WO2013123415A1 - Memory cell comprising first and second transistors and methods of operating - Google Patents

Memory cell comprising first and second transistors and methods of operating Download PDF

Info

Publication number
WO2013123415A1
WO2013123415A1 PCT/US2013/026466 US2013026466W WO2013123415A1 WO 2013123415 A1 WO2013123415 A1 WO 2013123415A1 US 2013026466 W US2013026466 W US 2013026466W WO 2013123415 A1 WO2013123415 A1 WO 2013123415A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
floating body
terminal
memory cell
region
Prior art date
Application number
PCT/US2013/026466
Other languages
English (en)
French (fr)
Inventor
Yuniarto Widjaja
Zvi Or-Bach
Original Assignee
Zeno Semiconductor, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/746,523 external-priority patent/US9230651B2/en
Priority to SG11201404871TA priority Critical patent/SG11201404871TA/en
Priority to EP13748573.6A priority patent/EP2815402B1/en
Priority to US14/380,779 priority patent/US9905564B2/en
Priority to KR1020147025821A priority patent/KR102059884B1/ko
Priority to JP2014557836A priority patent/JP6362542B2/ja
Application filed by Zeno Semiconductor, Inc. filed Critical Zeno Semiconductor, Inc.
Priority to CN201380009774.4A priority patent/CN104471648B/zh
Publication of WO2013123415A1 publication Critical patent/WO2013123415A1/en
Priority to US15/485,718 priority patent/US10181471B2/en
Priority to US16/219,359 priority patent/US10797055B2/en
Priority to US17/016,540 priority patent/US11348922B2/en
Priority to US17/743,248 priority patent/US11974425B2/en
Priority to US18/621,096 priority patent/US20240243492A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/02Arrangements for writing information into, or reading information out from, a digital store with means for avoiding parasitic signals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7302Bipolar junction transistors structurally associated with other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/10DRAM devices comprising bipolar components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Definitions

