WO2013137288A1 - 多層積層フィルム - Google Patents

多層積層フィルム Download PDF

Info

Publication number
WO2013137288A1
WO2013137288A1 PCT/JP2013/056922 JP2013056922W WO2013137288A1 WO 2013137288 A1 WO2013137288 A1 WO 2013137288A1 JP 2013056922 W JP2013056922 W JP 2013056922W WO 2013137288 A1 WO2013137288 A1 WO 2013137288A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
multilayer laminated
film
layer
heat shrinkage
Prior art date
Application number
PCT/JP2013/056922
Other languages
English (en)
French (fr)
Inventor
松尾雄二
宇都孝行
長田俊一
合田亘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147027863A priority Critical patent/KR102053671B1/ko
Priority to EP13761598.5A priority patent/EP2826621B1/en
Priority to US14/385,235 priority patent/US9527266B2/en
Priority to JP2013513431A priority patent/JP6007903B2/ja
Priority to CN201380014437.4A priority patent/CN104185547B/zh
Publication of WO2013137288A1 publication Critical patent/WO2013137288A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a multilayer laminated film that eliminates an appearance defect of a molded product, and a molded product thereof.
  • Patent Documents 1 and 2 those having a metallic gloss tone using interference reflection
  • Patent Document 3 those having a near-infrared reflection function
  • Patent Document 4 those having a scattering prevention function
  • Molded articles formed by heating and pressure laminating these multilayer laminated films on a hard support are used for decorative materials such as decorative plates, various home appliances, building members, automobile-related parts, and the like.
  • a heat ray absorbing material is contained in an intermediate film used in glass or laminated glass, and the heat ray is blocked by the heat ray absorbing material (for example, Patent Document 5), a metal film What is formed on a glass surface by sputtering or the like to reflect and block heat rays (for example, Patent Document 6)
  • Patent Document 7 A polymer multilayer laminated film in which polymers having different refractive indexes are alternately laminated is inserted between glass and an intermediate film. There is one that reflects and blocks heat rays (for example, Patent Document 7).
  • the method using the heat ray absorbing material has a problem that the sunlight is radiated into the room to reduce the heat ray cutting efficiency because sunlight incident from the outside is converted into heat energy.
  • the glass temperature partially increases by absorbing the heat rays, and the glass body may be damaged due to the difference from the outside air temperature.
  • the method of forming a metal film on the glass surface by sputtering or the like not only heat rays but also visible light is reflected so that it is easy to be colored, and in order to shield electromagnetic waves, communication equipment or the like may not be used internally. .
  • the polymer multilayer laminated film can control the layer thickness and select the wavelength to reflect, so it can selectively reflect the light in the near infrared region, cut the heat ray while maintaining the visible light transmittance Performance can be improved.
  • the polymer multilayer laminated film since it does not include metal or other materials that block radio waves, it has excellent radio wave permeability.
  • the present invention provides a multilayer laminated film that suppresses uneven distortion caused by heat and pressure molding in a molded article in which an intermediate film and a support are disposed on at least one surface of the multilayer laminated film, thereby providing an appearance and a design property. It is an object of the present invention to obtain a molded product excellent in size.
  • the present invention has the following configuration.
  • the layer (A layer) using the thermoplastic resin A and the layer (B layer) using the thermoplastic resin B are alternately stacked by 51 layers or more,
  • the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction of the film is 0.5 MPa or more and 5 MPa or less,
  • thermoplastic resin A and the thermoplastic resin B at least one thermoplastic resin is a crystalline polyester, and at least one thermoplastic resin is an amorphous polyester resin or the crystalline polyester resin.
  • the thermoplastic resin A comprises a polyethylene terephthalate resin layer
  • the thermoplastic resin B comprises a copolymerized polyethylene terephthalate resin obtained by copolymerizing a spiroglycol component and a cyclohexanedicarboxylic acid component.
  • the multilayer laminated film according to any one of (10) The average reflectance in the wavelength range of 400 nm to 700 nm is 15% or less, and the average reflectance in the wavelength range of 850 nm to 1200 nm is 70% or more.
  • the multilayer laminated film according to (11) The multilayer laminated film according to (10), wherein an average reflectance in a wavelength range of 1200 nm to 1400 nm is 40% or more, (12) The multilayer laminated film according to any one of (1) to (11), wherein the thermal shrinkage at 150 ° C.
  • the multilayer laminated film is a multilayer laminated film in which 51 layers (layer B) using thermoplastic resin A and 51 layers (layer B) using thermoplastic resin B are alternately laminated.
  • the average reflectance of the laminated film at a wavelength of 400 to 700 nm is 15% or less, and the average reflectance at a wavelength of 900 to 1200 nm is 60% or more, at 100 ° C. in the longitudinal direction of the film and A heat-shielding member having a difference in heat shrinkage stress in a direction perpendicular thereto of 0.05 N / mm or less, It is.
  • the present inventors set the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction of the multilayer laminated film to 0.5 MPa or more and 5 MPa or less. It was found that a molded article having an excellent appearance can be obtained by setting the rising temperature of heat shrinkage stress in at least one of the longitudinal direction and the width direction to 110 ° C. or lower. This will be described in detail below.
  • the appearance defect problem of the molded product can be solved.
  • the appearance defect that occurs in a molded product in which a support, an intermediate film, and a multilayer laminated film are heat-pressed is caused by uneven distortion of the multilayer laminated film. It was achieved as a result of exploring whether the problem can be solved.
  • the present invention will be described in detail below. However, the present invention is not construed as being limited to the specific embodiments including the following examples, and the object of the invention can be achieved. Various embodiments within the scope not departing from the present invention are naturally included in the scope of the present invention.
  • the multilayer laminated film of the present invention 51 layers or more of layers (A layer) made of thermoplastic resin A and layers (B layer) made of thermoplastic resin B having different properties from the resin constituting the A layer are alternately formed.
  • the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction is 0.5 MPa to 5 MPa, and the rising temperature of the heat shrinkage stress in at least one direction in the longitudinal direction and the width direction is 110 ° C. or less. is necessary.
  • thermoplastic resin examples include polyolefins such as polyethylene, polypropylene, and poly (4-methylpentene-1).
  • examples of cycloolefins include ring-opening metathesis polymerization and addition polymerization of norbornenes.
  • Biodegradable polymers such as alicyclic polyolefin, polylactic acid, polybutyl succinate and the like, addition copolymers with other olefins, polyamides such as nylon 6, nylon 11, nylon 12, nylon 66, aramid, poly Methyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene copolymerized polymethyl methacrylate, polycarbonate, polypropylene Polyesters such as pyrene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, tetrafluor
  • polyester a polyester obtained by using an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol or a derivative thereof is preferable.
  • aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyl.
  • Examples thereof include dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like.
  • Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid are preferred. These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
  • polyesters polyethylene terephthalate and copolymers thereof, polyethylene naphthalate and copolymers thereof, polybutylene terephthalate and copolymers thereof, polybutylene naphthalate and copolymers thereof, and polyhexamethylene terephthalate and copolymers thereof.
  • thermoplastic resin A and thermoplastic resin B are used, and the two kinds of thermoplastic resins have different properties.
  • the property here means that crystallinity / amorphous property, optical property, thermal property, or physical property is different.
  • the two types of thermoplastic resins preferably contain the same repeating unit.
  • the repeating unit is an ethylene terephthalate unit
  • the ethylene unit is a repeating unit.
  • the absolute value of the difference in SP value (also referred to as solubility parameter) of each thermoplastic resin is 1.0 or less.
  • the polymers having different optical properties are preferably composed of a combination provided with the same basic skeleton.
  • the basic skeleton here is a repeating unit constituting the resin.
  • polyethylene terephthalate is used as one thermoplastic resin, it is the same as polyethylene terephthalate from the viewpoint of easily realizing a highly accurate laminated structure.
  • thermoplastic resins having different optical properties are resins containing the same basic skeleton, the lamination accuracy is high, and delamination at the lamination interface is less likely to occur.
  • a copolymer is desirable. That is, for example, when one resin is polyethylene terephthalate, the other resin is an embodiment using a resin composed of an ethylene terephthalate unit and another repeating unit having an ester bond.
  • the proportion of other repeating units (sometimes referred to as copolymerization amount) is preferably 5 mol% or more because of the need to obtain different properties.
  • each layer The thickness is preferably 90% or less because of excellent thickness accuracy and thickness uniformity. More preferably, it is 10 mol% or more and 80 mol% or less.
  • the A layer and the B layer are used by blending or alloying a plurality of types of thermoplastic resins.
  • the A layer and the B layer are used by blending or alloying a plurality of types of thermoplastic resins.
  • the absolute value of the difference in glass transition temperature between the thermoplastic resins is preferably 20 ° C. or less.
  • the absolute value of the difference in glass transition temperature is larger than 20 ° C., the thickness uniformity when forming the multilayer laminated film becomes poor, which causes variation in the heat ray cutting performance.
  • problems such as overstretching tend to occur when a multilayer laminated film is formed.
  • the absolute value of the difference between the glass transition temperatures of the thermoplastic resin A and the thermoplastic resin B is When it becomes larger than 5 degreeC, it is more preferable that the glass transition point temperature of the thermoplastic resin A is higher than the glass transition point temperature of the thermoplastic resin B.
  • the glass transition temperature of the outermost layer is low, adhesion to a roll or a clip may occur during longitudinal stretching or lateral stretching, which may impair the appearance quality.
  • At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate, and at least one thermoplastic resin contains spiroglycol. It is preferably a polyester comprising.
  • the polyester comprising spiroglycol refers to a copolyester copolymerized with spiroglycol, a homopolyester, or a polyester blended with them. Polyesters containing spiroglycol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate or polyethylene naphthalate, so that they are not easily stretched at the time of molding and are also difficult to delaminate.
  • At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate
  • at least one thermoplastic resin is preferably a polyester comprising spiroglycol and cyclohexanedicarboxylic acid.
  • the in-plane refractive index difference from polyethylene terephthalate or polyethylene naphthalate is increased, so that high reflectance is easily obtained.
  • the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small and the adhesiveness is excellent, it is difficult to be over-stretched at the time of molding and is also difficult to delaminate.
  • the thermoplastic resin A contains polyethylene terephthalate or polyethylene naphthalate, and is thermoplastic.
  • the resin B is preferably a polyester comprising spiroglycol or a polyester comprising spiroglycol and cyclohexanedicarboxylic acid.
  • the copolymerization amount of the polyester comprising spiroglycol and cyclohexanedicarboxylic acid is preferably 5 to 30 mol%, and the copolymerization amount of cyclohexanedicarboxylic acid is preferably 5 to 30 mol%.
  • At least one thermoplastic resin contains polyethylene terephthalate or polyethylene naphthalate, and even in a single composition, a small amount of other repeating units are copolymerized, or a small amount Other polyester resins may be blended, and at least one thermoplastic resin is preferably a polyester comprising cyclohexanedimethanol.
  • the polyester comprising cyclohexanedimethanol refers to a copolyester obtained by copolymerizing cyclohexanedimethanol, a homopolyester, or a polyester obtained by blending them.
  • Polyesters containing cyclohexanedimethanol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate and polyethylene naphthalate, and are therefore not easily stretched during molding and are also difficult to delaminate. More preferably, at least one thermoplastic resin is an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less. In this way, while having high reflection performance, the change in optical characteristics due to heating and aging is particularly small, and peeling between layers is less likely to occur.
  • the cyclohexanedimethanol group has a cis or trans isomer as a geometric isomer, and a chair type or a boat type as a conformational isomer.
  • the change in optical characteristics due to thermal history is even less, and blurring during film formation hardly occurs.
  • the thermoplastic resin A contains polyethylene terephthalate or polyethylene naphthalate, and is thermoplastic.
  • the resin B is preferably a polyester comprising cyclohexanedimethanol.
  • thermoplastic resin of thermoplastic resins having different optical properties is a crystalline polyester, and at least one thermoplastic resin is an amorphous polyester.
  • the crystallinity here means that the heat of fusion is 20 J / g or more in differential scanning calorimetry (DSC).
  • amorphous means that the heat of fusion is 5 J / g or less.
  • the amorphous polyester in addition to making it easy to provide a refractive index difference in the stretching and heat treatment processes in the production of the film, the amorphous polyester has a temperature much higher than the glass transition temperature.
  • the orientation can be relaxed by performing a heat treatment at a temperature below the melting point of the crystalline polyester, and the difference in heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto can be reduced at 100 ° C. It becomes easy for the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto to be 0.05 N / mm or less.
  • at least one thermoplastic resin of thermoplastic resins having different optical properties is a crystalline polyester, and at least one thermoplastic resin has a melting point lower by 30 ° C. or more than the melting point of the crystalline polyester resin.
  • a polyester resin is also preferred.
  • a crystal having a low melting point is obtained by performing heat treatment at a temperature lower than the melting point of the crystalline polyester showing a higher melting point and higher than the melting point of the crystalline polyester showing a lower melting point.
  • the melting polyester can be melted and the orientation can be relaxed, and the difference between the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C. can be reduced, or the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C. Of 0.05 N / mm 2 or less.
  • thermoplastic resin A is a crystalline polyester and the thermoplastic resin B is amorphous. It is preferable that it is a property polyester.
  • the resin constituting the B layer is mixed as a minor component with the resin constituting the A layer of the multilayer laminated film of the present invention, or the resin constituting the A layer is mixed as a minor component with the resin constituting the B layer. Is also preferable.
  • the mixing ratio is preferably in the range of 5 wt% to 30 wt%.
  • the layer using the thermoplastic resin A refers to a layer containing the thermoplastic resin A as a main component, not a small component, and a layer using the thermoplastic resin B (B
  • the term “layer” refers to a layer in which the thermoplastic resin B is contained as a main component rather than a minor component.
  • the average reflectance at a wavelength of 400 to 700 nm is preferably 15% or less.
  • the average reflectance at a wavelength of 400 nm to 700 nm which is a visible light region
  • the unevenness generated by molding becomes conspicuous.
  • the reflectance spectrum of the multilayer laminated film shifts with the incident angle. For this reason, when the average reflectance of 400 nm to 700 nm is higher than 15%, when the unevenness generated by molding is viewed from an oblique direction, different colors can be seen depending on the uneven portion, and therefore unevenness that cannot be seen with a single film is also present. There arises a problem that the multilayer film is visible.
  • the average reflectance at a wavelength of 400 to 700 nm is preferably 10% or less, more preferably 8% or less. As the average reflectance at a wavelength of 400 to 700 nm decreases, a film with higher transparency can be obtained.
  • the average reflectance at a wavelength of 400 to 700 nm needs to be 20% or less in the same manner as described above. This is preferably satisfied on any surface of the heat-shielding member comprising a transparent substrate (for example, glass), a middle ring film and a film. If either one is not satisfied, the transmitted light may be colored.
  • the average reflectance at a wavelength of 400 to 700 nm is preferably 15% or less, more preferably 10% or less. As the average reflectance at a wavelength of 400 to 700 nm decreases, a heat shielding member that is highly transparent and in which unevenness is difficult to see can be obtained.
  • the heat shrinkage stress at 150 ° C. in the longitudinal direction and the width direction needs to be 0.5 MPa or more and 5 MPa or less.
  • a preferable lower limit value is 1 MPa or more, and more preferably 1.5 MPa or more.
  • a preferable value of the upper limit is 3 MPa or less.
  • the ratio of the heat shrinkage stress in the longitudinal direction and the width direction is preferably in the range of 0.5 or more and 2 or less. If the balance between the heat shrinkage stress in the longitudinal direction and the width direction is poor, wrinkles may occur. However, if the balance is improved, a molded product without wrinkles can be obtained.
  • the multilayer laminated film of the present invention needs to have a rising temperature of heat shrinkage stress of 110 ° C. or less in at least one of the film longitudinal direction and width direction.
  • the rise temperature of the heat shrinkage stress is a base before the heat shrinkage stress curve rises in the heat shrinkage stress curve of the multilayer laminated film measured under the conditions of a temperature of 25 ° C. to 200 ° C. and a heating rate of 5 ° C./min. This is the temperature at the intersection of the line and the tangent at the point where the slope becomes maximum after the thermal shrinkage stress rises. Since heat shrinkage stress is generated in the multilayer laminated film from a low temperature during molding, uneven distortion can be suppressed.
  • a preferable value is 100 ° C. or lower, and more preferably 90 ° C. or lower.
  • the lower limit is preferably 50 ° C., more preferably 70 ° C., from the viewpoint of handling properties.
  • a biaxial stretching process and a heat treatment process are required.
  • the biaxial stretching method include a known simultaneous biaxial stretching method and a sequential biaxial stretching method.
  • sequential biaxial stretching and heat treatment are performed using polyethylene terephthalate in layer A and polyethylene terephthalate copolymerized with 33 mol% of cyclohexanedimethanol component in layer B will be described.
  • Stretching is performed at a temperature of 80 ° C. or more and 120 ° C. or less with a longitudinal stretching machine, preferably from 80 ° C. or more and 100 ° C.
  • the film is stretched by a transverse stretching machine at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, 2 times or more and 6 times or less, preferably 3 times or more and 4 times or less.
  • heat treatment is performed in a heat treatment machine at 160 ° C. or higher and 220 ° C. or lower, relax 0% or higher and 10% or lower, preferably 0% or higher and 5% or lower. It is also preferable to perform cooling immediately after the heat treatment at 70 ° C. or higher and a heat treatment temperature of ⁇ 20 ° C. or lower.
