WO2013137288A1 - 多層積層フィルム - Google Patents
多層積層フィルム Download PDFInfo
- Publication number
- WO2013137288A1 WO2013137288A1 PCT/JP2013/056922 JP2013056922W WO2013137288A1 WO 2013137288 A1 WO2013137288 A1 WO 2013137288A1 JP 2013056922 W JP2013056922 W JP 2013056922W WO 2013137288 A1 WO2013137288 A1 WO 2013137288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminated film
- multilayer laminated
- film
- layer
- heat shrinkage
- Prior art date
Links
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 110
- 230000000630 rising effect Effects 0.000 claims abstract description 17
- 238000010030 laminating Methods 0.000 claims abstract description 9
- -1 polyethylene terephthalate Polymers 0.000 claims description 55
- 229920005989 resin Polymers 0.000 claims description 48
- 239000011347 resin Substances 0.000 claims description 48
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 35
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 35
- 229920000728 polyester Polymers 0.000 claims description 34
- 238000002844 melting Methods 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 21
- 229920001225 polyester resin Polymers 0.000 claims description 11
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000004645 polyester resin Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 230000001747 exhibiting effect Effects 0.000 abstract 2
- 238000003856 thermoforming Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 209
- 230000035882 stress Effects 0.000 description 88
- 238000010438 heat treatment Methods 0.000 description 64
- 238000000034 method Methods 0.000 description 51
- 238000011156 evaluation Methods 0.000 description 31
- 230000000704 physical effect Effects 0.000 description 26
- 238000000465 moulding Methods 0.000 description 18
- 230000037303 wrinkles Effects 0.000 description 18
- 238000003475 lamination Methods 0.000 description 16
- 238000009826 distribution Methods 0.000 description 13
- 230000009477 glass transition Effects 0.000 description 13
- 239000011229 interlayer Substances 0.000 description 13
- 239000011521 glass Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 10
- 239000011112 polyethylene naphthalate Substances 0.000 description 10
- 239000000049 pigment Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 239000005357 flat glass Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000000930 thermomechanical effect Effects 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 238000009823 thermal lamination Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical class ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- FWLHAQYOFMQTHQ-UHFFFAOYSA-N 2-N-[8-[[8-(4-aminoanilino)-10-phenylphenazin-10-ium-2-yl]amino]-10-phenylphenazin-10-ium-2-yl]-8-N,10-diphenylphenazin-10-ium-2,8-diamine hydroxy-oxido-dioxochromium Chemical compound O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.Nc1ccc(Nc2ccc3nc4ccc(Nc5ccc6nc7ccc(Nc8ccc9nc%10ccc(Nc%11ccccc%11)cc%10[n+](-c%10ccccc%10)c9c8)cc7[n+](-c7ccccc7)c6c5)cc4[n+](-c4ccccc4)c3c2)cc1 FWLHAQYOFMQTHQ-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- BJLHXROPECKRHX-UHFFFAOYSA-N CCC(C)CC(F)(F)F Chemical compound CCC(C)CC(F)(F)F BJLHXROPECKRHX-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- AOADSHDCARXSGL-ZMIIQOOPSA-M alkali blue 4B Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC2=CC=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C2=CC=CC=C2)=CC=C1N.[Na+] AOADSHDCARXSGL-ZMIIQOOPSA-M 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- VPXSRGLTQINCRV-UHFFFAOYSA-N dicesium;dioxido(dioxo)tungsten Chemical compound [Cs+].[Cs+].[O-][W]([O-])(=O)=O VPXSRGLTQINCRV-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- CEVJNUJNHYWAQJ-UHFFFAOYSA-N pyrene terephthalic acid Chemical compound C(C1=CC=C(C(=O)O)C=C1)(=O)O.C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C34 CEVJNUJNHYWAQJ-UHFFFAOYSA-N 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10779—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
- G02B5/282—Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/05—5 or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/244—All polymers belonging to those covered by group B32B27/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/42—Alternating layers, e.g. ABAB(C), AABBAABB(C)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/308—Heat stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/416—Reflective
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/738—Thermoformability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2551/00—Optical elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates to a multilayer laminated film that eliminates an appearance defect of a molded product, and a molded product thereof.
- Patent Documents 1 and 2 those having a metallic gloss tone using interference reflection
- Patent Document 3 those having a near-infrared reflection function
- Patent Document 4 those having a scattering prevention function
- Molded articles formed by heating and pressure laminating these multilayer laminated films on a hard support are used for decorative materials such as decorative plates, various home appliances, building members, automobile-related parts, and the like.
- a heat ray absorbing material is contained in an intermediate film used in glass or laminated glass, and the heat ray is blocked by the heat ray absorbing material (for example, Patent Document 5), a metal film What is formed on a glass surface by sputtering or the like to reflect and block heat rays (for example, Patent Document 6)
- Patent Document 7 A polymer multilayer laminated film in which polymers having different refractive indexes are alternately laminated is inserted between glass and an intermediate film. There is one that reflects and blocks heat rays (for example, Patent Document 7).
- the method using the heat ray absorbing material has a problem that the sunlight is radiated into the room to reduce the heat ray cutting efficiency because sunlight incident from the outside is converted into heat energy.
- the glass temperature partially increases by absorbing the heat rays, and the glass body may be damaged due to the difference from the outside air temperature.
- the method of forming a metal film on the glass surface by sputtering or the like not only heat rays but also visible light is reflected so that it is easy to be colored, and in order to shield electromagnetic waves, communication equipment or the like may not be used internally. .
- the polymer multilayer laminated film can control the layer thickness and select the wavelength to reflect, so it can selectively reflect the light in the near infrared region, cut the heat ray while maintaining the visible light transmittance Performance can be improved.
- the polymer multilayer laminated film since it does not include metal or other materials that block radio waves, it has excellent radio wave permeability.
- the present invention provides a multilayer laminated film that suppresses uneven distortion caused by heat and pressure molding in a molded article in which an intermediate film and a support are disposed on at least one surface of the multilayer laminated film, thereby providing an appearance and a design property. It is an object of the present invention to obtain a molded product excellent in size.
- the present invention has the following configuration.
- the layer (A layer) using the thermoplastic resin A and the layer (B layer) using the thermoplastic resin B are alternately stacked by 51 layers or more,
- the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction of the film is 0.5 MPa or more and 5 MPa or less,
- thermoplastic resin A and the thermoplastic resin B at least one thermoplastic resin is a crystalline polyester, and at least one thermoplastic resin is an amorphous polyester resin or the crystalline polyester resin.
- the thermoplastic resin A comprises a polyethylene terephthalate resin layer
- the thermoplastic resin B comprises a copolymerized polyethylene terephthalate resin obtained by copolymerizing a spiroglycol component and a cyclohexanedicarboxylic acid component.
- the multilayer laminated film according to any one of (10) The average reflectance in the wavelength range of 400 nm to 700 nm is 15% or less, and the average reflectance in the wavelength range of 850 nm to 1200 nm is 70% or more.
- the multilayer laminated film according to (11) The multilayer laminated film according to (10), wherein an average reflectance in a wavelength range of 1200 nm to 1400 nm is 40% or more, (12) The multilayer laminated film according to any one of (1) to (11), wherein the thermal shrinkage at 150 ° C.
- the multilayer laminated film is a multilayer laminated film in which 51 layers (layer B) using thermoplastic resin A and 51 layers (layer B) using thermoplastic resin B are alternately laminated.
- the average reflectance of the laminated film at a wavelength of 400 to 700 nm is 15% or less, and the average reflectance at a wavelength of 900 to 1200 nm is 60% or more, at 100 ° C. in the longitudinal direction of the film and A heat-shielding member having a difference in heat shrinkage stress in a direction perpendicular thereto of 0.05 N / mm or less, It is.
- the present inventors set the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction of the multilayer laminated film to 0.5 MPa or more and 5 MPa or less. It was found that a molded article having an excellent appearance can be obtained by setting the rising temperature of heat shrinkage stress in at least one of the longitudinal direction and the width direction to 110 ° C. or lower. This will be described in detail below.
- the appearance defect problem of the molded product can be solved.
- the appearance defect that occurs in a molded product in which a support, an intermediate film, and a multilayer laminated film are heat-pressed is caused by uneven distortion of the multilayer laminated film. It was achieved as a result of exploring whether the problem can be solved.
- the present invention will be described in detail below. However, the present invention is not construed as being limited to the specific embodiments including the following examples, and the object of the invention can be achieved. Various embodiments within the scope not departing from the present invention are naturally included in the scope of the present invention.
- the multilayer laminated film of the present invention 51 layers or more of layers (A layer) made of thermoplastic resin A and layers (B layer) made of thermoplastic resin B having different properties from the resin constituting the A layer are alternately formed.
- the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction is 0.5 MPa to 5 MPa, and the rising temperature of the heat shrinkage stress in at least one direction in the longitudinal direction and the width direction is 110 ° C. or less. is necessary.
- thermoplastic resin examples include polyolefins such as polyethylene, polypropylene, and poly (4-methylpentene-1).
- examples of cycloolefins include ring-opening metathesis polymerization and addition polymerization of norbornenes.
- Biodegradable polymers such as alicyclic polyolefin, polylactic acid, polybutyl succinate and the like, addition copolymers with other olefins, polyamides such as nylon 6, nylon 11, nylon 12, nylon 66, aramid, poly Methyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene copolymerized polymethyl methacrylate, polycarbonate, polypropylene Polyesters such as pyrene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, tetrafluor
- polyester a polyester obtained by using an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol or a derivative thereof is preferable.
- aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyl.
- Examples thereof include dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like.
- Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred. These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
- diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
- polyesters polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof.
- thermoplastic resin A and thermoplastic resin B are used, and the two kinds of thermoplastic resins have different properties.
- the property here means that crystallinity / amorphous property, optical property, thermal property, or physical property is different.
- the two types of thermoplastic resins preferably contain the same repeating unit.
- the repeating unit is an ethylene terephthalate unit
- the ethylene unit is a repeating unit.
- the absolute value of the difference in SP value (also referred to as solubility parameter) of each thermoplastic resin is 1.0 or less.
- the polymers having different optical properties are preferably composed of a combination provided with the same basic skeleton.
- the basic skeleton here is a repeating unit constituting the resin.