  • the access device comprises a bipolar transistor.
  • the first gate is positioned between the first source region and the first drain region and the second gate is positioned between the second source region and the second drain region.
  • the first drain region is electrically connected to the second gate.
  • At least one of the first and second bodies is a bi-stable floating body.
  • a semiconductor memory cell includes: a first transistor having a floating body; a buried layer below the floating body, wherein application of voltage on the buried layer maintains a state of the memory cell; and a second transistor; wherein the first and second transistors are connected in series.
  • a semiconductor memory cell includes: a first bi-stable floating body transistor; and a second bi-stable floating body transistor; wherein the first and second floating body transistors are configured to store complementary charges.
  • FIG. 1A schematically illustrates a memory cell which comprises memory device and an access device that are connected in series, according to a generic embodiment of the present invention.
  • Fig. 9B shows an energy band diagram of an intrinsic bipolar device when a floating body region is neutrally charged and a positive bias is applied to a buried well region of a memory cell according to an embodiment of the present invention.
  • Fig. 16 schematically illustrates an alternative write logic-1 operation performed on a memory array according to an embodiment of the present invention.
  • FIGs. 29A and 29B are schematic, cross-sectional illustrations of a memory cell according to another embodiment of the present invention.
  • Fig. 41 is a schematic, cross-sectional illustration of a memory cell which can be used as a reference cell in sensing the state of a floating body memory cell according to an embodiment of the present invention.
  • Fig. IB illustrates a memory cell 50 according to an embodiment of the present invention, where memory device 50M is a bi-stable floating body device, for example as described in U.S. Patent Application Publication No. 2010/00246284 to Widjaja et al., titled “Semiconductor Memory Having Floating Body Transistor and Method of Operating” ("Widjaja- 1"), U.S. Patent Application Publication No. 2010/0034041, "Method of Operating Semiconductor Memory Device with Floating Body Transistor Using Silicon Controlled Rectifier Principle" (“Widjaja-2”), U.S. Patent Application Publication No.
  • a gate 60 is positioned in between the source line region 16 and the drain region 18, above the floating body region 24.
  • the gate 60 is insulated from the floating body region 24 by an insulating layer 62.
  • Insulating layer 62 may be made of silicon oxide and/or other dielectric materials, including high-K dielectric materials, such as, but not limited to, tantalum peroxide, titanium oxide, zirconium oxide, hafnium oxide, and/or aluminum oxide.
  • the gate 60 may be made of, for example, polysilicon material or metal gate electrode, such as tungsten, tantalum, titanium and their nitrides.
  • FIG. 6 shows an alternative array 122 where memory cells 100 are laid out in mirror configuration, where the source line region 16 (connected to the SL terminals 74) of one memory cell 100 is adjacent to a source line region 16 of a neighboring cell 100 with the bit line region 22 (connected to the BL terminals 76) being adjacent to the bit line region 22 of another neighboring cell 100, according to an embodiment of the present invention.
  • Figs. 16 and 17 illustrate exemplary bias conditions for a write logic- 1 operation through an impact ionization mechanism, performed on the memory array 120 and a selected memory cell 100, respectively, where the following bias conditions are applied: a positive voltage is applied to the selected WL2 terminal 72, a positive voltage is applied to the selected WL1 terminal 70, a positive voltage is applied to the selected BL terminal 76, zero voltage is applied to the SL terminal 74, zero or positive voltage is applied to the BW terminal 78, and zero voltage is applied to the SUB terminal 80.
  • Figs. 18 and 19 illustrate bias conditions for an exemplary write logic-1 operation through capacitive coupling from the gate 60 of the floating body transistor 40 to the floating body region 24, where the following bias conditions are applied: zero or low positive voltage is applied to the selected WL2 terminal 72, a positive bias is applied to the selected BL terminal 76, a positive voltage is applied to the SL terminal 74, a positive voltage is applied to the BW terminal 78, and zero voltage is applied to the SUB terminal 80.
  • the WL1 terminal is initially grounded, and then its potential is increased to a positive voltage.
  • Figs. 26 and 27 show alternative embodiments of memory cells 102 and 104, comprising a three-dimensional memory cell structure.
  • memory cells 102 and 104 have a fin structure 52 extending substantially perpendicular to, and above the top surface of the substrate 10.
  • Fin structure 52 is conductive and may be built on buried well layer 30 or well region 12.
  • Both memory cells 102 and 104 comprise floating body transistor 40 and access transistor 42.
  • floating body transistor 40 floating body region 24 is insulated by the buried well region 30, source line region 16, drain region 18, insulating layer 62, and insulating layer 26.
  • the well region 12 has the same conductivity type as the substrate 10.
  • the drain region 18 of the floating body transistor 40 is connected to the source region 20 of the access transistor 42 through a conductive element 44.
  • the conductive element 44 is not shown in Figs. 26 and 27.
  • Memory cells 100, 102, and 104 each have two transistors having the same conductivity type in series (two n-channel transistors 40 and 42 are used in the examples).
  • Fig. 28 illustrates another embodiment of memory cell 200, where the memory transistor 40 and the access transistor 42' are comprised of transistors having different conductivity type.
  • the floating body transistor 40 is similar to that of memory cell 100.
  • the access transistor 42' has a different conductivity type from access transistor 42 of memory cell 100, and may comprise an additional Access Transistor Substrate terminal 80'.
  • Fig. 33 shows a holding operation performed on memory array 220 according to an embodiment of the present invention, which follows the same mechanism as that of memory array 120.
  • the holding operation is performed by applying a positive back bias to the BW terminal 78, and zero bias on the WL1 terminal 70, WL2 terminal 72, SL terminal 74, SUB terminal 80, and BL terminal 76.
  • the positive back bias applied to the buried layer region 30 connected to the BW terminal 78 will maintain the state of the memory cell 200 that it is connected to by maintaining the charge stored in the floating body region 24 of the corresponding floating body transistor 40.
  • the access transistor 42 of the selected memory cell is biased such that the source region 20 of the access transistor 42 is floating, for example by having the bias applied to the BL terminal 76 to be greater than the difference between the bias applied to the gate 64 and the threshold voltage of the access transistor 42. Because the channel region of the floating body transistor 40 is now floating, when the potential of the gate region 60 (connected to the WLl terminal 70) is increased from zero (or negative voltage) to a positive voltage, the potential of the floating body region 24 will increase due to capacitive coupling. The positive bias applied to the buried well region 30 (through the BW terminal 78) will then generate holes through the impact ionization process, which maintains the positive charge of the floating body region 24.
  • Buried layer 330 may be formed by an ion implantation process on the material of substrate 310. Alternatively, buried layer 330 can be grown epitaxially on top of substrate 310.
  • Insulating layers 326 may be made of silicon oxide, for example, though other insulating materials may be used. Insulating layers 326 insulate floating body transistor 340 from adjacent floating body transistor 340 and adjacent access transistor 342. The bottom of insulating layer 326 may reside inside the buried region 330 allowing buried region 330 to be continuous as shown in Fig. 45. Alternatively, the bottom of insulating layer 326 may reside below the buried region 330 (similar to how the insulating layer 26 may reside below the buried region 30 of the memory cell 100 as shown in Fig. 2). This requires a shallower insulating layer (like 28 in Fig.
  • STI shallow trench isolation
  • representative memory cell 300b will be representative of an unselected memory cell 300 sharing the same row as selected representative memory cell 300a
  • representative memory cell 300c will be representative of an unselected memory cell 300 sharing the same column as selected representative memory cell 300a
  • representative memory cell 300d will be representative of a memory cell 300 sharing neither a row or a column with selected representative memory cell 300a.
  • Fig. 51 illustrates an exemplary memory array 420 comprising memory cells 400, according to an embodiment of the present invention.
  • Present in Fig. 51 are WL terminals 470a through 470n connected to the gate regions 60, WL terminals 472a through 472n connected to the gate regions 64, SL terminals 476a through 476n connected to both the source line regions 18 and 18' of the floating body transistors 440 and 440', BL terminals 474a through 474p connected to the drain regions 16 of the floating body transistors 440, BL terminals 474'a through
  • exemplary memory array 420 shows that the source line regions 18 and 18' of the floating body transistors 440 and 440' are connected to the same SL terminal 372. However, each of the source line regions 18 and 18' may be connected to separate terminals, for example SL terminal 476 and SL terminal 476'.
  • the exemplary memory array 420 shows that the gate regions 60 and 64 are connected to separate WL terminals 470 and 472. In an alternate embodiment, the gate regions 60 and 64 may be connected to the same WL terminals.
  • Fig. 52 illustrates a schematic top-view of the memory cell 400 where the gate regions of the floating body transistors 440 and 440' are joined together, where connections between conductive materials 90 and 90' to the
  • the dual-port floating body transistor 40D is connected in series to the access transistors 42 A and 42B.
  • the drain region 18A of the floating body transistor 40D is connected to the source region 20A of the access transistor 42A of the port #1 through a conductive element 94A.
  • the drain region 18B of the floating body transistor 40D is connected to the source region 20B of the access transistor 42B of the port #2 through conductive element 94B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)
PCT/US2013/026466 2007-05-02 2013-02-15 Memory cell comprising first and second transistors and methods of operating WO2013123415A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201380009774.4A CN104471648B (zh) 2012-02-16 2013-02-15 包括初级和二级电晶体的存储单元
EP13748573.6A EP2815402B1 (en) 2012-02-16 2013-02-15 Memory cell comprising first and second transistors and methods of operating
US14/380,779 US9905564B2 (en) 2012-02-16 2013-02-15 Memory cell comprising first and second transistors and methods of operating
KR1020147025821A KR102059884B1 (ko) 2012-02-16 2013-02-15 두개의 트랜지스터로 구성된 메모리셀과 그 동작 방법
JP2014557836A JP6362542B2 (ja) 2012-02-16 2013-02-15 第1および第2のトランジスタを備えるメモリセルおよび動作の方法
SG11201404871TA SG11201404871TA (en) 2012-02-16 2013-02-15 Memory cell comprising first and second transistors and methods of operating
US15/485,718 US10181471B2 (en) 2012-02-16 2017-04-12 Memory cell comprising first and second transistors and methods of operating
US16/219,359 US10797055B2 (en) 2012-02-16 2018-12-13 Memory cell comprising first and second transistors and methods of operating
US17/016,540 US11348922B2 (en) 2012-02-16 2020-09-10 Memory cell comprising first and second transistors and methods of operating
US17/743,248 US11974425B2 (en) 2012-02-16 2022-05-12 Memory cell comprising first and second transistors and methods of operating
US18/621,096 US20240243492A1 (en) 2007-05-02 2024-03-29 Memory Cell Comprising First and Second Transistors and Methods of Operating

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261599425P 2012-02-16 2012-02-16
US61/599,425 2012-02-16
US201261621546P 2012-04-08 2012-04-08
US61/621,546 2012-04-08
US13/746,523 US9230651B2 (en) 2012-04-08 2013-01-22 Memory device having electrically floating body transitor
US13/746,523 2013-01-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/746,523 Continuation-In-Part US9230651B2 (en) 2007-05-02 2013-01-22 Memory device having electrically floating body transitor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/380,779 A-371-Of-International US9905564B2 (en) 2012-02-16 2013-02-15 Memory cell comprising first and second transistors and methods of operating
US15/485,718 Division US10181471B2 (en) 2007-05-02 2017-04-12 Memory cell comprising first and second transistors and methods of operating

Publications (1)

Publication Number Publication Date
WO2013123415A1 true WO2013123415A1 (en) 2013-08-22

Family

ID=50345157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/026466 WO2013123415A1 (en) 2007-05-02 2013-02-15 Memory cell comprising first and second transistors and methods of operating

Country Status (8)

Country Link
US (1) US11974425B2 (ja)
EP (1) EP2815402B1 (ja)
JP (2) JP6362542B2 (ja)
KR (1) KR102059884B1 (ja)
CN (2) CN104471648B (ja)
SG (1) SG11201404871TA (ja)
TW (7) TWI605570B (ja)
WO (1) WO2013123415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800004982A1 (it) * 2018-05-02 2019-11-02 Francesco Vilardo DRAM memory one bit all in one united in a single device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9208880B2 (en) 2013-01-14 2015-12-08 Zeno Semiconductor, Inc. Content addressable memory device having electrically floating body transistor
US9275723B2 (en) 2013-04-10 2016-03-01 Zeno Semiconductor, Inc. Scalable floating body memory cell for memory compilers and method of using floating body memories with memory compilers
US9368625B2 (en) 2013-05-01 2016-06-14 Zeno Semiconductor, Inc. NAND string utilizing floating body memory cell
US9496053B2 (en) 2014-08-15 2016-11-15 Zeno Semiconductor, Inc. Memory device comprising electrically floating body transistor
US10079301B2 (en) 2016-11-01 2018-09-18 Zeno Semiconductor, Inc. Memory device comprising an electrically floating body transistor and methods of using
TWI787498B (zh) 2018-04-18 2022-12-21 美商季諾半導體股份有限公司 包括電性浮體電晶體的記憶裝置
US11600663B2 (en) 2019-01-11 2023-03-07 Zeno Semiconductor, Inc. Memory cell and memory array select transistor
US11443819B2 (en) * 2020-07-24 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device, integrated circuit device and method
WO2023162036A1 (ja) * 2022-02-22 2023-08-31 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体メモリ装置
WO2023170755A1 (ja) * 2022-03-07 2023-09-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307781B1 (en) * 1999-09-30 2001-10-23 Infineon Technologies Aktiengesellschaft Two transistor flash memory cell
US20050013163A1 (en) * 2003-05-13 2005-01-20 Richard Ferrant Semiconductor memory cell, array, architecture and device, and method of operating same
US20060187706A1 (en) * 2004-12-10 2006-08-24 Intel Corporation 2-Transistor floating-body dram
US20060279985A1 (en) * 2005-06-14 2006-12-14 Intel Corporation Purge-based floating body memory
US20090010055A1 (en) 2007-07-04 2009-01-08 Hynix Semiconductor Inc. One-transistor type DRAM
US20100034041A1 (en) 2008-08-05 2010-02-11 Yuniarto Widjaja Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
KR20100073871A (ko) * 2008-12-23 2010-07-01 주식회사 하이닉스반도체 비활성 트랜지스터를 이용한 셀 격리 구조를 포함하는 반도체 메모리 소자
US20100246277A1 (en) * 2007-11-29 2010-09-30 Yuniarto Widjaja Method of maintaining the state of semiconductor memory having electrically floating body transistor
US20100329043A1 (en) * 2007-10-01 2010-12-30 University Of Florida Research Foundation, Inc. Two-Transistor Floating-Body Dynamic Memory Cell

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300212A (en) 1979-01-24 1981-11-10 Xicor, Inc. Nonvolatile static random access memory devices
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JPH021158A (ja) * 1988-01-29 1990-01-05 Toshiba Corp 半導体装置
US6232822B1 (en) 1988-01-08 2001-05-15 Kabushiki Kaisha Toshiba Semiconductor device including a bipolar transistor biased to produce a negative base current by the impact ionization mechanism
US5844842A (en) 1989-02-06 1998-12-01 Hitachi, Ltd. Nonvolatile semiconductor memory device
JP2829088B2 (ja) * 1990-03-30 1998-11-25 株式会社東芝 半導体記憶装置
GB2256735B (en) 1991-06-12 1995-06-21 Intel Corp Non-volatile disk cache
US5359573A (en) * 1992-06-19 1994-10-25 Lattice Semiconductor Corporation Flash E2 PROM array with mingle polysilicon layer memory cell
KR970000870B1 (ko) * 1992-12-02 1997-01-20 마쯔시다덴기산교 가부시기가이샤 반도체메모리장치
JP3191549B2 (ja) * 1994-02-15 2001-07-23 松下電器産業株式会社 半導体メモリ装置
KR100477494B1 (ko) 1995-01-31 2005-03-23 가부시끼가이샤 히다치 세이사꾸쇼 반도체 메모리 장치
AU7475196A (en) 1995-10-25 1997-05-15 Nvx Corporation Semiconductor non-volatile memory device having a nand cell structure
US5581504A (en) 1995-11-14 1996-12-03 Programmable Microelectronics Corp. Non-volatile electrically erasable memory with PMOS transistor NAND gate structure
US5767549A (en) 1996-07-03 1998-06-16 International Business Machines Corporation SOI CMOS structure
US6021063A (en) * 1997-01-13 2000-02-01 Vanguard International Semiconductor Corporation Method and structure for improving data retention in a DRAM
JP3951443B2 (ja) 1997-09-02 2007-08-01 ソニー株式会社 不揮発性半導体記憶装置及びその書き込み方法
JP3492168B2 (ja) 1997-10-21 2004-02-03 シャープ株式会社 不揮発性半導体記憶装置
US6005818A (en) 1998-01-20 1999-12-21 Stmicroelectronics, Inc. Dynamic random access memory device with a latching mechanism that permits hidden refresh operations
US6229161B1 (en) 1998-06-05 2001-05-08 Stanford University Semiconductor capacitively-coupled NDR device and its applications in high-density high-speed memories and in power switches
CN100359601C (zh) 1999-02-01 2008-01-02 株式会社日立制作所 半导体集成电路和非易失性存储器元件
US6356485B1 (en) 1999-02-13 2002-03-12 Integrated Device Technology, Inc. Merging write cycles by comparing at least a portion of the respective write cycle addresses
US6141248A (en) 1999-07-29 2000-10-31 Micron Technology, Inc. DRAM and SRAM memory cells with repressed memory
KR100323140B1 (ko) 2000-01-17 2002-02-06 윤종용 낸드형 플래쉬 메모리소자 및 그 제조방법
DE10012105B4 (de) 2000-03-13 2007-08-23 Infineon Technologies Ag Verfahren zum Auslesen von nichtflüchtigen Halbleiter-Speicheranordnungen
JP2001274265A (ja) 2000-03-28 2001-10-05 Mitsubishi Electric Corp 半導体装置
JP2001358313A (ja) 2000-06-14 2001-12-26 Hitachi Ltd 半導体装置
KR100819730B1 (ko) 2000-08-14 2008-04-07 샌디스크 쓰리디 엘엘씨 밀집한 어레이 및 전하 저장 장치와, 그 제조 방법
JP2002133878A (ja) 2000-10-23 2002-05-10 Hitachi Ltd 不揮発性記憶回路および半導体集積回路
JP3884266B2 (ja) * 2001-02-19 2007-02-21 株式会社東芝 半導体メモリ装置及びその製造方法
US6462359B1 (en) 2001-03-22 2002-10-08 T-Ram, Inc. Stability in thyristor-based memory device
EP1384232A4 (en) 2001-04-05 2008-11-19 T Ram Inc DYNAMIC DATA RESTORATION IN A THYRISTOR MEMORY DEVICE
TWI230392B (en) 2001-06-18 2005-04-01 Innovative Silicon Sa Semiconductor device
JP3808763B2 (ja) 2001-12-14 2006-08-16 株式会社東芝 半導体メモリ装置およびその製造方法
US20030230778A1 (en) 2002-01-30 2003-12-18 Sumitomo Mitsubishi Silicon Corporation SOI structure having a SiGe Layer interposed between the silicon and the insulator
US6686624B2 (en) 2002-03-11 2004-02-03 Monolithic System Technology, Inc. Vertical one-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region
US6661042B2 (en) 2002-03-11 2003-12-09 Monolithic System Technology, Inc. One-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region
US6954377B2 (en) 2002-03-19 2005-10-11 O2Ic, Inc. Non-volatile differential dynamic random access memory
EP1355316B1 (en) 2002-04-18 2007-02-21 Innovative Silicon SA Data storage device and refreshing method for use with such device
JP2004079843A (ja) * 2002-08-20 2004-03-11 Renesas Technology Corp 半導体記憶装置
US7042052B2 (en) 2003-02-10 2006-05-09 Micron Technology, Inc. Transistor constructions and electronic devices
US6956256B2 (en) 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
US20040228168A1 (en) 2003-05-13 2004-11-18 Richard Ferrant Semiconductor memory device and method of operating same
US7227803B2 (en) 2003-07-31 2007-06-05 Brocade Communications Systems, Inc. Apparatus for reducing data corruption in a non-volatile memory
DE10350751B4 (de) 2003-10-30 2008-04-24 Infineon Technologies Ag Verfahren zum Herstellen eines vertikalen Feldeffekttransistors und Feldeffekt-Speichertransistor, insbesondere FLASH-Speichertransistor
US6969656B2 (en) 2003-12-05 2005-11-29 Freescale Semiconductor, Inc. Method and circuit for multiplying signals with a transistor having more than one independent gate structure
JP2005243709A (ja) 2004-02-24 2005-09-08 Toshiba Corp 半導体装置およびその製造方法
JP4429036B2 (ja) 2004-02-27 2010-03-10 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP4331053B2 (ja) 2004-05-27 2009-09-16 株式会社東芝 半導体記憶装置
KR100621628B1 (ko) 2004-05-31 2006-09-19 삼성전자주식회사 비휘발성 기억 셀 및 그 형성 방법
US7009887B1 (en) 2004-06-03 2006-03-07 Fasl Llc Method of determining voltage compensation for flash memory devices
US7910975B2 (en) * 2004-06-09 2011-03-22 Renesas Electronics Corporation Semiconductor memory device
US7118986B2 (en) 2004-06-16 2006-10-10 International Business Machines Corporation STI formation in semiconductor device including SOI and bulk silicon regions
US7259420B2 (en) 2004-07-28 2007-08-21 International Business Machines Corporation Multiple-gate device with floating back gate
KR100843717B1 (ko) * 2007-06-28 2008-07-04 삼성전자주식회사 플로팅 바디 소자 및 벌크 바디 소자를 갖는 반도체소자 및그 제조방법
US7145186B2 (en) 2004-08-24 2006-12-05 Micron Technology, Inc. Memory cell with trenched gated thyristor
US7253493B2 (en) 2004-08-24 2007-08-07 Micron Technology, Inc. High density access transistor having increased channel width and methods of fabricating such devices
KR100591770B1 (ko) 2004-09-01 2006-06-26 삼성전자주식회사 반도체 핀을 이용한 플래쉬 메모리 소자 및 그 제조 방법
US7061806B2 (en) 2004-09-30 2006-06-13 Intel Corporation Floating-body memory cell write
KR100598109B1 (ko) 2004-10-08 2006-07-07 삼성전자주식회사 비휘발성 기억 소자 및 그 형성 방법
JP4755405B2 (ja) * 2004-10-13 2011-08-24 ルネサスエレクトロニクス株式会社 半導体装置
US7301803B2 (en) 2004-12-22 2007-11-27 Innovative Silicon S.A. Bipolar reading technique for a memory cell having an electrically floating body transistor
US7307268B2 (en) 2005-01-19 2007-12-11 Sandisk Corporation Structure and method for biasing phase change memory array for reliable writing
KR100657148B1 (ko) * 2005-03-18 2006-12-13 매그나칩 반도체 유한회사 플래시 메모리 및 그 레퍼런스 셀 제어 방법
US7504302B2 (en) 2005-03-18 2009-03-17 Freescale Semiconductor, Inc. Process of forming a non-volatile memory cell including a capacitor structure
US7602006B2 (en) 2005-04-20 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor flash device
US7205601B2 (en) 2005-06-09 2007-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET split gate EEPROM structure and method of its fabrication
EP1739738A3 (fr) 2005-06-30 2009-04-01 STMicroelectronics (Crolles 2) SAS Cellule mémoire à un transistor MOS à corps isolé à effet mémoire renforcé
JP4660324B2 (ja) * 2005-09-06 2011-03-30 株式会社東芝 Fbcメモリ装置
FR2889356A1 (fr) * 2005-07-26 2007-02-02 St Microelectronics Crolles 2 Cellule memoire a un transistor a corps isole a sensibilite de lecture amelioree
US7285832B2 (en) 2005-07-29 2007-10-23 Hoefler Alexander B Multiport single transistor bit cell
JP2007067133A (ja) 2005-08-31 2007-03-15 Sony Corp 半導体装置
TWI263310B (en) 2005-09-28 2006-10-01 Powerchip Semiconductor Corp Non-volatile memory and fabricating method thereof
KR100663366B1 (ko) 2005-10-26 2007-01-02 삼성전자주식회사 자기 정렬된 부유게이트를 갖는 플래시메모리소자의제조방법 및 관련된 소자
US7209384B1 (en) 2005-12-08 2007-04-24 Juhan Kim Planar capacitor memory cell and its applications
WO2007070808A2 (en) 2005-12-12 2007-06-21 The Regents Of The University Of California Multi-bit-per-cell nvm structures and architecture
US7683430B2 (en) 2005-12-19 2010-03-23 Innovative Silicon Isi Sa Electrically floating body memory cell and array, and method of operating or controlling same
JP2007194259A (ja) 2006-01-17 2007-08-02 Toshiba Corp 半導体装置及びその製造方法
US7542345B2 (en) * 2006-02-16 2009-06-02 Innovative Silicon Isi Sa Multi-bit memory cell having electrically floating body transistor, and method of programming and reading same
US7535060B2 (en) 2006-03-08 2009-05-19 Freescale Semiconductor, Inc. Charge storage structure formation in transistor with vertical channel region
US7439594B2 (en) 2006-03-16 2008-10-21 Micron Technology, Inc. Stacked non-volatile memory with silicon carbide-based amorphous silicon thin film transistors
EP1835530A3 (en) 2006-03-17 2009-01-28 Samsung Electronics Co., Ltd. Non-volatile memory device and method of manufacturing the same
US7855417B2 (en) 2006-08-07 2010-12-21 Ememory Technology Inc. Non-volatile memory with a stable threshold voltage on SOI substrate
KR100810614B1 (ko) 2006-08-23 2008-03-06 삼성전자주식회사 디램 셀 모드 및 비휘발성 메모리 셀 모드를 갖는 반도체메모리 소자 및 그 동작방법
JP4364227B2 (ja) 2006-09-29 2009-11-11 株式会社東芝 半導体記憶装置
US8325530B2 (en) 2006-10-03 2012-12-04 Macronix International Co., Ltd. Cell operation methods using gate-injection for floating gate NAND flash memory
US9391079B2 (en) 2007-11-29 2016-07-12 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8194451B2 (en) 2007-11-29 2012-06-05 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US8514622B2 (en) 2007-11-29 2013-08-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8547756B2 (en) 2010-10-04 2013-10-01 Zeno Semiconductor, Inc. Semiconductor memory device having an electrically floating body transistor
US7760548B2 (en) 2006-11-29 2010-07-20 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8159868B2 (en) 2008-08-22 2012-04-17 Zeno Semiconductor, Inc. Semiconductor memory having both volatile and non-volatile functionality including resistance change material and method of operating
US9601493B2 (en) 2006-11-29 2017-03-21 Zeno Semiconductor, Inc Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
JP5078338B2 (ja) 2006-12-12 2012-11-21 ルネサスエレクトロニクス株式会社 半導体記憶装置
KR100801707B1 (ko) 2006-12-13 2008-02-11 삼성전자주식회사 플로팅 바디 메모리 및 그 제조방법
US7450423B2 (en) 2007-01-03 2008-11-11 Macronix International Co., Ltd. Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
JP2008186838A (ja) 2007-01-26 2008-08-14 Toshiba Corp 半導体装置、その製造方法及び不揮発性半導体記憶装置
US7898009B2 (en) 2007-02-22 2011-03-01 American Semiconductor, Inc. Independently-double-gated transistor memory (IDGM)
US7447068B2 (en) 2007-03-19 2008-11-04 Macronix International Co., Ltd. Method for programming a multilevel memory
JP2008263133A (ja) * 2007-04-13 2008-10-30 Toshiba Microelectronics Corp 半導体記憶装置およびその駆動方法
US7452776B1 (en) 2007-04-24 2008-11-18 Promos Technoloies Pte. Ltd. Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories
US9230651B2 (en) 2012-04-08 2016-01-05 Zeno Semiconductor, Inc. Memory device having electrically floating body transitor
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
JP2009037703A (ja) 2007-08-02 2009-02-19 Toshiba Corp 抵抗変化メモリ
US7674669B2 (en) 2007-09-07 2010-03-09 Micron Technology, Inc. FIN field effect transistor
TWI351767B (en) 2007-10-02 2011-11-01 Nanya Technology Corp Two-bit flash memory
US7759715B2 (en) 2007-10-15 2010-07-20 Micron Technology, Inc. Memory cell comprising dynamic random access memory (DRAM) nanoparticles and nonvolatile memory (NVM) nanoparticle
US7847338B2 (en) 2007-10-24 2010-12-07 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US20090108351A1 (en) 2007-10-26 2009-04-30 International Business Machines Corporation Finfet memory device with dual separate gates and method of operation
US8130548B2 (en) * 2007-11-29 2012-03-06 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US10403361B2 (en) 2007-11-29 2019-09-03 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US8174886B2 (en) 2007-11-29 2012-05-08 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US8264875B2 (en) 2010-10-04 2012-09-11 Zeno Semiconducor, Inc. Semiconductor memory device having an electrically floating body transistor
US8331150B2 (en) 2008-01-03 2012-12-11 Aplus Flash Technology, Inc. Integrated SRAM and FLOTOX EEPROM memory device
US20090213641A1 (en) * 2008-02-22 2009-08-27 Heechoul Park Memory with active mode back-bias voltage control and method of operating same
JP2009252264A (ja) * 2008-04-02 2009-10-29 Toshiba Corp 半導体記憶装置およびその駆動方法
US8014200B2 (en) 2008-04-08 2011-09-06 Zeno Semiconductor, Inc. Semiconductor memory having volatile and multi-bit, non-volatile functionality and methods of operating
US7701763B2 (en) 2008-04-23 2010-04-20 Micron Technology, Inc. Leakage compensation during program and read operations
KR101498873B1 (ko) 2008-07-08 2015-03-04 삼성전자주식회사 디램 및 비휘발성 메모리 특성을 갖는 메모리 소자의 구동방법
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
KR101442177B1 (ko) 2008-12-18 2014-09-18 삼성전자주식회사 커패시터 없는 1-트랜지스터 메모리 셀을 갖는 반도체소자의 제조방법들
US8018007B2 (en) 2009-07-20 2011-09-13 International Business Machines Corporation Selective floating body SRAM cell
US9153309B2 (en) 2010-02-07 2015-10-06 Zeno Semiconductor Inc. Semiconductor memory device having electrically floating body transistor, semiconductor memory device having both volatile and non-volatile functionality and method or operating
US10340276B2 (en) 2010-03-02 2019-07-02 Zeno Semiconductor, Inc. Method of maintaining the state of semiconductor memory having electrically floating body transistor
US10461084B2 (en) 2010-03-02 2019-10-29 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US9922981B2 (en) 2010-03-02 2018-03-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8582359B2 (en) 2010-11-16 2013-11-12 Zeno Semiconductor, Inc. Dual-port semiconductor memory and first-in first-out (FIFO) memory having electrically floating body transistor
US8957458B2 (en) 2011-03-24 2015-02-17 Zeno Semiconductor, Inc. Asymmetric semiconductor memory device having electrically floating body transistor
US9025358B2 (en) 2011-10-13 2015-05-05 Zeno Semiconductor Inc Semiconductor memory having both volatile and non-volatile functionality comprising resistive change material and method of operating
US9208880B2 (en) 2013-01-14 2015-12-08 Zeno Semiconductor, Inc. Content addressable memory device having electrically floating body transistor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307781B1 (en) * 1999-09-30 2001-10-23 Infineon Technologies Aktiengesellschaft Two transistor flash memory cell
US20050013163A1 (en) * 2003-05-13 2005-01-20 Richard Ferrant Semiconductor memory cell, array, architecture and device, and method of operating same
US20060187706A1 (en) * 2004-12-10 2006-08-24 Intel Corporation 2-Transistor floating-body dram
US20060279985A1 (en) * 2005-06-14 2006-12-14 Intel Corporation Purge-based floating body memory
US20090010055A1 (en) 2007-07-04 2009-01-08 Hynix Semiconductor Inc. One-transistor type DRAM
US20100329043A1 (en) * 2007-10-01 2010-12-30 University Of Florida Research Foundation, Inc. Two-Transistor Floating-Body Dynamic Memory Cell
US20100246277A1 (en) * 2007-11-29 2010-09-30 Yuniarto Widjaja Method of maintaining the state of semiconductor memory having electrically floating body transistor
US20100034041A1 (en) 2008-08-05 2010-02-11 Yuniarto Widjaja Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
KR20100073871A (ko) * 2008-12-23 2010-07-01 주식회사 하이닉스반도체 비활성 트랜지스터를 이용한 셀 격리 구조를 포함하는 반도체 메모리 소자

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
F. MORISHITA ET AL.: "A configurable enhanced TTRAM macro for system-level power management unified memory", SOLID-STATE CIRCUITS, IEEE JOURNAL OF, vol. 42, no. 4, 2007, pages 853 - 861, XP011175866, DOI: 10.1109/JSSC.2007.891677
F. MORISHITA ET AL.: "Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI", CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2005, pages 435 - 438
F. MORISHITA ET AL.: "IEICE Transactions on Electronics", vol. E90C, 1 April 2007, IEEE, article "A capacitorless twin-transistor random access memory (TTRAM) on SOI", pages: 765 - 771
K. ARIMOTO ET AL.: "A high-density scalable twin transistor RAM (TTRAM) with verify control for SOI platform memory IPs", SOLID-STATE CIRCUITS, IEEE JOURNAL OF, vol. 42, no. 11, 2007, pages 2611 - 2619, XP011195875, DOI: 10.1109/JSSC.2007.907185
K. ARIMOTO ET AL.: "A Scalable ET2RAM (SETRAM) with Verify Control for SoC Platform Memory IP on SOI", CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2006, pages 429 - 432, XP031052507

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800004982A1 (it) * 2018-05-02 2019-11-02 Francesco Vilardo DRAM memory one bit all in one united in a single device

Also Published As

Publication number Publication date
US11974425B2 (en) 2024-04-30
EP2815402A1 (en) 2014-12-24
US20220278104A1 (en) 2022-09-01
TW202310358A (zh) 2023-03-01
KR20150022744A (ko) 2015-03-04
TW201810624A (zh) 2018-03-16
JP2015513216A (ja) 2015-04-30
TW201401489A (zh) 2014-01-01
TW201842652A (zh) 2018-12-01
TW202119597A (zh) 2021-05-16
SG11201404871TA (en) 2014-09-26
CN107331416A (zh) 2017-11-07
TW202226540A (zh) 2022-07-01
EP2815402B1 (en) 2020-11-25
TW201941405A (zh) 2019-10-16
TWI761025B (zh) 2022-04-11
TWI639223B (zh) 2018-10-21
JP2017195395A (ja) 2017-10-26
JP6607882B2 (ja) 2019-11-20
EP2815402A4 (en) 2015-09-30
CN104471648B (zh) 2017-07-21
TWI671886B (zh) 2019-09-11
JP6362542B2 (ja) 2018-07-25
CN104471648A (zh) 2015-03-25
TWI812528B (zh) 2023-08-11
KR102059884B1 (ko) 2019-12-27
CN107331416B (zh) 2020-11-10
TWI605570B (zh) 2017-11-11
TWI783887B (zh) 2022-11-11
TWI716927B (zh) 2021-01-21

Similar Documents

Publication Publication Date Title
US11348922B2 (en) Memory cell comprising first and second transistors and methods of operating
US11974425B2 (en) Memory cell comprising first and second transistors and methods of operating
US11769549B2 (en) Memory device comprising an electrically floating body transistor
JP2015513216A5 (ja)
US20240243492A1 (en) Memory Cell Comprising First and Second Transistors and Methods of Operating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14380779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013748573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025821

Country of ref document: KR

Kind code of ref document: A