gmbh Robert Steuerschaltung und Verfahren zur Erzeugung eines Steuersignals zur Steuerung eines stufenlos verstellbaren Umschlingungsgetriebes
JP4034148B2 (ja) * 2002-08-29 2008-01-16 ジヤトコ株式会社 ベルト式無段変速機
JP4047122B2 (ja) * 2002-09-30 2008-02-13 ジヤトコ株式会社 Vベルト式無段変速機のスリップ防止装置
JP4025164B2 (ja) * 2002-10-01 2007-12-19 ジヤトコ株式会社 無段変速機の変速制御装置
JP3974031B2 (ja) * 2002-12-02 2007-09-12 ジヤトコ株式会社 自動変速機の油圧制御装置
JP3898654B2 (ja) * 2003-02-27 2007-03-28 ジヤトコ株式会社 エンジンのトルク制御装置
JP4071649B2 (ja) * 2003-02-27 2008-04-02 ジヤトコ株式会社 ベルト式無段変速機における変速制御装置
JP4687096B2 (ja) * 2004-02-10 2011-05-25 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
JP4084777B2 (ja) * 2004-03-31 2008-04-30 ジヤトコ株式会社 車両用ベルト式無段変速機の入力トルク制御装置
JP2005291395A (ja) * 2004-03-31 2005-10-20 Jatco Ltd 車両用ベルト式無段変速機の油圧制御装置
JP4192846B2 (ja) * 2004-06-11 2008-12-10 トヨタ自動車株式会社 油圧制御装置
US7192374B2 (en) * 2004-06-14 2007-03-20 Caterpillar Inc System and method for controlling a continuously variable transmission
JP2006046420A (ja) * 2004-08-02 2006-02-16 Jatco Ltd ベルト式無段変速機の油圧制御装置
JP4145856B2 (ja) * 2004-10-05 2008-09-03 ジヤトコ株式会社 ベルト式無段変速機のライン圧制御装置
JP2006342837A (ja) * 2005-06-07 2006-12-21 Jatco Ltd ベルト式無段変速機を備えた車両の制御装置
JP4452228B2 (ja) * 2005-10-04 2010-04-21 ジヤトコ株式会社 無段変速機のライン圧制御装置
JP4309389B2 (ja) * 2005-10-04 2009-08-05 ジヤトコ株式会社 無段変速機のライン圧制御装置
JP4799129B2 (ja) * 2005-10-31 2011-10-26 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4731505B2 (ja) * 2006-03-17 2011-07-27 ジヤトコ株式会社 ベルト式無段変速機の油圧制御装置
JP2008020055A (ja) * 2006-06-15 2008-01-31 Toyota Motor Corp ベルト式無段変速機の制御装置
JP4690255B2 (ja) * 2006-06-15 2011-06-01 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
JP4251200B2 (ja) * 2006-07-07 2009-04-08 トヨタ自動車株式会社 車両用ベルト式無段変速機
JP4842741B2 (ja) * 2006-09-01 2011-12-21 ヤマハ発動機株式会社 鞍乗型車両
JP4431563B2 (ja) * 2006-11-21 2010-03-17 ジヤトコ株式会社 無段変速機の制御装置
JP4344379B2 (ja) * 2006-12-06 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
JP4755970B2 (ja) * 2006-12-15 2011-08-24 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4344380B2 (ja) * 2006-12-26 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
JP4613226B2 (ja) * 2008-05-30 2011-01-12 ジヤトコ株式会社 無段変速機の制御装置
WO2010064296A1 (ja) * 2008-12-02 2010-06-10 トヨタ自動車株式会社 シーブ位置決め装置
JP4692622B2 (ja) * 2008-12-12 2011-06-01 トヨタ自動車株式会社 油圧制御装置
JP4678435B2 (ja) * 2008-12-17 2011-04-27 トヨタ自動車株式会社 無段変速機の油圧供給装置
JP5192509B2 (ja) * 2010-03-19 2013-05-08 ジヤトコ株式会社 自動変速機の制御装置およびその制御方法
JP5127884B2 (ja) * 2010-06-07 2013-01-23 ジヤトコ株式会社 自動変速機
JP5403164B2 (ja) * 2010-08-27 2014-01-29 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP5376067B2 (ja) * 2010-10-08 2013-12-25 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置
JP5790173B2 (ja) * 2011-06-07 2015-10-07 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP5588531B1 (ja) * 2013-03-12 2014-09-10 富士重工業株式会社 変速制御アクチュエータ診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999148A (ja) 1982-11-30 1984-06-07 Aisin Warner Ltd 車両用無段自動変速機の油圧制御装置
JPS6053256A (ja) * 1983-08-31 1985-03-26 Fuji Heavy Ind Ltd 無段変速機のキックダウン制御装置
JPS6228561A (ja) * 1985-07-30 1987-02-06 Daihatsu Motor Co Ltd Vベルト式無段変速機の変速制御装置
JP2005036820A (ja) * 2003-07-15 2005-02-10 Nissan Motor Co Ltd アイドルストップ車両の変速機油圧制御装置
JP2007132420A (ja) * 2005-11-09 2007-05-31 Jatco Ltd 車両用ベルト式無段変速機の油圧制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860427A4 *

Also Published As

Publication number Publication date
KR20150016955A (ko) 2015-02-13
JPWO2013183483A1 (ja) 2016-01-28
EP2860427A1 (en) 2015-04-15
EP2860427A4 (en) 2016-09-07
US9441733B2 (en) 2016-09-13
KR101598751B1 (ko) 2016-02-29
CN104334929A (zh) 2015-02-04
US20150148157A1 (en) 2015-05-28
JP5830167B2 (ja) 2015-12-09
CN104334929B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5830167B2 (ja) 無段変速機及びその油圧制御方法
US8241178B2 (en) Continuously variable transmission and control method thereof
JP5815121B2 (ja) 無段変速機及びその油圧制御方法
EP2275710B1 (en) Control device of and control method for vehicle continuously variable transmission
JP4289407B2 (ja) 油圧供給装置
JP2007100818A (ja) 無段変速機のライン圧制御装置
JP5376054B2 (ja) 車両用変速制御装置
US10697540B2 (en) Vehicle control device and vehicle control method
JP2005036820A (ja) アイドルストップ車両の変速機油圧制御装置
JP2004124961A (ja) ベルト式無段変速機の変速油圧制御装置
JP6353971B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6139302B2 (ja) 車両用ロックアップクラッチの制御装置
JP2012072801A (ja) 車両用無段変速機の変速制御装置
JP5494410B2 (ja) 車両用動力伝達装置の制御装置
JP6313854B2 (ja) 自動変速機の油圧制御装置、及びその制御方法
JP6994118B2 (ja) 自動変速機の油圧制御装置および油圧制御方法
JP6205589B2 (ja) 車両用制御装置
JP2009236182A (ja) 無段変速機の制御装置
JP6379280B2 (ja) 変速機の制御装置及び変速機の制御方法
JP2019143699A (ja) ベルト式無段変速機の制御装置
JP5387419B2 (ja) 車両用無段変速機の制御装置
JP2010276087A (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380029265.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519930

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147033862

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013801326

Country of ref document: EP