WO2013147092A1 - エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物 - Google Patents

エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物 Download PDF

Info

Publication number
WO2013147092A1
WO2013147092A1 PCT/JP2013/059401 JP2013059401W WO2013147092A1 WO 2013147092 A1 WO2013147092 A1 WO 2013147092A1 JP 2013059401 W JP2013059401 W JP 2013059401W WO 2013147092 A1 WO2013147092 A1 WO 2013147092A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
substituted
reaction
Prior art date
Application number
PCT/JP2013/059401
Other languages
English (en)
French (fr)
Inventor
細川 明美
晴彦 日下
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020147027093A priority Critical patent/KR102049711B1/ko
Priority to JP2014508066A priority patent/JP6233303B2/ja
Priority to CN201380018506.9A priority patent/CN104203933B/zh
Publication of WO2013147092A1 publication Critical patent/WO2013147092A1/ja
Priority to US14/502,206 priority patent/US9650353B2/en
Priority to US15/479,987 priority patent/US10730846B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/06Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/26Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C219/28Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/223Di-epoxy compounds together with monoepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation

Definitions

  • the present invention relates to a method for producing a novel epoxy compound and a novel catalyst composition for epoxidation reaction used therefor.
  • Epoxy compounds are widely used as epoxy monomers as raw materials for epoxy resins and as raw materials for various chemical products.
  • the epoxy resin is a resin obtained by curing an epoxy monomer using various curing agents.
  • Epoxy resin is a resin that excels in mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., and is used in electronic materials, optical materials, building materials, adhesives, paints, laminates, molding materials, It is used in a wide range of fields such as mold materials and resists.
  • semiconductor encapsulants, printed wiring boards, build-up wiring boards, solder resists, etc. with higher integration, packaging materials represented by epoxy resins are required to be highly purified. ing.
  • technologies that make use of optical signals are being developed to smoothly transmit and process vast amounts of information. Development of this resin is desired.
  • Typical epoxy monomer glycidyl ether compounds such as phenols, naphthols, bisphenol A, etc., condensed with glycidyloxy groups are heat resistant, adhesive, chemical resistant, electrical properties, mechanical properties Therefore, it is an industrial material that has many uses such as an adhesive, a molding material, a sealant, and a paint by being cross-linked and cured by a curing agent.
  • a method for producing a glycidyl ether compound when phenols are used as a raw material, a method of reacting epichlorohydrin with a raw material phenols is most widely used.
  • a specific synthesis method of glycidyl ether using epichlorohydrin is represented, for example, by the following reaction formula.
  • This epoxidation reaction is a clean reaction with less waste compared to an epoxidation reaction with an organic peroxide typified by peracetic acid because the by-product is only water. Further, since 30% to 45% hydrogen peroxide water is used, it is easily available and easy to handle.
  • an ammonium salt having a long-chain alkyl group such as methyltrioctylammonium chloride or a pyridinium salt having a long-chain alkyl group such as cetylpyridinium salt is used as an onium salt that usually coexists as a catalyst.
  • An oxidant is prepared.
  • the onium salt having a long-chain alkyl group has a high distribution ratio to an organic solvent, an epoxy compound dissolved in an organic phase after the reaction, a component derived from the catalyst composition, specifically tungsten or an onium salt.
  • a component derived from the catalyst composition specifically tungsten or an onium salt.
  • separation and purification from onium salt-derived nitrogen-containing compounds are extremely difficult.
  • tungsten, nitrogen-containing compounds, and the like are removed by a method such as recrystallization or hanging washing, there is a problem that the purification yield (recovery rate) of the epoxy compound is low.
  • catalyst-derived heavy metal components such as tungsten and molybdenum and ionic compounds such as onium salts remain in the resulting epoxy compound. These remain even when an epoxy resin is produced from an epoxy compound, and adversely affect the product.
  • Patent Document 5 or 6 discusses a method of adsorbing and removing an ammonium salt using an ion exchange resin or a metal oxide as an adsorbent after the epoxidation reaction.
  • Patent Documents 7 and 8 or Non-Patent Document 4 discusses a method in which an ammonium salt used as an epoxidizing agent is supported on a resin or silica gel and then separated and recovered by filtration.
  • Patent Document 9 discusses a method of depositing an ammonium salt used as a catalyst after the epoxidation reaction.
  • Patent Document 10 discusses a method for making the catalyst non-uniform.
  • Patent Document 11 discusses a method of binding and removing a magnetic substance from an ammonium salt.
  • the adsorbent must be added in an amount of 15% by weight or more of the epoxy compound, and an operation for separating the adsorbent is required. Further, when an adsorbent is used, there is a concern that productivity decreases due to an adsorption loss of the epoxy compound to the adsorbent, organic impurities derived from the ion exchange resin, and metals derived from the metal oxide are eluted and mixed.
  • Patent Documents 7 and 8 Used when the catalyst component is immobilized on a carrier as described in Patent Documents 7 and 8, or Non-Patent Document 4, because the activity of the catalyst is reduced and a large amount of catalyst is required. New problems arise, such as the limitation of the solvent that can be produced or the deterioration of the thermal stability of the catalyst.
  • Patent Document 9 describes that the amount of tungsten can be reduced only to about 600 ppm by only the precipitation operation.
  • the reaction rate decreases due to non-uniformization, and that the method cannot be applied to monomers having good crystallinity.
  • the method described in Patent Document 11 has a problem that the synthesis of the catalyst is complicated.
  • the content of heavy metals such as tungsten is extremely small, preferably the amount of nitrogen-containing compounds derived from onium salts (hereinafter simply referred to as nitrogen content), more preferably the content of chlorine. It is an object of the present invention to provide a method for producing an epoxy compound having a small amount without requiring a complicated purification step.
  • the inventors incorporated a new concept of introducing a structure that can be converted into an easily removable compound into the onium salt that coexists as a catalyst, designed the compound, and used it in the epoxidation reaction. Specifically, the reaction was carried out in the presence of an onium salt having at least one substituent in the molecule that can be converted into a functional group containing active hydrogen or a salt thereof. As a result, the desired epoxy compound is obtained and converted to a functional group containing active hydrogen or a salt thereof after the epoxidation reaction. The epoxy compound and the component derived from the epoxidizing agent are separated and removed, and the epoxy compound has high purity. Has been found, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • a method for producing an epoxy compound wherein a compound having a carbon-carbon double bond has at least one of a tungsten compound and a molybdenum compound, and a substituent that can be converted into a functional group containing active hydrogen or a salt thereof.
  • a method for producing an epoxy compound comprising reacting hydrogen peroxide in the presence of an onium salt having one or more and containing 20 or more carbon atoms.
  • any one or more of R 1 to R 4 , any one or more of R 5 to R 10 , and any of R 11 to R 15 is independently —Y—CO—O—Z or —Y—O—CO—Z (where Y is a direct bond or a part of carbon atoms is substituted with a hetero atom) And represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may have a substituent, and Z is a group in which some carbon atoms are substituted with heteroatoms.
  • R 1 to R 5 , R 11 and R 13 are not the above-mentioned —Y—CO—O—Z and —Y—O—CO—Z, some carbon atoms are independently heteroatoms.
  • R 6 to R 10 , R 12 , R 14, and R 15 are each independently a hydrogen atom, a halogen atom, or a group other than —Y—CO—O—Z and —Y—O—CO—Z
  • R 1 to R 15 may combine with each other in the same compound to form a ring.
  • the total number of carbon atoms contained in R 1 to R 4 in the above formula (1) is 20 or more
  • the total number of carbon atoms contained in R 5 to R 10 in the above formula (2) is 15 or more
  • the total number of carbon atoms contained in R 11 to R 15 in the above formula (3) is 17 or more.
  • X ⁇ represents a monovalent anion.
  • [12] A method of producing an epoxy resin by polymerizing an epoxy compound, the step of producing an epoxy compound by the method described in [1] to [11] above, and the polymerization of the epoxy compound obtained in the step The manufacturing method of the epoxy resin including the process to do.
  • Epoxidation reaction comprising at least one of a tungsten compound and a molybdenum compound, and an onium salt having 20 or more carbon atoms having at least one functional group containing active hydrogen or a substituent that can be converted to a salt thereof. Catalyst composition.
  • the onium salt is an ammonium salt, a pyridinium salt, an imidazolinium salt, or a phosphonium salt.
  • any one or more of R 1 to R 4 , any one or more of R 5 to R 10 , and any of R 11 to R 15 is independently —Y—CO—O—Z or —Y—O—CO—Z (where Y is a direct bond or a part of carbon atoms is substituted with a hetero atom) And represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may have a substituent, and Z is a group in which some carbon atoms are substituted with heteroatoms.
  • R 1 to R 5 , R 11 and R 13 are not the above-mentioned —Y—CO—O—Z and —Y—O—CO—Z, some carbon atoms are independently heteroatoms.
  • R 6 to R 10 , R 12 , R 14, and R 15 are each independently a hydrogen atom, a halogen atom, or a group other than —Y—CO—O—Z and —Y—O—CO—Z
  • R 1 to R 15 may combine with each other in the same compound to form a ring.
  • the total number of carbon atoms contained in R 1 to R 4 in the above formula (1) is 20 or more
  • the total number of carbon atoms contained in R 5 to R 10 in the above formula (2) is 15 or more
  • the total number of carbon atoms contained in R 11 to R 15 in the above formula (3) is 17 or more.
  • X ⁇ represents a monovalent anion.
  • R 20 represents a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a part of carbon atoms substituted with a hetero atom.
  • R 21 to R 23 each independently represents one Represents an alkyl group having 1 to 25 carbon atoms or a benzyl group, in which part of the carbon atoms may be substituted with a hetero atom, and R 20 to R 23 may combine within the same compound to form a ring.
  • K represents an integer of 1 to 4.
  • R 31 and R 32 each independently represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms.
  • R 33 represents a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with hetero atoms, or 4 to 25 carbon atoms that may have a substituent. Represents a monovalent aromatic hydrocarbon group.
  • a plurality of k, R 20 and R 31 present in the same compound may be the same or different. The total number of carbon atoms contained in the cation moiety in the formula is 20 or more.
  • X ⁇ represents a monovalent anion
  • G represents a glycidyl group (2,3-epoxypropanyl group), and the glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 201 represents a (m201 + 1) -valent aromatic or aliphatic hydrocarbon group which may have a substituent
  • a 202 represents a divalent aromatic or aliphatic hydrocarbon which may have a substituent.
  • a 203 represents a (m203 + 2) -valent aromatic or aliphatic hydrocarbon group which may have a substituent.
  • X 201 and X 202 each independently represent a divalent linking group which may have a direct bond or a substituent.
  • p201 represents 0 or 1.
  • m201 and m203 each independently represent an integer of 1 or more.
  • n201 represents an integer of 1 or more, n202 represents 0 or an integer of 1 or more, and n203 represents 0 or 1.
  • a plurality of G, A 201 , A 202 , X 201 , X 202 , m201 and p201 contained in one molecule may be the same or different.
  • Z is a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with heteroatoms, or 4 to 25 carbon atoms that may have a substituent.
  • R 35 represents a group represented by any of the following formulas (18) to (20).
  • R 41 represents a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with heteroatoms.
  • R 42 to R 44 each independently represents an alkyl group having 1 to 25 carbon atoms or a benzyl group in which some carbon atoms may be substituted with heteroatoms.
  • Any one of R 45 to R 50 represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may be a direct bond or a part of carbon atoms may be substituted with a hetero atom.
  • R 46 to R 50 are each independently In addition, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, a phenoxy group, an N-alkylcarbamoyl group Or represents an N-alkylsulfamoyl group,
  • Each of the four is independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1
  • any one of R 51 to R 55 represents a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with hetero atoms.
  • the other is one Represents an alkyl group having 1 to 25 carbon atoms or a benzyl group, in which part of the carbon atoms may be substituted with a hetero atom
  • R 52 , R 54 and R 55 each independently represents a hydrogen atom, a halogen atom or a cyano group , A nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, a phenoxy group, a benzyl group,
  • R 52 , R 54 and R 55 are a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms
  • the other two are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, Represents a phenoxy group, a benzyl group, an N-alkylcarbamoyl group or an N-alkylsulfamoyl group, and R 51 and R 53 each independently represents a carbon atom in which some of the carbon atoms may be substituted with a heteroatom.
  • G represents a glycidyl group (2,3-epoxy-propanyl group), the glycidyl group is an alkyl group, optionally .
  • a 1 be phenyl or substituted alkoxycarbonyl group
  • M1 represents an aromatic or aliphatic hydrocarbon group which may have a substituent
  • m1 represents an integer of 1 or more, and plural Gs contained in one molecule may be the same or different.
  • G represents a glycidyl group, and this glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 21 may have a substituent ( m @ 2 + 1) valent aromatic or aliphatic hydrocarbon group, a 22 is connected via a .
  • X 2 representing an aromatic or aliphatic hydrocarbon group which may be divalent to have a substituent group a 21 and A 22 , or a plurality of adjacent A 22 may be bonded to each other to form a ring
  • X 2 is a divalent bond that may have a direct bond or a substituent.
  • a plurality of G, A 21 , A 22 , X 2 , and m2 contained in one molecule are the same.
  • G represents a glycidyl group, and the glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 3 may have a substituent ( m3 + 2) represents a valent aromatic or aliphatic hydrocarbon group, X 3 represents a direct bond, an alkylene group which may have a substituent, or —R 41 -phenylene-R 42 —, wherein R 41 and R 42 represents an alkylene group independently, m3 represents an integer of 1 or more, n3 represents an integer of 2 or more, and a plurality of G, A 3 , X 3 , and m3 contained in one molecule are the same Or different.) [23] The composition according to [21] or [22] above, wherein an abundance ratio of the compound ⁇ to the epoxy compound ⁇ is 0.05 mol% or more and 10.0 mol% or less. object.
  • R 35 represents a group represented by any one of the formulas (18) to (20).
  • Z may have a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms, or a substituent. It represents a monovalent aromatic hydrocarbon group having 4 to 25 carbon atoms.
  • an epoxy compound having a very small content of heavy metals such as tungsten can be obtained. Further, it is possible to produce a high-purity epoxy compound having an extremely small content of onium salt and chlorine by a simple method without requiring complicated steps such as purification. Furthermore, it can be applied to the production of epoxy compounds that cannot be distilled or crystallized and is excellent in versatility.
  • the epoxy compound obtained by the method of the present invention is used as a raw material for electronic materials, optical materials, and medical and agricultural chemicals, problems due to impurities are reduced, and a product with high purity and high quality can be obtained.
  • the method for producing an epoxy compound of the present invention includes a compound having a carbon-carbon double bond (hereinafter sometimes referred to as “olefin compound”) containing at least one of a tungsten compound and a molybdenum compound and active hydrogen. It is characterized by reacting hydrogen peroxide in the presence of an onium salt having at least one functional group or a substituent that can be converted into a salt thereof and containing 20 or more carbon atoms.
  • tungsten compound and molybdenum compound at least one of tungsten compound and molybdenum compound is referred to as “catalytic metal component”, and “having one or more substituents that can be converted into a functional group containing active hydrogen or a salt thereof,
  • the “onium salt containing 20 or more carbon atoms” is simply referred to as “onium salt”, and the one containing the above “catalyst metal component” and “onium salt” is referred to as “catalyst composition for epoxy reaction” or simply “catalyst composition”.
  • the catalyst composition oxidized with hydrogen peroxide may be referred to as a “reactive active species composition”.
  • hydrogen peroxide serves as an oxidizing agent that oxidizes the catalyst composition.
  • Hydrogen peroxide is usually hydrogen peroxide, and commercially available hydrogen peroxide can be used as it is or diluted with water.
  • concentration of the hydrogen peroxide solution is usually 1% by weight or more, preferably 20% by weight or more and usually 60% by weight or less, and more preferably, considering availability, safety issues, productivity, etc. 30 wt% or more and 45 wt% or less.
  • the amount of hydrogen peroxide used is usually 0.5 moles or more, preferably 1 moles or more, usually 10 moles or less, preferably 3 moles per mole of the double bond in the olefin compound used as a raw material. Use below.
  • the catalyst composition of the present invention refers to a mixture of a catalytic metal component and an onium salt described later.
  • the method for preparing the catalyst composition can be appropriately selected according to the reaction substrate and the reactivity thereof, and is not particularly limited. However, a method of mixing the catalyst metal component and the onium salt in the reaction system, or in advance Any method of mixing the catalyst metal component and the onium salt outside the reaction system and then using it for the reaction may be used. Further, the method for adding phosphoric acids described later may be either a method of mixing in the reaction system or a method of mixing outside the reaction system in advance.
  • the mixing method and mixing order are not particularly limited, but specifically, the catalytic metal component and the onium salt described later are usually included in the reaction system containing the olefin compound. It can be prepared by adding. The order of addition is not particularly limited, and either the catalytic metal component or the onium salt may be added first, or may be added simultaneously.
  • the catalyst metal component and the onium salt can be mixed before use outside the reaction system.
  • the mixing method, the mixing order, and the use mode of the mixture are not particularly limited, but the catalyst metal component and the onium salt may be mixed in the catalyst composition even if the catalyst metal component and the onium salt are used as they are.
  • the complex may be isolated and used. Among them, it is convenient and preferable to mix a catalytic metal component and an onium salt and use them as they are without isolation or activation.
  • the catalytic metal component and the onium salt in the catalyst composition of the present invention form a complex, and preferably further form a complex with at least one of phosphoric acids and phosphonic acids described later.
  • the body is oxidized by hydrogen peroxide to become a “reactive active species composition”, which is considered to be a reactive active species in the epoxidation reaction in the present invention.
  • the reactive active species composition can be added to the reaction system after being partially activated by adding hydrogen peroxide to the mixture of the catalytic metal component and the onium salt (that is, the “catalyst composition”). .
  • tungstic acid or a tungstic acid salt hereinafter referred to as tungstic acid
  • molybdic acid or molybdic acid salt hereinafter referred to as molybdic acid
  • tungstic acids are preferred because of their price and availability.
  • tungstic acids include, for example, tungstic acid; tungstates such as sodium tungstate, potassium tungstate, calcium tungstate, ammonium tungstate; hydrates of the tungstates; Acid, phosphotungstic acid such as 18-tungstophosphoric acid; silicotungstic acid such as 12-tungstosilicic acid; 12-tungstoboric acid or metallic tungsten etc., tungstic acid, tungstate and phosphotungstic acid are preferred In terms of ease, tungstic acid, sodium tungstate, calcium tungstate, and 12-tungstophosphoric acid are more preferable.
  • molybdic acids examples include molybdic acid; molybdates such as sodium molybdate, potassium molybdate, and ammonium molybdate; and hydrates of the molybdates.
  • molybdic acids and molybdic acids tungstic acid or sodium tungstate and its hydrate, calcium tungstate and its hydrate are preferable in terms of availability, and from the ease of recovery and regeneration. Tungstic acid is more preferable.
  • the catalyst metal components can be used alone or in combination of two or more.
  • the amount of the catalytic metal component used in the present invention can be appropriately adjusted depending on the properties of the substrate used and the like, and is not particularly limited. It is usually 0.001 mol or more, preferably 0.005 mol or more, more preferably 0.01 mol or more, and usually 1.0 mol or less, preferably in terms of atoms (for example, in the case of tungstic acids in terms of tungsten atoms). Is 0.50 mol or less, more preferably 0.10 mol or less. If the amount is less than the lower limit, the reaction may not proceed. If the amount is more than the upper limit, the cost may be disadvantageous.
  • the onium salt used in the present invention has 20 or more carbon atoms and one or more functional groups containing active hydrogen or a substituent that can be converted to a salt thereof.
  • the onium salt is fat-soluble during the epoxidation reaction, is soluble in the reaction solvent, and is distributed on the organic phase side separated into an aqueous phase and an organic phase, and is stable under epoxidation reaction conditions or epoxidized. Even if the structure changes during the reaction, the catalytic ability is not significantly lowered. In order to be soluble in the reaction solvent and to be distributed to the organic phase, high fat solubility is required, and thus the onium salt needs to contain 20 or more carbon atoms.
  • the onium salt is converted into a water-soluble compound having a functional group containing active hydrogen or a salt thereof by a simple method under mild conditions in which the epoxy group of the epoxy compound generated by the reaction is not decomposed after the epoxidation reaction. It has the feature of having a substituent that can be converted.
  • onium Cation species (hereinafter simply referred to as “onium”) of the onium salt used in the present invention are not particularly limited as long as the above conditions are satisfied. That is, it is an onium having 20 or more carbon atoms and one or more functional groups containing active hydrogen or one or more substituents that can be converted to a salt thereof. Specific examples of onium include usually ammonium, pyridinium, imidazolinium. Quaternary cations of nitrogen-containing heterocycles such as phosphonium, and the like.
  • onium salts include ammonium salts, pyridinium salts, imidazolinium salts, and phosphonium salts.
  • imidazolinium is used as ammonium and pyridinium because they are easily synthesized.
  • the anion species of the onium salt used in the present invention is not particularly limited, but is a monovalent anion. Specific examples include hydrogen sulfate ion, monomethyl sulfate ion, halide ion, nitrate ion, acetate ion, hydrogen carbonate ion, dihydrogen phosphate ion, sulfonate ion, carboxylate ion, hydroxide ion, and the like.
  • Monomethyl sulfate ion, hydrogen sulfate ion, acetate ion from the point that the seed is not added to the epoxy group of the epoxy compound that is the reaction product or the carbon-carbon double bond of the olefin compound that is the raw material compound, and because it is easy to prepare.
  • Dihydrogen phosphate ions or hydroxide ions are preferred.
  • the onium salt used in the present invention has one or more functional groups containing active hydrogen in the onium moiety or a substituent that can be converted into a salt thereof.
  • a functional group containing active hydrogen represents a functional group capable of dissociating and releasing hydrogen ions, and a salt thereof is a compound in which another cation species becomes a counter anion instead of the dissociated hydrogen ion.
  • the functional group containing active hydrogen is not particularly limited, but is preferably a hydroxyl group, a carboxyl group, an amino group, a mercapto group, a sulfonic acid group, a phosphoric acid group, or a salt thereof, more preferably a carboxyl group. Or it is a hydroxyl group, Especially preferably, it is a hydroxyl group.
  • a substituent that can be converted into a functional group containing active hydrogen or a salt thereof is a substituent that can be converted into a functional group containing active hydrogen or a salt thereof by performing at least one of a physical operation and a chemical operation. Means. Specifically, it refers to a substituent that can be converted by a base reaction, an acid reaction, a chemical reaction such as catalytic hydrogenation, heating, a photoreaction, an enzyme reaction, microwave irradiation, or the like.
  • a substituent that can be converted under mild conditions is preferable, and a substituent that can be converted under conditions that do not react with an epoxy group is more preferable.
  • Examples thereof include a carbamate group, a thioacetal group, a phosphate ester group, and a benzyl ether group.
  • a functional group containing active hydrogen or a salt thereof is generated from a substituent that can be converted into the functional group containing active hydrogen or a salt thereof in the process of reacting the reactive species composition containing the onium salt with an olefin compound.
  • a ketone group ketone structure
  • a nitrile group a benzyl group, or the like that is converted into an ester group by a buyer-Billiger oxidation reaction during the reaction
  • Examples of convertible substituents are mentioned.
  • the alkoxycarbonyl group and the acyloxy group can be converted into a hydroxyl group, a carboxylic acid group, and a salt thereof by being contacted with a basic aqueous solution, easily and without decomposing the epoxy group,
  • the synthesis is also preferable because it is simple. More preferred is an alkoxycarbonyl group.
  • the number of the substituents is one or more, but is preferably two or more from the viewpoint of removal efficiency in washing.
  • the reactive species composition containing an onium salt used in the present invention is preferably dissolved in at least one of an olefin compound as a reaction raw material and a solvent used in the epoxidation reaction. Therefore, it is necessary to have a highly lipophilic portion in the onium salt structure.
  • the specific structure and shape are not particularly limited as long as they do not inhibit the reaction and are stable with respect to the epoxidation reaction, or retain catalytic activity even if the structure changes during the epoxidation reaction.
  • the structure may be any of an aliphatic group, an aromatic group, and a compound having both, and the shape may be any of a linear, branched, or cyclic structure.
  • onium salt used in the present invention an onium salt represented by any one of the following general formulas (1) to (3) is preferably used.
  • any one or more of R 1 to R 4 , any one or more of R 5 to R 10 , and any of R 11 to R 15 is independently —Y—CO—O—Z or —Y—O—CO—Z (where Y is a direct bond or a part of carbon atoms is substituted with a hetero atom) And represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may have a substituent, and Z is a group in which some carbon atoms are substituted with heteroatoms.
  • R 1 to R 5 , R 11 and R 13 are not the above-mentioned —Y—CO—O—Z and —Y—O—CO—Z, some carbon atoms are independently heteroatoms.
  • R 6 to R 10 , R 12 , R 14, and R 15 are each independently a hydrogen atom, a halogen atom, or a group other than —Y—CO—O—Z and —Y—O—CO—Z
  • R 1 to R 15 may combine with each other in the same compound to form a ring.
  • R 1 to R 15 are, in the case of an alkyl group having 1 to 25 carbon atoms, in which some of the carbon atoms may be substituted with heteroatoms and may have a substituent, You may have another onium salt represented by either of Formula (1) thru
  • the total number of carbon atoms contained in R 1 to R 4 in the above formula (1) is 20 or more, and the total number of carbon atoms contained in R 5 to R 10 in the above formula (2) is 15 or more.
  • the total number of carbon atoms contained in R 11 to R 15 in the above formula (3) is 17 or more.
  • X ⁇ represents a monovalent anion.
  • any one or more of R 1 to R 4 represents —Y—CO—O—Z or —Y—O—CO—Z.
  • the total number of carbon atoms contained in R 1 to R 4 is 20 or more.
  • any one or more of R 5 to R 10 in Formula (2) represents —Y—CO—O—Z or —Y—O—CO—Z.
  • the total number of carbon atoms contained in R 5 to R 10 is 15 or more.
  • any one or more of R 11 to R 15 in Formula (3) represents —Y—CO—O—Z or —Y—O—CO—Z.
  • the total number of carbon atoms contained in R 11 to R 15 is 17 or more.
  • Y is a direct bond, or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms and may have a substituent.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic.
  • a linear aliphatic hydrocarbon group such as methylene, ethylene, tetramethylene, hexamethylene, etc.
  • a branched aliphatic hydrocarbon group having an alkyl chain bonded thereto and
  • cyclic aliphatic hydrocarbon groups such as cyclohexene.
  • Y is a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms
  • the carbon atom may be partially substituted with a hetero atom.
  • the methylene group in the structure of these divalent aliphatic hydrocarbon groups is —O—, —S—, —SO—, —SO 2 —, —NH—, —NR 16 —
  • R 16 is A monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms or a monovalent aromatic hydrocarbon group
  • —CONR 17 — R 17 is a hydrogen atom, monovalent aliphatic carbon having 1 to 25 carbon atoms
  • —NHCONH—, —CONHCO—, —SO 2 NR 17 — (R 17 is as defined above) Good.
  • a hydrocarbon group in which some of the carbon atoms may be substituted with heteroatoms has the same meaning as described above.
  • Y is preferably ethylene, propylene, tetramethylene, hexamethylene and —CH 2 CH 2 —O—CH 2 CH 2 —.
  • Y is a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with heteroatoms and may have a substituent
  • Examples of the group include —O—CO—Z or —CO—O—Z (wherein Z is as defined in the above formulas (1) to (3)).
  • any one of R 1 to R 15 is —Y—CO—O—Z or —Y—O—CO—Z.
  • R 1 to R 15 is —Y—CO—O—Z or —Y—O—CO—Z.
  • —O—CO—Z or —CO—O—Z also having —O—CO—Z or —CO—O—Z as a substituent of the aliphatic hydrocarbon group in Y become.
  • Z represents a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms or a monovalent aromatic hydrocarbon group having 4 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms.
  • the monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms may be linear, branched or cyclic. Specifically, straight chain aliphatic hydrocarbon groups such as methyl, ethyl, propyl, butyl, hexyl, butyl and octyl, branched aliphatic hydrocarbons having an alkyl chain bonded thereto, and cyclic aliphatic carbon groups such as cyclohexyl.
  • a hydrogen group is mentioned.
  • Examples of the monovalent aromatic hydrocarbon group having 4 to 25 carbon atoms include a monovalent benzene ring and a naphthalene ring which may have an alkyl group or a halogen atom as a substituent.
  • the monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms may have a carbon atom in its structure partially substituted with a heteroatom, specifically, a methylene group in the structure of an aliphatic hydrocarbon group.
  • a heteroatom specifically, a methylene group in the structure of an aliphatic hydrocarbon group.
  • R 17 represents a family hydrocarbon group), - CONR 17 - (R 17 represents a hydrogen atom, a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group having 1 to 25 carbon atoms), - -NHCONH-, It may be substituted with a structure containing a heteroatom such as —CONHCO— or —SO 2 NR 17 — (R 17 has the same meaning as described above).
  • Examples of the monovalent aromatic hydrocarbon group having 4 to 25 carbon atoms include a phenyl group, a benzyl group, and a naphthyl group. These include a halogen atom, a cyano group, a nitro group, and some carbon atoms are heteroatoms. Have an optionally substituted alkyl group having 1 to 25 carbon atoms, phenyl group, phenoxy group, benzyl group, alkoxycarbonyl group, N-alkylcarbamoyl group, N-alkylsulfamoyl group, etc. Also good. Of these, a phenyl group is preferable because of the productivity of the onium salt.
  • Y represents a hydrocarbon group in the formula —Y—CO—O—Z
  • the number of carbon atoms is preferably 3 or more from the viewpoint of stability during the epoxidation reaction of the onium salt.
  • R 1 to R 15 are not —Y—CO—O—Z or —Y—O—CO—Z.
  • R 1 to R 15 R 1 to R 5 , R 11, and R 13 are each independently selected when they are not —Y—CO—O—Z and —Y—O—CO—Z.
  • a part of carbon atoms may be substituted with a heteroatom, and an optionally substituted alkyl group having 1 to 25 carbon atoms or a benzyl group;
  • R 6 to R 10 , R 12 , R 14, and R 15 are each independently a hydrogen atom, a halogen atom, or a group other than —Y—CO—O—Z and —Y—O—CO—Z,
  • a cyano group, a nitro group, a part of carbon atoms may be substituted with a heteroatom, and an optionally substituted alkyl group having 1 to 25 carbon atoms, phenyl group, phenoxy group, N— Represents an alkylcarbamoyl group or an N-alkylsulfamoyl group;
  • R 1 to R 15 may combine with each other in the same compound to form a ring.
  • R 1 to R 15 are, in the case of an alkyl group having 1 to 25 carbon atoms, in which some of the carbon atoms may be substituted with heteroatoms and may have a substituent.
  • the structures of the plurality of onium salts may be the same or different. Specific examples include 1,2-ethanediaminium salt and 4,4′-bipyridinium salt.
  • R 1 to R 15 are alkyl groups having 1 to 25 carbon atoms, carbon atoms in the structure may be partially substituted with heteroatoms.
  • a methylene group may be —O—, — S—, —SO—, —SO 2 —, —NH—, —NR 16 — (R 16 represents a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms or a monovalent aromatic hydrocarbon group. ), —CONR 17 — (R 17 represents a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms, or a monovalent aromatic hydrocarbon group), —NHCONH—, —CONHCO—, — It may be substituted with a structure containing a heteroatom such as SO 2 NR 17 — (R 17 is as defined above).
  • R 1 to R 5 , R 11 and R 13 are preferably methyl, ethyl, propyl, isopropyl, t-butyl, octyl, octadecyl or benzyl, and more preferably A methyl group or an ethyl group.
  • R 6 to R 10 , R 12 , R 14 and R 15 are preferably hydrogen atoms, chlorine atoms, methyl groups, ethyl groups, propyl groups, isopropyl groups, t-butyl groups, octyl groups, octadecyl groups, halogen atoms.
  • X ⁇ represents an anionic species of the onium salt and is a monovalent anion.
  • hydrogen sulfate ion, monomethyl sulfate ion, halide ion, nitrate ion, acetate ion, hydrogen carbonate ion, dihydrogen phosphate ion, sulfonate ion, carboxylate ion, hydroxide ion preferably From the viewpoint that the anion is not added to an epoxy group or a carbon-carbon double bond and is easy to prepare, it is a monomethyl sulfate ion, a hydrogen sulfate ion, a chlorine ion, an acetate ion, a dihydrogen phosphate ion, or a hydroxide ion. .
  • specific compounds that can be suitably used as the onium salt of the present invention include the following general formulas (8) to (11), (34) and (35). ).
  • the compounds represented by the following general formulas (8) to (10) are novel compounds suitable as the onium salt of the present invention. These compounds are preferable in that they have a plurality of ester structures in the molecule and can be converted into water-soluble compounds after hydrolysis, and can be easily synthesized from readily available raw materials.
  • Items (11) to (11) are preferable in terms of easy adjustment of production in terms of easy instrumental analysis such as a high performance liquid chromatograph.
  • R 20 represents a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a part of carbon atoms substituted with a hetero atom.
  • each of R 21 to R 23 is independently Represents an alkyl group or a benzyl group having 1 to 25 carbon atoms in which part of the carbon atoms may be substituted with a hetero atom, and R 24 represents 1 carbon atom in which some of the carbon atoms may be substituted with hetero atoms.
  • R 31 and R 32 each independently represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms.
  • a plurality of k, R 20 and R 31 present in the same compound may be the same or different.
  • the total number of carbon atoms contained in the cation moiety in the formula is 20 or more.
  • X ⁇ represents a monovalent anion
  • specific compounds that can be suitably used as the onium salt of the present invention include compounds represented by the following general formulas (12) and (31). .
  • the compounds represented by the following general formulas (12) and (31) are novel compounds suitable as the onium salt of the present invention.
  • R 20 represents a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with hetero atoms, a phenyl group, Represents a phenoxy group, a benzyl group, an alkoxycarbonyl group, an N-alkylcarbamoyl group or an N-alkylsulfamoyl group, and R 20 may combine within the same compound to form a ring. To an integer of 4 to 4. A plurality of k and R 20 present in the same compound may be the same or different.
  • R 31 and R 32 each independently represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms. The total number of carbon atoms contained in the cation moiety in the formula is 20 or more.
  • X ⁇ represents a monovalent anion
  • R 20 represents a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, Represents a phenoxy group, a benzyl group, an alkoxycarbonyl group, an N-alkylcarbamoyl group or an N-alkylsulfamoyl group, which may be bonded together in the same compound to form a ring.
  • R 31 represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which a part of carbon atoms may be substituted with a hetero atom.
  • R 33 represents a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with hetero atoms, or 4 to 25 carbon atoms that may have a substituent.
  • the total number of carbon atoms contained in the cation moiety in the formula is 20 or more.
  • R 20 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 21 to R 23 Is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms
  • R 24 is preferably an alkyl group having 1 to 8 carbon atoms
  • R 31 and R 32 are Independently, an alkylene group having 1 to 11 carbon atoms is preferable, an alkylene group having 1 to 5 carbon atoms is more preferable, and an ethylene group substituted with an ethylene group or a propane-1,2-diyl group is more preferable.
  • R 31 and R 32 may be bonded to each other to form a cyclic structure such as a pyranose ring.
  • R 33 is preferably an alkyl group having 1 to 16 carbon atoms.
  • k is preferably 1
  • X ⁇ is preferably monomethyl sulfate ion, hydrogen sulfate ion, dihydrogen phosphate ion or chlorine ion.
  • the onium salts may be used alone or in combination of two or more.
  • the amount of the onium salt used relative to the catalyst metal component can be appropriately adjusted depending on the properties of the substrate used and the like, and is not particularly limited.
  • the molar ratio is preferably 0.3 times to 5.0 times mole, more preferably 0.2 times to 2.0 times mole.
  • the above onium salts can be synthesized by alkylating the corresponding tertiary amines, pyridines, imidazoles and the like.
  • the reagent used for alkylation is not particularly limited, but R 18 -A (wherein A is a halogen atom such as chlorine, bromine or iodine, or aromatic sulfonyl such as p-toluenesulfonyl or methanesulfonyl, aliphatic sulfonyl, etc.)
  • R 18 represents R 1 to R 4 , R 5 , R 11 or R 13 in the above formulas (1) to (3), or R 1 to R 4 , R 5 , R 11 or R 13 represents a substituent convertible).
  • R 18 -A include halogenated alkyl compounds such as methyl iodide, ethyl iodide, ethyl bromide, octyl chloride and cetyl chloride; sulfonyl such as octyl ester of methanesulfonic acid and benzyl ester of p-toluenesulfonic acid.
  • halogenated alkyl compounds such as methyl iodide, ethyl iodide, ethyl bromide, octyl chloride and cetyl chloride
  • sulfonyl such as octyl ester of methanesulfonic acid and benzyl ester of p-toluenesulfonic acid.
  • Compounds sulfate esters such as dimethyl sulfate and diethyl sulfate
  • carbonate esters such as dimethyl carbonate
  • a base may be used in the alkylation reaction.
  • Specific examples of the base used include inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide and potassium hydroxide: organic bases such as ammonia, methylamine and ethylamine.
  • inorganic bases such as potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and potassium carbonate are preferable, and potassium carbonate is more preferable.
  • an organic solvent may be used.
  • the solvent used for the reaction may be distilled off after the reaction or after the post-reaction treatment described later, or may be subjected to the epoxidation reaction as a solution after the post-treatment.
  • Specific examples of the organic solvent to be used include esters such as ethyl acetate, aliphatic hydrocarbons such as heptane, hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene and pyridine, acetonitrile, tetrahydrofuran, dioxane, 1 , 2-dimethoxyethane and other aprotic solvents, acetone and methyl ethyl ketone and other ketones, N, N'-dimethylformamide, N-methylpyrrolidone and dimethyl sulfoxide and other aprotic polar solvents, chloroform, dichloromethane, 1,2 -H
  • the inorganic substance produced by the reaction can be removed by operations such as filtration and washing as appropriate.
  • the produced onium often forms a salt with A ⁇ as a counter ion.
  • a salt is often formed with hydroxide ions in water or ions in washing water.
  • These counter ions can be exchanged for desired counter ions by operations such as washing and ion exchange resin treatment. For example, when methylation is carried out using dimethyl sulfate, monomethyl sulfate is formed, but it can be converted to hydrogen sulfate by washing with sulfuric acid water.
  • Method introduced by 2) A method in which amines having —Y—CO 2 H, pyridines, and imidazoles are esterified to give —Y—CO—OZ, and then alkylated to give an onium salt as described above;
  • amines, pyridines, and imidazoles having —Y—CO—O—R 19 R 19 represents an alkyl group having 1 to 12 carbon atoms) are converted to —Y—CO—O—Z by transesterification.
  • a method of esterifying —Y—OH a method of reacting it with a corresponding acid chloride Z—CO—T (T represents a halogen atom), and dehydration condensation of Z—CO—OH with an acid catalyst. Or condensation using a condensing agent such as DCC or CDI.
  • Examples of the method of transesterifying —Y—CO—O—R 19 include a method of reacting the corresponding alcohol Z—OH in the presence of an acid catalyst. At this time, it is preferable to carry out the transesterification while removing the produced R 19 —OH by a method such as distillation or adsorption.
  • a method of introducing an ester group by dehydration condensation or transesterification under an acid catalyst is preferable.
  • the acid catalyst used is a mineral acid such as sulfuric acid, nitric acid and hydrochloric acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, trifluoroacetic acid.
  • Organic acids such as trichloroacetic acid and acetic acid, H 3 PW 12 O 40 , H 4 SiW 12 O 40 , H 4 TiW 12 O 40 , H 5 CoW 12 O 40 , H 5 FeW 12 O 40 , H 6 P 2 W 18 O 62, H 7 PW 11 O 33, H 4 TiMo 12 O 40, H 3 PMo 12 O 40, H 7 PMo 11 O 39, H 6 P 2 Mo 18 O 62, H 4 PMoW 11 O 40, H 4 PVMo 11 O 40, H 4 SiMo 12 O 40, H 5 PV 2 Mo 10 O 40, H 3 PM 6 W 6 O 40, H 0.5 Cs 2.5 PW 12 O 40 , and tungstic acid, such as hydrates thereof, molybdenum acid or these heteropolyacids; cation exchange resin such as Amberlyst IR120, H-ZSM H type zeolite such as ⁇ 5 can be used.
  • cation exchange resin such as Amberlyst IR120, H
  • sulfuric acid is preferable from the viewpoint of cost.
  • an organic acid such as p-toluenesulfonic acid or methanesulfonic acid as necessary.
  • These catalysts can be used in an amount of 0.1 to 100% by weight, preferably 1 to 20% by weight, based on the substrate.
  • the solvent to be used is not particularly limited, but is not particularly limited as long as it does not participate in the reaction, and aromatic hydrocarbons such as benzene, toluene, and xylene, hexane, heptane, octane, dodecane, Aliphatic hydrocarbons are mentioned.
  • the amount of the solvent to be used is not particularly limited, but when the substrate and the salt of the acid catalyst are precipitated from the system, the reaction rate may be lowered. Therefore, it is preferable to appropriately adjust the amount according to the properties of the substrate and the acid.
  • the onium salt obtained through the above steps may be isolated and purified and then used for the epoxidation reaction or may be used without isolation or purification, but is advantageous in terms of production efficiency. Moreover, it is preferable to use for epoxidation reaction, without isolating and refine
  • the “functional group containing active hydrogen” is an alkoxycarbonyl group or an acyloxy group, it may contain a carboxylic acid or an alcohol which is a decomposition product of an onium salt.
  • the catalyst composition of the present invention may contain at least one of phosphoric acids and phosphonic acids (excluding onium salts), and it is preferable in view of reactivity. At least one of phosphoric acids and phosphonic acids only needs to coexist with the catalyst metal component and the onium salt during the production reaction of the epoxy compound. Good.
  • phosphoric acids include inorganic phosphoric acid such as phosphoric acid, polyphosphoric acid, and pyrophosphoric acid; sodium phosphate, potassium phosphate, ammonium phosphate, sodium hydrogen phosphate, potassium hydrogen phosphate, hydrogen phosphate Inorganic phosphates such as ammonium, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and calcium dihydrogen phosphate; phosphoric acids such as monomethyl phosphate, dimethyl phosphate, trimethyl phosphate, triethyl phosphate, triphenyl phosphate Esters; and the like.
  • inorganic phosphoric acid such as phosphoric acid, polyphosphoric acid, and pyrophosphoric acid
  • Inorganic phosphates such as ammonium, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and calcium dihydrogen phosphate
  • phosphate esters In the case of phosphate esters, phosphate esters other than onium salts having a phosphate ester group as “a functional group containing active hydrogen or a substituent that can be converted to a salt thereof” are used.
  • phosphoric acids inorganic phosphoric acid is preferable, and phosphoric acid is preferable.
  • phosphonic acids include aminomethylphosphonic acid and phenylphosphonic acid. Of these, inexpensive phosphoric acid is preferred.
  • the amount used of at least one of phosphoric acids and phosphonic acids is not particularly limited, and the appropriate amount used varies depending on at least one type of phosphoric acids and phosphonic acids used and the type of catalytic metal component.
  • the amount used is adjusted so that the pH of the reaction system aqueous phase described below is in an appropriate range.
  • the equivalent amount of phosphorus contained in at least one of the phosphoric acids and phosphonic acids is the catalyst used.
  • the amount is usually 0.1 times to 10 times mol, preferably 0.2 times to 5.0 times mol, more preferably 0.2 times to 3.0 times mol per metal atom in the metal component.
  • the form of the reaction for producing an epoxy compound from an olefin compound (hereinafter sometimes referred to as “the epoxidation reaction of the present invention”) is not particularly limited, but is usually a two-phase system of an aqueous phase and an organic phase. This is done in the reaction system.
  • the epoxy compound produced by the reaction of the present invention quickly dissolves in the organic phase, and as described later, the aqueous phase usually exhibits acidity. This is because it is possible to suppress decomposition due to ring opening and rearrangement.
  • a reaction solvent can be used as necessary.
  • the olefin compound used in the reaction or the epoxy compound to be produced is liquid under the reaction conditions, it can be used in the reaction without using a reaction solvent. This is because hydrogen peroxide usually contains water, so that a two-phase reaction system can be formed by mixing.
  • a reaction solvent which may be dissolved in a solvent or in a suspended state, but is usually preferably dissolved in a reaction solvent under reaction temperature conditions. .
  • the reaction solvent to be used is not particularly limited as long as it does not participate in the reaction, and an organic solvent that forms a two-phase system with water is preferable.
  • Aromatic hydrocarbons such as benzene, toluene, xylene, hexane, Aliphatic hydrocarbons such as heptane, octane and dodecane, alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol, halogenated solvents such as chloroform, dichloromethane and dichloroethane, ethers such as tetrahydrofuran and dioxane, methyl ethyl ketone , Ketones such as methyl isobutyl ketone, cyclopentanone and anone, nitriles such as acetonitrile and butyronitrile, ester compounds such as ethyl acetate, buty
  • the amount used when using the reaction solvent depends on the solubility of the compound, but the reaction rate may decrease as the amount of the reaction solvent increases.
  • the amount is preferably 5 times or less, more preferably 3 times or less.
  • water may be further added during the reaction. Since hydrogen peroxide to be added usually contains water, an aqueous phase is formed without adding water, but it may be added as necessary.
  • the amount of water added is usually 0.1 to 10 times, preferably 0.1 to 5 times, more preferably 0.1 to 3 times the amount of the olefin compound. Amount.
  • the use amount of at least one of the catalyst metal component, onium salt, phosphoric acid and phosphonic acid is as described above, but the molar ratio of the catalyst metal component / onium salt is usually 0.2 or more, Preferably it is 0.3 or more, More preferably, it is 0.5 or more, Usually, 4 or less, Preferably it is 3 or less, More preferably, it is 2 or less.
  • the molar ratio of catalyst metal component / (at least one of phosphoric acids and phosphonic acids) is usually 0.2 or more, preferably 0.3 or more, more preferably 0.5 or more, usually 4 or less, preferably 3 or less. More preferably, it is 2 or less.
  • At least one of phosphoric acids and phosphonic acids is preferably added so that the pH of the aqueous phase of the reaction solution is in an appropriate range, but an acid or base is added as necessary to adjust the pH.
  • the structure of the catalytic metal component such as tungstic acid in the present invention changes depending on its pH, and the reaction activity changes. Therefore, it is preferable to adjust the pH appropriately depending on the reactivity of the olefin compound, the stability of the epoxy group, the distribution and solubility of the compound in water, and the like.
  • the pH of the aqueous phase of the reaction solution varies depending on the stability of the epoxy compound and the solubility in water, but is usually 2 or more, preferably 2.5 or more, usually 6 or less, preferably 5 or less.
  • the reaction solution is a two-phase system of an aqueous phase and an organic phase
  • the pH of the aqueous phase is excessively acidic
  • the ring-opening reaction or transfer reaction of the epoxy group is likely to proceed
  • the onium salt is an alkoxycarbonyl group or
  • an acyloxy group or the like is included, such a group may be hydrolyzed to cause problems such as reduced reactivity.
  • problems such as extremely slow reaction, hydrogen peroxide decomposition, and alkoxycarbonyl group or acyloxy group hydrolysis may occur.
  • acids such as phosphoric acid, aminomethylphosphonic acid, phenylphosphonic acid, sulfuric acid, nitric acid, hydrochloric acid, perchloric acid; sodium hydroxide, potassium hydroxide, sodium carbonate as necessary
  • Inorganic bases such as potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, phosphoric acid, disodium hydrogen phosphate and dipotassium hydrogen phosphate: organic bases such as ammonia, methylamine and ethylamine may be added.
  • the production method of the present invention is specifically described below.
  • ⁇ Raw material> The compound having a carbon-carbon double bond used as a raw material in the present invention is not particularly limited as long as it is a compound having one or more carbon-carbon double bonds in the molecule. 30) and the like.
  • R represents an allyl group, and the allyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 201 represents a (m201 + 1) -valent aromatic or aliphatic hydrocarbon group which may have a substituent
  • a 202 represents a divalent aromatic or aliphatic hydrocarbon which may have a substituent.
  • a 203 represents a (m203 + 2) -valent aromatic or aliphatic hydrocarbon group which may have a substituent.
  • aromatic or aliphatic hydrocarbon group includes those having both hydrocarbon skeletons, for example, those containing both structures of an aromatic ring and an aliphatic ring in the molecule.
  • X 201 and X 202 each independently represent a divalent linking group which may have a direct bond or a substituent.
  • p201 represents 0 or 1.
  • m201 and m203 each independently represent an integer of 1 or more.
  • a plurality of R, A 201 , A 202 , X 201 , X 202 , m201 and p201 contained in one molecule may be the same or different.
  • compounds represented by the above formula (30) compounds represented by the following general formulas (4) to (6) are preferable.
  • R represents an allyl group, and the allyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 1 is an m1-valent aromatic or aliphatic hydrocarbon group.
  • M1 represents an integer of 1 or more, and a plurality of R contained in one molecule may be the same or different.
  • Examples of the aromatic hydrocarbon group represented by A 1 include an m1-valent group obtained by removing m1 hydrogen from an aromatic hydrocarbon having 6 to 14 carbon atoms such as a benzene ring, a naphthalene ring, and an anthracene ring, A benzene ring having 6 carbon atoms is preferred.
  • the corresponding hydroxy compound (that is, (A 1 )-(OH) m1 ) is a straight chain such as diethylene glycol, propane-1,3-diol, butane-1,4-diol, polyvinyl alcohol or the like.
  • Fatty acid polyhydric alcohols linear polyhydric alcohols having branched substituents such as neopentyl glycol, 2-methylpropanediol, 2,2-dimethylpropanediol, pentaerythritol; diethylene glycol, triethylene glycol, polytetramethylene glycol (PTMG) Polyhydric alcohols having an ether group in the molecular chain; carbonate polyols such as ethanediol carbonate, butanediol carbonate, ethanediol polycarbonate, butanediol polycarbonate, cyclopentanediol Cycloaliphatic diols such as cyclopentanedimethanol, cyclopentanediethanol, cyclohexanediol, cyclohexanedimethanol, cyclohexanediethanol, norbornanediol, norbornanedimethanol, norbornaned
  • Examples of the substituent other than the OR group that the aromatic or aliphatic hydrocarbon group represented by A 1 may have include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group; Group, an ethoxy group, a propyloxy group and the like, an alkyloxy group having 1 to 4 carbon atoms; a nitro group and the like.
  • the upper limit of the number thereof is usually 4 or less, preferably 3 or less, and usually 1 or more, which the group represented by A 1 can have.
  • m1 represents an integer of 1 or more, 2 or more preferably an integer, the upper limit on the number of replaceable hydrogen atoms on the group represented by A 1 is determined but is usually 4 or less, particularly preferably 2 is there.
  • the compound represented by the general formula (4) include those represented by any of the general formula groups (7) below.
  • On the benzene ring for example, a t-butyl group other than the OR group It may have a substituent.
  • a nuclear hydrogenated product in which part or all of the aromatic ring is reduced may be used.
  • Examples of the compound in which A 1 is an aliphatic hydrocarbon group include isosorbide, 1,4-cyclohexanedimethanol, and 2,3-norbornanediol.
  • R represents an allyl group, and the allyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 21 may have a substituent ( m @ 2 + 1) valent aromatic or aliphatic hydrocarbon group, a 22 is connected via a .
  • X 2 representing an aromatic or aliphatic hydrocarbon group which may be divalent to have a substituent group a 21 and A 22 , or a plurality of adjacent A 22 may be bonded to each other to form a ring
  • X 2 is a divalent bond that may have a direct bond or a substituent.
  • M2 represents an integer of 1 or more
  • n2 represents an integer of 0 or 1.
  • a plurality of R, A 21 , A 22 , X 2 and m2 contained in one molecule are the same. It may or may not be.
  • a 21 and A 22 each represent a (m1 + 2) -valent or divalent aromatic or aliphatic hydrocarbon group, and they may have a substituent.
  • Examples of the aromatic or aliphatic hydrocarbon group represented by A 21 and A 22 include groups derived from the same hydrocarbon as A 1 in the general formula (4), and the number of carbon atoms is also the same.