  • the film thickness unevenness can be suppressed by the cooling process. It is also effective to set the film temperature at 80 ° C. or lower where the film at the outlet of the transverse stretching machine is released from the clip.
  • the film temperature is higher than 80 ° C., when the film is released from the clip, a large shrinkage is applied to the film, and the rising temperature of the heat shrinkage stress may be increased.
  • the heat shrinkage stress is higher when the stretching temperature is lower, the stretching ratio is higher, and the relaxation rate is lower, and the rise temperature of the heat shrinkage stress can be lowered.
  • the heat shrinkage stress By lowering the heat treatment temperature, the heat shrinkage stress can be increased and the rise temperature of the heat shrinkage stress can be lowered. However, if the heat shrinkage stress is further increased and the rise temperature of the heat shrinkage stress is desired to be lowered, it is preferable to perform heat treatment and fine stretching of 2% or more and 10% or less after the heat treatment step, particularly at a low temperature. Thus, a higher effect can be obtained by performing fine stretching. By performing fine stretching of 2% or more, the heat shrinkage stress can be increased and the rise temperature of the heat shrinkage stress can be lowered while keeping the heat treatment temperature high. On the other hand, 10% or less is preferable from the viewpoint of film formation stability.
  • the heat shrinkage stress at 130 ° C. in the longitudinal direction and the width direction is preferably 0.5 MPa or more and 5 MPa or less, and a more preferable lower limit value is 1 MPa or more, and more preferably 1. 5 MPa or more. A more preferable value of the upper limit is 3 MPa or less.
  • the ratio of the heat shrinkage stress in the longitudinal direction and the width direction is preferably in the range of 0.5 MPa to 2 MPa. If the balance between the heat shrinkage stress in the longitudinal direction and the width direction is poor, wrinkles may occur. However, if the balance is improved, a molded product without wrinkles can be obtained. Examples of the achievement method for obtaining the heat shrinkage stress range include lowering the heat treatment temperature, and increasing the heat treatment step and the fine stretching ratio after the heat treatment step.
  • the multilayer laminated film of the present invention preferably has a rising temperature of heat shrinkage stress of 110 ° C. or less in both the longitudinal direction and the width direction.
  • the rising temperature of the heat shrinkage stress in both the longitudinal direction and the width direction is 110 ° C. or less, the uneven distortion can be further suppressed.
  • a more preferable value is 100 ° C. or lower, and further preferably 90 ° C. or lower.
  • the lower limit is preferably 50 ° C., more preferably 70 ° C., from the viewpoint of handling properties.
  • Examples of the achievement method for setting the rise temperature of the heat shrinkage stress within the above range include further lowering the heat treatment temperature, and increasing the fine stretching ratio after the heat treatment step and the heat treatment step. It is preferable to stretch and increase the fine stretching ratio.
  • the multilayer laminated film of the present invention preferably has a heat shrinkage stress at 110 ° C. of at least one of the longitudinal direction and the width direction of 0.5 MPa or more and 5 MPa or less, and a more preferable lower limit value is 1 MPa or more, More preferably, it is 1.5 MPa or more. A more preferable value of the upper limit is 3 MPa or less.
  • the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. is preferably 0.05 N / mm or less.
  • the heat shrinkage stress here is a value measured in thermomechanical analysis, and after fixing a distance with a load of 2 g on a laminated film sample having a width of 4 mm and a measurement length of about 15 mm, This is a value calculated by measuring the stress generated in the film when the temperature is increased from 10 to 150 ° C. at a rate of 10 ° C./min.
  • the heat shrinkage stress measurement method here is performed in thermomechanical analysis, and refers to a method of measuring load and material deformation as a function of temperature while changing the temperature of the material according to a regulated program. It is measured by a thermomechanical analyzer.
  • transparent substrates such as glass, polycarbonate, acrylic resin, polyvinyl butyral, ethylene-vinyl alcohol copolymer, etc.
  • the interlayer film of the present invention and the multilayer laminated film of the present invention may be combined to form a heat shielding member.
  • the heat shield member is obtained by heating and compressing at 100 to 130 ° C. or 150 ° C.
  • appearance defects such as wrinkles and peeling may occur in the multilayer laminated film due to the difference in heat shrinkage between the transparent base material or intermediate film and the multilayer laminated film.
  • methods have been proposed to improve the appearance defect by the heat shrinkage rate, the appearance may not be improved by controlling the heat shrinkage rate depending on the curvature of the heat shield member, the transparent base material used, and the type of interlayer. there were.
  • the polyvinyl butyral and ethylene-vinyl alcohol copolymer used for the interlayer film behaved in a manner that they soften near 100 ° C. and expand in the plane direction of the film by the force of compression.
  • the behavior differs between the surface in contact with the multilayer laminated film and the surface in contact with the transparent substrate, and the surface in contact with the laminated film is affected by the heat shrinkage behavior of the multilayer laminated film.
  • the surface in contact with the transparent substrate is strongly affected by the compression in the processing process, and therefore shows different behavior depending on the surface of the interlayer film. It has been determined that this is the cause.
  • the difference between the heat shrinkage stress in the film longitudinal direction and the direction perpendicular to it at 100 ° C.
  • the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. is 0.03 N / mm 2 or less. As described above, as the difference in heat shrinkage stress becomes smaller, the anisotropy of the heat shrinkage behavior is reduced, so that the effect of suppressing wrinkles and peeling is increased.
  • the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 130 ° C. or 150 ° C. is 0.05 N / mm 2 or less.
  • the transparent base material-intermediate film-multilayer laminated film-intermediate film-transparent base material are laminated in this order, and then heated and compressed at 100 ° C to 130 ° C or 150 ° C.
  • the difference between the heat shrinkage stress in the film longitudinal direction and the direction orthogonal thereto is 0.05 N / mm 2 or less. It is possible to suppress the appearance defects such as wrinkles and peeling in the whole process.
  • the difference in the dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is preferably 0.5% or less.
  • the rate of dimensional change here is defined by the following formula (1).
  • a load of 2 g is applied to a multilayer laminated film sample having a width of 4 mm and a measurement length of about 15 mm. This is a value calculated by measuring the length of the film when the temperature is increased at a rate of 10 ° C./min from room temperature to 150 ° C. under a fixed condition of 2 g load after fixing the distance.
  • the dimensional change rate generally measured is that the sample length is measured near room temperature, so it actually reflects the dimensional change not only during the heating process but also during the cooling process.
  • the processing process to be performed cannot be strictly reflected.
  • thermomechanical analysis it becomes possible to reproduce a processing step for producing an actual heat shield member, and thus a film suitable for vitrification can be obtained more accurately.
  • the difference in the dimensional change rate at 100 ° C. is particularly important for suppressing appearance defects such as wrinkles and peeling. That is, the temperature in the vicinity of 100 ° C.
  • the multilayer laminated film is a temperature at which the interlayer film to be used begins to soften, while the multilayer laminated film is a temperature region where the influence of reversible thermal expansion is strongly observed.
  • the degree of this thermal expansion depends on the orientation state of the resin constituting each layer of the multilayer laminated film, but in the multilayer laminated film as in the present application in which resins having different characteristics are laminated, the film longitudinal direction in the vicinity of 100 ° C. And the difference in thermal expansion in the direction perpendicular to the same tends to occur. Due to the difference in the degree of thermal expansion, distortion due to expansion occurs at the interface between the multilayer laminated film and the intermediate film before the intermediate film is softened, resulting in appearance defects such as wrinkles and peeling.
  • the difference in dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.5% or less
  • the difference in heat shrinkage stress between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.05 N / it becomes easy to mm 2. More preferably, the difference in dimensional change rate between the film longitudinal direction at 100 ° C. and the direction perpendicular thereto is 0.3% or less.
  • the difference in the heat shrinkage stress can be reduced as the difference in the dimensional change rate between the longitudinal direction of the film and the direction orthogonal thereto is reduced.
  • the transparent base material-intermediate film-multilayer laminated film-intermediate film-transparent base material are laminated in this order, and then heated and compressed at 100 ° C to 130 ° C or 150 ° C.
  • the difference in the dimensional change rate in the film longitudinal direction and the direction perpendicular thereto is 0.5% or less.
  • the multilayer laminated film used in the molded product of the present invention preferably has a heat shrinkage rate at 150 ° C. in the longitudinal direction and the width direction of 6% or less, more preferably 3% or less.
  • a heat shrinkage rate at 150 ° C. in the longitudinal direction and the width direction of 6% or less, more preferably 3% or less.
  • the multilayer laminated film used for the molded product of the present invention preferably has an average reflectance in the wavelength range of 400 nm to 700 nm of 15% or less and an average reflectance in the wavelength range of 850 nm to 1200 nm of 70% or more. If it is set as such a structure, when the molded article of this invention is used as a window glass of a building, or a window glass of a motor vehicle, the temperature rise in a room
  • the multilayer laminated film used in the molded article of the present invention has an average reflectance of 15% or less in the wavelength range of 400 nm to 700 nm, an average reflectance of 70% or more in the wavelength range of 850 nm to 1200 nm, and a wavelength of 1200 nm to 1400 nm.
  • the average reflectance in the range is preferably 40% or more. With such a configuration, it is possible to block more heat energy while transmitting visible light. Therefore, when the molded product of the present invention is used as a window glass of a building or a window glass of an automobile, The temperature rise in the car can be greatly prevented.
  • the average reflectance in the wavelength range of 400 nm to 700 nm is 15% or less
  • the average reflectance in the wavelength range of 850 nm to 1200 nm is 80% or more
  • the average reflectance in the wavelength range of 1200 nm to 1400 nm is 50%. That's it.
  • the method for adjusting the reflectance in the desired wavelength range is the in-plane refractive index difference between layer A and layer B, the number of layers, the layer thickness distribution, and the film forming conditions (for example, the stretching ratio, stretching speed, stretching temperature, heat treatment temperature, heat treatment time). ) Adjustment and the like.
  • the A layer and the B layer it is preferable that the A layer is made of a crystalline thermoplastic resin, and the B layer is made of a resin mainly composed of an amorphous thermoplastic resin.
  • the resin mainly composed of an amorphous thermoplastic resin means that the weight fraction of the amorphous thermoplastic resin is 70% or more.
  • the in-plane refractive index difference between the A layer and the B layer is preferably 0.02 or more, more preferably 0.04 or more, and further preferably 0.08 or more.
  • at least one thermoplastic resin is crystalline, and at least one thermoplastic resin is amorphous or 30 ° C. or higher than the melting point of the crystalline thermoplastic resin. It has a low melting point. In this case, it is possible to easily provide a refractive index difference in the stretching and heat treatment steps in film production.
  • At least one surface of the heat shield member needs to have an average reflectance of 60% or more in a wavelength band of 900 to 1200 nm.
  • high heat ray cutting performance can be imparted even when used as a heat shield member.
  • the average reflectance in a wavelength band of 900 to 1200 nm on both surfaces of the heat shield member is 60% or more.
  • at least one surface of the heat shield member has an average reflectance of 70% or more in a wavelength band of 900 to 1200 nm. High heat ray cutting performance can be imparted to any surface of the heat shield member.
  • the band of 900 to 1200 nm in wavelength on at least one surface of the heat shielding member in the multilayer laminated film is preferably 70% or more.
  • the multilayer laminated film is laminated to the glass surface, and it is possible to suppress reflection on the multilayer laminated film by making the multilayer laminated film the surface, on the other hand, In particular, in the heat-shielding member of the present invention intended to cut heat rays from the outside, there may be a problem in terms of weather resistance and durability.
  • the light transmittance of the member is preferably 85% or more.
  • the light reflected by the multilayer laminated film can be reflected to the outside with almost no absorption, so that light can be efficiently reflected.
  • the multilayer laminated film and the heat shielding member of the present invention preferably have a visible light transmittance of 70% or more in JIS R3212. Moreover, it is also preferable that Solar total transmission (Tts) defined in ISO13837 (2008) is 50% or less.
  • Tts Solar total transmission
  • the multilayer laminated film used in the molded product of the present invention has 51 layers alternately composed of a layer made of a thermoplastic resin (A layer) and a layer made of a thermoplastic resin having a property different from at least the resin constituting the A layer (B layer). It is necessary to include the laminated structure.
  • thermoplastic resins having different properties it is possible to give the film a function that cannot be achieved with only one thermoplastic resin layer.
  • it is 101 layers or more, More preferably, it is 401 layers or more, More preferably, it is 601 layers or more, and it is about 5000 layers as an upper limit from a viewpoint of the enlargement of a lamination apparatus.
  • 101 layers or more are preferable in the multilayer laminated film of this invention, More preferably, it is 401 layers or more, More preferably, it is 601 layers or more, and it is about 5000 layers as an upper limit from a viewpoint of the enlargement of a lamination apparatus.
  • the optical thicknesses of the adjacent A layer and B layer satisfy the following formula (2).
  • is the reflected wavelength
  • n A-plane refractive index of the A layer the d A thickness of the A layer
  • n B-plane refractive index of the layer B the thickness of the B layer.
  • the layer thickness distribution satisfies the formula (2) and the following formula (3) at the same time.
  • the layer thickness distribution it is also preferable to use a 711711 configuration (US Pat. No. 5,360,659) in addition to equations (2) and (3).
  • the 711711 configuration is a stacked configuration in which 6 layers in which the A layer and the B layer are stacked in the order of ABABAB are used as one repeating unit, and the optical thickness ratio in the unit is 711711.
  • higher-order reflection can be eliminated. Therefore, it is possible to reduce the average reflectance in the wavelength range from 400 nm to 700 nm while increasing the average reflectance in the wavelength range from 850 nm to 1400 nm, and to provide a multilayer laminated film that is transparent and has a higher thermal energy blocking performance. Obtainable.
  • the reflection in the wavelength range of 1200 nm to 1400 nm is made into a layer thickness distribution of 711711 by reflecting the reflection in the wavelength range of 850 nm to 1200 nm simultaneously with the formula (2) and formula (3).
  • a layer thickness configuration light can be efficiently reflected with a small number of layers.
  • the layer thickness distribution increases or decreases from one side of the film surface to the opposite surface, the layer thickness distribution decreases after the layer thickness increases from one of the film surfaces toward the film center, and the film A layer thickness distribution or the like that increases after the layer thickness decreases from one of the surfaces toward the center of the film is preferable.
  • Layer thickness distribution can be changed continuously, such as linear, geometric ratio, difference series, or 10 to 50 layers have almost the same layer thickness, and the layer thickness is stepped. Those that change are preferred.
  • a layer having a thickness of 3 ⁇ m or more can be preferably provided as a protective layer on both surface layers of the multilayer laminated film.
  • the thickness of the protective layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the thickness of the multilayer laminated film of the present invention is preferably 20 ⁇ m to 300 ⁇ m. If the thickness is less than 20 ⁇ m, the film is weak and handling properties are poor. On the other hand, if it is 300 ⁇ m or more, the film is too stiff and the formability deteriorates.
  • the multilayer laminated film of the present invention has an easy adhesion layer, a hard coat layer, an abrasion resistant layer, a scratch prevention layer, an antireflection layer, a color correction layer, an ultraviolet ray absorption layer, a heat ray absorption layer, a printing layer, a gas barrier on the film surface.
  • a functional layer such as a layer or an adhesive layer is preferably formed.
  • a molded product in which an intermediate film and a support are laminated on at least one surface of the multilayer laminated film of the present invention is generally laminated under a sticking pressure, and heat-pressure molding is a preferred method.
  • the support that can be used in the molded article of the present invention include a resin support, a support made of metal, glass, or ceramic.
  • the surface of the support may be flat or curved, and can take any shape.
  • the resin include acrylic resins such as polycarbonate, cyclic polyolefin, polyarylate, polyethylene terephthalate, and polymethyl methacrylate, ABS, and triacetyl cellulose.
  • the support is preferably transparent, and the thickness of the support is preferably 0.5 mm to 5 mm.
  • Adhesives include vinyl acetate resin, vinyl chloride / vinyl acetate copolymer, ethylene / vinyl acetate copolymer, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl ether, nitrile rubber, styrene / budadiene rubber, natural Examples thereof include rubber, chloroprene rubber, polyamide, epoxy resin, polyurethane, acrylic resin, cellulose, polyvinyl chloride, polyacrylic acid ester, polyisobutylene, and the like.
  • Examples include dyes, anthraquinone dyes, quinophthalone dyes, methine dyes, condensed polycyclic dyes, reactive dyes, cationic dyes, lanthanum hexaboride, indium tin oxide, antimony tin oxide, and cesium tungsten oxide.
  • the thickness of the interlayer film is preferably 10 ⁇ m to 1 mm.
  • Examples of the molding method include extrusion lamination, hot melt lamination, thermal lamination, press lamination, vacuum lamination, autoclave lamination, and the like.
  • Extrusion laminating is a method in which each of a multilayer laminated film and an intermediate film in a molten state are extruded from a die into a film and laminated on a support, and a molded product is formed between two rolls.
  • Hot melt lamination is a molding method in which a multilayer laminated film or an intermediate film melted by heat is applied to a support, and the multilayer laminated film and the support are laminated.
  • Thermal lamination is a molding method in which a multilayer laminated film, an intermediate film, and a support are pressed and laminated while being heated with a heating roll.
  • Press laminating is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated and pressed and laminated with a press.
  • Vacuum lamination is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated, the inside of the apparatus is evacuated, and pressed to be laminated.
  • Autoclave laminating is a molding method in which a multilayer laminated film, an intermediate film, and a support are heated and then the interior of the apparatus is pressurized with gas or the like and laminated.
  • Examples of the molded article using the multilayer laminated film of the present invention include a molded article in which an interlayer film and a support are laminated on both sides of the multilayer laminated film.
  • Examples of the use of the molded article using the multilayer laminated film of the present invention include mobile phone and personal computer casings, electrical appliances, furniture exteriors, buildings and automobile windows.
  • the example of the specific aspect which manufactures the multilayer laminated film of this invention is described below.
  • the laminated structure of 51 layers or more in the multilayer laminated film of the present invention can be produced by the following method.
  • a thermoplastic resin is supplied from two extruders A corresponding to the A layer and an extruder B corresponding to the B layer, and the polymer from each flow path is a known multi-manifold type feed block, Laminate 51 layers or more by using a square mixer or a comb type feed block, and then melt extrude the melt into a sheet using a T-type die, and then cool it on a casting drum.
  • the method of solidifying and obtaining an unstretched film is mentioned.
  • As a method for improving the stacking accuracy of the A layer and the B layer methods described in Japanese Patent Application Laid-Open No. 2007-307893, Japanese Patent No. 4619910, and Japanese Patent No. 4816419 are preferable. If necessary, it is also preferable to dry the thermoplastic resin used for the A layer and the thermoplastic resin used for the B layer.
  • biaxial stretching is preferably performed by a known sequential biaxial stretching method or simultaneous biaxial stretching method.
  • the known sequential biaxial stretching method may be carried out by a method of stretching in the width direction after stretching in the longitudinal direction, a method of stretching in the longitudinal direction after stretching in the width direction, and stretching in the longitudinal direction and stretching in the width direction. You may carry out combining several times.
  • biaxial stretching is performed in the range from the glass transition temperature higher than layer A or layer B to 50 ° C. or lower, and the heat treatment is performed at a temperature higher than the stretching temperature.
  • the temperature is lower than the higher melting point.
  • the unstretched film cast on the cooling roll is 80 ° C. or more and 120 ° C. or less with a longitudinal stretching machine, and preferably 80 ° C. or more and 100 ° C. or less from the viewpoint of thickness unevenness. Stretching is performed using the speed change between the longitudinal stretching machine rolls under the conditions of not less than 6 times and not more than 6 times, preferably not less than 3 times and not more than 4 times.
  • the orientation in the longitudinal stretching In ordinary sequential biaxial stretching, the orientation tends to be strong in the film width direction, which causes a difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal to the film longitudinal direction (film width direction).
  • the orientation state in the film width direction and the flow direction (longitudinal direction) can be adjusted to the same extent, and at 100 ° C. and 130 ° C. or 150 ° C. in the film longitudinal direction and the direction perpendicular thereto.
  • the difference in heat shrinkage stress is 0.05 N / mm 2 or less, and the difference in the dimensional change rate in the film longitudinal direction at 100 ° C.
  • a preferred stretching condition for strengthening the orientation is stretching at a glass transition temperature of ⁇ 5 ° C. to + 5 ° C.
  • a glass transition temperature For example, when polyethylene terephthalate having a glass transition temperature of about 80 ° C. is used, it is 75 to 85 ° C. It is preferable to stretch 3.5 times or more in the range. In this case, not only the difference in heat shrinkage stress can be suppressed, but also effective in suppressing film thickness unevenness.
  • the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
  • the film is stretched by a horizontal stretching machine at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, 2 or more and 6 or less, preferably 3 or more and 4 or less.
  • a known tenter method is used as the stretching method in the width direction. That is, the film is conveyed while being gripped by both ends of the film, and stretched in the width direction by widening the clip interval at both ends of the film.
  • the difference in heat shrinkage stress between the film longitudinal direction and the direction perpendicular thereto at 100 ° C. and 130 ° C. or 150 ° C. is 0.05 N / mm 2 or less, or 100 ° C. It is preferable to adjust the draw ratio in the film width direction so that the difference in the dimensional change rate in the film longitudinal direction at 130 ° C. or 150 ° C. and in the direction perpendicular thereto is 0.5% or less.
  • the relationship between the draw ratio in the film width direction and the heat shrinkage stress is remarkable, and the resin is fixed while maintaining a large force strain in the film width direction by becoming a high draw ratio, from 100 ° C to 130 ° C or 150 ° C.
  • the strain amount stored can be controlled by adjusting the draw ratio, and the difference in heat shrinkage stress between the film longitudinal direction and the direction orthogonal thereto at 100 ° C. and 130 ° C. or 150 ° C. is 0.05 N / mm 2.
  • the transverse stretch ratio here depends on the stretching conditions in the longitudinal stretching process, which is the previous process, but the particularly preferred lateral stretch ratio is 3.0 to 4.0 times when polyethylene terephthalate is used as the thermoplastic resin. It is.
  • the transverse stretching temperature here depends on the stretching conditions in the longitudinal stretching step, which is the previous step, but the particularly preferred transverse stretching temperature is 90 ° C. to 130 ° C. when polyethylene terephthalate is used as the thermoplastic resin.
  • the unstretched film cast on the cooling roll is guided to a simultaneous biaxial tenter, and conveyed while holding both ends of the film with clips, and stretched simultaneously and / or stepwise in the longitudinal direction and the width direction. Stretching in the longitudinal direction is achieved by increasing the distance between the clips of the tenter and in the width direction by increasing the distance between the rails on which the clips run.
  • the tenter clip subjected to stretching and heat treatment in the present invention is preferably driven by a linear motor system.
  • the linear motor method is excellent in that the stretching ratio can be freely changed because the degree of freedom of each clip is high.
  • the stretching temperature and the stretching ratio are similar to the conditions for sequential biaxial stretching. That is, the stretching temperature is 80 ° C. or more and 120 ° C. or less, and the stretching magnification is 4 to 36 times, preferably 9 to 16 times as the area magnification.
  • heat treatment is performed with a heat treatment machine.
  • the heat treatment is generally performed in a transverse stretching machine (tenter). After the transverse stretching, heat treatment is performed at a temperature of 160 ° C. or higher and 220 ° C. or lower, relax 0% or higher and 10% or lower, preferably 0% or higher and 5% or lower. Relaxing may be performed only in the width direction, only in the longitudinal direction, or both in the width direction and the longitudinal direction.
  • the heat treatment temperature after stretching is preferably not higher than the melting point of at least one thermoplastic resin and not lower than at least one melting point of the remaining thermoplastic resin.
  • one of the thermoplastic resins maintains a high orientation state, while the orientation of the other thermoplastic resin is relaxed, so that the refractive index difference between these resins can be easily provided, and Since it becomes easy to reduce the heat shrinkage stress along with the orientation relaxation, the heat shrinkage stress in the film longitudinal direction and the direction perpendicular thereto at 100 ° C., 130 ° C. or 150 ° C. may be 0.05 N / mm 2 or less. It becomes easy. In addition, it is preferable to perform cooling at 70 ° C.
  • the multilayer laminated film of the present invention is produced by winding the film with a winder.
  • the molded article of the present invention will be described with specific examples. Even when a thermoplastic resin other than the thermoplastic resin specifically exemplified below is used, the multilayer laminated film of the present invention can be obtained in the same manner by referring to the description of the present specification including the following examples. Can do. [Methods for measuring physical properties and methods for evaluating effects] The physical property value evaluation method and the effect evaluation method are as follows.
  • Thermal shrinkage stress, rise temperature of thermal shrinkage stress EXSTAR TMS / SS6000 manufactured by Seiko Instruments Inc. was used.
  • the film was measured in the longitudinal direction and the width direction under the conditions of a sample size of 20 mm ⁇ 4 mm (measured length: 15 mm), a temperature of 25 ° C. to 200 ° C., and a heating rate of 5 ° C./min.
  • the heat shrinkage stress was calculated by dividing the obtained load data by the cross-sectional area before measurement of the film, and values at 110 ° C., 130 ° C., and 150 ° C. were obtained. Further, the temperature at the intersection of the baseline before the rise of the heat shrinkage stress and the tangent at the point where the inclination becomes maximum after the rise of the heat shrinkage stress was defined as the rise temperature of the heat shrinkage stress.
  • the evaluation part was visually evaluated from the angles of 20 °, 50 °, and 70 ° with respect to the normal direction of the evaluation part with respect to the molded product installed under the fluorescent lamp.
  • the evaluation criteria are as follows.
  • Difference in heat-absorbing stress and difference in dimensional change rate Measurement was performed under the following conditions using a thermal / application / strain measuring device (TMA / SS6000) manufactured by Seiko Instruments Inc. For each data, at least one data per 1 ° C. was obtained. The dimensional change rate was calculated using the above equation (1). The difference in heat-absorbing stress and the difference in dimensional change rate were absolute values obtained by subtracting the value in the width direction from the value in the longitudinal direction.
  • thermoplastic resins A and B A sample mass of 5 mg was taken from the thermoplastic resins A and B, and a differential scanning calorimeter (DSC) EXSTAR DSC 6220 manufactured by Seiko Instruments Inc. was used. Measured and calculated according to -7122 (1987). In the measurement, the temperature was raised from 25 ° C. to 290 ° C. at 5 ° C./min, and the integral value from the baseline in the range of melting point ⁇ 20 ° C. at this time was defined as the heat of fusion. In addition, the melting point here is the point where the difference from the baseline of DSC is maximized.
  • a resin having a heat of fusion of 20 J / g or more is a crystalline resin
  • a resin having a heat of fusion of 5 J / g or less is an amorphous resin.
  • thermoplastic resin A was used as a thermoplastic resin constituting the A layer (hereinafter also referred to as thermoplastic resin A), and resin B was used as the thermoplastic resin constituting the B layer (hereinafter also referred to as thermoplastic resin B).
  • the thermoplastic resin A and the thermoplastic resin B are each melted at 280 ° C. with an extruder, passed through 5 sheets of FSS type leaf disk filters, and then discharged with a gear pump (lamination ratio) of the thermoplastic resin A.
  • This unstretched film was longitudinally stretched at 90 ° C and a stretch ratio of 3.3 times, led to a tenter that grips both ends with clips, and stretched at 100 ° C and 4.0 times laterally, followed by heat treatment at 220 ° C for 10 seconds. After relaxing in the width direction of 3% and cooling at 150 ° C. for 10 seconds, a multilayer laminated film having a thickness of 50 ⁇ m was obtained. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. Nisshinbo LAMINATOR0303S was used to make the molded product.
  • a plate glass of 3 mm thickness and 10 cm square is stacked, and PVB (polyvinyl butyral) with a thickness of 0.7 mm is installed as an intermediate layer between the multilayer laminated film and the support, A vacuum was applied at a temperature of 140 ° C. for 5 minutes, followed by pressing for 10 minutes.
  • Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 2 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 3 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 4 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 195 ° C. and the width direction was relaxed by 1%. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 5 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 205 ° C. and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 6 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 160 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 1 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 2 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the longitudinal stretching ratio was 4 times, the heat treatment temperature was 240 ° C., and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 3 The conditions were the same as in Example 1 except that the longitudinal stretching ratio was 2.8 times, the heat treatment temperature was 205 ° C., 1% width direction relaxation, and further 10% 150 ° C. during cooling for 1% width direction relaxation. Thus, a multilayer laminated film was obtained. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 4 A multilayer laminated film was obtained under the same conditions as in Example 1 except that the heat treatment temperature was 150 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 7 Using the resin A as the B layer and the resin D as the B layer, the A layer and the adjacent A layer and the B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side. In the range of 130 nm to 180 nm, and in the range of 137 nm to 190 nm, the thickness of the B layer is changed in a geometric progression (however, the layer thickness of the outermost layer A is finally The thickness was increased to 10 ⁇ m.) A multilayer stack of 100 ⁇ m in thickness under the same conditions as in Example 1 except that 501 layers were alternately stacked in the thickness direction (251 layers for A and 250 layers for B). A film was obtained.
  • the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
  • a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 8 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 205 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 9 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 205 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 10 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 195 ° C. and the width direction was relaxed by 1%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 11 A multilayer laminated film was obtained under the same conditions as in Example 7, except that the heat treatment temperature was 205 ° C., and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 5 A multilayer laminated film was obtained under the same conditions as in Example 7 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 12 Using the resin A as the B layer and the resin D as the B layer, the A layer and the adjacent A layer and the B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side.
  • the A layer In the range of 130 nm to 180 nm and the thickness of B layer in the range of 137 nm to 190 nm, the A layer is changed in a geometric sequence, and the A layer is 250 layers and the B layer is 250 layers alternately in the thickness direction. 500 layers were laminated (however, the A layer was the film surface side, and the layer thickness of the A layer disposed on the film surface was finally increased to 10 ⁇ m).
  • the layer thickness of the 711711 configuration was the layer thickness of the A layer corresponding to “7”. In the range of 135 nm to 165 nm, the layer thickness of layer B corresponding to “7” is in the range of 145 nm to 177 nm, and the layer thickness of layer A corresponding to “1” is in the range of 20 nm to 24 nm.
  • Example 3 Same as Example 3 except that lamination (final layer configuration is 10 ⁇ m A layer / layer configuration satisfying formula (1) and formula (2) / 711711 configuration / 10 ⁇ m A layer) 120 ⁇ thickness under conditions
  • the film temperature at the place where the film at the exit of the transverse stretching machine was released from the clip was 60 ° C.
  • a molded body was formed from the obtained multilayer laminated film in the same manner as in Example 1. The physical properties of the multilayer laminated film and the appearance evaluation results of the molded product are summarized in Table 1.
  • Example 13 A multilayer laminated film was obtained under the same conditions as in Example 12 except that the heat treatment temperature was 205 ° C. and the film was slightly stretched by 4% during the heat treatment and relaxed in the width direction by 3%. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 6 A multilayer laminated film was obtained under the same conditions as in Example 12 except that the heat treatment temperature was 240 ° C. The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C. A molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 14 Using the resin A as the B layer and the resin B as the B layer, the A layer and the adjacent B layer satisfy the formulas (1) and (2) from the surface of the film toward the opposite side. In the range of 60 nm to 100 nm, and in the range of 64 nm to 127 nm, the layer thickness of layer B is changed in a geometric progression (however, the layer thickness of the outermost layer A is finally The thickness was increased to 10 ⁇ m.) Multilayer lamination with a thickness of 25 ⁇ m under the same conditions as in Example 1 except that 51 layers were alternately laminated in the thickness direction (A layer was 26 layers and B layer was 25 layers). A film was obtained.
  • the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
  • a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 15 The resin A is used as the A layer and the resin D is used as the B layer, and the layer thickness of the A layer is set to 119 nm so that the adjacent A layer and B layer satisfy the formula (1) from the surface of the film toward the opposite surface.
  • the layer thickness of the B layer is changed in a geometric progression in the range from 151 nm to 213 nm (however, the layer thickness of the outermost layer A is finally 10 ⁇ m).
  • a multilayer laminated film having a thickness of 100 ⁇ m was obtained under the same conditions as in Example 1 except that 501 layers were alternately laminated in the thickness direction (A layer was 251 layers and B layer was 250 layers).
  • Example 1 The film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
  • a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product. Compared with Example 7, since the layer thickness did not satisfy the formula (2), the reflectance of 400 nm to 700 nm was high, and the unevenness of the molded body was easy to see.
  • Example 16 A multilayer laminated film was obtained under the same conditions as in Example 11 except that the resin E was used as the B layer.
  • the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 60 ° C.
  • a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1. Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • Example 7 A multilayer laminated film was obtained under the same conditions as in Example 2 except that no cooling was performed after the heat treatment.
  • the film temperature at the place where the film at the outlet of the transverse stretching machine was released from the clip was 95 ° C.
  • a molded body was produced from the obtained multilayer laminated film in the same manner as in Example 1.
  • Table 1 summarizes the physical properties of the multilayer laminated film and the appearance evaluation results of the molded product.
  • the obtained film had a high rise temperature of heat shrinkage stress, and the unevenness of the molded product was noticeable.
  • the present invention relates to a multilayer laminated film and a molded article that suppress uneven distortion caused by heat and pressure molding in a molded article in which an intermediate film and a support are disposed on at least one surface of the multilayer laminated film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本発明は、多層積層フィルムの少なくとも一方の面に中間膜と支持体が配置された成形品において、加熱加圧成形による凹凸状の歪みを抑制する多層積層フィルムを提供することを課題とするものであり、熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層され、長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、温度25℃~200℃、昇温速度5℃/minの条件にて測定した熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度として、長手方向、幅方向のうち少なくとも一方方向の熱収縮応力の立ち上がり温度が110℃以下であることを特徴とする多層積層フィルムである。

Description

多層積層フィルム
 本発明は、成形品の外観不良を解消する多層積層フィルム及び、その成形品に関する。
 携帯電話、パソコンの筐体、電化製品、家具や自動車など外装に対する意匠性が要求される用途は多く、また、意匠性に対する要求も高まっている。意匠性の付与には塗装や印刷を施したり、着色されたフィルムを貼着したり、印刷されたフィルムの印刷面を基材上に転写したりする方法が知られている。また最近、2種の樹脂を厚み方向に交互に積層し、その干渉反射現象を利用して発色や光線の反射を行う多層積層フィルムは成形体に意匠性を付与する1つの手段として知られている。例えば、干渉反射を利用し金属光沢調を持つもの(特許文献1、特許文献2)や、近赤外線反射機能(特許文献3)を持つもの、飛散防止機能(特許文献4)を持つもの等が知られている。これらの多層積層フィルムを硬い支持体に加熱加圧ラミネートされて成形される成形品は、化粧版等の装飾材や、各種家電製品、建築部材、自動車関係の部品等に使われている。
 近年、環境保護による二酸化炭素排出規制を受けて、夏場の外部、特に太陽光による熱の流入を抑制できる熱線カットガラスが自動車や電車などの乗り物、建物の窓ガラスとして注目されている。
 このような熱線カットガラスの一例として、ガラス中や合わせガラスに用いられる中間膜中に熱線吸収材を含有させ、熱線を熱線吸収材にて遮断するもの(たとえば、特許文献5)、金属膜をガラス表面上にスパッタなどにより形成し熱線を反射させて遮断するもの、(たとえば特許文献6)屈折率の異なるポリマーが交互に積層されたポリマー多層積層フィルムをガラス及び中間膜の間に挿入して熱線を反射させて遮断するもの(たとえば特許文献7)などがある。この中で、熱線吸収材を用いる方法では、外部から入射される太陽光を熱エネルギーに変換するためその熱が室内へと放射されて熱線カット効率が低下する問題がある。加えて、熱線を吸収することで部分的にガラス温度が上昇し、外気温との差によりガラス本体が破損する場合もある。また、金属膜をガラス表面上にスパッタなどにより形成する方法では、熱線のみではなく可視光も反射するために着色しやすく、かつ電磁波も遮蔽するために内部で通信機器などが使用できない場合もある。
 一方、ポリマー多層積層フィルムは、その層厚みを制御して、反射する波長を選択できるため、近赤外領域の光を選択的に反射することができ、可視光線透過率を維持しつつ熱線カット性能を向上させることができる。また、金属など電波を遮断するものを含まないために、優れた電波透過性を保持したものとなる。
 これらの成形品は、人の目に触れる場所に使われるため外観が重要となる。しかし、耐印刷層が剥がれたり、鋭利なものでひっかかれたときなどキズが付いたりして、その耐久性やキズに対する耐性に対する要求が高まっている。先述のフィルムを貼着する態様にあっても同様の要求があるが、フィルム特有の問題としては、支持体との積層に用いる中間膜の厚みムラによる押圧ムラや、中間膜との熱収縮応力差等によって成形時にフィルムに凹凸状の歪みが発生し外観を損なうという問題があった。特に、多層積層フィルムにあっては、層厚みの制御による干渉反射現象を利用するものであることからこうした凹凸は光学的な欠点として目立ち易くなるという点が指摘されていた。なお、支持体と中間膜と多層積層フィルムを積層し成形する場合の別の問題点として、シワの問題がある。これは、多層積層フィルムが成形の際に、支持体の形状へ追従できないことや、中間膜との熱収縮率差等を原因として、主に成形体端部に発生する問題である。一方、本願の課題である凹凸状の歪みはシワとは異なり、支持体の形状に関わらず、中間膜の厚みムラによる押圧ムラや、中間膜と多層積層フィルムとの間の熱収縮応力差によって成形体全面に発生する問題である。
特表2003-511729号公報 特開2007-268709号公報 特許第4534637号公報 特開平10-076620号公報 特開2010-17854号公報 特許第3901911号公報 特許第4310312号公報
 本発明は、多層積層フィルムの少なくとも一方の面に中間膜と支持体が配置された成形品において、加熱加圧成形による凹凸状の歪みを抑制する多層積層フィルムを提供することにより外観および意匠性に優れた成形体を得ることを課題とする。
 上記課題を解決するために本発明は次のような構成を有する。
 すなわち、
(1)熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層され、
フィルム長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、
温度25℃~200℃、昇温速度5℃/minの条件にて測定した熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度としてフィルム長手方向及び幅方向の熱収縮応力の立ち上がり温度を測定したとき少なくとも一方において110℃以下であることを特徴とする多層積層フィルム、
(2)波長400~700nmでの平均反射率が15%以下であることを特徴とする(1)に記載の多層積層フィルム、
(3)長手方向及び幅方向の130℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする(1)または(2)に記載の多層積層フィルム、
(4)前記長手方向と幅方向の熱収縮応力の立ち上がり温度がいずれも110℃以下であることを特徴とする(1)~(3)のいずれかに記載の多層積層フィルム、
(5)長手方向、幅方向のうち少なくとも一方向の110℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする(1)~(4)のいずれかに記載の多層積層フィルム、
(6)長手方向および幅方向の100℃における熱収縮応力の差が0.05N/mm以下であることを特徴とする(1)~(5)のいずれかに記載の多層積層フィルム、
(7)フィルム長手方向およびそれに直交する方向の100℃における寸法変化率の差が0.5%以下であることを特徴とする(1)~(6)のいずれかに記載の多層積層フィルム、
(8)熱可塑性樹脂Aと熱可塑性樹脂Bのうち、少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は非晶性ポリエステル樹脂または前記結晶性のポリエステル樹脂の融点より30℃以上低い融点を備えたポリエステル樹脂であることを特徴とする(1)~(7)のいずれかに記載の多層積層フィルム、
(9)熱可塑性樹脂Aがポリエチレンテレフタレート樹脂層からなり、熱可塑性樹脂Bがスピログリコール成分及びシクロヘキサンジカルボン酸成分を共重合した共重合ポリエチレンテレフタレート樹脂からなることを特徴とする(1)~(8)のいずれかに記載の多層積層フィルム、
(10)波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が70%以上であることを特徴とする(1)~(9)のいずれかに記載の多層積層フィルム、
(11)波長1200nmから1400nmの範囲における平均反射率が40%以上であることを特徴とする(10)に記載の多層積層フィルム、
(12)長手方向及び幅方向の150℃における熱収縮率が6%以下であることを特徴とする(1)~(11)のいずれかに記載の多層積層フィルム、
(13)(1)~(12)のいずれかに記載の多層積層フィルムの少なくとも一方の面に中間膜を介して支持体が積層されてなる成形品、
(14)(1)~(12)のいずれかに記載の多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材、
(15)多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材であって、前記多層積層フィルムが熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層された多層積層フィルムであって、かつ前記積層フィルムの波長400~700nmでの平均反射率が15%以下であって、かつ波長900~1200nmでの平均反射率が60%以上であって、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下である遮熱部材、
である。
 本発明によって、外観および意匠性に優れた成形体を得ることができる。
 本発明者らは、支持体と中間膜と多層積層フィルムが加熱加圧成形される成形品において、多層積層フィルムの長手方向及び幅方向の150℃における熱収縮応力を0.5MPa以上5MPa以下に、長手方向、幅方向のうち少なくとも一方向の熱収縮応力の立ち上がり温度を110℃以下にすることで、外観に優れた成形品を得ることができることを見いだした。以下、これについて詳説する。
 支持体と中間膜と多層積層フィルムを積層し成形する場合、密着性を高めるために加熱と加圧を行なう。成形の際に、中間膜の厚みムラや、中間膜と多層積層フィルムとの間の熱収縮応力差によって、多層積層フィルムに凹凸状の歪みが発生し、その凹凸によって光が散乱、乱反射を起こし、成形品の外観が悪く見える。支持体はほとんど変形しないため、中間膜の形状は支持体によって緩和することは無い。多層積層フィルムは、その中に異種の樹脂から形成される界面が存在するため、フィルム表面による光の散乱、乱反射以外に界面による散乱、反射が加わるため、一種類の樹脂からなるフィルムよりも凹凸が目立ち易くなる。したがって、凹凸が発生し難い多層積層フィルムを用いることができれば、成形品の外観不良問題を解消することができる。本発明は、支持体と中間膜と多層積層フィルムとが加熱加圧成形される成形品において発生する外観不良は、多層積層フィルムの凹凸状の歪みに起因するものであり、かかる凹凸をどのようにすれば解消できるかを探求した結果到達されたものである。以下に本発明について詳細に述べるが、本発明は以下の実施例を含む具体的な実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲内においての種々の態様は当然本発明の範囲に含まれる。
 本発明の多層積層フィルムは、熱可塑性樹脂Aからなる層(A層)とA層を構成する樹脂とは異なる性質を有する熱可塑性樹脂Bからなる層(B層)とが交互に51層以上積層され、長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、長手方向、幅方向のうち少なくとも一方向の熱収縮応力の立ち上がり温度が110℃以下であることが必要である。
 本発明に係る多層積層フィルムに用い得る熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1)などのポリオレフィン、シクロオレフィンとしては、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、ポリ乳酸、ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6、ナイロン11、ナイロン12、ナイロン66などのポリアミド、アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボネート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどが挙げられる。これらの中で、強度・耐熱性・透明性の観点から、特にポリエステルを用いることが好ましく、ポリエステルとしては芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールあるいはそれらの誘導体を用いて得られるポリエステルが好ましい。ここで、芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、4,4′-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも好ましくはテレフタル酸と2,6-ナフタレンジカルボン酸を挙げることができる。これらの酸成分は1種のみ用いてもよく、2種以上併用してもよく、さらには、ヒドロキシ安息香酸等のオキシ酸などを一部共重合してもよい。
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でもエチレングリコールが好ましく用いられる。これらのジオール成分は1種のみ用いてもよく、2種以上併用してもよい。
 上記ポリエステルのうち、ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体並びにポリヘキサメチレンナフタレートおよびその共重合体の中から選択されるポリエステルを用いることが好ましい。
 本発明の成形品に用いる多層積層フィルムには、少なくとも2種の熱可塑性樹脂、すなわち熱可塑性樹脂Aと熱可塑性樹脂Bとが用いられ、該2種の熱可塑性樹脂は異なる性質を有する。ここでいう性質とは、結晶性・非晶性、光学的性質、熱的性質、もしくは物理的性質が異なることをいう。異なる性質を持つ熱可塑性樹脂を積層することで、それぞれの熱可塑性樹脂の単一の層のフィルムではなし得ない機能をフィルムに与えることができる。層間密着性や、高精度で積層構造が実現しやすい観点から、前記2種類の熱可塑性樹脂は同一の繰り返し単位を含むことが好ましい。繰り返し単位とは、例えば、ポリエチレンテレフタレートの場合は、エチレンテレフタレート単位であり、ポリエチレンの場合、エチレン単位が繰り返し単位である。
 本発明の多層積層フィルムに用いる異なる光学的性質を有する各熱可塑性樹脂の好ましい組み合わせとしては、各熱可塑性樹脂のSP値(溶解性パラメータともいう)の差の絶対値が、1.0以下であることが第一に好ましい。SP値の差の絶対値が1.0以下であると層間剥離が生じにくくなる。より好ましくは、異なる光学的性質を有するポリマーは同一の基本骨格を供えた組み合わせからなることが好ましい。ここでいう基本骨格とは、樹脂を構成する繰り返し単位のことであり、たとえば、一方の熱可塑性樹脂としてポリエチレンテレフタレートを用いる場合は、高精度な積層構造が実現しやすい観点から、ポリエチレンテレフタレートと同一の基本骨格であるエチレンテレフタレートを含むことが好ましい。異なる光学的性質を有する熱可塑性樹脂が同一の基本骨格を含む樹脂であると、積層精度が高く、さらに積層界面での層間剥離が生じにくくなるものである。
 同じ繰り返し単位を有し、かつ、異なる性質を具備させるには、共重合体とすることが望ましい。すなわち、例えば、一方の樹脂がポリエチレンテレフタレートの場合、他方の樹脂は、エチレンテレフタレート単位と他のエステル結合を持った繰り返し単位とで構成された樹脂を用いるような態様である。他の繰り返し単位を入れる割合(共重合量ということがある)としては、異なる性質を獲得する必要性から5mol%以上が好ましく、一方、層間の密着性や、熱流動特性の差が小さいため各層の厚みの精度や厚みの均一性に優れることから90%以下が好ましい。さらに好ましくは10mol%以上、80mol%以下である。また、A層とB層はそれぞれ、複数種の熱可塑性樹脂がブレンド又はアロイされ用いられることも望ましい。複数種の熱可塑性樹脂をブレンド又はアロイさせることで、1種類の熱可塑性樹脂では得られない性能を得ることができる。
 また、本発明の多層積層フィルムに用いる異なる光学的性質を有する各熱可塑性樹脂の好ましい組み合わせとしては、各熱可塑性樹脂のガラス転移温度の差の絶対値が20℃以下であることが好ましい。ガラス転移温度の差の絶対値が20℃より大きい場合には多層積層フィルムを製膜する際の厚み均一性が不良となり、熱線カット性能にばらつきが生じる原因となる。また、多層積層フィルムを成形する際にも、過延伸が発生するなどの問題が生じやすいためである。
 熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層され、かつ熱可塑性樹脂Aが最表層に配置される層構成において、熱可塑性樹脂Aと熱可塑性樹脂Bのガラス転移温度の差の絶対値が5℃より大きくなる場合は、熱可塑性樹脂Aのガラス転移点温度が、熱可塑性樹脂Bのガラス転移点温度よりも高いことがより好ましい。最表層のガラス転移温度が低い場合は、縦延伸や横延伸の際にロールやクリップへの粘着が発生し外観品位を損なう恐れがある。
 上記の条件を満たすための樹脂の組合せの一例として、本発明の多層積層フィルムでは、少なくとも一つの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり、少なくとも一つの熱可塑性樹脂がスピログリコールを含んでなるポリエステルであることが好ましい。スピログリコールを含んでなるポリエステルとは、スピログリコールを共重合したコポリエステル、またはホモポリエステル、またはそれらをブレンドしたポリエステルのことを言う。スピログリコールを含んでなるポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離もしにくいために好ましい。より好ましくは、少なくともひとつの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり、少なくともひとつの熱可塑性樹脂がスピログリコールおよびシクロヘキサンジカルボン酸を含んでなるポリエステルであることが好ましい。スピログリコールおよびシクロヘキサンジカルボン酸を含んでなるポリエステルであると、ポリエチレンテレフタレートやポリエチレンナフタレートとの面内屈折率差が大きくなるため、高い反射率が得られやすくなる。また、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さく、接着性にも優れるため、成形時に過延伸になりにくく、かつ層間剥離もしにくい。
 熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層され、かつ熱可塑性樹脂Aが最表層に配置される層構成の場合、熱可塑性樹脂Aがポリエチレンテレフタレート又はポリエチレンナフタレートを含んでなり、熱可塑性樹脂Bがスピログリコールを含んでなるポリエステル又は、スピログリコールおよびシクロヘキサンジカルボン酸を含んでなるポリエステルであることが好ましい。