- polyethylene terephthalate is used as one thermoplastic resin, it is the same as polyethylene terephthalate from the viewpoint of easily realizing a highly accurate laminated structure.
- thermoplastic resins having different optical properties are resins containing the same basic skeleton, the lamination accuracy is high, and delamination at the lamination interface is less likely to occur.
- a copolymer is desirable. That is, for example, when one resin is polyethylene terephthalate, the other resin is an embodiment using a resin composed of an ethylene terephthalate unit and another repeating unit having an ester bond.
- the proportion of other repeating units (sometimes referred to as copolymerization amount) is preferably 5 mol% or more because of the need to obtain different properties.
- each layer The thickness is preferably 90% or less because of excellent thickness accuracy and thickness uniformity. More preferably, it is 10 mol% or more and 80 mol% or less.
- the A layer and the B layer are used by blending or alloying a plurality of types of thermoplastic resins.
- the A layer and the B layer are used by blending or alloying a plurality of types of thermoplastic resins.
- the absolute value of the difference in glass transition temperature between the thermoplastic resins is preferably 20 ° C. or less.
- the absolute value of the difference in glass transition temperature is larger than 20 ° C., the thickness uniformity when forming the multilayer laminated film becomes poor, which causes variation in the heat ray cutting performance.
- problems such as overstretching tend to occur when a multilayer laminated film is formed.
- the absolute value of the difference between the glass transition temperatures of the thermoplastic resin A and the thermoplastic resin B is When it becomes larger than 5 degreeC, it is more preferable that the glass transition point temperature of the thermoplastic resin A is higher than the glass transition point temperature of the thermoplastic resin B.
- the glass transition temperature of the outermost layer is low, adhesion to a roll or a clip may occur during longitudinal stretching or lateral stretching, which may impair the appearance quality.
- At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate, and at least one thermoplastic resin contains spiroglycol. It is preferably a polyester comprising.
- the polyester comprising spiroglycol refers to a copolyester copolymerized with spiroglycol, a homopolyester, or a polyester blended with them. Polyesters containing spiroglycol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate or polyethylene naphthalate, so that they are not easily stretched at the time of molding and are also difficult to delaminate.
- At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate
- at least one thermoplastic resin is preferably a polyester comprising spiroglycol and cyclohexanedicarboxylic acid.
- the in-plane refractive index difference from polyethylene terephthalate or polyethylene naphthalate is increased, so that high reflectance is easily obtained.
- the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small and the adhesiveness is excellent, it is difficult to be over-stretched at the time of molding and is also difficult to delaminate.
- the thermoplastic resin A contains polyethylene terephthalate or polyethylene naphthalate, and is thermoplastic.
- the resin B is preferably a polyester comprising spiroglycol or a polyester comprising spiroglycol and cyclohexanedicarboxylic acid.
- the copolymerization amount of the polyester comprising spiroglycol and cyclohexanedicarboxylic acid is preferably 5 to 30 mol%, and the copolymerization amount of cyclohexanedicarboxylic acid is preferably 5 to 30 mol%.
- At least one thermoplastic resin contains polyethylene terephthalate or polyethylene naphthalate, and even in a single composition, a small amount of other repeating units are copolymerized, or a small amount Other polyester resins may be blended, and at least one thermoplastic resin is preferably a polyester comprising cyclohexanedimethanol.
- the polyester comprising cyclohexanedimethanol refers to a copolyester obtained by copolymerizing cyclohexanedimethanol, a homopolyester, or a polyester obtained by blending them.
- Polyesters containing cyclohexanedimethanol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate and polyethylene naphthalate, and are therefore not easily stretched during molding and are also difficult to delaminate. More preferably, at least one thermoplastic resin is an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less. In this way, while having high reflection performance, the change in optical characteristics due to heating and aging is particularly small, and peeling between layers is less likely to occur.
- the cyclohexanedimethanol group has a cis or trans isomer as a geometric isomer, and a chair type or a boat type as a conformational isomer.
- the change in optical characteristics due to thermal history is even less, and blurring during film formation hardly occurs.
- the thermoplastic resin A contains polyethylene terephthalate or polyethylene naphthalate, and is thermoplastic.
- the resin B is preferably a polyester comprising cyclohexanedimethanol.
- thermoplastic resin of thermoplastic resins having different optical properties is a crystalline polyester, and at least one thermoplastic resin is an amorphous polyester.
- the crystallinity here means that the heat of fusion is 20 J / g or more in differential scanning calorimetry (DSC).
- amorphous means that the heat of fusion is 5 J / g or less.
- the amorphous polyester in addition to making it easy to provide a refractive index difference in the stretching and heat treatment processes in the production of the film, the amorphous polyester has a temperature much higher than the glass transition temperature.
- the orientation can be relaxed by performing a heat treatment at a temperature below the melting point of the crystalline polyester, and the difference in heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto can be reduced at 100 ° C. It becomes easy for the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto to be 0.05 N / mm or less.
- at least one thermoplastic resin of thermoplastic resins having different optical properties is a crystalline polyester, and at least one thermoplastic resin has a melting point lower by 30 ° C. or more than the melting point of the crystalline polyester resin.
- a polyester resin is also preferred.
- a crystal having a low melting point is obtained by performing heat treatment at a temperature lower than the melting point of the crystalline polyester showing a higher melting point and higher than the melting point of the crystalline polyester showing a lower melting point.
- the melting polyester can be melted and the orientation can be relaxed, and the difference between the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C. can be reduced, or the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C. Of 0.05 N / mm 2 or less.
- thermoplastic resin A is a crystalline polyester and the thermoplastic resin B is amorphous. It is preferable that it is a property polyester.
- the resin constituting the B layer is mixed as a minor component with the resin constituting the A layer of the multilayer laminated film of the present invention, or the resin constituting the A layer is mixed as a minor component with the resin constituting the B layer. Is also preferable.
- the mixing ratio is preferably in the range of 5 wt% to 30 wt%.
- the layer using the thermoplastic resin A refers to a layer containing the thermoplastic resin A as a main component, not a small component, and a layer using the thermoplastic resin B (B
- the term “layer” refers to a layer in which the thermoplastic resin B is contained as a main component rather than a minor component.
- the average reflectance at a wavelength of 400 to 700 nm is preferably 15% or less.
- the average reflectance at a wavelength of 400 nm to 700 nm which is a visible light region
- the unevenness generated by molding becomes conspicuous.
- the reflectance spectrum of the multilayer laminated film shifts with the incident angle. For this reason, when the average reflectance of 400 nm to 700 nm is higher than 15%, when the unevenness generated by molding is viewed from an oblique direction, different colors can be seen depending on the uneven portion, and therefore unevenness that cannot be seen with a single film is also present. There arises a problem that the multilayer film is visible.
- the average reflectance at a wavelength of 400 to 700 nm is preferably 10% or less, more preferably 8% or less. As the average reflectance at a wavelength of 400 to 700 nm decreases, a film with higher transparency can be obtained.
- the average reflectance at a wavelength of 400 to 700 nm needs to be 20% or less in the same manner as described above. This is preferably satisfied on any surface of the heat-shielding member comprising a transparent substrate (for example, glass), a middle ring film and a film. If either one is not satisfied, the transmitted light may be colored.
- the average reflectance at a wavelength of 400 to 700 nm is preferably 15% or less, more preferably 10% or less. As the average reflectance at a wavelength of 400 to 700 nm decreases, a heat shielding member that is highly transparent and in which unevenness is difficult to see can be obtained.
- the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction needs to be 0.5 MPa or more and 5 MPa or less.
- a preferable lower limit value is 1 MPa or more, and more preferably 1.5 MPa or more.
- a preferable value of the upper limit is 3 MPa or less.
- the ratio of the heat shrinkage stress in the longitudinal direction and the width direction is preferably in the range of 0.5 or more and 2 or less. If the balance between the heat shrinkage stress in the longitudinal direction and the width direction is poor, wrinkles may occur. However, if the balance is improved, a molded product without wrinkles can be obtained.
- the multilayer laminated film of the present invention needs to have a rising temperature of heat shrinkage stress of 110 ° C. or less in at least one of the film longitudinal direction and width direction.
- the rise temperature of the heat shrinkage stress is a base before the heat shrinkage stress curve rises in the heat shrinkage stress curve of the multilayer laminated film measured under the conditions of a temperature of 25 ° C. to 200 ° C. and a heating rate of 5 ° C./min. This is the temperature at the intersection of the line and the tangent at the point where the slope becomes maximum after the thermal shrinkage stress rises. Since heat shrinkage stress is generated in the multilayer laminated film from a low temperature during molding, uneven distortion can be suppressed.
- a preferable value is 100 ° C. or lower, and more preferably 90 ° C. or lower.
- the lower limit is preferably 50 ° C., more preferably 70 ° C., from the viewpoint of handling properties.
- a biaxial stretching process and a heat treatment process are required.
- the biaxial stretching method include a known simultaneous biaxial stretching method and a sequential biaxial stretching method.
- sequential biaxial stretching and heat treatment are performed using polyethylene terephthalate in layer A and polyethylene terephthalate copolymerized with 33 mol% of cyclohexanedimethanol component in layer B will be described.
- Stretching is performed at a temperature of 80 ° C. or more and 120 ° C. or less with a longitudinal stretching machine, preferably from 80 ° C. or more and 100 ° C.
- the film is stretched by a transverse stretching machine at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, 2 times or more and 6 times or less, preferably 3 times or more and 4 times or less.
- heat treatment is performed in a heat treatment machine at 160 ° C. or higher and 220 ° C. or lower, relax 0% or higher and 10% or lower, preferably 0% or higher and 5% or lower. It is also preferable to perform cooling immediately after the heat treatment at 70 ° C. or higher and a heat treatment temperature of ⁇ 20 ° C. or lower.
- the film thickness unevenness can be suppressed by the cooling process. It is also effective to set the film temperature at 80 ° C. or lower where the film at the outlet of the transverse stretching machine is released from the clip.
- the film temperature is higher than 80 ° C., when the film is released from the clip, a large shrinkage is applied to the film, and the rising temperature of the heat shrinkage stress may be increased.