  • Examples of the substituent that the group represented by A 21 or A 22 may have include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group; a methoxy group, an ethoxy group, and a propyloxy group An alkyloxy group having 1 to 4 carbon atoms such as nitro group and the like, among which an alkyl group is preferable.
  • the upper limit of the number is the upper limit of the number of substituents that the group represented by A 21 can have, but usually 4 or less, preferably 3 or less.
  • X 2 represents a divalent linking group which may have a direct bond or a substituent, and examples of the divalent linking group include a methylene group, a dimethylmethylene group, a ditrifluoromethylmethylene group, an ethylene group, and a propylene group.
  • the divalent linking group may have an arbitrary substituent.
  • a (RO) m2- (A 21 ) group (provided that R, A 21 and m2 have the same meanings as those in formula (5), and preferred ones are also the same) May be included). That compound represented by Formula (5), the two as specified in the formula (RO) m2 - (A 21 ) - in addition to groups, further (RO) m2 - (A 21 ) - have a group May be.
  • X 2 is a direct bond, a divalent alkylene group having 1 to 4 carbon atoms (provided that it may be substituted with an aromatic hydrocarbon group, and the aromatic hydrocarbon group preferably has 6 to 10), and alicyclic hydrocarbons having 7 to 10 carbon atoms having a bridged condensed ring structure, particularly direct bonds, alkylene groups having 1 to 2 carbon atoms (however, an aromatic hydrocarbon group) It may be substituted, and the aromatic hydrocarbon group preferably has 6 to 8 carbon atoms).
  • adjacent A 21 and A 22 connected via X 2 or a plurality of adjacent A 22 may be bonded to each other to form a ring.
  • the ring includes a 5- to 6-membered hydrocarbon ring or an oxygen atom. Examples thereof include 6-membered rings.
  • n2 represents an integer of 1 or more, its upper limit is determined by the number of replaceable hydrogen atoms of the group represented by A 21, is generally 4 or less, preferably 2 or less.
  • n2 represents 0 or an integer of 1 or more, and the upper limit thereof is usually 5 and preferably 2.
  • a compound represented by the following general formula (5-1) is particularly preferable.
  • R 100 represents an allyl group which may have a substituent, and the substituent is an alkyl group having 1 to 6 carbon atoms, a phenyl group, or an alkoxy group having 2 to 7 carbon atoms. It is a carbonyl group.
  • a 121 represents an optionally substituted ⁇ (m102) +1 ⁇ -valent aromatic hydrocarbon group having 6 to 14 carbon atoms
  • a 122 represents a divalent optionally substituted substituent. Represents an aromatic hydrocarbon group having 6 to 14 carbon atoms.
  • a 121 and A 122 connected through X 102 , or a plurality of A 122 may be bonded to each other to form a ring.
  • X 102 is substituted with a direct bond, a methylene group, a dimethylmethylene group, a ditrifluoromethylmethylene group, an ethylene group, —C (CH 3 ) ⁇ CH—, a phenyl group, or (R 100 O) m2 — (A 121 ) —.
  • a plurality of R 100 , A 121 , A 122 , X 102 and m102 contained in one molecule may be the same or different.
  • m102 represents an integer of 1 to 4
  • n102 represents an integer of 0 to 5.
  • R 100 may have, a methyl group, a phenyl group, a methoxycarbonyl group, and an ethoxycarbonyl group are more preferable, and R 100 is an unsubstituted allyl group. Is particularly preferred.
  • X 102 is more preferably a direct bond, a divalent alkylene group having 1 to 4 carbon atoms (which may be substituted with an aromatic hydrocarbon group, and the aromatic hydrocarbon group preferably has 6 to 10 carbon atoms).
  • alicyclic hydrocarbons having 7 to 10 carbon atoms having a bridged condensed ring structure, particularly direct bonds, alkylene groups having 1 to 2 carbon atoms (provided that they are substituted with aromatic hydrocarbon groups).
  • aromatic hydrocarbon group preferably has 6 to 8 carbon atoms). More preferable m102 is 1 or 2, and more preferable n102 is 0, 1 or 2.
  • Specific examples of the compound represented by the general formula (5) include those represented by the following structural formula (n represents an integer of 1 or more), and part or all of these aromatic rings. And a hydrogenated hydrogenated product in which is reduced.
  • the benzene ring may have a substituent other than the —OR group and the specified methyl.
  • R represents an allyl group, and the allyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 3 may have a substituent (m3 + 2).
  • X 3 represents a direct bond, an alkylene group which may have a substituent, or —R 61 -phenylene-R 62 —, wherein R 61 and R 62 each represents Independently represents an alkylene group, m3 represents an integer of 1 or more, n3 represents an integer of 2 or more, and a plurality of G, A 3 , X 3 , and m3 contained in one molecule may be the same May be different.
  • Examples of the aromatic or aliphatic hydrocarbon group represented by A 3 include groups derived from the same hydrocarbon as A 1 in formula (4), and the number of carbon atoms is also the same.
  • X 3 represents a direct bond, an alkylene group which may have a substituent, or —R 61 -phenylene-R 62 —, wherein R 61 and R 62 each independently represents an alkylene group.
  • Examples of the alkylene group which may have a substituent represented by X 3 include those similar to X 2 in the general formula (5). Among them, the number of carbon atoms is 1 to 4, preferably 1 carbon atoms. Or the alkylene group of 2 is mentioned.
  • R 61 and R 62 in —R 61 -phenylene-R 62 — each independently represents an alkylene group having 1 to 4 carbon atoms, preferably 1 or 2 carbon atoms.
  • n3 represents an integer of 1 or more, its upper limit is determined by the number of replaceable hydrogen atoms of the group represented by A 3, is generally 4 or less, preferably 2 or less.
  • n3 represents an integer of 2 or more, and is usually 20 or less, preferably 10 or less.
  • Specific examples of the compound represented by the general formula (6) include compounds represented by the following structural formula (wherein n and n ′ are the same as n3) and a part or all of these aromatic rings are reduced. And nuclear hydrogenated materials.
  • the benzene ring may have a substituent other than the —OR group and the methyl group specified.
  • Another example of the compound having a carbon-carbon double bond used as a raw material in the present invention includes a cyclic olefin compound represented by the following general formula (36).
  • i and j each independently represent an integer of 1 to 4
  • R 64 to R 71 each independently represents a hydrogen atom, a halogen atom, or an optionally substituted alkyl.
  • R 64 to R 71 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, a nitro group, an alkoxyl group, a carbonyl Represents a group, an alkoxycarbonyl group, an acyloxy group, a carboxyl group or a salt thereof.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • the alkyl group an alkyl group having 1 to 20 carbon atoms is preferable.
  • substituents include halogen atoms such as fluorine atom, chlorine atom and bromine atom; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group.
  • substituents include alkoxyl groups such as nitro groups; carboxyl groups; alkoxycarbonyl groups such as methoxycarbonyl groups and ethoxycarbonyl groups; acyloxy groups such as acetyloxy groups and propionyloxy groups.
  • aromatic hydrocarbon group include a phenyl group and a naphthyl group. The aromatic hydrocarbon group may have a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom and bromine atom; methoxy group, ethoxy group, propoxy group, isopropoxy group, Alkoxy group such as butoxy group; nitro group; carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group; acyl group such as acetyl group, propionyl group and benzoyl group; acyloxy group such as acetyloxy group and propionyloxy group Etc.
  • alkoxyl group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group.
  • acyloxy group examples include an acetyloxy group, a propionyloxy group, and a benzoyloxy group.
  • carboxyl group salt examples include alkali metal salts such as sodium salt and potassium salt. Any two or more of R 64 to R 71 may be bonded to each other to form a ring.
  • i and j each independently represents an integer of 1 to 4, preferably 1 to 3, more preferably 1 or 2, and most preferably 2.
  • the cyclic olefin represented by the general formula (36) include 1,4-cyclohexadiene, 1,5-cyclooctadiene, 1,5,9-cyclododecatriene, 1,5-dimethyl-1,5-cyclohexane. Examples thereof include cyclic non-conjugated olefins such as octadiene, dicyclopentadiene, and 2,5-norbornadiene.
  • R 72 to R 76 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a carbon number of 3
  • R 77 and R 78 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, carbon A cycloalkyl group having a number of 3 to 7, an aromatic hydrocarbon group, an aralkyl group, an acyl group, a carboxyl group, or an acyloxy group.
  • any two or more of R 72 to R 78 may be bonded to each other to form a ring.
  • Specific examples of the styrene represented by the general formula (37) include styrene, 4-methylstyrene, 4-fluorostyrene, 2,4-difluorostyrene, 3-chlorostyrene, 4-chlorostyrene, and 4-bromostyrene. 4-nitrostyrene, 4-vinylbenzoic acid, ⁇ -methylstyrene, ⁇ -methylstyrene, 1-phenyl-1-cyclohexene, indene, dihydronaphthalene and the like.
  • the olefin compound in the present invention may be used after pretreatment such as removing impurities as necessary.
  • the epoxidation reaction using hydrogen peroxide affected by foreign materials such as metal, activated carbon, silica gel, glass fragments, etc. mixed from raw materials, solvents, reaction vessels and auxiliary equipment such as pipes and liquid pumps There is. Oxides such as hydrogen peroxide are decomposed by contact with the aforementioned foreign substances, and may generate reaction heat and oxygen, which may be dangerous. It is preferable that these foreign substances do not enter or are not affected by the reaction solution.
  • the olefin compound is filtered, the olefin compound is washed with an acidic aqueous solution, and the olefin compound is a chelating agent (a compound capable of forming a chelate with a metal. Is preferably washed with a metal masking agent) or in the presence of a chelating agent in the epoxidation reaction.
  • a chelating agent a compound capable of forming a chelate with a metal. Is preferably washed with a metal masking agent or in the presence of a chelating agent in the epoxidation reaction.
  • the type of acid used in the acidic aqueous solution for washing the olefin compound used as a raw material is not particularly limited, and specific examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; and organic acids such as acetic acid and citric acid. It is done.
  • the pH of the acidic aqueous solution is not particularly limited, and varies depending on the stability of the olefin compound to be used. For the purpose of adjusting pH, various salts may be added. For example, sodium sulfate, sodium acetate, sodium phosphate, disodium hydrogen phosphate, sodium citrate and the like may be added.
  • a mixed aqueous solution of acetic acid and sodium sulfate is preferable.
  • an aqueous solution containing 4% acetic acid and 1% sodium sulfate and having a pH of about 4 is more preferable.
  • the aqueous solution containing a chelating agent is not particularly limited as long as it is an aqueous solution containing a compound having a chelating ability with a metal, but an aqueous solution containing a so-called metal mask agent is preferable.
  • Examples thereof include ethylenediaminetetraacetic acid and pyrophosphoric acid described in Japanese Patent Special Publication 2002-501005.
  • a method of washing with water containing at least one of ethylenediaminetetraacetic acid and pyrophosphoric acid is preferred. By performing these treatments, the metal is solubilized in water and removed together with the aqueous phase.
  • the chelating agent can be used by adding it to the reaction system, and a method of adding at least one of ethylenediaminetetraacetic acid and pyrophosphoric acid to the reaction solution is preferable. This is because these chelating agents, which are metal masking agents, can suppress decomposition of peroxides by chelating metals.
  • the specific reaction operation method in the production method of the present invention is not particularly limited, but the olefin compound includes at least one of hydrogen peroxide, a tungsten compound and a molybdenum compound, an onium salt, and optionally phosphorus. At least one of acids and phosphonic acids is added, and the aforementioned organic solvent and buffer are added as necessary.
  • the order of addition and mixing of each component is not limited as long as the reaction is not hindered, but since it generates heat during the epoxidation reaction and decomposition of hydrogen peroxide, from the viewpoint of controlling reaction progress and heat generation, Hydrogen peroxide is gradually added after the components are added, or an amount of hydrogen peroxide necessary to oxidize at least one of the tungsten compound and the molybdenum compound is added in advance, and the tungsten and molybdenum peroxide are added.
  • a method of gradually adding the remaining hydrogen peroxide after at least one is preferred.
  • As a method for adding hydrogen peroxide it may be added in divided portions or may be added gradually and continuously. From the viewpoint of safety, it is preferable to add it according to the progress of the reaction so that unreacted hydrogen peroxide does not stay in the reaction system.
  • the reaction temperature in the production method of the present invention is not particularly limited as long as the reaction is not hindered. Below, more preferably 75 ° C. or less. If the amount is less than the lower limit, the reaction rate may be slow, and if the upper limit is exceeded, it may not be preferable from the viewpoint of safety.
  • the reaction time can be appropriately selected depending on the reaction temperature, the amount of catalyst, the type of raw material, and the like, and is not particularly limited. Hereinafter, it is preferably 36 hours or less, more preferably 24 hours or less.
  • the reaction in the production method of the present invention is preferably carried out under normal pressure and a nitrogen stream from the viewpoint of safety.
  • the production method of the present invention is not particularly limited, but is usually performed in a two-phase reaction system of an aqueous phase and an organic phase.
  • the pH during the reaction varies depending on the structure of the reaction raw material. For example, while cyclic olefins are easily epoxidized, the resulting epoxy tends to transfer or cleave, so reaction under conditions close to neutrality is preferable. In the case of allyloxyether, epoxy is more preferable than cyclic olefins. There is a tendency that it is more acidic than the case of a cyclic olefin because it is difficult to be converted and is difficult to cleave.
  • the pH is not particularly limited, but usually the pH of the aqueous phase is 2 or more, preferably 2.5 or more, and usually 6 or less.
  • the pH changes depending on the amount of hydrogen peroxide in the aqueous phase, and in the latter half of the reaction, the generated epoxy is cleaved under acidic conditions, so an acid or base is added as appropriate depending on the progress of the reaction.
  • a buffer solution can also be used.
  • the type of the buffer any buffer that matches the target pH can be used as long as it does not inhibit the reaction.
  • the buffer solution include citric acid and sodium citrate, acetic acid and sodium acetate, and the like as a combination of an aqueous phosphate solution, hydrogen phosphate, dihydrogen phosphate, or phenyl phosphate.
  • the above tungstic acids may be combined to form a buffer solution.
  • the catalyst composition may contain a carboxylic acid, preferably an aliphatic carboxylic acid having 1 to 10 carbon atoms.
  • the co-oxidant may be added to the composition.
  • the co-oxidant may be generated by hydrolysis of the ester group.
  • a nitrogen-containing compound such as a surfactant, amines and pyridine ring compound may be included in the oxidizing agent composition.
  • ⁇ Reactant removal step post-treatment step>
  • post-treatment is performed to convert a substituent of the onium salt into a functional group having active hydrogen or a salt thereof. Since the onium salt converted from the substituent moves from the organic phase in the reaction system to the aqueous phase, it can be easily separated from the epoxy compound present in the organic phase. The product epoxy compound may be further purified as necessary.
  • the method for converting a substituent of an onium salt into a functional group having active hydrogen or a salt thereof is not limited as long as the object of the present invention is not impaired.
  • an acidic aqueous solution in a range in which an epoxy compound is not decomposed Conversion method by adding basic aqueous solution, conversion method by catalytic hydrogenation, conversion method by heating, conversion method using an auxiliary or enzyme capable of selectively converting substituents, conversion by photoreaction And a method of converting by microwave irradiation.
  • the onium salt After conversion to a functional group having active hydrogen or a salt thereof, the onium salt has moved into the water of the reaction system.
  • the onium salt can be separated as long as the epoxy compound is not decomposed.
  • a separation method according to physical properties is used. Examples of the separation method include liquid separation, washing, hanging washing, adsorption, filtration, and distillation. The case where an onium salt having an alkoxycarbonyl group or an acyloxy group is used will be specifically described below.
  • the aqueous phase is discarded, washed with water, and if necessary, a reducing agent is added to quench excess hydrogen peroxide.
  • a reducing agent Sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, etc. are mentioned.
  • the onium salt is converted to water-soluble.
  • the hydrolysis method is not particularly limited, but a method using a basic compound is usually performed, and specific examples of the basic compound include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, Examples thereof include metal carbonates such as sodium carbonate and potassium carbonate, phosphates such as sodium phosphate and sodium hydrogen phosphate, ion exchange resins, and basic solids such as alumina.
  • hydrolysis with a basic aqueous solution is preferable, and specific examples include hydrolysis with a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution.
  • the base treatment operation is carried out after or after the reaction solvent is distilled off. This is preferable because the product can be easily separated.
  • the concentration, pH, and temperature of the basic aqueous solution are not particularly limited, but can be selected within a range where the epoxy compound is not decomposed. Specifically, a basic aqueous solution having an aqueous solution concentration of usually 0.1 N to 5 N, preferably 0.3 N to 3 N, and more preferably 0.5 N to 2 N is used.
  • the pH of the aqueous solution is usually 10-12.
  • the temperature of the aqueous solution is usually 0 ° C. or higher, preferably 20 ° C. or higher, usually 60 ° C. or lower, preferably 45 ° C. or lower.
  • the water-soluble onium salt is removed by washing.
  • the catalytic metal component is also removed by washing.
  • the epoxy compound thus obtained has a low content of metals derived from the catalytic metal component, such as tungsten and onium salts. Although it depends on the chlorine content of the compound subjected to the reaction, it generally has a feature that the chlorine content is small as compared with an epoxy compound synthesized using epichlorohydrin.
  • a specific purification method is not particularly limited, and a known method can be appropriately used.
  • the epoxy compound is a solid, crystallization, hanging washing, liquid separation, adsorption and the like can be mentioned, and when the epoxy compound is a liquid, liquid separation, washing, adsorption and distillation can be mentioned.
  • Purification by separation and washing may be performed by combining water and an organic solvent that is insoluble or hardly soluble in water, or combining a plurality of organic solvents that are not mixed with each other.
  • Examples of the combination of water and an organic solvent insoluble or hardly soluble in water include a combination of an organic solvent such as ethyl acetate, toluene, diethyl ether, diisopropyl ether, n-hexane, and water.
  • combinations of a plurality of organic solvents that are not mixed with each other include, for example, a combination of N, N′-dimethylformamide and at least one of n-heptane, n-hexane, n-pentane, diisopropyl ether, xylene, dimethyl sulfoxide, n-heptane, n-hexane, n-pentane, diisopropyl ether, diethyl ether, combination with at least one of xylene, acetonitrile and n-heptane, n-hexane, n-pentane, cyclohexane, cyclopentane There is a combination with at least one of them, and a combination with methanol and at least one of n-heptane, n-hexane and n-pentane.
  • the solvent is distilled off under reduced pressure, or it is cooled and crystallized without distilling off, a solvent having a low solubility of the compound, a method of adding a so-called poor solvent to precipitate, and a compound having a high solubility. Any of a method of precipitating by combining a solvent, a so-called easy solvent and a poor solvent, and a method of adding water to crystallize after completion of the reaction may be used.
  • the solvent may be any organic solvent, water or a mixture thereof, a combination of organic solvents, and the like, and an appropriate one is selected depending on the solubility of the compound.
  • organic solvent examples include esters such as ethyl acetate, aliphatic hydrocarbons such as heptane, hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, acetonitrile, tetrahydrofuran, dioxane, 1,2-dimethoxyethane and the like.
  • Aprotic solvents examples include polar solvents.
  • alcohols such as methanol, ethanol, 2-propanol and n-butanol
  • ketones such as acetone and methyl ethyl ketone
  • aprotic such as N, N′-dimethylformamide, N-methylpyrrolidone and dimethyl sulfoxide
  • Examples include polar solvents.
  • a solvent having a low compound solubility For purification by hanging washing, a solvent having a low compound solubility, a so-called poor solvent is used. Although a preferable poor solvent changes with compounds, highly polar things, such as alcohols, such as methanol, and low polarity aliphatic hydrocarbons, such as a pentane, hexane, and a cyclohexane, are raised conversely.
  • the water-soluble solvent include tetrahydrofuran, 1,3-dioxolane, N, N, N-dimethylformamide, dimethyl sulfoxide and the like, and these can be used by mixing with water. When the amount of the solvent is too small, the purification effect is not sufficient, and when it is too large, the recovery rate is lowered. After completion of the hanging washing, the target product can be obtained by collecting the solid by filtration and drying.
  • Purification by adsorption includes activated carbon, activated clay, molecular sieves, activated alumina, zeolite, ion exchange resin and the like as chlorine-containing impurities and adsorbents.
  • the liquid separation method is preferable from the viewpoint of the operation method regardless of the properties of the epoxy compound.
  • the crystallization method is effective.
  • Epoxy composition An epoxy compound is obtained through the above epoxidation reaction, a separation / removal step of the catalytic metal component and the onium salt, and a purification step as necessary.
  • the epoxy composition obtained by the production method of the present invention is obtained as a composition having a very low content of metal derived from a catalyst metal, and the content of the metal is usually 200 ppm or less, preferably 100 ppm or less, more preferably Is 10 ppm or less, more preferably 1 ppm or less.
  • the epoxy composition obtained by the production method of the present invention has a low nitrogen content derived from the onium salt, and the content is usually 500 ppm or less, preferably 200 ppm or less, more preferably 10 ppm or less. Become.
  • the epoxy composition obtained by the production method of the present invention has a low halogen atom content, and the content is usually 200 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less.
  • the manufacturing method of this invention can be used for manufacture of the pharmaceutical intermediate etc. which have an epoxy structure other than the epoxy resin mentioned later.
  • the epoxy composition of this invention can be used as a pharmaceutical intermediate etc. which have an epoxy structure other than the epoxy resin mentioned later.
  • production of an antifungal agent having a halogen-substituted styrene oxide structure, an intermediate of a diabetic drug, and the like can be raised. Since the epoxy composition obtained by the method of the present invention has few impurities, the concern about toxicity derived from impurities is reduced.
  • the epoxy compound in the present invention (hereinafter sometimes referred to as an epoxy compound ⁇ ) is not particularly limited as long as it is a compound having one or more epoxy groups in the molecule.
  • the compound represented by (32) is mentioned.
  • G represents a glycidyl group (2,3-epoxypropanyl group), and the glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 201 represents a (m201 + 1) -valent aromatic or aliphatic hydrocarbon group which may have a substituent
  • a 202 represents a divalent aromatic or aliphatic hydrocarbon which may have a substituent.
  • a 203 represents a (m203 + 2) -valent aromatic or aliphatic hydrocarbon group which may have a substituent.
  • X 201 and X 202 each independently represent a divalent linking group which may have a direct bond or a substituent.
  • p201 represents 0 or 1.
  • m201 and m203 each independently represent an integer of 1 or more.
  • n201 represents an integer of 1 or more, n202 represents 0 or an integer of 1 or more, and n203 represents 0 or 1.
  • a plurality of G, A 201 , A 202 , X 201 , X 202 , m201 and p201 contained in one molecule may be the same or different.
  • G in the general formula (32) represents a glycidyl group (2,3-epoxypropanyl group).
  • the glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group, and among these substituents, a methyl group, a phenyl group, a methoxycarbonyl group and an ethoxycarbonyl group are more preferable.
  • An unsubstituted glycidyl group is particularly preferred.
  • a 201 to A 203 , X 201 , X 202 , n201 to n203, m201, m203, and p201 in the general formula (32) have the same meanings as in the general formula (30), and preferable ones are also the same. .
  • compounds represented by the general formula (32) compounds represented by the following general formulas (13) to (15) are preferable.
  • G represents a glycidyl group (2,3-epoxy-propanyl group), the glycidyl group is an alkyl group, optionally .
  • a 1 be phenyl or substituted alkoxycarbonyl group
  • M1 represents an aromatic or aliphatic hydrocarbon group which may have a substituent
  • m1 represents an integer of 1 or more
  • plural Gs contained in one molecule may be the same or different. May be.
  • Specific examples and preferred ranges of G are the same as those in the general formula (32), and specific examples and preferred ranges of A 1 are the same as those in the general formula (4).
  • G represents a glycidyl group, and this glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 21 may have a substituent ( m @ 2 + 1) valent aromatic or aliphatic hydrocarbon group, a 22 is connected via a .
  • X 2 representing an aromatic or aliphatic hydrocarbon group which may be divalent to have a substituent group a 21 and A 22 , or a plurality of adjacent A 22 may be bonded to each other to form a ring
  • X 2 is a divalent bond that may have a direct bond or a substituent.
  • a plurality of G, A 21 , A 22 , X 2 , and m2 contained in one molecule are the same.
  • G is the same as those in the general formula (32).
  • a 21 , A 22 , X 2 , m2 and n2 and preferred ranges thereof are the same as those in the general formula ( Same as in 5).
  • G represents a glycidyl group, and the glycidyl group may be substituted with an alkyl group, a phenyl group or an alkoxycarbonyl group.
  • a 3 may have a substituent ( m3 + 2) represents a valent aromatic or aliphatic hydrocarbon group, X 3 represents a direct bond, an alkylene group which may have a substituent, or —R 61 -phenylene-R 62 —, wherein R 61 and R 62 independently represents an alkylene group, m3 represents an integer of 1 or more, n3 represents an integer of 2 or more, and a plurality of G, A 3 , X 3 , and m3 contained in one molecule are the same Or different.) Specific examples and preferred ranges of G are the same as those in the general formula (32), and specific examples and preferred ranges of A 3 , X 3 , m3 and n3 are the same as those in the general formula (6). It is.
  • the epoxy compound ⁇ obtained by the production method of the present invention is generally a compound ⁇ having a structure in which one or more glycidyl groups of the epoxy compound ⁇ are substituted with 3-acyloxy-2-hydroxypropyl groups (provided that the acyl compound The group is obtained as a composition containing —CO—R 35 or a group represented by —CO—Z.
  • These compounds are mainly produced by the reaction of an onium salt with an epoxy compound under basic conditions during a post-treatment step after the reaction.
  • Z is a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with hetero atoms, or 4 to 25 carbon atoms that may have a substituent.
  • R 35 represents any of (18) to (20) below.
  • R 41 represents a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some of the carbon atoms may be substituted with heteroatoms.
  • R 42 to R 44 each independently represents an alkyl group having 1 to 25 carbon atoms or a benzyl group in which some carbon atoms may be substituted with heteroatoms.
  • Any one of R 45 to R 50 represents a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may be a direct bond or a part of carbon atoms may be substituted with a hetero atom.
  • R 46 to R 50 are each independently
  • Each of the four is independently a hydrogen atom, a halogen atom, a cyano group, a
  • any one of R 51 to R 55 represents a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with hetero atoms.
  • the other is one Represents an alkyl group having 1 to 25 carbon atoms or a benzyl group, in which part of the carbon atoms may be substituted with a hetero atom
  • R 52 , R 54 and R 55 each independently represents a hydrogen atom, a halogen atom or a cyano group , A nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, a phenoxy group, a benzyl group,
  • R 52 , R 54 and R 55 are a direct bond or a divalent aliphatic hydrocarbon group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with heteroatoms
  • the other two are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 25 carbon atoms in which some carbon atoms may be substituted with a hetero atom, a phenyl group, Represents a phenoxy group, a benzyl group, an N-alkylcarbamoyl group or an N-alkylsulfamoyl group, and R 51 and R 53 each independently represents a carbon atom in which some of the carbon atoms may be substituted with a heteroatom.
  • R 41 to R 44 in the above formula (18) is 20 or more, and the total number of carbon atoms contained in R 45 to R 50 in the above formula (19) is 15 or more.
  • the total number of carbon atoms contained in R 51 to R 55 is 17 or more.
  • R 41 to R 55 may combine with each other in the same compound to form a ring.
  • the groups represented by the general formulas (18) to (20) correspond to the onium portion of the onium salt represented by the general formulas (1) to (3).
  • R x not bonded to —CO— of —CO—R 35 (x represents any of 42 to 55) is Of R 1 to R 15 in the general formulas (1) to (3), these are synonymous with groups other than —Y—CO—O—Z or —Y—O—CO—Z, and preferred groups are also the same.
  • R y (y represents any of 42 to 55) and R 41 bonded to —CO— of —CO—R 35. Is synonymous with —Y— in the general formulas (1) to (3), and preferred groups are also the same.
  • one or more —OG groups are substituted with a group represented by the following formula (16) or (17),
  • one or more —OG groups may be substituted with a group represented by the following formula (33).
  • R 35 represents a group represented by any one of the above formulas (18) to (20).
  • Z represents a part of carbon atoms being heterogeneous. It represents a monovalent aliphatic hydrocarbon group having 1 to 25 carbon atoms which may be substituted with an atom, or a monovalent aromatic hydrocarbon group having 4 to 25 carbon atoms which may have a substituent.
  • Z has the same meaning as Z in formulas (1) to (3).
  • an epoxy compound ⁇ represented by the following structural formula (21) (hereinafter sometimes referred to as “compound (21)”),
  • a compound ⁇ represented by the following general formula (22) (hereinafter sometimes referred to as “compound (22)”) or a compound ⁇ represented by the following general formula (23) (hereinafter referred to as “compound (23)”). And a composition containing the same).
  • Q represents R 35 or —Z in the above general formula (16) or (17).
  • the compound ⁇ may be a compound in which the glycidyl ether group of the compound represented by the general formula (22) is substituted with the group represented by the general formula (33).
  • the epoxy composition includes a compound in which one or both of the glycidyl ether groups of the compound represented by the structural formula (21) are ring-opened and changed to the group represented by the general formula (33). Also good.
  • the amount of compound ⁇ (ester) produced varies depending on the structure of the compound, reaction conditions and post-treatment conditions, but is usually 0.05 mol% or more and 10 mol% or less, preferably 5 mol% or less with respect to compound ⁇ . is there.
  • the amount of compound ⁇ (diol body) produced varies depending on the structure of the compound, reaction conditions, and post-treatment conditions, but is usually 0.05 mol% or more and 10 mol% or less with respect to compound ⁇ .
  • the abundance ratio of compound ⁇ to compound ⁇ can be determined by NMR. Specifically, it can be obtained by comparing the proton integrated value of a peak that is easy to specify and integrate with the peak integrated value of the epoxy compound ⁇ . For example, in the case of the ester compound ⁇ , it can be obtained by comparing the proton integrated value of the peak derived from the alcohol or carboxylic acid forming the ester with the integrated value of the peak of the epoxy compound ⁇ .
  • the abundance ratio of compound ⁇ to compound ⁇ can be determined by LC (liquid chromatograph) analysis.
  • the weight ratio is obtained by correcting the LC area ratio of compound ⁇ and compound ⁇ determined by LC analysis in consideration of the difference between the factors of compound ⁇ and compound ⁇ , that is, the difference in UV absorption. Or converted into a molar ratio. If the LC analysis is difficult because the compound ⁇ or the compound ⁇ is weak in UV absorption and difficult to measure accurately, or it is difficult to measure accurately at the same UV wavelength, the GC (gas chromatogram) G) analysis. Specifically, the weight ratio and molar ratio are corrected by taking into account the difference in factor of compound ⁇ and compound ⁇ , that is, the difference in sensitivity, with respect to the GC area ratio of compound ⁇ and compound ⁇ determined by GC analysis. Can be converted to
  • the compound ⁇ has one or more hydroxyl groups obtained by adding one or more epoxy groups to a carboxylic acid and opening the ring. It is known that the hydroxyl group contained in the epoxy compound contributes to the adhesiveness of the epoxy resin. It is known that the epoxy compound produced from the epichlorohydrin method contributes to adhesiveness because it contains approximately 10% of a hydroxyl group. In a conventional epoxidation reaction using an onium salt, since a compound corresponding to the compound ⁇ cannot be produced, there are very few components having a hydroxyl group in the obtained epoxy composition, and there is a concern of insufficient adhesion. However, since the epoxy composition obtained by the production method of the present invention contains a certain amount of the compound ⁇ , it is excellent in that there is no concern.
  • the epoxy compound obtained by the production method of the present invention and the epoxy composition of the present invention can produce an epoxy resin by polymerization.
  • a known method can be applied to the polymerization reaction. Specifically, the polymerization reaction can be performed by a method described in JP-A No. 2007-246819.
  • the high-purity epoxy resin obtained by the method of the present invention can be used in electronic materials, optical materials, adhesives, construction fields and the like.
  • an electronic component material such as semiconductor encapsulant, printed wiring board, build-up wiring board, solder resist, etc.
  • optical material such as lighting sealant for wiring corrosion and short circuit caused by impurities In this case, it is possible to reduce or avoid coloring and deterioration.
  • the catalyst composition for epoxidation reaction of the present invention can also be used as an oxidant other than the epoxidation reaction, preferably an oxidant for oxidizing an olefin.
  • LC device SPD-10Avp manufactured by Shimadzu Corporation Temperature: 35 ° C
  • Column Mightysil RP-18GP aqua 150-4.6 (5 ⁇ m) (manufactured by Kanto Chemical Co., Inc.)
  • ⁇ GC analysis conditions Equipment: GC-1700, manufactured by Shimadzu Corporation Column: ZB-5 (30mx0.25mm ⁇ , 0.25 ⁇ m) manufactured by phenomenex Detector: Hydrogen flame ion detector (FID) Carrier gas (nitrogen flow rate): 28 ml / min Column temperature: Increased from 100 ° C to 300 ° C at 10 ° C / min INJ temperature: 250 ° C DET temperature: 300 ° C
  • GC device GC-2010 manufactured by Shimadzu Corporation
  • MS equipment GCMS-QP2010Plus manufactured by Shimadzu Corporation
  • Column DB-5 25M ⁇ 0.25 (0.25 ⁇ )
  • Ionization method EI method and CI method
  • RI analysis conditions > RI apparatus: JASCO's JASCO RI-930 Temperature: 35 ° C Column: ODS-3 150-4.6 (5 ⁇ m) (manufactured by GL Sciences) Eluent: Acetonitrile flow rate: 0.5 ml / min
  • the chlorine content (ppm by weight) was measured by the following method for the total amount of chlorine combined with inorganic and organic.
  • the sample was burned and absorbed in the absorbing solution, and then measured with an ion chromatograph.
  • AQF-100 manufactured by Mitsubishi Chemical Corporation was used as the combustion apparatus, and DX-500 manufactured by DIONEX was used as the ion chromatograph apparatus.
  • Dionex Ion Pac AS12A was used for the column, and the detection was performed based on the electric conductivity.
  • the tungsten content (ppm by weight) was measured by the following method. 0.1 to 0.5 g of the sample was weighed, 2 ml of sulfuric acid was added and heated and carbonized, and nitric acid and hydrogen peroxide were further added and heated, followed by wet decomposition. To this was added 2 ml of hydrogen peroxide and heated, and the volume was increased to about 40 ml with pure water. Further, 2 ml of hydrogen peroxide solution was added, and the volume was made up to 50 ml with pure water. The solution was analyzed by ICP-AES (ULTIMA 2C manufactured by HORIBA Jobin Yvon).
  • the nitrogen content was measured by the following method. A sample of 8 mg was combusted in an oxygen and argon atmosphere, and the generated decomposition gas was measured with a trace nitrogen analyzer (TN-10 model, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using combustion and reduced pressure chemiluminescence method. Further, aniline was dissolved in toluene and used as a standard sample. The pH of the aqueous phase was measured using pH test paper Comparator (manufactured by Johnson Test Papers) pH 1.0 to 3.5 and pH 3.6 to 5.1.
  • the diol compound ⁇ (compound 23) contained in the epoxy compound (compound 21) was synthesized by the method described in Reference Example 1, and using this, the NMR peak assignment, retention time by LC analysis, and UV The absorption intensity was confirmed and used for quantification of the content of compound 23 in compound 21.
  • the ester compound ⁇ (compound 22) in Examples 12, 14, 16, 18, 20, 22, 25, and 26 was synthesized according to the method described in Reference Example 2, and subjected to NMR analysis of the sample. Identification of each NMR peak was confirmed. By performing NMR analysis of Compound 21 with reference to this, the content of Compound 22 in Compound 21 was used for quantification. In other examples, the content of compound 22 in compound 21 was quantified by analogy with NMR of the compound obtained in Reference Example 2.
  • the molecular weight of the ester compound ⁇ (Compound 22) in Examples 2, 8, and 9 was confirmed by LC-Mass. m / z 470.3.
  • LC analysis Example 28 is GC analysis
  • LC area% of each component was measured.
  • the abundance ratio of compound ⁇ to compound ⁇ was converted to a molar ratio by correcting the detection sensitivity of each compound to the ratio of the peak area of compound ⁇ to compound ⁇ determined by LC analysis (Example 28 was GC analysis). .
  • each compound As for the detection sensitivity of each compound, a preparation of each compound having a purity of 95% or more is prepared in advance, and an approximate value of the net number of moles of the compound (purity estimated from the number of moles XLC area% / 100) and its LC It was calculated from the peak area.
  • the abundance ratio of the compound ⁇ is the integrated value of the proton peak of the epoxy compound ⁇ , such as the terminal methyl group of hexanoic acid ester, the t-butyl group of t-butylbenzoic acid ester, etc. It was calculated by comparing with.
  • the contents of the compounds ⁇ and ⁇ were represented by the molar ratio (mol%) when the abundance ratio with respect to the epoxy compound ⁇ , that is, the epoxy compound ⁇ was 100.
  • -Mass compound with m / z 370.2
  • This compound and compound ⁇ are both more polar than epoxy compound ⁇ (21), and give a faster retention time than compound ⁇ (21) in LC analysis.
  • the compounds that give a faster retention time than these epoxy compounds ⁇ (21) may be collectively referred to as “polar compounds” in the examples.
  • LC area refers to the peak area of the target compound obtained by liquid chromatography (LC) analysis
  • LC area% refers to the ratio of the peak area of the target compound to the peak area of the total amount of the composition.
  • the toluene phase was analyzed by NMR and the onium salt [1] was hydrolyzed by the disappearance of the peak of the ethylene portion of N-methyl-N, N, N-tri [2- (pentylcarbonyloxy) ethyl] ammonium hydrogen sulfate. It was confirmed that it was decomposed.
  • the same sodium hydroxide aqueous solution washing and NMR analysis were repeated three times, followed by washing with 10 ml of water.
  • the obtained toluene phase was concentrated to obtain 3.8 g of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether (compound 21) as crude crystals. The purity was 86.4% and the yield was 60%.
  • the crude crystals contained 2.7 mol% of the ester compound ⁇ (Compound 22) and 5.2 mol% of the diol compound ⁇ (Compound 23).
  • the aqueous phase was discharged and concentrated, and N- (6-ethoxy-6-oxohexyl) -N-methyl-N, N-dioctylammonium sulfate 1.0 g of hydrogen salt (hereinafter referred to as onium salt [2]) was obtained. This was subjected to an epoxidation reaction without purification.
  • Example 4 (Epoxidation reaction using onium salt [2])
  • N-methyl-N, N, N-tri [2- (pentylcarbonyloxy) ethyl] ammonium hydrogen sulfate as the ammonium salt
  • N- (6-ethoxy-6- The reaction was carried out in the same manner using oxohexyl) -N-methyl-N, N-dioctylammonium hydrogen sulfate (5% mol / substrate). Reaction yield 80% (LC area%).
  • the crude crystal of Compound 21 obtained contained 1.1 mol% of ester compound ⁇ (Compound 22).
  • the content of tungsten in the compound was measured by the above method. The measurement results are shown in Table 1.
  • N, N, N-trioctyl-N- (2-methoxy-2-oxoethyl) ammonium phosphate 0.88 (9H, t, —CH3), 1.20-1.40 (30H, m, —CH2 -), 1.76 (6H, m, -CH2-), 3.60-3.67 (6H, m, -CH2-), 3.81 (3H, s, -CH3), 4.85 (2H , SN-CH2-)
  • Example 6 Epoxidation reaction using onium salt [3]
  • the reaction was conducted in the same manner as in Example 2, except that N, N, N-trioctyl-N- (2-methoxy-2-oxoethyl) ammonium phosphate (5% mol / substrate) was used as the ammonium salt. It was. The progress of the reaction stopped 4 hours after the start of the reaction, and the reaction yield was 23% (LC area%). NMR analysis of the reaction mixture was conducted in the same manner as in Example 2.
  • Example 7 (Synthesis method of onium salt [1 ′] (monomethyl sulfate as counter ion))
  • a mixture of 20.0 g (207 mmol) of triethanolamine hydrochloride, 60 ml of octane, 43.3 g of hexanoic acid (3.0 times mol / substrate), and 5.28 g of sulfuric acid is heated in an oil bath at 135 ° C. to produce. It reacted for 61 hours, distilling off water.
  • Example 8 Epoxidation reaction using onium salt [1 ']
  • 5.0 g (15.5 mmol) of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl was dissolved in 6.3 ml of toluene.
  • the solution was washed with 15 ml of an aqueous solution containing 1% by weight of anhydrous sodium sulfate and 1% by volume of acetic acid, and then a mixed solution of 0.23 ml of 3% by weight sodium pyrophosphate aqueous solution, 0.06 ml of 10% by weight ethylenediaminetetraacetic acid solution and 15 ml of water.
  • the aqueous phosphoric acid solution added at that time was 0.5 ml (3% mol / substrate).
  • This mixture was heated to 65 ° C., and under a nitrogen stream at an internal temperature of 65-68 ° C., 0.5 ml of 45% hydrogen peroxide (0.5 mol / substrate) was started at 1 hour after that. After 2 hours, 3 hours, and 6 hours, a total of 5 times was added. After 1.5 hours from the start of the reaction, 0.4 ml of 1N aqueous sodium hydroxide solution was added, 0.1 ml after 4.5 hours, and 0.1 ml after 6.5 hours, and the pH of the aqueous phase was adjusted to 3.0-3. Adjusted to 5.
  • the reaction was carried out at an internal temperature of 65-68 ° C. for a total of 8 hours. According to the above LC analysis, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl was obtained with a reaction yield of 82% (LC area%). It was confirmed that ether was formed. In addition, it was confirmed that 11% (LC area%) of a monoepoxy compound as a reaction intermediate and 6% (LC area%) of a polar compound were produced.
  • the ester compound ⁇ (compound 22) was 2.4 mol%, and the diol compound ⁇ (compound 23) was 3.5 mol%.
  • the chlorine, tungsten and nitrogen contents in the compound were analyzed by the above method. The measurement results are shown in Table 1.
  • Example 9 15 g of methanol was added to 2.0 g of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether obtained by the above method, followed by rinsing at 50 ° C. for 1 hour. As a result, 1.8 g of 91% (LC area%) of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether (Compound 21) was obtained. Recovery rate 98%. This crystal contained 0.3 mol% of the ester compound ⁇ (Compound 22).
  • Example 10 Synthesis of onium salt [4]
  • the reaction was carried out in the same manner as in Example 8 without adding an aqueous sodium hydroxide solution. It was confirmed that 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether was produced at a reaction yield of 77% (LC area%). In addition, it was confirmed that 9% (LC area%) of the monoepoxy compound as a reaction intermediate and 12% (LC area%) of compound ⁇ in which the epoxy ring was opened with an acid were confirmed.
  • R 25 represents a C8 to C18 alkyl group.
  • Esocard C / 12 N-alkyl (C8-C18) -N, N-bis (2-hydroxyethyl) -N-methylammonium chloride, containing about 20% isopropanol
  • Lion Akzo 200 ml of toluene 50 ml of toluene and isopropanol were distilled off while heating the mixed solution, and then 5.0 g of triethylamine was added, 6.7 g of benzoic acid chloride was added at an internal temperature of 60 to 80 ° C., and an internal temperature of 65 The reaction was carried out at 30 ° C for 30 minutes and at 80 ° C for 2 hours.
  • the reaction system was changed over time by dissolving about 0.1 ml of the reaction mixture in 1 ml of methanol, converting unreacted benzoic acid chloride into benzoic acid methyl ester, and then performing LC analysis under analytical condition 2.
  • Triethylamine and benzoic acid chloride were gradually added at 80 ° C., and the point where the consumption of benzoic acid chloride ceased was regarded as the end point of the reaction.
  • the added triethylamine was 4.8 g, and benzoic acid chloride was 3.6 g.
  • N-alkyl-N, N-bis [2- (phenylcarbonyloxy) ethyl] -N-methylammonium chloride 0.88 (3H, —CH3), 1.0-1.4 (about 20H, br, — CH2-), 1.76 (2H, m, -CH2-), 2.00 (2H, m, -CH2-), 3.63 (3H, s, N-CH3), 3.63 (2H, m -CH2-), 4.38 (4H, m, N-CH2-), 4.91 (4H, m, -CH2-CO), 7.42 (4H, dd, -Ph), 7.56 (2H , Dd, -Ph), 8.00 (4H, d, -Ph)
  • Example 12 (Epoxidation reaction using onium salt [4]) A solution of 10.0 g (31.0 mmol) of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl dissolved in 10 ml of toluene After washing with 30 ml of an aqueous solution containing 1% by weight of anhydrous sodium sulfate and 1% by volume of acetic acid, it was washed with a mixed solution of 0.26 ml of 3% by weight sodium pyrophosphate aqueous solution, 0.12 ml of 10% ethylenediaminetetraacetic acid solution and 30 ml of water. .
  • the aqueous phase was discharged, washed twice with 20 ml of water and 2 ml of saturated brine, and twice with 20 ml of water, and then cooled to room temperature to precipitate the reaction contents as a solid. After draining the supernatant water and toluene mixed solution by decantation, nitrogen was blown in and the remaining solvent was distilled off to obtain a solid of the reaction contents. To the obtained solid, 20 ml of 1N aqueous sodium hydroxide solution was added and stirred for 1 hour, and the aqueous phase was discharged.
  • Example 14 Epoxidation reaction using onium salt [5]
  • 5.0 g of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl pretreated in the same manner as described above (15 0.5 mmol), toluene 3.8 ml, sodium tungstate dihydrate 512 mg (10% mol / substrate), 8.5% (weight / volume) phosphoric acid aqueous solution 1.61 ml (9% mol / substrate), water 3 4 ml and the above N-methyl-N, N, N-tri [2- (4-tert-butylphenylcarbonyloxy) ethyl] ammonium monomethyl sulfate toluene solution were added and stirred.
  • the NMR data of the obtained onium salt [6] were as follows. 2,3-bis (4-t-butyl-phenyloxy) -N, N-diethyl-N-methyl-1-propaneammonium monomethyl sulfate: 1.37 (18H, s, t-Bu), 1.43 (6H, s, -CH3), 3.26 (3H, s, CH3-N), 3.56 (4H, m, N- CH2- CH3), 3.73 (3H, s, CH3OSO2-), 4 .36 (2H, m, —CH 2 —O—CO), 4.58 (1H, dd, —CH 2 —N), 4.78 (1H, dd, —CH 2 —N), 6.03 (1 H, m , -CH-), 7.41 (2H, dd, -Ar), 7.46 (2H, dd, -Ar), 7.87 (2H, dd, -Ar), 7.96 (2H, dd, -A
  • Example 16 (Epoxidation reaction using onium salt [6]) 2.0 g of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl pretreated in the same manner as described above ( 6.2 mmol), toluene 1.4 ml, sodium tungstate dihydrate 204 mg (10% mol / substrate), 8.5% (weight / volume) phosphoric acid aqueous solution 0.36 ml (5% mol / substrate), water 3.6 ml of the toluene solution of 2,3-bis (4-tert-butyl-phenyloxy) -N, N-diethyl-N-methyl-1-propaneammonium monomethyl sulfate described above was added and stirred.
  • This mixture was heated to 65 ° C., and under a nitrogen stream at an internal temperature of 65-68 ° C., 0.1 ml of 45% hydrogen peroxide (0.5-fold mol / substrate) was started at 1 hour. After 2 hours, 3 hours, and 6 hours, a total of 5 times was added. The reaction was conducted at an internal temperature of 65-68 ° C. for a total of 7 hours. According to the LC analysis, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4 was obtained with a reaction yield of 77% (LC area%, analysis condition 1). It was confirmed that '-diglycidyl ether was formed. In addition, 11% (LC area%) of a monoepoxy compound as a reaction intermediate and 8% (LC area%) of a polar compound were produced.
  • the NMR data of the obtained onium salt [7] are as follows. 2,3-bis (4-t-butyl-phenyloxy) -N, N, N-triethyl-1-propaneammonium hydrogen sulfate: 1.32 (18H, s, t-Bu), 1.47 (9H , S, —CH3), 3.59 (6H, m, N—CH2—CH3), 4.29 (1H, m, HSO4), 4.37 (2H, m, —CH2—O—CO), 4 .64 (1H, dd, -CH2-N), 4.82 (1H, dd, -CH2-N), 6.00 (1H, m, -CH-), 7.42 (4H, dd, -Ar ), 7.90 (4H, dd, -Ar)
  • Example 18 (Epoxidation reaction using onium salt [7]) 5.0 g of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl pretreated in the same manner as described above (15 0.5 mmol), 3.8 ml of toluene, 51.2 mg of sodium tungstate dihydrate (10% mol / substrate), 1.25 ml of 8.5% (weight / volume) aqueous phosphoric acid solution (7% mol / substrate), Add 3.4 ml of water and 0.46 g (5% mol / substrate) of the above 2,3-bis (4-tert-butyl-phenyloxy) -N, N, N-triethyl-1-propaneammonium sulfate.
  • onium salt [8] 1- [2,3-bis [(4-tert-butylphenylcarbonyloxy) propyl] pyridinium chloride (hereinafter referred to as onium salt [8]) was added to 0. .32 g was obtained. Purity 92.9% (LC area%, LC analysis condition 2). Yield 28%.
  • NMR data of the obtained onium salt [8] are as follows: 1- [2,3-bis [(4-tert-butylphenylcarbonyloxy) propyl] pyridinium chloride: 1.32 (18H, d, t-Bu ), 4.91 (2H, m, -CH2-O-CO), 5.38 (2H, m, -CH2-N), 5.93 (1H, m, -CH-), 6.22 (1H , M, -CH2-N), 6.03 (1H, m, -CH-), 7.42 (2H, dd, -Ar), 7.45 (2H, dd, -Ar), 7.82 ( 2H, dd, -Ar), 7.97 (2H, dd, -Ar), 8.40 (1H, m, Py), 9.61 (2H, m, Py)
  • 12-bromododecanoic acid 5 g (18.8 mmol), 2.35 ml of hexanol (1 mol / substrate), 100 ml of toluene, 0.2 ml of sulfuric acid are produced for 4 hours while azeotropically distilling off water with toluene. did. 0.47 ml of hexanol (0.2-fold mol / substrate) was added, and the reaction was further continued for 2.5 hours.
  • N, N-diethyl-N-methyl-1-dodecanoic acid hexyl ester ammonium methyl sulfate 0.85-1.10 (9H, m, -CH3), 1.25-1.80 (34H, m,- CH2-CH2-CH2-), 2, 38 (2H, m, -CO-CH2-), 3.07 (3H, s, N-CH3), 3.21 (6H, m, N-CH2-), 3.83 (3H, s, CH3S02-), 4.12 (2H, m, -COO-CH2)
  • Example 22 (Epoxidation reaction using onium salt [9]) 2.0 g of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl pretreated in the same manner as described above (6 0.2 mmol), toluene 1.2 ml, sodium tungstate dihydrate 0.205 g (10% mol / substrate), 8.5% (weight / volume) phosphoric acid aqueous solution 0.64 ml (9% mol / substrate), 1.4 ml of water and the above 12-N, N-dibutyldodecanoic acid hexyl ester ammonium monomethyl sulfate solution in toluene were added and stirred.
  • This mixture was heated to 65 ° C., and under a nitrogen stream at an internal temperature of 65-68 ° C., 0.1 ml of 45% hydrogen peroxide (0.5-fold mol / substrate) was started at 1 hour. After 2 hours, 3 hours, 4 hours, and 6 hours, 6 times in total were added. The pH of the aqueous phase during the reaction was 2.0. The mixture was reacted at an internal temperature of 65-68 ° C. for a total of 6 hours. According to the above LC analysis, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′- was obtained with a reaction yield of 81.3% (LC area%). It was confirmed that diglycidyl ether was produced.
  • Example 24 (Epoxidation reaction using onium salt [10]) 1.5 g of 3,3 ′, 5,5-tetramethyl-4,4′-bis (2-propen-1-yloxy) -1,1′-biphenyl pretreated in the same manner as described above (4 0.7 mmol), toluene 1 ml, octane 1 ml, sodium tungstate dihydrate 0.154 g (10% mol / substrate), 8.5% (weight / volume) phosphoric acid aqueous solution 0.48 ml (9% mol / substrate) Then, 1.0 ml of water and 0.106 g (5% mol / substrate) of the above 1-[(hexadecyloxycarbonyl) oxy] butyl] pyridinium chloride were added and stirred.
  • Example 25 14 ml of methanol was added to 2.0 g of the crude 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether obtained in Example 14, followed by rinsing at 50 ° C. for 3 hours. . After cooling to 6 ° C., the crystals were collected by filtration and 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether having a purity of 90.9% (LC area%, LC analysis condition 2) 1.55 g was obtained. Recovery rate 79%. The hanging crystal contained 2.6 mol% of ester compound ⁇ (Compound 22) and 0.6 mol% of diol compound ⁇ (Compound 23). The nitrogen and chlorine contents in the compound were analyzed by the above method. The measurement results are shown in Table 1.
  • Example 26 3 ml of methanol was added to 0.69 g of the crude 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether obtained in Example 16, and the suspension was washed at 50 ° C. for 1 hour. . After cooling to 6 ° C., the crystals were collected by filtration and 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether having a purity of 90.4% (LC area%, LC analysis condition 2) 0.52 g was obtained. Recovery rate 80%. The hanging crystal contained 2.0 mol% of the ester compound ⁇ (Compound 22) and 1.2 mol% of the diol compound ⁇ (Compound 23). The nitrogen content in the compound was analyzed by the above method. The measurement results are shown in Table 1.
  • Example 27 3 g of toluene was added to 2.0 g of 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diglycidyl ether crude crystals obtained in Example 18 and dissolved by heating to 50 ° C. 14 ml was added. After cooling to 6 ° C., the precipitated crystals were collected by filtration and 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-di having a purity of 96.1% (LC area%, LC analysis condition 2). 1.38 g of glycidyl ether was obtained. 71% recovery. This crystal contained an ester compound ⁇ of 0.2 mol% and a diol compound ⁇ of 0.5 mol%. The nitrogen content in the compound was analyzed by the above method. The measurement results are shown in Table 1.
  • Example 28 Epoxidation reaction of 1,5-cyclooctadiene using onium salt [7]) 1,5-cyclooctadiene 3.0 g (27.7 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.), toluene 9 ml, sodium tungstate dihydrate 0.183 g (2% mol / substrate), 8.5% (weight / volume) ) 0.32 ml of phosphoric acid aqueous solution (1% mol / substrate), 3.4 ml of water and the above 2,3-bis (4-tert-butyl-phenyloxy) -N, N, N, N-triethyl-1-propaneammonium 0.16 g (1% mol / substrate) of sulfate (onium salt [7]) was added and stirred.
  • This mixture was heated to 50 ° C., and then under a nitrogen stream, 0.9 ml of 45% hydrogen peroxide (0.5-fold mol / substrate) was started at the time, 1 hour later, 2 hours later, 3 hours later. 5 hours later and 7 hours later, 6 times in total.
  • the pH of the aqueous phase for 2 hours after the start of the reaction was 4.8.
  • the reaction was conducted at an internal temperature of 50-51 ° C. for a total of 9 hours, and 1,2,5,6-diepoxycyclooctane was produced with a reaction yield of 90.2% (GC area%) by the above GC analysis. confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Resins (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 エポキシ化合物の製造方法であって、炭素-炭素二重結合を有する化合物に、タングステン化合物及びモリブデン化合物のうち少なくとも一方と、炭素原子を20以上有しかつ活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有するオニウム塩の存在下、過酸化水素を作用させるエポキシ化合物の製造方法。