 スピログリコールおよびシクロヘキサンジカルボン酸を含んでなるポリエステルの共重合量としては、スピログリコールの共重合量が5mol%~30mol%、シクロヘキサンジカルボン酸の共重合量が5mol%~30mol%であることが好ましい。
 また、本発明の多層積層フィルムにおいては、少なくとも一つの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり単一の組成であっても少量の他の繰り返し単位が共重合され、あるいは、少量の他のポリエステル樹脂がブレンドされたものであって良く、少なくとも一つの熱可塑性樹脂がシクロヘキサンジメタノールを含んでなるポリエステルであることが好ましい。シクロヘキサンジメタノールを含んでなるポリエステルとは、シクロヘキサンジメタノールを共重合したコポリエステル、またはホモポリエステル、またはそれらをブレンドしたポリエステルのことを言う。シクロヘキサンジメタノールを含んでなるポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離もしにくいために好ましい。より好ましくは、少なくともひとつの熱可塑性樹脂がシクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体である。このようにすることにより、高い反射性能を有しながら、特に加熱や経時による光学的特性の変化が小さく、層間での剥離も生じにくくなる。シクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体は、ポリエチレンテレフタレートと非常に強く接着する。また、そのシクロヘキサンジメタノール基は幾何異性体としてシス体あるいはトランス体があり、また配座異性体としてイス型あるいはボート型もあるので、ポリエチレンテレフタレートと共延伸しても配向結晶化しにくく、高反射率で、熱履歴による光学特性の変化もさらに少なく、製膜時のやぶれも生じにくいものである。
 熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層され、かつ熱可塑性樹脂Aが最表層に配置される層構成の場合、熱可塑性樹脂Aがポリエチレンテレフタレート又はポリエチレンナフタレートを含んでなり、熱可塑性樹脂Bがシクロヘキサンジメタノールを含んでなるポリエステルであることが好ましい。
 また、本発明の多層積層フィルムにおいては、異なる光学的性質を有する熱可塑性樹脂の少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は非晶性ポリエステルであることも好ましい。ここでいう結晶性とは、示差走査熱量測定(DSC)において、融解熱量が20J/g以上であることをいう。一方、非晶性とは、同様に融解熱量が5J/g以下であることをいう。このような樹脂の組み合わせの場合、フィルムの製造における延伸、熱処理工程において容易に屈折率差を設けることが容易になることに加えて、非晶性ポリエステルはガラス転移温度よりもはるかに高温であり、かつ結晶性ポリエステルの融点以下の温度にて熱処理を行うことにより配向を緩和させることができ、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差を低減したり、100℃でフィルム長手方向およびそれに直交する方向の熱収縮応力が0.05N/mm以下とすることが容易となる。また、異なる光学的性質を有する熱可塑性樹脂の少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は前記結晶性のポリエステル樹脂の融点より30℃以上低い融点を備えたポリエステル樹脂であることもまた好ましい。この場合、より高温の融点を示す結晶性ポリエステルの融点よりも低温で、かつより低温の融点を示す結晶性ポリエステルの融点よりも高温の条件にて熱処理を行うことにより、低温の融点を示す結晶性ポリエステルを融解させ配向を緩和させることができ、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差を低減したり、100℃でフィルム長手方向およびそれに直交する方向の熱収縮応力を0.05N/mm以下とすることが容易となる。
 熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層され、かつ熱可塑性樹脂Aが最表層に配置される層構成の場合、熱可塑性樹脂Aが結晶性ポリエステルであり、熱可塑性樹脂Bが非晶性ポリエステルであることが好ましい。
 本発明の多層積層フィルムのA層を構成する樹脂にB層を構成する樹脂を少量成分として混合、及び、または、B層を構成する樹脂にA層を構成する樹脂を少量成分として混合することも好ましい。このようにA層とB層どちらか一方、または両方に互いの樹脂を混合することによって、高精度の積層、層間密着性の向上、製膜時の延伸性の向上の効果が得られる。混合の割合としては5wt%~30wt%の範囲が好ましい。この場合熱可塑性樹脂Aを用いてなる層(A層)とは熱可塑性樹脂Aが少量成分ではなく主成分として含まれている層のことを言い、熱可塑性樹脂Bを用いてなる層(B層)とは、熱可塑性樹脂Bが少量成分ではなく主成分として含まれている層のことをいう。
 本発明の多層積層フィルムにおいては、波長400~700nmでの平均反射率が15%以下であることが好ましい。可視光領域である波長400nm~700nmの平均反射率が高い場合、成型によって発生した凹凸が目立ちやすくなる。多層積層フィルムの反射率スペクトルは入射角度によってシフトする。そのため、400nm~700nmの平均反射率が15%よりも高くなると、成型によって発生した凹凸を斜め方向から見た場合に、凹凸の部位によって異なる色が見えるため、単膜のフィルムでは見えない凹凸も多層フィルムでは見えてしまうという問題が発生する。波長400~700nmの帯域での反射がある場合、反射光または透過光が着色するために、特に自動車のように高い透明性が求められる用途においては適応できなくなるものである。そこで、波長400~700nmでの平均反射率が15%以下であることにより、可視光の反射に伴う反射光および透過光の着色を抑制でき、高い透明性が求められる用途に好適なフィルムとなるものである。好ましくは波長400~700nmでの平均反射率が10%以下で、より好ましくは8%以下である。波長400~700nmでの平均反射率が低下するほど、透明性の高いフィルムが得られるようになる。波長400~700nmでの平均反射率を15%以下とする方法としては、下記(2)式の反射波長が波長400~700nmの範囲に入らないような層厚み分布にすることや、反射波長の2次または3次といった高次の反射が発生しないように、下記(3)式や後述する711711構成を高精度に積層することや、多層積層フィルム表面にAR(反射防止)処理を施すことで得ることができる。
 同様に、本発明の遮熱部材においても、上記と同様に波長400~700nmでの平均反射率が20%以下である必要がある。これは、透明基材(例えば、ガラス)、中環膜およびフィルムからなる遮熱部材のいずれの面においても満足することが好ましい。いずれか一方でも満たさない場合には、透過光が着色する原因となることがある。好ましくは波長400~700nmでの平均反射率が15%以下で、より好ましくは10%以下である。波長400~700nmでの平均反射率が低下するほど、透明性が高く凹凸が見え難い遮熱部材が得られるようになる。
 本発明の多層積層フィルムは、長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であることが必要である。下限値の好ましい値は1MPa以上であり、より好ましくは1.5MPa以上である。上限値の好ましい値は、3MPa以下である。熱収縮応力が0.5MPa以上あることで中間膜の厚みムラによる押圧ムラや、中間膜と多層積層フィルムとの間の熱収縮応力差による多層積層フィルムの凹凸状の歪みを抑制することができる。熱収縮応力が5MPaを超えると、中間膜と多層積層フィルムとの間の熱収縮応力差が大きくなり過ぎて凹凸状の歪みを抑制することができない。また、長手方向と幅方向の熱収縮応力の比は0.5以上2以下の範囲であることが好ましい。長手方向と幅方向の熱収縮応力のバランスが悪いとシワが発生する可能性があるが、バランスが良くなることでシワのない成形品を得ることができる。
 本発明の多層積層フィルムは、フィルム長手方向、幅方向のうち少なくとも一方向の熱収縮応力の立ち上がり温度が110℃以下であることが必要である。ここで、熱収縮応力の立ち上がり温度とは、温度25℃~200℃、昇温速度5℃/minの条件にて測定した多層積層フィルムの熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度である。成形時の低い温度から多層積層フィルムに熱収縮応力が発生することで凹凸状の歪みを抑制することができる。好ましい値は100℃以下であり、より好ましくは90℃以下である。但し、ハンドリング性の問題から下限値は50℃が好ましく、より好ましくは70℃である。
 本発明の多層積層フィルムに上述した熱収縮応力、熱収縮応力の立ち上り温度特性を持たせるためには二軸延伸工程と熱処理工程が必要である。二軸延伸方法としては公知の同時二軸延伸法、逐次二軸延伸法がある。一例として、A層にポリエチレンテレフタレート、B層にシクロヘキサンジメタノール成分33mol%を共重合したポリエチレンテレフタレートを用いて逐次二軸延伸及び、熱処理を行う場合について説明する。縦延伸機にて80℃以上120℃以下、厚みムラの観点から好ましくは80℃以上100℃以下にて、2倍以上6倍以下、好ましくは3倍以上4倍以下にて延伸を行う。続いて横延伸機にて80℃以上130℃以下、好ましくは90℃以上120℃以下にて、2倍以上6倍以下、好ましくは3倍以上4倍以下にて延伸を行う。最後に熱処理機にて160℃以上220℃以下、リラックス0%以上10%以下、好ましくは0%以上5%以下にて熱処理を行う。また、熱処理直後に70℃以上、熱処理温度-20℃以下で冷却を行うことも好ましい。冷却工程によってフィルムの厚みムラを抑制することができる。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度を80℃以下にすることも有効である。フィルム温度が80℃よりも高い場合、フィルムがクリップから開放されるときにフィルムに大きな収縮が加わり、熱収縮応力の立ち上がり温度が高くなってしまうことがある。以上の工程において、延伸温度は低い方、延伸倍率は高い方、リラックス率は低い方が熱収縮応力を高く、熱収縮応力の立ち上り温度を低くすることができる。
 熱処理温度を低くすることによって熱収縮応力を高く、熱収縮応力の立ち上り温度を低くすることができるが、さらに熱収縮応力を高く、熱収縮応力の立ち上り温度を低くしたい場合や、A層の結晶化度を高くしたい場合、A層とB層の屈折率差を大きくしたい場合等には、熱処理工程及び、熱処理工程後に2%以上10%以下の微延伸を行うことが好ましく、特に低い温度にて微延伸を行った方がより高い効果を得ることができる。2%以上の微延伸を行うことによって、熱処理温度を高く保ったまま、熱収縮応力を高く、熱収縮応力の立ち上り温度を低くすることができる。一方、製膜安定性の問題から10%以下が好ましい。
 本発明の多層積層フィルムは、長手方向及び幅方向の130℃における熱収縮応力が0.5MPa以上5MPa以下であることが好ましく、下限値のより好ましい値は1MPa以上であり、さらに好ましくは1.5MPa以上である。上限値のより好ましい値は、3MPa以下である。より低い温度で熱収応力が高くなることで、凹凸状の歪みをさらに抑制することができる。また、長手方向と幅方向の熱収縮応力の比は0.5MPa以上2MPa以下の範囲であることが好ましい。長手方向と幅方向の熱収縮応力のバランスが悪いとシワが発生する可能性があるが、バランスが良くなることでシワのない成形品を得ることができる。この熱収縮応力の範囲とするための達成方法としては、熱処理温度をさらに低くすることや、熱処理工程及び、熱処理工程後の微延伸率をより大きくすることが挙げられる。
 本発明の多層積層フィルムは、長手方向と幅方向、両方の熱収縮応力の立ち上り温度が110℃以下であることが好ましい。長手方向と幅方向、両方の熱収縮応力の立ち上り温度が110℃以下であることで、凹凸状の歪みをさらに抑制することができる。より好ましい値は100℃以下であり、さらに好ましくは90℃以下である。但し、ハンドリング性の問題から下限値は50℃が好ましく、より好ましくは70℃である。熱収縮応力の立ち上がり温度を上記の範囲とするための達成方法としては、熱処理温度をさらに低くすることや、熱処理工程及び、熱処理工程後の微延伸率をより大きくすることが挙げられ、特に微延伸を行い微延伸率を大きくすることが好ましい。
 本発明の多層積層フィルムは、長手方向、幅方向のうち少なくとも一方向の110℃における熱収縮応力が0.5MPa以上5MPa以下であることが好ましく、下限値のより好ましい値は1MPa以上であり、さらに好ましくは1.5MPa以上である。上限値のより好ましい値は、3MPa以下である。より低い温度で熱収応力が高くなることで、凹凸状の歪みをさらに抑制することができる。
 本発明の多層積層フィルムにおいては、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下であることが好ましい。ここでいう熱収縮応力とは、熱機械分析において計測される値で、幅4mm、測定長約15mmとした積層フィルムサンプルに対して、荷重2g重にて距離を固定した後に距離一定条件で室温から150℃まで温度を10℃/分の速度で上昇させたときのフィルムに生じる応力を計測して算出した値である。また、ここでいう熱収縮応力の計測方法は熱機械分析において行うが、物質の温度を調節されたプログラムに従って変化させながら、荷重と物質の変形を温度の関数として測定する方法をさし、市販の熱機械分析装置にて計測されるものである。本発明の積層フィルムの主な用途とする自動車・電車などの乗り物や建物などの窓ガラスにおいては、ガラスやポリカーボネート、アクリル樹脂などの透明基材や、ポリビニルブチラール、エチレン-ビニルアルコール共重合体などの中間膜と、本発明の多層積層フィルムを組合せて遮熱部材とすることもあるが、この場合、多くが透明基材-中間膜-積層フィルム-中間膜-透明基材の順に重ね合わせたのちに100℃から130℃または150℃において加熱、圧縮することにより遮熱部材とする。この加工工程において、透明基材や中間膜と多層積層フィルムの熱収縮挙動の違いにより多層積層フィルムにシワや剥離などの外観不良が生じることがある。従来から熱収縮率により外観不良を改善する方法が提案されているものの、遮熱部材の曲率や用いる透明基材、中間膜の種類によっては熱収縮率を制御することでは外観を改善できない場合があった。一方、本発明者らの知見によれば、中間膜に用いられるポリビニルブチラール、エチレン-ビニルアルコール共重合体が100℃近傍で軟化し圧縮による力でフィルム平面方向に膨張するような挙動を示す一方で、多層積層フィルムがフィルム平面方向に熱収縮する際のこの中間膜と多層積層フィルムの熱収縮挙動の差異により遮熱部材としたのちにしわや剥離などが生じることを見出したものであり、特に、フィルム長手方向とそれに直交する方向での熱収縮挙動の異方性に伴い、中間膜が多層積層フィルムの熱収縮に伴って中間膜も一定の方向に特に強く収縮するためその傾向が顕著となることを見出したものである。さらには、多層積層フィルムに対して厚みの大きな中間膜においては、多層積層フィルムに接する面と透明基材に接する面において挙動が異なり、積層フィルムに接する面が多層積層フィルムの熱収縮挙動の影響を強く受けるのに対して、透明基材の接する面においては加工工程での圧縮に伴う影響を強く受けるために、中間膜の面によって異なる挙動を示し、これらの挙動の差異が該外観不良の原因となることを突き止めたものである。ここで、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下である場合、多層積層フィルムの熱収縮に伴う変形は生じるものの、その際に生じる応力がフィルム長手方向およびそれに直交する方向のいずれにおいても均等に働くため、中間膜上での熱収縮挙動の差異を小さくすることができ、シワや剥離などの発生を抑制することが容易となる。より好ましくは、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.03N/mm以下である。このように、熱収縮応力の差が小さくなるに従い、その熱収縮挙動の異方性が低減するため、シワや剥離などの抑制の効果は大きくなる。また、130℃または150℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下であることも好ましい。上述のとおり遮熱部材の作製においては、透明基材-中間膜-多層積層フィルム-中間膜-透明基材の順に重ね合わせたのちに100℃から130℃または150℃において加熱、圧縮する加工工程を経るが、100℃のみならず100℃から130℃または150℃までの温度範囲においてフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下となることにより、加工工程全般においてシワや剥離などの外観不良の発生を抑制できるものである。
 本発明の多層積層フィルムにおいては、100℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下であるも好ましい。ここでいう寸法変化率とは、下記式(1)にて定義されるものであり、上記の熱機械分析において、幅4mm、測定長約15mmとした多層積層フィルムサンプルに対して、荷重2g重にて距離を固定した後に荷重2g重の一定条件で室温から150℃まで温度を10℃/分の速度で上昇させたときのフィルムの長さを計測して算出した値である。一般的に測定される寸法変化率とは、サンプル長を室温近傍で計測するため、実際には昇温過程のみでなく降温過程での寸法変化も反映しており、実際の遮熱部材を作製する加工工程を厳密に反映できていない。しかし、熱機械分析では、実際の遮熱部材を作製する加工工程を再現できるようになるため、より的確に合わせガラス化に適したフィルムを得られるものである。本発明者らの知見によれば、100℃での寸法変化率の差がシワや剥離などの外観不良の抑制に特に重要であることを見出したものである。すなわち、100℃近傍の温度は、用いる中間膜が軟化し始める温度であるが、一方で多層積層フィルムは可逆的な熱膨張の影響が強く見られる温度領域である。この熱膨張の程度は、多層積層フィルムの各層を構成する樹脂の配向状態に依存するが、特に異なる特性の樹脂を積層する本願のような多層積層フィルムにおいては、100℃近傍でのフィルム長手方向とそれに直交する方向での熱膨張の大きさに差異が生じやすい。この熱膨張の程度の差異により、中間膜が軟化するまでに多層積層フィルムと中間膜との界面において膨張に伴う歪みが生じ、結果としてシワや剥離などの外観不良の原因となるものである。100℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下である場合、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差を0.05N/mm以下とすることが容易となる。より好ましくは、100℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.3%以下である。フィルム長手方向およびそれに直交する方向での寸法変化率の差を小さくできるほど、熱収縮応力の差も低減できる傾向がある。また、130℃または150℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下であることも好ましい。上述のとおり遮熱部材の作製においては、透明基材-中間膜-多層積層フィルム-中間膜-透明基材の順に重ね合わせたのちに100℃から130℃または150℃において加熱、圧縮する加工工程を経るが、100℃のみならず100℃から130℃または150℃までの温度範囲においてフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下であることにより、フィルム長手方向およびそれに直交する方向における熱収縮応力の差を0.05N/mm以下とすることが容易となり、加工工程全般においてシワや剥離などの外観不良の発生を抑制できるものである。
Figure JPOXMLDOC01-appb-M000001
 本発明の成形品に用いる多層積層フィルムは、長手方向及び幅方向の150℃における熱収縮率が6%以下であることが好ましく、より好ましくは3%以下である。熱収縮率が6%以上であると、成形品の端部にシワが発生し好ましく無い。
 本発明の成形品に用いる多層積層フィルムは、波長400nmから700nmの範囲における平均反射率が15%以下であり、かつ波長850nmから1200nmの範囲における平均反射率が70%以上であることが好ましい。このような構成とすると、本発明の成形品を建物の窓ガラスや、自動車の窓ガラスとして用いた場合、室内や車内の温度上昇を防ぐことが出来る。より好ましくは、波長400nmから700nmの範囲における平均反射率が15%以下であり、かつ波長850nmから1200nmの範囲における平均反射率が80%以上である。
 本発明の成形品に用いる多層積層フィルムは、波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が70%以上、かつ波長1200nmから1400nmの範囲における平均反射率が40%以上であることが好ましい。このような構成とすると、可視光線を透過しつつもより多くの熱エネルギーを遮断することができるため、本発明の成形品を建物の窓ガラスや、自動車の窓ガラスとして用いた場合、室内や車内の温度上昇を大いに防ぐことが出来る。より好ましくは、波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が80%以上、かつ波長1200nmから1400nmの範囲における平均反射率が50%以上である。
 望ましい波長範囲における反射率を調整する方法は、A層とB層の面内屈折率差、積層数、層厚み分布、製膜条件(例えば延伸倍率、延伸速度、延伸温度、熱処理温度、熱処理時間)の調整等が挙げられる。A層とB層の構成としては、A層が結晶性の熱可塑性樹脂を用いてなり、B層が非晶性の熱可塑性樹脂を主たる成分とする樹脂を用いてなることが好ましい。ここで非晶性の熱可塑性樹脂を主たる成分とする樹脂とは、非晶性の熱可塑性樹脂の重量分率が70%以上であることをいう。反射率が高くなり積層数が少なく済むことから、A層とB層の面内屈折率差は0.02以上が好ましく、より好ましくは0.04以上、さらに好ましくは0.08以上である。この面内屈折率差の達成方法としては、少なくとも一つの熱可塑性樹脂が結晶性であり、かつ少なくとも一つの熱可塑性樹脂が非晶性もしくは前記の結晶性熱可塑性樹脂の融点よりも30℃以上低い融点を備えたものであることである。この場合、フィルムの製造における延伸、熱処理工程において容易に屈折率差を設けることが可能となる。
 本発明の遮熱部材においては、少なくとも遮熱部材の一方の面において、波長900~1200nmの帯域における平均反射率が60%以上である必要がある。この場合、遮熱部材として用いた場合においても高い熱線カット性能を付与できるものである。より好ましくは、遮熱部材の両面において波長900~1200nmの帯域における平均反射率が60%以上であることである。また、少なくとも当該遮熱部材の一方の面において、波長900~1200nmの帯域における平均反射率が70%以上であることが好ましい。遮熱部材のいずれの面においても高い熱線カット性能を付与できるようになるものである。少なくとも遮熱部材の一方の面において、波長900~1200nmの帯域における平均反射率が60%以上とするためには、多層積層フィルムにおける少なくとも遮熱部材の一方の面において、波長900~1200nmの帯域における平均反射率が70%以上とすることが好ましい。また、ガラス面に多層積層フィルムが張り合わされた構成となっており、かつ多層積層フィルムが表面となる構成とすることで多層積層フィルムでの反射を抑制することが可能となるものの、一方で、特に外部からの熱線をカットすることを目的とする本発明の遮熱部材においては、耐候性・耐久性の観点で問題となることもある。その場合、外部に波長900~1200nmにおける吸収の少ない部材を設けることも好ましく、その場合には部材における光の透過率が85%以上であることが好ましい。このような部材を用いた場合には、多層積層フィルムで反射された光をほとんど吸収することなく外部へと反射することができるため、効率的に光を反射することが可能となる。
 本発明の多層積層フィルム及び、遮熱部材はJISR3212における可視光線透過率が70%以上であることが好ましい。また、ISO13837(2008)で定めるSolar total transmittance(Tts)が50%以下であることも好ましい。
  本発明の成形品に用いる多層積層フィルムは熱可塑性樹脂からなる層(A層)と少なくともA層を構成する樹脂とは異なる性質を有する熱可塑性樹脂からなる層(B層)が交互に51層以上積層した構造を含んでいることが必要である。異なる性質を持つ熱可塑性樹脂を積層することで、それぞれの熱可塑性樹脂1層のみではなし得ない機能をフィルムに与えることができる。好ましくは101層以上、より好ましくは401層以上、さらに好ましくは601層以上であり、積層装置の大型化の観点から上限としては5000層程度である。本発明の多層積層フィルムにおける積層数は101層以上が好ましく、より好ましくは401層以上、さらに好ましくは601層以上であり、積層装置の大型化の観点から上限としては5000層程度である。層厚み分布は隣接するA層とB層の光学厚みが下記(2)式を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000002
ここでλは反射波長、nはA層の面内屈折率、dはA層の厚み、nはB層の面内屈折率、dはB層の厚みである。
 層厚み分布は式(2)と下記(3)式を同時に満たすことも好ましい。
Figure JPOXMLDOC01-appb-M000003
式(2)と式(3)とを同時に満たす層厚み分布を持つことで偶数次の反射を解消できる。そのため、波長850nmから1200nmの範囲における平均反射率を高くしつつ、波長400nmから700nmの範囲における平均反射率を低くすることができ、透明でかつ、熱エネルギーの遮断性能の高い多層積層フィルムを得ることができる。
 層厚み分布は式(2)、式(3)以外に711711構成(米国特許第5360659号)を用いることも好ましい。711711構成とは、A層とB層がABABABの順で積層された6層を1つの繰り返しユニットとし、ユニット内での光学厚みの比を711711とする積層構成のことである。711711構成の層厚み分布とすることで、高次の反射を解消できる。そのため、波長850nmから1400nmの範囲における平均反射率を高くしつつ、波長400nmから700nmの範囲における平均反射率を低くすることができ、透明でかつ、熱エネルギーの遮断性能のより高い多層積層フィルムを得ることができる。また、波長850nmから1200nmの範囲の反射を式(2)と式(3)を同時に満たす層厚み分布によって、波長1200nmから1400nmの範囲の反射を711711構成の層厚み分布とすることも好ましい。このような層厚み構成とすることで、少ない積層数で効率良く光を反射させることができる。
 層厚みの分布はフィルム面の一方から反対側の面へ向かって増加または減少する層厚み分布や、フィルム面の一方からフィルム中心へ向かって層厚みが増加した後減少する層厚み分布や、フィルム面の一方からフィルム中心へ向かって層厚みが減少した後増加する層厚み分布等が好ましい。層厚み分布の変化の仕方としては、線形、等比、階差数列といった連続的に変化するものや、10層から50層程度の層がほぼ同じ層厚みを持ち、その層厚みがステップ状に変化するものが好ましい。
 多層積層フィルムの両表層に保護層として層厚み3μm以上の層を好ましく設けることができる、保護層の厚みは好ましくは5μm以上、より好ましくは10μm以上である。保護層の厚みが厚くなることで、フローマークの抑制、透過率・反射率スペクトルのリップルの抑制の効果が得られる。
 本発明の多層積層フィルムの厚みは、20μm~300μmであることが好ましい。20μm未満であると、フィルムの腰が弱くハンドリング性が悪くなる。また、300μm以上であると、フィルムの腰が強すぎて成形性が悪くなる。
 本発明の多層積層フィルムは、フィルムの表面に易接着層、ハードコート層、耐磨耗性層、傷防止層、反射防止層、色補正層、紫外線吸収層、熱線吸収層、印刷層、ガスバリア層、粘着層などの機能性層が形成されることが好ましい。
 本発明の多層積層フィルムの少なくとも一方の面に中間膜と支持体が積層されてなる成形品は、貼着圧力のもとラミネートすることが一般的であり、加熱加圧成形が好ましい方法である。本発明の成形品に用いうる支持体としては、例えば、樹脂製の支持体、金属やガラスやセラミックによる支持体等があげられる。支持体の表面としては平面であっても曲面であっても良く、任意の形状をとりうる。樹脂の例を挙げてみると、ポリカーボネート、環状ポリオレフィン、ポリアリレート、ポリエチレンテレフタレート、ポリメチルメタクリレート等のアクリル樹脂、ABS、トリアセチルセルロース等が挙げられる。支持体は透明であることが好ましく、支持体の厚みは0.5mm~5mmであることが好ましい。中間膜としては、接着剤層やフィルム層が好ましい。接着剤としては、酢酸ビニル樹脂系、塩化ビニル・酢酸ビニル共重合体系、エチレン・酢酸ビニル共重合体系、ポリビニルアルコール、ポリビニルブチラール、ポリビニルアセタール、ポリビニルエーテル、ニトリルゴム系、スチレン・ブダジエンゴム系、天然ゴム系、クロロプレンゴム系、ポリアミド系、エポキシ樹脂系、ポリウレタン系、アクリル樹脂系、セルロース系、ポリ塩化ビニル、ポリアクリル酸エステル、ポリイソブチレン等が挙げられる。また、これら接着剤には、粘着性調整剤、可塑剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、着色剤、架橋剤等を添加しても良い。中間膜を設けることによって、支持体と多層積層フィルムの密着性、成形品の意匠性、耐久性、耐候性、耐衝撃性等の機能を高めることができる。意匠性を高める方法として、着色剤があり、アゾ系顔料、多環式系顔料、レーキ系顔料、ニトロ系顔料、ニトロソ系顔料、アニリンブラック、アルカリブルー、フタロシアニン系顔料、シアニン系顔料、アゾ系染料、アントラキノン系染料、キノフタロン系染料、メチン系染料、縮合多環系染料、反応染料、カチオン染料、六ホウ化ランタン、インジウムスズ酸化物、アンチモンスズ酸化物、セシウムタングステン酸化物等が挙げられる。中間膜の厚みは10μm~1mmであることが好ましい。成形方法としては、押出ラミネート、ホットメルトラミネート、サーマルラミネート、プレスラミネート、真空ラミネート、オートクレーブラミネート等がある。押出ラミネートとは、溶融状態の多層積層フィルム及び中間膜それぞれをダイからフィルム状に押し出して支持体に積層し、2本のロール間に成形品を通し成形する方法である。ホットメルトラミネートとは、多層積層フィルムまたは、支持体に熱で溶かした中間膜を塗布し、多層積層フィルムと支持体を積層する成形方法である。サーマルラミネートとは、多層積層フィルムと中間膜と支持体を加熱ロールで加熱しつつ圧着して積層する成形方法である。プレスラミネートとは、多層積層フィルムと中間膜と支持体を加熱し、プレス機にて圧着して積層する成形方法である。真空ラミネートとは、多層積層フィルムと中間膜と支持体を加熱後、装置内を真空状態にし、プレスして積層する成形方法である。オートクレーブラミネートとは、多層積層フィルムと中間膜と支持体を加熱後、装置内をガス等で加圧して積層する成形方法である。
 本発明の多層積層フィルムを用いた成形品としては、多層積層フィルムの両側に中間膜と支持体が積層されてなる成形品も挙げられる。
 本発明の多層積層フィルムを用いた成形品の用途としては、携帯電話やパソコンの筐体や電化製品や家具の外装、建物や自動車の窓等が挙げられる。
本発明の多層積層フィルムを製造する具体的な態様の例を以下に記す。
 本発明の多層積層フィルムにおける51層以上の積層構造は、次のような方法で作製することができる。A層に対応する押出機AとB層に対応する押出機Bの2台から熱可塑性樹脂が供給され、それぞれの流路からのポリマーが、公知の積層装置であるマルチマニホールドタイプのフィードブロックとスクエアミキサーを用いる方法、もしくは、コームタイプのフィードブロックのみを用いることにより51層以上に積層し、次いでその溶融体をT型口金等を用いてシート状に溶融押出し、その後、キャスティングドラム上で冷却固化して未延伸フィルムを得る方法が挙げられる。A層とB層の積層精度を高める方法としては、特開2007-307893号公報、特許第4691910号公報、特許第4816419号公報に記載されている方法が好ましい。また必要であれば、A層に用いる熱可塑性樹脂とB層に用いる熱可塑性樹脂を乾燥することも好ましい。
 続いて、この未延伸フィルムに二軸延伸及び熱処理を施す。延伸方法としては、公知の逐次二軸延伸法、もしくは同時二軸延伸法で二軸延伸されていることが好ましい。公知の逐次二軸延伸法とは、長手方向に延伸した後に幅方向に延伸する方法、幅方向に延伸した後に長手方向に延伸する方法で行えばよく、長手方向の延伸、幅方向の延伸を複数回組み合わせて行なってもよい。
 一般的には二軸延伸はA層またはB層のどちらか高い方のガラス転移点の温度以上~50℃以下の範囲にて延伸を行い、熱処理は、延伸温度より高く、A層またはB層のどちらか高い方の融点より低い温度で行う。
 A層にポリエチレンテレフタレート、B層にシクロヘキサンジメタノール成分33mol%を共重合したポリエチレンテレフタレートを用いて逐次二軸延伸または同時二軸延伸及び、熱処理を行う場合について説明する。逐次二軸延伸を行う場合は、冷却ロール上にキャストされた未延伸フィルムを、縦延伸機にて80℃以上120℃以下、厚みムラの観点から好ましくは80℃以上100℃以下にて、2倍以上6倍以下、好ましくは3倍以上4倍以下の条件にて縦延伸機ロール間の速度変化を利用して延伸を行う。
 ここで、特に本発明の多層積層フィルムにおいては、縦延伸における配向を強めることも好ましい。通常の逐次2軸延伸においては、フィルム幅方向において配向が強くなる傾向があり、これがフィルム長手方向とそれに直交する方向(フィルム幅方向)の熱収縮応力の差を生じる原因となる。ここで、縦延伸における配向を強めることにより、フィルム幅方向と流れ方向(長手方向)の配向状態を同程度に調整でき、100℃および130℃または150℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下とすることや100℃および130℃または150℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下が容易となる。配向を強めるために好ましい延伸条件は、ガラス転移温度―5℃から+5℃の範囲で延伸することであり、例えばガラス転移温度が約80℃のポリエチレンテレフタレートを用いた場合には75~85℃の範囲で3.5倍以上に延伸することが好ましい。この場合、単に熱収縮応力の差異を抑制できるのみでなく、フィルム厚みムラの抑制にも効果的である。
 このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 続いて横延伸機にて80℃以上130℃以下、好ましくは90℃以上120℃以下にて、2倍以上6倍以下、好ましくは3倍以上4倍以下の条件にて延伸を行う。幅方向の延伸方法は、公知のテンター法を利用する。すなわち、フィルムの両端をクリップで把持しながら搬送して、フィルム両端のクリップ間隔を広げることで幅方向に延伸する。
 ここで、特に本発明の多層積層フィルムにおいては、100℃および130℃または150℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下とすることや100℃および130℃または150℃でのフィルム長手方向およびそれに直交する方向の寸法変化率の差が0.5%以下とするためにフィルム幅方向の延伸倍率を調整することが好ましい。フィルム幅方向の延伸倍率と熱収縮応力との関係は顕著であり、高延伸倍率となることで樹脂がフィルム幅方向に大きな力の歪を保持したまま固定され、100℃から130℃または150℃の加工温度においてその歪が開放される際に応力として観測されるためである。ここで、延伸倍率を調整することにより、貯蔵される歪量を制御でき、100℃および130℃または150℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下が容易となる。ここでの横延伸倍率は、前工程である縦延伸工程の延伸条件にも依存するものの、熱可塑性樹脂としてポリエチレンテレフタレートを用いた場合に特に好ましい横延伸倍率は、3.0~4.0倍である。
 また、延伸倍率同様、延伸温度の調整も重要である。延伸温度が低温となるに従い、延伸時の生じる歪が大きくなり、結果として100℃から130℃または150℃の加工温度で観測される熱収縮応力が大きくなるためである。ここでの横延伸温度は、前工程である縦延伸工程の延伸条件にも依存するものの、熱可塑性樹脂としてポリエチレンテレフタレートを用いた場合に特に好ましい横延伸温度は、90℃から130℃である。
 同時二軸延伸を行なう場合について説明する。冷却ロール上にキャストされた未延伸フィルムを、同時二軸テンターへ導き、フィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。長手方向の延伸は、テンターのクリップ間の距離を広げることで、また、幅方向はクリップが走行するレールの間隔を広げることで達成される。本発明における延伸・熱処理を施すテンタークリップは、リニアモータ方式で駆動することが好ましい。その他、パンタグラフ方式、スクリュー方式などがあるが、中でもリニアモータ方式は、個々のクリップの自由度が高いため延伸倍率を自由に変更できる点で優れている。延伸温度、延伸倍率は、逐次二軸延伸の条件と類似している。すなわち、延伸温度は80℃以上120℃以下、延伸倍率は面積倍率として4~36倍が、好ましくは9~16倍が用いられる。
 続いて熱処理機にて熱処理を行う。熱処理は横延伸機(テンター)内で行うのが一般的である。横延伸後に温度160℃以上220℃以下、リラックス0%以上10%以下、好ましくは0%以上5%以下にて熱処理を行う。リラックスは幅方向のみ、長手方向のみ、又は幅方向・長手方向両方に行なっても良い。
 本発明の多層積層フィルムにおいては、延伸後の熱処理温度を少なくとも一つの熱可塑性樹脂の融点以下であり、かつ残る熱可塑性樹脂の少なくとも一つの融点以上とすることが好ましい。この場合、一方の熱可塑性樹脂は高い配向状態を保持する一方、他方の熱可塑性樹脂の配向は緩和されるために、容易にこれらの樹脂の屈折率差を設けることができることに加えて、かつ配向緩和に伴い熱収縮応力を低減することが容易となるため、100℃および130℃または150℃でフィルム長手方向およびそれに直交する方向の熱収縮応力が0.05N/mm以下とすることも容易となる。
また、熱処理後に70℃以上、熱処理温度―20℃以下で冷却を行うことも好ましく、冷却中にリラックスを行うことも好ましい。特にフィルム冷却によって横延伸機出口のフィルムクリップ開放部におけるフィルム温度を80℃以下にすることが、熱収縮応力の立ち上がり温度を低くすることに有効である。
 また、熱処理工程及び、熱処理工程後に2%以上10%以下の微延伸を行うことも好ましい。微延伸は幅方向のみ、長手方向のみ、又は幅方向・長手方向両方に行なっても良い。 
最後に巻取り機にてフィルムを巻き取ることによって本発明の多層積層フィルムが製造される。
 以下、本発明の成形品を具体的な実施例をあげて説明する。なお、以下に具体的に例示した熱可塑性樹脂以外の熱可塑性樹脂を用いた場合でも下記実施例を含めた本明細書の記載を参酌すれば、同様にして本発明の多層積層フィルムを得ることができる。
[物性の測定方法ならびに効果の評価方法]
 物性値の評価方法ならびに効果の評価方法は次の通りである。
 (1)熱収縮応力、熱収縮応力の立ち上り温度
 セイコーインスツルメント(株)製 EXSTAR TMS/SS6000を用いた。サンプルサイズ20mm×4mm(測長15mm)、温度25℃~200℃、昇温速度5℃/minの条件にてフィルム長手方向と幅方向について測定を行なった。得られた荷重データをフィルムの測定前断面積で割ることによって熱収縮応力を算出し、110℃、130℃、150℃における値を得た。また、熱収縮応力が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度とした。
 (2)熱収縮率
 サンプルを150mm×10mmのサイズで切り出し、サンプル長手方向に100mmの間隔で印を付けた。印の間隔をNikon社製万能投影機(Model V-16A)を用いて測定しその値をAとした。次に、サンプルを3gの荷重をかけた状態でギアオーブンの中で吊り、150℃の雰囲気中で30分間放置した。次いで、サンプルを取り出して冷却後、先につけた印の間隔を測定しこれをBとした。このとき、下記式(3)より、熱収縮率を求めた。n数は3とし、その平均値を求め、フィルム長手方向、幅方向それぞれについて測定を行なった。
熱収縮率(%)=100×(A-B)/A  ・・・式(3)。
 (3)平均反射率
 日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の12°正反射付属装置P/N134-0104を取り付け、入射角度φ=12度における波長250~2600nmの絶対反射率を測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルをフィルム幅中央部から5cm×5cmで切り出し測定した。これらの結果から、波長400nm~800nm、波長400nm~700nm、波長850nm~1200nm、波長1200nm~1400nmの平均反射率を求めた。
 (4)成形品外観(凹凸)
 蛍光灯下に設置した成形品に対して、評価部分の法線方向に対して20°、50°、70°の角度から評価部分を目視にて評価を行った。評価基準は次のとおりである。
 A:凹凸が見えない。
B:凹凸がごく僅かに見える
 C:凹凸が見える。
 (5)成形品外観(シワ)
 蛍光灯下に設置した成形品に対して、評価部分の法線方向に対して20°の角度から評価部分を目視にて評価を行った。評価基準は次のとおりである。
 A:シワが見えない。
 C:シワが見える。
 (6)熱収応力の差、寸法変化率の差
 セイコーインスツルメンツ社製の熱・応用・歪み測定装置(TMA/SS6000)を用いて以下の条件で測定した。各データは、少なくとも1℃につき1つ以上のデータが得られるようにした。寸法変化率は前記の式(1)を用いて算出した。熱収応力の差、寸法変化率の差それぞれは、長手方向の値から幅方向の値を引いた値の絶対値とした。
  試料サイズ:幅4mm、長さ15mm
  昇温範囲:25~200℃
  昇温速度:10℃/分
  測定荷重:19.8N
  温度23℃、相対湿度65%、大気中。
 (7)熱可塑性樹脂A、Bの融解熱量
熱可塑性樹脂A、Bからサンプル質量5mgを採取し、示差走査熱量分析計(DSC)セイコーインスツルメント(株)製EXSTAR DSC6220を用い、JIS-K-7122(1987年)に従って測定、算出した。測定は25℃から290℃まで5℃/minで昇温しこのときの融点±20℃の範囲におけるベースラインからの積分値を融解熱量とした。また、ここでの融点とは、DSCのベースラインからの差異が最大となる点とした。ここで、融解熱量が20J/g以上の樹脂を結晶性樹脂、5J/g以下である樹脂を非晶性樹脂とした。
 (多層積層フィルムに用いられた樹脂)
樹脂A:IV=0.65のポリエチレンテレフタレート(結晶性ポリエステル、融点255℃)
樹脂B:IV=0.73のポリエチレンテレフタレートの共重合体(シクロヘキサンジメタノール成分33mol%共重合したポリエチレンテレフタレート)(非晶性ポリエステル)
樹脂C:IV=0.72のポリエチレンテレフタレートの共重合体(シクロヘキサンジカルボン酸成分20mol%、スピログリコール成分20mol%共重合したポリエチレンテレフタレート)(非晶性ポリエステル)
樹脂D:樹脂Aを20質量%、樹脂Cを80質量%の割合でコンパウンドした原料
IV(固有粘度)の測定方法
樹脂E:IV=0.65のポリエチレンテレフタレートの共重合体(イソフタル酸成分12mol%共重合したポリエチレンテレフタレート)(結晶性ポリエステル、融点222℃)
溶媒としてオルトクロロフェノールを用いて、温度25℃、オストワルド粘度計を用いて測定した溶液粘度から算出した。
 (実施例1)
 A層を構成する熱可塑性樹脂(以下、熱可塑性樹脂Aとも称する)として樹脂Aを、B層を構成する熱可塑性樹脂(以下、熱可塑性樹脂Bとも称する)として樹脂Bを用いた。熱可塑性樹脂Aおよび熱可塑性樹脂Bを、それぞれ、押出機にて280℃で溶融させ、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて吐出比(積層比)が熱可塑性樹脂A/熱可塑性樹脂B=4/1になるように計量しながら、51層フィードブロックにて合流させて、層厚み分布一定(フィルム厚み50μmにおいて、各A層の厚み1.54μm、各B層の厚み0.4μmとなるように積層した)、厚み方向に交互に51層積層(A層が26層、B層が25層)された積層体)とした。次いで、Tダイに供給し、シート状に成形した後、ワイヤーで8kVの静電印可電圧をかけながら、表面温度25℃に保たれたキャスティングドラム上で急冷固化し、未延伸フィルムを得た。この未延伸フィルムを、90℃、延伸倍率3.3倍で縦延伸を行い、両端部をクリップで把持するテンターに導き100℃、4.0倍横延伸した後、10秒間220℃で熱処理及び3%の幅方向リラックスを実施し、10秒間150℃で冷却した後、厚み50μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。成形品の作成は日清紡 LAMINATOR0303Sを用いた。多層積層フィルムの両側に支持体として、厚さ3mm、10cm角の板ガラスを重ね、多層積層フィルムと支持体との間にそれぞれ中間層として厚さ0.7mmのPVB(ポリビニルブチラール)を設置し、温度140℃、5分間真空を引いた後、10分間プレスした。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例2)
 熱処理温度を205℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例3)
 熱処理温度を205℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例4)
 熱処理温度を195℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例5)
 熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例6)
 熱処理温度を160℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例1)
 熱処理温度を240℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例2)
 縦延伸倍率を4倍、熱処理温度を240℃、1%の幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例3)
 縦延伸倍率を2.8倍、熱処理温度を205℃、1%の幅方向リラックス、10秒間150℃で冷却中にさらに1%幅方向リラックスをしたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例4)
 熱処理温度を150℃としたこと以外は、実施例1と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例7)
 A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを130nmから180nmの範囲にて、B層の層厚みを137nmから190nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に501層積層(A層が251層、B層が250層)したこと以外は実施例1と同様の条件にて厚み100μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例8)
 熱処理温度を205℃としたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例9)
熱処理温度を205℃、1%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例10)
熱処理温度を195℃、1%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例11)
熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例5)
 熱処理温度を240℃としたこと以外は、実施例7と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例12)
 A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを130nmから180nmの範囲にて、B層の層厚みを137nmから190nmの範囲にて、それぞれ等比数列的に変化させA層を250層、B層を250層、厚み方向に交互に500層積層(但し、A層をフィルム表面側とし、フィルム表面に配置したA層の層厚みは、最終的に10μmの厚さとなるように厚くした)した。続いて711711構成を50ユニット積層(A層を150層、B層を150層、厚み方向に交互に300層積層した。711711構成の層厚みは、「7」に該当するA層の層厚みを135nmから165nmの範囲にて、「7」に該当するB層の層厚みを145nmから177nmの範囲にて、「1」に該当するA層の層厚みを20nmから24nmの範囲にて、「1」に該当するB層の層厚みを21nmから25nmの範囲にて、それぞれ50ユニットに渡って等比数列的に変化させた。さらに、最終的に10μmの厚さとなるように厚くしたA層を積層(最終的な層構成は、10μmのA層/式(1)と式(2)を満たす層構成/711711構成/10μmのA層、である)したこと以外は、実施例3と同様の条件にて厚み120μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例13)
熱処理温度を205℃、熱処理中に4%微延伸を行い、3%の幅方向リラックスをしたこと以外は、実施例12と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例6)
熱処理温度を240℃としたこと以外は、実施例12と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例14)
 A層として樹脂AをB層として樹脂Bを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)と式(2)を満たすように、A層の層厚みを60nmから100nmの範囲にて、B層の層厚みを64nmから127nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に51層積層(A層が26層、B層が25層)したこと以外は実施例1と同様の条件にて厚み25μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (実施例15)
 A層として樹脂AをB層として樹脂Dを用い、フィルムの表面から反対側の面に向かって、隣接するA層とB層が式(1)を満たすように、A層の層厚みを119nmから167nmの範囲にて、B層の層厚みを151nmから213nmの範囲にて、それぞれ等比数列的に変化させ(但し、最表層のA層の層厚みは、最終的に10μmの厚さとなるように厚くした。)厚み方向に交互に501層積層(A層が251層、B層が250層)したこと以外は実施例1と同様の条件にて厚み100μmの多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。実施例7と比較すると、層厚みが式(2)を満たしていないため、400nm~700nmの反射率が高く、成形体の凹凸が見えやすかった。
 (実施例16)
 B層として樹脂Eを用いたこと以外は、実施例11と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は60℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。
 (比較例7)
熱処理後に冷却を行わなかったこと以外は、実施例2と同様の条件にて多層積層フィルムを得た。横延伸機出口のフィルムがクリップから開放される場所におけるフィルム温度は95℃であった。得られた多層積層フィルムから実施例1と同様の方法にて成形体を作成した。多層積層フィルムの物性と成形品の外観評価結果を表1にまとめた。得られたフィルムは熱収縮応力の立ち上がり温度が高く、成形体の凹凸が目立って見えた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明は、多層積層フィルムの少なくとも一方の面に中間膜と支持体が配置された成形品において、加熱加圧成形による凹凸状の歪みを抑制する多層積層フィルム及び成形品に関するものである。

Claims (15)

  1. 熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層され、
    フィルム長手方向及び幅方向の150℃における熱収縮応力が0.5MPa以上5MPa以下であり、
    温度25℃~200℃、昇温速度5℃/minの条件にて測定した熱収縮応力曲線において熱収縮応力曲線が立ち上がる前のベースラインと、熱収縮応力が立ち上った後、傾きが最大となる点における接線との交点の温度を熱収縮応力の立ち上り温度としてフィルム長手方向及び幅方向の熱収縮応力の立ち上がり温度を測定したとき少なくとも一方において110℃以下であることを特徴とする多層積層フィルム。
  2. 波長400~700nmでの平均反射率が15%以下であることを特徴とする請求項1に記載の多層積層フィルム。
  3. 長手方向及び幅方向の130℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする請求項1に記載の多層積層フィルム。
  4. 前記長手方向と幅方向の熱収縮応力の立ち上がり温度がいずれも110℃以下であることを特徴とする請求項1に記載の多層積層フィルム。
  5. 長手方向、幅方向のうち少なくとも一方向の110℃における熱収縮応力が0.5MPa以上5MPa以下であることを特徴とする請求項1に記載の多層積層フィルム。
  6. 長手方向および幅方向の100℃における熱収縮応力の差が0.05N/mm以下であることを特徴とする請求項1に記載の多層積層フィルム。
  7. フィルム長手方向およびそれに直交する方向の100℃における寸法変化率の差が0.5%以下であることを特徴とする請求項1に記載の多層積層フィルム。
  8. 熱可塑性樹脂Aと熱可塑性樹脂Bのうち、少なくとも1種の熱可塑性樹脂は結晶性ポリエステルであり、少なくとも1種の熱可塑性樹脂は非晶性ポリエステル樹脂または前記結晶性のポリエステル樹脂の融点より30℃以上低い融点を備えたポリエステル樹脂であることを特徴とする請求項1に記載の多層積層フィルム。
  9. 熱可塑性樹脂Aがポリエチレンテレフタレート樹脂層からなり、熱可塑性樹脂Bがスピログリコール成分及びシクロヘキサンジカルボン酸成分を共重合した共重合ポリエチレンテレフタレート樹脂からなることを特徴とする請求項1に記載の多層積層フィルム。
  10. 波長400nmから700nmの範囲における平均反射率が15%以下であり、波長850nmから1200nmの範囲における平均反射率が70%以上であることを特徴とする請求項1に記載の多層積層フィルム。
  11. 波長1200nmから1400nmの範囲における平均反射率が40%以上であることを特徴とする請求項1に記載の多層積層フィルム。
  12. 長手方向及び幅方向の150℃における熱収縮率が6%以下であることを特徴とする請求項1に記載の多層積層フィルム。
  13. 請求項1に記載の多層積層フィルムの少なくとも一方の面に中間膜を介して支持体が積層されてなる成形品。
  14. 請求項1に記載の多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に透明基材を設けてなる遮熱部材。
  15. 多層積層フィルムと、多層積層フィルムの両面に設けられた中間膜と、2枚の中間膜のそれぞれにおいて多層積層フィルムとは反対の面に設けられた透明基材とからなる遮熱部材であって、前記多層積層フィルムが熱可塑性樹脂Aを用いてなる層(A層)と熱可塑性樹脂Bを用いてなる層(B層)とが交互に51層以上積層された多層積層フィルムであって、かつ前記積層フィルムの波長400~700nmでの平均反射率が15%以下であって、かつ波長900~1200nmでの平均反射率が60%以上であって、100℃でフィルム長手方向およびそれに直交する方向における熱収縮応力の差が0.05N/mm以下である遮熱部材。
PCT/JP2013/056922 2012-03-16 2013-03-13 多層積層フィルム WO2013137288A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147027863A KR102053671B1 (ko) 2012-03-16 2013-03-13 다층 적층 필름
EP13761598.5A EP2826621B1 (en) 2012-03-16 2013-03-13 Multi-layer laminated film
US14/385,235 US9527266B2 (en) 2012-03-16 2013-03-13 Multi-layer laminated film
JP2013513431A JP6007903B2 (ja) 2012-03-16 2013-03-13 多層積層フィルム
CN201380014437.4A CN104185547B (zh) 2012-03-16 2013-03-13 多层层叠膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012059723 2012-03-16
JP2012-059723 2012-03-16
JP2012-223826 2012-10-09
JP2012223826 2012-10-09

Publications (1)

Publication Number Publication Date
WO2013137288A1 true WO2013137288A1 (ja) 2013-09-19

Family

ID=49161193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056922 WO2013137288A1 (ja) 2012-03-16 2013-03-13 多層積層フィルム

Country Status (6)

Country Link
US (1) US9527266B2 (ja)
EP (1) EP2826621B1 (ja)
JP (1) JP6007903B2 (ja)
KR (1) KR102053671B1 (ja)
CN (1) CN104185547B (ja)
WO (1) WO2013137288A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006388A1 (ja) * 2014-07-08 2016-01-14 コニカミノルタ株式会社 光学フィルム
WO2016052609A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2016125823A1 (ja) * 2015-02-03 2016-08-11 王子ホールディングス株式会社 遮熱フィルム、遮熱合わせガラスおよびその製造方法
JP2016215643A (ja) * 2015-05-19 2016-12-22 東レ株式会社 積層二軸延伸ポリエステルフィルム
JP2017028016A (ja) * 2015-07-17 2017-02-02 大日本印刷株式会社 太陽電池モジュール
KR20170088331A (ko) * 2014-11-19 2017-08-01 도레이 카부시키가이샤 적층 필름
JP2018089857A (ja) * 2016-12-02 2018-06-14 住友ベークライト株式会社 多層フィルム及び包装体
JP2018176602A (ja) * 2017-04-18 2018-11-15 住友ベークライト株式会社 多層フィルム及び包装体
JP2019522812A (ja) * 2016-05-26 2019-08-15 スリーエム イノベイティブ プロパティズ カンパニー 偏光子積層体
WO2019203141A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用フロントガラス
JP7550166B2 (ja) 2019-04-03 2024-09-12 スリーエム イノベイティブ プロパティズ カンパニー 光学フィルム及びガラスラミネート

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024537A (ja) * 2012-06-19 2014-02-06 3M Innovative Properties Co ナンバープレート用シート、ナンバープレート用積層体、ナンバープレートおよびナンバープレート用装飾部材
US20180022066A1 (en) 2015-02-05 2018-01-25 Sekisui Chemical Co., Ltd. Laminated-glass interlayer and laminated glass
WO2017057497A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2017150165A1 (ja) * 2016-02-29 2017-09-08 帝人フィルムソリューション株式会社 農業ハウス、この農業ハウスを用いた植物の栽培方法および熱線反射フィルム構造体
KR101705243B1 (ko) 2016-05-26 2017-02-09 에스케이씨 주식회사 백색 열수축성 적층 필름 및 이를 포함하는 라벨
CN109789667A (zh) * 2016-09-30 2019-05-21 3M创新有限公司 可见光透明的宽带红外镜膜
EP4050385A1 (en) * 2017-10-03 2022-08-31 Toray Industries, Inc. Laminate film
DE102017129352A1 (de) * 2017-12-08 2019-06-13 Ensinger Gmbh Polymer-basierendes Substrat sowie Verfahren zu dessen Herstellung
DE102017129353A1 (de) 2017-12-08 2019-06-13 Ensinger Gmbh Polymer-basierendes Substrat sowie Verfahren zu dessen Herstellung
JP7269242B2 (ja) 2018-07-05 2023-05-08 グンゼ株式会社 熱収縮性多層フィルム及び熱収縮性ラベル
WO2021102163A1 (en) * 2019-11-21 2021-05-27 Tesla, Inc. Durable glass for vehicle

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JPH1076620A (ja) 1996-09-04 1998-03-24 Toray Ind Inc 積層フィルムおよびガラス飛散防止フィルム
JP2003511729A (ja) 1999-10-12 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー 複屈折ポリマーを使用して製造される光学体
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
JP2007268709A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd 二軸延伸多層積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP4310312B2 (ja) 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 近赤外線遮蔽フィルム
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム
JP4534637B2 (ja) 2004-03-31 2010-09-01 東レ株式会社 積層フィルム
JP4691910B2 (ja) 2004-06-11 2011-06-01 東レ株式会社 スクリーン用反射体およびスクリーン
JP2011141408A (ja) * 2010-01-07 2011-07-21 Toray Ind Inc 偏光反射体
JP2011156687A (ja) * 2010-01-29 2011-08-18 Toray Ind Inc 樹脂シートおよびそれを用いた成形品
JP4816419B2 (ja) 2005-11-29 2011-11-16 東レ株式会社 積層フィルム
WO2012008587A1 (ja) * 2010-07-16 2012-01-19 旭硝子株式会社 赤外線反射基板および合わせガラス
JP2012030563A (ja) * 2010-08-03 2012-02-16 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049419A (en) * 1998-01-13 2000-04-11 3M Innovative Properties Co Multilayer infrared reflecting optical body
US6531230B1 (en) 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
EP1741550B1 (en) * 2004-03-31 2019-04-24 Toray Industries, Inc. Laminated film
CN100548664C (zh) * 2004-03-31 2009-10-14 东丽株式会社 层压薄膜
US7345137B2 (en) * 2004-10-18 2008-03-18 3M Innovative Properties Company Modified copolyesters and optical films including modified copolyesters
US7727633B2 (en) * 2006-08-22 2010-06-01 3M Innovative Properties Company Solar control glazing laminates
KR101310587B1 (ko) * 2006-09-06 2013-09-23 도레이 카부시키가이샤 폴리에스테르 수지 조성물, 그의 제조 방법 및 적층 폴리에스테르 필름
JP2008200924A (ja) 2007-02-19 2008-09-04 Toray Ind Inc 積層フィルム
KR101775077B1 (ko) * 2009-10-09 2017-09-06 에스케이씨 주식회사 다층 광학 필름 및 이의 제조방법
JP5277189B2 (ja) * 2010-02-02 2013-08-28 富士フイルム株式会社 遮熱部材、及び合わせガラス
KR101983629B1 (ko) * 2011-06-27 2019-05-29 도레이 카부시키가이샤 적층 필름 및 그것을 사용한 자동차용 창유리

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JPH1076620A (ja) 1996-09-04 1998-03-24 Toray Ind Inc 積層フィルムおよびガラス飛散防止フィルム
JP2003511729A (ja) 1999-10-12 2003-03-25 スリーエム イノベイティブ プロパティズ カンパニー 複屈折ポリマーを使用して製造される光学体
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
JP4310312B2 (ja) 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 近赤外線遮蔽フィルム
JP4534637B2 (ja) 2004-03-31 2010-09-01 東レ株式会社 積層フィルム
JP4691910B2 (ja) 2004-06-11 2011-06-01 東レ株式会社 スクリーン用反射体およびスクリーン
JP4816419B2 (ja) 2005-11-29 2011-11-16 東レ株式会社 積層フィルム
JP2007268709A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd 二軸延伸多層積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム
JP2011141408A (ja) * 2010-01-07 2011-07-21 Toray Ind Inc 偏光反射体
JP2011156687A (ja) * 2010-01-29 2011-08-18 Toray Ind Inc 樹脂シートおよびそれを用いた成形品
WO2012008587A1 (ja) * 2010-07-16 2012-01-19 旭硝子株式会社 赤外線反射基板および合わせガラス
JP2012030563A (ja) * 2010-08-03 2012-02-16 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006388A1 (ja) * 2014-07-08 2016-01-14 コニカミノルタ株式会社 光学フィルム
WO2016052609A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP5989920B1 (ja) * 2014-09-30 2016-09-07 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
KR20170088331A (ko) * 2014-11-19 2017-08-01 도레이 카부시키가이샤 적층 필름
KR102470780B1 (ko) * 2014-11-19 2022-11-25 도레이 카부시키가이샤 적층 필름
WO2016125823A1 (ja) * 2015-02-03 2016-08-11 王子ホールディングス株式会社 遮熱フィルム、遮熱合わせガラスおよびその製造方法
JP2016215643A (ja) * 2015-05-19 2016-12-22 東レ株式会社 積層二軸延伸ポリエステルフィルム
JP2017028016A (ja) * 2015-07-17 2017-02-02 大日本印刷株式会社 太陽電池モジュール
JP7076710B2 (ja) 2016-05-26 2022-05-30 スリーエム イノベイティブ プロパティズ カンパニー 偏光子積層体
JP2019522812A (ja) * 2016-05-26 2019-08-15 スリーエム イノベイティブ プロパティズ カンパニー 偏光子積層体
JP2018089857A (ja) * 2016-12-02 2018-06-14 住友ベークライト株式会社 多層フィルム及び包装体
JP2018176602A (ja) * 2017-04-18 2018-11-15 住友ベークライト株式会社 多層フィルム及び包装体
WO2019203141A1 (ja) * 2018-04-19 2019-10-24 Agc株式会社 車両用フロントガラス
JPWO2019203141A1 (ja) * 2018-04-19 2021-05-20 Agc株式会社 車両用フロントガラス
JP7160091B2 (ja) 2018-04-19 2022-10-25 Agc株式会社 車両用フロントガラス
JP7550166B2 (ja) 2019-04-03 2024-09-12 スリーエム イノベイティブ プロパティズ カンパニー 光学フィルム及びガラスラミネート

Also Published As

Publication number Publication date
KR102053671B1 (ko) 2019-12-09
CN104185547A (zh) 2014-12-03
EP2826621A1 (en) 2015-01-21
JP6007903B2 (ja) 2016-10-19
US20150064428A1 (en) 2015-03-05
US9527266B2 (en) 2016-12-27
EP2826621B1 (en) 2021-04-21
KR20140141635A (ko) 2014-12-10
EP2826621A4 (en) 2015-04-15
JPWO2013137288A1 (ja) 2015-08-03
CN104185547B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6007903B2 (ja) 多層積層フィルム
JP5807466B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP5607574B2 (ja) 防皺性赤外反射フィルム、およびそれから製造される非平面積層物品
JP5867393B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
KR101084516B1 (ko) 근적외선 차폐 필름
EP2786865A1 (en) Biaxially stretched laminated polyester film, infrared-ray-shielding structure for laminated glass which comprises said film, and laminated glass comprising said film or said structure
JP6427925B2 (ja) ウインドウフィルム
WO2014156726A1 (ja) 積層フィルム
JP6551232B2 (ja) 多層積層フィルム
WO2018012252A1 (ja) フィルムおよび積層体
WO2019203141A1 (ja) 車両用フロントガラス
JP2012030563A (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP6225495B2 (ja) 多層積層フィルムおよびこれを用いたガラス窓部材
JP2012173374A (ja) 熱線反射部材
JP2021054061A (ja) 積層フィルム
JP6015382B2 (ja) 積層フィルムならびに遮熱部材
JP2018127607A (ja) フィルム
JP4967486B2 (ja) 延伸フィルムならびにその成型品
JP2024072399A (ja) 積層ポリエステルフィルム
JP7342651B2 (ja) フィルム
JP2013248820A (ja) 成形品及び多層積層フィルム。
WO2024062961A1 (ja) フィルムおよびその製造方法、積層構成体、合わせガラス、自動車
JP2023121739A (ja) 多層積層フィルム
JP2023082674A (ja) 調光ウインドウ
JP2019061238A (ja) 多層積層フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380014437.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013513431

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013761598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14385235

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147027863

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE