WO2023170755A1 - 半導体素子を用いたメモリ装置 - Google Patents

半導体素子を用いたメモリ装置 Download PDF

Info

Publication number
WO2023170755A1
WO2023170755A1 PCT/JP2022/009769 JP2022009769W WO2023170755A1 WO 2023170755 A1 WO2023170755 A1 WO 2023170755A1 JP 2022009769 W JP2022009769 W JP 2022009769W WO 2023170755 A1 WO2023170755 A1 WO 2023170755A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
voltage
page
line
gate conductor
Prior art date
Application number
PCT/JP2022/009769
Other languages
English (en)
French (fr)
Inventor
康司 作井
望 原田
正一 各務
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
康司 作井
望 原田
正一 各務
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 康司 作井, 望 原田, 正一 各務 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2022/009769 priority Critical patent/WO2023170755A1/ja
Priority to US18/179,130 priority patent/US20230284433A1/en
Priority to TW112108122A priority patent/TWI845191B/zh
Publication of WO2023170755A1 publication Critical patent/WO2023170755A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells

Definitions

  • the present invention relates to a memory device using a semiconductor element.
  • the channel In a typical planar MOS transistor, the channel extends in the horizontal direction along the upper surface of the semiconductor substrate. In contrast, the channel of the SGT extends in a direction perpendicular to the upper surface of the semiconductor substrate (see, for example, Patent Document 1 and Non-Patent Document 1). Therefore, the SGT allows higher density semiconductor devices than planar MOS transistors.
  • This SGT is used as a selection transistor to create a DRAM (Dynamic Random Access Memory) connected to a capacitor (see, for example, Non-Patent Document 2), a PCM (Phase Change Memory) connected to a variable resistance element (see, for example, Non-Patent Document 3). ), RRAM (Resistive Random Access Memory, see e.g.
  • Non-Patent Document 4 MRAM (Magneto-resistive Random Access Memory, see e.g. Non-Patent Document 5) that changes the resistance by changing the direction of magnetic spin by electric current. ) etc. can be highly integrated. Furthermore, there is a DRAM memory cell (see Non-Patent Document 7) that is configured with one MOS transistor and does not have a capacitor. The present application relates to a dynamic flash memory that does not have a variable resistance element or a capacitor and can be configured only with MOS transistors.
  • FIGS. 6(a) to 6(d) show the write operation of a DRAM memory cell configured with one MOS transistor without the aforementioned capacitor
  • FIGS. 7(a) and 7(b) show the operational The problem is shown in FIGS. 8(a) to 8(c) in the read operation (see Non-Patent Documents 7 to 10).
  • FIG. 6(a) shows a "1" write state.
  • the memory cell includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an "N + layer”) formed on an SOI substrate 100 and to which a source line SL is connected, a bit It is composed of a drain N + layer 104 to which the line BL is connected, a gate conductive layer 105 to which the word line WL is connected, and a floating body 102 of the MOS transistor 110.
  • a DRAM memory cell is made up of these. Note that the SiO 2 layer 101 of the SOI substrate is in contact with the floating body 102 directly below it.
  • the bit line BL connected to the drain N + layer and the word line WL connected to the gate conductive layer 105 are both set to a high voltage, and the MOS transistor 110 is operated with the gate voltage at about 1/2 of the drain voltage. When operated, the electric field strength is maximum at the pinch-off point 108 near the drain N + layer 104.
  • the floating body 102 is filled with generated holes 106, and when the voltage of the floating body 102 becomes higher than the source N + layer 103 by Vb or more, the generated holes are further discharged to the source N + layer 103.
  • Vb is a built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, and is approximately 0.7V.
  • FIG. 6B shows a state in which the floating body 102 is saturated charged with the generated holes 106.
  • FIG. 6C shows how the "1" write state is rewritten to the "0" write state.
  • the voltage of the bit line BL is set to a negative bias, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is set to a forward bias.
  • the holes 106 generated in the floating body 102 in the previous cycle flow to the drain N + layer 104 connected to the bit line BL.
  • the memory cell 110 is filled with the generated holes 106 (FIG.
  • the capacitance C FB of the floating body is the capacitance C WL between the gate connected to the word line and the floating body, and the capacitance C WL between the gate connected to the word line and the source N + layer 103 connected to the source line.
  • FIGS. 8(a) to 8(c) show the read operation, with FIG. 8(a) showing the "1” write state and FIG. 8(b) showing the "0” write state.
  • Vb is written into the floating body 102 by writing "1”
  • the word line returns to 0V at the end of writing
  • the floating body 102 is pulled down to negative bias.
  • the negative bias becomes even deeper, so the potential difference margin between “1” and “0” can be made sufficiently large during writing, as shown in Figure 7(c). Therefore, it has been difficult to commercialize a DRAM memory cell that does not actually have a capacitor.
  • Critoloveanu “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp. 179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F.
  • a memory device using a semiconductor element includes: A memory device in which a page is configured by a plurality of memory cells arranged in a row direction on a substrate, and the plurality of pages are arranged in a column direction when viewed from above, Each memory cell included in each page is a semiconductor body on a substrate, standing vertically or extending horizontally with respect to the substrate; a first impurity layer and a second impurity layer at both ends of the semiconductor matrix; a first gate insulating layer that surrounds a part or all of the side surface of the semiconductor matrix between the first impurity layer and the second impurity layer, and is in contact with or close to the first impurity layer; and, a second gate insulating layer surrounding the side surface of the semiconductor base body, connected to the first gate insulating layer, and in contact with or close to the second impurity layer; a first gate conductor layer that partially or entirely covers the first gate insulating layer; a second gate conductor layer covering the
  • the first impurity layer of the memory cell is connected to a source line
  • the second impurity layer is connected to a bit line
  • one of the first gate conductor layer and the second gate conductor layer is connected to a source line.
  • One side is connected to the word line
  • the other side is connected to the plate line
  • the source line, the word line, and the plate line are arranged parallel to the page
  • the bit line is arranged perpendicularly to the page
  • an erase voltage is applied to the page to be selectively erased
  • a ground voltage is applied to the non-selected pages (first invention).
  • a first gate capacitance between the first gate conductor layer and the channel semiconductor layer is a second gate capacitance between the second gate conductor layer and the channel semiconductor layer. It is characterized by being larger than the capacity (second invention).
  • the first invention described above is characterized in that the ground voltage is zero volts (third invention).
  • the erase voltage is a negative voltage lower than the ground voltage, and during a page erase operation, the erase voltage is applied to the source line of the page to be selectively erased, and the erase voltage is applied to the source line of the page to be selectively erased.
  • the PN junction between the channel layer and the first impurity layer is forward biased, and the hole group inside the channel semiconductor layer is discharged to the first impurity layer. ).
  • the erase voltage is a positive voltage equal to or higher than the ground voltage, and during a page erase operation, the erase voltage is applied to the source line of the page to be selectively erased, and the erase voltage is applied to the source line of the page to be selectively erased.
  • a group of electrons is injected from the impurity layer No. 2 into the channel semiconductor layer, the hole group inside the channel semiconductor layer and the electron group are recombined, and the hole group is extinguished. 5 inventions).
  • the source line is separated for each of the memory cells arranged in the column direction and is arranged parallel to the word line and the plate line when viewed in plan. (Sixth invention).
  • the source line is provided in common to the adjacent pages in plan view (seventh invention).
  • At least two or more of the plate lines of the adjacent pages are disposed in common in a plan view (eighth invention).
  • the channel semiconductor layer is P-type silicon
  • the first impurity layer and the second impurity layer are N-type silicon.
  • the word line, the plate line, and the source line are connected to a row decoder circuit, a row address is input to the row decoder circuit, and the page is selected according to the row address. (10th invention).
  • the bit line is connected to a sense amplifier circuit
  • the sense amplifier circuit is connected to a column decoder circuit
  • a column address is inputted to the column decoder circuit
  • the bit line is connected to a sense amplifier circuit
  • the sense amplifier circuit is connected to a column decoder circuit.
  • the present invention is characterized in that the sense amplifier circuit is selectively connected to the input/output circuit (eleventh invention).
  • FIG. 1 is a structural diagram of a memory device having an SGT according to a first embodiment
  • FIG. The gate capacitance of the first gate conductor layer 5a connected to the plate line PL of the memory device having the SGT according to the first embodiment is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 10 is a diagram illustrating the effect when both are made larger.
  • FIG. 3 is a diagram for explaining a page write operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page write operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a page erase operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a read operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a read operation mechanism of the memory device according to the first embodiment.
  • FIG. 3 is a diagram for explaining a write operation of a conventional DRAM memory cell without a capacitor.
  • FIG. 2 is a diagram for explaining operational problems of a conventional DRAM memory cell without a capacitor.
  • FIG. 2 is a diagram illustrating a read operation of a DRAM memory cell without a conventional capacitor.
  • a memory device using a semiconductor element (hereinafter referred to as a dynamic flash memory) according to an embodiment of the present invention will be described with reference to the drawings.
  • FIGS. 1 to 5 The structure and operating mechanism of the dynamic flash memory cell according to the first embodiment of the present invention will be explained using FIGS. 1 to 5.
  • the structure of a dynamic flash memory cell will be explained using FIG. 1.
  • FIG. 2 the gate capacitance of the first gate conductor layer 5a connected to the plate line PL becomes larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the data write operation mechanism will be explained using FIG. 3
  • the data erase operation mechanism will be explained using FIG. 4
  • the data read operation mechanism will be explained using FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the present invention.
  • a silicon semiconductor pillar 2 formed on a substrate and having a conductivity type of P type or i type (intrinsic type) (hereinafter, a silicon semiconductor pillar is referred to as a "Si pillar") (a “semiconductor matrix” in the claims)
  • N + layers 3a and 3b (the “first impurity layer” and “second impurity layer” in the claims) are located above and below the N + layers 3a and 3b, where one becomes the source and the other becomes the drain. ”) is formed.
  • a first gate insulating layer 4a (which is an example of a “first gate insulating layer” in the claims) and a second gate insulating layer 4b (an example of a “first gate insulating layer” in the claims) surround this channel region 7. 2) is formed.
  • the first gate insulating layer 4a and the second gate insulating layer 4b are in contact with or close to the N + layers 3a and 3b, which serve as the source and drain, respectively.
  • a first gate conductor layer 5a (which is an example of a "first gate conductor layer” in the claims) and a second gate conductor layer surround the first gate insulating layer 4a and the second gate insulating layer 4b.
  • a gate conductor layer 5b (which is an example of a "second gate conductor layer” in the claims) is formed respectively.
  • the first gate conductor layer 5a and the second gate conductor layer 5b are separated by an insulating layer 6 (which is an example of a "first insulating layer” in the claims).
  • the channel region 7 between the N + layers 3a and 3b includes a first channel Si layer 7a surrounded by the first gate insulating layer 4a and a second channel surrounded by the second gate insulating layer 4b.
  • the N + layer 3a serving as a source is connected to a source line SL (an example of a "source line” in the claims), and the N + layer 3b serving as a drain is connected to a bit line BL (an example of a "bit line” in the claims).
  • the first gate conductor layer 5a is connected to the plate line PL (which is an example of the "plate line” in the claims), and the second gate conductor layer 5b is connected to the word line WL (which is an example of the "plate line” in the claims).
  • the word line WL which is an example of the "plate line” in the claims.
  • the word line WL, plate line PL, and source line SL are arranged in parallel, and the bit line BL is arranged in a direction perpendicular to them.
  • the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected may be larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected. desirable.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate length of the first gate conductor layer 5a (the gate dimension in the central axis direction of the Si semiconductor column 2) is made longer than the gate length of the second gate conductor layer 5b.
  • the gate length of the first gate conductor layer 5a is not made longer than the gate length of the second gate conductor layer 5b, and the film thickness of each gate insulating layer is changed.
  • the film thickness of the gate insulating film of the gate insulating layer 4a may be made thinner than the film thickness of the gate insulating film of the second gate insulating layer 4b.
  • the dielectric constant of the gate insulating film of the first gate insulating layer 4a is made higher than that of the gate insulating film of the second gate insulating layer 4b. It's okay.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is determined by combining any of the lengths of the gate conductor layers 5a and 5b, the film thicknesses of the gate insulating layers 4a and 4b, and the dielectric constant. The gate capacitance may be larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected.
  • FIG. 2A to 2C show that the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is higher than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 2A to 2C is a diagram illustrating the effect of increasing the size.
  • FIG. 2(a) shows a structural diagram of a dynamic flash memory cell according to the first embodiment of the present invention, with only the main parts simplified.
  • a bit line BL, a word line WL, a plate line PL, and a source line SL are connected to the dynamic flash memory cell, and the potential state of the channel region 7 is determined by the voltage state of the bit line BL, word line WL, plate line PL, and source line SL.
  • FIG. 2(b) is a diagram for explaining the respective capacity relationships.
  • the capacitance C FB of the channel region 7 is the capacitance C WL between the gate conductor layer 5b connected to the word line WL and the channel region 7, and the capacitance C WL between the gate conductor layer 5a connected to the plate line PL and the channel region 7.
  • C PL >C WL ⁇ PL > ⁇ WL .
  • FIG. 2C is a diagram for explaining changes in the voltage V FB of the channel region 7 when the voltage V WL of the word line WL rises in a read operation and a write operation and then falls.
  • the potential difference ⁇ V when the voltage V FB of the channel region 7 changes from the low voltage state V FBL to the high voltage state V FBH FB is as follows.
  • FIG. 3A (a) to (c) and FIG. 3B show a page write operation (which is an example of a "page write operation” in the claims) of the dynamic flash memory cell according to the first embodiment of the present invention.
  • FIG. 3A(a) shows the mechanism of the write operation
  • FIG. 3A(b) shows the operation waveforms of the bit line BL, source line SL, plate line PL, word line WL, and the channel region 7 serving as the floating body FB.
  • the dynamic flash memory cell is in the "0" erased state, and the voltage of the channel region 7 is V FB "0".
  • Vss is applied to the bit line BL, source line SL, and word line WL
  • V PLL is applied to the plate line PL.
  • Vss is 0V and V PLL is 2V.
  • V PLL is 2V.
  • an annular inversion layer 12b is formed in the channel region 7 on the inner periphery of the second gate conductor layer 5b, and the connection between the word line WL and the channel region 7 is Blocks the capacitive coupling of 2.
  • V PLL 2V
  • the second gate conductor layer 5b to which the word line WL is connected is , increase V WLH to 4V.
  • an annular inversion layer 12a is formed in the channel region 7 on the inner periphery of the first gate conductor layer 5a to which the plate line PL is connected. , there is a pinch-off point 13.
  • the first N-channel MOS transistor region having the first gate conductor layer 5a operates in the saturated region.
  • the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL operates in a linear region.
  • the inversion layer 12b is formed over the entire inner periphery of the gate conductor layer 5b.
  • the inversion layer 12b formed entirely on the inner periphery of the second gate conductor layer 5b connected to the word line WL substantially covers the second N-channel MOS transistor region having the second gate conductor layer 5b. Works as a drain.
  • the electric field is at its maximum in the first boundary region, and an impact ionization phenomenon occurs in this region. Since this region is a region on the source side as seen from the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called a source-side impact ionization phenomenon. Due to this source-side impact ionization phenomenon, electrons flow from the N + layer 3a connected to the source line SL toward the N + layer 3b connected to the bit line.
  • the accelerated electrons collide with lattice Si atoms, and their kinetic energy generates electron-hole pairs. A part of the generated electrons flows to the first gate conductor layer 5a and the second gate conductor layer 5b, but most of them flow to the N + layer 3b connected to the bit line BL (not shown).
  • the generated hole group 9 (which is an example of the "hole group” in the claims) is the majority carrier in the channel region 7, and Charge to positive bias. Since the N + layer 3a to which the source line SL is connected has a voltage of 0 V, the channel region 7 has a built-in voltage Vb (about 0 V) of the PN junction between the N + layer 3a to which the source line SL is connected and the channel region 7. .7V). When channel region 7 is charged to a positive bias, the threshold voltages of the first N-channel MOS transistor region and the second N-channel MOS transistor region become lower due to the substrate bias effect.
  • the write operation of the dynamic flash memory cell will be explained using FIG. 3A(b).
  • the voltage of word line WL decreases from V WLH to Vss.
  • the word line WL and the channel region 7 have a second capacitive coupling, and when the voltage V WLH of the word line WL is Vb, the voltage of the channel region 7 is Vb.
  • the inversion layer 12b blocks this second capacitive coupling until the threshold voltage VtWL of VtWL becomes "1" or less. Therefore, substantial capacitive coupling between the word line WL and the channel region 7 occurs only when the word line WL becomes below Vt WL "1" and drops to Vss.
  • Vt WL "1" is lower than the Vt WL "0", and ⁇ WL ⁇ Vt WL "1" is smaller.
  • bit line BL drops from V BLH to Vss. Since the bit line BL and the channel region 7 are capacitively coupled, the final "1" write voltage V FB “1" of the channel region 7 is as follows.
  • V FB “1” Vb- ⁇ WL ⁇ Vt WL “1”- ⁇ BL ⁇ V BLH (7)
  • the coupling ratio ⁇ BL between the bit line BL and the channel region 7 is also small.
  • the threshold voltage of the second N-channel MOS transistor region of the second channel region 7b connected to the word line WL becomes low.
  • a memory write operation is performed to set the "1" write state of the channel region 7 as a first data holding voltage (which is an example of the "first data holding voltage” in the claims), and logical storage data "1" is performed. ”. Furthermore, in the "0" erased state of the channel region 7, the first N-channel MOS transistor region of the first channel region 7a connected to the plate line PL and the second channel region 7b connected to the word line WL Since the threshold voltage of the second N-channel MOS transistor region becomes high, if the applied voltage of the plate line PL is set below the threshold voltage, the cell current Icell will not flow even if the voltage of the word line WL is increased. do not have.
  • bit line BL bit line
  • source line SL word line
  • word line WL word line
  • plate line PL potential of the floating body
  • FIG. 4A shows a memory block circuit diagram for explaining the page erase operation.
  • a total of nine memory cells C00 to C22 in 3 rows and 3 columns are shown in a plan view, but the actual memory block is larger than this matrix.
  • the "row direction” or “column shape”
  • the direction perpendicular to this is called the “column direction” (or “column shape”).
  • Source lines SL0 to SL2, bit lines BL0 to BL2, plate lines PL0 to PL2, and word lines WL0 to WL2 are connected to each memory cell.
  • source lines SL0 to SL2, plate lines PL0 to PL2, and word lines WL0 to WL2 are arranged in parallel, and bit lines BL0 to BL2 are arranged perpendicularly to them.
  • memory cells C10 to C12 connected to the plate line PL1, word line WL1, and source line SL1 of an arbitrary page (which is an example of a "page" in the claims) P1 are selected, and the page is erased. Assume that you are performing an action.
  • FIG. 4B shows an operational waveform diagram of a page erase operation.
  • a page erase operation starts and, for example, page P1 is selectively erased.
  • the word line WL1 and the plate line PL1 rise from the ground voltage (which is an example of the "ground voltage” in the claims) Vss to the first voltage V1 and the second voltage V2, respectively.
  • the ground voltage Vss is, for example, 0V.
  • the first voltage V1 and the second voltage V2 are each 1V, for example.
  • the source line SL1 drops from the ground voltage Vss to the third voltage V3.
  • the third voltage V3 is a negative voltage (an example of a "negative voltage” in the claims), and is, for example, -1V.
  • the PN junction between the first impurity layer 3a, which is an N + layer, and the channel region 7, which is a P layer becomes forward biased, and the hole group 9 accumulated in the channel region 7 is transferred to the first impurity layer. Discharge to 3a.
  • the source line SL1 returns from the third voltage V3 to the ground voltage Vss at the third time T3, and the word line WL1 returns to the ground voltage Vss at the fourth time T4.
  • a page erase operation is performed in which the voltage V FB "0" in the "0" erased state of the channel region 7 is set as the second data retention voltage (which is an example of the "second data retention voltage” in the claims). and allocates it to logical storage data "0".
  • one of the word line WL1 and the plate line PL1 may rise from the ground voltage Vss to the first voltage V1 or the second voltage V2 before or after the first time T1. Further, the source line SL1 may drop from the ground voltage Vss to the third voltage V3 before the first time T1. Further, one of the word line WL1 and the plate line PL1 may return to the ground voltage Vss from the first voltage V1 or the second voltage V2 before or after the fourth time T4. Further, the source line SL1 may return from the third voltage V3 to the ground voltage Vss after the fourth time T4.
  • FIG. 4C(a) shows a state in which hole groups 9 generated by impact ionization are stored in the channel region 7 before the erase operation.
  • the PN junction between the source N + layer 3a and the channel region 7 becomes a forward bias state as shown in FIG. 4C(b), and the hole group 9 in the channel region 7 is It is discharged to the N + layer 3a.
  • the voltage V FB of the channel region 7 becomes the built-in voltage Vb of the PN junction formed by the source N + layer 3a and the P layer channel region 7.
  • bit line BL bit line
  • source line SL word line WL
  • plate line PL potential of the floating body
  • FIG. 4D shows an operation waveform diagram when the voltage of the source line SL is set to a positive voltage (an example of a "positive voltage” in the claims) during a page erase operation.
  • a positive voltage an example of a "positive voltage” in the claims
  • the word line WL1 and the plate line PL1 rise from the ground voltage Vss to the fourth voltage V4 and the fifth voltage V5, respectively.
  • the ground voltage Vss is, for example, 0V.
  • the fourth voltage V4 and the fifth voltage V5 are each 1V, for example.
  • the source line SL1 rises from the ground voltage Vss to the sixth voltage V6.
  • the sixth voltage V6 is, for example, 0.5V.
  • a current flows from the source line SL1 to the bit lines BL0 to BL2, and a group of electrons is injected from the second impurity layer 3b, which is an N + layer, to the channel region 7, which is a P layer.
  • This electron group recombines with the hole group 9 accumulated in the channel region 7, and the hole group 9 in the channel region 7 disappears.
  • the source line SL1 returns from the sixth voltage V6 to the ground voltage Vss at the third time T3, and the word line WL1 returns to the ground voltage Vss at the fourth time T4.
  • a page erase operation is performed using the voltage V FB "0" in the "0" erased state of the channel region 7 as the second data holding voltage, and it is assigned to logical storage data "0".
  • one of the word line WL1 and the plate line PL1 may rise from the ground voltage Vss to the fourth voltage V4 or the fifth voltage V5 before or after the first time T1. Further, the source line SL1 may rise from the ground voltage Vss to the sixth voltage V6 before the first time T1. Further, one of the word line WL1 and the plate line PL1 may return to the ground voltage Vss from the fourth voltage V4 or the fifth voltage V5 before or after the fourth time T4. Further, the source line SL1 may return from the sixth voltage V6 to the ground voltage Vss after the fourth time T4.
  • FIG. 4E shows a memory block circuit diagram when the source line SL is commonly provided in adjacent pages.
  • the two pages P0 and P1 have a common source line SL01, and the two pages P2 and P3 have a common source line SL23.
  • FIG. 4F shows a memory block circuit diagram when at least two or more plate lines PL of adjacent pages are commonly arranged.
  • the plate line PL of the three pages P0 to P2 is common.
  • Figure 4G shows a memory block diagram including the main circuits.
  • the word lines WL0 to WL2, the plate lines PL0 to PL2, and the source lines SL0 to SL2 are connected to a row decoder circuit RDEC (which is an example of a "row decoder circuit" in the claims), and the row decoder circuit has a row address.
  • RDEC which is an example of a "row decoder circuit” in the claims
  • RAD (which is an example of a "row address” in the claims) is input, and pages P0 to P2 are selected according to the row address RAD.
  • bit lines BL0 to BL2 are connected to a sense amplifier circuit SA (which is an example of a "sense amplifier circuit” in the claims), and the sense amplifier circuit SA is connected to a column decoder circuit CDEC (an example of a "sense amplifier circuit” in the claims).
  • a column address CAD (an example of a "column address” in the claims) is input to the column decoder circuit CDEC, and the sense amplifier circuit SA is connected to the column decoder circuit CDEC according to the column address CAD. is selectively connected to the input/output circuit IO (which is an example of the "input/output circuit" in the claims).
  • FIG. 5A and 5B are diagrams for explaining a read operation of the dynamic flash memory cell according to the first embodiment of the present invention.
  • a memory cell current flows, that is, logic "1" and "0" is determined by AND logic between word line WL and plate line PL.
  • the threshold voltages of word line WL and plate line PL are determined in level by the voltage of floating body FB.
  • the presence or absence of a memory cell current is determined by whether the voltages of the word line WL and plate line PL exceed their respective threshold voltages and are conductive or non-conductive. That is, as shown in FIG.
  • bit line BL bit line
  • source line SL word line WL
  • plate line PL potential of the floating body
  • the dynamic flash memory operation described in this embodiment can be performed.
  • circular, elliptical, and rectangular dynamic flash memory cells may be mixed on the same chip.
  • a first gate insulating layer 4a and a second gate insulating layer 4b are provided that surround the entire side surface of the Si pillar 2 standing vertically on the substrate.
  • the dynamic flash memory device has been described using as an example an SGT having a first gate conductor layer 5a and a second gate conductor layer 5b surrounding the entirety of the second gate insulating layer 4b.
  • the present dynamic flash memory element may have any structure as long as it satisfies the condition that the hole group 9 generated by the impact ionization phenomenon is retained in the channel region 7.
  • the channel region 7 may have a floating body structure separated from the substrate 1.
  • the semiconductor matrix of the channel region is The above-mentioned dynamic flash memory operation is possible even if the semiconductor matrix is formed horizontally to the substrate (so that the central axis of the semiconductor matrix is parallel to the substrate).
  • a structure in which a plurality of GAA or Nanosheets formed in the horizontal direction are stacked may be used.
  • SOI Silicon On Insulator
  • the bottom of the channel region is in contact with the insulating layer of the SOI substrate, and the other channel region is surrounded by a gate insulating layer and an element isolation insulating layer.
  • the channel region has a floating body structure.
  • the dynamic flash memory device provided by this embodiment only needs to satisfy the condition that the channel region has a floating body structure. Further, even in a structure in which a Fin transistor (see, for example, Non-Patent Document 13) is formed on an SOI substrate, this dynamic flash operation can be performed if the channel region has a floating body structure.
  • equations (1) to (11) in this specification and drawings are equations used to qualitatively explain the phenomenon, and the phenomenon is not limited by these equations.
  • the reset voltages of the word line WL, bit line BL, and source line SL are described as Vss, but each may be set to a different voltage.
  • FIGS. 4A to 4G and their explanations examples of page erase operation conditions are shown.
  • the voltage applied to the word line WL may be changed.
  • a voltage may be applied to the source line SL of the selected page, and the bit line BL may be placed in a floating state.
  • a voltage may be applied to the bit line BL of the selected page, and the source line SL may be placed in a floating state.
  • the potential distribution of the first channel region 7a and the second channel region 7b is are connected and formed.
  • the channel regions 7 of the first channel region 7a and the second channel region 7b are connected in the vertical direction in a region surrounded by the insulating layer 6, which is the first insulating layer.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is made longer than the vertical length of the second gate conductor layer 5b connected to the word line WL, It is desirable that C PL > C WL .
  • simply adding the plate line PL reduces the capacitive coupling ratio (C WL /(C PL +C WL +C BL +C SL )) of the word line WL to the channel region 7. As a result, the potential fluctuation ⁇ V FB in the channel region 7 of the floating body becomes smaller.
  • the first gate conductor layer 5a entirely surrounds the first gate insulating layer 4a.
  • the first gate conductor layer 5a may have a structure in which it partially surrounds the first gate insulating layer 4a in plan view.
  • This first gate conductor layer 5a may be divided into at least two gate conductor layers, each of which may be operated as a plate line PL electrode.
  • the second gate conductor layer 5b may be divided into two or more parts, each of which may be operated synchronously or asynchronously as a word line conductor electrode. This allows dynamic flash memory operation.
  • the first gate conductor layer 5a may be connected to the word line WL, and the second gate conductor layer 5b may be connected to the plate line PL. This also enables the dynamic flash memory operation described above.
  • the dynamic flash memory cell of this embodiment includes N + layers 3a and 3b serving as sources and drains, a channel region 7, a first gate insulating layer 4a, a second gate insulating layer 4b, a first gate conductor layer 5a,
  • the second gate conductor layer 5b is formed into a columnar shape as a whole. Further, the N + layer 3a serving as a source is connected to the source line SL, the N + layer 3b serving as a drain is connected to the bit line BL, the first gate conductor layer 5a is connected to the plate line PL, and the second gate conductor layer 5b is connected to the word line SL. They are each connected to the line WL.
  • the structure is characterized in that the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected is larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected. .
  • a first gate conductor layer and a second gate conductor layer are stacked vertically.
  • the structure is such that the gate capacitance of the first gate conductor layer 5a to which the plate line PL is connected is larger than the gate capacitance of the second gate conductor layer 5b to which the word line WL is connected.
  • the memory cell area does not increase in plan view. This allows dynamic flash memory cells to achieve higher performance and higher integration at the same time.
  • the source line SL, word line WL, and plate line PL are arranged parallel to the page P. Further, the bit line BL is arranged perpendicularly to the page P. As a result, it becomes possible to independently control the word line WL, plate line PL, and source line SL that control each page P.
  • the erase voltage can be applied only to the source line SL of the page P to be selectively erased, and the ground voltage Vss can be applied to the source line SL of the unselected page. As a result, disturbance caused by the selected page P to the non-selected pages P during the page erase operation can be completely prevented.
  • Si pillars are formed in the present invention, semiconductor pillars made of a semiconductor material other than Si may also be used. This also applies to other embodiments of the present invention.
  • a dynamic flash memory operation can also be performed in a structure in which the polarities of the conductivity types of the N + layers 3a, 3b and the P layer Si pillar 2 are reversed.
  • the majority carriers are electrons. Therefore, a group of electrons generated by impact ionization is stored in the channel region 7, and a "1" state is set.
  • a memory block may be formed by arranging the Si columns of memory cells two-dimensionally, in a square lattice shape, or in an orthorhombic lattice shape.
  • the Si pillars connected to one word line may be arranged in a zigzag shape or a sawtooth shape, with a plurality of Si pillars on one side. This also applies to other embodiments.
  • a dynamic flash memory which is a memory device using a high-density and high-performance SGT, can be obtained.
  • Dynamic flash memory cell 2 Si pillars 3a, 3b having conductivity type of P type or i type (intrinsic type): N + layer 7: Channel regions 4a, 4b: Gate insulating layers 5a, 5b: Gate conductor layer 6 : Insulating layer 9 for separating two gate conductor layers: Hole BL: Bit line SL: Source line PL: Plate line WL: Word line FB: Floating body C00 to C22: Memory cells SL0 to SL2, SL01, SL23: Source lines BL0 to BL2: Bit lines PL0 to PL2: Plate lines WL0 to WL2: Word lines RDEC: Row address circuit RAD: Row address SA: Sense amplifier circuit CDEC: Column decoder circuit CAD: Column address IO: Input/output circuit 110: DRAM memory cell without a capacitor 100: SOI substrate 101: SiO 2 film of SOI substrate 102: Floating body 103: Source N + layer 104: Drain N + layer 105: Gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

メモリ装置は、基板上に平面視において列状に配列された複数のメモリセルからなるページを備え、前記ページに含まれる各メモリセルの、第1のゲート導体層と、第2のゲート導体層と、第1の不純物領域と、第2の不純物領域に印加する電圧を制御して、チャネル半導体層の内部に、インパクトイオン化現象により生成した正孔群を保持する。ページ書込み動作時には、チャネル半導体層の電圧を、第1の不純物層及び第2の不純物層の一方もしくは両方の電圧より高い、第1のデータ保持電圧とする。ページ消去動作時には、第1の不純物層と、第2の不純物層と、第1のゲート導体層と、第2のゲート導体層に印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から正孔群を抜きとり、チャネル半導体層の電圧を、前記第1のデータ保持電圧よりも低い第2のデータ保持電圧とする。前記第1の不純物層はソース線と接続し、前記第2の不純物層はビット線と接続し、前記第1のゲート導体層はプレート線と接続し、前記第2のゲート導体層はワード線と接続する。前記ソース線と前記ワード線と前記プレート線は、前記ページに対して、平行に配設する。前記ビット線は、前記ページに対して垂直方向に配設する。前記ページ消去動作時には、選択消去する前記ページに消去電圧を印加し、非選択の前記ページに接地電圧を印加する。

Description

半導体素子を用いたメモリ装置
 本発明は、半導体素子を用いたメモリ装置に関する。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献7を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリに関する。
 図6(a)~(d)に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図7(a)と(b)に、動作上の問題点を、図8(a)~(c)に、読出し動作を示す(非特許文献7~10を参照)。図6(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板100に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110のフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、MOSトランジスタ110が1個でDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。このMOSトランジスタ110、1個で構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110を飽和領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点108があり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110を動作させると、ドレインN+層104近傍のピンチオフ点108において、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される(インパクトイオン化現象)。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図6(b)には、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図6(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110と“0”書込みのメモリセル110が存在する。図6(c)では、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110(図6(b))と、生成された正孔が吐き出されたメモリセル110(図6(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110のフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、“1”書込みのメモリセル110のしきい値電圧は、“0”書込みのメモリセル110のしきい値電圧よりも低くなる。その様子を図6(d)に示している。
 次に、この1個のMOSトランジスタ110で構成されたメモリセルの動作上の問題点を図7(a)と(b)を用いて、説明する。図7(a)に示したように、フローティングボディの容量CFBは、ワード線の接続されたゲートとフローティングボディとの間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層104とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (9)
で表される。また、ワード線の接続されたゲートとフローティングボディ間の容量結合比βWLは、
βWL=CWL/(CWL + CBL + CSL) (10)
で表される。したがって、読出し時または書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図7(b)に示している。読出し時、または、書込み時にワード線電圧VWLが0VからVWLHに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = βWL ×VWLH (11)
で表される。
ここで、式(11)のβWLにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、βWL=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線WLとフローティングボディ102との容量結合によって、フローティングボディ102が、5V×βWL=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ102の“1”電位と“0”電位との電位差マージンを十分に取れない問題点があった。
 図8(a)~(c)に読出し動作を示しており、図8(a)は、“1”書込み状態を、図8(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、図7(c)に示すように、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ないため、実際にキャパシタを有しない、DRAMメモリセルの製品化が困難な状況にあった。
 また、SOI(Silicon on Insulator)層に、2つのMOSトランジスタを用いて1つのメモリセルを形成したTwin-Transistorメモリ素子がある(例えば、特許文献4、5を参照)。これらの素子では、2つのMOSトランジスタのフローティングボディチャネルを分ける、ソース、またはドレインとなるN+層が絶縁層に接して形成されている。このN+層が絶縁層に接してあることにより、2つのMOSトランジスタのフローティングボディ チャネルは、電気的に分離される。信号電荷である正孔群は、一方のトランジスタのフローティングボディ チャネルに蓄積される。正孔が蓄積されているフローティングボディ チャネルの電圧は、前述のように、隣接したMOSトランジスタのゲート電極へのパルス電圧印加により、(11)式で示されたと同様に、大きく変化する。これにより、図6~図8を用いて説明したように、書込みの際の“1”と“0”との動作マージンを十分に大きく出来ない(例えば、非特許文献15、Fig.8を参照)。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報 US2008/0137394 A1 US2003/0111681 A1
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor (VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama: "Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat: "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: "A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration," Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: "Memory design using a one-transistor gain cell on SOI," IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama: "Floating Body RAM Technology and its Scalability to 32nm Node and Beyond," IEEE IEDM (2006). E. Yoshida: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE IEDM (2006). J. Y. Song, W. Y. Choi, J. H. Park, J. D. Lee, and B-G. Park: "Design Optimization of Gate-All-Around (GAA) MOSFETs," IEEE Trans. Electron Devices, vol. 5, no. 3, pp.186-191, May 2006. N. Loubet, et al.: "Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET," 2017 IEEE Symposium on VLSI Technology Digest of Technical Papers, T17-5, T230-T231, June 2017. H. Jiang, N. Xu, B. Chen, L. Zeng1, Y. He, G. Du, X. Liu and X. Zhang: "Experimental investigation of self-heating effect (SHE) in multiple-fin SOI FinFETs," Semicond. Sci. Technol. 29 (2014) 115021 (7pp). E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-69, Apr. 2006. F. Morishita, H. Noda, I. Hayashi, T. Gyohten, M. Oksmoto, T. Ipposhi, S. Maegawa, K. Dosaka, and K. Arimoto: " Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI,"IEICE Trans. Electron., Vol. E90-c., No.4 pp.765-771 (2007)
 キャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティングボディとの容量結合が大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接フローティングボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。
 上記の課題を解決するために、本発明に係る半導体素子を用いたメモリ装置は、
 基板上に平面視において、行方向に配列された複数のメモリセルによってページが構成され、複数のページが列方向に配列されたメモリ装置であって、
 前記各ページに含まれる各メモリセルは、
 基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延する半導体母体と、
 前記半導体母体の両端にある第1の不純物層と、第2の不純物層と、
 前記第1の不純物層と前記第2の不純物層の間の前記半導体母体の側面の一部または全てを囲こみ、前記第1の不純物層に接するか、または、近接した第1のゲート絶縁層と、
 前記半導体母体の側面を囲み、前記第1のゲート絶縁層に繋がり、且つ前記第2の不純物層に接するか、または、近接した第2のゲート絶縁層と、
 前記第1のゲート絶縁層の一部または全体を覆う第1のゲート導体層と、
 前記第2のゲート絶縁層を覆う第2のゲート導体層と、
 前記半導体母体が前記第1のゲート絶縁層と、前記第2のゲート絶縁層とで覆われたチャネル半導体層とを、有し、
 前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物領域と、前記第2の不純物領域と、に印加する電圧を制御して、前記チャネル半導体層の内部に、インパクトイオン化現象により形成した正孔群を保持し、
 ページ書込み動作時には、前記チャネル半導体層の電圧を、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方の電圧より高い、第1のデータ保持電圧とし、
 ページ消去動作時には、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層とに印加する電圧を制御して、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方から、前記正孔群を抜きとり、前記チャネル半導体層の電圧を、前記第1のデータ保持電圧よりも低い、第2のデータ保持電圧とし、
 前記メモリセルの前記第1の不純物層は、ソース線と接続し、前記第2の不純物層は、ビット線と接続し、前記第1のゲート導体層と前記第2のゲート導体層のうちの一方はワード線と接続し、他方はプレート線と接続し、
 平面視において、前記ソース線と前記ワード線と前記プレート線は、前記ページに対して、平行に配設し、
 前記ビット線は、前記ページに対して、垂直方向に配設し、
 前記ページ消去動作時には、選択消去する前記ページに消去電圧を印加し、非選択の前記ページに接地電圧を印加する、ことを特徴とする(第1発明)。
 上記の第1発明において、前記第1のゲート導体層と前記チャネル半導体層との間の第1のゲート容量が、前記第2のゲート導体層と前記チャネル半導体層との間の第2のゲート容量よりも大きいことを特徴とする(第2発明)。
 上記の第1発明において、前記接地電圧は零ボルトであることを特徴とする(第3発明)。
 上記の第1発明において、前記消去電圧は、前記接地電圧以下の負電圧であり、ページ消去動作時に、当該消去電圧を選択消去する前記ページの前記ソース線に印加し、前記メモリセルの前記半導体チャネル層と前記第1の不純物層との間のPN接合を順バイアスとし、前記チャネル半導体層の内部の前記正孔群を前記第1の不純物層へ排出することを特徴とする(第4発明)。
 上記の第1発明において、前記消去電圧は、前記接地電圧以上の正電圧であり、ページ消去動作時に、当該消去電圧を選択消去する前記ページの前記ソース線に印加し、前記メモリセルの前記第2の不純物層から前記チャネル半導体層へ電子群を注入し、前記チャネル半導体層の内部の前記正孔群と前記電子群を再結合させ、前記正孔群を消滅させることを特徴とする(第5発明)。
 上記の第1発明において、平面視において、前記ソース線は、前記列方向に配列された前記メモリセル毎に分離され、前記ワード線と前記プレート線に平行に配設する、ことを特徴とする(第6発明)。
 上記の第1発明において、平面視において、前記ソース線は、隣接する前記ページに共通に配設することを特徴とする(第7発明)。
 上記の第1発明において、平面視において、隣接する前記ページの前記プレート線は、少なくとも2本以上を共通に配設することを特徴とする(第8発明)。
 上記の第1発明において、前記チャネル半導体層はP型シリコンであり、前記第1の不純物層と前記第2の不純物層はN型シリコンである、
 ことを特徴とする(第9発明)。
 上記の第1発明において、前記ワード線と前記プレート線と前記ソース線は、ロウデコーダ回路に接続し、前記ロウデコーダ回路にはロウアドレスを入力し、前記ロウアドレスに従って、前記ページを選択することを特徴とする(第10発明)。
 上記の第1発明において、前記ビット線は、センスアンプ回路に接続し、前記センスアンプ回路は、カラムデコーダ回路に接続し、前記カラムデコーダ回路にはカラムアドレスを入力し、前記カラムアドレスに従って、前記センスアンプ回路が入出力回路に選択的に接続することを特徴とする(第11発明)。
第1実施形態に係るSGTを有するメモリ装置の構造図である。 第1実施形態に係るSGTを有するメモリ装置のプレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する図である。 第1実施形態に係るメモリ装置のページ書込み動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ書込み動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置のページ消去動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るメモリ装置の読出し動作メカニズムを説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの書込み動作を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明の実施形態に係る、半導体素子を用いたメモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)について、図面を参照しながら説明する。
 (第1実施形態)
 図1~図5を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いて、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する。そして、図3を用いてデータ書込み動作メカニズムを、図4を用いてデータ消去動作メカニズムを、図5を用いてデータ読出し動作メカニズムを説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板上に形成した、P型又はi型(真性型)の導電型を有するシリコン半導体柱2(以下、シリコン半導体柱を「Si柱」と称する。)(特許請求の範囲の「半導体母体」の一例である)内の上下の位置に、一方がソースとなる場合に、他方がドレインとなるN+層3a、3b(特許請求の範囲の「第1の不純物層」、「第2の不純物層」の一例である)が形成されている。このソース、ドレインとなるN+層3a、3b間のSi柱2の部分がチャネル領域7(特許請求の範囲の「チャネル半導体層」の一例である)となる。このチャネル領域7を囲むように第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)、第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)が形成されている。この第1のゲート絶縁層4a、第2のゲート絶縁層4bは、このソース、ドレインとなるN+層3a、3bに、それぞれ接するか、または近接している。この第1のゲート絶縁層4a、第2のゲート絶縁層4bを囲むように第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)、第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がそれぞれ形成されている。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6(特許請求の範囲の「第1の絶縁層」の一例である)により分離されている。そして、N+層3a、3b間のチャネル領域7は、第1のゲート絶縁層4aで囲まれた第1のチャネルSi層7aと、第2のゲート絶縁層4bで囲まれた第2のチャネルSi層7bと、よりなる。これによりソース、ドレインとなるN+層3a、3b、チャネル領域7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセル10が形成される。そして、ソースとなるN+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、ドレインとなるN+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「プレート線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。図1に示すようにワード線WLと、プレート線PLと、ソース線SLは平行に配設しており、ビット線BLは、それらに対して垂直方向に配設している。プレート線PLが接続された、第1のゲート導体層5aのゲート容量は、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を有することが望ましい。
 なお、図1では、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも大きくなるように、第1のゲート導体層5aのゲート長(Si半導体柱2の中心軸方向のゲートの寸法)を、第2のゲート導体層5bのゲート長よりも長くしている。しかし、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くせずに、それぞれのゲート絶縁層の膜厚を変えて、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚よりも薄くしてもよい。また、それぞれのゲート絶縁層の材料の誘電率を変えて、第1のゲート絶縁層4aのゲート絶縁膜の誘電率を、第2のゲート絶縁層4bのゲート絶縁膜の誘電率よりも高くしてもよい。また、ゲート導体層5a、5bの長さ、ゲート絶縁層4a、4bの膜厚、誘電率のいずれかを組み合わせて、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくしてもよい。
 図2(a)~(c)は、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるようにした場合の効果を説明する図である。
 図2(a)は、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造図を主要部分のみを簡略化して示している。ダイナミック フラッシュ メモリセルには、ビット線BL、ワード線WL、プレート線PL、ソース線SLが接続されており、その電圧状態によって、チャネル領域7の電位状態が決まる。
 図2(b)は、それぞれの容量関係を説明するための図である。チャネル領域7の容量CFBは、ワード線WLの接続されたゲート導体層5bとチャネル領域7の間の容量CWLと、プレート線PLの接続されたゲート導体層5aとチャネル領域7の間の容量CPLと、ソース線SLの接続されたソースN+層3aとチャネル領域7の間のPN接合の接合容量CSLと、ビット線BLの接続されたドレインN+層3bとチャネル領域7の間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CPL + CBL + CSL (1)
で表される。
したがって、ワード線WLとチャネル領域7の間のカップリング率βWL、プレート線PLとチャネル領域7の間のカップリング率βPL、ビット線BLとチャネル領域7の間のカップリング率βBL、ソース線SLとチャネル領域7の間のカップリング率βSLは、それぞれ以下のように表される。
βWL= CWL / (CWL + CPL+ CBL + CSL) (2)
βPL= CPL / (CWL + CPL+ CBL + CSL) (3)
βBL= CBL / (CWL + CPL+ CBL + CSL) (4)
βSL= CSL / (CWL + CPL+ CBL + CSL) (5)
ここで、CPL >CWL であるため、βPL>βWLとなる。
 図2(c)は、ワード線WLの電圧VWLが、読出し動作と書込み動作で、上昇し、その後に下降する時のチャネル領域7の電圧VFBの変化を説明するための図である。ここで、ワード線WLの電圧VWLが、0Vから高電圧状態VWLHに上がった時に、チャネル領域7の電圧VFBが、低電圧状態VFBLから高電圧状態VFBHになるときの電位差ΔVFBは、以下となる。
ΔVFB=VFBH-VFBL
    =βWL×VWLH (6)
ワード線WLとチャネル領域7の間のカップリング率βWLが小さく、プレート線PLとチャネル領域7の間のカップリング率βPLが大きいため、ΔVFBは、小さく、ワード線WLの電圧VWLが、読出し動作と書込み動作で、上下しても、チャネル領域7の電圧VFBは、殆ど変化しない。
 図3A(a)~(c)と図3Bに、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのページ書込み動作(特許請求の範囲の「ページ書込み動作」の一例である)を示す。図3A(a)に書込み動作のメカニズム、図3A(b)にビット線BL、ソース線SL、プレート線PL、ワード線WLと、フローティングボディFBとなっているチャネル領域7の動作波形を示す。時刻T0で、ダイナミック フラッシュ メモリセルは、“0”消去状態にあり、チャネル領域7の電圧は、VFB“0”となっている。また、ビット線BL、ソース線SL、ワード線WLには、Vssが、プレート線PLには、VPLLが印加されている。ここで、例えば、Vssは0Vで、VPLLは、2Vである。次に時刻T1~T2で、ビット線BLがVssからVBLHへと上がると、例えば、Vssが0Vの場合、チャネル領域7の電圧は、ビット線BLとチャネル領域7との容量結合により、VFB“0”+βBL×VBLHとなる。
 引き続き、図3A(a)と(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T3~T4で、ワード線WLがVssからVWLHへと上がる。これにより、ワード線WLの接続された第2のゲート導体層5bがチャネル領域7を取り囲む第2のNチャネルMOSトランジスタ領域の“0”消去のしきい値電圧をVtWL“0”とすると、ワード線WLの電圧上昇に伴い、VssからVtWL“0”までは、ワード線WLとチャネル領域7との第2の容量結合により、チャネル領域7の電圧は、VFB“0”+βBL×VBLH+βWL×VtWL“0”となる。ワード線WLの電圧がVtWL“0”以上に上昇すると、第2のゲート導体層5bの内周のチャネル領域7に環状の反転層12bが形成され、ワード線WLとチャネル領域7との第2の容量結合を遮る。
 引き続き、図3A(a)と(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T3~T4で、プレート線PLの接続された第1のゲート導体層5aに、例えば、VPLL=2Vを固定入力し、ワード線WLの接続された第2のゲート導体層5bを、例えば、VWLH=4Vまで上げる。その結果、図3A(a)で示したように、プレート線PLの接続された第1のゲート導体層5aの内周のチャネル領域7に環状の反転層12aが形成され、その反転層12aには、ピンチオフ点13が存在する。この結果、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタ領域は飽和領域で動作する。一方、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域は線形領域で動作する。この結果、ワード線WLの接続された第2のゲート導体層5bの内周のチャネル領域7にピンチオフ点は存在せずにゲート導体層5bの内周全面に反転層12bが形成される。このワード線WLの接続された第2のゲート導体層5bの内周に全面に形成された反転層12bは、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域の実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタ領域と、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域との間のチャネル領域7の第1の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域から見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線の接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる(図示せず)。
 そして、図3A(c)に示すように、生成された正孔群9(特許請求の範囲の「正孔群」の一例である)は、チャネル領域7の多数キャリアであり、チャネル領域7を正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域7はソース線SLの接続されたN+層3aとチャネル領域7との間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域7が正バイアスに充電されると、第1のNチャネルMOSトランジスタ領域と第2のNチャネルMOSトランジスタ領域のしきい値電圧は、基板バイアス効果によって、低くなる。
 引き続き、図3A(b)を用いて、ダイナミック フラッシュ メモリセルの書込み動作を説明する。時刻T6~T7で、ワード線WLの電圧がVWLHからVssに低下する。その際にワード線WLとチャネル領域7とは、第2の容量結合をするが、ワード線WLの電圧VWLHが、チャネル領域7の電圧がVbの時の、第2のNチャネルMOSトランジスタ領域のしきい値電圧VtWL“1”以下になるまでは、反転層12bが、この第2の容量結合を遮る。したがって、ワード線WLとチャネル領域7との、実質的な容量結合は、ワード線WLがVtWL“1”以下になり、Vssまで下降する時のみである。この結果、チャネル領域7の電圧は、Vb-βWL×VtWL“1”となる。ここで、VtWL“1”は、前記VtWL“0”よりも低く、βWL×VtWL“1”は小さい。
 引き続き、図3A(b)を用いて、ダイナミック フラッシュ メモリセルのページ書込み動作を説明する。時刻T8~T9で、ビット線BLが、VBLHからVssへと低下する。ビット線BLとチャネル領域7とは、容量結合しているため、最終的にチャネル領域7の“1”書込み電圧VFB“1”は、以下のようになる。
FB“1”=Vb-βWL×VtWL“1”-βBL×VBLH     (7)
ここで、ビット線BLとチャネル領域7とのカップリング比βBLも小さい。これにより、図3Bに示すように、ワード線WLの接続された第2のチャネル領域7bの第2のNチャネルMOSトランジスタ領域のしきい値電圧は、低くなる。このチャネル領域7の“1”書込み状態を第1のデータ保持電圧(特許請求の範囲の「第1のデータ保持電圧」の一例である)とする、メモリ書込み動作を行い、論理記憶データ“1”に割り当てる。また、チャネル領域7の“0”消去状態では、プレート線PLの接続された第1のチャネル領域7aの第1のNチャネルMOSトランジスタ領域と、ワード線WLの接続された第2のチャネル領域7bの第2のNチャネルMOSトランジスタ領域のしきい値電圧は高くなるため、プレート線PLの印加電圧をしきい値電圧以下に設定すると、ワード線WLの電圧を高くしてもセル電流Icellは流れない。
 なお、書込み動作時に、第1の境界領域に替えて、第1の不純物層3aと第1のチャネル半導体層7aとのあいだの第2の境界領域、または、第2の不純物層3bと第2のチャネル半導体層7bとのあいだの第3の境界領域において、インパクトイオン化現象で、電子・正孔対を発生させ、発生した正孔群9でチャネル領域7を充電しても良い。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、書込み動作を行うための一例であり、書込み動作ができる他の動作条件であってもよい。
 図4A~図4Gを用いて、ページ消去動作(特許請求の範囲の「ページ消去動作」の一例である)メカニズムを説明する。
 図4Aに、ページ消去動作を説明するためのメモリブロック回路図を示す。ここでは、平面視において、3行×3列の計9個のメモリセルC00~C22を示しているが、実際のメモリブロックは、この行列よりも大きい。メモリセルが行列状に配列されているときに、その配列の一方の方向を「行方向」(もしくは「行状」)、これに垂直な方向を「列方向」(もしくは「列状」)という。各メモリセルには、ソース線SL0~SL2、ビット線BL0~BL2、プレート線PL0~PL2、ワード線WL0~WL2が接続されている。また、ソース線SL0~SL2、プレート線PL0~PL2、ワード線WL0~WL2は、平行に配設され、それらに垂直方向にビット線BL0~BL2が配設されている。例えば、このブロックにおいて、任意のページ(特許請求の範囲の「ページ」の一例である)P1のプレート線PL1とワード線WL1とソース線SL1が接続するメモリセルC10~C12が選択され、ページ消去動作を行うことを想定する。
 図4Bは、ページ消去動作の動作波形図を示している。ページ消去動作が始まり、例えば、ページP1の選択消去が行わる場合を説明する。第1の時刻T1で、ワード線WL1とプレート線PL1が接地電圧(特許請求の範囲の「接地電圧」の一例である)Vssから、それぞれ第1の電圧V1と第2の電圧V2へ上昇する。ここで接地電圧Vssは例えば、0Vである。また、第1の電圧V1と第2の電圧V2は、例えば、それぞれ1Vである。次に第2の時刻T2で、ソース線SL1が接地電圧Vssから第3の電圧V3へと低下する。ここで、第3の電圧V3は、負電圧(特許請求の範囲の「負電圧」の一例である)であり、例えば、―1Vである。この結果、N+層である第1の不純物層3aとP層であるチャネル領域7との間のPN接合が順バイアスとなり、チャネル領域7に蓄積された正孔群9が第1の不純物層3aへ排出する。チャネル領域7に蓄積された正孔群9の排出が飽和すると、第3の時刻T3で、ソース線SL1が第3の電圧V3から接地電圧Vssへ戻り、第4の時刻T4で、ワード線WL1とプレート線PL1が、それぞれ第1の電圧V1と第2の電圧V2から接地電圧Vssに戻り、ページ消去動作が終了する。このチャネル領域7の“0”消去状態の電圧VFB“0”を第2のデータ保持電圧(特許請求の範囲の「第2のデータ保持電圧」の一例である)とする、ページ消去動作を行い、論理記憶データ“0”に割り当てる。
 なお、ワード線WL1とプレート線PL1とのうち、一方は第1の時刻T1の前後で接地電圧Vssから第1の電圧V1、もしくは第2の電圧V2へ上昇しても良い。また、ソース線SL1は、第1の時刻T1よりも前に接地電圧Vssから第3の電圧V3へ下降しても良い。また、ワード線WL1とプレート線PL1とのうち、一方は第4の時刻T4の前後で第1の電圧V1、もしくは第2の電圧V2から接地電圧Vssへ戻っても良い。また、ソース線SL1は、第4の時刻T4よりも後に第3の電圧V3から接地電圧Vssへ戻っても良い。
 なお、第2の時刻T2で、ソース線SL1が接地電圧Vssから第3の電圧V3へと低下すると、ビット線BL0~BL2からソース線SL1へ電流が流れる。この結果、N+層である第2の不純物層3bの周辺のP層であるチャネル領域7において、インパクトイオン化現象が起き、電子・正孔対が発生する。この時、チャネル領域7において、生成される正孔群9と、第1の不純物層3aへ排出する正孔群9とが釣り合い、飽和状態になり、ページ消去動作が終了する。
 図4Cを用いて、消去動作中の半導体母体の状態を説明する。図4C(a)に消去動作前に、インパクトイオン化により生成された正孔群9がチャネル領域7に蓄えられている状態を示す。ページ消去動作が始まると、ソースN+層3aとチャネル領域7との間のPN接合は、図4C(b)に示すように、順バイアス状態となり、チャネル領域7の正孔群9は、ソースN+層3aに排出する。その結果、チャネル領域7の電圧VFBは、ソースN+層3aとP層のチャネル領域7とが形成するPN接合のビルトイン電圧Vbとなる。
 引き続き、選択消去するワード線WLとプレート線PLとが第1の電圧V1と第2の電圧V2から接地電圧Vssへ戻ると、チャネル領域7の電圧VFBは、ワード線WLとプレート線PLと、チャネル領域7との容量結合によって、VbからVFB“0”となる。この状態を図4C(c)に示す。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、ページ消去動作を行うための一例であり、ページ消去動作ができる他の動作条件であってもよい。
 図4Dは、ページ消去動作中にソース線SLの電圧を正電圧(特許請求の範囲の「正電圧」の一例である)にする場合の動作波形図を示している。ページ消去動作が始まり、例えば、ページP1の選択消去が行われる場合を説明する。第1の時刻T1で、ワード線WL1とプレート線PL1が接地電圧Vssから、それぞれ第4の電圧V4と第5の電圧V5へ上昇する。ここで接地電圧Vssは例えば、0Vである。また、第4の電圧V4と第5の電圧V5は、例えば、それぞれ1Vである。次に第2の時刻T2で、ソース線SL1が接地電圧Vssから第6の電圧V6へと上昇する。ここで、第6の電圧V6は、例えば、0.5Vである。この結果、ソース線SL1からビット線BL0~BL2へ電流が流れ、N+層である第2の不純物層3bからP層であるチャネル領域7へ電子群が注入される。この電子群がチャネル領域7に蓄積された正孔群9と再結合し、チャネル領域7の正孔群9が消滅する。チャネル領域7に蓄積された正孔群9の消滅が飽和すると、第3の時刻T3で、ソース線SL1が第6の電圧V6から接地電圧Vssへ戻り、第4の時刻T4で、ワード線WL1とプレート線PL1が、それぞれ第4の電圧V4と第5の電圧V5から接地電圧Vssに戻り、ページ消去動作が終了する。このチャネル領域7の“0”消去状態の電圧VFB“0”を第2のデータ保持電圧とする、ページ消去動作を行い、論理記憶データ“0”に割り当てる。
 なお、ワード線WL1とプレート線PL1とのうち、一方は第1の時刻T1の前後で接地電圧Vssから第4の電圧V4、もしくは第5の電圧V5へ上昇しても良い。また、ソース線SL1は、第1の時刻T1よりも前に接地電圧Vssから第6の電圧V6へ上昇しても良い。また、ワード線WL1とプレート線PL1のうち、一方は第4の時刻T4の前後で第4の電圧V4、もしくは第5の電圧V5から接地電圧Vssへ戻っても良い。また、ソース線SL1は、第4の時刻T4よりも後に第6の電圧V6から接地電圧Vssへ戻っても良い。
 なお、第2の時刻T2で、ソース線SL1が接地電圧Vssから第6の電圧V6へと上昇すると、ソース線SL1からビット線BL0~BL2へ電流が流れる。この結果、N+層である第1の不純物層3aの周辺のP層であるチャネル領域7において、インパクトイオン化現象が起き、電子・正孔対が発生する。この時、チャネル領域7において、生成される正孔群9と、チャネル領域7で消滅する正孔群9とが釣り合い、飽和状態になり、ページ消去動作が終了する。
 図4Eは、ソース線SLを隣接するページに共通に配設する場合のメモリブロック回路図を示す。2つのページP0とP1のソース線SL01は、共通になっており、2つのページP2とP3のソース線SL23は、共通になっている。
 図4Fは、隣接するページのプレート線PLは、少なくとも2本以上を共通に配設する場合のメモリブロック回路図を示す。3つのページP0~P2のプレート線PLは、共通になっている。
 図4Gは、主要回路を含めたメモリブロック図を示す。ワード線WL0~WL2とプレート線PL0~PL2とソース線SL0~SL2は、ロウデコーダ回路RDEC(特許請求の範囲の「ロウデコーダ回路」の一例である)に接続し、ロウデコーダ回路にはロウアドレスRAD(特許請求の範囲の「ロウアドレス」の一例である)を入力し、ロウアドレスRADに従って、ページP0~P2を選択する。また、ビット線BL0~BL2は、センスアンプ回路SA(特許請求の範囲の「センスアンプ回路」の一例である)に接続し、センスアンプ回路SAは、カラムデコーダ回路CDEC(特許請求の範囲の「カラムデコーダ回路」の一例である)に接続し、カラムデコーダ回路CDECにはカラムアドレスCAD(特許請求の範囲の「カラムアドレス」の一例である)を入力し、カラムアドレスCADに従って、センスアンプ回路SAが入出力回路IO(特許請求の範囲の「入出力回路」の一例である)に選択的に接続する。
 図5Aと図5Bは、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作を説明するための図である。図5Aを用いて、メモリセル電流が流れるか否かは、すなわち論理「1」と「0」は、ワード線WLとプレート線PLとのアンドロジックで決定されることを説明する。図5A(a)に示すようにワード線WLとプレート線PLとのしきい値電圧は、フローティングボディFBの電圧によって、その高低が決まる。そして、メモリセル電流の有無は、ワード線WLとプレート線PLの電圧がそれぞれのしきい値電圧以上になり、導通か非導通かにより、決定される。すなわち、図5A(b)に示すようにメモリセル電流Icellは、ワード線WLの導通「1」か非導通「0」かと、プレート線PLの導通「1」か非導通「0」かとの、アンドロジックで(8)式で表される。
    Icell = WL・PL  (8)
 図5B(a)に示すように、チャネル領域7がビルトイン電圧Vb(約0.7V)まで充電されると、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域のしきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図5B(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”になっており、チャネル領域7の電圧VFBはVFB“0”となっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と論理“1”の論理記憶データが作成される。図5B(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、読出し動作を行うための一例であり、読出し動作ができる他の動作条件であってもよい。
 図1において、Si柱2の水平断面形状は、円形状、楕円状、長方形状であっても、本実施形態で説明したダイナミック フラッシュ メモリ動作ができる。また、同一チップ上に、円形状、楕円状、長方形状のダイナミック フラッシュ メモリセルを混在させてもよい。
 また、図1では、基板上に垂直方向に立ったSi柱2の側面全体を囲んだ第1のゲート絶縁層4a、第2のゲート絶縁層4bを設け、第1のゲート絶縁層4a、第2のゲート絶縁層4bの全体を囲んで第1のゲート導体層5a、第2のゲート導体層5bを有するSGTを例にダイナミック フラッシュ メモリ素子を説明した。本実施形態の説明で示したように、本ダイナミック フラッシュ メモリ素子は、インパクトイオン化現象により発生した正孔群9がチャネル領域7に保持される条件を満たす構造であればよい。このためには、チャネル領域7は基板1と分離されたフローティング ボディ構造であればよい。これより、例えばSGTの1つであるGAA(Gate All Around :例えば非特許文献10を参照)技術、Nanosheet技術(例えば、非特許文献11を参照)を用いて、チャネル領域の半導体母体を基板1に対して水平に(半導体母体の中心軸が基板と平行になるように)形成されていても、前述のダイナミック フラッシュ メモリ動作ができる。また、水平方向に形成されたGAAやNanosheetを複数本積層させた構造であってもよい。また、SOI(Silicon On Insulator)を用いたデバイス構造(例えば、非特許文献7~10を参照)であってもよい。このデバイス構造ではチャネル領域の底部がSOI基板の絶縁層に接しており、且つ他のチャネル領域を囲んでゲート絶縁層、及び素子分離絶縁層で囲まれている。この構造においても、チャネル領域はフローティング ボディ構造となる。このように、本実施形態が提供するダイナミック フラッシュ メモリ素子では、チャネル領域がフローティング ボディ構造である条件を満足すればよい。また、Finトランジスタ(例えば非特許文献13を参照)をSOI基板上に形成した構造であっても、チャネル領域がフローティング ボディ構造であれば、本ダイナミック・フラッシュ動作が出来る。
 また、本明細書及び図面の式(1)~(11)は、現象を定性的に説明するために用いた式であり、現象がそれらの式によって限定されるものではない。
 なお、図3Aと図3Bの説明において、ワード線WL、ビット線BL、ソース線SLのリセット電圧をVssと記載しているが、それぞれを異なる電圧にしても良い。
 また、図4A~図4G及びその説明において、ページ消去動作条件の一例を示した。これに対して、チャネル領域7にある正孔群9を、N+層3a、N+層3bのいずれか、または両方から除去する状態が実現できれば、ソース線SL、プレート線PL、ビット線BL、ワード線WLに印加する電圧を変えてもよい。また、ページ消去動作において、選択されたページのソース線SLに電圧を印加し、ビット線BLはフローティング状態にしても良い。また、ページ消去動作において、選択されたページのビット線BLに電圧を印加し、ソース線SLはフローティング状態にしても良い。
 また、図1において、基板に垂直な方向において、第1の絶縁層である絶縁層6で囲まれた部分のチャネル領域7では、第1のチャネル領域7a、第2のチャネル領域7bの電位分布が繋がって形成されている。これにより、第1のチャネル領域7a、第2のチャネル領域7bのチャネル領域7が、垂直方向において、第1の絶縁層である絶縁層6で囲まれた領域で繋がっている。
 なお、図1において、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより更に長くし、CPL>CWLとすることが、望ましい。しかし、プレート線PLを付加することだけで、ワード線WLのチャネル領域7に対する、容量結合のカップリング比(CWL/(CPL+CWL+CBL+CSL))が小さくなる。その結果、フローティングボディのチャネル領域7の電位変動ΔVFBは、小さくなる。
 なお、本明細書及び特許請求の範囲において「ゲート絶縁層やゲート導体層等がチャネル等を覆う」と言った場合の「覆う」の意味として、SGTやGAAのように全体を囲む場合、Finトランジスタのように一部を残して囲む場合、さらにプレナー型トランジスタのように平面的なものの上に重なるような場合も含む。
 図1においては、第1のゲート導体層5aは、第1のゲート絶縁層4aの全体を囲んでいる。これに対して、第1のゲート導体層5aは、平面視において、第1のゲート絶縁層4aの一部を囲んでいる構造としてもよい。この第1のゲート導体層5aを少なくとも2つのゲート導体層に分割して、それぞれをプレート線PL電極として、動作させても良い。同様に、第2のゲート導体層5bを2つ以上に分割して、それぞれをワード線の導体電極として、同期または非同期で動作させてもよい。これにより、ダイナミック フラッシュ メモリ動作を行うことができる。
また、図1において、第1のゲート導体層5aはワード線WLに接続し、第2のゲート導体層5bはプレート線PLに接続してもよい。これによっても、上述の本ダイナミック フラッシュ メモリ動作が出来る。
 本実施形態は、下記の特徴を供する。
(特徴1)
 本実施形態のダイナミック フラッシュ メモリセルでは、ソース、ドレインとなるN+層3a、3b、チャネル領域7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bが、全体として柱状に形成される。また、ソースとなるN+層3aはソース線SLに、ドレインとなるN+層3bはビット線BLに、第1のゲート導体層5aはプレート線PLに、第2のゲート導体層5bはワード線WLに、それぞれ接続している。プレート線PLが接続された、第1のゲート導体層5aのゲート容量は、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を特徴としている。本ダイナミック フラッシュ メモリセルでは、垂直方向に第1のゲート導体層と、第2のゲート導体層が、積層されている。このため、プレート線PLが接続された、第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造にしても、平面視において、メモリセル面積は大きくならない。これによりダイナミック フラッシュ メモリセルの高性能化と高集積化が同時に実現できる。
(特徴2)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルにおいて、ソース線SLとワード線WLとプレート線PLは、ページPに対して、平行に配設されている。また、ビット線BLは、ページPに対して、垂直方向に配設されている。この結果、ページPごとにページを制御するワード線WLと、プレート線PLと、ソース線SLを独立に制御することが可能となる。ページ消去動作時には、選択消去するページPのソース線SLにのみ消去電圧を印加し、非選択のページのソース線SLに接地電圧Vssを印加出来る。これにより、選択ページPがページ消去動作中に非選択ページPに与えるディスターバンス(Disturbance)を完全に防止できる。したがって、特定ページPを複数回選択して、そのページPのメモリセルの記憶データを繰り返し書き換えても、その他のページPのメモリセルにディスターバンスの影響が一切なく、ディスターバンスサイクル(Disturbance Cycle)耐性の著しく強い、信頼性の高いメモリ装置を提供できる。
(特徴3)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのプレート線PLの接続する第1のゲート導体層5aの役割に注目すると、ダイナミック フラッシュ メモリセルが書込み、読出し動作をする際に、ワード線WLの電圧が上下に振幅する。この際に、プレート線PLは、ワード線WLとチャネル領域7との間の容量結合比を低減させる役目を担う。この結果、ワード線WLの電圧が上下に振幅する際の、チャネル領域7の電圧変化の影響を著しく抑えることができる。これにより、論理“0”と論理“1”を示すワード線WLのSGTトランジスタのしきい値電圧差を大きくすることが出来る。これは、ダイナミック フラッシュ メモリセルの動作マージンの拡大に繋がる。
(その他の実施形態)
なお、本発明では、Si柱を形成したが、Si以外の半導体材料よりなる半導体柱であってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、“1”書込みにおいて、非特許文献10と非特許文献14に記載されているゲート誘起ドレインリーク(GIDL:Gate Induced Drain Leakage)電流を用いた、インパクトイオン化現象により、電子・正孔対を発生させ、生成された正孔群でフローティングボディFB内を満たしてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図1において、N+層3a、3b、P層Si柱2のそれぞれの導電型の極性を逆にした構造においても、ダイナミック フラッシュ メモリ動作がなされる。この場合、N型であるSi柱2では、多数キャリアは電子になる。従って、インパクトイオン化により生成された電子群がチャネル領域7に蓄えられて、“1”状態が設定される。
 また、メモリセルのSi柱を2次元状に、正方格子状、または斜方格子状に配列させてメモリブロックを形成しても良い。Si柱を斜方格子状に配置した場合、1つのワード線に繋がるSi柱は複数個を1辺としてジグザグ状、またはのこぎり状に配置されてもよい。このことは、他の実施形態においても同様である。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体素子を用いたメモリ装置によれば、高密度で、かつ高性能のSGTを用いたメモリ装置であるダイナミック フラッシュ メモリが得られる。
10: ダイナミック フラッシュ メモリセル
2: P型又はi型(真性型)の導電型を有するSi柱
3a、3b: N+
7: チャネル領域
4a、4b: ゲート絶縁層
5a、5b: ゲート導体層
6: 2層のゲート導体層を分離するための絶縁層
9: 正孔
BL: ビット線
SL: ソース線
PL: プレート線
WL: ワード線
FB: フローティングボディ

C00~C22: メモリセル
SL0~SL2、SL01、SL23: ソース線
BL0~BL2: ビット線
PL0~PL2: プレート線
WL0~WL2: ワード線
RDEC:ロウアドレス回路
RAD:ロウアドレス
SA: センスアンプ回路
CDEC:カラムデコーダ回路
CAD:カラムアドレス
IO:入出力回路

110: キャパシタを有しない、DRAMメモリセル
100: SOI基板
101: SOI基板のSiO2
102: フローティングボディ(Floating Body)
103: ソースN+
104: ドレインN+
105: ゲート導電層
106: 正孔
107: 反転層、電子のチャネル
108: ピンチオフ点
109: ゲート酸化膜

Claims (11)

  1.  基板上に平面視において、行方向に配列された複数のメモリセルによってページが構成され、複数のページが列方向に配列されたメモリ装置であって、
     前記各ページに含まれる各メモリセルは、
     基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延する半導体母体と、
     前記半導体母体の両端にある第1の不純物層と、第2の不純物層と、
     前記第1の不純物層と前記第2の不純物層の間の前記半導体母体の側面の一部または全てを囲こみ、前記第1の不純物層に接するか、または、近接した第1のゲート絶縁層と、
     前記半導体母体の側面を囲み、前記第1のゲート絶縁層に繋がり、且つ前記第2の不純物層に接するか、または、近接した第2のゲート絶縁層と、
     前記第1のゲート絶縁層の一部または全体を覆う第1のゲート導体層と、
     前記第2のゲート絶縁層を覆う第2のゲート導体層と、
     前記半導体母体が前記第1のゲート絶縁層と、前記第2のゲート絶縁層とで覆われたチャネル半導体層とを、有し、
     前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物領域と、前記第2の不純物領域と、に印加する電圧を制御して、前記チャネル半導体層の内部に、インパクトイオン化現象により形成した正孔群を保持し、
     ページ書込み動作時には、前記チャネル半導体層の電圧を、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方の電圧より高い、第1のデータ保持電圧とし、
     ページ消去動作時には、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層とに印加する電圧を制御して、前記第1の不純物層及び前記第2の不純物層の一方もしくは両方から、前記正孔群を抜きとり、前記チャネル半導体層の電圧を、前記第1のデータ保持電圧よりも低い、第2のデータ保持電圧とし、
     前記メモリセルの前記第1の不純物層は、ソース線と接続し、前記第2の不純物層は、ビット線と接続し、前記第1のゲート導体層と前記第2のゲート導体層のうちの一方はワード線と接続し、他方はプレート線と接続し、
     平面視において、前記ソース線と前記ワード線と前記プレート線は、前記ページに対して、平行に配設し、
     前記ビット線は、前記ページに対して、垂直方向に配設し、
     前記ページ消去動作時には、選択消去する前記ページに消去電圧を印加し、非選択の前記ページに接地電圧を印加する、
     ことを特徴とする半導体素子を用いたメモリ装置。
  2.  前記第1のゲート導体層と前記チャネル半導体層との間の第1のゲート容量が、前記第2のゲート導体層と前記チャネル半導体層との間の第2のゲート容量よりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  3.  前記接地電圧は零ボルトである、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  4.  前記消去電圧は、前記接地電圧以下の負電圧であり、ページ消去動作時に、当該消去電圧を選択消去する前記ページの前記ソース線に印加し、前記メモリセルの前記半導体チャネル層と前記第1の不純物層との間のPN接合を順バイアスとし、前記チャネル半導体層の内部の前記正孔群を前記第1の不純物層へ排出する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  5.  前記消去電圧は、前記接地電圧以上の正電圧であり、ページ消去動作時に、当該消去電圧を選択消去する前記ページの前記ソース線に印加し、前記メモリセルの前記第2の不純物層から前記チャネル半導体層へ電子群を注入し、前記チャネル半導体層の内部の前記正孔群と前記電子群を再結合させ、前記正孔群を消滅させる、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  6.  平面視において、前記ソース線は、前記列方向に配列された前記メモリセル毎に分離され、前記ワード線と前記プレート線に平行に配設する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  7.  平面視において、前記ソース線は、隣接する前記ページに共通に配設する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  8.  平面視において、隣接する前記ページの前記プレート線は、少なくとも2本以上を共通に配設する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  9.  前記チャネル半導体層はP型シリコンであり、前記第1の不純物層と前記第2の不純物層はN型シリコンである、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  10.  前記ワード線と前記プレート線と前記ソース線は、ロウデコーダ回路に接続し、前記ロウデコーダ回路にはロウアドレスを入力し、前記ロウアドレスに従って、前記ページを選択する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  11.  前記ビット線は、センスアンプ回路に接続し、前記センスアンプ回路は、カラムデコーダ回路に接続し、前記カラムデコーダ回路にはカラムアドレスを入力し、前記カラムアドレスに従って、前記センスアンプ回路が入出力回路に選択的に接続する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
PCT/JP2022/009769 2022-03-07 2022-03-07 半導体素子を用いたメモリ装置 WO2023170755A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/009769 WO2023170755A1 (ja) 2022-03-07 2022-03-07 半導体素子を用いたメモリ装置
US18/179,130 US20230284433A1 (en) 2022-03-07 2023-03-06 Semiconductor-element-including memory device
TW112108122A TWI845191B (zh) 2022-03-07 2023-03-06 使用半導體元件的記憶裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009769 WO2023170755A1 (ja) 2022-03-07 2022-03-07 半導体素子を用いたメモリ装置

Publications (1)

Publication Number Publication Date
WO2023170755A1 true WO2023170755A1 (ja) 2023-09-14

Family

ID=87850307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009769 WO2023170755A1 (ja) 2022-03-07 2022-03-07 半導体素子を用いたメモリ装置

Country Status (3)

Country Link
US (1) US20230284433A1 (ja)
TW (1) TWI845191B (ja)
WO (1) WO2023170755A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
WO2005122244A1 (ja) * 2004-06-09 2005-12-22 Renesas Technology Corp. 半導体記憶装置
JP2017195395A (ja) * 2012-02-16 2017-10-26 ジーノ セミコンダクター, インコーポレイテッド 第1および第2のトランジスタを備えるメモリセルおよび動作の方法
US20200135863A1 (en) * 2015-04-29 2020-04-30 Zeno Semiconductor, Inc. MOSFET and Memory Cell Having Improved Drain Current Through Back Bias Application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
WO2005122244A1 (ja) * 2004-06-09 2005-12-22 Renesas Technology Corp. 半導体記憶装置
JP2017195395A (ja) * 2012-02-16 2017-10-26 ジーノ セミコンダクター, インコーポレイテッド 第1および第2のトランジスタを備えるメモリセルおよび動作の方法
US20200135863A1 (en) * 2015-04-29 2020-04-30 Zeno Semiconductor, Inc. MOSFET and Memory Cell Having Improved Drain Current Through Back Bias Application

Also Published As

Publication number Publication date
US20230284433A1 (en) 2023-09-07
TWI845191B (zh) 2024-06-11
TW202343802A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
TWI799069B (zh) 半導體元件記憶裝置
WO2023281613A1 (ja) 半導体素子を用いたメモリ装置
TWI815350B (zh) 半導體元件記憶裝置
US20220359521A1 (en) Memory apparatus using semiconductor devices
TWI823293B (zh) 半導體元件記憶裝置
TWI813280B (zh) 使用半導體元件的記憶裝置
TWI807689B (zh) 半導體元件記憶裝置
TWI806492B (zh) 半導體元件記憶裝置
TWI794046B (zh) 半導體元件記憶裝置
TWI813133B (zh) 半導體元件記憶裝置
TWI793968B (zh) 半導體元件記憶裝置
WO2023170755A1 (ja) 半導体素子を用いたメモリ装置
WO2023199474A1 (ja) 半導体素子を用いたメモリ装置
WO2023242956A1 (ja) 半導体素子を用いたメモリ装置
TWI787046B (zh) 半導體元件記憶裝置
WO2024053014A1 (ja) 半導体素子を用いたメモリ装置
WO2024018556A1 (ja) 半導体素子を用いたメモリ装置
WO2022185540A1 (ja) 半導体素子を用いたメモリ装置
WO2024062539A1 (ja) 半導体素子を用いたメモリ装置
WO2023248415A1 (ja) 半導体素子を用いたメモリ装置
WO2023248418A1 (ja) 半導体素子を用いたメモリ装置
US20230186966A1 (en) Memory device using semiconductor element
WO2024079816A1 (ja) 半導体素子を用いたメモリ装置
WO2022157954A1 (ja) 半導体素子メモリ装置
TW202312367A (zh) 使用半導體元件的記憶裝置