Description

エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
 本発明は、新規のエポキシ化合物の製造方法及びそれに用いる新規のエポキシ化反応用触媒組成物に関する。
 エポキシ化合物は、エポキシ樹脂の原料となるエポキシモノマーや、各種化学製品の原料として幅広く利用されている。
 エポキシ樹脂は、エポキシモノマーを、種々の硬化剤を用いて硬化させることにより得られる樹脂である。エポキシ樹脂は、機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた樹脂であり、電子材料、光学材料、建築材料、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。
 近年、電子材料分野、例えば半導体封止材、プリント配線基板、ビルドアップ配線板、ソルダーレジストなどの分野では、その高集積化に伴いエポキシ樹脂に代表されるパッケージ材料にも高純度化が要求されている。また、オプトエレクトロニクス関連分野では、近年の高度情報化に伴い、膨大な情報を円滑に伝送、処理するために、光信号を生かした技術が開発されていく中で、透明性に優れた高純度の樹脂の開発が望まれている。
 これらの高純度エポキシ樹脂のニーズの高まりに伴い、エポキシ樹脂の材料となるエポキシモノマーも高純度化が求められている。
 代表的なエポキシモノマーであるグリシジルエーテル化合物、例えば、フェノール類、ナフトール類、又はビスフェノールA等に、グリシジルオキシ基を縮合させた化合物は、耐熱性、接着性、耐薬品性、電気特性、機械特性等に優れるため、硬化剤により架橋硬化させ接着剤、成型材、封止剤、塗料等の多くの用途を有する工業材料である。グリシジルエーテル化合物の製造法としては、フェノール類を原料に用いる場合には、原料のフェノール類にエピクロルヒドリンを反応させる方法が最も広く用いられている。エピクロルヒドリンを用いたグリシジルエーテルの具体的な合成法は、例えば下記反応式で表される。
Figure JPOXMLDOC01-appb-C000007
 しかしながら、上記の方法では、エピクロルヒドリンに由来する塩素原子が、得られたエポキシ化合物中に、該化合物と化学的に結合した形で不純物として混入する。そのためエポキシ化合物中に含まれる塩素の濃度が高くなり、具体的には通常1000ppm以上含まれる。このような塩素濃度の高いエポキシ化合物(エポキシモノマー)を原料とするエポキシ樹脂をIC封止材に使用した場合には、高集積化による回路の微細化により配線の腐食、断線がおきやすくなるという問題があった。
 そこで、エピクロルヒドリンを用いないエポキシ化方法が求められている。その製造方法として、アリルアルコールを、パラジウム触媒を用いて縮合し、アリルエーテルとした後、過酸化水素や有機過酸化物を用いてエポキシ化合物を得る方法が提唱されている(例えば、特許文献1参照)。しかしこの方法は、パラジウムの価格が極めて高いこと、更に残存パラジウムが、過酸化物等の酸化物と接触して過酸化物を分解するため、煩雑なパラジウムの精製除去工程が必要なことから実用的な方法ではなかった。
 塩素含有量の低いアリルオキシ体を製造し、このアリルオキシ体を酸化してエポキシ化合物に変換し、塩素含有量の低いグリシジルエーテルを合成する方法が近年開発されている(例えば、特許文献2及び3参照)。
 この製造方法において用いられるエポキシ化反応には、アンモニウム塩等のオニウム塩類と、タングステン化合物及びモリブデン化合物類のうち少なくとも一方を触媒組成物として共存させ、過酸化水素を酸化剤(エポキシ化剤)として用いるのが一般的である(例えば、非特許文献1~3参照)。
 このエポキシ化反応は、副生成物が水のみであることから、過酢酸に代表される有機過酸化物によるエポキシ化反応と比べ、廃棄物の少ないクリーンな反応である。また、30%~45%過酸化水素水を用いるため、入手が容易で取り扱いが簡便である。
 しかしながら、このエポキシ化反応では、通常触媒として共存させるオニウム塩として、塩化メチルトリオクチルアンモニウム塩等の長鎖アルキル基を有するアンモニウム塩や、セチルピリジニウム塩等の長鎖アルキル基を有するピリジニウム塩を使用して酸化剤を調製している。しかし前記長鎖アルキル基を有するオニウム塩は、有機溶媒への分配率が高く、反応後に有機相に溶解しているエポキシ化合物と、触媒組成物由来の成分、具体的にはタングステンや、オニウム塩、オニウム塩由来の含窒素化合物との分離、精製が極めて困難であるという問題がある。さらにタングステンや含窒素化合物等を、再結晶や懸洗といった方法により除去をすると、エポキシ化合物の精製収率(回収率)が低いという問題がある。
 そのため、得られるエポキシ化合物中に、タングステンやモリブデンといった触媒由来の重金属成分や、オニウム塩等のイオン性化合物が残留する。これらは、エポキシ化合物からエポキシ樹脂を製造した際にも残留し、製品に悪影響を及ぼす。 
 具体的には、エポキシ化合物中にタングステン等の重金属が残存した場合、そのエポキシ化合物を用いて製造したエポキシ樹脂は、高温条件下で放置した場合、着色が著しくなることが報告されている(例えば、特許文献4参照)。また、エポキシ樹脂を電子材料に用いた場合、エポキシ化合物中に残留した塩素等のハロゲンは配線の腐食の原因となり、残留した金属や、オニウム塩等のイオン性化合物は配線の短絡や腐食の原因となる。
 この問題を解決する方法として、いくつかの方法が報告されている。
 例えば特許文献5または6では、エポキシ化反応後、イオン交換樹脂や金属酸化物等を吸着剤として用いてアンモニウム塩を吸着除去する方法が検討されている。
 また特許文献7、8、または非特許文献4には、エポキシ化剤に用いるアンモニウム塩を、樹脂やシリカゲル等に担持させて用いた後、ろ過によって分離回収する方法が検討されている。
 特許文献9には、エポキシ化反応後、触媒として用いたアンモニウム塩を析出させる方法が検討されている。
 また特許文献10には、触媒を不均一化する方法が検討されている。
 さらに特許文献11にはアンモニウム塩に磁性体を結合し、除去する方法が検討されている。
日本国特表平10-511721号公報 日本国特開2011-213716号公報 国際公開第2011/019061号 日本国特開2009-185274号公報 日本国特開2010-70480号公報 日本国特開2010-235649号公報 日本国特開2002-69079号公報 日本国特開2001-17863号公報 日本国特開2010-83836号公報 国際公開第2004/096440号 日本国特開2007-301466号公報
J.Org.Chem vol.53 p.1553-1557(1988) J.Org.Chem vol.53 p.3587-3595(1988) Bull.Chem.Soc.Jpn、70、4(1997) Journal of the American Chemical Society、Vol.90、p5956-5957(1975)
 しかし特許文献5または6に記載の方法では、吸着剤をエポキシ化合物の15重量%以上投入する必要があり、また吸着剤を濾別する操作が必要となる。
 また、吸着剤を使用した場合には、吸着剤へのエポキシ化合物の吸着ロスによる生産性低下や、イオン交換樹脂由来の有機不純物や、金属酸化物由来の金属の溶出、混入の懸念がある。
 特許文献7、8、または非特許文献4に記載のように担体に触媒成分を固定化した場合、触媒の活性が低下し、大量の触媒が必要となる、担持する樹脂が膨潤する為に使用できる溶媒が限定される、または触媒の熱安定性が悪化する等の新たな問題点が生まれる。
 特許文献9には、析出操作のみではタングステン量を600ppm程度までしか、低減することができないことが記載されている。
 特許文献10に記載の方法では、不均一化することにより、反応速度が低下する、また結晶性の良いモノマーには適用ができない等の問題がある。
 特許文献11に記載の方法では、触媒の合成が煩雑という問題がある。
 このように、従来のいずれの方法によっても、タングステン等の重金属成分やオニウム塩由来の含窒素化合物の少ないエポキシ化合物を製造することは困難であった。 
 また過酸化水素等の酸化物は、金属、活性炭、シリカゲル、ガラス片等の異物との接触により、分解、発熱、酸素の発生等を起こすため、エポキシ化反応液中にこれらの異物の混入を避けることが好ましいが、製造プロセスにおいて異物の混入を完全に防ぐことは困難であり、安全面での対策を講じる必要があった。
 本発明は、エポキシ化合物の製造において、タングステン等の重金属含有量が極めて少ない、好ましくはさらにオニウム塩由来の含窒素化合物量(以下、単に窒素含有量という)の少ない、より好ましくはさらに塩素含有量の少ないエポキシ化合物を、煩雑な精製工程等を要さずに製造する方法を提供することを課題とする。
 発明者らは、触媒として共存させるオニウム塩に、除去が容易な化合物に変換可能な構造を導入するという新しい概念を組み込み、化合物を設計し、エポキシ化反応に用いた。
 具体的には、活性水素を含む官能基またはその塩に変換可能な置換基を、分子内に少なくとも1つ以上有しているオニウム塩を共存させて反応を行った。その結果、目的とするエポキシ化合物が得られ、エポキシ化反応後に活性水素を含む官能基またはその塩に変換したところ、エポキシ化合物とエポキシ化剤由来成分とが分離、除去され、純度の高いエポキシ化合物が得られることを見出し、本発明を完成させるに至った。
 即ち、本発明の要旨は、下記に存する。
[1]エポキシ化合物の製造方法であって、炭素-炭素二重結合を有する化合物に、タングステン化合物及びモリブデン化合物のうち少なくとも一方と、活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有し、かつ炭素原子を20以上含むオニウム塩との存在下、過酸化水素を反応させる、エポキシ化合物の製造方法。
[2]前記活性水素を含む官能基が、水酸基、カルボキシル基、アミノ基、メルカプト基、スルホン酸基又はリン酸基である上記[1]に記載のエポキシ化合物の製造方法。
[3]前記反応時に、さらにリン酸類及びホスホン酸類(但しオニウム塩を除く)のうち少なくとも一方を共存させる上記[1]または[2]に記載のエポキシ化合物の製造方法。
[4]前記反応が水相と有機相の二相系反応であり、かつ前記水相のpHが2以上6以下である、上記[1]~[3]のいずれか1に記載のエポキシ化合物の製造方法。
[5]前記オニウム塩が、アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩又はホスホニウム塩である上記[1]~[4]のいずれか1に記載のエポキシ化合物の製造方法。
[6]前記活性水素を含む官能基またはその塩に変換可能な置換基が、アルコキシカルボニル基又はアシルオキシ基である上記[1]~[5]のいずれか1に記載のエポキシ化合物の製造方法。
[7]前記オニウム塩が、下記一般式(1)~(3)のいずれかで表される化合物である上記[1]~[6]のいずれか1に記載のエポキシ化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008
 (上記式(1)ないし(3)において、R~Rのうちのいずれか1つ以上、R~R10のうちのいずれか1つ以上、及びR11~R15のうちのいずれか1つ以上は、それぞれ独立して、-Y-CO-O-Z、または-Y-O―CO-Z(但し、Yは直接結合または、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)を表す。
 R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
 R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R~R15は同一化合物内で結合して環を形成していてもよい。
 なお、上記式(1)におけるR~Rに含まれる炭素原子数の合計は20以上であり、上記式(2)におけるR~R10に含まれる炭素原子数の合計は15以上であり、上記式(3)におけるR11~R15に含まれる炭素原子数の合計は17以上である。
 Xは、1価のアニオンを表す。)
[8]前記製造方法において、反応後に、前記活性水素を含む官能基またはその塩に変換可能な置換基を、塩基性化合物で加水分解する上記[1]~[7]のいずれか1に記載のエポキシ化合物の製造方法。
[9]前記炭素-炭素二重結合を有する化合物を、酸性水溶液で洗浄した後に反応に供する、上記[1]~[8]のいずれか1に記載のエポキシ化合物の製造方法。
[10]前記炭素-炭素二重結合を有する化合物を、キレート化剤水溶液で洗浄した後に反応に供する上記[1]~[8]のいずれか1に記載のエポキシ化合物の製造方法、
[11]前記製造方法において、キレート化剤を反応時に共存させる、上記[1]~[10]のいずれか1に記載のエポキシ化合物の製造方法。
[12]エポキシ化合物を重合してエポキシ樹脂を製造する方法であって、上記[1]~[11]に記載の方法でエポキシ化合物を製造する工程と、前記工程で得られたエポキシ化合物を重合する工程を含むエポキシ樹脂の製造方法。
[13]タングステン化合物及びモリブデン化合物のうち少なくとも一方と、活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有する、炭素数が20以上のオニウム塩と、を含むエポキシ化反応用触媒組成物。
[14]前記活性水素を含む官能基が、水酸基、カルボキシル基、アミノ基、メルカプト基、スルホン酸基又はリン酸基である上記[13]に記載のエポキシ化反応用触媒組成物。
[15]前記組成物が、さらにリン酸類及びホスホン酸類(但しオニウム塩を除く)のうち少なくとも一方を含む上記[13]または[14]に記載のエポキシ化反応用触媒組成物。
[16]前記オニウム塩が、アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩又はホスホニウム塩である上記[13]~[15]のいずれか1に記載のエポキシ化反応用触媒組成物。
[17]前記活性水素を含む官能基またはその塩に変換可能な置換基がアルコキシカルボニル基又はアシルオキシ基である上記[13]~[16]のいずれか1に記載のエポキシ化反応用触媒組成物、
[18]更にカルボン酸(但し、カルボキシ基を有するオニウム塩を除く)を含有する上記[13]~[17]のいずれか1に記載のエポキシ化反応触媒組成物、
[19]前記オニウム塩が、下記一般式(1)~(3)のいずれかで表される化合物である上記[13]~[18]のいずれか1に記載のエポキシ化反応用触媒組成物、
Figure JPOXMLDOC01-appb-C000009
 (上記式(1)ないし(3)において、R~Rのうちのいずれか1つ以上、R~R10のうちのいずれか1つ以上、及びR11~R15のうちのいずれか1つ以上は、それぞれ独立して、-Y-CO-O-Z、または-Y-O―CO-Z(但し、Yは直接結合または、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)を表す。
 R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
 R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R~R15は同一化合物内で結合して環を形成していてもよい。
 なお、上記式(1)におけるR~Rに含まれる炭素原子数の合計は20以上であり、上記式(2)におけるR~R10に含まれる炭素原子数の合計は15以上であり、上記式(3)におけるR11~R15に含まれる炭素原子数の合計は17以上である。
 Xは、1価のアニオンを表す。)
[20]下記一般式(8)~(10)、(12)又は(31)で表されるオニウム塩。
Figure JPOXMLDOC01-appb-C000010
 (上記一般式(8)~(10)、(12)及び(31)において、R20は水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。R21~R23は各々独立に、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。またR20~R23は同一化合物内で結合して環を形成していてもよい。kは、1から4の整数を表す。
 R31及びR32は、それぞれ独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 R33は、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表す。
 なお、同一化合物中に存在する複数のk、R20及びR31は、同一であっても異なっていてもよい。また式中のカチオン部分に含まれる炭素原子数の合計は20以上である。
 Xは、1価のアニオンを表す)
[21]下記式(32)で表されるエポキシ化合物αと、
 該エポキシ化合物αが有するグリシジル基の1つ以上が3-アシルオキシ-2-ヒドロキシプロピル基に置換された構造を有する化合物β(但し、該アシル基は-CO-R35、又は-CO-Zで表される基)、とを含む組成物。
Figure JPOXMLDOC01-appb-C000011
 (上記式(32)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。
 A201は置換基を有していてもよい(m201+1)価の芳香族または脂肪族炭化水素基を表し、A202は置換基を有していてもよい2価の芳香族または脂肪族炭化水素基を表し、A203は置換基を有していてもよい(m203+2)価の芳香族または脂肪族炭化水素基を表す。
 X201及びX202は、各々独立に、直接結合又は置換基を有していてもよい2価の連結基を表す。
 p201は0又は1を表す。
 m201及びm203は、各々独立に、1以上の整数を表す。
 n201は1以上の整数を表し、n202は0又は1以上の整数を表し、n203は0又は1を表す。
 但しn202=n203=0の場合、p201=0であればA201はm201価となり、p201=1であればX201は水素原子または1価の基となる。
 なお1分子中に含まれる複数のG、A201、A202、X201、X202、m201及びp201は、同じであっても異なっていてもよい。)
 なお、-CO-R35及び-CO-Zにおいて、
 Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わし、
 R35は、下記式(18)~(20)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000012
 (上記式(18)において、
 R41は直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表す。
 R42~R44は各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(19)において、
 R45~R50のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 なおR45が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、R46~R50は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、
 R46~R50のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の4つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R45は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(20)において、
 R51~R55のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 なおR51及びR53の一方が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他方は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表し、R52、R54及びR55は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R52、R54及びR55のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の2つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R51及びR53は、各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(18)におけるR41~R44に含まれる炭素原子数の合計は20以上、上記式(19)におけるR45~R50に含まれる炭素原子数の合計は15以上、上記式(20)におけるR51~R55に含まれる炭素原子数の合計は17以上である。
 なおR41~R55は同一化合物内で結合して環を形成していてもよい。)
[22]前記エポキシ化合物αが、下記式(13)~(15)のいずれかで表される化合物である上記[21]に記載の組成物。
 (A)-(OG)m1     (13)
(上記式(13)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよいm1価の芳香族又は脂肪族炭化水素基を表す。m1は1以上の整数を表す。なお1分子中に含まれる複数のGは同じであっても異なっていてもよい。)
 (GO)m2-(A21)-[X-(A22)]n2-X-(A21)-(OG)m2 (14)
(上記式(14)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。A21は、置換基を有していてもよい(m2+1)価の芳香族又は脂肪族炭化水素基を表し、A22は、置換基を有していてもよい2価の芳香族又は脂肪族炭化水素基を表す。Xを介して連結するA21とA22、又は隣接する複数のA22は、その置換基同士が結合して環を形成していてもよい。Xは、直接結合又は置換基を有していてもよい2価の連結基を表す。m2は1以上の整数を表し、n2は0又は1以上の整数を表す。なお1分子中に含まれる複数のG、A21、A22、X、及びm2は同じであっても異なっていてもよい。)
 H-[(A(OG)m3)―Xn3-H     (15)
(上記式(15)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよい(m3+2)価の芳香族又は脂肪族炭化水素基を表す。Xは、直接結合、置換基を有していてもよいアルキレン基又は-R41-フェニレン-R42-を表し、R41及びR42は、夫々独立にアルキレン基を表す。m3は1以上の整数を表す。n3は2以上の整数を表す。なお1分子中に含まれる複数のG、A、X、及びm3は同じであっても異なっていてもよい。)
[23]前記組成物中の含まれる、前記エポキシ化合物αに対する前記化合物βの存在比が、0.05モル%以上10.0モル%以下である上記[21]または[22]に記載の組成物。
[24]前記化合物βが、前記一般式(13)~(15)又は(32)において、1以上の-OG基が下記式(16)または(17)で表される基で置換され、かつ1以上の-OG基が下記式(33)で表される基で置換されていてもよい化合物である、上記[21]~[23]のいずれか1に記載の組成物。
Figure JPOXMLDOC01-appb-C000013
 (上記式(16)において、R35は、前記式(18)~(20)のいずれかで表される基を表す。
 上記式(17)において、Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表す。)
 本発明によれば、タングステン等の重金属含有量が極めて少ないエポキシ化合物を得ることができる。またオニウム塩及び塩素の含有量が極めて少ない高純度のエポキシ化合物を、煩雑な精製等の工程を要さず、簡便な方法で製造することを可能とする。 
 更には、蒸留や結晶化精製ができないようなエポキシ化合物の製造にも適用でき、汎用性に優れる。本発明の方法で得られたエポキシ化合物を電子材料、光学材料等および医農薬の原料として使用した場合、不純物に起因する問題が低減し、高純度、高品質な製品を得ることができる。
 また反応系に、金属、活性炭、シリカゲル、ガラス片等の異物が混入しても、分解、発熱、酸素の発生等を抑制することができ、過酸化水素を使用しても安全にエポキシ化合物の製造をすることができる。
 以下、本発明の実施の形態について更に詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲で種々変形して実施することができる。
 本発明のエポキシ化合物の製造方法は、炭素-炭素二重結合を有する化合物(以下、「オレフィン化合物」と称することがある。)に、タングステン化合物及びモリブデン化合物のうち少なくとも一方と、活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有し、炭素原子を20以上含むオニウム塩との存在下、過酸化水素を反応させることに特徴をもつものである。なお、本明細書において、「タングステン化合物及びモリブデン化合物のうち少なくとも一方」を「触媒金属成分」といい、「活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有し、炭素原子を20以上含むオニウム塩」を単に「オニウム塩」といい、前記「触媒金属成分」と「オニウム塩」を含むものを「エポキシ反応用触媒組成物」又は単に「触媒組成物」といい、前記触媒組成物が、過酸化水素により酸化されたものを、「反応活性種組成物」と言うことがある。 
 過酸化水素は、本発明において、触媒組成物を酸化する酸化剤として働く。
 過酸化水素は、通常は過酸化水素水を用い、市販の過酸化水素水をそのまま、あるいは水で希釈して用いることができる。過酸化水素水の濃度は、通常1重量%以上、好ましくは20重量%以上、通常60重量%以下であり、より好ましくは、入手のしやすさや、安全性の問題、生産性等を考慮すると、30重量%以上、45重量%以下である。
 過酸化水素の使用量は、原料として使用するオレフィン化合物中の二重結合1モルに対し、通常0.5倍モル以上、好ましくは1倍モル以上、通常10倍モル以下、好ましくは3倍モル以下用いる。
 <触媒組成物>
 本発明の触媒組成物は、後述する触媒金属成分とオニウム塩との混合物をいう。触媒組成物の調製方法は、反応基質やその反応性に応じて適宜選択することができ、特に制限されるものではないが、反応系内で触媒金属成分とオニウム塩を混合する方法、又は予め反応系外で触媒金属成分とオニウム塩を混合してから反応に用いる方法のいずれの方法でもよい。また、後述のリン酸類の添加方法も反応系内で混合する方法、予め反応系外で混合する方法のいずれの方法でもよい。
 反応系内で触媒金属成分とオニウム塩を混合する場合、混合方法や混合順序は特に制限されないが、具体的には、通常オレフィン化合物を含んだ反応系内に、後述する触媒金属成分とオニウム塩を添加することで調製することができる。その添加順序は特に制限されるものではなく、触媒金属成分、オニウム塩のいずれを先に添加してもよく、また同時に添加してもよい。
 また予め反応系外で触媒金属成分とオニウム塩を混合してから用いることもできる。その場合、混合方法や混合順序、及び混合物の使用態様は特に制限されないが、触媒金属成分とオニウム塩を混合してそのまま用いても、触媒組成物中に生成した触媒金属成分とオニウム塩との複合体を単離して用いてもよい。中でも触媒金属成分とオニウム塩を混合し、単離や活性化を行わず、そのまま用いるのが簡便で好ましい。
 反応系内において、本発明の触媒組成物における触媒金属成分とオニウム塩は複合体を形成し、好ましくは更に、後述するリン酸類及びホスホン酸類のうち少なくとも一方との複合体を形成し、この複合体が過酸化水素によって酸化され、「反応活性種組成物」となり、本発明におけるエポキシ化反応の反応活性種となるものと考えられる。
 また反応活性種組成物は前記の触媒金属成分とオニウム塩の混合物(すなわち「触媒組成物」)に、過酸化水素を一部添加して、活性化させてから反応系に添加することもできる。
 <触媒金属成分>
 本発明の触媒金属成分として、タングステン化合物及びモリブデン化合物のうち少なくとも一方を用いる。具体的にはタングステン酸あるいはタングステン酸の塩(以下、タングステン酸類という)、モリブデン酸あるいはモリブデン酸の塩(以下、モリブデン酸類という)、またはそれらの混合物を用いる。このうち価格や入手のしやすさからタングステン酸類が好ましい。
 前記タングステン酸類としては、具体的には、例えば、タングステン酸;タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸カルシウム、タングステン酸アンモニウム等のタングステン酸塩;前記タングステン酸塩の水和物;12-タングストリン酸、18-タングストリン酸等のリンタングステン酸;12-タングストケイ酸等のケイタングステン酸;12-タングストホウ酸または金属タングステン等が挙げられ、タングステン酸、タングステン酸塩、リンタングステン酸が好ましく、入手しやすさの点で、タングステン酸、タングステン酸ナトリウム、タングステン酸カルシウム、12-タングストリン酸がより好ましい。
 前記モリブデン酸類としては、モリブデン酸;モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸アンモニウム等のモリブデン酸塩;前記モリブデン酸塩の水和物が挙げられる。
 上記タングステン酸類およびモリブデン酸類の中でも、入手しやすさの点で、タングステン酸、またはタングステン酸ナトリウム及びその水和物、タングステン酸カルシウム及びその水和物が好ましく、回収、再生のしやすさからは、タングステン酸がより好ましい。
 前記の触媒金属成分は、単独又は2種以上を適宜組み合わせて使用することができる。
 本発明における触媒金属成分の使用量は、使用する基質等の性質により適宜調節することができ、特に制限されないが、原料として使用するオレフィン化合物中に含まれる二重結合1モルに対して触媒金属原子換算(例えばタングステン酸類の場合には、タングステン原子換算)で通常0.001モル以上、好ましくは0.005モル以上、より好ましくは0.01モル以上であり、通常1.0モル以下、好ましくは0.50モル以下、より好ましくは0.10モル以下である。前記下限値より少なすぎる場合、反応が進行しない場合があり、前記上限値よりも多すぎる場合は、コスト的に不利になる場合がある。
 <オニウム塩>
 本発明において用いられるオニウム塩は、炭素原子を20以上有し、かつ活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有するものである。
 前記オニウム塩は、エポキシ化反応時には脂溶性であり、反応溶媒に可溶であり、かつ水相と有機相に分離した有機相側に分配し、エポキシ化反応条件下で安定、または、エポキシ化反応中に構造が変化しても触媒能が著しく低下しない性質を有する。反応溶媒に可溶で、かつ有機相に分配するためには、高い脂溶性が必要であるため、オニウム塩は炭素原子を20個以上含むことが必要である。
 また、前記オニウム塩は、エポキシ化反応終了後に、反応により生じたエポキシ化合物のエポキシ基が分解しない温和な条件下で、簡便な方法で活性水素を含む官能基またはその塩を有する水溶性化合物に変換できる置換基を有する、という特徴を有する。
 本発明で用いられるオニウム塩のカチオン種(以下、単に「オニウム」という)としては、上記条件を満たすものであれば特に限定されるものではない。すなわち炭素原子を20以上有し、かつ活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有するオニウムであり、具体的なオニウムとしては、通常アンモニウムや、ピリジニウム、イミダゾリニウム等の含窒素ヘテロ環の4級カチオン、ホスホニウム等が挙げられる。(すなわちオニウム塩としてはアンモニウム塩、ピリジニウム塩、イミダゾリニウム塩及びホスホニウム塩等が挙げられる。)好ましくは合成が簡便である点でアンモニウム、ピリジニウムはイミダゾリニウムが用いられる。
 本発明で用いられるオニウム塩のアニオン種は、特に限定されないが、1価のアニオンである。具体的には硫酸水素イオン、モノメチル硫酸イオン、ハロゲン化物イオン、硝酸イオン、酢酸イオン、炭酸水素イオン、リン酸二水素イオン、スルホン酸イオン、カルボン酸イオン、水酸化物イオン等が挙げられ、アニオン種が反応生成物であるエポキシ化合物のエポキシ基や原料化合物であるオレフィン化合物の炭素-炭素二重結合に付加しない点や、調製が容易である点からモノメチル硫酸イオン、硫酸水素イオン、酢酸イオン、リン酸二水素イオン又は水酸化物イオンが好ましい。
 本発明において用いられるオニウム塩は、そのオニウム部分に活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有する。活性水素を含む官能基とは、解離して水素イオンを放出することが可能な官能基を表し、その塩とは、解離した水素イオンの代わりに他のカチオン種が対アニオンとなったものを表す。活性水素を含む官能基は、特に限定されるものではないが、好ましくは水酸基、カルボキシル基、アミノ基、メルカプト基、スルホン酸基、リン酸基、またはそれらの塩をいい、より好ましくはカルボキシル基又は水酸基であり、特に好ましくは水酸基である。
 活性水素を含む官能基またはその塩に変換可能な置換基とは、物理的操作及び化学的操作のうち少なくとも一方を施すことにより上記活性水素を含む官能基またはその塩に、変換可能な置換基を意味する。具体的には塩基による反応、酸による反応、接触水素化等の化学反応、加熱、光反応、酵素反応、マイクロ波照射等により変換可能な置換基をいう。好ましくは穏和な条件で変換可能な置換基であり、より好ましくは、エポキシ基とは反応しない条件で変換可能な置換基である。更に好ましくは、例えばアルコキシカルボニル基、アシルオキシ基、カーバメート基、イミド基、アミド基、エーテル基、シリルエーテル基、アセタール基、ケタール基、ヘミアセタール基、スルホン酸エステル基、チオエーテル基、チオエステル基、チオカーバメート基、チオアセタール基、リン酸エステル基、ベンジルエーテル基などが挙げられる。
 また、該オニウム塩を含む反応活性種組成物がオレフィン化合物と反応する過程で上記の活性水素を含む官能基またはその塩に変換可能な置換基から、活性水素を含む官能基又はその塩が生成する構造を有するもの、例えば、反応中に、バイヤー・ビリガー酸化反応によりエステル基に変換されるケトン基(ケトン構造)や、ニトリル基、ベンジル基などもこの活性水素を含む官能基またはその塩に変換可能な置換基の例として挙げられる。
 このうち、アルコキシカルボニル基及びアシルオキシ基は、塩基性水溶液と接触させることで、簡便に、且つ、エポキシ基を分解することなく、加水分解され、水酸基やカルボン酸基およびそれらの塩に変換でき、合成も簡便であるため好ましい。より好ましくはアルコキシカルボニル基である。
 前記置換基の数は、1つ以上であるが、洗浄での除去効率の観点から、好ましくは2個以上である。
 本発明において用いられるオニウム塩を含む反応活性種組成物は、反応原料となるオレフィン化合物及びエポキシ化反応時に用いる溶媒のうち少なくとも一方に溶解することか好ましい。そのため、オニウム塩の構造内に脂溶性の高い部分を有する必要がある。具体的な構造や形状は、反応を阻害せず、且つ、エポキシ化反応に対し安定、またはエポキシ化反応中に構造が変わっても触媒活性を保持するものであれば、特に限定されるものではなく、脂肪族基、芳香族基、および両者を併せ持つ化合物のいずれの構造であってもよく、形状も直鎖状、分岐状、環状構造のいずれでもよい。また、酸素、窒素等のヘテロ原子を構成原子として有していてもよい。後処理により生成する化合物、即ち、活性水素を含む官能基に変換可能な置換基を有する化合物と、それ以外の部分からなる化合物の両者が、エポキシ基を分解することのない条件下で除去できるものであればよい。
 本発明において用いられるオニウム塩として、好ましくは下記一般式(1)から(3)のいずれかで表されるオニウム塩が用いられる。
Figure JPOXMLDOC01-appb-C000014
 (上記式(1)ないし(3)において、R~Rのうちのいずれか1つ以上、R~R10のうちのいずれか1つ以上、及びR11~R15のうちのいずれか1つ以上は、それぞれ独立して、-Y-CO-O-Z、または-Y-O―CO-Z(但し、Yは直接結合または、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)を表す。
 R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
 R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R~R15は同一化合物内で結合して環を形成していてもよい。
 またR~R15は、一部の炭素原子がヘテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基の場合、該置換基として上記式(1)ないし(3)のいずれかで表される別のオニウム塩を有していてもよい。
 なお、上記式(1)におけるR~Rに含まれる炭素原子数の合計は20以上であり、上記式(2)におけるR~R10に含まれる炭素原子数の合計は15以上であり、上記式(3)におけるR11~R15に含まれる炭素原子数の合計は17以上である。
 Xは、1価のアニオンを表す。)
 式(1)において、R~Rのうちのいずれか1つ以上は、-Y-CO-O-Z、または-Y-O―CO-Zを表す。またR~Rに含まれる合計の炭素原子数の合計が20以上である。
 式(1)同様に、式(2)のR~R10のうちのいずれか1つ以上は、-Y-CO-O-Z、または-Y-O―CO-Zを表す。またR~R10に含まれる炭素原子数の合計が15以上である。
 また同様に、式(3)のR11~R15のうちのいずれか1つ以上は、-Y-CO-O-Z、または-Y-O―CO-Zを表す。またR11~R15に含まれる炭素原子数の合計が17以上である。
 Yは直接結合であるか、又は一部の炭素原子がヘテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わし、該脂肪族炭化水素基は、直鎖状、分岐状、環状構造のいずれでもよい。
 2価の脂肪族炭化水素基として、具体的には、メチレン、エチレン、テトラメチレン、ヘキサメチレン等の直鎖脂肪族炭化水素基、これらに更にアルキル鎖が結合した分岐脂肪族炭化水素基、及びシクロヘキセン等の環状脂肪族炭化水素基が挙げられる。Yが炭素数1~25の2価の脂肪族炭化水素基である場合は、その炭素原子がヘテロ原子で一部置換されていてもよい。具体的にはこれら2価の脂肪族炭化水素基の構造中のメチレン基が、-O-、-S-、-SO-、-SO-、-NH-、-NR16-(R16は炭素数1~25の1価の脂肪族炭化水素基又は1価の芳香族炭化水素基を表す)、-CONR17-(R17は水素原子、炭素数1~25の1価の脂肪族炭化水素基又は1価の芳香族炭化水素基を表す)、―NHCONH-、―CONHCO-、-SONR17-(R17は前述と同義)等のヘテロ原子を含む構造に置換されていてもよい。なお、本明細書における「一部の炭素原子がヘテロ原子で置換されていてもよい炭化水素基」は、いずれも上述と同義である。Yとして好ましくは、エチレン、プロピレン、テトラメチレン、ヘキサメチレン及び-CHCH-O-CHCH-が挙げられる。
 また、Yが一部の炭素原子がヘテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、該置換基としては、例えば-O-CO-Z又は-CO-O-Z(但し、Zは前記式(1)ないし(3)におけると同義)が挙げられる。この場合、前記一般式(1)ないし(3)で表される化合物は、R~R15のいずれかが-Y-CO-O-Z、または-Y-O―CO-Zであり、-O-CO-Z又は-CO-O-Zを有していることに加え、Yにおける脂肪族炭化水素基の置換基としても-O-CO-Z又は-CO-O-Zを有することになる。
 Zは、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基又は炭素数4~25の1価の芳香族炭化水素基を表す。炭素数1~25の1価の脂肪族炭化水素基は、直鎖状、分岐状、環状構造のいずれでもよい。具体的には、メチル、エチル、プロピル、ブチル、ヘキシル、ブチル、オクチル等の直鎖脂肪族炭化水素基、これらに更にアルキル鎖が結合した分岐脂肪族炭化水素、及びシクロヘキシル等の環状脂肪族炭化水素基が挙げられる。炭素数4~25の1価の芳香族炭化水素基としては、アルキル基やハロゲン原子を置換基として有していてもよい1価のベンゼン環、ナフタレン環などが挙げられる。
 炭素数1~25の1価の脂肪族炭化水素基は、その構造中の炭素原子がヘテロ原子で一部置換されていてもよく、具体的には脂肪族炭化水素基の構造中のメチレン基が、-O-、-S-、-SO-、-SO-、-NH-、-NR16-(R16は炭素数1~25の1価の脂肪族炭化水素基又は1価の芳香族炭化水素基を表す)、-CONR17-(R17は水素原子、炭素数1~25の1価の脂肪族炭化水素基又は1価の芳香族炭化水素基を表す)、―NHCONH-、―CONHCO-、-SONR17-(R17は前述と同義)等のヘテロ原子を含む構造に置換されていてもよい。
 炭素数4~25の1価の芳香族炭化水素基としては、フェニル基、ベンジル基、ナフチル基等が挙げられ、これらはハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基、N-アルキルスルファモイル基等の置換基を有していてもよい。これらのうちオニウム塩の生産性から、好ましくはフェニル基が挙げられる。
 上記式中の-Y-CO-O-ZでYが炭化水素基を表す場合、オニウム塩のエポキシ化反応中の安定性の観点から、炭素数が3以上であることが好ましい。
 次に、R~R15が-Y-CO-O-Z、または-Y-O―CO-Zではない場合について説明する。
 R~R15のうち、R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
 R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R~R15は同一化合物内で結合して環を形成していてもよい。
 またR~R15は、一部の炭素原子がヘテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基の場合、該置換基として上記式(1)ないし(3)のいずれかで表される別のオニウム塩を有していてもよい。すなわちR~R15を介し上記式(1)ないし(3)のいずれかで表される化合物が複数個結合してなる化合物であってもよい。このとき該複数のオニウム塩の構造は、同一であっても、異なっていてもよい。具体的には1,2-エタンジアミニウム塩、4,4’-ビピリジニウム塩等が挙げられる。
 R~R15が、炭素数1~25のアルキル基の場合、その構造中の炭素原子がヘテロ原子で一部置換されていてもよく、具体的にはメチレン基が、-O-、-S-、-SO-、-SO-、-NH-、-NR16-(R16は炭素数1~25の1価の脂肪族炭化水素基、又は1価の芳香族炭化水素基を表す)、-CONR17-(R17は水素原子、炭素数1~25の1価の脂肪族炭化水素基、又は1価の芳香族炭化水素基を表す)、―NHCONH-、―CONHCO-、-SONR17-(R17は前述と同義)等のヘテロ原子を含む構造に置換されていてもよい。
 これらのうち、R~R、R11及びR13として好ましくはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、オクチル基、オクタデシル基、又はベンジル基であり、更に好ましくはメチル基又はエチル基である。 
 またR~R10、R12、R14及びR15として好ましくは、水素原子、塩素原子、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、オクチル基、オクタデシル基、ハロゲン原子又はフェニル基であり、更に好ましくは、水素原子、t-ブチル基、又はフェニル基である。
 Xは、オニウム塩のアニオン種を表し、1価のアニオンである。具体的には硫酸水素イオン、モノメチル硫酸イオン、ハロゲン化物イオン、硝酸イオン、酢酸イオン、炭酸水素イオン、リン酸二水素イオン、スルホン酸イオン、カルボン酸イオン、水酸化物イオンであり、好ましくは、該アニオンがエポキシ基や炭素-炭素二重結合に付加しない点、調製が容易である点からモノメチル硫酸イオン、硫酸水素イオン、塩素イオン、酢酸イオン、リン酸二水素イオン、水酸化物イオンである。
 上記一般式(1)で表される化合物のうち、本発明のオニウム塩として好適に使用することができる具体的な化合物として、下記一般式(8)~(11)、(34)及び(35)で表される化合物が挙げられる。なお下記一般式(8)~(10)で表される化合物は、本発明のオニウム塩として好適な新規の化合物である。
 これらの化合物は、分子内にエステル構造を複数個有し、加水分解後に水溶性の化合物に変換できる上、入手が容易な原料から簡便に合成が可能である点で好ましく、このうち(8)~(11)は、高速液体クロマトグラフのような機器分析が容易な点で製造の調節が容易である点で好ましい。
Figure JPOXMLDOC01-appb-C000015
 (上記一般式(8)~(11)、(34)及び(35)において、R20は水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。R21~R23は各々独立に、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。R24は、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基を表す。またR20~R24は同一化合物内で結合して環を形成していてもよい。kは、1から4の整数を表す。
 R31及びR32は、それぞれ独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 なお、同一化合物中に存在する複数のk、R20及びR31は、同一であっても異なっていてもよい。また式中のカチオン部分に含まれる炭素原子数の合計は20以上である。Xは、1価のアニオンを表す)
 上記一般式(2)で表される化合物において、本発明のオニウム塩として好適に使用することができる具体的な化合物として、下記一般式(12)及び(31)で表される化合物が挙げられる。なお、下記一般式(12)及び(31)で表される化合物は、本発明のオニウム塩として好適な新規の化合物である。
Figure JPOXMLDOC01-appb-C000016
 (上記式(12)において、R20は水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。またR20は同一化合物内で結合して環を形成していてもよい。kは、1から4の整数を表す。なお、同一化合物中に存在する複数のkおよびR20は、同一であっても異なっていてもよい。
 R31及びR32は、それぞれ独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。また式中のカチオン部分に含まれる炭素原子数の合計は20以上である。Xは、1価のアニオンを表す)
Figure JPOXMLDOC01-appb-C000017
 (上記式(31)において、R20は水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、同一化合物内で結合して環を形成していてもよい。kは、1から4の整数を表す。なお、同一化合物中に存在する複数のR20は、同一であっても異なっていてもよい。
 R31は、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 R33は、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表す。
 また式中のカチオン部分に含まれる炭素原子数の合計は20以上である。Xは、1価のアニオンを表す)
 なお、前記式(8)~(12)、(31)、(34)及び(35)において、R20としては、水素原子または炭素数1~4のアルキル基、が好ましく、R21~R23としては、炭素数1~18のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、R24としては、炭素数1~8のアルキル基が好ましく、R31及びR32としては、各々独立に、炭素数1~11のアルキレン基が好ましく、炭素数1~5のアルキレン基がより好ましく、エチレン基またはプロパン-1,2-ジイル基で置換されたエチレン基が更に好ましい。また、R31とR32は結合し、ピラノース環などの環状構造を形成していてもよい。R33としては、炭素数1~16のアルキル基が好ましい。kとしては、1が好ましく、Xとしては、モノメチル硫酸イオン、硫酸水素イオン、リン酸二水素イオン又は塩素イオンが好ましい。
 オニウム塩は、単独でも2種以上適宜組み合わせて使用してもよい。
 触媒金属成分に対するオニウム塩の使用量は、使用する基質等の性質により適宜調節することができ、特に制限されないが、通常、使用する触媒金属成分の1原子に対して0.1倍モル~10倍モルであり、好ましくは0.3倍モル~5.0倍モルであり、より好ましくは0.2倍モル~2.0倍モルである。
 <オニウム塩の合成法>
 上記のオニウム塩は、それぞれ対応する3級アミン類、ピリジン類、イミダゾール類等をアルキル化することにより合成できる。アルキル化に用いる試剤は、特に制限されないが、R18-A(式中Aは、塩素、臭素、ヨウ素等のハロゲン原子、または、p-トルエンスルホニル、メタンスルホニル等の芳香族スルホニル、脂肪族スルホニル、硫酸エステル、炭酸エステルまたはオキシラニル基を表す。R18は前記式(1)~(3)におけるR~R、R、R11又はR13、或いはR~R、R、R11又はR13に変換可能な置換基を表す)を用いる。
 R18-Aの具体例としては、ヨウ化メチル、ヨウ化エチル、臭化エチル、塩化オクチル、塩化セチルなどのハロゲン化アルキル化合物;メタンスルホン酸オクチルエステル、p-トルエンスルホン酸ベンジルエステル等のスルホニル化合物;硫酸ジメチル、硫酸ジエチルなどの硫酸エステル;炭酸ジメチル、炭酸ジエチルなどの炭酸エステル;グリシドールやエピクロルヒドリンなどのオキシラニル化合物が挙げられる。
 アルキル化の反応は塩基を用いてもよい。用いる塩基の具体例としては、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基:アンモニア、メチルアミン、エチルアミンなどの有機塩基が挙げられるが、このうち炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カリウムが好ましく、更に好ましくは炭酸カリウムである。
 アルキル化の反応は有機溶媒を用いてもよい。反応に用いた溶媒は、反応後または後述する反応後処理後留去してもよく、後処理後そのまま溶液としてエポキシ化反応に供してもよい。用いる有機溶媒の具体例としては、酢酸エチル等のエステル類、ヘプタン、ヘキサン、シクロヘキサンなど脂肪族炭化水素類、ベンゼン、トルエン、キシレン、ピリジン等の芳香族炭化水素類、アセトニトリル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン等の非プロトン性溶媒、アセトン、メチルエチルケトン等のケトン類、N,N’-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン等の含ハロゲン溶媒が挙げられる。このうち、トルエン、ヘキサン、ヘプタンが好ましく、更に好ましくはトルエンが挙げられる。
 アルキル化反応終了後、反応によって生じた無機物は、適宜濾別、洗浄などの操作により除去することができる。
 R18-Aを用いてアルキル化を行った場合、生成したオニウムはAを対イオンとした塩を形成する場合が多い。また、洗浄操作を行った場合、水中の水酸化物イオンや洗浄水中のイオンと塩を形成する場合が多い。これらの対イオンは、洗浄やイオン交換樹脂処理等の操作により、所望の対イオンに交換することができる。例えば、硫酸ジメチルを用いてメチル化を行った場合は、モノメチル硫酸塩を形成するが、硫酸水で洗浄することにより、硫酸水素塩とすることができる。
 オニウム塩への置換基-Y-CO-O-Z、または-Y-O―CO-Z(Y、Zは前述と同義)の導入方法としては、
1)A-Y-CO-O-ZまたはA-Y-O―CO-Z(Aは前述と同義)をオニウム塩の原料となる前記3級アミン類、ピリジン類、イミダゾール類と反応することにより導入する方法;
2)-Y-COHを有するアミン類、ピリジン類、イミダゾール類をエステル化して-Y-CO-O-Zとした後、前述のようにこれをアルキル化してオニウム塩とする方法;
 -Y-OHを有するアミン類、ピリジン類、イミダゾール類をエステル化して-Y-O-CO-Zとした後、前述のようにこれをアルキル化してオニウム塩とする方法;
 または-Y-CO-O-R19(R19は炭素数1~12のアルキル基を表す)を有するアミン類、ピリジン類、イミダゾール類をエステル交換反応により-Y-CO-O-Zとした後、前述のようにこれをアルキル化してオニウム塩とする方法;
3)-Y-COHを有するオニウム塩をエステル化して-Y-CO-O-Zとする方法;
 -Y-OHを有するオニウム塩をエステル化して-Y-O-CO-Zとする方法;
 -Y-CO-O-R19を有するオニウム塩をエステル交換反応により-Y-CO-O-Zとする方法
4)-Y-CO-O-Zまたは-Y-O―CO-Zを有するアミン類、ピリジン類、イミダゾール類をアルキル化してオニウム塩とする方法、あるいは -Y-CO-O-Z、または -Y-O―CO-Zを有するアンモニウム塩、ピリジニウム塩、イミダゾリニウム塩を原料として用いる方法、等の方法が挙げられる。
 このうち、2)および3)における-Y-CO-O-Hをエステル化する方法としては、これをハロゲン化により-Y-CO-O-T(Tはハロゲン原子を表す)としたのち、対応するアルコールZ-OHと反応させる方法、Z-OHを酸触媒下脱水縮合する、DDC、CDI等の縮合剤を用いて縮合する方法、または-Y-CO-O-R19をエステル交換反応する方法が挙げられる。脱水縮合およびエステル交換する方法としては、対応するアルコールZ-OHを酸触媒存在下、反応させる方法が挙げられる。この際、生成する水やR19-OHを留去、吸着などの方法により除去しながらエステル交換反応を行うのが好ましい。が挙げられる。
 -Y-OHをエステル化する方法としては、これを対応する酸クロライドZ-CO-T(Tはハロゲン原子を表す)と反応させる方法、Z-CO-O-Hを酸触媒下、脱水縮合する、またはDCCやCDI等の縮合剤を用いて縮合する方法が挙げられる。-Y-CO-O-R19をエステル交換反応する方法としては、対応するアルコールZ-OHを酸触媒存在下、反応させる方法が挙げられる。この際、生成するR19-OHを留去、吸着などの方法により除去しながらエステル交換反応を行うのが好ましい。これらの方法のうち、工業的には、コストの観点から、酸触媒下、脱水縮合またはエステル交換することにより、エステル基を導入する方法が好ましい。
 上記のオニウム塩の合成法3)の例として、長鎖アルキル-ジ(ヒドロキシエチル)アンモニウム塩構造を有する、市販の界面活性剤をエステル化してオニウム塩とする方法が挙げられる。
 この際、用いる酸触媒としては、硫酸、硝酸および塩酸等の鉱酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、トリフルオロ酢酸、トリクロロ酢酸および酢酸等の有機酸、HPW1240、HSiW1240、HTiW1240、HCoW1240、HFeW1240、H1862、HPW1133、HTiMo1240、HPMo1240、HPMo1139、HMo1862、HPMoW1140、HPVMo1140、HSiMo1240、HPVMo1040、HPMo40、H0.5Cs2.5PW1240およびこれらの水和物等のタングステン酸、モリブデン酸或いはこれらのヘテロポリ酸;アンバーリストIR120等の陽イオン交換樹脂、H-ZSM-5等のH型ゼオライト等を使用することができる。これらのうち、コストの面からは硫酸が好ましいが、硫酸塩が析出し反応性が低下する場合には、必要に応じてp-トルエンスルホン酸、メタンスルホン酸等の有機酸を用いることが好ましい。これらの触媒の使用量は、基質に対して0.1~100重量%の範囲で、好ましくは1~20重量%の範囲で使用することができる。
 用いる溶媒としては、特に限定されるものではないが、反応に関与しないものであれば、特に制限はなく、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ドデカン等の脂肪族炭化水素類が挙げられる。
 用いる溶媒の量は特に限定されないが、基質と酸触媒の塩が系から析出した場合、反応速度が低下することがあるため、基質や酸の性質に応じ、適宜量を調整することが好ましい。
 上記の工程を経て得られたオニウム塩は、一旦単離、精製してからエポキシ化反応に用いても、単離、精製することなく用いてもよいが、製造効率の面で有利であるため、また、オニウム塩の分解を抑制し、反応に供することができる点から、単離、精製することなくエポキシ化反応に用いる方が好ましい。「活性水素を含む官能基」がアルコキシカルボニル基又はアシルオキシ基である場合、オニウム塩の分解物であるカルボン酸やアルコールを含有していてもよい。
 <リン酸類及びホスホン酸類>
 本発明の触媒組成物には、リン酸類及びホスホン酸類のうち少なくとも一方(但しオニウム塩を除く)を含んでいてもよく、含んでいることが、反応性の面で好ましい。リン酸類及びホスホン酸類のうち少なくとも一方は、エポキシ化合物の製造反応時に、触媒金属成分及びオニウム塩と共存していればよく、反応系内で混合しても、予め反応系外で混合してもよい。
 リン酸類としては、具体的には例えば、リン酸、ポリリン酸、ピロリン酸等の無機リン酸;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸水素アンモニウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素カルシウム等の無機リン酸塩;モノメチルリン酸、ジメチルリン酸、トリメチルリン酸、トリエチルリン酸、トリフェニルリン酸等のリン酸エステル類;等が挙げられる。なおリン酸エステル類の場合は、「活性水素を含む官能基またはその塩に変換可能な置換基」としてリン酸エステル基を有するオニウム塩、以外のリン酸エステル類をいう。
 リン酸類としては、無機リン酸が好ましく、リン酸が好ましい。
 ホスホン酸類としては、アミノメチルホスホン酸、フェニルホスホン酸などが挙げられる。
 これらのうち安価なリン酸が好ましい。
 リン酸類及びホスホン酸類のうち少なくとも一方の使用量は、特に限定されるものではなく、用いるリン酸類及びホスホン酸類のうち少なくとも一方の種類や触媒金属成分の種類によって適切な使用量が異なる。後述する反応系水相のpHが適切な範囲になるように、使用量を調節するが、一般的に、該リン酸類及びホスホン酸類のうち少なくとも一方に含まれるリンの当量としては、使用する触媒金属成分中の金属1原子に対して通常0.1倍モル~10倍モル、好ましくは0.2倍~5.0倍モル、より好ましくは0.2倍~3.0倍モルである。
 <エポキシ化反応における反応溶媒> 
 本発明においてオレフィン化合物からエポキシ化合物を製造する反応(以下、「本発明のエポキシ化反応」と称することがある)の形態は特に限定はされないが、通常、水相と有機相の二相系での反応系でおこなう。二相系で反応をすることにより、本発明の反応により生成したエポキシ化合物が、有機相にすみやかに溶解し、また後述する通り、水相が通常酸性を呈するため、生成したエポキシ化合物のエポキシ環が開環、転移などで分解することを抑えることができるためである。
 本発明のエポキシ化反応は、必要に応じ反応溶媒を用いることができる。反応に用いるオレフィン化合物や、生成するエポキシ化合物が反応条件下で液状である場合には、反応溶媒を使用せずに反応に用いることもできる。過酸化水素は通常、水を含有しているため、混合することで二相系の反応系を形成することができるためである。オレフィン化合物が固体である場合は、反応溶媒を使用することが好ましく、溶媒に溶解していても、懸濁状態でもよいが、通常、反応温度条件下で反応溶媒に溶解していることが好ましい。
 使用する反応溶媒としては、反応に関与しないものであれば、特に限定はされず、水と二相系を形成する有機溶媒が好ましく、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ドデカン等の脂肪族炭化水素類、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類、クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル類、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、アセトニトリル、ブチロニトリル等のニトリル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド等のアミド類、N,N’-ジメチルイミダゾリジノン等のウレア類、及びこれら溶媒の混合物が挙げられ、芳香族炭化水素類、脂肪族炭化水素類、およびこれら溶媒の混合物が好ましい。更に好ましくは、反応に対して安定であり、反応温度より高い沸点を有する水およびトルエンが挙げられる。
 反応溶媒を使用する際の使用量は化合物の溶解度によるが、反応溶媒量の増大に従い反応速度が低下する場合があるため、通常オレフィン化合物の0.1倍量以上、10倍量以下であり、好ましくは5倍量以下、より好ましくは3倍量以下である。
 また反応時には、さらに水を添加してもよい。添加する過酸化水素は通常水を含むため、水を添加しなくても、水相は形成されるが、必要に応じて添加してもよい。水を添加する場合の水の添加量は、通常オレフィン化合物の0.1倍量~10倍量、好ましくは0.1倍量~5倍量、更に好ましくは、0.1倍量~3倍量である。
 本発明において、触媒金属成分、オニウム塩、リン酸類及びホスホン酸類のうち少なくとも一方のそれぞれの使用量は前述の通りであるが、触媒金属成分/オニウム塩のモル比率は、通常0.2以上、好ましくは0.3以上、より好ましくは0.5以上であり、通常4以下、好ましくは3以下、より好ましくは2以下である。
 触媒金属成分/(リン酸類及びホスホン酸類のうち少なくとも一方)のモル比率は通常0.2以上、好ましくは0.3以上、より好ましくは0.5以上であり、通常4以下、好ましくは3以下、より好ましくは2以下である。
 リン酸類及びホスホン酸類のうち少なくとも一方は、反応液の水相のpHが適切な範囲になるように添加するのが好ましいが、必要に応じて酸や塩基を添加し、pHの調整を行う。
 本発明におけるタングステン酸類等の触媒金属成分は、そのpHによって構造が変化し、反応活性が変化する。そのためオレフィン化合物の反応性やエポキシ基の安定性、化合物の水への分配や溶解度などにより、適宜pHを調整することが好ましい。
 反応液の水相のpHは、エポキシ化合物の安定性や水への溶解度により異なるが、通常2以上、好ましくは2.5以上であり、通常6以下であり、好ましくは5以下である。
 反応液が水相および有機相の二相系である場合、水相のpHが過度に酸性の場合、エポキシ基の開環反応や転移反応が進行しやすくなる、またオニウム塩がアルコキシカルボニル基やアシルオキシ基などを有する場合、これらの基が加水分解し、反応性が低下するなどの問題が生じることがある。また水相のpHが過度に塩基性の場合は、反応が極度に遅くなる、過酸化水素が分解する、アルコキシカルボニル基やアシルオキシ基が加水分解する等の問題が生じることがある。
 反応液の水相のpH調節のために、必要に応じてリン酸、アミノメチルホスホン酸、フェニルホスホン酸、硫酸、硝酸、塩酸、過塩素酸などの酸;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸、リン酸水素二ナトリウム、リン酸水素二カリウムなどの無機塩基:アンモニア、メチルアミン、エチルアミンなどの有機塩基を添加してもよい。
 <エポキシ化合物の製造方法>
 以下に具体的に本発明の製造方法について記載する。
 <原料>
 本発明において原料として使用する炭素-炭素二重結合を有する化合物としては、分子中に炭素-炭素二重結合を一つ以上有する化合物であれば、特に限定はされないが、例えば、下記一般式(30)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 (上記式(30)中、Rはアリル基を表し、該アリル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。
 A201は置換基を有していてもよい(m201+1)価の芳香族または脂肪族炭化水素基を表し、A202は置換基を有していてもよい2価の芳香族または脂肪族炭化水素基を表し、A203は置換基を有していてもよい(m203+2)価の芳香族または脂肪族炭化水素基を表す。
 なお、以下において「芳香族または脂肪族炭化水素基」には、両方の炭化水素骨格を有する物、例えば芳香族環と脂肪族環の双方の構造を分子内に含むものなども含まれる。
 X201及びX202は、各々独立に、直接結合又は置換基を有していてもよい2価の連結基を表す。
 p201は0又は1を表す。
 m201及びm203は、各々独立に、1以上の整数を表す。
 n201は1以上の整数を表し、n202は0又は1以上の整数を表し、n203は0又は1を表す。
 但しn202=n203=0の場合、p201=0であればA201はm201価となり、p201=1であればX201は水素原子または1価の基となる。
 なお1分子中に含まれる複数のR、A201、A202、X201、X202、m201及びp201は、同じであっても異なっていてもよい。)
 上記式(30)で表される化合物の中でも、下記一般式(4)~(6)で表される化合物が好ましい。
  (A)-(OR)m1     (4)
(上記式(4)において、Rはアリル基を表し、該アリル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aはm1価の芳香族又は脂肪族炭化水素基を表す。m1は1以上の整数を表す。なお1分子中に含まれる複数のRは、同じであっても異なっていてもよい。)
 Aで表される芳香族炭化水素基としては、ベンゼン環、ナフタレン環、アントラセン環等の炭素数6~14の芳香族炭化水素からm1個の水素を除いたm1価の基が挙げられ、好ましくは炭素数6であるベンゼン環である。
 また脂肪族炭化水素基としては、対応するヒドロキシ化合物(すなわち(A)-(OH)m1)がジエチレングリコール、プロパン-1,3-ジオール、ブタン-1,4-ジオール、ポリビニルアルコール等の直鎖脂肪酸多価アルコール;ネオペンチルグリコール、2-メチルプロパンジオール、2、2-ジメチルプロパンジオール、ペンタエリスリトール等の分岐置換基を有する直鎖多価アルコール;ジエチレングリコール、トリエチレングリコール、ポリテトラメチレングリコール(PTMG)等のエーテル基を分子鎖に有する多価アルコール;エタンジオールカーボネート、ブタンジオールカーボネート、エタンジオールポリカーボネート、ブタンジオールポリカーボネート等のカーボネートポリオール、シクロペンタンジオール、シクロペンタンジメタノール、シクロペンタンジエタノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノール、ノルボルナンジオール、ノルボルナンジメタノール、ノルボルナンジエタノール、アダマンタンジオール等の脂環式ジオール類;エリスリタン、イソソルビド、1,4-ジオキサン-2,5-ジメタノール等の環構造にエーテル基を有する多価アルコール;一部の水酸基が保護されていてもよいグリコシド、マンニトール、ソルビトール等の糖類;トリエタノールアミン等のアルカノールアミン類;等である基(つまりこれらの化合物から水酸基を除いた構造)が挙げられる。
 Aで表される芳香族又は脂肪族炭化水素基が有していてもよいOR基以外の置換基としては、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基等の炭素数1~4のアルキルオキシ基;ニトロ基等が挙げられる。OR基以外の置換基を有する場合、その数の上限は、Aで表される基が有しうる置換基数の上限は、通常4以下、好ましく3以下であり、通常1以上である。
 m1は1以上の整数を表し、2以上の整数が好ましく、Aで表される基上の置換可能な水素原子の数によってその上限は決まるが、通常4以下であり、特に好ましくは2である。
 一般式(4)で表される化合物の好ましい例としては、以下、一般式群(7)のいずれかで示すものが挙げられ、ベンゼン環上にはOR基以外の例えば、t-ブチル基などの置換基を有していてもよい。また、芳香族環の一部あるいは全部が還元された核水添体でもよい。またAが脂肪族炭化水素基である化合物の例としては、イソソルビド、1,4-シクロヘキサンジメタノール、2,3-ノルボルナンジオールが挙げられる。
Figure JPOXMLDOC01-appb-C000019
(RO)m2-(A21)-[X-(A22)]n2-X-(A21)-(OR)m2 (5)
(上記式(5)において、Rはアリル基を表し、該アリル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。A21は、置換基を有していてもよい(m2+1)価の芳香族又は脂肪族炭化水素基を表し、A22は、置換基を有していてもよい2価の芳香族又は脂肪族炭化水素基を表す。Xを介して連結するA21とA22、または隣接する複数のA22は、その置換基同士が結合して環を形成していてもよい。Xは、直接結合又は置換基を有していてもよい2価の連結基を表す。m2は1以上の整数を表し、n2は0又は1以上の整数を表す。なお1分子中に含まれる複数のR、A21、A22、X及びm2は、同じであっても異なっていてもよい。)
 A21及びA22は各々、(m1+2)価又は2価の芳香族又は脂肪族炭化水素基を表し、それらは置換基を有していてもよい。
 A21及びA22で表される芳香族又は脂肪族炭化水素基としては、一般式(4)におけるAと同様の炭化水素に由来する基が挙げられ、その炭素数も同様である。A21又はA22で表される基が有していてもよい置換基としては、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基等の炭素数1~4のアルキルオキシ基;ニトロ基等が挙げられ、中でもアルキル基が好ましい。
 A21及びA22が式(5)中に明記された基以外の置換基を有する場合、その数の上限は、A21で表される基が有し得る置換基数の上限であるが、通常4以下、好ましく3以下である。
 Xは、直接結合又は置換基を有していてもよい2価の連結基を表し、2価の連結基としては、メチレン基、ジメチルメチレン基、ジトリフルオロメチルメチレン基、エチレン基、プロピレン基、2,2-プロピレン基、―C(CH)=CH-、および環状構造(フェニル基等)で置換されたメチレン基、シクロへキシレン基、-CO-、-O-、-S-、-SO-、-SO-、-COO-、-C=C-、-C-O-C-、-CH(CN)-、-N=CH-及びテトラヒドロジシクロペンタジエン等の架橋縮合環構造を有する炭素数7~10の脂環式炭化水素等が挙げられる。尚、2価の連結基は任意の置換基を有していてもよい。Xがアルキレン基である場合は、置換基として、(RO)m2-(A21)基(但し、R、A21及びm2は、一般式(5)におけると同義であり、好ましいものも同様である)を有していてもよい。つまり前記式(5)で表される化合物は、式中に明記した2つの(RO)m2-(A21)-基以外に、更に(RO)m2-(A21)-基を有していてもよい。
 上記の中でも、Xとしては直接結合、炭素数1~4の2価アルキレン基(但し、芳香族炭化水素基で置換されていてもよく、該芳香族炭化水素基の炭素数は、好ましくは6~10である)、及び架橋縮合環構造を有する炭素数7~10の脂環式炭化水素が好ましく、特に、直接結合、炭素数1~2のアルキレン基(但し、芳香族炭化水素基で置換されていてもよく、該芳香族炭化水素基の炭素数は、好ましくは6~8である)が好ましい。
 また、Xを介して連結する隣接するA21とA22、又は隣接する複数のA22は、その置換基同士が更に結合して環を形成していてもよい。具体的には、例えばA21とA22、又は2つのA22がメチレン基又はエーテル基を介して結合する例が挙げられ、該環としては、5~6員の炭化水素環又は酸素原子を含む6員環等が挙げられる。
 m2は1以上の整数を表し、その上限はA21で表される基の置換可能な水素原子の数によって決まるが、通常4以下であり、好ましくは2以下である。
 n2は0又は1以上の整数を表すが、その上限は、通常、5であり、好ましくは2である。
 前記一般式(5)で表される化合物の中でも、特に下記一般式(5-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000020
 (上記式(5-1)中、R100は置換基を有していてもよいアリル基を表し、該置換基は炭素数1~6のアルキル基、フェニル基又は炭素数2~7のアルコキシカルボニル基である。
 A121は、置換基を有していてもよい{(m102)+1}価の炭素数6~14の芳香族炭化水素基を表し、A122は、置換基を有していてもよい2価の炭素数6~14の芳香族炭化水素基を表す。X102を介して連結するA121とA122、または複数のA122は、その置換基同士が結合して環を形成していてもよい。X102は、直接結合、メチレン基、ジメチルメチレン基、ジトリフルオロメチルメチレン基、エチレン基、―C(CH)=CH-、フェニル基又は(R100O)m2-(A121)-で置換されていてもよいメチレン基、シクロへキシレン基、-CO-、-O-、-SO-、-COO-、-N=CH-或いはテトラヒドロジシクロペンタジエニレン基を表す。なお1分子中に含まれる複数のR100、A121、A122、X102及びm102は、同じであっても異なっていてもよい。m102は1~4の整数を表し、n102は0~5の整数を表す。)
 前記一般式(5-1)において、R100が有しうる置換基のうち、より好ましくはメチル基、フェニル基、メトキシカルボニル基及びエトキシカルボニル基が挙げられるが、R100は無置換のアリル基が特に好ましい。
 X102として、より好ましくは直接結合、炭素数1~4の2価アルキレン基(芳香族炭化水素基で置換されていてもよく、該芳香族炭化水素基の炭素数は、好ましくは6~10である)、及び架橋縮合環構造を有する炭素数7~10の脂環式炭化水素が好ましく、特に、直接結合、炭素数1~2のアルキレン基(但し、芳香族炭化水素基で置換されていてもよく、該芳香族炭化水素基の炭素数は、好ましくは6~8である)が好ましい。
 より好ましいm102は1又は2であり、より好ましいn102は0、1又は2である。
 一般式(5)で表される化合物の具体例としては、以下の構造式で示されるもの(nは1以上の整数を表す)で示されるもの、およびこれらの芳香族環の一部あるいは全部が還元された核水添体が挙げられる。また、ベンゼン環上には-OR基及び明記されているメチル以外の置換基を有していてもよい。
 <一般式(5)で表される化合物の具体例>
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
  H- [(A(OR)m3)―Xn3-H        (6)
(式中、Rはアリル基を表し、該アリル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよい(m3+2)価の芳香族又は脂肪族炭化水素基を表す。Xは、直接結合、置換基を有していてもよいアルキレン基又は-R61-フェニレン-R62-を表し、R61及びR62は、夫々独立にアルキレン基を表す。m3は1以上の整数を表す。n3は2以上の整数を表す。なお1分子中に含まれる複数のG、A、X、及びm3は同じであっても異なっていてもよい。)
 Aで表される芳香族又は脂肪族炭化水素基としては、一般式(4)におけるAと同様の炭化水素に由来する基が挙げられ、その炭素数も同様である。
 Xは、直接結合、置換基を有していてもよいアルキレン基又は-R61-フェニレン-R62-を表し、ここでR61及びR62は、夫々独立にアルキレン基を表す。Xで表される、置換基を有していてもよいアルキレン基としては、一般式(5)におけるXと同様のものが挙げられるが、中でも炭素数1~4、好ましくは炭素数1又は2のアルキレン基が挙げられる。-R61-フェニレン-R62-におけるR61及びR62としては、各々独立に炭素数1~4、好ましくは炭素数1又は2のアルキレン基が挙げられる。
 m3は1以上の整数を表し、その上限はAで表される基の置換可能な水素原子の数によって決まるが、通常4以下であり、好ましくは2以下である。n3は2以上の整数を表し、通常20以下であり、好ましくは10以下である。
 一般式(6)で表される化合物の具体例としては、以下の構造式で示されるもの(式中n及びn’はn3と同義)およびこれらの芳香族環の一部あるいは全部が還元された核水添体などが挙げられる。また、ベンゼン環上には-OR基及び明記されているメチル基以外の置換基を有していてもよい。
 <一般式(6)で表される化合物の具体例>
Figure JPOXMLDOC01-appb-C000023
 本発明において原料として使用する炭素-炭素二重結合を有する化合物の別の例としては、下記一般式(36)で表される環状オレフィン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 (上記式(36)において、i及びjはそれぞれ独立して1~4の整数を表し、R64~R71はそれぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族炭化水素基、ニトロ基、アルコキシル基、カルボニル基、アシルオキシ基、カルボキシル基もしくはその塩を表す。
 なお、R64~R71のうち、いずれか2以上が互いに結合して、環を形成していてもよい。)
 R64~R71はそれぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族炭化水素基、ニトロ基、アルコキシル基、カルボニル基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基もしくはその塩を表す。
 ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子などが挙げられる。
 アルキル基としては、炭素数1~20のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、ステアリル基などの直鎖状または分岐状のアルキル基;シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などのシクロアルキル基などが挙げられる。これらのアルキル基は置換基を有していてもよく、該置換基としては、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などのアルコキシル基;ニトロ基;カルボキシル基;メトキシカルボニル基、エトキシカルボニル基などのアルコキシカルボニル基;アセチルオキシ基、プロピオニルオキシ基などのアシルオキシ基などが挙げられる。
 芳香族炭化水素基としては、例えばフェニル基、ナフチル基などが挙げられる。 
 芳香族炭化水素基は置換基を有していてもよく、その置換基としては、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などのアルコキシル基;ニトロ基;カルボキシル基;メトキシカルボニル基、エトキシカルボニル基などのアルコキシカルボニル基;アセチル基、プロピオニル基、ベンゾイル基などのアシル基;アセチルオキシ基、プロピオニルオキシ基などのアシルオキシ基などが挙げられる。
 アルコキシル基としては、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などが挙げらる。
 またアシルオキシ基としては、例えば、アセチルオキシ基、プロピオニルオキシ基、ベンゾイルオキシ基などが挙げられる。
 カルボキシル基の塩としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩を挙げることができる。
 なお、R64~ R71のうちいずれか2以上が互いに結合して、環を形成していてもよい。
 i及びjは各々独立に、1~4の整数を表し、好ましくは1~3、より好ましくは1又は2、最も好ましくは2である。
 一般式(36)で示される環状オレフィンとしては、例えば1,4-シクロヘキサジエン、1,5-シクロオクタジエン、1,5,9-シクロドデカトリエン、1,5-ジメチル-1,5-シクロオクタジエン、ジシクロペンタジエン、2,5-ノルボルナジエンなどの環状非共役オレフィン類などを挙げることができる。
 さらに下記一般式(37)で表されるスチレン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 (上記式(37)において、R72~R76はそれぞれ独立して、水素原子、炭素数1~8の直鎖状又は分岐状のアルキル基、炭素数1~8のアルコキシ基、炭素数3~7のシクロアルキル基、芳香族炭化水素基、アラルキル基、アシル基、ヒドロキシ基、ハロゲン原子、カルボキシル基又はアシルオキシ基を示す。
 R77及びR78はそれぞれ独立して、水素原子、炭素数1~8の直鎖状又は分岐状のアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、炭素数3~7のシクロアルキル基、芳香族炭化水素基、アラルキル基、アシル基、カルボキシル基又はアシルオキシ基を示す。
 なお、R72~R78のうちいずれか2つ以上が互いに結合し、環を形成していてもよい。)
 一般式(37)で表されるスチレン類の具体例としては、スチレン、4-メチルスチレン、4-フルオロスチレン、2,4-ジフルオロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、4-ニトロスチレン、4-ビニル安息香酸、α-メチルスチレン、β-メチルスチレン、1-フェニル-1-シクロヘキセン、インデン、ジヒドロナフタレン等が挙げられる。
 本発明におけるオレフィン化合物は、本発明のエポキシ化反応に用いる際に、必要に応じ、不純物を除去する等の前処理をして用いてもよい。
 過酸化水素を用いたエポキシ化反応において、原料や溶媒、反応容器および配管や送液ポンプなどの付帯設備などから混入してくる異物、例えば金属や活性炭、シリカゲル、ガラス片等の影響を受ける場合がある。過酸化水素などの酸化物は、前記の異物と接触することで分解し、反応熱や酸素を発生することがあり、危険を伴う場合がある。反応液中にこれらの異物が混入しない、または影響を受けないようにすることが好ましい。具体的には、前記の異物を除去するために、オレフィン化合物の濾過を行なう、オレフィン化合物を酸性水溶液で洗浄する、オレフィン化合物をキレート化剤(金属とのキレートを形成しうる化合物。具体的には金属マスク剤)で洗浄する、又はエポキシ化反応時にキレート化剤を共存させて反応させることが好ましい。
 原料として用いるオレフィン化合物を洗浄する酸性水溶液に用いる酸の種類は、特に限定はされないが、具体的には塩酸、硫酸、硝酸、リン酸などの無機酸;酢酸、クエン酸などの有機酸が挙げられる。
 酸性水溶液のpHは特に限定はされず、用いるオレフィン化合物の安定性により異なるが、通常pH1以上、好ましくは3以上、通常5以下、好ましくは4以下で行う。pHの調整の目的で、各種の塩を加えてもよく、例えば硫酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム、リン酸水素二ナトリウム、クエン酸ナトリウム等を添加してもよい。
 具体的には、酢酸と硫酸ナトリウムの混合水溶液が好ましい。例えば4%の酢酸と1%硫酸ナトリウムを含むpHが4程度の水溶液がより好ましい。上記の洗浄処理を行なうことで金属が水に可溶化し、水相と共に除去される。
 キレート化剤を含む水溶液としては、金属とのキレート能力を有する化合物を含む水溶液であれば、特に限定はされないが、好ましくは、いわゆる金属マスク剤を含む水溶液が好ましい。例えば日本国特表2002-501005号公報に記載のエチレンジアミン四酢酸や、ピロリン酸等が挙げられる。エチレンジアミン四酢酸及びピロリン酸のうち少なくとも一方を含む水で洗浄する方法が好ましい。これらの処理を行なうことで金属が水に可溶化し、水相と共に除去される。
 また上記キレート化剤は、反応系に添加して用いることができ、エチレンジアミン四酢酸及びピロリン酸のうち少なくとも一方を反応液中に添加する方法が好ましい。金属マスク剤であるこれらのキレート化剤が金属をキレートすることにより、過酸化物の分解を抑制することができるためである。
 <反応操作>
 本発明の製造方法における具体的な反応操作方法としては、特に限定されるものではないが、オレフィン化合物に、過酸化水素、タングステン化合物及びモリブデン化合物のうち少なくとも一方、オニウム塩、必要に応じてリン酸類及びホスホン酸類のうち少なくとも一方を加え、必要に応じ前述の有機溶媒、緩衝液を加える。
 各成分の添加、混合順序は、反応が阻害されない限り限定されるものではないが、エポキシ化反応および過酸化水素分解の際に発熱を伴うため、反応の進行や発熱のコントロールする観点から、各成分を添加した後に過酸化水素を徐々に添加する、または、予めタングステン化合物及びモリブデン化合物のうち少なくとも一方を酸化するのに必要な量の過酸化水素を添加し、タングステン及びモリブデン過酸化物のうち少なくとも一方とした後、残りの過酸化水素を徐々に添加する方法が好ましい。過酸化水素の添加方法としては、分割して添加しても、連続で除々に添加してもよい。安全上の観点から、未反応の過酸化水素が反応系中に滞留しないように、反応の進行具合に応じて、追加するのが好ましい。
 <反応条件>
 本発明の製造方法における反応温度は、反応が阻害されない限り、特に限定されないが、通常10℃以上、好ましくは35℃以上、より好ましくは60℃以上であり、通常90℃以下、好ましくは80℃以下、より好ましくは75℃以下である。前記下限未満では反応速度が遅くなる場合があり、前記上限超過では安全上の観点で好ましくない場合があるためである。
 反応時間は反応温度、触媒量、原料の種類等によって適宜選択でき、特に限定されるものではないが、通常1時間以上、好ましくは3時間以上、より好ましくは4時間以上であり、通常48時間以下、好ましくは36時間以下、より好ましくは24時間以下である。
 本発明の製造方法における反応は、安全上の観点から、常圧、窒素気流下で行うことが好ましい。
 本発明の製造方法は、特に限定されないが、通常は水相と有機相の二相反応系で行なわれる。
 反応時のpHは反応原料の構造により異なる。例えば環状オレフィンはエポキシ化されやすい一方、生成したエポキシが転移や開裂しやすい傾向があるため、中性に近い条件での反応が好ましいが、アリルオキシエーテルの場合は、環状オレフィンと比較してエポキシ化されにくく、開裂しにくい傾向があるため、環状オレフィンの場合より、酸性であることが好ましい傾向がある。pHは特に限定されるものではないが、通常水相のpHは2以上、好ましくは2.5以上、通常6以下である。反応時、水相中の過酸化水素の量によりpHが変化する、また、反応後半では生成したエポキシが酸性条件下で開裂するため、反応の進行具合に応じて適宜、酸または塩基を添加して、pHを最適な範囲に保つことが好ましい。
 本発明の製造方法においては緩衝液を使用することもできる。緩衝液の種類としては、反応を阻害しないものであれば、目的のpHに合わせた緩衝液を適宜用いることができる。緩衝液の例としては、リン酸塩水溶液、リン酸水素塩、又はリン酸二水素塩、又はフェニルリン酸の組み合わせとしては、クエン酸とクエン酸ナトリウム、酢酸と酢酸ナトリウムなどが挙げられる。場合によっては先のタングステン酸類を組み合わせて緩衝液としてもよい。
 本発明の製造方法においては、反応を円滑に進行させる目的で、共酸化剤を使用することもできる。具体的には、カルボン酸、好ましくは炭素数1~10の脂肪族カルボン酸を触媒組成物中に含んでいてもよい。共酸化剤は組成物中に添加してもよく、例えばエステル基を有するオニウム塩の場合、エステル基が加水分解を受けて発生したものであってもよい。
 また同様に界面活性剤やアミン類、ピリジン環化合物等の含窒素化合物を酸化剤組成物中に含んでいてもよい。
 <反応剤除去工程:後処理工程>
 本発明の製造方法においては、エポキシ化反応終了後に後処理を行ない、オニウム塩が有する置換基を活性水素を有する官能基またはその塩に変換する。置換基を変換したオニウム塩は、反応系中の有機相から水相に移動するため、有機相中に存在するエポキシ化合物との分離が容易に行なえる。生成物であるエポキシ化合物は、必要に応じ、更に精製を行なってもよい。
 オニウム塩が有する置換基を、活性水素を有する官能基またはその塩に変換する方法としては、本発明の目的を損なわない範囲においては限定されないが、例えば、エポキシ化合物が分解しない範囲の酸性水溶液、塩基性水溶液を加えて変換する方法、接触水素添加により変換する方法、加熱により変換する方法、置換基を選択的に変換することのできる助剤や酵素を用いて変換する方法、光反応により変換する方法、マイクロ波照射により変換する方法、等々が挙げられる。
 活性水素を有する官能基またはその塩に変換した後、オニウム塩は反応系の水中に移動しており、該オニウム塩とエポキシ化合物を分離する方法としては、エポキシ化合物が分解しない範囲でオニウム塩の物性に応じた分離方法を用いる。分離の方法としては、例えば分液、洗浄、懸洗、吸着、ろ過、蒸留などが挙げられる。
 アルコキシカルボニル基又はアシルオキシ基を有するオニウム塩を使用する場合を例に挙げ、以下具体的に説明する。
 エポキシ化反応終了後に、水相を廃棄、水洗浄後、必要に応じ還元剤を加えて過剰な過酸化水素のクエンチ処理を行う。還元剤としては特に限定されないが、亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸などが挙げられる。また還元剤を加えて過剰な過酸化水素のクエンチ処理を、上記のオニウム塩を水溶性に変換する処理後に行ってもよい。
 引続き、オニウム塩を水溶性に変換する処理を行う。具体的には処理として、アルコキシカルボニル基やアシルオキシ基に含まれるエステル基の加水分解を行うことが好ましい。加水分解方法は特に限定されないが、通常塩基性化合物を用いる方法が行なわれ、塩基性化合物として具体的には水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。操作が簡便であることから、塩基性水溶液による加水分解が好ましく、具体的には、水酸化ナトリウム水溶液や水酸化カリウム水溶液による加水分解が挙げられる。なおオニウム塩の加水分解化合物が、界面活性剤としての性質を有する場合は、塩基処理操作は、反応溶媒を留去した後、あるいは留去しながら行うのが、オニウム塩の加水分解物と生成物を簡便に分離することができるため好ましい。
 前記塩基性水溶液の濃度、pH、温度は、特に限定されないが、エポキシ化合物の分解しない範囲で選択できる。具体的には、水溶液濃度として通常、0.1規定~5規定、好ましくは0.3規定~3規定、更に好ましくは0.5規定~2規定の塩基性水溶液を用いる。水溶液のpHは通常10~12である。水溶液の温度は通常0℃以上、好ましくは20℃以上、通常60℃以下、好ましくは45℃以下で処理する。エステル基の加水分解後、水溶性になったオニウム塩は、洗浄により除去する。これに伴い、触媒金属成分も洗浄により除去される。
 このようにして得られたエポキシ化合物は、触媒金属成分由来の金属、例えばタングステンと、オニウム塩の含有量が少ない。また反応に供した化合物の塩素含有量にもよるが、一般的にエピクロルヒドリンを用いて合成したエポキシ化合物に比べ、塩素含有量が少ないという特徴を有する。
 <精製> 
 上記の方法で得られたエポキシ化合物は、必要に応じて更に精製してもよい。具体的な精製方法は、特に限定されるものではなく、公知の方法を適宜使用することができる。エポキシ化合物が固体の場合は晶析、懸洗、分液、吸着等が挙げられ、エポキシ化合物が液体の場合は分液、洗浄、吸着、蒸留が挙げられる。
 分液、洗浄による精製は、水と水に不溶または難溶な有機溶媒を組み合わせる場合と、お互いに混合しない複数の有機溶媒同士を組み合わせる場合がある。水と水に不溶または難溶な有機溶媒の組み合わせとしては、例えば酢酸エチル、トルエン、ジエチルエーテル、ジイソプロピルエーテル、n-へキサン等の有機溶媒と水の組み合わせが挙げられる。
 お互いに混合しない複数の有機溶媒同士の組合せとしては例えばN,N’-ジメチルホルムアミドとn-ヘプタン、n-へキサン、n-ペンタン、ジイソプロピルエーテル、キシレンのうち少なくともひとつとの組合せ、ジメチルスルホキシドとn-ヘプタン、n-へキサン、n-ペンタン、ジイソプロピルエーテル、ジエチルエーテル、キシレンのうち少なくともひとつとの組合せ、アセトニトリルとn-ヘプタン、n-へキサン、n-ペンタン、シクロへキサン、シクロペンタンのうち少なくともひとつとの組合せ、メタノールとn-ヘプタン、n-へキサン、n-ペンタンのうち少なくともひとつとの組合せがある。
 晶析による精製には、溶媒を減圧留去する、または留去することなしに冷却して晶析させる方法、化合物の溶解度の低い溶媒、いわゆる貧溶媒を加え析出する方法、化合物の溶解度の高い溶媒、いわゆる易溶媒と貧溶媒を組み合わせて析出する方法、反応終了後、水を加えて晶析させる方法等のいずれでもよい。溶媒としては有機溶媒、水、またはその混合物、有機溶媒同士を組み合わせる等、いずれでもよく、化合物の溶解度により適切なものを選択する。有機溶媒としては、酢酸エチル等のエステル類、ヘプタン、ヘキサン、シクロヘキサンなど脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニトリル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン等の非プロトン性溶媒、メタノール、エタノール、2-プロパノール、n-ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、N,N’-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が挙げられる。
 懸洗による精製には、化合物の溶解度の低い溶媒、いわゆる貧溶媒を用いる。好ましい貧溶媒は化合物により異なるが、メタノールなどのアルコール類などの極性の高いものや、逆にプタン、ヘキサン、シクロヘキサンなど極性の低い脂肪族炭化水素が上げられる。
 水溶性の溶媒としては、テトラヒドロフラン、1,3-ジオキソラン、N,N,N-ジメチルホルムアミド、ジメチルスルホキサイド等が挙げられ、これらは水と混合して用いることができる。溶媒量は少なすぎる場合は精製効果が十分ではなく、多すぎる場合には、回収率の低下につながる。懸洗終了後、固形物をろ過回収し、乾燥することによって目的物を得ることができる。
 吸着による精製は、含塩素系不純物と吸着剤として、活性炭、活性白土、モレキュラーシーブス、活性アルミナ、ゼオライト、イオン交換樹脂等が挙げられる。
 上記精製法の中でも、操作法の点からは、エポキシ化合物の性状に関わらず分液法が好ましい。エポキシ化合物が固体の場合は晶析法が有効である。
 <エポキシ組成物>
 上記エポキシ化反応、触媒金属成分やオニウム塩等の分離・除去工程、必要に応じ精製工程を経て、エポキシ化合物を得る。
 本発明の製造方法により得られたエポキシ組成物は、触媒金属由来の金属の含有量が極めて少ない組成物として得られ、該金属の含有量は通常200ppm以下に、好ましくは100ppm以下に、より好ましくは10ppm以下に、更に好ましくは1ppm以下になる。
 同様に、本発明の製造方法により得られたエポキシ組成物は、オニウム塩由来の窒素含有量が少ないものとなり、その含有量は通常500ppm以下に、好ましくは200ppm以下に、より好ましくは10ppm以下になる。
 本発明の製造方法により得られたエポキシ組成物は、ハロゲン原子の含有量が少ないものとなり、その含有量は通常200ppm以下に、好ましくは50ppm以下に、より好ましくは10ppm以下になる。本発明の製造方法は、後述するエポキシ樹脂の他、エポキシ構造を有する医薬中間体等の製造に用いることができる。また本発明のエポキシ組成物は、後述するエポキシ樹脂の他、エポキシ構造を有する医薬中間体等として用いることができる。例えば、ハロゲン置換スチレンオキサイド構造を有する抗真菌剤や糖尿病薬の中間体等の製造が上げられる。本発明の方法で得られたエポキシ組成物は、不純物が少ないため、不純物に由来する毒性の懸念が低減する。
 本発明におけるエポキシ化合物(以下、エポキシ化合物αということがある)は、分子内にエポキシ基を1つ以上有する化合物であれば、特に限定はされないが、具体的なエポキシ化合物としては、下記一般式(32)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 (上記式(32)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。
 A201は置換基を有していてもよい(m201+1)価の芳香族または脂肪族炭化水素基を表し、A202は置換基を有していてもよい2価の芳香族または脂肪族炭化水素基を表し、A203は置換基を有していてもよい(m203+2)価の芳香族または脂肪族炭化水素基を表す。
 X201及びX202は、各々独立に、直接結合又は置換基を有していてもよい2価の連結基を表す。
 p201は0又は1を表す。
 m201及びm203は、各々独立に、1以上の整数を表す。
 n201は1以上の整数を表し、n202は0又は1以上の整数を表し、n203は0又は1を表す。
 但しn202=n203=0の場合、p201=0であればA201はm201価となり、p201=1であればX201は水素原子または1価の基となる。
 なお1分子中に含まれる複数のG、A201、A202、X201、X202、m201及びp201は、同じであっても異なっていてもよい。)
 前記一般式(32)におけるGは、グリシジル基(2,3-エポキシプロパニル基)を表す。該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよく、これら置換基のうち、より好ましくはメチル基、フェニル基、メトキシカルボニル基及びエトキシカルボニル基が挙げられるが、Gは無置換のグリシジル基が特に好ましい。
 なお、前記一般式(32)におけるA201~A203、X201、X202、n201~n203、m201、m203及びp201は、前記一般式(30)におけると同義であり、好ましいものも同様である。
 一般式(32)で表される化合物の中でも、下記一般式(13)~(15)で表される化合物が好ましい。
  (A)-(OG)m1     (13)
(上記式(13)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよいm1価の芳香族又は脂肪族炭化水素基を表す。m1は1以上の整数を表す。なお1分子中に含まれる複数のGは同じであっても異なっていてもよい。)
 なお、Gの具体例および好ましい範囲は前記一般式(32)におけると同様であり、Aの具体例およびその好ましい範囲については、上記一般式(4)におけると同じである。
(GO)m2-(A21)-[X-(A22)]n2-X-(A21)-(OG)m2 (14)
(上記式(14)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。A21は、置換基を有していてもよい(m2+1)価の芳香族又は脂肪族炭化水素基を表し、A22は、置換基を有していてもよい2価の芳香族又は脂肪族炭化水素基を表す。Xを介して連結するA21とA22、又は隣接する複数のA22は、その置換基同士が結合して環を形成していてもよい。Xは、直接結合又は置換基を有していてもよい2価の連結基を表す。m2は1以上の整数を表し、n2は0又は1以上の整数を表す。なお1分子中に含まれる複数のG、A21、A22、X、及びm2は同じであっても異なっていてもよい。)
 なお、Gの具体例及び好ましい範囲は前記一般式(32)におけると同様であり、A21、A22、X、m2およびn2の具体例、並びにそれらの好ましい範囲については、上記一般式(5)におけると同じである。
 H-[(A(OG)m3)―Xn3-H          (15)
(上記式(15)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよい(m3+2)価の芳香族又は脂肪族炭化水素基を表す。Xは、直接結合、置換基を有していてもよいアルキレン基又は-R61-フェニレン-R62-を表し、R61及びR62は、夫々独立にアルキレン基を表す。m3は1以上の整数を表す。n3は2以上の整数を表す。なお1分子中に含まれる複数のG、A、X、及びm3は同じであっても異なっていてもよい。)
 なお、Gの具体例及び好ましい範囲は前記一般式(32)におけると同様であり、A、X、m3及びn3の具体例、並びに好ましい範囲については、上記一般式(6)におけると同じである。
 本発明の製造方法により得られたエポキシ化合物αは、通常エポキシ化合物αが有するグリシジル基の1つ以上が3-アシルオキシ-2-ヒドロキシプロピル基に置換された構造を有する化合物β(但し、該アシル基は-CO-R35、又は-CO-Zで表される基)を含む組成物として得られる。
 これらの化合物は、主に反応後の後処理工程時、塩基条件下でオニウム塩がエポキシ化合物と反応することにより生成する。
 Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。
 R35は以下(18)~(20)のいずれかを表す。
Figure JPOXMLDOC01-appb-C000027
 (上記式(18)において、
 R41は直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表す。
 R42~R44は各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(19)において、
 R45~R50のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 なおR45が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、R46~R50は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、
 R46~R50のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の4つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R45は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(20)において、
 R51~R55のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
 なおR51及びR53の一方が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他方は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表し、R52、R54及びR55は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
 R52、R54及びR55のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の2つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R51及びR53は、各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
 上記式(18)におけるR41~R44に含まれる炭素原子数の合計は20以上、上記式(19)におけるR45~R50に含まれる炭素原子数の合計は15以上、上記式(20)におけるR51~R55に含まれる炭素原子数の合計は17以上である。
 なおR41~R55は同一化合物内で結合して環を形成していてもよい。)
 なお、前記一般式(18)~(20)で表される基は、前記一般式(1)~(3)で表されるオニウム塩のオニウム部分に対応する。
 すなわち、前記一般式(18)~(20)におけるR42~R55のうち、-CO-R35の-CO-に結合しないR(xは42~55のいずれかを表す)は、前記一般式(1)~(3)におけるR~R15のうち、-Y-CO-O-Z又は-Y-O-CO-Z以外の基と同義であり、好ましい基も同様である。
 一方、前記一般式(18)~(20)におけるR42~R55のうち、-CO-R35の-CO-に結合するR(yは42~55のいずれかを表す)及びR41は、前記一般式(1)~(3)における-Y-と同義であり、好ましい基も同様である。
 前記化合物βとして、具体的には前記一般式(13)~(15)又は(32)において、1以上の-OG基が下記式(16)または(17)で表される基で置換され、かつ1以上の-OG基が下記式(33)で表される基で置換されていてもよい化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 (上記式(16)において、R35は、前記式(18)~(20)のいずれかで表される基を表す。上記式(17)において、Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)
 なおZは、前記一般式(1)~(3)におけるZと同義である。
 本発明のエポキシ組成物としては、例えば下記構造式(21)に表すエポキシ化合物α(以下「化合物(21)」と称することがある)と、
Figure JPOXMLDOC01-appb-C000029
 下記一般式(22)で表される化合物β(以下「化合物(22)」と称することがある)や、下記一般式(23)で表される化合物γ(以下「化合物(23)」と称することがある。)を含む組成物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記(22)において、Qは、上記一般式(16)又は(17)における、R35または-Zを表す。なお化合物βは、前記一般式(22)で表される化合物のグリシジルエーテル基が、前記一般式(33)で表される基に置換された化合物であってもよい。更に該エポキシ組成物は、前記構造式(21)で表される化合物のグリシジルエーテル基の一方又は両方が開環し、前記一般式(33)で表される基に変化した化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000031
 化合物β(エステル体)の生成量は、化合物の構造、反応条件および後処理条件により異なるが、化合物αに対して通常0.05モル%以上、10モル%以下、好ましくは5モル%以下である。
 化合物γ(ジオール体)の生成量は、化合物の構造、反応条件および後処理条件により異なるが、化合物αに対して通常0.05モル%以上、10モル%以下である。
 これらの化合物は、上記の後処理や精製工程において低減することが可能であるが、微量エポキシ化合物α中に残存する。
 前記下限値よりも少なすぎる場合は、該エポキシ組成物から得られるエポキシ樹脂の接着性が低下するおそれがあり、前記上限値よりも多すぎる場合は、該エポキシ組成物を重合させる際の反応点が少ないことになるため、エポキシ樹脂の生産性の低下を招く場合がある。
 本発明において化合物βの化合物αに対する存在比率は、NMRにより求めることができる。
 具体的には特定および積算が容易なピークのプロトン積算値を、エポキシ化合物αのピークの積算値と比較することにより求めることができる。例えば、エステル化合物βであれば、エステルを形成するアルコールまたはカルボン酸由来のピークのプロトン積算値を、エポキシ化合物αのピークの積算値と比較することより求めることができる。
 また化合物γの化合物αに対する存在比率は、LC(液体クロマトグラフ)分析で求めることができる。
 具体的には、LC分析で求めた化合物αと化合物γのLC面積比に対し、化合物αと、化合物γのファクターの差、即ちUV吸収量の差を考慮して補正することにより、重量比率やモル比率に換算し、求めることができる。
 なお、化合物αや化合物γのUV吸収が弱く正確に測定することが困難であったり、同一のUV波長で正確に測定することが困難等の理由でLC分析が困難な場合にはGC(ガスクロマトグラフ)分析で求めればよい。具体的にはGC分析で求めた化合物αと化合物γのGC面積比に対し、化合物αと、化合物γのファクターの差、即ち感度の差を考慮して補正することにより、重量比率やモル比率に換算し、求めることができる。
 前記化合物βは、エポキシ基が1つ以上カルボン酸が付加し、開環することによって得られる水酸基を1つ以上有する。エポキシ化合物中に有する水酸基は、エポキシ樹脂の接着性に寄与することが知られている。エピクロロヒドリン法から製造されるエポキシ化合物中には、水酸基が10%前後含まれているため、接着性に寄与することが知られている。従来のオニウム塩を用いるエポキシ化反応では、化合物βに相当するものは生成し得ないため、得られたエポキシ組成物中に水酸基を有する成分が非常に少なく、接着性不足の懸念がある。しかし本発明の製造方法で得られるエポキシ組成物は、前記化合物βを一定量含有するため、その懸念がない点で優れている。
 <エポキシ樹脂の製造方法>
 本発明の製造方法によって得られたエポキシ化合物、及び本発明のエポキシ組成物は、重合することによりエポキシ樹脂を製造することができる。重合反応は、公知の方法を適用することができ、具体的には日本国特開2007-246819号公報等に記載の方法等により行なうことができる。
 <エポキシ樹脂>
 本発明の方法で得られた高純度エポキシ樹脂は、電子材料、光学材料、接着剤、建築分野等で用いることができる。半導体封止材、プリント配線基板、ビルドアップ配線板、ソルダーレジスト等の電子部品材料として用いた場合、不純物が原因で起きる配線の腐食や短絡の、照明の封止剤等の光学材料として用いた場合、着色や劣化の低減や回避が可能となる。
 なお本発明のエポキシ化反応用触媒組成物は、エポキシ化反応以外の酸化反応、好ましくは、オレフィンを酸化する際の酸化剤としても利用可能である。
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例により何等限定されるものではない。
 <H-NMR分析条件>
 装置:BRUKER社製 AVANCE400, 400MHz
 溶媒:0.03体積%テトラメチルシラン含有重クロロホルム
 積算回数:128回
 実施例中のデータは、H-NMR(400MHz、CDCl)におけるδ値を表す。
 また実施例に記載のNMRデータにおける下線は、同定されたプロトンの位置を表す。
 <LC分析条件>
LC装置:島津製作所製 SPD-10Avp
温度:35℃
カラム:Mightysil RP-18GP aqua 150-4.6(5μm)(関東化学社製)
(以下、分析条件1とし、特に断りがない場合は本条件でLC分析をおこなった。)
検出器:UV 280nm
溶離液:アセトニトリル/0.1%トリフルオロ酢酸水溶液=90/10(vol%)
流量:0.5ml/min
(以下、分析条件2とする。)
検出器:UV 254nm
溶離液:アセトニトリル/0.1%トリフルオロ酢酸水溶液60/40→100/0 (vol%)、20分間、その後100/0 (vol%)で10分間保持
流量:0.5ml/min
 <LC-Mass分析条件>
LC装置:Waters Acquity 
温度:40℃
カラム:UPLC BEH C18 2.1X100mm(1.7μm)
溶離液:アセトニトリル/20mM酢酸アンモニウム水溶液=50/50(vol%)→10minで100/0、100/0で10min保持
流量:0.25ml/min
MS装置:Waters LCT Premier XE
イオン化法:ESI(+)法
 <GC分析条件>
装置:島津製作所製 GC-1700
カラム:phenomenex社製 ZB-5(30mx0.25mmφ、0.25μm)
検出器:水素炎イオン検出器 (FID)
キャリヤーガス(窒素流量):28ml/min
カラム温度:100℃より、10℃/minで300℃まで昇温
INJ温度:250℃
DET温度:300℃
 <GC/Mass分析条件>
GC装置:島津製作所製 GC-2010
MS装置:島津製作所製 GCMS-QP2010Plus
カラム:DB-5 25M×0.25(0.25μ)
イオン化法 :EI法及びCI法
 <RI分析条件>
RI装置:日本分光製 JASCO RI-930 
温度:35℃
カラム:ODS-3 150-4.6(5μm)(GLサイエンス製)
溶離液:アセトニトリル
流量:0.5ml/min
 塩素含有量(重量ppm)は、無機および有機を合わせた全塩素量を以下の方法で測定した。試料を燃焼し、吸収液に吸収させた後、イオンクロマトグラフにて測定を行った。燃焼装置は三菱化学社製AQF-100を、イオンクロマトグラフ装置はDIONEX社製 DX-500を用いた。イオンクロマトグラフは、カラムにDIONEX社製Ion Pac AS12Aを用い、電気伝導度で検出を行った。
 タングステン含有量(重量ppm)は以下の方法で測定した。試料0.1から0.5gを秤量し、硫酸2mlを添加し加熱炭化後、さらに硝酸および過酸化水素を添加後加熱し、湿式分解を行った。これに過酸化水素水を2ml添加加温し、純水で40ml程度までメスアップした。さらに過酸化水素水2ml添加し、純水で50mlにメスアップした。その溶液をICP-AES(HORIBA Jobin Yvon社製 ULTIMA 2C)により分析した。
 窒素含有量(重量ppm)は、以下の方法で測定した。試料8mgを酸素およびアルゴン雰囲気内で燃焼させ、発生した分解ガスを燃焼・減圧化学発光法を用いた微量窒素分析装置(三菱化学アナリテック社製 TN-10型)にて測定した。また、標準試料としてアニリンをトルエンに溶解し使用した。
 水相のpHは、pH試験紙 Comparator(Johnson Test Papers社製) pH1.0~3.5 およびpH3.6~5.1を用いて測定した。
(エポキシ化反応原料)
 3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル(別名称:3,3’,5,5’-テトラメチルビフェニル-4,4’-ジアリルエーテル)は、日本国特開2011-213716号公報実施例2に準ずる方法で合成したものを用いた。塩素23ppmを含む。純度99.9%(LC面積%、上記分析条件1)であった。
 1,5-シクロオクタジエンは東京化成社製の試薬を用いた。
 エポキシ化合物(化合物21)中に含有されるジオール化合物γ(化合物23)は、参考例1に記載の方法で標品を合成し、これを用いてNMRピークの帰属、LC分析による保持時間およびUV吸収強度の確認を行ない、化合物21中の化合物23の含有量の定量に用いた。
 実施例12、14、16、18、20、22、25、26中のエステル化合物β(化合物22)は、参考例2記載の方法に従い標品を合成し、この標品のNMR分析を行い、NMRの各ピークの帰属の確認を行った。これを参考に化合物21のNMR分析を行うことにより、化合物21中の化合物22の含有量の定量に用いた。それ以外の実施例では、参考例2で得られた化合物のNMRより類推し、化合物21中の化合物22の含有量の定量を行った。
 尚、実施例2、8、9中のエステル化合物β(化合物22)は、LC-Massにて分子量を確認した。m/z 470.3。
 化合物αに対する化合物β及び化合物γの存在比率を求めるため、まずはエポキシ化反応にて得られた組成物につきLC分析(実施例28はGC分析)を行ない、各成分のLC面積%を測定した。
 化合物αに対する化合物γの存在比率は、LC分析(実施例28はGC分析)によって求められた化合物γの化合物αに対するピーク面積の比に、各化合物の検出感度を補正してモル比率に換算した。各化合物の検出感度は、予め、純度95%以上のそれぞれの化合物の標品を用意し、化合物の正味のモル数の近似値(モル数XLC面積%より推定される純度/100)とそのLCのピーク面積より算出した。
 次いでエポキシ化反応にて得られた組成物につきNMR分析を行なった。
 化合物βの存在比率は、へキサン酸エステルの末端メチル基、t-ブチル安息香酸エステルのt-ブチル基等の特定および積算が容易なピークのプロトン積算値を、エポキシ化合物αのピークの積算値と比較することより求めた。
 化合物βおよびγの含有量は、エポキシ化合物αに対する存在比率、すなわちエポキシ化合物αを100とした場合の、モル比率(mol%)で表した。
 実施例において、エポキシ化反応により(21)を合成する工程中には、上記化合物βおよびγ以外に、反応中にエポキシ環が熱または酸によりアルデヒド異性化後、酸化されたと考えられる成分(LC-Massにおいて、m/z 370.2の化合物)が微量生成する。この化合物、および化合物γはいずれもエポキシ化合物α(21)より極性が高く、LC分析で化合物α(21)より早い保持時間を与える。これらのエポキシ化合物α(21)より早い保持時間を与える化合物を総称して、実施例中で「極性化合物」と称することがある。
(実施例1)
(オニウム塩[1]の合成)
Figure JPOXMLDOC01-appb-C000032
 トリエタノールアミン塩酸塩5.0g(27mmol)、トルエン200ml、トリエチルアミン10.9g(4倍mol/基質)の混合液に氷水冷却下、ヘキサン酸クロライド10.8g(3.0倍mol/基質)を滴下した。室温にて1日攪拌反応後、水150ml、100mlで2回洗浄後、濃縮し、粗トリエタノールアミントリへキサン酸エステル9.8gを得た。
 上記方法で得られた粗トリエタノールアミントリへキサン酸エステルのうち、7.8gをカラム精製し(シリカゲル60N 200g、展開系 ヘキサン/酢酸エチル=4/1)、純度91.2%(GC面積%)のトリエタノールアミントリへキサン酸エステルを1.63g得た。M+H 444.3(GC-Mass)。
 トリエタノールアミントリへキサン酸エステルのNMRデータは以下の通りであった。
0.90(9H,t,-CH3),1.30(12H,m,CH3-CH2CH2-),1.61(6H,m,-CH2-CH2-CO),2.30(6H,t,J=7.56,-CH2-CH2-CO),2.83(6H,t,J=6.08,N-CH2-),4.12(6H,t,J=6.08,-CH2-O-CO-)
 上記トリエタノールアミントリへキサン酸エステル1.63gにトルエン4ml、硫酸ジメチル0.46g(1.0倍mol/基質)、炭酸カリウム0.51g(1.0倍mol/基質)を加え、80℃にて5.5時間反応した。NMR分析にてトリエタノールアミントリへキサン酸エステルのエチレン部分のピークの消失により、原料が転化したことを確認した後、5mlの水で洗浄、20%硫酸水5mlで3回洗浄した。さらに水5mlで洗浄後、濃縮し、粗なN-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩2.1gを得た。m/z 458.3(LC-Mass)、純度75%(RI)。これを精製することなく、エポキシ化反応に供した。
 なお以下で「N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩」を「オニウム塩[1]」ということがある。
 オニウム塩[1]のNMR測定データは以下の通り。
N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩:
0.90(9H,t,-CH3),1.31(12H,m,CH3-CH2CH2-), 1.61(6H,m-CH2-CH2-CO),2.33(6H,t,-CH2-CO),3.38(3H,s,N-CH3),3.92(6H,br,N-CH2-),4.60(6H,br,-CH2-O-CO-),5,78(1H,br,HO-SO2)
 (実施例2)
(オニウム塩[1]を用いたエポキシ化反応)
Figure JPOXMLDOC01-appb-C000033
 3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル5.0g(15.5mmol)、タングステン酸ナトリウム二水和物512mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液1.97ml(11%mol/基質),粗N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩432mg(5%mol/基質),トルエン3mlの混合液を65℃に加温した。窒素気流下、この溶液に45%過酸化水素0.5ml(0.5倍モル/基質)を1時間おきに6回加えた後、更に65~68℃にて7時間、計12時間反応した。上記LC分析により、反応収率81%(LC面積%)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。
 その他に反応中間体である3,3’,5,5’-テトラメチルビフェニル-4,4’-モノアリルエーテルモノグリシジルエーテル(以降この化合物をモノエポキシ化合物と称することがある)を7.0%、前述のジオール化合物γを含む極性化合物が9.5%(いずれもLC面積%)生成していた。
 なお「LC面積」とは、液体クロマトグラフ(LC)分析で得られた分析対象化合物のピーク面積をいい、「LC面積%」とは、組成物全量のピーク面積に対する対象化合物のピーク面積の割合をいう。
 反応終了後、トルエン7.5mlを追加した後、水相を分離後、水5mlで2度洗浄した。5%チオ硫酸ナトリウム水溶液5ml、水5mlで順次洗浄した。さらに1N水酸化ナトリウム水溶液10mlを加え1時間攪拌し、水相を排出した。NMRにてトルエン相を分析し、N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩のエチレン部分のピークの消失により、オニウム塩[1]が加水分解されたことを確認した。同様の水酸化ナトリウム水溶液洗浄とNMR分析を3回繰り返した後、水10mlで洗浄した。得られたトルエン相を濃縮し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を粗結晶として3.8g得た。純度86.4%、収率は60%であった。この粗結晶中にはエステル化合物β(化合物22)が2.7mol%、ジオール化合物γ(化合物23)が5.2mol%含まれていた。
 なお反応前後の化合物のNMRデータは以下の通りであった。
 3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル:2.32(12H,s,-CH3),4.34(4H,dt,O-CH2-),5.27(2H,ddd,-CH=CH2),5.44(2H,ddd,-CH=CH2),6.13(2H,m,-CH=CH2),7.18(4H,s,-C6H2(Me)2-)
 3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21):2.34(12H,s,-CH3),2.75(2H,dd,-CH2-),2.90(2H,dd,-CH2-),3.38(2H,m,-CH-),3.73(2H,dd,-CH2-),4.07(2H,dd,-CH2-),7.18(4H,s,-C6H2(Me)2-)
 上記の方法にて化合物中の塩素、タングステンおよび窒素の含有量を分析した。結果を表1に示した。
 (実施例3)
(オニウム塩[2]の合成)
Figure JPOXMLDOC01-appb-C000034
 ブロモヘキサン酸エチル0.92g(4.1mmol)、ジオクチルアミン1.0g(1倍mol/基質)、エタノール5ml、炭酸カリウム0.57g(1倍mol/基質)の混合液を、10時間リフラックスした。ブロモヘキサン酸エチル0.46gと炭酸カリウム0.29gを追加し、更に5時間リスラックス後、ジオクチルアミン0.25gを追加し、12時間リフラックスした。NMR分析にて、ブロモヘキサン酸エチルとジオクチルアミンの消失を確認後、硫酸ジメチル0.52g(1倍mol/基質)と炭酸カリウム0.57g(1倍mol/基質)を添加し、60℃で2時間反応した。硫酸ジメチル0.52gと炭酸カリウム0.57gを追加し、60℃で更に2時間反応した後、更に硫酸ジメチル0.18gと炭酸カリウム0.15gを追加し、60℃で2時間反応した。NMR分析にて反応中間体のN-(6-エトキシ-6-オキソヘキシル)-N,N-ジオクチルアミンの消失を確認後、不溶物を濾別、濃縮し、N-(6-エトキシ-6-オキソヘキシル)-N-メチル-N,N-ジオクチルアンモニウムモノメチル硫酸塩を2.39g得た。収率91%。
 上記の方法で得られたN-(6-エトキシ-6-オキソヘキシル)-N-メチル-N,N-ジオクチルアンモニウムモノメチル硫酸塩を1.0gを、トルエン2mlに溶解し、20%硫酸水1mlを加え室温で20分間攪拌した。水相を排出した後、再度20%硫酸水1mlを加え室温で20分間攪拌した。水相を排出した後、水1mlを加え室温で20分攪拌し、水相を排出、濃縮し、N-(6-エトキシ-6-オキソヘキシル)-N-メチル-N,N-ジオクチルアンモニウム硫酸水素塩(以下、オニウム塩[2])を1.0gを得た。これを精製することなく、エポキシ化反応に供した。
 得られたオニウム塩[2]のNMRデータは以下の通り。
 N-(6-エトキシ-6-オキソヘキシル)-N-メチル-N,N-ジオクチルアンモニウム硫酸水素塩:0.90(6H,m,-CH3),1.15-1.5(25H,m,-CH2-+-CH3),1.5-1.8(8H,m,-CH2-),2.3-2.4(2H,m,-CH2-CO-),3.23(3H,s,N-CH3),3.2-3.4(6H,m,N-CH2-),4.12(2H,dd,-CH2-O-CO-),5.66(1H,br,HO-SO2)
 (実施例4)
(オニウム塩[2]を用いたエポキシ化反応)
 実施例2と同様の方法で、アンモニウム塩としてN-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩の代わりに、N-(6-エトキシ-6-オキソヘキシル)-N-メチル-N,N-ジオクチルアンモニウム硫酸水素塩(5%mol/基質)を用い、同様に反応を行った。反応収率80%(LC面積%)。得られた化合物21の粗結晶中には中にはエステル化合物β(化合物22)が1.1mol%含まれていた。上記の方法にて化合物中のタングステンの含有量を測定した。測定結果を表1に示した。
 (実施例5)
(オニウム塩[3]の合成)
Figure JPOXMLDOC01-appb-C000035
 トリオクチルアミン5.0g(14.1mol)をトルエン25ml、ブロモ酢酸メチル1.92g(1.0倍mol/基質)の混合液を4時間40℃にて加熱した。NMR分析にて、ブロモ酢酸メチルの消失を確認後、8.5%リン酸水溶液25mlで2回洗浄し、0.57mol/LのN,N,N-トリオクチル-N-(2-メトキシ-2-オキソエチル)アンモニウムリン酸塩(以下、オニウム塩[3])トルエン溶液を得た。これを精製することなく、エポキシ化反応に供した。
 得られたオニウム塩[3]のNMRデータは以下の通り。
 N,N,N-トリオクチル-N-(2-メトキシ-2-オキソエチル)アンモニウムリン酸塩:0.88(9H,t,-CH3),1.20-1.40(30H,m,-CH2-),1.76(6H,m,-CH2-),3.60-3.67(6H,m,-CH2-),3.81(3H,s,-CH3),4.85(2H,s-N-CH2-) 
 (実施例6)
(オニウム塩[3]のを用いたエポキシ化反応)
 実施例2と同様の方法で、アンモニウム塩としてN,N,N-トリオクチル-N-(2-メトキシ-2-オキソエチル)アンモニウムリン酸塩(5%mol/基質)を用い、同様に反応を行った。反応開始後4時間で反応の進行が停止し、反応収率23%(LC面積%)であった。実施例2と同様の方法で、反応混合物のNMR分析を行ったところ、N,N,N-トリオクチル-N-(2-メトキシ-2-オキソエチル)アンモニウム塩の2-メトキシ-2-オキソエチル部分の消失が確認され、オニウム塩[3]の分解がおきていることが示唆された。
 [比較例1]
(メチルトリオクチルアンモニウム硫酸水素塩を用いたエポキシ化反応)
 実施例2と同様の方法で、3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル150.0g(0.47mol)をアンモニウム塩としてメチルトリオクチルアンモニウム硫酸水素塩(5%mol/基質)を用いて反応した。3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルの反応収率は84%(LC面積%)であった。反応終了後、同様の方法で処理し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを粗結晶として147gを得た。収率76%、純度91.2%(LC面積%、LC分析条件2)。この粗結晶にはメチルトリオクチルアンモニウム塩が含まれていたおり、NMR分析でオクチル基の末端メチルのプロトン積算比より6mol%(3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを100とした場合の比率で表す)と推定された。無機分析にて窒素およびタングステンの残存量をそれぞれ測定した。分析結果を表1に示した。
[比較例2]  
 比較例1の方法で得られた3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル1.5gにメタノール10.5mlを加え、50℃にて2時間懸洗後、6℃まで冷却し、懸洗結晶0.89gを濾取した。回収率62%。純度95.2%(LC面積%、LC分析条件2)。この懸洗結晶にはメチルトリオクチルアンモニウム塩が含まれていたおり、含有率は1.75mol%(上記と同様のNMR分析、窒素残存量690ppmに相当)であった。
 (実施例7)
(オニウム塩[1’](モノメチル硫酸を対イオンとする)の合成法)
 トリエタノールアミン塩酸塩20.0g(207mmol)、オクタン60ml、ヘキサン酸43.3g(3.0倍mol/基質)、硫酸5.28gの混合液を135℃のオイルバスで加温し、生成する水を留去しながら61時間反応した。反応系を放冷した後、酢酸エチル200ml、飽和重曹水400mlを加えて攪拌した後、水相を排出し、有機相を水100mlで洗浄した。得られた化合物は、ヘキサン酸モノエステル、ジエステル、トリエステルの混合物であり、エステル化率(NMR分析のH積算比より求めたエステル化された水酸基の比率)は79%であった。
 上記方法で得られた粗トリエタノールアミントリへキサン酸エステルをカラム精製し(シリカゲル60N,300g、展開系 ヘキサン/酢酸エチル=10/1→5/1)、純度98.3%(GC)のトリエタノールアミントリへキサン酸エステルを15.6g得た。収率33%であった。
 上記トリエタノールアミントリへキサン酸エステル0.34g(0.78mmol)にトルエン1.1ml、硫酸ジメチル0.12g(1.2倍mol/トリエタノールアミントリへキサン酸エステル)を加え、90℃にて2時間反応した。N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウムモノメチル硫酸塩(以下、オニウム塩[1’]という)を収率84%(NMR分析のエチレン鎖のH積算値より求めたモル比)で得た。この反応溶液を精製することなくそのままエポキシ化反応に供した。
 (実施例8)
(オニウム塩[1’])を用いたエポキシ化反応)
 3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル5.0g(15.5mmol)をトルエン6.3mlに溶解した溶液を、無水硫酸ナトリウム1重量%および酢酸を1体積%含む水溶液15mlで洗浄した後、3重量%ピロリン酸ナトリウム水溶液0.23ml、10重量%エチレンジアミン四酢酸溶液0.06ml、水15mlの混合液で洗浄した。更に水10mlで洗浄した後、得られたトルエン層にタングステン酸ナトリウム二水和物511mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液0.9ml(5%mol/基質)、水2mlおよび上記のN-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウムメチル硫酸水素塩のトルエン溶液を添加し攪拌した。更にこの混合液にりん酸水溶液を加え、混合液の水相のpHを4.8とした。その際に添加したリン酸水溶液は0.5ml(3%mol/基質)であった。この混合液を65℃に加温した後、窒素気流下、内温65-68℃で、45%過酸化水素0.5ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、6時間後に計5回添加した。反応開始後、1.5時間後に1N水酸化ナトリウム水溶液を0.4ml、4.5時間後に0.1ml、6.5時間後に0.1mlを加え、水相のpHを3.0~3.5に調整した。内温65-68℃で計8時間反応し、上記LC分析により、反応収率82%(LC面積%)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が11%(LC面積%)、極性化合物が6%(LC面積%)生成していることを確認した。
 反応終了後、トルエン7.5mlを追加した後、水相を分離後、水5mlで3度洗浄した。さらに1N水酸化ナトリウム水溶液10mlを加え1時間攪拌し、水相を排出した。同様の水酸化ナトリウム水溶液洗浄を3回繰り返した後、水10mlで洗浄した。得られた有機相を濃縮し、純度83%(LC面積%)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を結晶として4.5g得た。収率は69%であった。エステル化合物β(化合物22)2.4mol%、ジオール化合物γ(化合物23)3.5mol%が含まれていた。上記の方法にて化合物中の塩素、タングステンおよび窒素の含有量を分析した。測定結果を表1に示した。
 (実施例9)
 上記の方法にて得られた、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル2.0gにメタノール15mlを加え、50℃で1時間懸洗し、純度91%(LC面積%)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)の結晶を1.8g得た。回収率98%。この結晶にはエステル化合物β(化合物22)が0.3mol%含まれていた。
 (実施例10)
(オニウム塩[4]の合成)
 反応中、水酸化ナトリウム水溶液の添加を行うことなく、上記実施例8と同様な方法で反応をおこなった。反応収率77%(LC面積%)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が9%(LC面積%)、エポキシ環が酸により開環した化合物γが12%(LC面積%)生成していることを確認した。
 (実施例11)
Figure JPOXMLDOC01-appb-C000036
(上記構造式中、R25は、C8~C18のアルキル基を表す。) 
 ライオン・アクゾ社製エソカードC/12(N-アルキル(C8~C18)-N,N-ビス(2-ヒドロキシエチル)-N-メチルアンモニウムクロライド、イソプロパノールを約20%含む)12.0g、トルエン200mlの混合液を加熱しながら、トルエンとイソプロパノールの混合液を50ml留去した後、トリエチルアミン5.0gを添加し、内温60~80℃で安息香酸クロライド6.7gを添加した後、内温65℃で30分間、80℃で2時間反応した。反応系の経時変化は、反応混合液約0.1mlをメタノール1mlに溶解し、未反応の安息香酸クロライドを安息香酸メチルエステルに変換後、LC分析を、分析条件2にて行った。80℃でトリエチルアミンと安息香酸クロライドを徐々に添加し、安息香酸クロライドの消費が止まったところを反応の終点とした。追加したトリエチルアミンは4.8g、安息香酸クロライドは3.6gであった。
 反応終了後、反応系にトルエン100ml、水100mlを加え攪拌した後、白濁した水相を排出した。この水相を静置すると、有機相が遊離したため、これを分離した有機相にあわせ、水100mlで洗浄し、エソカードC/12の安息香酸エステル体:N-アルキル-N,N-ビス[2-(フェニルカルボニルオキシ)エチル]-N-メチルアンモニウムクロライド13gを得た。純度は82%(LC面積%、LC分析条件2)で、安息香酸を11%(LC面積%)含んでいた。NMRのH積算値よりアルキル鎖の炭素数平均で約14と推定された。(以下オニウム塩[4]とする)
 得られたオニウム塩[4]のNMRデータは以下の通りである。
 N-アルキル-N,N-ビス[2-(フェニルカルボニルオキシ)エチル]-N-メチルアンモニウムクロライド:0.88(3H,-CH3),1.0-1.4(約20H,br,-CH2-),1.76(2H,m,-CH2-),2.00(2H,m,-CH2-),3.63(3H,s,N-CH3),3.63(2H,m-CH2-),4.38(4H,m,N-CH2-),4.91(4H,m,-CH2-CO),7.42(4H,dd,-Ph),7.56(2H,dd,-Ph),8.00(4H,d,-Ph) 
 (実施例12)
(オニウム塩[4]を用いたエポキシ化反応) 
 3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル10.0g(31.0mmol)をトルエン10mlに溶解した溶液を、無水硫酸ナトリウム1重量%および酢酸を1体積%含む水溶液30mlで洗浄した後、3重量%ピロリン酸ナトリウム水溶液0.26ml、10%エチレンジアミン四酢酸溶液0.12ml、水30mlの混合液で洗浄した。水30mlで洗浄した後、得られた有機相にタングステン酸ナトリウム二水和物1.02g(10%mol/基質)、8.5%(重量/体積)りん酸水溶液1.79ml(5%mol/基質)、水2mlおよび上記のエソカードC/12の安息香酸エステル体をA-14を1.0g添加し攪拌した。窒素気流下、内温65~68℃で、45%過酸化水素0.5ml(0.5倍モル/基質)を添加後、更にこの混合液にりん酸水溶液を1.79ml(5%mol/基質)加え、混合液の水相のpHを3.5とした。この混合液を65℃に加温しながら、その1時間後、2時間後、3時間後、6時間後に45%過酸化水素0.5ml(0.5倍モル/基質)を計5回添加し、また8時間後にエソカードC/12の安息香酸エステル体を0.1g対添加した。内温65~68℃で計12時間反応し、上記LC分析により、反応収率82%(LC面積%)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が8%(LC面積%)、極性化合物が5%(LC面積%)生成していることを確認した。
 反応終了後、水相を排出した後、水20mlと飽和食塩水2mlで2度、水20mlで2度洗浄後、室温まで冷却し、反応内容物を固体として析出させた。上澄みの水、トルエン混合液をデカンテーションにて排出後、窒素を吹き込み残存する溶媒を留去し、反応内容物の固体を得た。
 得られた固体に1N水酸化ナトリウム水溶液20mlを加え1時間攪拌し、水相を排出した。同様の操作を3回繰り返した後、5%チオ硫酸ナトリウム水溶液2ml、水20mlで洗浄、水20mlで洗浄し、得られた固体を乾燥し、純度94%(LC面積%)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を粗結晶として8.2g得た。(収率70%) この粗結晶にはエステル化合物β(化合物22)0.6mol%、ジオール化合物γ(化合物23)6.8mol%が含まれていた。
 上記の方法にて化合物中のタングステンの含有量を分析した。測定結果を表1に示した。
 (実施例13)
(オニウム塩[5]の合成)
Figure JPOXMLDOC01-appb-C000037
 4-t-ブチル安息香酸80g(0.44mol)、トルエン240ml、トリエチルアミン0.68g(0.015倍mol/基質)の混合液を75℃に加温した後、塩化チオニル64.1g(1.2倍mol/基質)を1.5時間で添加し、更に1.5時間75℃で反応した。反応終了後、常圧でトルエン100mlを加え、更に減圧条件下でトルエン50mlを加えて余剰の塩化チオニルを留去し、4-t-ブチル安息香酸クロライド90.8gを得た。
 トリエタノールアミン塩酸塩2.0g(10.8mmol)、トルエン20ml、トリエチルアミン4.36g(4倍mol/基質)の混合液に氷水冷却下、上記の方法で得られた4-t-ブチル安息香酸クロライド7.0g(3.0倍mol/基質)を滴下した。60℃にて5時間攪拌反応後、トリエチルアミン1.42(1.3倍mol/基質)、トリエタノールアミン塩酸塩0.4gを追加し、80℃にて10時間攪拌反応した。反応終了後、水20mlで3回洗浄後、濃縮した。得られた粗トリエタノールアミントリへキサン酸エステルにヘキサン40mlを加え結晶化し、これを濾取してトリエタノールアミントリ-4-t-ブチル安息香酸エステル5.12gを得た。純度98.2%(LC分析条件2)、収率63%。
 上記の方法で得た、トリエタノールアミントリ-4-t-ブチル安息香酸エステル0.54g(0.85mmol)にトルエン1.6mlを80℃に加温し、硫酸ジメチル135mg(1.2倍mol/基質)を分割添加しながら3.5時間反応した。転化率91%(LC面積%、LC分析条件2)でN-メチル-N,N,N-トリ[2-(4-t-ブチルフェニルカルボニルオキシ)エチル]アンモニウムモノメチル硫酸塩(以下、オニウム塩[5]とする)の生成を確認した。この反応溶液を精製することなくそのままエポキシ化反応に供した。
 得られたオニウム塩[5]のNMRデータは以下の通り。
 N-メチル-N,N,N-トリ[2-(4-t-ブチルフェニルカルボニルオキシ)エチル]アンモニウムモノメチル硫酸塩:1.28(27H,s,t-Bu),3.58(3H,s,-CH3),3.67(3H,s,CH3OSO2-),4.26(6H,br,N-CH2-),4.92(6H,br,-CH2-CO),7.38(6H,dd,-Ar),7.88(6H,dd,-Ar)
 (実施例14)
 (オニウム塩[5]を用いたエポキシ化反応) 
 予め、上記と同様の方法で前処理した3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル5.0g(15.5mmol)、トルエン3.8ml、タングステン酸ナトリウム二水和物512mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液1.61ml(9%mol/基質)、水3.4mlおよび上記N-メチル-N,N,N-トリ[2-(4-t-ブチルフェニルカルボニルオキシ)エチル]アンモニウムモノメチル硫酸塩トルエン溶液を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、45%過酸化水素0.5ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、4時間後の計5回添加し、7時間反応した。途中1N水酸化ナトリウム水溶液を0.5ml添加し水層のpHを2.5に調整した。反応収率78%(LC面積%、分析条件1)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が8.2%(LC面積%)、極性化合物が10.7%(LC面積%)生成していた。
 反応終了後、トルエン25mlを追加した後、水層を排出し、水10mlで2回洗浄後、5%チオ硫酸ナトリウム水溶液12.5mlで洗浄した。さらに1N水酸化ナトリウム水溶液25mlを加え25℃で15分攪拌し、水層を排出した。水酸化ナトリウム水溶液洗浄を内温35℃で30分間3回繰り返し処理した後、水25mlで洗浄した。N-メチル-N,N,N-トリ[2-(4-t-ブチルフェニルカルボニルオキシ)エチル]アンモニウムモノメチルが加水分解され消失したことをLCおよびNMRにて確認した。得られた有機相を濃縮し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を粗結晶として4.7g得た。純度89.5%(LC面積%、LC分析条件2)収率77%。粗結晶中にはエステル化合物β(化合物22)4.6mol%、ジオール化合物γ(化合物23)1.4mol%が含まれていた。
 上記の方法にて化合物中のタングステンおよび窒素の含有量を分析した。測定結果を表1に示した。
 (実施例15)
(オニウム塩[6]の合成)
Figure JPOXMLDOC01-appb-C000038
 3-ジエチルアミノ-1,2-プロパンジオール2.40g(13.6mmol)、トルエン20ml、トリエチルアミン4.13g(3倍mol/基質)の混合液に氷水冷却下、上記の方法で得られた4-t-ブチル安息香酸クロライド5.8g(2.2倍mol/基質)を滴下した。60℃にて3時間攪拌反応した。反応収率は98%(LC面積%、LC分析条件2)であった。反応終了後、水20mlで3回洗浄後、濃縮した。得られた粗3-ジエチルアミノ-1,2-プロパンジオール-ジ(4-t-ブチル安息香酸)エステルをシリカゲルカラムクラフィー(シリカゲル60N 200g、展開系 ヘキサン/酢酸エチル=4/1→2/1)で精製し、純度98%(LC面積%)3-ジエチルアミノ-1,2-プロパンジオール-ジ(4-t-ブチル安息香酸)エステル5.5gを得た。純度98%(LC面積%、LC分析条件2)、収率71%。
 上記の方法で得た、ジエステル0.16g(0.30mmol)にトルエン1ml、硫酸ジメチル51mg(1.2倍mol/基質)を加え、80℃にて2時間反応した。NMR分析にて転化率99%以上で、2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N-ジエチル-N-メチル-1-プロパンアンモニウムモノメチル硫酸塩(以下、オニウム塩[6]とする)の生成を確認した。この反応溶液を精製することなくそのまま
エポキシ化反応に供した。
 得られたオニウム塩[6]のNMRデータは以下の通りであった。
 2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N-ジエチル-N-メチル-1-プロパンアンモニウムモノメチル硫酸塩:1.37(18H,s,t-Bu),1.43(6H,s,-CH3),3.26(3H,s,CH3-N),3.56(4H,m,N-CH2-CH3),3.73(3H,s,CH3OSO2-),4.36(2H,m,-CH2-O-CO),4.58(1H,dd,-CH2-N),4.78(1H,dd,-CH2-N),6.03(1H,m,-CH-),7.41(2H,dd,-Ar),7.46(2H,dd,-Ar),7.87(2H,dd,-Ar),7.96(2H,dd,-Ar)
 (実施例16)
 (オニウム塩[6]を用いたエポキシ化反応) 
 予め、上記と同様の方法で前処理をした3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル2.0g(6.2mmol)、トルエン1.4ml、タングステン酸ナトリウム二水和物204mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液0.36ml(5%mol/基質)、水3.6mlおよび上記の2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N-ジエチル-N-メチル-1-プロパンアンモニウムモノメチル硫酸塩のトルエン溶液を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、内温65-68℃で、45%過酸化水素0.1ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、6時間後に計5回添加した。内温65-68℃で計7時間反応し、上記LC分析により、反応収率77%(LC面積%、分析条件1)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が11%(LC面積%)、極性化合物が8%(LC面積%)生成していた。
 反応終了後、トルエン6mlを追加した後、水層を排出し、有機相を5重量%チオ硫酸ナトリウム水溶液4mlで洗浄した。さらに1N水酸化ナトリウム水溶液4mlを加え1時間攪拌し、水層を排出した。同様の水酸化ナトリウム水溶液洗浄を4回繰り返した後、2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N-ジエチル-N-メチル-1-プロパンアンモニウムモノメチルが加水分解され消失したことをLCにて確認した。得られた有機相を水4mlで洗浄した後、濃縮し、純度83%(LC面積%)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を粗結晶として1.9g得た。収率72%。エステル化合物β(化合物22)5.0mol%、ジオール化合物γ(化合物23)5.1mol%が含まれていた。
 上記の方法にて化合物中のタングステンおよび窒素の含有量を分析した。測定結果を表1に示した。
 (実施例17)
(オニウム塩[7]の合成)
Figure JPOXMLDOC01-appb-C000039
 1-クロロ-2、3-プロパンジオール10.3g(93.2mol)とトリエチルアミン14.1g(1.5倍モル/基質)を80℃で12時間加熱攪拌した。エタノール10mlを加え、反応系を均一化した後、ヘキサンを加え、2,3-ジヒドロキシプロピルトリエチルアンモニウムクロライドを沈殿物として得た。残存するエタノールをトルエンを用いて共沸留去した後、減圧乾燥し、19.4gの、2,3-ジヒドロキシプロピルトリエチルアンモニウムクロライドを得た。粗収率98%。
 上記の方法で得られた粗な2,3-ジヒドロキシプロピルトリエチルアンモニウムクロライド3.0g、トルエン30ml、トリエチルアミン5.17g(2.2倍モル/基質)の混合液を70℃に加温し、上記の方法で合成した4-t-ブチル安息香酸クロライド7.4g(2.2倍モル/基質)を加え、途中テトラヒドロフランを10ml添加、トリエチルアミンを2.2g(1.3モル/基質)追加しながら16時間反応を行った。放冷後、反応系中の析出固体を濾取した。この固体をクロロホルム50mlに溶解し、水10mlで2回洗浄後、溶媒を留去し、2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウムクロライドを4.8g得た。純度96%(LC)。収率92%。
 上記の方法で得られたアンモニウムクロライド2gをダイヤイオンHP120(三菱化学製)100mlにて精製し(展開溶媒:エタノール)、濃縮した。得られた残渣を酢酸エチル30mlに溶解し、10%(v/v)硫酸水で5mlで2回洗浄後濃縮し、2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウム硫酸水素塩(以下、オニウム塩[7])を1.42g得た。純度98%(LC面積%、LC分析条件2)。
 得られたオニウム塩[7]のNMRデータは以下の通り。
 2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウム硫酸水素塩:1.32(18H,s,t-Bu),1.47(9H,s,-CH3),3.59(6H,m,N-CH2-CH3),4.29(1H,m,HSO4),4.37(2H,m,-CH2-O-CO),4.64(1H,dd,-CH2-N),4.82(1H,dd,-CH2-N),6.00(1H,m,-CH-),7.42(4H,dd,-Ar),7.90(4H,dd,-Ar)
 (実施例18)
(オニウム塩[7]を用いたエポキシ化反応)  
 予め、上記と同様の方法で前処理した3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル5.0g(15.5mmol)、トルエン3.8ml、タングステン酸ナトリウム二水和物51.2mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液1.25ml(7%mol/基質)、水3.4mlおよび上記の2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウム硫酸塩0.46g(5%mol/基質)を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、45%過酸化水素0.5ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、4時間後、6時間後に計6回添加した。内温65~66℃で4時間、内温68~69℃で6時間、計10時間反応し、上記LC分析により、反応収率82%(LC面積%、分析条件1)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が5.4%(LC面積%)、極性化合物が10.7%(LC面積%)生成していた。
 反応終了後、トルエン20mlを追加した後、水層を排出し、水10mlで2回洗浄後、5%チオ硫酸ナトリウム水溶液12.5mlで洗浄した。さらに1N水酸化ナトリウム水溶液25mlを加え25℃で1時間攪拌し、水層を排出した。水酸化ナトリウム水溶液洗浄を内温35℃で30分間3回繰り返し処理し、オニウム塩[7]が加水分解され消失したこと、オニウム塩[7]の加水分解物であるt-ブチル安息香酸が有機相に残存していないことをLCおよびNMRで確認した。得られた有機相を水25mlで洗浄した後、濃縮した。3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(化合物21)を粗結晶として4.88g得た。純度87.5%(LC面積%、LC分析条件2)。収率78%。エステル化合物β(化合物22)が4.5mol%、ジオール化合物γ(化合物23)が3.7mol%含まれていた。
 上記の方法にて化合物中の窒素およびタングステンの含有量を分析した。測定結果を表1に示した。 
 (実施例19)
(オニウム塩[8]の合成)
Figure JPOXMLDOC01-appb-C000040
 3-クロロ-1,2-プロパンジオール2.00g(18.1mmol)、トリエチルアミン4.58g(2.5倍mol/基質)の混合液を、4-t-ブチル安息香酸6.45g(2.0倍mol/基質)、塩化チオニル4.3g(2倍mol/基質)、トルエン20mlより上記と同様にして合成した4-t-ブチル安息香酸クロライド中に滴下した。50℃にて7時間攪拌反応した。反応終了後、水10mlで2回洗浄後、濃縮した。得られた粗3-クロロ-1,2-プロパンジオール-ジ(4-t-ブチル安息香酸)エステルにヘキサンを加えて結晶化し、3-クロロ-1,2-プロパンジオール-ジ(4-t-ブチル安息香酸)エステル5.0gを得た。LC純度98.5%(LC面積%、LC分析条件2)、収率64% 
 上記の方法で得られた3-クロロ-1,2-プロパンジオール-ジ(4-t-ブチル安息香酸)エステル1.00gにピリジン5.24g(30倍mol/基質)、ヨウ化カリウム37mg(0.1倍mol/基質)を加え、32時間リフラックス条件下で攪拌反応した。転化率98%、選択率62%(LC面積%、LC条件2)で1-[2,3-ビス[(4-t-ブチルフェニルカルボニルオキシ)プロピル]ピリジニウムクロライドを得た。ピリジンを留去した後、得られた残渣にヘキサン20mlを加え、1-[2,3-ビス[(4-t-ブチルフェニルカルボニルオキシ)プロピル]ピリジニウムクロライド(以下オニウム塩[8])を0.32g得た。純度92.9%(LC面積%、LC分析条件2)。収率28%。
 得られたオニウム塩[8]のNMRデータは以下の通り
 1-[2,3-ビス[(4-t-ブチルフェニルカルボニルオキシ)プロピル]ピリジニウムクロライド:1.32(18H,d,t-Bu),4.91(2H,m,-CH2-O-CO),5.38(2H,m,-CH2-N),5.93(1H,m,-CH-),6.22(1H,m,-CH2-N),6.03(1H,m,-CH-),7.42(2H,dd,-Ar),7.45(2H,dd,-Ar),7.82(2H,dd,-Ar),7.97(2H,dd,-Ar),8.40(1H,m,Py),9.61(2H,m,Py)
 (実施例20)
 オニウム塩[8]を用いたエポキシ化反応
 予め、上記と同様の方法で無水硫酸ナトリウム1重量%および酢酸を1体積%含む水溶液、次に3重量%ピロリン酸ナトリウム水溶液と10重量%エチレンジアミン四酢酸溶液の混合溶液、更に水で洗浄した3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル1.0g(3.1mmol)、トルエン1.0ml、タングステン酸ナトリウム二水和物102mg(10%mol/基質)、8.5%(重量/体積)りん酸水溶液0.36ml(5%mol/基質)、水1mlおよび上記の1-[2,3-ビス[(4-t-ブチルフェニルカルボニルオキシ)プロピル]ピリジニウムクロライド81mg(5%mol/基質)を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、内温65-68℃で、45%過酸化水素0.1ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、4時間後に計5回添加し、各添加後1時間ずつ反応した。その後りん酸水溶液0.10mlを加え、水層のpHを2.5に調整し、さらに45%過酸化水素0.1ml(0.5倍モル/基質)を1時間ごとに2回添加しながら内温68℃で反応し、計9時間反応した。反応収率68%で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が13.7%、極性化合物が10.2%(LC面積%)生成していた。
 反応終了後、トルエン10mlを追加した後、水層を排出し、有機相を5%チオ硫酸ナトリウム水溶液5mlで洗浄した。さらに1N水酸化ナトリウム水溶液5mlを加え1時間攪拌し、水層を排出した。同様の水酸化ナトリウム水溶液洗浄を4回繰り返し、オニウム塩[8]が加水分解され消失したことおよび加水分解物であるt-ブチル安息香酸の残存がないことをLCおよびNMRにて確認した後、水5mlで洗浄した。得られた有機相を濃縮し、純度68%(LC面積%、LC分析条件2)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを粗結晶として0.9g得た。収率56%。エステル化合物β(化合物22)が6.2mol%含まれていた。
 上記の方法にて化合物中のタングステンの含有量を分析した。測定結果を表1に示した。
(実施例21) 
(オニウム塩[9]の合成)
Figure JPOXMLDOC01-appb-C000041
 12-ブロモドデカン酸5g(18.8mmol)、ヘキサノール2.35ml(1倍モル/基質)、トルエン100ml、硫酸0.2mlの混合液を生成する水をトルエンと共沸留去しながら4時間反応した。ヘキサノール0.47ml(0.2倍モル/基質)を追加し、更に2.5時間反応した。水100ml、次に飽和重曹水50ml、さらに水50mlで洗浄し、溶媒を留去し、純度99%以上で2-ブロモドデカン酸ヘキシルエステル6.3gを得た。収率92%(GC面積%)
 上記の方法で得られた12-ブロモドデカン酸ヘキシルエステル2.20g(6.1mmol)、ジブチルアミン0.78g(1.0倍モル/基質)を加え、途中ジブチルアミン0.31g(0.4倍モル/基質)を2回追加しながら、110℃にて19時間攪拌反応した。反応終了後、酢酸エチル20mlを加え、水10mlで2回洗浄した。得られた有機層を濃縮後、カラム精製し(Silica60N 100g、展開溶媒:ヘキサン/酢酸エチル=4/1→2/1)12-N,N-ジブチルドデカン酸ヘキシルエステル1.68gを得た。収率67%。
 上記の方法で得られた12-N,N-ジブチルドデカン酸ヘキシルエステル0.165g(0.4mmol)にトルエン1.2ml、硫酸ジメチル57.5mg(1.5倍mol/基質)を加え、70℃にて3時間反応した。NMR分析にて転化率99%以上で、N、N-ジエチル-N-メチル-1-ドデカン酸ヘキシルエステルアンモニウムメチル硫酸塩(以下オニウム塩[9]とする)の生成を確認した。この反応溶液を精製することなくそのまま酸化反応に供した。
得られたオニウム塩[9]のNMRデータは以下の通り。
 N、N-ジエチル-N-メチル-1-ドデカン酸ヘキシルエステルアンモニウムメチル硫酸塩:0.85-1.10(9H,m,-CH3),1.25-1.80(34H,m,-CH2-CH2-CH2-),2,38(2H,m,-CO-CH2-),3.07(3H,s,N-CH3),3.21(6H,m,N-CH2-),3.83(3H,s,CH3S02-),4.12(2H,m,-COO-CH2)
(実施例22) 
(オニウム塩[9]を用いたエポキシ化反応)
 予め、上記と同様の方法で前処理した3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル2.0g(6.2mmol)、トルエン1.2ml、タングステン酸ナトリウム二水和物0.205g(10%mol/基質)、8.5%(重量/体積)りん酸水溶液0.64ml(9%mol/基質)、水1.4mlおよび上記の12-N,N-ジブチルドデカン酸ヘキシルエステルアンモニウムモノメチル硫酸塩のトルエン溶液を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、内温65-68℃で、45%過酸化水素0.1ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、4時間後、6時間後に計6回添加した。反応時の水相のpHは2.0であった。内温65-68℃で計6時間反応し、上記LC分析により、反応収率81.3%(LC面積%)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、モノエポキシ化合物が10.7%、極性化合物が7.4%(LC面積%)生成していた。
 反応終了後、トルエン20mlを追加した後、水層を排出し、有機相を5%チオ硫酸ナトリウム水溶液10mlで洗浄した。さらに1N水酸化ナトリウム水溶液10mlを加え1時間攪拌し、水層を排出した。同様の水酸化ナトリウム水溶液洗浄を3回繰り返した後、水8mlで洗浄した。得られた有機相を濃縮し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを粗結晶として2.08g得た。純度86.4%(LC面積%、LC分析条件2)収率82%。
 得られた上記粗結晶1g(2.4mmol)にトルエン3mlを加え50℃に加温し溶解した後、メタノール7mlを加え、6℃に冷却し、析出した結晶を濾取し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルの結晶を0.52g得た。NMRでオニウム塩(10)および、オニウム塩の分解物が結晶中に含まれないことを確認した。純度95.6%(LC面積%、LC分析条件2)。回収率58%。エステル化合物β(化合物22)が0.7mol%、ジオール化合物γ(化合物23)が6.9mol%含まれていた。
(実施例23)
(オニウム塩[10]の合成) 
Figure JPOXMLDOC01-appb-C000042
 4-クロロブタノール1g(9.2mmol)、ピリジン7.4ml、トルエン10ml中にクロロギ酸ヘキサデシル2.81g(1.0倍mol/クロロブタノール)を加え室温にて3時間反応した。析出したピリジン塩酸塩を少量のトルエンを用い濾別し、4-クロロブチルヘキサデシルカーボネート、ピリジンおよびトルエンの混合液を37g得た。得られた溶液のうちの1gを途中ピリジン2mlを追加しながら10時間反応した。反応溶液のNMR分析でクロロギ酸ヘキサデシルが消失したことを確認し、ピリジンを留去し、得られた残渣にヘキサンを加えて結晶を得た。この結晶をエタノールに溶解し、不溶物を濾過した後、濃縮し、1-[(ヘキサデシルオキシカルボニル)オキシ]ブチル]ピリジニウムクロライド(以下オニウム塩[10]とする)を0.11g得た。収率95%以上。純度90%以上(NMR)。
 得られたオニウム塩[10]のNMRデータは以下の通り。
 1-[(ヘキサデシルオキシカルボニル)オキシ]ブチル]ピリジニウムクロライド:
0.88(3H,dd,-CH3),1.2-1.4(26H,m,-CH2-),1.66(2H,m,-CH2-),1.85(2H,m,-CH2-),2.20(2H,m,-CH2-),4.11(2H,dd,-CH2-),4.20(2H,dd,-CH2-),5.20(2H,dd,N-CH2-),8.09(2H,dd,Py),8.46(1H,dd,Py),9.53(2H,dd,Py) 
 (実施例24)
(オニウム塩[10]を用いたエポキシ化反応)  
 予め、上記と同様の方法で前処理した3,3’,5,5-テトラメチル-4,4’-ビス(2-プロペン-1-イルオキシ)-1,1’-ビフェニル1.5g(4.7mmol)、トルエン1ml、オクタン1ml、タングステン酸ナトリウム二水和物0.154g(10%mol/基質)、8.5%(重量/体積)りん酸水溶液0.48ml(9%mol/基質)、水1.0mlおよび上記の1-[(ヘキサデシルオキシカルボニル)オキシ]ブチル]ピリジニウムクロライド0.106g(5%mol/基質)を添加し攪拌した。この混合液を65℃に加温した後、窒素気流下、45%過酸化水素0.5ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、4時間後、6時間後に計6回添加した。反応中の水相のpHは約3.0であった。内温65-66℃で7時間、内温68-69℃で10時間、計17時間反応し、上記LC分析により、反応収率53.7%(LC面積%、分析条件1)で3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が10.3%(LC面積%)、極性化合物が22.0%(LC面積%)生成していた。
 反応終了後、トルエン7.5mlを追加した後、水層を排出し、水7.5mlで2回洗浄後、5%チオ硫酸ナトリウム水溶液7.5mlで洗浄した。さらに1N水酸化ナトリウム水溶液7.5mlを加え25℃で1時間攪拌し、水層を排出した。水酸化ナトリウム水溶液洗浄を内温30℃で30分間3回繰り返し処理し、オニウム塩[11]が加水分解され消失したことをLCおよびNMRにて確認し、水25mlで洗浄した。得られた有機相を濃縮し、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを粗結晶として0.94g得た。純度63.0%(LC面積%、LC分析条件2)、収率36%。
(実施例25) 
 実施例14で得られた3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル粗結晶2.0gにメタノール14mlを加え、50℃で3時間懸洗を行った。6℃まで冷却後、結晶を濾取し、純度90.9%(LC面積%、LC分析条件2)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを1.55g得た。回収率79%。この懸洗結晶中にはエステル化合物β(化合物22)2.6mol%、ジオール化合物γ(化合物23)0.6mol%が含まれていた。上記の方法にて化合物中の窒素及び塩素の含有量を分析した。測定結果を表1に示した。
(実施例26) 
 実施例16で得られた3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル粗結晶0.69gにメタノール3mlを加え、50℃で1時間懸洗を行った。6℃まで冷却後、結晶を濾取し、純度90.4%(LC面積%、LC分析条件2)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを0.52g得た。回収率80%。この懸洗結晶中にはエステル化合物β2.0mol%(化合物22)、ジオール化合物γ(化合物23)1.2mol%が含まれていた。上記の方法にて化合物中の窒素の含有量を分析した。測定結果を表1に示した。
(実施例27) 
 実施例18で得られた3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル粗結晶2.0gにトルエン3mlを加え50℃に加温し溶解した後、メタノール14mlを加えた。6℃まで冷却後、析出した結晶を濾取し、純度96.1%(LC面積%、LC分析条件2)の3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテルを1.38g得た。回収率71%。この結晶中にはエステル化合物β0.2mol%、ジオール化合物γ0.5mol%が含まれていた。
 上記の方法にて化合物中の窒素の含有量を分析した。測定結果を表1に示した。
(実施例28)
(オニウム塩[7]を用いた1,5-シクロオクタジエンのエポキシ化反応)  
 1,5-シクロオクタジエン3.0g(27.7mmol;東京化成社製)、トルエン9ml、タングステン酸ナトリウム二水和物0.183g(2%mol/基質)、8.5%(重量/体積)りん酸水溶液0.32ml(1%mol/基質)、水3.4mlおよび上記の2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウム硫酸塩(オニウム塩[7])0.16g(1%mol/基質)を添加し攪拌した。この混合液を50℃に加温した後、窒素気流下、45%過酸化水素0.9ml(0.5倍モル/基質)を反応開始時、その1時後、2時間後、3時間後、5時間後、7時間後に計6回添加した。反応開始後2時間の水相のpHは4.8であった。内温50-51℃で計9時間反応し、上記GC分析により、反応収率90.2%(GC面積%)で1,2,5,6-ジエポキシシクロオクタンが生成していることを確認した。その他に、反応中間体であるモノエポキシ化合物が6.6%(LC面積%)、エポキシが開環した化合物が3.2%(GC面積%)生成していた。
 反応終了後、トルエン10mlを追加した後、水層を排出し、水3mlで洗浄後、5%チオ硫酸ナトリウム水溶液10mlで洗浄した。さらに1N水酸化ナトリウム水溶液10mlを加え25℃で15分間攪拌し、水層を排出した。水酸化ナトリウム水溶液洗浄を内温30℃で30分間3回繰り返し処理し、オニウム塩[7]が加水分解され消失したこと、およびオニウム塩[7]の加水分解物であるt-ブチル安息香酸が有機相に残存していないことをLCおよびNMRにて確認した。有機相を更に水4mlで2回洗浄した後、得られた有機相を濃縮し、液状の1,2,5,6-ジエポキシシクロオクタンを1.0g得た。純度97%(GC面積%)収率26%。この化合物はエステル化合物βを1.8mol%を含有していた。
 上記の方法にて化合物中のタングステンおよび窒素の含有量を分析した。測定結果を表1に示した。
 1,2,5,6-ジエポキシシクロオクタンのNMRデータは以下の通り。
 1,2,5,6-ジエポキシシクロオクタン:
1.82-2.05(8H,m,-CH2-),3.00(4H,m,-CH-O-)
(参考例1)不純物標品の合成
3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]-1,2-プロパンジオール(化合物γ)の合成
 3,3’,5,5’-テトラメチルビフェニル-4,4’-ジグリシジルエーテル(0.028mol)10gに酢酸50mlを加え、内温約85℃で9時間反応した。酢酸をトルエンと共沸しながら減圧で留去し、16.1gの残渣を得た。これに1N水酸化ナトリウム水溶液60mlを加え室温で2時間反応した。析出した[[3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-イル]オキシ]ビス-(1,2-プロパンジオール)を主成分とする固体を濾別し、濾物を酢酸エチル100mlで洗浄した。洗液の酢酸エチルと水相を合わせて分液し、得られた有機相を濃縮、得られた残渣をカラムクロマトグラフィー(silica60N 300g、展開溶媒:ヘキサン/酢酸エチル=1/1~1/2)で精製し、3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]-1,2-プロパンジオールを結晶として3.8g得た。収率36%。純度95.5%(LC面積%、LC分析条件2)
 得られたジオール化合物γのNMRデータは以下の通り。
3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]-1,2-プロパンジオール:2.34(12H,s,-CH3),2.72(1H,dd,-CH2-),2.91(1H,dd,-CH2-),3.44(1H,m,-CH-),3.76(1H,dd,-CH2-),3.79(2H,m,-C2-OH),3.90(2H,d,O-C2-CH(OH)),4.08(1H,dd,-CH2-),4.09(1H,m,CH-OH),7.18(4H,s,-C6H2(Me)2-)
(参考例2)
4-t-ブチル安息香酸-2-ヒドロキシ-3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]プロピルエステル(化合物β)の合成
 上記の方法で得られたジオール化合物0.1g(0.3mmol)、トルエン2ml、トリエチルアミン0.11ml(3倍mol/基質)の混合液中に上記の方法で得られたt-ブチル安息香酸クロライド0.08g(1.5倍mol/基質)を加え、室温にて5時間反応した。反応後、酢酸エチル6ml、水2mlを加え攪拌し、得られた有機相をカラムクロマトグラフィー(silica60N 30g、展開溶媒:ヘキサン/酢酸エチル=4/1)で精製し、4-t-ブチル安息香酸-2-ヒドロキシ-3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]プロピルエステルを約50mg(化合物β)を約50mg得た。純度96.3%(LC面積%、LC分析条件2)
 得られた化合物βのNMRデータは以下の通り。
 4-t-ブチル安息香酸-2-ヒドロキシ-3-[[3,3’,5,5’-テトラメチル-4’-(2-オキシラニルメトキシ)[1,1’-ビフェニル]-4-イル]オキシ]プロピルエステル:
1.32(9H,s,t-Bu),2.34(12H,s,-CH3),2.73(1H,dd,-CH2-),2.90(1H,dd,-CH2-),3.40(1H,m,-CH-),3.78(1H,dd,-CH2-),3.95(2H,m,O-CH2-CH(OH)),4.10(1H,m,-CH2-),4.39(1H,m,C-OH),4.60(2H,m,-CH2-OCO-),7.18(4H,s,-C6H2(Me)2-),7.49(2H,d,t-Bu-C6H4-),7.99(2H,d,t-Bu-C6H4-)
Figure JPOXMLDOC01-appb-T000043
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年3月30日出願の日本特許出願(特願2012-082319)、2012年10月12日出願の日本特許出願(特願2012-226995)、及び2013年1月25日出願の日本特許出願(特願2013-012207)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (24)

  1.  エポキシ化合物の製造方法であって、
     炭素-炭素二重結合を有する化合物に、
     タングステン化合物及びモリブデン化合物のうち少なくとも一方と、
     活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有し、かつ炭素原子を20以上含むオニウム塩との存在下、
     過酸化水素を反応させる、エポキシ化合物の製造方法。
  2.  前記活性水素を含む官能基が、水酸基、カルボキシル基、アミノ基、メルカプト基、スルホン酸基又はリン酸基である請求項1に記載のエポキシ化合物の製造方法。
  3.  前記反応時に、さらにリン酸類及びホスホン酸類(但しオニウム塩を除く)のうち少なくとも一方を共存させる請求項1または2に記載のエポキシ化合物の製造方法。
  4.  前記反応が水相と有機相の二相系反応であり、かつ前記水相のpHが2以上6以下である、請求項1~3のいずれか1項に記載のエポキシ化合物の製造方法。
  5.  前記オニウム塩が、アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩又はホスホニウム塩である請求項1~4のいずれか1項に記載のエポキシ化合物の製造方法。
  6.  前記活性水素を含む官能基またはその塩に変換可能な置換基が、アルコキシカルボニル基又はアシルオキシ基である請求項1~5のいずれか1項に記載のエポキシ化合物の製造方法。
  7.  前記オニウム塩が、下記一般式(1)~(3)のいずれかで表される化合物である請求項1~6のいずれか1項に記載のエポキシ化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記式(1)ないし(3)において、R~Rのうちのいずれか1つ以上、R~R10のうちのいずれか1つ以上、及びR11~R15のうちのいずれか1つ以上は、それぞれ独立して、-Y-CO-O-Z、または-Y-O―CO-Z(但し、Yは直接結合または、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)を表す。
     R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
     R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
     R~R15は同一化合物内で結合して環を形成していてもよい。
     なお、上記式(1)におけるR~Rに含まれる炭素原子数の合計は20以上であり、上記式(2)におけるR~R10に含まれる炭素原子数の合計は15以上であり、上記式(3)におけるR11~R15に含まれる炭素原子数の合計は17以上である。
     Xは、1価のアニオンを表す。)
  8.  前記製造方法において、反応後に、前記活性水素を含む官能基またはその塩に変換可能な置換基を、塩基性化合物で加水分解する請求項1~7のいずれか1項に記載のエポキシ化合物の製造方法。
  9.  前記炭素-炭素二重結合を有する化合物を、酸性水溶液で洗浄した後に反応に供する、請求項1~8のいずれか1項に記載のエポキシ化合物の製造方法。
  10.  前記炭素-炭素二重結合を有する化合物を、キレート化剤水溶液で洗浄した後に反応に供する請求項1~8のいずれか1項に記載のエポキシ化合物の製造方法。
  11.  前記製造方法において、キレート化剤を反応時に共存させる、請求項1~10のいずれか1項に記載のエポキシ化合物の製造方法。
  12.  エポキシ化合物を重合してエポキシ樹脂を製造する方法であって、請求項1~11のいずれか1項に記載の方法でエポキシ化合物を製造する工程と、前記工程で得られたエポキシ化合物を重合する工程を含むエポキシ樹脂の製造方法。
  13.  タングステン化合物及びモリブデン化合物のうち少なくとも一方と、
     活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有する、炭素数が20以上のオニウム塩と、を含むエポキシ化反応用触媒組成物。
  14.  前記活性水素を含む官能基が、水酸基、カルボキシル基、アミノ基、メルカプト基、スルホン酸基又はリン酸基である請求項13に記載のエポキシ化反応用触媒組成物。
  15.  前記組成物が、さらにリン酸類及びホスホン酸類(但しオニウム塩を除く)のうち少なくとも一方を含む請求項13または14に記載のエポキシ化反応用触媒組成物。
  16.  前記オニウム塩が、アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩又はホスホニウム塩である請求項13~15のいずれか1項に記載のエポキシ化反応用触媒組成物。
  17.  前記活性水素を含む官能基またはその塩に変換可能な置換基が、アルコキシカルボニル基又はアシルオキシ基である請求項13~16のいずれか1項に記載のエポキシ化反応用触媒組成物。
  18.  更にカルボン酸(但し、カルボキシ基を有するオニウム塩を除く)を含有する請求項13~17のいずれか1項に記載のエポキシ化反応触媒組成物。
  19.  前記オニウム塩が、下記一般式(1)~(3)のいずれかで表される化合物である請求項13~18のいずれか1項に記載のエポキシ化反応用触媒組成物。
    Figure JPOXMLDOC01-appb-C000002
     (上記式(1)ないし(3)において、R~Rのうちのいずれか1つ以上、R~R10のうちのいずれか1つ以上、及びR11~R15のうちのいずれか1つ以上は、それぞれ独立して、-Y-CO-O-Z、または-Y-O―CO-Z(但し、Yは直接結合または、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わす。)を表す。
     R~R、R11及びR13は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基又はベンジル基を表し、
     R~R10、R12、R14及びR15は、前記-Y-CO-O-Z及び-Y-O―CO-Zではない場合は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよく、かつ置換基を有していてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
     R~R15は同一化合物内で結合して環を形成していてもよい。
     なお、上記式(1)におけるR~Rに含まれる炭素原子数の合計は20以上であり、上記式(2)におけるR~R10に含まれる炭素原子数の合計は15以上であり、上記式(3)におけるR11~R15に含まれる炭素原子数の合計は17以上である。
     Xは、1価のアニオンを表す。)
  20.  下記一般式(8)~(10)、(12)又は(31)で表されるオニウム塩。
    Figure JPOXMLDOC01-appb-C000003
     (上記一般式(8)~(10)、(12)及び(31)において、R20は水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、アルコキシカルボニル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。R21~R23は各々独立に、一部の炭素原子がヘテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。またR20~R23は同一化合物内で結合して環を形成していてもよい。kは、1から4の整数を表す。
     R31及びR32は、それぞれ独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
     R33は、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表す。
     なお、同一化合物中に存在する複数のk、R20及びR31は、同一であっても異なっていてもよい。また式中のカチオン部分に含まれる炭素原子数の合計は20以上である。
     Xは、1価のアニオンを表す)
  21.  下記式(32)で表されるエポキシ化合物αと、
     該エポキシ化合物αが有するグリシジル基の1つ以上が3-アシルオキシ-2-ヒドロキシプロピル基に置換された構造を有する化合物β(但し、該アシル基は-CO-R35、又は-CO-Zで表される基)、とを含む組成物。
    Figure JPOXMLDOC01-appb-C000004
     (上記式(32)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。
     A201は置換基を有していてもよい(m201+1)価の芳香族または脂肪族炭化水素基を表し、A202は置換基を有していてもよい2価の芳香族または脂肪族炭化水素基を表し、A203は置換基を有していてもよい(m203+2)価の芳香族または脂肪族炭化水素基を表す。
     X201及びX202は、各々独立に、直接結合又は置換基を有していてもよい2価の連結基を表す。
     p201は0又は1を表す。
     m201及びm203は、各々独立に、1以上の整数を表す。
     n201は1以上の整数を表し、n202は0又は1以上の整数を表し、n203は0又は1を表す。
     但しn202=n203=0の場合、p201=0であればA201はm201価となり、p201=1であればX201は水素原子または1価の基となる。
     なお1分子中に含まれる複数のG、A201、A202、X201、X202、m201及びp201は、同じであっても異なっていてもよい。)
     なお、-CO-R35及び-CO-Zにおいて、
     Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表わし、
     R35は、下記式(18)~(20)のいずれかで表される基を表す。
    Figure JPOXMLDOC01-appb-C000005
     (上記式(18)において、
     R41は直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表す。
     R42~R44は各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
     上記式(19)において、
     R45~R50のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
     なおR45が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、R46~R50は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、
     R46~R50のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の4つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R45は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
     上記式(20)において、
     R51~R55のいずれか1つは、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基を表わす。
     なおR51及びR53の一方が、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他方は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表し、R52、R54及びR55は各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表す。
     R52、R54及びR55のいずれか1つが、直接結合又は一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の2価の脂肪族炭化水素基である場合、他の2つは各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基、フェニル基、フェノキシ基、ベンジル基、N-アルキルカルバモイル基又はN-アルキルスルファモイル基を表し、R51及びR53は、各々独立に、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25のアルキル基又はベンジル基を表す。
     上記式(18)におけるR41~R44に含まれる炭素原子数の合計は20以上、上記式(19)におけるR45~R50に含まれる炭素原子数の合計は15以上、上記式(20)におけるR51~R55に含まれる炭素原子数の合計は17以上である。
     なおR41~R55は同一化合物内で結合して環を形成していてもよい。)
  22.  前記エポキシ化合物αが、下記式(13)~(15)のいずれかで表される化合物である請求項21に記載の組成物。
     (A)-(OG)m1     (13)
    (上記式(13)において、Gはグリシジル基(2,3-エポキシプロパニル基)を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよいm1価の芳香族又は脂肪族炭化水素基を表す。m1は1以上の整数を表す。なお1分子中に含まれる複数のGは同じであっても異なっていてもよい。)
     (GO)m2-(A21)-[X-(A22)]n2-X-(A21)-(OG)m2(14)
    (上記式(14)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。A21は、置換基を有していてもよい(m2+1)価の芳香族又は脂肪族炭化水素基を表し、A22は、置換基を有していてもよい2価の芳香族又は脂肪族炭化水素基を表す。Xを介して連結するA21とA22、又は隣接する複数のA22は、その置換基同士が結合して環を形成していてもよい。Xは、直接結合又は置換基を有していてもよい2価の連結基を表す。m2は1以上の整数を表し、n2は0又は1以上の整数を表す。なお1分子中に含まれる複数のG、A21、A22、X、及びm2は同じであっても異なっていてもよい。)
     H-[(A(OG)m3)―Xn3-H            (15)
    (上記式(15)において、Gはグリシジル基を表し、該グリシジル基はアルキル基、フェニル基又はアルコキシカルボニル基で置換されていてもよい。Aは、置換基を有していてもよい(m3+2)価の芳香族又は脂肪族炭化水素基を表す。Xは、直接結合、置換基を有していてもよいアルキレン基又は-R41-フェニレン-R42-を表し、R41及びR42は、夫々独立にアルキレン基を表す。m3は1以上の整数を表す。n3は2以上の整数を表す。なお1分子中に含まれる複数のG、A、X、及びm3は同じであっても異なっていてもよい。)
  23.  前記組成物中の含まれる、前記エポキシ化合物αに対する前記化合物βの存在比が、0.05モル%以上10.0モル%以下である請求項21または22に記載の組成物。
  24.  前記化合物βが、前記一般式(13)~(15)又は(32)において、1以上の-OG基が下記式(16)または(17)で表される基で置換され、かつ1以上の-OG基が下記式(33)で表される基で置換されていてもよい化合物である、請求項21~23のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
     (上記式(16)において、R35は、前記式(18)~(20)のいずれかで表される基を表す。
     上記式(17)において、Zは、一部の炭素原子がへテロ原子で置換されていてもよい炭素数1~25の1価の脂肪族炭化水素基、又は置換基を有していてもよい炭素数4~25の1価の芳香族炭化水素基を表す。)
PCT/JP2013/059401 2012-03-30 2013-03-28 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物 WO2013147092A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147027093A KR102049711B1 (ko) 2012-03-30 2013-03-28 에폭시 화합물의 제조 방법 및 에폭시화 반응용 촉매 조성물
JP2014508066A JP6233303B2 (ja) 2012-03-30 2013-03-28 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
CN201380018506.9A CN104203933B (zh) 2012-03-30 2013-03-28 环氧化合物的制造方法及环氧化反应用催化剂组合物
US14/502,206 US9650353B2 (en) 2012-03-30 2014-09-30 Method for producing epoxy compound and catalyst composition for epoxidation reaction
US15/479,987 US10730846B2 (en) 2012-03-30 2017-04-05 Method of producing epoxy compound and catalyst composition for epoxidation reaction

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-082139 2012-03-30
JP2012082139 2012-03-30
JP2012226995 2012-10-12
JP2012-226995 2012-10-12
JP2013012207 2013-01-25
JP2013-012207 2013-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/502,206 Continuation US9650353B2 (en) 2012-03-30 2014-09-30 Method for producing epoxy compound and catalyst composition for epoxidation reaction

Publications (1)

Publication Number Publication Date
WO2013147092A1 true WO2013147092A1 (ja) 2013-10-03

Family

ID=49260335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059401 WO2013147092A1 (ja) 2012-03-30 2013-03-28 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物

Country Status (6)

Country Link
US (2) US9650353B2 (ja)
JP (3) JP6233303B2 (ja)
KR (1) KR102049711B1 (ja)
CN (2) CN104203933B (ja)
TW (2) TWI616442B (ja)
WO (1) WO2013147092A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2516862A (en) * 2013-08-01 2015-02-11 M I Drilling Fluids Uk Ltd Quaternary ammonium compounds and gas hydrate inhibitor compositions
JP2015089889A (ja) * 2013-11-05 2015-05-11 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG トリス−(2−ヒドロキシエチル)−メチルアンモニウムメチルスルファート脂肪酸エステルの製造方法
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
JP2016204364A (ja) * 2015-04-16 2016-12-08 三菱化学株式会社 エポキシ化合物の製造方法
JP2016224006A (ja) * 2015-06-03 2016-12-28 理研ビタミン株式会社 クロセチンの定量方法
KR20170036288A (ko) 2015-09-24 2017-04-03 주식회사 종근당 시타글립틴의 신규염 및 이의 제조방법
WO2018135588A1 (ja) * 2017-01-23 2018-07-26 日本化薬株式会社 エポキシ樹脂の製造方法、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2020049991A1 (ja) * 2018-09-07 2020-03-12 Jxtgエネルギー株式会社 エポキシ化合物の製造方法
WO2021187235A1 (ja) * 2020-03-16 2021-09-23 三菱ケミカル株式会社 エポキシ樹脂組成物、硬化物及び電気・電子部品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147092A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP6641681B2 (ja) * 2013-10-02 2020-02-05 三菱ケミカル株式会社 エポキシ化合物の製造方法
CN105218464B (zh) * 2014-05-26 2018-04-06 四川亿明药业股份有限公司 阿昔莫司的合成工艺
KR102600354B1 (ko) * 2015-09-03 2023-11-08 미쯔비시 케미컬 주식회사 에폭시 수지, 에폭시 수지 조성물, 경화물 및 전기·전자 부품
CN106622386A (zh) * 2017-01-11 2017-05-10 王艺霖 一种生产仲丁醇的高效催化剂的制备方法
CN111253360A (zh) * 2020-03-31 2020-06-09 南京工业大学 一种环状碳酸酯的制备方法
CN111233816B (zh) * 2020-03-31 2023-03-24 南京工业大学 一种环状碳酸酯的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397035A (en) * 1977-02-02 1978-08-24 Ciba Geigy Ag Adhesive method using adhesive film
JPS60158172A (ja) * 1983-12-30 1985-08-19 エフ・ホフマン―ラ ロシユ アーゲー グリセリン誘導体
JPH03501612A (ja) * 1988-02-05 1991-04-11 シェリング・コーポレーション 2、2‐二置換グリセロールおよびグリセロール類似化合物、組成物および使用方法
US5194472A (en) * 1990-02-14 1993-03-16 Eastman Kodak Company Ester-containing quaternary ammonium salts as adhesion improving toner charge agents
JP2005010770A (ja) * 2003-05-22 2005-01-13 Sanyo Chem Ind Ltd 光導波路形成用組成物及び光導波路
US20070043234A1 (en) * 2003-07-09 2007-02-22 Centre National De La Recherche Scientifique Use of functionalized onium salts as a soluble support for organic synthesis
WO2010073960A1 (ja) * 2008-12-26 2010-07-01 昭和電工株式会社 エポキシ化合物の製造方法
JP2011001499A (ja) * 2009-06-19 2011-01-06 Mitsubishi Rayon Co Ltd 繊維強化複合材料用樹脂組成物、及びラジカル重合性プリプレグとその製造方法
JP2011225711A (ja) * 2010-04-19 2011-11-10 Nippon Kayaku Co Ltd エポキシ樹脂の製造法、エポキシ樹脂、および硬化性樹脂組成物
JP2013112639A (ja) * 2011-11-29 2013-06-10 Daicel Corp 第四級アンモニウム塩及びこれを含む酸化反応用触媒、エポキシ化合物の製造方法、並びに、酸化反応用触媒の分離方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728320A (en) * 1958-05-29 1973-04-17 Hercules Inc Polymeric epoxides
US5274140A (en) * 1979-07-19 1993-12-28 Instituto Guido Donegani, S.P.A. Process for catalytically epoxidizing olefin with hydrogen peroxide
IT1122214B (it) 1979-07-19 1986-04-23 Donegani Guido Ist Processo per l'epossidazione catalitica di olefine con acqua ossigenata
US5187293A (en) 1983-12-30 1993-02-16 Hoffmann-La Roche Inc. Glycerin derivatives
DK160818C (da) 1983-12-30 1991-10-07 Hoffmann La Roche N-ring-holdige glycerolderivater, fremgangsmaade til fremstilling deraf, anvendelse deraf til fremstilling af et blodpladeaktiveringsfaktorhaemmende middel samt laegemidler indeholdende en saadan forbindelse
US4683188A (en) * 1985-05-28 1987-07-28 Hodogaya Chemical Co., Ltd. Electrophotographic toner containing metal complex charge control agent
US5185334A (en) 1989-07-31 1993-02-09 Schering Corporation 2,2-disubstituted glycerol and glycerol-like compounds, compositions and methods of use
DE69010607T2 (de) * 1989-10-02 1994-12-01 Canon Kk Entwickler-Trägerelement, Entwicklungsvorrichtung und Einheit mit dieser Vorrichtung.
US5110977A (en) 1990-02-14 1992-05-05 Eastman Kodak Company Ester-containing quaternary ammonium salts as adhesion improving toner charge agents
US5516616A (en) * 1994-12-21 1996-05-14 Eastman Kodak Company Quaternary ammonium salts as charge-control agents for toners and developers
US5578740A (en) 1994-12-23 1996-11-26 The Dow Chemical Company Process for preparation of epoxy compounds essentially free of organic halides
DE19533331A1 (de) * 1995-09-11 1997-03-13 Basf Ag Peroxogruppenhaltige Metallkomplexe mit Aminoxid- oder Phosphanoxid-Liganden als Epoxidierungskatalysatoren
EP0895129B1 (en) * 1997-07-31 2003-03-19 Kyocera Corporation Image formation method using electrophotography
US6043383A (en) * 1998-04-14 2000-03-28 Ube Industries, Ltd. Process for producing 1,2-epoxy-5,9-cyclododecadiene
JP4178351B2 (ja) 1998-04-14 2008-11-12 宇部興産株式会社 1,2−エポキシ−5,9−シクロドデカジエンを製造する方法
JP2001017863A (ja) 1999-07-06 2001-01-23 Kawamura Inst Of Chem Res エポキシ化触媒及び該触媒を用いたオレフィン類のエポキシ化物の製造方法
JP2002069079A (ja) 2000-08-30 2002-03-08 Kawamura Inst Of Chem Res 触媒化合物、触媒組成物、及びエポキシ化合物の製造方法
JP2004059573A (ja) 2002-06-03 2004-02-26 Sumitomo Chem Co Ltd エポキシ化合物の製造方法
US20070093667A1 (en) 2003-04-28 2007-04-26 Nissan Chemical Industries, Ltd. Heterogeneous catalyst and process for producing oxirane compound with the catalyst
JP4586200B2 (ja) 2006-05-10 2010-11-24 独立行政法人産業技術総合研究所 磁性微粒子に担持された4級アンモニウム塩とその製造方法、並びにそれからなる磁性微粒子担持相間移動触媒及びそれを用いた相間移動反応
JP5243123B2 (ja) 2007-12-28 2013-07-24 日本化薬株式会社 エポキシ組成物、エポキシ組成物の製造方法、硬化性樹脂組成物、および硬化物
JP5388493B2 (ja) 2008-07-10 2014-01-15 日本化薬株式会社 エポキシ化合物の製造方法
JP5517237B2 (ja) 2008-09-17 2014-06-11 日本化薬株式会社 エポキシ化合物の製造方法、エポキシ化合物、硬化性樹脂組成物及びその硬化物
JP5294771B2 (ja) 2008-09-18 2013-09-18 日本化薬株式会社 エポキシ化合物の製造方法
JP5497388B2 (ja) 2008-09-30 2014-05-21 三洋化成工業株式会社 エポキシ化合物の製造方法
JP2010083836A (ja) 2008-10-02 2010-04-15 Nippon Kayaku Co Ltd エポキシ化合物の製造方法及び触媒
CN101457013B (zh) * 2009-01-14 2011-06-15 长沙蓝星化工新材料有限公司 一种光散射型环氧树脂组合物及其制备方法
JP2010235649A (ja) 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd 精製エポキシ樹脂の製造方法
WO2011019061A1 (ja) 2009-08-13 2011-02-17 昭和電工株式会社 ポリグリシジルエーテル化合物の製造方法
JP2011213716A (ja) 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp ポリアリルオキシ化合物の製造方法及びポリグリシジルオキシ化合物の製造方法
JP5745258B2 (ja) 2010-11-30 2015-07-08 昭和電工株式会社 グリシジルエーテル化合物の製造方法
JP2014514300A (ja) * 2011-04-08 2014-06-19 スファエラ ファーマ ピーティーイー リミテッド 置換メチルホルミル試薬並びに化合物の物理化学的性質及び/又は薬物動態学的性質を改質するためのそれらの使用方法
WO2013147092A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397035A (en) * 1977-02-02 1978-08-24 Ciba Geigy Ag Adhesive method using adhesive film
JPS60158172A (ja) * 1983-12-30 1985-08-19 エフ・ホフマン―ラ ロシユ アーゲー グリセリン誘導体
JPH03501612A (ja) * 1988-02-05 1991-04-11 シェリング・コーポレーション 2、2‐二置換グリセロールおよびグリセロール類似化合物、組成物および使用方法
US5194472A (en) * 1990-02-14 1993-03-16 Eastman Kodak Company Ester-containing quaternary ammonium salts as adhesion improving toner charge agents
JP2005010770A (ja) * 2003-05-22 2005-01-13 Sanyo Chem Ind Ltd 光導波路形成用組成物及び光導波路
US20070043234A1 (en) * 2003-07-09 2007-02-22 Centre National De La Recherche Scientifique Use of functionalized onium salts as a soluble support for organic synthesis
WO2010073960A1 (ja) * 2008-12-26 2010-07-01 昭和電工株式会社 エポキシ化合物の製造方法
JP2011001499A (ja) * 2009-06-19 2011-01-06 Mitsubishi Rayon Co Ltd 繊維強化複合材料用樹脂組成物、及びラジカル重合性プリプレグとその製造方法
JP2011225711A (ja) * 2010-04-19 2011-11-10 Nippon Kayaku Co Ltd エポキシ樹脂の製造法、エポキシ樹脂、および硬化性樹脂組成物
JP2013112639A (ja) * 2011-11-29 2013-06-10 Daicel Corp 第四級アンモニウム塩及びこれを含む酸化反応用触媒、エポキシ化合物の製造方法、並びに、酸化反応用触媒の分離方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYA,S. ET AL.: "Surfactant lipids containing aromatic units produce vesicular membranes with high thermal stability", CHEMISTRY AND PHYSICS OF LIPIDS, vol. 78, no. 2, 1995, pages 177 - 188 *
KAZUHIKO SATO ET AL.: "A Halide-Free Method for Olefin Epoxidation with 30% Hydrogen Peroxide", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 70, no. 4, 1997, pages 905 - 915, XP009149412 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550304B2 (en) 2013-08-01 2020-02-04 M-I Drilling Fluids Uk Limited Quaternary ammonium compounds and gas hydrate inhibitor compositions
GB2516862A (en) * 2013-08-01 2015-02-11 M I Drilling Fluids Uk Ltd Quaternary ammonium compounds and gas hydrate inhibitor compositions
JP2015089889A (ja) * 2013-11-05 2015-05-11 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG トリス−(2−ヒドロキシエチル)−メチルアンモニウムメチルスルファート脂肪酸エステルの製造方法
CN104610102A (zh) * 2013-11-05 2015-05-13 赢创工业集团股份有限公司 制备三-(2-羟乙基)-甲基硫酸甲酯铵脂肪酸酯的方法
KR20150051889A (ko) * 2013-11-05 2015-05-13 에보닉 인두스트리에스 아게 트리스-(2-히드록시에틸)-메틸암모늄 메틸술페이트 지방산 에스테르의 제조 방법
EP2868654B1 (en) * 2013-11-05 2018-09-19 Evonik Degussa GmbH Method for making a tris-(2 hydroxyethyl)-methylammonium methylsulfate fatty acid ester
KR102234671B1 (ko) * 2013-11-05 2021-04-02 에보니크 오퍼레이션즈 게엠베하 트리스-(2-히드록시에틸)-메틸암모늄 메틸술페이트 지방산 에스테르의 제조 방법
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
JP2016204364A (ja) * 2015-04-16 2016-12-08 三菱化学株式会社 エポキシ化合物の製造方法
JP2016224006A (ja) * 2015-06-03 2016-12-28 理研ビタミン株式会社 クロセチンの定量方法
KR20170036288A (ko) 2015-09-24 2017-04-03 주식회사 종근당 시타글립틴의 신규염 및 이의 제조방법
WO2018135588A1 (ja) * 2017-01-23 2018-07-26 日本化薬株式会社 エポキシ樹脂の製造方法、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPWO2018135588A1 (ja) * 2017-01-23 2019-11-07 日本化薬株式会社 エポキシ樹脂の製造方法、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2020049991A1 (ja) * 2018-09-07 2020-03-12 Jxtgエネルギー株式会社 エポキシ化合物の製造方法
JP2020040897A (ja) * 2018-09-07 2020-03-19 Jxtgエネルギー株式会社 エポキシ化合物の製造方法
US11485717B2 (en) 2018-09-07 2022-11-01 Eneos Corporation Method for producing epoxy compound
WO2021187235A1 (ja) * 2020-03-16 2021-09-23 三菱ケミカル株式会社 エポキシ樹脂組成物、硬化物及び電気・電子部品
CN115244101A (zh) * 2020-03-16 2022-10-25 三菱化学株式会社 环氧树脂组合物、固化物及电气电子部件
CN115244101B (zh) * 2020-03-16 2024-02-02 三菱化学株式会社 环氧树脂组合物、固化物及电气电子部件

Also Published As

Publication number Publication date
JP6763420B2 (ja) 2020-09-30
JP2018024697A (ja) 2018-02-15
JP6421862B2 (ja) 2018-11-14
US9650353B2 (en) 2017-05-16
CN107082870A (zh) 2017-08-22
CN104203933B (zh) 2016-11-16
TWI616442B (zh) 2018-03-01
KR20150002630A (ko) 2015-01-07
TW201348220A (zh) 2013-12-01
US20170204077A1 (en) 2017-07-20
JP2018199829A (ja) 2018-12-20
KR102049711B1 (ko) 2019-11-28
TW201815775A (zh) 2018-05-01
US10730846B2 (en) 2020-08-04
US20150018515A1 (en) 2015-01-15
JP6233303B2 (ja) 2017-11-22
CN104203933A (zh) 2014-12-10
TWI660950B (zh) 2019-06-01
JPWO2013147092A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6421862B2 (ja) オニウム塩
US6639087B2 (en) Kinetic resolution method
JP2004131505A (ja) 環式アルケンをエポキシ化する方法
JP2011213716A (ja) ポリアリルオキシ化合物の製造方法及びポリグリシジルオキシ化合物の製造方法
JP6511760B2 (ja) エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2004131504A (ja) 環式アルケンをエポキシ化する際の沈澱促進剤としての環式アルカンの使用
WO2010110151A1 (ja) エポキシ化合物の製造方法
US20080004425A1 (en) Cycloaliphatic polyepoxy compounds and prepartation thereof
WO2014073429A1 (ja) エポキシ化合物及びその製造方法、並びに硬化性エポキシ樹脂組成物
TW201623269A (zh) 烷烴二醇單縮水甘油醚或烯烴二醇單縮水甘油醚的製造方法
WO2014034628A1 (ja) 脂環式エポキシ化合物及びその製造方法
EP1284256A1 (en) Process of the preparation of high-purity alkyladamantyl esters
EP0233843A2 (de) Verfahren zur Verminderung des Chlorgehaltes in Glycidylverbindungen
JP7409965B2 (ja) 4-ヒドロキシ安息香酸2’-ヒドロキシ-(1,1’-ビナフタレン)-2-イルおよびその製造方法
JPH06271557A (ja) シスエポキシコハク酸塩の製造方法
TW201348221A (zh) 烷二醇單縮水甘油醚(甲基)丙烯酸酯的製造方法
JP2010155804A (ja) エポキシ化合物の精製方法
JP2011084499A (ja) ラクトン化合物の製造方法
JP2005343868A (ja) ジエポキシ化シュウ酸エステル化合物の製造方法
JP2005008573A (ja) 脂環式エポキシ化合物及びその製造方法
JPWO2006030852A1 (ja) 芳香族エーテル類の製造方法
KR20180042817A (ko) 디에폭사이드 화합물의 제조방법
KR20090091605A (ko) 티오메틸페놀 유도체의 제조방법
JP2008120692A (ja) ハロスルホニル基を有するエポキシ化合物の製造法
JP2015091789A (ja) エポキシ化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508066

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027093

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768007

Country of ref document: EP

Kind code of ref document: A1