- the heat shrinkage stress is higher when the stretching temperature is lower, the stretching ratio is higher, and the relaxation rate is lower, and the rise temperature of the heat shrinkage stress can be lowered.
- the heat shrinkage stress By lowering the heat treatment temperature, the heat shrinkage stress can be increased and the rise temperature of the heat shrinkage stress can be lowered. However, if the heat shrinkage stress is further increased and the rise temperature of the heat shrinkage stress is desired to be lowered, it is preferable to perform heat treatment and fine stretching of 2% or more and 10% or less after the heat treatment step, particularly at a low temperature. Thus, a higher effect can be obtained by performing fine stretching. By performing fine stretching of 2% or more, the heat shrinkage stress can be increased and the rise temperature of the heat shrinkage stress can be lowered while keeping the heat treatment temperature high. On the other hand, 10% or less is preferable from the viewpoint of film formation stability.
- the heat shrinkage stress at 130 ° C. in the longitudinal direction and the width direction is preferably 0.5 MPa or more and 5 MPa or less, and a more preferable lower limit value is 1 MPa or more, and more preferably 1. 5 MPa or more. A more preferable value of the upper limit is 3 MPa or less.
- the ratio of the heat shrinkage stress in the longitudinal direction and the width direction is preferably in the range of 0.5 MPa to 2 MPa. If the balance between the heat shrinkage stress in the longitudinal direction and the width direction is poor, wrinkles may occur. However, if the balance is improved, a molded product without wrinkles can be obtained. Examples of the achievement method for obtaining the heat shrinkage stress range include lowering the heat treatment temperature, and increasing the heat treatment step and the fine stretching ratio after the heat treatment step.
- the multilayer laminated film of the present invention preferably has a rising temperature of heat shrinkage stress of 110 ° C. or less in both the longitudinal direction and the width direction.
- the rising temperature of the heat shrinkage stress in both the longitudinal direction and the width direction is 110 ° C. or less, the uneven distortion can be further suppressed.
- a more preferable value is 100 ° C. or lower, and further preferably 90 ° C. or lower.
- the lower limit is preferably 50 ° C., more preferably 70 ° C., from the viewpoint of handling properties.
- Examples of the achievement method for setting the rise temperature of the heat shrinkage stress within the above range include further lowering the heat treatment temperature, and increasing the fine stretching ratio after the heat treatment step and the heat treatment step. It is preferable to stretch and increase the fine stretching ratio.
- the multilayer laminated film of the present invention preferably has a heat shrinkage stress at 110 ° C. of at least one of the longitudinal direction and the width direction of 0.5 MPa or more and 5 MPa or less, and a more preferable lower limit value is 1 MPa or more, More preferably, it is 1.5 MPa or more. A more preferable value of the upper limit is 3 MPa or less.
- the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. is preferably 0.05 N / mm or less.
- the heat shrinkage stress here is a value measured in thermomechanical analysis, and after fixing a distance with a load of 2 g on a laminated film sample having a width of 4 mm and a measurement length of about 15 mm, This is a value calculated by measuring the stress generated in the film when the temperature is increased from 10 to 150 ° C. at a rate of 10 ° C./min.
- the heat shrinkage stress measurement method here is performed in thermomechanical analysis, and refers to a method of measuring load and material deformation as a function of temperature while changing the temperature of the material according to a regulated program. It is measured by a thermomechanical analyzer.
- transparent substrates such as glass, polycarbonate, acrylic resin, polyvinyl butyral, ethylene-vinyl alcohol copolymer, etc.
- the interlayer film of the present invention and the multilayer laminated film of the present invention may be combined to form a heat shielding member.
- the heat shield member is obtained by heating and compressing at 100 to 130 ° C. or 150 ° C.
- appearance defects such as wrinkles and peeling may occur in the multilayer laminated film due to the difference in heat shrinkage between the transparent base material or intermediate film and the multilayer laminated film.
- methods have been proposed to improve the appearance defect by the heat shrinkage rate, the appearance may not be improved by controlling the heat shrinkage rate depending on the curvature of the heat shield member, the transparent base material used, and the type of interlayer. there were.
- the polyvinyl butyral and ethylene-vinyl alcohol copolymer used for the interlayer film behaved in a manner that they soften near 100 ° C. and expand in the plane direction of the film by the force of compression.
- the behavior differs between the surface in contact with the multilayer laminated film and the surface in contact with the transparent substrate, and the surface in contact with the laminated film is affected by the heat shrinkage behavior of the multilayer laminated film.
- the surface in contact with the transparent substrate is strongly affected by the compression in the processing process, and therefore shows different behavior depending on the surface of the interlayer film. It has been determined that this is the cause.
- the difference between the heat shrinkage stress in the film longitudinal direction and the direction perpendicular to it at 100 ° C.
- the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. is 0.03 N / mm 2 or less. As described above, as the difference in heat shrinkage stress becomes smaller, the anisotropy of the heat shrinkage behavior is reduced, so that the effect of suppressing wrinkles and peeling is increased.
- the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 130 ° C. or 150 ° C. is 0.05 N / mm 2 or less.
- the transparent base material-intermediate film-multilayer laminated film-intermediate film-transparent base material are laminated in this order, and then heated and compressed at 100 ° C to 130 ° C or 150 ° C.
- the difference between the heat shrinkage stress in the film longitudinal direction and the direction orthogonal thereto is 0.05 N / mm 2 or less. It is possible to suppress the appearance defects such as wrinkles and peeling in the whole process.
- the difference in the dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is preferably 0.5% or less.
- the rate of dimensional change here is defined by the following formula (1).
- a load of 2 g is applied to a multilayer laminated film sample having a width of 4 mm and a measurement length of about 15 mm. This is a value calculated by measuring the length of the film when the temperature is increased at a rate of 10 ° C./min from room temperature to 150 ° C. under a fixed condition of 2 g load after fixing the distance.
- the dimensional change rate generally measured is that the sample length is measured near room temperature, so it actually reflects the dimensional change not only during the heating process but also during the cooling process.
- the processing process to be performed cannot be strictly reflected.
- thermomechanical analysis it becomes possible to reproduce a processing step for producing an actual heat shield member, and thus a film suitable for vitrification can be obtained more accurately.
- the difference in the dimensional change rate at 100 ° C. is particularly important for suppressing appearance defects such as wrinkles and peeling. That is, the temperature in the vicinity of 100 ° C.
- the multilayer laminated film is a temperature at which the interlayer film to be used begins to soften, while the multilayer laminated film is a temperature region where the influence of reversible thermal expansion is strongly observed.
- the degree of this thermal expansion depends on the orientation state of the resin constituting each layer of the multilayer laminated film, but in the multilayer laminated film as in the present application in which resins having different characteristics are laminated, the film longitudinal direction in the vicinity of 100 ° C. And the difference in thermal expansion in the direction perpendicular to the same tends to occur. Due to the difference in the degree of thermal expansion, distortion due to expansion occurs at the interface between the multilayer laminated film and the intermediate film before the intermediate film is softened, resulting in appearance defects such as wrinkles and peeling.
- the difference in dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.5% or less
- the difference in heat shrinkage stress between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.05 N / it becomes easy to mm 2. More preferably, the difference in dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.3% or less.
- the difference in the heat shrinkage stress can be reduced as the difference in the dimensional change rate between the longitudinal direction of the film and the direction orthogonal thereto is reduced.
- the transparent base material-intermediate film-multilayer laminated film-intermediate film-transparent base material are laminated in this order, and then heated and compressed at 100 ° C to 130 ° C or 150 ° C.
- the difference in the dimensional change rate in the film longitudinal direction and the direction perpendicular thereto is 0.5% or less.
- the multilayer laminated film used in the molded product of the present invention preferably has a heat shrinkage rate at 150 ° C. in the longitudinal direction and the width direction of 6% or less, more preferably 3% or less.
- a heat shrinkage rate at 150 ° C. in the longitudinal direction and the width direction of 6% or less, more preferably 3% or less.
- the multilayer laminated film used for the molded product of the present invention preferably has an average reflectance in the wavelength range of 400 nm to 700 nm of 15% or less and an average reflectance in the wavelength range of 850 nm to 1200 nm of 70% or more. If it is set as such a structure, when the molded article of this invention is used as a window glass of a building, or a window glass of a motor vehicle, the temperature rise in a room
- the multilayer laminated film used in the molded article of the present invention has an average reflectance of 15% or less in the wavelength range of 400 nm to 700 nm, an average reflectance of 70% or more in the wavelength range of 850 nm to 1200 nm, and a wavelength of 1200 nm to 1400 nm.
- the average reflectance in the range is preferably 40% or more. With such a configuration, it is possible to block more heat energy while transmitting visible light. Therefore, when the molded product of the present invention is used as a window glass of a building or a window glass of an automobile, The temperature rise in the car can be greatly prevented.
- the average reflectance in the wavelength range of 400 nm to 700 nm is 15% or less
- the average reflectance in the wavelength range of 850 nm to 1200 nm is 80% or more
- the average reflectance in the wavelength range of 1200 nm to 1400 nm is 50%. That's it.
- the method for adjusting the reflectance in the desired wavelength range is the in-plane refractive index difference between layer A and layer B, the number of layers, the layer thickness distribution, and the film forming conditions (for example, the stretching ratio, stretching speed, stretching temperature, heat treatment temperature, heat treatment time). ) Adjustment and the like.
- the A layer and the B layer it is preferable that the A layer is made of a crystalline thermoplastic resin, and the B layer is made of a resin mainly composed of an amorphous thermoplastic resin.
- the resin mainly composed of an amorphous thermoplastic resin means that the weight fraction of the amorphous thermoplastic resin is 70% or more.
- the in-plane refractive index difference between the A layer and the B layer is preferably 0.02 or more, more preferably 0.04 or more, and further preferably 0.08 or more.
- at least one thermoplastic resin is crystalline, and at least one thermoplastic resin is amorphous or 30 ° C. or higher than the melting point of the crystalline thermoplastic resin. It has a low melting point. In this case, it is possible to easily provide a refractive index difference in the stretching and heat treatment steps in film production.
- At least one surface of the heat shield member needs to have an average reflectance of 60% or more in a wavelength band of 900 to 1200 nm.
- high heat ray cutting performance can be imparted even when used as a heat shield member.
- the average reflectance in a wavelength band of 900 to 1200 nm on both surfaces of the heat shield member is 60% or more.
- at least one surface of the heat shield member has an average reflectance of 70% or more in a wavelength band of 900 to 1200 nm. High heat ray cutting performance can be imparted to any surface of the heat shield member.
- the band of 900 to 1200 nm in wavelength on at least one surface of the heat shielding member in the multilayer laminated film is preferably 70% or more.
- the multilayer laminated film is laminated to the glass surface, and it is possible to suppress reflection on the multilayer laminated film by making the multilayer laminated film the surface, on the other hand, In particular, in the heat-shielding member of the present invention intended to cut heat rays from the outside, there may be a problem in terms of weather resistance and durability.
- the light transmittance of the member is preferably 85% or more.
- the light reflected by the multilayer laminated film can be reflected to the outside with almost no absorption, so that light can be efficiently reflected.
- the multilayer laminated film and the heat shielding member of the present invention preferably have a visible light transmittance of 70% or more in JIS R3212. Moreover, it is also preferable that Solar total transmission (Tts) defined in ISO13837 (2008) is 50% or less.
- Tts Solar total transmission
- the multilayer laminated film used in the molded product of the present invention has 51 layers alternately composed of a layer made of a thermoplastic resin (A layer) and a layer made of a thermoplastic resin having a property different from at least the resin constituting the A layer (B layer). It is necessary to include the laminated structure.
- thermoplastic resins having different properties it is possible to give the film a function that cannot be achieved with only one thermoplastic resin layer.
- it is 101 layers or more, More preferably, it is 401 layers or more, More preferably, it is 601 layers or more, and it is about 5000 layers as an upper limit from a viewpoint of the enlargement of a lamination apparatus.
- 101 layers or more are preferable in the multilayer laminated film of this invention, More preferably, it is 401 layers or more, More preferably, it is 601 layers or more, and it is about 5000 layers as an upper limit from a viewpoint of the enlargement of a lamination apparatus.
- the optical thicknesses of the adjacent A layer and B layer satisfy the following formula (2).
- ⁇ is the reflected wavelength
- n A-plane refractive index of the A layer the d A thickness of the A layer
- n B-plane refractive index of the layer B the thickness of the B layer.
- the layer thickness distribution satisfies the formula (2) and the following formula (3) at the same time.
- the layer thickness distribution it is also preferable to use a 711711 configuration (US Pat. No. 5,360,659) in addition to equations (2) and (3).
- the 711711 configuration is a stacked configuration in which 6 layers in which the A layer and the B layer are stacked in the order of ABABAB are used as one repeating unit, and the optical thickness ratio in the unit is 711711.
- higher-order reflection can be eliminated. Therefore, it is possible to reduce the average reflectance in the wavelength range from 400 nm to 700 nm while increasing the average reflectance in the wavelength range from 850 nm to 1400 nm, and to provide a multilayer laminated film that is transparent and has a higher thermal energy blocking performance. Obtainable.
- the reflection in the wavelength range of 1200 nm to 1400 nm is made into a layer thickness distribution of 711711 by reflecting the reflection in the wavelength range of 850 nm to 1200 nm simultaneously with the formula (2) and formula (3).
- a layer thickness configuration light can be efficiently reflected with a small number of layers.
- the layer thickness distribution increases or decreases from one side of the film surface to the opposite surface, the layer thickness distribution decreases after the layer thickness increases from one of the film surfaces toward the film center, and the film A layer thickness distribution or the like that increases after the layer thickness decreases from one of the surfaces toward the center of the film is preferable.
- Layer thickness distribution can be changed continuously, such as linear, geometric ratio, difference series, or 10 to 50 layers have almost the same layer thickness, and the layer thickness is stepped. Those that change are preferred.
- a layer having a thickness of 3 ⁇ m or more can be preferably provided as a protective layer on both surface layers of the multilayer laminated film.
- the thickness of the protective layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
- the thickness of the multilayer laminated film of the present invention is preferably 20 ⁇ m to 300 ⁇ m. If the thickness is less than 20 ⁇ m, the film is weak and handling properties are poor. On the other hand, if it is 300 ⁇ m or more, the film is too stiff and the formability deteriorates.
- the multilayer laminated film of the present invention has an easy adhesion layer, a hard coat layer, an abrasion resistant layer, a scratch prevention layer, an antireflection layer, a color correction layer, an ultraviolet ray absorption layer, a heat ray absorption layer, a printing layer, a gas barrier on the film surface.
- a functional layer such as a layer or an adhesive layer is preferably formed.
- a molded product in which an intermediate film and a support are laminated on at least one surface of the multilayer laminated film of the present invention is generally laminated under a sticking pressure, and heat-pressure molding is a preferred method.
- the support that can be used in the molded article of the present invention include a resin support, a support made of metal, glass, or ceramic.
- the surface of the support may be flat or curved, and can take any shape.
- the resin include acrylic resins such as polycarbonate, cyclic polyolefin, polyarylate, polyethylene terephthalate, and polymethyl methacrylate, ABS, and triacetyl cellulose.
- the support is preferably transparent, and the thickness of the support is preferably 0.5 mm to 5 mm.
- Adhesives include vinyl acetate resin, vinyl chloride / vinyl acetate copolymer, ethylene / vinyl acetate copolymer, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl ether, nitrile rubber, styrene / budadiene rubber, natural Examples thereof include rubber, chloroprene rubber, polyamide, epoxy resin, polyurethane, acrylic resin, cellulose, polyvinyl chloride, polyacrylic acid ester, polyisobutylene, and the like.
- Examples include dyes, anthraquinone dyes, quinophthalone dyes, methine dyes, condensed polycyclic dyes, reactive dyes, cationic dyes, lanthanum hexaboride, indium tin oxide, antimony tin oxide, and cesium tungsten oxide.
- the thickness of the interlayer film is preferably 10 ⁇ m to 1 mm.
- Examples of the molding method include extrusion lamination, hot melt lamination, thermal lamination, press lamination, vacuum lamination, autoclave lamination, and the like.
- Extrusion laminating is a method in which each of a multilayer laminated film and an intermediate film in a molten state are extruded from a die into a film and laminated on a support, and a molded product is formed between two rolls.
- Hot melt lamination is a molding method in which a multilayer laminated film or an intermediate film melted by heat is applied to a support, and the multilayer laminated film and the support are laminated.
- Thermal lamination is a molding method in which a multilayer laminated film, an intermediate film, and a support are pressed and laminated while being heated with a heating roll.
- Press laminating is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated and pressed and laminated with a press.
- Vacuum lamination is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated, the inside of the apparatus is evacuated, and pressed to be laminated.
- Autoclave laminating is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated and then the interior of the apparatus is pressurized with gas or the like and laminated.
- Examples of the molded article using the multilayer laminated film of the present invention include a molded article in which an interlayer film and a support are laminated on both sides of the multilayer laminated film.
- Examples of the use of the molded article using the multilayer laminated film of the present invention include mobile phone and personal computer casings, electrical appliances, furniture exteriors, buildings and automobile windows.
- the example of the specific aspect which manufactures the multilayer laminated film of this invention is described below.
- the laminated structure of 51 layers or more in the multilayer laminated film of the present invention can be produced by the following method.
- a thermoplastic resin is supplied from two extruders A corresponding to the A layer and an extruder B corresponding to the B layer, and the polymer from each flow path is a known multi-manifold type feed block, Laminate 51 layers or more by using a square mixer or a comb type feed block, and then melt extrude the melt into a sheet using a T-type die, and then cool it on a casting drum.
- the method of solidifying and obtaining an unstretched film is mentioned.
- As a method for improving the stacking accuracy of the A layer and the B layer methods described in Japanese Patent Application Laid-Open No. 2007-307893, Japanese Patent No. 4619910, and Japanese Patent No. 4816419 are preferable. If necessary, it is also preferable to dry the thermoplastic resin used for the A layer and the thermoplastic resin used for the B layer.
- biaxial stretching is preferably performed by a known sequential biaxial stretching method or simultaneous biaxial stretching method.
- the known sequential biaxial stretching method may be carried out by a method of stretching in the width direction after stretching in the longitudinal direction, a method of stretching in the longitudinal direction after stretching in the width direction, and stretching in the longitudinal direction and stretching in the width direction. You may carry out combining several times.
- biaxial stretching is performed in the range from the glass transition temperature higher than layer A or layer B to 50 ° C. or lower, and the heat treatment is performed at a temperature higher than the stretching temperature.
- the temperature is lower than the higher melting point.
- the unstretched film cast on the cooling roll is 80 ° C. or more and 120 ° C. or less with a longitudinal stretching machine, and preferably 80 ° C. or more and 100 ° C. or less from the viewpoint of thickness unevenness. Stretching is performed using the speed change between the longitudinal stretching machine rolls under the conditions of not less than 6 times and not more than 6 times, preferably not less than 3 times and not more than 4 times.
- the orientation in the longitudinal stretching In ordinary sequential biaxial stretching, the orientation tends to be strong in the film width direction, which causes a difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal to the film longitudinal direction (film width direction).
- the orientation state in the film width direction and the flow direction (longitudinal direction) can be adjusted to the same extent, and at 100 ° C. and 130 ° C. or 150 ° C. in the film longitudinal direction and the direction perpendicular thereto.
- the difference in heat shrinkage stress is 0.05 N / mm 2 or less, and the difference in the dimensional change rate in the film longitudinal direction at 100 ° C.
- a preferred stretching condition for strengthening the orientation is stretching at a glass transition temperature of ⁇ 5 ° C. to + 5 ° C.
- a glass transition temperature For example, when polyethylene terephthalate having a glass transition temperature of about 80 ° C. is used, it is 75 to 85 ° C. It is preferable to stretch 3.5 times or more in the range. In this case, not only the difference in heat shrinkage stress can be suppressed, but also effective in suppressing film thickness unevenness.
- the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
- the film is stretched by a horizontal stretching machine at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, 2 or more and 6 or less, preferably 3 or more and 4 or less.
- a known tenter method is used as the stretching method in the width direction. That is, the film is conveyed while being gripped by both ends of the film, and stretched in the width direction by widening the clip interval at both ends of the film.
- the difference in heat shrinkage stress between the film longitudinal direction and the direction perpendicular thereto at 100 ° C. and 130 ° C. or 150 ° C. is 0.05 N / mm 2 or less, or 100 ° C. It is preferable to adjust the draw ratio in the film width direction so that the difference in the dimensional change rate in the film longitudinal direction at 130 ° C. or 150 ° C. and in the direction perpendicular thereto is 0.5% or less.
- the relationship between the draw ratio in the film width direction and the heat shrinkage stress is remarkable, and the resin is fixed while maintaining a large force strain in the film width direction by becoming a high draw ratio, from 100 ° C to 130 ° C or 150 ° C.
- the strain amount stored can be controlled by adjusting the draw ratio, and the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. and 130 ° C. or 150 ° C. is 0.05 N / mm 2.
- the transverse stretch ratio here depends on the stretching conditions in the longitudinal stretching process, which is the previous process, but the particularly preferred lateral stretch ratio is 3.0 to 4.0 times when polyethylene terephthalate is used as the thermoplastic resin. It is.
- the transverse stretching temperature here depends on the stretching conditions in the longitudinal stretching step, which is the previous step, but the particularly preferred transverse stretching temperature is 90 ° C. to 130 ° C. when polyethylene terephthalate is used as the thermoplastic resin.
- the unstretched film cast on the cooling roll is guided to a simultaneous biaxial tenter, and conveyed while holding both ends of the film with clips, and stretched simultaneously and / or stepwise in the longitudinal direction and the width direction. Stretching in the longitudinal direction is achieved by increasing the distance between the clips of the tenter and in the width direction by increasing the distance between the rails on which the clips run.
- the tenter clip subjected to stretching and heat treatment in the present invention is preferably driven by a linear motor system.
- the linear motor method is excellent in that the stretching ratio can be freely changed because the degree of freedom of each clip is high.
- the stretching temperature and the stretching ratio are similar to the conditions for sequential biaxial stretching. That is, the stretching temperature is 80 ° C. or more and 120 ° C. or less, and the stretching magnification is 4 to 36 times, preferably 9 to 16 times as the area magnification.
- heat treatment is performed with a heat treatment machine.
- the heat treatment is generally performed in a transverse stretching machine (tenter). After the transverse stretching, heat treatment is performed at a temperature of 160 ° C. or higher and 220 ° C. or lower, relax 0% or higher and 10% or lower, preferably 0% or higher and 5% or lower. Relaxing may be performed only in the width direction, only in the longitudinal direction, or both in the width direction and the longitudinal direction.
- the heat treatment temperature after stretching is preferably not higher than the melting point of at least one thermoplastic resin and not lower than at least one melting point of the remaining thermoplastic resin.
- one of the thermoplastic resins maintains a high orientation state, while the orientation of the other thermoplastic resin is relaxed, so that the refractive index difference between these resins can be easily provided, and Since it becomes easy to reduce the heat shrinkage stress along with the orientation relaxation, the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C., 130 ° C. or 150 ° C. may be 0.05 N / mm 2 or less. It becomes easy. In addition, it is preferable to perform cooling at 70 ° C.
- the multilayer laminated film of the present invention is produced by winding the film with a winder.
- the molded article of the present invention will be described with specific examples. Even when a thermoplastic resin other than the thermoplastic resin specifically exemplified below is used, the multilayer laminated film of the present invention can be obtained in the same manner by referring to the description of the present specification including the following examples. Can do. [Methods for measuring physical properties and methods for evaluating effects] The physical property value evaluation method and the effect evaluation method are as follows.
- Thermal shrinkage stress, rise temperature of thermal shrinkage stress EXSTAR TMS / SS6000 manufactured by Seiko Instruments Inc. was used.
- the film was measured in the longitudinal direction and the width direction under the conditions of a sample size of 20 mm ⁇ 4 mm (measured length: 15 mm), a temperature of 25 ° C. to 200 ° C., and a heating rate of 5 ° C./min.
- the heat shrinkage stress was calculated by dividing the obtained load data by the cross-sectional area before measurement of the film, and values at 110 ° C., 130 ° C., and 150 ° C. were obtained. Further, the temperature at the intersection of the baseline before the rise of the heat shrinkage stress and the tangent at the point where the inclination becomes maximum after the rise of the heat shrinkage stress was defined as the rise temperature of the heat shrinkage stress.
- the evaluation part was visually evaluated from the angles of 20 °, 50 °, and 70 ° with respect to the normal direction of the evaluation part with respect to the molded product installed under the fluorescent lamp.
- the evaluation criteria are as follows.
- Difference in heat-absorbing stress and difference in dimensional change rate Measurement was performed under the following conditions using a thermal / application / strain measuring device (TMA / SS6000) manufactured by Seiko Instruments Inc. For each data, at least one data per 1 ° C. was obtained. The dimensional change rate was calculated using the above equation (1). The difference in heat-absorbing stress and the difference in dimensional change rate were absolute values obtained by subtracting the value in the width direction from the value in the longitudinal direction.
- thermoplastic resins A and B A sample mass of 5 mg was taken from the thermoplastic resins A and B, and a differential scanning calorimeter (DSC) EXSTAR DSC 6220 manufactured by Seiko Instruments Inc. was used. Measured and calculated according to -7122 (1987). In the measurement, the temperature was raised from 25 ° C. to 290 ° C. at 5 ° C./min, and the integral value from the baseline in the range of melting point ⁇ 20 ° C. at this time was defined as the heat of fusion. In addition, the melting point here is the point where the difference from the baseline of DSC is maximized.
- a resin having a heat of fusion of 20 J / g or more is a crystalline resin
- a resin having a heat of fusion of 5 J / g or less is an amorphous resin.
- thermoplastic resin A was used as a thermoplastic resin constituting the A layer (hereinafter also referred to as thermoplastic resin A), and resin B was used as the thermoplastic resin constituting the B layer (hereinafter also referred to as thermoplastic resin B).
- the thermoplastic resin A and the thermoplastic resin B are each melted at 280 ° C. with an extruder, passed through 5 sheets of FSS type leaf disk filters, and then discharged with a gear pump (lamination ratio) of the thermoplastic resin A.
- This unstretched film was longitudinally stretched at 90 ° C and a stretch ratio of 3.3 times, led to a tenter that grips both ends with clips, and stretched at 100 ° C and 4.0 times laterally, followed by heat treatment at 220 ° C for 10 seconds. After relaxing in the width direction of 3% and cooling at 150 ° C. for 10 seconds, a multilayer laminated film having a thickness of 50 ⁇ m was obtained. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. Nisshinbo LAMINATOR0303S was used to make the molded product.
- a plate glass of 3 mm thickness and 10 cm square is stacked, and PVB (polyvinyl butyral) with a thickness of 0.7 mm is installed as an intermediate layer between the multilayer laminated film and the support, A vacuum was applied at a temperature of 140 ° C. for 5 minutes, followed by pressing for 10 minutes.
- Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 2 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 3 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 4 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 195 ° C. and the width direction was relaxed by 1%. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 5 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 6 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 160 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 1 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 2 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the longitudinal stretching ratio was 4 times, the heat treatment temperature was 240 ° C., and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 3 The conditions were the same as in Example 1 except that the longitudinal stretching ratio was 2.8 times, the heat treatment temperature was 205 ° C., 1% width direction relaxation, and further 10% 150 ° C. during cooling for 1% width direction relaxation. Thus, a multilayer laminated film was obtained. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 4 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 150 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 7 Using the resin A as the B layer and the resin D as the B layer, the A layer and the adjacent A layer and the B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side. In the range of 130 nm to 180 nm, and in the range of 137 nm to 190 nm, the thickness of the B layer is changed in a geometric progression (however, the layer thickness of the outermost layer A is finally The thickness was increased to 10 ⁇ m.) A multilayer stack of 100 ⁇ m in thickness under the same conditions as in Example 1 except that 501 layers were alternately stacked in the thickness direction (251 layers for A and 250 layers for B). A film was obtained.
- the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
- a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 8 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 205 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 9 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 205 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 10 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 195 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 11 A multilayer laminated film was obtained under the same conditions as in Example 7, except that the heat treatment temperature was 205 ° C., and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 5 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 12 Using the resin A as the B layer and the resin D as the B layer, the A layer and the adjacent A layer and the B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side.
- the A layer In the range of 130 nm to 180 nm and the thickness of B layer in the range of 137 nm to 190 nm, the A layer is changed in a geometric sequence, and the A layer is 250 layers and the B layer is 250 layers alternately in the thickness direction. 500 layers were laminated (however, the A layer was the film surface side, and the layer thickness of the A layer disposed on the film surface was finally increased to 10 ⁇ m).
- the layer thickness of the 711711 configuration was the layer thickness of the A layer corresponding to “7”. In the range of 135 nm to 165 nm, the layer thickness of layer B corresponding to “7” is in the range of 145 nm to 177 nm, and the layer thickness of layer A corresponding to “1” is in the range of 20 nm to 24 nm.
- Example 3 Same as Example 3 except that lamination (final layer configuration is 10 ⁇ m A layer / layer configuration satisfying formula (1) and formula (2) / 711711 configuration / 10 ⁇ m A layer) 120 ⁇ thickness under conditions
- the film temperature at the place where the film at the exit of the transverse stretching machine was released from the clip was 60 ° C.
- a molded body was formed from the obtained multilayer laminated film in the same manner as in Example 1. The physical properties of the multilayer laminated film and the appearance evaluation results of the molded product are summarized in Table 1.
- Example 13 A multilayer laminated film was obtained under the same conditions as in Example 12 except that the heat treatment temperature was 205 ° C. and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 6 A multilayer laminated film was obtained under the same conditions as in Example 12 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 14 Using the resin A as the B layer and the resin B as the B layer, the A layer and the adjacent B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side. In the range of 60 nm to 100 nm, and in the range of 64 nm to 127 nm, the layer thickness of layer B is changed in a geometric progression (however, the layer thickness of the outermost layer A is finally The thickness was increased to 10 ⁇ m.) Multilayer lamination with a thickness of 25 ⁇ m under the same conditions as in Example 1 except that 51 layers were alternately laminated in the thickness direction (A layer was 26 layers and B layer was 25 layers). A film was obtained.
- the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
- a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 15 The resin A is used as the A layer and the resin D is used as the B layer, and the layer thickness of the A layer is set to 119 nm so that the adjacent A layer and B layer satisfy the formula (1) from the surface of the film toward the opposite surface.
- the layer thickness of the B layer is changed in a geometric progression in the range from 151 nm to 213 nm (however, the layer thickness of the outermost layer A is finally 10 ⁇ m).
- a multilayer laminated film having a thickness of 100 ⁇ m was obtained under the same conditions as in Example 1 except that 501 layers were alternately laminated in the thickness direction (A layer was 251 layers and B layer was 250 layers).
- Example 1 The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
- a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product. Compared with Example 7, since the layer thickness did not satisfy the formula (2), the reflectance of 400 nm to 700 nm was high, and the unevenness of the molded body was easy to see.
- Example 16 A multilayer laminated film was obtained under the same conditions as in Example 11 except that the resin E was used as the B layer.
- the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
- a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- Example 7 A multilayer laminated film was obtained under the same conditions as in Example 2 except that no cooling was performed after the heat treatment.
- the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 95 ° C.
- a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1.
- Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
- the obtained film had a high rise temperature of heat shrinkage stress, and the unevenness of the molded product was noticeable.
- the present invention relates to a multilayer laminated film and a molded article that suppress uneven distortion caused by heat and pressure molding in a molded article in which an intermediate film and a support are disposed on at least one surface of the multilayer laminated film.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
(1)熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層され、
フィルム長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、
温度25℃~200℃、昇温速度5℃/minの条件にて測定した熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度としてフィルム長手方向及び幅方向の熱収縮応力の立ち上がり温度を測定したとき少なくとも一方において110℃以下であることを特徴とする多層積層フィルム、
(2)波長400~700nmでの平均反射率が15%以下であることを特徴とする(1)に記載の多層積層フィルム、
(3)長手方向及び幅方向の130℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする(1)または(2)に記載の多層積層フィルム、
(4)前記長手方向と幅方向の熱収縮応力の立ち上がり温度がいずれも110℃以下であることを特徴とする(1)~(3)のいずれかに記載の多層積層フィルム、
(5)長手方向、幅方向のうち少なくとも一方向の110℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする(1)~(4)のいずれかに記載の多層積層フィルム、
(6)長手方向および幅方向の100℃における熱収縮応力の差が0.05N/mm以下であることを特徴とする(1)~(5)のいずれかに記載の多層積層フィルム、
(7)フィルム長手方向およびそれに直交する方向の100℃における寸法変化率の差が0.5%以下であることを特徴とする(1)~(6)のいずれかに記載の多層積層フィルム、
(8)熱可塑性樹脂Aと熱可塑性樹脂Bのうち、少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は非晶性ポリエステル樹脂または前記結晶性のポリエステル樹脂の融点より30℃以上低い融点を備えたポリエステル樹脂であることを特徴とする(1)~(7)のいずれかに記載の多層積層フィルム、
(9)熱可塑性樹脂Aがポリエチレンテレフタレート樹脂層からなり、熱可塑性樹脂Bがスピログリコール成分及びシクロヘキサンジカルボン酸成分を共重合した共重合ポリエチレンテレフタレート樹脂からなることを特徴とする(1)~(8)のいずれかに記載の多層積層フィルム、
(10)波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が70%以上であることを特徴とする(1)~(9)のいずれかに記載の多層積層フィルム、
(11)波長1200nmから1400nmの範囲における平均反射率が40%以上であることを特徴とする(10)に記載の多層積層フィルム、
(12)長手方向及び幅方向の150℃における熱収縮率が6%以下であることを特徴とする(1)~(11)のいずれかに記載の多層積層フィルム、
(13)(1)~(12)のいずれかに記載の多層積層フィルムの少なくとも一方の面に中間膜を介して支持体が積層されてなる成形品、
(14)(1)~(12)のいずれかに記載の多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材、
(15)多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材であって、前記多層積層フィルムが熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層された多層積層フィルムであって、かつ前記積層フィルムの波長400~700nmでの平均反射率が15%以下であって、かつ波長900~1200nmでの平均反射率が60%以上であって、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下である遮熱部材、
である。
本発明の多層積層フィルムを製造する具体的な態様の例を以下に記す。
また、熱処理後に70℃以上、熱処理温度―20℃以下で冷却を行うことも好ましく、冷却中にリラックスを行うことも好ましい。特にフィルム冷却によって横延伸機出口のフィルムクリップ開放部におけるフィルム温度を80℃以下にすることが、熱収縮応力の立ち上がり温度を低くすることに有効である。
最後に巻取り機にてフィルムを巻き取ることによって本発明の多層積層フィルムが製造される。
[物性の測定方法ならびに効果の評価方法]
物性値の評価方法ならびに効果の評価方法は次の通りである。
セイコーインスツルメント(株)製 EXSTAR TMS/SS6000を用いた。サンプルサイズ20mm×4mm(測長15mm)、温度25℃~200℃、昇温速度5℃/minの条件にてフィルム長手方向と幅方向について測定を行なった。得られた荷重データをフィルムの測定前断面積で割ることによって熱収縮応力を算出し、110℃、130℃、150℃における値を得た。また、熱収縮応力が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度とした。
サンプルを150mm×10mmのサイズで切り出し、サンプル長手方向に100mmの間隔で印を付けた。印の間隔をNikon社製万能投影機(Model V-16A)を用いて測定しその値をAとした。次に、サンプルを3gの荷重をかけた状態でギアオーブンの中で吊り、150℃の雰囲気中で30分間放置した。次いで、サンプルを取り出して冷却後、先につけた印の間隔を測定しこれをBとした。このとき、下記式(3)より、熱収縮率を求めた。n数は3とし、その平均値を求め、フィルム長手方向、幅方向それぞれについて測定を行なった。
熱収縮率(%)=100×(A-B)/A ・・・式(3)。
日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の12°正反射付属装置P/N134-0104を取り付け、入射角度φ=12度における波長250~2600nmの絶対反射率を測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルをフィルム幅中央部から5cm×5cmで切り出し測定した。これらの結果から、波長400nm~800nm、波長400nm~700nm、波長850nm~1200nm、波長1200nm~1400nmの平均反射率を求めた。
蛍光灯下に設置した成形品に対して、評価部分の法線方向に対して20°、50°、70°の角度から評価部分を目視にて評価を行った。評価基準は次のとおりである。
B:凹凸がごく僅かに見える
C:凹凸が見える。
蛍光灯下に設置した成形品に対して、評価部分の法線方向に対して20°の角度から評価部分を目視にて評価を行った。評価基準は次のとおりである。
セイコーインスツルメンツ社製の熱・応用・歪み測定装置(TMA/SS6000)を用いて以下の条件で測定した。各データは、少なくとも1℃につき1つ以上のデータが得られるようにした。寸法変化率は前記の式(1)を用いて算出した。熱収応力の差、寸法変化率の差それぞれは、長手方向の値から幅方向の値を引いた値の絶対値とした。
昇温範囲:25~200℃
昇温速度:10℃/分
測定荷重:19.8N
温度23℃、相対湿度65%、大気中。
熱可塑性樹脂A、Bからサンプル質量5mgを採取し、示差走査熱量分析計(DSC)セイコーインスツルメント(株)製EXSTAR DSC6220を用い、JIS-K-7122(1987年)に従って測定、算出した。測定は25℃から290℃まで5℃/minで昇温しこのときの融点±20℃の範囲におけるベースラインからの積分値を融解熱量とした。また、ここでの融点とは、DSCのベースラインからの差異が最大となる点とした。ここで、融解熱量が20J/g以上の樹脂を結晶性樹脂、5J/g以下である樹脂を非晶性樹脂とした。
樹脂A:IV=0.65のポリエチレンテレフタレート(結晶性ポリエステル、融点255℃)
樹脂B:IV=0.73のポリエチレンテレフタレートの共重合体(シクロヘキサンジメタノール成分33mol%共重合したポリエチレンテレフタレート)(非晶性ポリエステル)
樹脂C:IV=0.72のポリエチレンテレフタレートの共重合体(シクロヘキサンジカルボン酸成分20mol%、スピログリコール成分20mol%共重合したポリエチレンテレフタレート)(非晶性ポリエステル)
樹脂D:樹脂Aを20質量%、樹脂Cを80質量%の割合でコンパウンドした原料
IV(固有粘度)の測定方法
樹脂E:IV=0.65のポリエチレンテレフタレートの共重合体(イソフタル酸成分12mol%共重合したポリエチレンテレフタレート)(結晶性ポリエステル、融点222℃)
溶媒としてオルトクロロフェノールを用いて、温度25℃、オストワルド粘度計を用いて測定した溶液粘度から算出した。
A層を構成する熱可塑性樹脂(以下、熱可塑性樹脂Aとも称する)として樹脂Aを、B層を構成する熱可塑性樹脂(以下、熱可塑性樹脂Bとも称する)として樹脂Bを用いた。熱可塑性樹脂Aおよび熱可塑性樹脂Bを、それぞれ、押出機にて280℃で溶融させ、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=4/1になるように計量しながら、51層フィードブロックにて合流させて、層厚み分布一定(フィルム厚み50μmにおいて、各A層の厚み1.54μm、各B層の厚み0.4μmとなるように積層した)、厚み方向に交互に51層積層(A層が26層、B層が25層)された積層体)とした。次いで、Tダイに供給し、シート状に成形した後、ワイヤーで8kVの静電印可電圧をかけながら、表面温度25℃に保たれたキャスティングドラム上で急冷固化し、未延伸フィルムを得た。この未延伸フィルムを、90℃、延伸倍率3.3倍で縦延伸を行い、両端部をクリップで把持するテンターに導き100℃、4.0倍横延伸した後、10秒間220℃で熱処理及び3%の幅方向リラックスを実施し、10秒間150℃で冷却した後、厚み50μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。成形品の作成は日清紡 LAMINATOR0303Sを用いた。多層積層フィルムの両側に支持体として、厚さ3mm、10cm角の板ガラスを重ね、多層積層フィルムと支持体との間にそれぞれ中間層として厚さ0.7mmのPVB(ポリビニルブチラール)を設置し、温度140℃、5分間真空を引いた後、10分間プレスした。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を195℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を160℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を240℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
縦延伸倍率を4倍、熱処理温度を240℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
縦延伸倍率を2.8倍、熱処理温度を205℃、1%の幅方向リラックス、10秒間150℃で冷却中にさらに1%幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を150℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを130nmから180nmの範囲にて、B層の層厚みを137nmから190nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に501層積層(A層が251層、B層が250層)したこと以外は実施例1と同様の条件にて厚み100μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃としたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃、1%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を195℃、1%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を240℃としたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを130nmから180nmの範囲にて、B層の層厚みを137nmから190nmの範囲にて、それぞれ等比数列的に変化させA層を250層、B層を250層、厚み方向に交互に500層積層(但し、A層をフィルム表面側とし、フィルム表面に配置したA層の層厚みは、最終的に10μmの厚さとなるように厚くした)した。続いて711711構成を50ユニット積層(A層を150層、B層を150層、厚み方向に交互に300層積層した。711711構成の層厚みは、「7」に該当するA層の層厚みを135nmから165nmの範囲にて、「7」に該当するB層の層厚みを145nmから177nmの範囲にて、「1」に該当するA層の層厚みを20nmから24nmの範囲にて、「1」に該当するB層の層厚みを21nmから25nmの範囲にて、それぞれ50ユニットに渡って等比数列的に変化させた。さらに、最終的に10μmの厚さとなるように厚くしたA層を積層(最終的な層構成は、10μmのA層/式(1)と式(2)を満たす層構成/711711構成/10μmのA層、である)したこと以外は、実施例3と同様の条件にて厚み120μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例12と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理温度を240℃としたこと以外は、実施例12と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
A層として樹脂AをB層として樹脂Bを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを60nmから100nmの範囲にて、B層の層厚みを64nmから127nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に51層積層(A層が26層、B層が25層)したこと以外は実施例1と同様の条件にて厚み25μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)を満たすように、A層の層厚みを119nmから167nmの範囲にて、B層の層厚みを151nmから213nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に501層積層(A層が251層、B層が250層)したこと以外は実施例1と同様の条件にて厚み100μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。実施例7と比較すると、層厚みが式(2)を満たしていないため、400nm~700nmの反射率が高く、成形体の凹凸が見えやすかった。
B層として樹脂Eを用いたこと以外は、実施例11と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
熱処理後に冷却を行わなかったこと以外は、実施例2と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は95℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。得られたフィルムは熱収縮応力の立ち上がり温度が高く、成形体の凹凸が目立って見えた。
Claims (15)
- 熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層され、
フィルム長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、
温度25℃~200℃、昇温速度5℃/minの条件にて測定した熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度としてフィルム長手方向及び幅方向の熱収縮応力の立ち上がり温度を測定したとき少なくとも一方において110℃以下であることを特徴とする多層積層フィルム。 - 波長400~700nmでの平均反射率が15%以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 長手方向及び幅方向の130℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 前記長手方向と幅方向の熱収縮応力の立ち上がり温度がいずれも110℃以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 長手方向、幅方向のうち少なくとも一方向の110℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 長手方向および幅方向の100℃における熱収縮応力の差が0.05N/mm以下であることを特徴とする請求項1に記載の多層積層フィルム。
- フィルム長手方向およびそれに直交する方向の100℃における寸法変化率の差が0.5%以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 熱可塑性樹脂Aと熱可塑性樹脂Bのうち、少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は非晶性ポリエステル樹脂または前記結晶性のポリエステル樹脂の融点より30℃以上低い融点を備えたポリエステル樹脂であることを特徴とする請求項1に記載の多層積層フィルム。
- 熱可塑性樹脂Aがポリエチレンテレフタレート樹脂層からなり、熱可塑性樹脂Bがスピログリコール成分及びシクロヘキサンジカルボン酸成分を共重合した共重合ポリエチレンテレフタレート樹脂からなることを特徴とする請求項1に記載の多層積層フィルム。
- 波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が70%以上であることを特徴とする請求項1に記載の多層積層フィルム。
- 波長1200nmから1400nmの範囲における平均反射率が40%以上であることを特徴とする請求項1に記載の多層積層フィルム。
- 長手方向及び幅方向の150℃における熱収縮率が6%以下であることを特徴とする請求項1に記載の多層積層フィルム。
- 請求項1に記載の多層積層フィルムの少なくとも一方の面に中間膜を介して支持体が積層されてなる成形品。
- 請求項1に記載の多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に透明基材を設けてなる遮熱部材。
- 多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材であって、前記多層積層フィルムが熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層された多層積層フィルムであって、かつ前記積層フィルムの波長400~700nmでの平均反射率が15%以下であって、かつ波長900~1200nmでの平均反射率が60%以上であって、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下である遮熱部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147027863A KR102053671B1 (ko) | 2012-03-16 | 2013-03-13 | 다층 적층 필름 |
EP13761598.5A EP2826621B1 (en) | 2012-03-16 | 2013-03-13 | Multi-layer laminated film |
US14/385,235 US9527266B2 (en) | 2012-03-16 | 2013-03-13 | Multi-layer laminated film |
JP2013513431A JP6007903B2 (ja) | 2012-03-16 | 2013-03-13 | 多層積層フィルム |
CN201380014437.4A CN104185547B (zh) | 2012-03-16 | 2013-03-13 | 多层层叠膜 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012059723 | 2012-03-16 | ||
JP2012-059723 | 2012-03-16 | ||
JP2012-223826 | 2012-10-09 | ||
JP2012223826 | 2012-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137288A1 true WO2013137288A1 (ja) | 2013-09-19 |
Family
ID=49161193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056922 WO2013137288A1 (ja) | 2012-03-16 | 2013-03-13 | 多層積層フィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US9527266B2 (ja) |
EP (1) | EP2826621B1 (ja) |
JP (1) | JP6007903B2 (ja) |
KR (1) | KR102053671B1 (ja) |
CN (1) | CN104185547B (ja) |
WO (1) | WO2013137288A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006388A1 (ja) * | 2014-07-08 | 2016-01-14 | コニカミノルタ株式会社 | 光学フィルム |
WO2016052609A1 (ja) * | 2014-09-30 | 2016-04-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2016125823A1 (ja) * | 2015-02-03 | 2016-08-11 | 王子ホールディングス株式会社 | 遮熱フィルム、遮熱合わせガラスおよびその製造方法 |
JP2016215643A (ja) * | 2015-05-19 | 2016-12-22 | 東レ株式会社 | 積層二軸延伸ポリエステルフィルム |
JP2017028016A (ja) * | 2015-07-17 | 2017-02-02 | 大日本印刷株式会社 | 太陽電池モジュール |
KR20170088331A (ko) * | 2014-11-19 | 2017-08-01 | 도레이 카부시키가이샤 | 적층 필름 |
JP2018089857A (ja) * | 2016-12-02 | 2018-06-14 | 住友ベークライト株式会社 | 多層フィルム及び包装体 |
JP2018176602A (ja) * | 2017-04-18 | 2018-11-15 | 住友ベークライト株式会社 | 多層フィルム及び包装体 |
JP2019522812A (ja) * | 2016-05-26 | 2019-08-15 | スリーエム イノベイティブ プロパティズ カンパニー | 偏光子積層体 |
WO2019203141A1 (ja) * | 2018-04-19 | 2019-10-24 | Agc株式会社 | 車両用フロントガラス |
JP7550166B2 (ja) | 2019-04-03 | 2024-09-12 | スリーエム イノベイティブ プロパティズ カンパニー | 光学フィルム及びガラスラミネート |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014024537A (ja) * | 2012-06-19 | 2014-02-06 | 3M Innovative Properties Co | ナンバープレート用シート、ナンバープレート用積層体、ナンバープレートおよびナンバープレート用装飾部材 |
US20180022066A1 (en) | 2015-02-05 | 2018-01-25 | Sekisui Chemical Co., Ltd. | Laminated-glass interlayer and laminated glass |
WO2017057497A1 (ja) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2017150165A1 (ja) * | 2016-02-29 | 2017-09-08 | 帝人フィルムソリューション株式会社 | 農業ハウス、この農業ハウスを用いた植物の栽培方法および熱線反射フィルム構造体 |
KR101705243B1 (ko) | 2016-05-26 | 2017-02-09 | 에스케이씨 주식회사 | 백색 열수축성 적층 필름 및 이를 포함하는 라벨 |
CN109789667A (zh) * | 2016-09-30 | 2019-05-21 | 3M创新有限公司 | 可见光透明的宽带红外镜膜 |
EP4050385A1 (en) * | 2017-10-03 | 2022-08-31 | Toray Industries, Inc. | Laminate film |
DE102017129352A1 (de) * | 2017-12-08 | 2019-06-13 | Ensinger Gmbh | Polymer-basierendes Substrat sowie Verfahren zu dessen Herstellung |
DE102017129353A1 (de) | 2017-12-08 | 2019-06-13 | Ensinger Gmbh | Polymer-basierendes Substrat sowie Verfahren zu dessen Herstellung |
JP7269242B2 (ja) | 2018-07-05 | 2023-05-08 | グンゼ株式会社 | 熱収縮性多層フィルム及び熱収縮性ラベル |
WO2021102163A1 (en) * | 2019-11-21 | 2021-05-27 | Tesla, Inc. | Durable glass for vehicle |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360659A (en) | 1993-05-24 | 1994-11-01 | The Dow Chemical Company | Two component infrared reflecting film |
JPH1076620A (ja) | 1996-09-04 | 1998-03-24 | Toray Ind Inc | 積層フィルムおよびガラス飛散防止フィルム |
JP2003511729A (ja) | 1999-10-12 | 2003-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | 複屈折ポリマーを使用して製造される光学体 |
JP3901911B2 (ja) | 2000-04-28 | 2007-04-04 | 帝人株式会社 | 透明積層フィルム |
JP2007268709A (ja) | 2006-03-30 | 2007-10-18 | Teijin Dupont Films Japan Ltd | 二軸延伸多層積層フィルム |
JP2007307893A (ja) | 2006-04-20 | 2007-11-29 | Toray Ind Inc | マット調フィルムおよび成形品 |
JP4310312B2 (ja) | 2003-10-27 | 2009-08-05 | 帝人デュポンフィルム株式会社 | 近赤外線遮蔽フィルム |
JP2010017854A (ja) | 2008-07-08 | 2010-01-28 | Bridgestone Corp | 機能性フィルム |
JP4534637B2 (ja) | 2004-03-31 | 2010-09-01 | 東レ株式会社 | 積層フィルム |
JP4691910B2 (ja) | 2004-06-11 | 2011-06-01 | 東レ株式会社 | スクリーン用反射体およびスクリーン |
JP2011141408A (ja) * | 2010-01-07 | 2011-07-21 | Toray Ind Inc | 偏光反射体 |
JP2011156687A (ja) * | 2010-01-29 | 2011-08-18 | Toray Ind Inc | 樹脂シートおよびそれを用いた成形品 |
JP4816419B2 (ja) | 2005-11-29 | 2011-11-16 | 東レ株式会社 | 積層フィルム |
WO2012008587A1 (ja) * | 2010-07-16 | 2012-01-19 | 旭硝子株式会社 | 赤外線反射基板および合わせガラス |
JP2012030563A (ja) * | 2010-08-03 | 2012-02-16 | Toray Ind Inc | 積層フィルムおよびそれを用いた自動車用窓ガラス |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049419A (en) * | 1998-01-13 | 2000-04-11 | 3M Innovative Properties Co | Multilayer infrared reflecting optical body |
US6531230B1 (en) | 1998-01-13 | 2003-03-11 | 3M Innovative Properties Company | Color shifting film |
EP1741550B1 (en) * | 2004-03-31 | 2019-04-24 | Toray Industries, Inc. | Laminated film |
CN100548664C (zh) * | 2004-03-31 | 2009-10-14 | 东丽株式会社 | 层压薄膜 |
US7345137B2 (en) * | 2004-10-18 | 2008-03-18 | 3M Innovative Properties Company | Modified copolyesters and optical films including modified copolyesters |
US7727633B2 (en) * | 2006-08-22 | 2010-06-01 | 3M Innovative Properties Company | Solar control glazing laminates |
KR101310587B1 (ko) * | 2006-09-06 | 2013-09-23 | 도레이 카부시키가이샤 | 폴리에스테르 수지 조성물, 그의 제조 방법 및 적층 폴리에스테르 필름 |
JP2008200924A (ja) | 2007-02-19 | 2008-09-04 | Toray Ind Inc | 積層フィルム |
KR101775077B1 (ko) * | 2009-10-09 | 2017-09-06 | 에스케이씨 주식회사 | 다층 광학 필름 및 이의 제조방법 |
JP5277189B2 (ja) * | 2010-02-02 | 2013-08-28 | 富士フイルム株式会社 | 遮熱部材、及び合わせガラス |
KR101983629B1 (ko) * | 2011-06-27 | 2019-05-29 | 도레이 카부시키가이샤 | 적층 필름 및 그것을 사용한 자동차용 창유리 |
-
2013
- 2013-03-13 CN CN201380014437.4A patent/CN104185547B/zh active Active
- 2013-03-13 KR KR1020147027863A patent/KR102053671B1/ko active IP Right Grant
- 2013-03-13 WO PCT/JP2013/056922 patent/WO2013137288A1/ja active Application Filing
- 2013-03-13 JP JP2013513431A patent/JP6007903B2/ja active Active
- 2013-03-13 EP EP13761598.5A patent/EP2826621B1/en active Active
- 2013-03-13 US US14/385,235 patent/US9527266B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360659A (en) | 1993-05-24 | 1994-11-01 | The Dow Chemical Company | Two component infrared reflecting film |
JPH1076620A (ja) | 1996-09-04 | 1998-03-24 | Toray Ind Inc | 積層フィルムおよびガラス飛散防止フィルム |
JP2003511729A (ja) | 1999-10-12 | 2003-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | 複屈折ポリマーを使用して製造される光学体 |
JP3901911B2 (ja) | 2000-04-28 | 2007-04-04 | 帝人株式会社 | 透明積層フィルム |
JP4310312B2 (ja) | 2003-10-27 | 2009-08-05 | 帝人デュポンフィルム株式会社 | 近赤外線遮蔽フィルム |
JP4534637B2 (ja) | 2004-03-31 | 2010-09-01 | 東レ株式会社 | 積層フィルム |
JP4691910B2 (ja) | 2004-06-11 | 2011-06-01 | 東レ株式会社 | スクリーン用反射体およびスクリーン |
JP4816419B2 (ja) | 2005-11-29 | 2011-11-16 | 東レ株式会社 | 積層フィルム |
JP2007268709A (ja) | 2006-03-30 | 2007-10-18 | Teijin Dupont Films Japan Ltd | 二軸延伸多層積層フィルム |
JP2007307893A (ja) | 2006-04-20 | 2007-11-29 | Toray Ind Inc | マット調フィルムおよび成形品 |
JP2010017854A (ja) | 2008-07-08 | 2010-01-28 | Bridgestone Corp | 機能性フィルム |
JP2011141408A (ja) * | 2010-01-07 | 2011-07-21 | Toray Ind Inc | 偏光反射体 |
JP2011156687A (ja) * | 2010-01-29 | 2011-08-18 | Toray Ind Inc | 樹脂シートおよびそれを用いた成形品 |
WO2012008587A1 (ja) * | 2010-07-16 | 2012-01-19 | 旭硝子株式会社 | 赤外線反射基板および合わせガラス |
JP2012030563A (ja) * | 2010-08-03 | 2012-02-16 | Toray Ind Inc | 積層フィルムおよびそれを用いた自動車用窓ガラス |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006388A1 (ja) * | 2014-07-08 | 2016-01-14 | コニカミノルタ株式会社 | 光学フィルム |
WO2016052609A1 (ja) * | 2014-09-30 | 2016-04-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
JP5989920B1 (ja) * | 2014-09-30 | 2016-09-07 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
KR20170088331A (ko) * | 2014-11-19 | 2017-08-01 | 도레이 카부시키가이샤 | 적층 필름 |
KR102470780B1 (ko) * | 2014-11-19 | 2022-11-25 | 도레이 카부시키가이샤 | 적층 필름 |
WO2016125823A1 (ja) * | 2015-02-03 | 2016-08-11 | 王子ホールディングス株式会社 | 遮熱フィルム、遮熱合わせガラスおよびその製造方法 |
JP2016215643A (ja) * | 2015-05-19 | 2016-12-22 | 東レ株式会社 | 積層二軸延伸ポリエステルフィルム |
JP2017028016A (ja) * | 2015-07-17 | 2017-02-02 | 大日本印刷株式会社 | 太陽電池モジュール |
JP7076710B2 (ja) | 2016-05-26 | 2022-05-30 | スリーエム イノベイティブ プロパティズ カンパニー | 偏光子積層体 |
JP2019522812A (ja) * | 2016-05-26 | 2019-08-15 | スリーエム イノベイティブ プロパティズ カンパニー | 偏光子積層体 |
JP2018089857A (ja) * | 2016-12-02 | 2018-06-14 | 住友ベークライト株式会社 | 多層フィルム及び包装体 |
JP2018176602A (ja) * | 2017-04-18 | 2018-11-15 | 住友ベークライト株式会社 | 多層フィルム及び包装体 |
WO2019203141A1 (ja) * | 2018-04-19 | 2019-10-24 | Agc株式会社 | 車両用フロントガラス |
JPWO2019203141A1 (ja) * | 2018-04-19 | 2021-05-20 | Agc株式会社 | 車両用フロントガラス |
JP7160091B2 (ja) | 2018-04-19 | 2022-10-25 | Agc株式会社 | 車両用フロントガラス |
JP7550166B2 (ja) | 2019-04-03 | 2024-09-12 | スリーエム イノベイティブ プロパティズ カンパニー | 光学フィルム及びガラスラミネート |
Also Published As
Publication number | Publication date |
---|---|
KR102053671B1 (ko) | 2019-12-09 |
CN104185547A (zh) | 2014-12-03 |
EP2826621A1 (en) | 2015-01-21 |
JP6007903B2 (ja) | 2016-10-19 |
US20150064428A1 (en) | 2015-03-05 |
US9527266B2 (en) | 2016-12-27 |
EP2826621B1 (en) | 2021-04-21 |
KR20140141635A (ko) | 2014-12-10 |
EP2826621A4 (en) | 2015-04-15 |
JPWO2013137288A1 (ja) | 2015-08-03 |
CN104185547B (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6007903B2 (ja) | 多層積層フィルム | |
JP5807466B2 (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
JP5607574B2 (ja) | 防皺性赤外反射フィルム、およびそれから製造される非平面積層物品 | |
JP5867393B2 (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
KR101084516B1 (ko) | 근적외선 차폐 필름 | |
EP2786865A1 (en) | Biaxially stretched laminated polyester film, infrared-ray-shielding structure for laminated glass which comprises said film, and laminated glass comprising said film or said structure | |
JP6427925B2 (ja) | ウインドウフィルム | |
WO2014156726A1 (ja) | 積層フィルム | |
JP6551232B2 (ja) | 多層積層フィルム | |
WO2018012252A1 (ja) | フィルムおよび積層体 | |
WO2019203141A1 (ja) | 車両用フロントガラス | |
JP2012030563A (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
JP6225495B2 (ja) | 多層積層フィルムおよびこれを用いたガラス窓部材 | |
JP2012173374A (ja) | 熱線反射部材 | |
JP2021054061A (ja) | 積層フィルム | |
JP6015382B2 (ja) | 積層フィルムならびに遮熱部材 | |
JP2018127607A (ja) | フィルム | |
JP4967486B2 (ja) | 延伸フィルムならびにその成型品 | |
JP2024072399A (ja) | 積層ポリエステルフィルム | |
JP7342651B2 (ja) | フィルム | |
JP2013248820A (ja) | 成形品及び多層積層フィルム。 | |
WO2024062961A1 (ja) | フィルムおよびその製造方法、積層構成体、合わせガラス、自動車 | |
JP2023121739A (ja) | 多層積層フィルム | |
JP2023082674A (ja) | 調光ウインドウ | |
JP2019061238A (ja) | 多層積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380014437.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013513431 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761598 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013761598 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14385235 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147027863 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |