WO2013121563A1 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
WO2013121563A1
WO2013121563A1 PCT/JP2012/053707 JP2012053707W WO2013121563A1 WO 2013121563 A1 WO2013121563 A1 WO 2013121563A1 JP 2012053707 W JP2012053707 W JP 2012053707W WO 2013121563 A1 WO2013121563 A1 WO 2013121563A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
secondary battery
potential
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2012/053707
Other languages
English (en)
French (fr)
Inventor
藤巻 寿隆
宏 川津
慎矢 鎌田
久尚 小島
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/053707 priority Critical patent/WO2013121563A1/ja
Priority to KR1020147025323A priority patent/KR101635300B1/ko
Priority to CN201280069818.8A priority patent/CN104115326B/zh
Priority to JP2014500004A priority patent/JP5907395B2/ja
Priority to US14/377,968 priority patent/US10128547B2/en
Priority to EP12868557.5A priority patent/EP2816657B1/en
Publication of WO2013121563A1 publication Critical patent/WO2013121563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0469Electroforming a self-supporting electrode; Electroforming of powdered electrode material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for manufacturing a secondary battery, and more particularly to a method for manufacturing a secondary battery that addresses the problem of short-circuiting due to deposition of metallic foreign matter mixed in the battery.
  • Such a lithium secondary battery typically includes a positive electrode and a negative electrode each including a positive electrode and a negative electrode active material capable of inserting and extracting lithium ions, a separator interposed between the positive electrode and the negative electrode, and these positive electrodes , A negative electrode, and a nonaqueous electrolyte impregnated in the separator.
  • a positive electrode, a negative electrode, and a separator are assembled, and after they are impregnated with a nonaqueous electrolyte, charging is performed.
  • Patent Document 1 discloses a method for manufacturing a secondary battery in which a charging time of 0.01% to 0.1% of the battery capacity at the time of initial charging is provided for a standing time of 1 hour to 48 hours. It is disclosed. Further, in Patent Document 2, an electric shock of charging or discharging or a combination of charging and discharging is applied to a battery, and this application is performed with a positive electrode potential of 4.0 V or more on the basis of Li, and then left for 1 minute. It is disclosed that the negative electrode potential is 2.0 V or more. According to these methods, it is described that metal foreign matters are not uniformly deposited on the negative electrode but are uniformly diffused in the electrolyte.
  • internal short circuit by measuring the voltage drop (self-discharge amount) in the no-load state for the secondary battery after the initial conditioning separately from the detoxification treatment method of the metallic foreign matter as described above.
  • a self-discharge test is performed to determine whether or not there is any.
  • This self-discharge inspection is for confirming the presence or absence of a micro short circuit due to the deposition of foreign metal, but in order to confirm the presence or absence of a micro short circuit due to the deposition of iron having a high resistance, an inspection is performed for 5 days or more, for example, about 10 days. There was a need.
  • the present invention was created to solve the above-described conventional problems, and the object of the present invention is to locally deposit metallic foreign substances on the negative electrode regardless of the type and variation of the electrode.
  • An object of the present invention is to provide a method for manufacturing a lithium secondary battery that can be reliably suppressed in a shorter time.
  • Another object of the present invention is to provide a highly reliable lithium secondary battery which is less likely to cause a short circuit obtained by this manufacturing method.
  • the present inventors have conducted intensive research on the dissolution behavior of metallic foreign matters such as iron (Fe) inevitably mixed in the manufacturing process. As a result, it was confirmed that the dissolution behavior of the metal foreign matter was greatly influenced by minute changes in the battery configuration and could affect the potential behavior in the detoxification treatment of the metal foreign matter. Factors that affect such potential behavior include, in addition to the above-mentioned electrode type and lot-to-lot variations, for example, design differences such as the concentration of additives in the electrolyte, and influence of electrode storage conditions. Unintended variations can be included.
  • the dissolution behavior of the metal foreign matter can be stabilized and the time required for the detoxification process can be shortened.
  • the present invention has been conceived.
  • the time for the detoxification treatment of the metal foreign matter can be set appropriately within a range in which the influence is taken into consideration.
  • the secondary battery manufacturing method disclosed herein is a secondary battery manufacturing method including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a non-aqueous electrolyte.
  • a manufacturing method is: Constructing a cell comprising the positive electrode, the negative electrode and the non-aqueous electrolyte; In a charged state where the positive electrode potential is equal to or higher than the oxidation potential of iron (Fe) and the negative electrode potential is equal to or higher than the reduction potential of iron (Fe), 1 to 0.01% to 0.5% of the capacity of the constructed cell.
  • a microcharging process that charges over time and maintains the state of charge; and A process of performing initial conditioning charging; It is characterized by including.
  • the above charge is maintained by maintaining the above potential without leaving as it is.
  • the state is actively maintained and managed.
  • the metal foreign matter is always continuously dissolved in the positive electrode, and the dissolved metal ions can be prevented from being deposited on the negative electrode. For this reason, the dissolved metal ions can be diffused uniformly in the electrolyte over a wide range, and the local precipitation of metal ions can be more reliably suppressed.
  • the state of charge is positively maintained until the influence of the metal foreign matter is eliminated, it is possible to suppress the influence due to the type and variation of the electrodes.
  • the oxidation potential and the reduction potential of iron (Fe) are the same potential in the case of an ideal body.
  • the potential at which the oxidation reaction proceeds may deviate from the potential at which the reduction reaction proceeds (referred to as overvoltage) due to the influence of electrolyte additives, electrode materials, and the like. Therefore, in this specification, these are distinguished and described.
  • the positive electrode potential is not less than the oxidation potential of iron (Fe) and lower than the oxidation potential of copper (Cu).
  • the metal foreign matter to be detoxified is a metallic foreign matter that may be mixed in the manufacturing process of the secondary battery, and the oxidation-reduction potential is within the operating voltage range of the secondary battery. Which can be dissolved (ionized) can be considered. Therefore, even if it is a metallic foreign substance that is expected to be mixed into the positive electrode or the like, the above-mentioned short-circuited metal is not likely to be ionized (dissolved) within the operating voltage range of the secondary battery.
  • copper (Cu) is not considered as a metal foreign object to be detoxified, and the positive electrode potential is not raised above the oxidation potential of copper (Cu). According to this configuration, since copper (Cu) is not dissolved in the positive electrode and deposited on the negative electrode, iron (Fe) that is slowly dissolved can be reliably detoxified because of higher resistance. Moreover, although the invention disclosed here actively dissolves metal foreign matter, copper (Cu), which is also used as a negative electrode current collector, can be excluded from the object of active dissolution.
  • the micro charging step is performed by constant current constant voltage (CC-CV) charging, and a current during CC charging is set to 0.01 C or less. It is said.
  • CC-CV constant current constant voltage
  • the potential difference between the positive and negative electrodes can change abruptly at the beginning of charging. According to such a configuration, the current during charging is reduced to 0.01 C or less and the potential is prevented from rising rapidly, so that the potential adjustment accuracy can be improved.
  • the potential difference between positive and negative electrodes during CV charging is set to be 0.5 V or more and 1.3 V or less. Yes.
  • iron (Fe) can be stably dissolved in the electrolyte in a shorter time without depositing iron (Fe) and copper (Cu) on the negative electrode. According to such a configuration, it is possible to perform the detoxification process of the metal foreign matter in a short time.
  • the potential difference between the negative electrode outer can and the CV charging is set to be ⁇ 0.5 V or more and 0.2 V or less. It is characterized by that.
  • an outer can is formed of a metal, typically aluminum or an aluminum alloy. Therefore, as described above, the potential between the positive and negative electrodes is set, and the negative electrode potential is kept equal to or higher than the precipitation potential of aluminum or aluminum alloy derived from the outer can so that metal foreign matter such as aluminum or aluminum alloy derived from the outer can Prevent deposition on the negative electrode.
  • the above-described microcharging step is performed by constant current and constant voltage charging, and the charged state is maintained within 5 hours to 24 hours.
  • the dissolution of the metal foreign matter can be actively promoted, so that the detoxification process of the metal foreign matter can be completed in a shorter time. Therefore, this state of charge can typically be completed in 5 hours or more and within 24 hours, and more specifically, it can be completed in about 10 hours or more and within 20 hours.
  • the standard charge maintaining is performed.
  • the charging time is set so that charging is longer than the predetermined time, and when the temperature is higher than the predetermined temperature range, the charging time is set so that charging is shorter than the standard charging maintaining time.
  • the environmental temperature can also have a great influence on the dissolution behavior of metallic foreign objects. According to this configuration, the influence of the environmental temperature on the dissolution behavior of the metal foreign matter is eliminated by appropriately adjusting the charging time in the microcharging process. Therefore, it is possible to perform the detoxification process of the metal foreign matter in the shortest processing time according to the state of the secondary battery to be processed.
  • a plurality of cells constructed in the cell construction step are electrically connected to construct an assembled battery, and the entire assembled battery is constructed.
  • the micro charge process is performed. According to such a configuration, for example, since the above-described microcharging process is performed in a state of an assembled battery in which a plurality of secondary batteries (single cells) are connected in series, a plurality of secondary batteries are minutely processed in a single processing time. The charging process can be performed, and it is simple and more economical.
  • the standard The charging time is set so that charging is shorter than the charging maintenance time, and when the temperature is higher than the predetermined temperature range, the charging time is set so that charging is longer than the standard charging maintenance time.
  • the restraining pressure of the cell can have a great influence on the dissolution behavior of the metal foreign matter. According to such a configuration, the influence of the restraining pressure on the dissolution behavior of the metal foreign matter is eliminated by appropriately adjusting the charging time in the microcharging process. Therefore, it is possible to perform the detoxification process of the metal foreign matter in the shortest processing time according to the state of the secondary battery to be processed.
  • the self-discharge inspection step further includes a self-discharge inspection step of measuring a voltage drop amount of the charged cell after the initial conditioning charging step. Is characterized by being performed within 15 hours. According to the above manufacturing method, since the detoxification treatment of the metal foreign matter can be performed reliably, the secondary battery subjected to such a treatment is locally deposited with metal foreign matter, particularly metal foreign matter made of iron (Fe). The possibility of a short circuit due to is sufficiently reduced.
  • the secondary battery provided by the invention disclosed herein in another aspect is characterized by being manufactured by any one of the manufacturing methods described above.
  • a secondary battery can be in the form of a single cell and in the form of a battery pack in which two or more of the cells are electrically connected.
  • Such a secondary battery can be highly reliable in which the detoxification treatment of the metal foreign matter is reliably performed, and the possibility of a short circuit due to local deposition of the metal foreign matter is sufficiently reduced. Further, since the detoxification process and the self-discharge inspection can be performed in a shorter time, the time spent in these steps can be reduced, and the productivity can be high and economical. Therefore, such a secondary battery can be suitably used as a driving power source mounted on a vehicle such as an automobile that requires particularly high safety and reliability.
  • the present invention also includes a vehicle 1 such as an automobile provided with such a secondary battery 10 (which may be in the form of an assembled battery 100) as a power source for a vehicle drive motor (electric motor) or the like.
  • a vehicle drive motor electric motor
  • the type of the vehicle 1 is not particularly limited, but may typically be a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or the like.
  • FIG. 1 is a process flow diagram according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of potential behavior in the manufacturing method of the present invention.
  • FIG. 3 is a diagram showing an extracted relationship between the charging current and the voltage between the positive and negative electrodes and the elapsed time in FIG.
  • FIG. 4 is an enlarged view showing the state of the charging current and the positive / negative voltage up to 30 minutes in FIG.
  • FIG. 5 is a perspective view for explaining a state of restraining a plurality of secondary batteries.
  • FIG. 6 is a side view illustrating a vehicle including the secondary battery according to the embodiment.
  • FIG. 7A is an observation image showing a state of the positive electrode surface after the micro charging step according to an embodiment.
  • FIG. 7B is an observation image showing a state of the surface on the positive electrode side of the separator after the micro charging process according to the embodiment.
  • FIG. 7C is an observation image showing a state of the negative electrode surface after the micro charging step according to an embodiment.
  • FIG. 7D is an observation image showing a state of the negative electrode-side surface of the separator after the micro charging process according to an embodiment.
  • FIG. 8 is a diagram showing the relationship between the amount of dissolved metal foreign matter and the temperature after the microcharging process according to an embodiment.
  • FIG. 9 is a diagram showing the relationship between the amount of metal foreign matter dissolved and the restraint pressure after the micro-charging process according to an embodiment.
  • FIG. 10A is a diagram illustrating an example of a potential behavior in a conventional detoxification process of a metal foreign object.
  • FIG. 10B is a diagram illustrating another example of the potential behavior in the conventional detoxification process for metal foreign matter.
  • the “secondary battery” refers to a general battery that can be repeatedly charged and discharged by charge transfer, and typically includes a nickel-metal hydride battery, a lithium secondary battery, a lithium polymer battery, and the like.
  • active material can reversibly occlude and release (typically insertion and removal) chemical species (for example, lithium ions in a lithium ion battery) that serve as charge carriers in a secondary battery. Refers to a substance.
  • the manufacturing method according to the present embodiment is a method for manufacturing a secondary battery including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a nonaqueous electrolyte.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • a positive electrode typically a separator, and a negative electrode are assembled in a step of constructing a cell (that is, a structure constituting the secondary battery), and these are assembled together with a nonaqueous electrolyte into a battery case.
  • the cell is sealed by sealing the battery case.
  • the positive electrode for example, the positive electrode active material layer formed on the positive electrode current collector
  • the positive electrode contains metal foreign matters such as copper and iron from the sliding member of the manufacturing apparatus. May end up.
  • this metal ion usually moves linearly between the positive and negative electrodes (typically in the separator) toward the negative electrode, the metal ion reaches the negative electrode when charging is continued, and is locally located at the position facing the negative electrode. It was precipitated. As the charging progresses, the precipitate on the negative electrode gradually grows toward the positive electrode side.
  • FIG. 1 is a flowchart showing one embodiment of a method for manufacturing a secondary battery disclosed herein.
  • FIG. 1 is a flowchart showing one embodiment of a method for manufacturing a secondary battery disclosed herein.
  • FIG. 2 is a diagram for explaining a potential state when a micro-charging process is performed on a lithium secondary battery as one embodiment, and the plot lines in the figure indicate the positive electrode potential and the negative electrode from the top of the graph. It represents a potential, a potential difference between the positive electrode and the negative electrode (hereinafter sometimes referred to as a voltage between the positive electrode and the negative electrode), and a change with time of supplied current.
  • this cell is assembled or assembled. It can apply to the assembled battery constructed
  • the minute filling step (S30) for example, as shown in the time change of the positive electrode potential and the negative electrode potential in FIG. 2, the positive electrode potential with respect to the metal lithium (Li) reference electrode is equal to or higher than the oxidation potential of iron (Fe) and The battery is charged to a charged state where is equal to or higher than the reduction potential of iron (Fe), and this charged state is maintained.
  • the positive electrode potential is always controlled to be equal to or higher than the oxidation potential of iron (Fe) and the negative electrode potential is set to be equal to or higher than the reduction potential of iron (Fe).
  • a metal species having a low oxidation potential dissolution potential
  • the negative electrode is in a state where the dissolved metal species cannot be precipitated. That is, in this microcharging step, iron (Fe) and a metal species having a lower melting potential than iron are assumed as the metal species that are reliably dissolved in the positive electrode.
  • copper (Cu) which is a metal species having a higher oxidation potential than iron (Fe)
  • the oxidation potential of iron (Fe) shows a case of about 2.5 V (Li reference) in this embodiment, but is not limited to this value, and the actual iron ( The oxidation potential of Fe) may be set as a reference.
  • the positive electrode potential is preferably higher than the oxidation potential of iron (Fe) and lower than the oxidation potential of copper (Cu). This is because when the positive electrode potential is higher than the oxidation potential of copper (Cu), copper (Cu) can be dissolved in the positive electrode, but the dissolved copper (Cu) (that is, Cu ions) moves toward the negative electrode. .
  • the negative electrode potential is equal to or higher than the reduction potential of iron (Fe) but less than the reduction potential of copper (Cu)
  • Cu ions that have reached the negative electrode can be immediately reduced and deposited on the negative electrode. Such Cu precipitation is not preferable because it may occur locally. Therefore, in such a minute charging step, it is preferable that the positive electrode potential is in a state where copper (Cu) does not dissolve.
  • the positive electrode potential is preferably set as high as possible within a range lower than the oxidation potential of copper (Cu).
  • This charging is indispensable to be performed by charging at a slow charging speed in which a charge of 0.01% to 0.5% of the cell capacity is charged over 1 hour or more.
  • the potential of the positive electrode and the negative electrode after impregnation with the electrolyte is, for example, about 3.0 V (Li standard).
  • a rapid change in the potential of the positive and negative electrodes can be caused.
  • by performing charging at such a slow charging rate a sudden change in the potential of the positive and negative electrodes is prevented, and the potentials of the positive and negative electrodes are always higher than the reduction potential of iron (Fe).
  • FIG. 3 is a diagram showing only how the current and the voltage between the positive and negative electrodes change with time in FIG. 1, and FIG. 4 is an enlarged view of the region in FIG. 3 where the elapsed time is up to 30 minutes. .
  • the charging to the above-described charging state is preferably performed by constant current constant voltage (CC-CV) charging.
  • CC-CV constant current constant voltage
  • the current during CC charging is 0.01 C or less, for example 0.008 C or less, and more specifically 0.005 C or less. Is preferable.
  • the voltage between the positive and negative electrodes during CV charging is preferably set to be 0.5 V or more and 1.3 V or less. Even if the voltage between the positive and negative electrodes is less than 0.5 V, the detoxification treatment is possible. However, if the voltage between the positive and negative electrodes is less than 0.5 V, it is not preferable because it takes a longer time than necessary to dissolve the metal foreign matter. Therefore, it is preferable to set the voltage between the positive and negative electrodes to 0.5 V or more from the viewpoint of increasing the dissolution rate of the metal foreign matter dissolved at the positive electrode and reducing the time required for the detoxification treatment. Further, even when the voltage between the positive and negative electrodes exceeds 1.3 V, the detoxification process is possible.
  • the voltage between the positive and negative electrodes is 0.5 V to 1.3 V, for example, 0.6 V to 1.0 V, preferably 0.7 V. It is shown as a preferred example that the reference is 0.9 V or less, more specifically about 0.8 ⁇ 0.05 V.
  • the potential difference between the negative electrode and the outer can is ⁇ 0.5 V or more and 0.2 V or less during CV charging in the microcharging process.
  • This potential difference is a value defined based on the deposition potential of aluminum (Al) in the electrolyte.
  • an outer can is formed of a metal, typically aluminum or an aluminum alloy. The outer can has a potential with respect to the positive electrode and the negative electrode by touching the electrolyte inside the battery during the detoxification treatment. In addition, the potentials of the outer can, the positive electrode, and the negative electrode can be separately measured.
  • the potential between the positive and negative electrodes as described above, the potential between the outer can and the negative electrode is also measured, so that the negative electrode potential is maintained at or above the precipitation potential of aluminum or aluminum alloy derived from the outer can. Yes.
  • the potential difference between the negative electrode and the outer can in this way, it is possible to prevent metal foreign matters such as aluminum or aluminum alloy derived from the outer can from being deposited on the negative electrode. With this configuration, it is possible to manufacture a secondary battery that is safer and superior in quality.
  • the state of charge in the above minute charging process can be maintained until a time when it is determined that the metal foreign object to be detoxified is sufficiently dissolved and diffused.
  • the maintenance time of the charged state for example, (1) the size of the metal foreign matter containing iron (Fe) whose dissolution rate is relatively slow, (2) the voltage between positive and negative, and (3) the overall processing as a target It can be determined in consideration of time, etc. And in the method disclosed here, it can be set as one standard to maintain a charge condition in 5 hours or more and less than 24 hours.
  • This maintenance time is, for example, when an iron (Fe) particle having a diameter of 200 ⁇ m and a thickness of 10 ⁇ m is completely formed when the microcharging process is performed at an environmental temperature of 25 ° C.
  • the dissolution time is 10 hours, and the detoxification of the metal foreign material is completed within the range of 5 hours (1/2 of 10 hours) to 24 hours (approximately 2 times of 10 hours) including this 10 hours. Can be grasped as possible.
  • the charge maintenance time required to dissolve a predetermined size of the foreign metal in the micro charge process is further influenced by various factors.
  • differences in specifications and variations of the constituent materials of the secondary battery can be considered. More specifically, the difference in the specifications of the constituent materials of the secondary battery can take into account the influence of the type of active material, the concentration of the additive added to the electrolyte, and the like. For example, specifically, it has been confirmed that when the concentration of the additive added to the electrolyte becomes higher, the dissolution rate of the metal foreign matter tends to decrease.
  • the degree of impregnation of the electrode and the separator can be considered. For example, specifically, it has been confirmed that the dissolution rate of the metallic foreign matter is lowered when the storage period of the electrode in the dry room becomes longer or when the electrode is exposed to the air instantaneously. These are considered to be due to an increase in the amount of water in the electrode.
  • the manufacturing method disclosed herein it is possible to set the charge maintenance time that can reliably perform the detoxification process in a shorter time, including the influences of the factors exemplified above and other influences.
  • the detoxification process is surely performed in a more appropriate processing time according to the environment of the detoxification process or the state of the secondary battery by the following method. That is, a predetermined size of metal foreign matter (preferably iron (Fe) particles) is arranged on the positive electrode surface in advance for a predetermined charge maintenance time, and various other conditions (for example, environmental temperature and restraint pressure here) are varied.
  • the micro charge process is carried out by changing. At this time, by investigating in advance the relationship between the amount of the metallic foreign material dissolved in a predetermined time and the varied conditions (environmental temperature and restraint pressure), the appropriate and shortest charging at the actual environmental temperature.
  • a maintenance time can be set.
  • iron (Fe) particles having a diameter of 200 ⁇ m and a thickness of 10 ⁇ m are arranged on the positive electrode, the voltage between the positive and negative electrodes is 0.8 V, the charge maintaining time is 10 hours, and the micro charge process is performed by changing the environmental temperature.
  • the relationship between the dissolved amount of iron (Fe) particles and the ambient temperature was shown.
  • the binding pressure of the cell is also changed.
  • the dissolution amount of iron (Fe) particles is hardly affected by the environmental temperature in the temperature range of 25 ° C. or higher, but dissolves when the restraint pressure increases in the temperature range of less than 25 ° C. It can be seen that the amount decreases and it takes time to dissolve.
  • the charging time can be set so that charging is longer than the standard charging maintenance time, and when the temperature is higher than the predetermined temperature range, the charging time can be set so that charging is shorter than the standard charging maintenance time. Further, the time for extending and shortening from the standard charge maintenance time can also be determined appropriately from the relationship shown in FIG.
  • FIG. 9 shows the data shown in FIG. 8 as the relationship between the dissolution amount and the restraint pressure.
  • the amount of iron (Fe) particles dissolved is not significantly affected in the restraint pressure region where the restraint pressure is no pressure (0.1 MPa or less), but in the restraint pressure region where the restraint pressure is 0.2 MPa or more.
  • the amount of dissolution decreases as the restraint pressure increases, and it takes time to dissolve. Therefore, more specifically, for example, as shown in step C20 in FIG. 1, in the state where the cell is restrained by the restraining jig (see FIG. 5), the standard charge is maintained in a predetermined restraining pressure range set in advance.
  • the charge time is set so that charging is shorter than the standard charge maintenance time.
  • the charge is longer than the standard charge maintenance time.
  • the charging time can be set to be performed.
  • the conditions of the environmental temperature and the restraint pressure are changed in the micro charge process.
  • the other conditions by changing the other conditions, the relationship between the conditions and the dissolved amount in the standard charge maintenance time is obtained.
  • a more appropriate charge maintenance time when the condition fluctuates may be set.
  • the process C10 and the process C20 in FIG. 1 are not essential processes, and a more appropriate charging time can be set by arbitrarily adopting either one or both.
  • the charging time may be set in consideration of the environmental temperature and the restraint pressure.
  • the microcharging process disclosed herein can be performed on a single cell, or an assembled battery in which a plurality of cells are electrically connected to construct an assembled battery. It can also be implemented for the whole.
  • the assembled battery may be in a form in which a plurality of cells are electrically connected, and is not limited by, for example, the presence or absence of restraint pressure or the magnitude of restraint pressure.
  • the arrangement of the plurality of cells is not particularly limited.
  • a buffer material called a spacer may be sandwiched between adjacent cells, or the cells may be in direct contact with each other.
  • each cell may be accommodated in a predetermined assembled battery case, or a part of each cell may be fixed by a predetermined assembled battery holder or the like.
  • the assembled battery may be constructed using a jig or the like having a function of applying an arbitrary restraining pressure to the plane of the cell.
  • the restraint pressure referred to here is a pressure applied in a direction substantially perpendicular to the laminated surface of the positive electrode and the negative electrode (typically coincides with the plane of the cell), and is applied to either a single cell or an assembled battery. It may be added.
  • Such constraining pressure can be obtained, for example, by using a load cell or calculating using a strain gauge.
  • the metal foreign matter mixed in the cell can be dissolved and diffused into the electrolyte in an ionic state.
  • the ions of the metal foreign matter sufficiently diffused in the cell are spread over a wide area on the negative electrode (preferably It deposits very thinly (over the entire surface). That is, since the ions of the metal foreign matter reach the negative electrode after being diffused, local precipitation at a predetermined portion of the negative electrode is suppressed. And since this precipitation cannot become a thing which causes a short circuit, by this, the metal foreign material mixed in the cell is made harmless.
  • the specific charging process in the initial conditioning process is not particularly limited, and the charging process or the like under various conditions that can activate the target secondary battery with high performance can be performed. For example, after performing an appropriate amount of charge, the operation of leaving for a predetermined time and discharging to a predetermined voltage is repeated. Through the initial conditioning process, the secondary battery is charged to a predetermined battery capacity.
  • the manufacturing method disclosed herein may further include a self-discharge inspection step after the initial conditioning step.
  • This self-discharge inspection step is to determine the presence or absence of an internal short circuit by measuring the voltage drop amount of the cell charged by the initial conditioning.
  • the internal short circuit to be inspected here is a fine short circuit due to local precipitation of the metal foreign matter still remaining on the positive electrode side. Therefore, in order to accurately measure the presence or absence of such a short-circuit, for example, conventionally, an inspection time of at least about 5 days, and in some cases, about 10 days has been required. This is mainly based on the assumption that iron (Fe), which has a high resistance and takes time to dissolve, remains in the cell as a metal foreign substance, and an internal short circuit occurs due to this iron (Fe). This is because the inspection time was set based on the view that a period of 5 days or more is necessary.
  • iron (Fe) that takes time to dissolve in the microcharging process is surely dissolved, and thinly deposited in the state of diffusion on the negative electrode in the subsequent initial conditioning process. Therefore, it is not necessary to consider the possibility of an internal short circuit due to iron (Fe) in the self-discharge inspection. Therefore, what is necessary is just to perform the test
  • inspection can be performed, for example, within 24 hours, more specifically within 15 hours, preferably within 10 hours, and further within about 2 to 5 hours. As a result, the time required for the self-discharge inspection process can be significantly shortened, and the productivity is remarkably improved.
  • the copper (Cu) which can be excluded from the object of dissolution in the micro charge process disclosed here, since the resistance is small, the presence or absence of a short circuit can be inspected in several hours (for example, 1 to 2 hours). .
  • the lithium ion battery includes a flat battery case (for example, see FIG. 5).
  • An electrode body is accommodated in the battery case.
  • the electrode body is configured by laminating a positive electrode, a negative electrode, and two separators each formed in a sheet shape. Typically, these are stacked and wound together such as a separator, a positive electrode, a separator, and a negative electrode.
  • the wound electrode body is formed into a flat shape by pressing from the side so as to match the shape of the battery case.
  • the positive electrode typically has a positive electrode active material layer having a positive electrode active material formed on the surface of the positive electrode current collector.
  • the positive electrode active material layer is typically formed on both sides of the positive electrode current collector, but may be formed on one side.
  • a negative electrode active material layer having a negative electrode active material is formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer is typically formed on both sides of the negative electrode current collector, but may be formed on one side.
  • At one end in the longitudinal direction of the positive electrode current collector an uncoated portion where no positive electrode active material layer is formed is provided, and a positive electrode terminal is connected to the uncoated portion.
  • an uncoated portion where the negative electrode active material layer is not formed is provided at one end in the longitudinal direction of the negative electrode current collector, and a negative electrode terminal is connected to the uncoated portion.
  • a lithium ion battery can be constructed by inserting an electrode body to which a positive terminal and a negative terminal are connected into a battery case, supplying a nonaqueous electrolyte therein, and then sealing the battery case.
  • a conductive member made of a highly conductive metal is preferably used for the positive electrode current collector.
  • a metal containing aluminum, nickel, titanium, iron, or the like as a main component or an alloy containing these as a main component can be used.
  • a positive electrode electrical power collector Various things can be considered according to the shape of a lithium secondary battery, etc. For example, it may be in various forms such as a bar shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • a sheet-like positive electrode current collector made of aluminum is used.
  • a lithium-containing transition metal oxide capable of occluding and releasing lithium is used, and a material (for example, an oxide having a rock salt structure, a layered structure, or a spinel structure) conventionally used in a lithium secondary battery.
  • a material for example, an oxide having a rock salt structure, a layered structure, or a spinel structure
  • lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, lithium manganese composite oxides, and lithium magnesium composite oxides.
  • a ternary lithium-containing transition metal oxide containing manganese, nickel, and cobalt in particular, nickel in a transition metal constituting a lithium-containing composite oxide
  • the content ratio is less than 50 mol%.
  • the lithium nickel-based composite oxide is an ⁇ -NaFeO 2 type lithium nickelate (LiNiO 2 ) having lithium (Li) and nickel (Ni) as constituent metal elements, as well as this LiNiO 2 .
  • the nickel site transition metal site
  • the nickel ratio is maintained at 50% or more. It is the meaning which also includes the oxide containing.
  • Examples of the metal element other than Li and Ni include, for example, cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), and titanium (Ti ), Zirconium (Zr), niobium (Nb), molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) ), And one or more metal elements selected from the group consisting of cerium (Ce). The same meaning is applied to lithium cobalt complex oxides, lithium manganese complex oxides, and lithium magnesium complex oxides.
  • (1-x) LiMeO 2 (In the above formula, Me is one or more transition metals, and x satisfies 0 ⁇ x ⁇ 1.) It may be a so-called solid solution type lithium-excess transition metal oxide or the like.
  • the compound constituting such a positive electrode active material can be prepared and provided by, for example, a known method.
  • a desired lithium-containing composite oxide is prepared by mixing several raw material compounds appropriately selected according to the atomic composition at a predetermined molar ratio and firing the mixture at an appropriate means and at a predetermined temperature. Can do.
  • the fired product is pulverized, granulated and classified by an appropriate means to obtain a granular positive electrode active material powder substantially composed of secondary particles having a desired average particle size and / or particle size distribution. be able to.
  • the preparation method itself of a positive electrode active material does not characterize this invention at all.
  • the positive electrode active material layer may contain a conductive material, a binder, and the like as necessary in addition to the positive electrode active material.
  • a conductive material for example, carbon materials such as carbon black (for example, acetylene black, furnace black, ketjen black) and graphite powder can be preferably used. Among these, you may use together 1 type, or 2 or more types.
  • the binder a polymer material that dissolves or disperses in water can be preferably used. Cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), etc .; polyvinyl alcohol (PVA) And the like are exemplified.
  • polymer materials that are dispersed in water examples include vinyl polymers such as polyethylene (PE) and polypropylene (PP); polyethylene oxide (PEO), polytetrafluoroethylene (PTFE), and tetrafluoroethylene.
  • vinyl polymers such as polyethylene (PE) and polypropylene (PP); polyethylene oxide (PEO), polytetrafluoroethylene (PTFE), and tetrafluoroethylene.
  • -Fluorine resins such as perfluoroalkyl vinyl ether copolymer (PFA); vinyl acetate copolymer; rubbers such as styrene butadiene rubber (SBR).
  • PFA perfluoroalkyl vinyl ether copolymer
  • SBR styrene butadiene rubber
  • the binder is not limited to a water-based one, and a solvent-based binder such as polyvinylidene fluoride (PVDF) can also be used.
  • PVDF polyvinyliden
  • the amount of the conductive material used relative to 100 parts by mass of the positive electrode active material can be, for example, 1 to 20 parts by mass (preferably 5 to 15 parts by mass). Further, the amount of the binder used relative to 100 parts by mass of the positive electrode active material can be, for example, 0.5 to 10 parts by mass.
  • a conductive member made of a metal having good conductivity is preferably used.
  • a copper material, a nickel material, or an alloy material mainly composed of them is preferable to use a copper material, a nickel material, or an alloy material mainly composed of them.
  • the shape of the negative electrode current collector can be the same as the shape of the positive electrode. Typically, a sheet-like copper negative electrode current collector is used.
  • the negative electrode active material may be any material that can occlude and release lithium, and one or more negative electrode active materials conventionally used in lithium secondary batteries can be used without particular limitation.
  • carbon materials such as graphite (graphite), oxide materials such as lithium titanium oxide (Li 4 Ti 5 O 12 ), metals such as tin, aluminum (Al), zinc (Zn), silicon (Si), or Examples thereof include metal materials composed of metal alloys mainly composed of these metal elements.
  • a particulate carbon material (carbon particles) including a graphite structure (layer structure) at least partially is preferably used. So-called graphitic materials (graphite), non-graphitizable carbon materials (hard carbon), graphitizable carbon materials (soft carbon), amorphous materials (amorphous carbon), and combinations of these Any carbon material possessed can be suitably used.
  • the negative electrode active material layer formed on the negative electrode in addition to the negative electrode active material, for example, one or two or more materials that can be blended in the positive electrode active material layer can be contained as necessary.
  • a material various materials that can function as conductive materials, binders, dispersants, and the like as listed as constituent materials of the positive electrode active material layer can be used.
  • Solvent type binders such as a polyvinylidene fluoride (PVDF), can also be used.
  • the amount of the conductive material used relative to 100 parts by mass of the negative electrode active material is, for example, about 1 to 30 parts by mass (preferably about 2 to 20 parts by mass, for example, 5 to 10 parts by mass). Degree). Further, the amount of the binder used relative to 100 parts by mass of the negative electrode active material can be, for example, 0.5 to 10 parts by mass.
  • the positive electrode and the negative electrode according to this embodiment can be manufactured by a conventional method. That is, a paste-like composition (hereinafter referred to as an active material layer forming paste) in which the above active material and a binder are dispersed in an appropriate solvent (water, organic solvent, etc.) similar to the conventional one is prepared. To do. The prepared active material layer forming paste is applied to a current collector, dried, and then compressed (pressed) to obtain an electrode in which the current material is provided with the active material layer.
  • an active material layer forming paste in which the above active material and a binder are dispersed in an appropriate solvent (water, organic solvent, etc.) similar to the conventional one is prepared.
  • an appropriate solvent water, organic solvent, etc.
  • the non-aqueous electrolyte includes a lithium salt as a supporting salt in an organic solvent (non-aqueous solvent).
  • a nonaqueous electrolyte that is liquid at room temperature (that is, an electrolytic solution) can be preferably used.
  • the lithium salt for example, a known lithium salt conventionally used as a supporting salt for a non-aqueous electrolyte of a lithium secondary battery can be appropriately selected and used. Examples of such lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like.
  • These supporting salts can be used alone or in combination of two or more.
  • a particularly preferred example is LiPF 6 .
  • Various additives represented by gas generating additives, film forming additives, and the like may be added to the nonaqueous electrolyte as necessary.
  • an organic solvent used for a general lithium secondary battery can be appropriately selected and used.
  • Particularly preferred non-aqueous solvents include carbonates such as ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC). These organic solvents can be used alone or in combination of two or more.
  • a conventional separator can be used.
  • a porous sheet made of resin a microporous resin sheet
  • polyolefin resins such as polyethylene (PE), polypropylene (PP), and polystyrene are preferable.
  • a porous structure such as a PE sheet, a PP sheet, a two-layer structure sheet in which a PE layer and a PP layer are laminated, and a three-layer structure sheet in which one PE layer is sandwiched between two PP layers.
  • a polyolefin sheet can be suitably used.
  • a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).
  • the use of the lithium secondary battery according to the present embodiment is not particularly limited. As described above, according to the lithium secondary battery according to the present embodiment, it is possible to reliably prevent an internal short circuit due to the metal foreign matter mixed in the cell in a short time, so that safety and reliability are high, and various characteristics are obtained. Can be used as it is. Therefore, the lithium secondary battery according to this embodiment can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.
  • the lithium ion battery 10 (which may be in the form of an assembled battery 100) can be suitably used as a power source for a vehicle drive motor (electric motor) mounted on a vehicle 1 such as an automobile. it can.
  • the type of the vehicle 1 is not particularly limited, but may typically be a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or the like.
  • Such lithium ion battery 10 may be used alone, or may be used in the form of an assembled battery that is connected in series and / or in parallel.
  • a small laminate cell (lithium secondary battery) for evaluation was constructed according to the following procedure. First, a ternary lithium transition metal oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as a positive electrode active material, acetylene black (AB) as a conductive material, and a binder A positive electrode active material layer forming paste was prepared by using polyvinylidene fluoride (PVDF) and mixing these materials with ion-exchanged water so that the mass ratio was 87: 10: 3.
  • PVDF polyvinylidene fluoride
  • the positive electrode active material layer forming paste is applied to the positive electrode current collector so that the coating amount of the positive electrode active material per unit area is about 12 mg / cm 2 on the aluminum foil (thickness 15 ⁇ m) as the positive electrode current collector. It was applied to one side and dried. After drying, the sheet was stretched into a sheet with a roller press to form a thickness of approximately 90 ⁇ m, and slit so that the positive electrode active material layer had a predetermined width, to produce a positive electrode having dimensions of about 23 mm ⁇ 23 mm. . It should be noted that Fe foreign metal model particles having a diameter of 200 ⁇ m and a thickness of 10 ⁇ m were adhered as metal foreign substances on the positive electrode active material layer thus prepared.
  • graphite as a negative electrode active material graphite as a negative electrode active material
  • SBR styrene butadiene block copolymer
  • CMC carboxymethyl cellulose
  • a negative electrode active material layer forming paste was prepared by mixing with ion-exchanged water so as to be 1. This paste was applied to one side of the negative electrode current collector so that the coating amount of the negative electrode active material per unit area was about 6.5 mg / cm 2 on a copper foil (thickness 10 ⁇ m) as the negative electrode current collector and dried. I let you.
  • the sheet was stretched into a sheet shape with a roller press to form a thickness of about 60 ⁇ m, and the negative electrode active material layer was slit so as to have a predetermined width to produce a negative electrode having a size of about 25 mm ⁇ 25 mm.
  • a laminate cell for evaluation was constructed using the prepared positive electrode and negative electrode. That is, the positive electrode and the negative electrode prepared above were laminated with a separator in between so that the active material layers of both electrodes were opposed to each other to produce an electrode body.
  • a reference electrode in which a lithium metal foil was attached to a nickel lead was placed apart from the negative electrode on the negative electrode side surface of the separator.
  • a three-layer film (PP / PE / PP film) made of polypropylene / polyethylene / polypropylene was used as the separator.
  • This electrode body was housed in a laminated bag-like battery container together with a non-aqueous electrolyte and sealed to construct a test lithium secondary battery.
  • a non-aqueous electrolyte electrolytic solution
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 and (LPFO) Li [B ( C 2 O 4) 2] of 0.05 mol / L as an additive was used to dissolve the.
  • the amount of electrolyte used was 0.025 ml, and the impregnation time of the electrolyte was 5 hours.
  • the capacity of the small laminate cell for evaluation is 3.7 mAh.
  • ⁇ Micro charge process> The micro charge process was performed on the small laminate cell for evaluation constructed above under the following conditions. That is, CC charging was performed until the voltage between positive and negative electrodes was 0.8 V at 0.015 mA (0.004 C), and CV charging was performed until the total minute charging time was 10 hours while maintaining the voltage between positive and negative. .
  • the potential behavior in this microcharging process is shown in FIGS.
  • Iron (Fe) is a highly resistant metal species, but even a relatively large metal foreign substance having a diameter of 200 ⁇ m and a thickness of 10 ⁇ m can be completely detoxified in 10 hours as a whole. all right. Accordingly, in the self-discharge inspection after the initial conditioning process, it is considered that there is no possibility of a short circuit due to iron metal foreign matter, so that the inspection time can be shortened to several hours (for example, about 5 hours).
  • the environmental temperature was prepared by carrying out the microcharging process in a thermostat set to each test temperature.
  • the restraining force of the laminate cell was prepared by applying a pressure in a direction perpendicular to the electrode surface of the laminate cell using a restraining jig using a coil spring.
  • the restraining pressure actually applied to the laminate cell was calculated from a strain gauge attached to the restraining jig.
  • FIG. 8 shows the relationship between the dissolution amount and the environmental temperature
  • the amount of dissolution was calculated using the projected area of Fe metal foreign matter model particles mixed in the positive electrode. That is, the cell after the micro charge process is disassembled to obtain an electron microscopic image of Fe foreign metal model particles remaining undissolved on the positive electrode surface or the separator positive electrode surface, and the projected area of the undissolved part is first mixed
  • the amount of dissolution was calculated by subtracting from the projected area of the model particles.
  • the projected area was obtained by visually identifying the outline of the model particle from the acquired electron microscope image and calculating the area surrounded by the outline by screen processing. In addition, in order to evaluate the variation in the projected area by visual contour identification, the projected area was calculated five times for the same model particle image.
  • the standard deviation 1 ⁇ is about 30 ⁇ 100 [mu] m 2
  • such a variation in the amount of dissolution between cells is due to a variation due to the “mixing state of metallic foreign matter model particles” such as the state of embedding the metallic foreign matter model particles in the electrode and the way to touch the electrolytic solution. Conceivable.
  • the Fe metal foreign matter having a diameter of 200 ⁇ m ⁇ thickness of 10 ⁇ m was almost dissolved within 10 hours and reached the detoxification completion level.
  • the amount of dissolution may be greatly affected by the restraining pressure. For example, when the environmental temperature is lowered from 25 ° C. to 22 ° C., it can be seen that the dissolution amount is halved when there is a restraining pressure of 0.42 MPa or more.
  • the setting of the charge maintenance time for example, in the micro charge process for the secondary battery having a restraint pressure of 0.42 MPa or more at 22 ° C., for example, by extending the charge maintenance time to 20 hours, it can be seen that the metallic foreign object can be detoxified without fail. Further, for example, in a micro-charging process for a secondary battery having a binding pressure of 0.2 MPa at 22 ° C., for example, by extending the charge maintenance time to 20 hours, it is possible to more reliably detoxify the metal foreign matter. I understand that.
  • the lithium secondary battery obtained by the manufacturing method disclosed herein contains metallic foreign matter at the time of cell construction, the metallic foreign matter is rendered harmless by the subsequent microcharging step and the initial conditioning step, thereby improving battery performance. It will not be affected and will be offered at a lower cost and more reliably.
  • this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.
  • a method capable of manufacturing a secondary battery that does not cause a short circuit in a shorter time with high productivity even when a metal foreign object is mixed According to this manufacturing method, a safer and more reliable secondary battery can be provided. Therefore, according to the present invention, as shown in FIG. 6, a vehicle including such a secondary battery 10 (which may be in the form of an assembled battery 100 formed by connecting a plurality of such batteries 10 in series) as a power source. 1 (typically automobiles, in particular automobiles equipped with electric motors such as hybrid cars and electric cars) can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 電極の種類やバラつき等に因らず、負極における金属異物の局所的な析出を、より短時間で、確実に抑制することのできるリチウム二次電池の製造方法を提供する。本製造方法は、正極活物質層を備える正極と、負極活物質層を備える負極と、非水電解質とを備える二次電池の製造方法であって、正極、負極および非水電解質を含むセルを構築する工程;正極電位が鉄(Fe)の酸化電位以上、かつ、負極電位が鉄(Fe)の還元電位以上となる充電状態に、該構築されたセルの容量の0.01%~0.5%まで1時間以上かけて充電し、該充電状態を維持する微小充電工程;および、初回コンディショニング充電を行う工程、を包含する。

Description

二次電池の製造方法
 本発明は二次電池の製造方法に関し、より詳しくは、電池内に混入した金属異物の析出による短絡の問題を対処する二次電池の製造方法に関する。
 従来から、リチウム二次電池等の充放電可能な二次電池が広く利用されている。かかるリチウム二次電池は、典型的には、リチウムイオンの吸蔵および放出が可能な正極および負極の活物質をそれぞれ備えた正極および負極と、正極と負極との間に介在するセパレータと、これら正極、負極、およびセパレータに含浸される非水電解質とを備えている。リチウム二次電池の製造に際しては、正極、負極、およびセパレータを組み立て、それらに非水電解質を含浸させたのち、充電が行われる。
 この二次電池の製造にあたっては、外部から鉄(Fe)等の金属異物が不可避的に混入し得ることが知られている。この金属異物が正極近傍に存在すると、電池の充電時(例えば初回コンディショニング時)に非水電解質中に溶解し、負極の対向部位上に局所的に析出してゆくことでセパレータを突き破り、短絡を生じさせる可能性があることが指摘されている。そこで、二次電池を構築した後、初回コンディショニングの前に、このような金属異物に起因する二次電池の短絡を防止する目的で施される各種の手法(以下、単に、金属異物の無害化処理手法という場合もある。)が提案されている(例えば、特許文献1~4参照)。
 例えば、特許文献1には、初回充電時に電池容量の0.01%~0.1%の充電を行った後、1時間~48時間の放置時間を設けるようにした二次電池の製造方法が開示されている。
 また特許文献2には、電池に充電あるいは放電または充電と放電の組み合わせの電気的な衝撃を印加し、この印加を、Li基準で正極電位が4.0V以上で、印加した後1分間放置後の負極電位が2.0V以上となる条件で実施することが開示されている。
 これらの方法によると、負極に金属異物が析出することなく、電解質中に均一に拡散されることが記載されている。
 また一般的に、上記のような金属異物の無害化処理手法とは別に、初期コンディショニング後の二次電池に対し、無負荷状態での電圧降下量(自己放電量)を計測することにより内部短絡の有無を判断する自己放電検査が実施されている。この自己放電検査は金属異物の析出による微小短絡の有無を確認するものであるが、抵抗の高い鉄の析出による微小短絡の有無を確認するには5日間以上、例えば10日間程度の検査を行う必要があった。
日本国特許出願公開2005-243537号公報 日本国特許出願公開2007-018963号公報 日本国特許出願公開2006-086060号公報 日本国特許出願公開2007-042486号公報
 ところで、上記の特許文献1に開示された手法で二次電池の正極上の金属異物の溶解を試みた場合、例えば図10Aに示したように放置中に正極電位が降下してしまうために金属異物の溶解速度が低下し、金属異物を充分に溶解するのにより多くの時間を要する場合があり得る。また初期の負極電位がFeの酸化還元電位(例えば、Li基準で2.5V)より低いためにFeが負極上に析出する可能性があった。この傾向は、例えば三元系のリチウム遷移金属複合酸化物等の容量維持率が比較的低い電極材料を用いた電池について顕著にみられる傾向である。
 また、上記の特許文献2に開示された手法で二次電池の正極上の金属異物の溶解を試みた場合、例えば図10Bに示したように放置中の正極電位にバラつきが生じてしまっていた。これは、同規格で製造された電池であるにも関わらず、電極材料のロット間のバラつきに因り生じる影響であると考えられる。このため、金属異物を無害化し得る時間にもばらつきが生じ、より確実な金属異物の無害化を行うには処理時間を長く設定する必要があった。
 本発明は、上述したような従来の問題を解決すべく創出されたものであり、その目的とするところは、電極の種類やバラつき等に因らず、負極における金属異物の局所的な析出を、より短時間で確実に抑制することのできるリチウム二次電池の製造方法を提供することである。また、本発明の他の一の目的は、この製造方法により得られる短絡が生じにくく信頼性の高いリチウム二次電池を提供することである。
 本発明者らは、製造工程において不可避的に混入する鉄(Fe)等の金属異物の溶解挙動について鋭意研究を行ってきた。その結果、金属異物の溶解挙動は電池構成の微細な変化によって大きく影響を受け、金属異物の無害化処理における電位挙動に影響を及ぼし得ることを確認した。かかる電位挙動に影響を与える要因としては、上記の電極の種類やロット間のバラつきの他に、例えば、電解質中の添加剤の濃度等の設計上の違いや、電極の保管状態の影響等の意図しないバラつき等が含まれ得る。しかしながら、このような電位挙動への影響を小さく維持、制御し、常に最適な電位状態を確保することで、金属異物の溶解挙動を安定させ、無害化処理に要する時間を短縮できることを見出し、本発明を想到するに至ったものである。また、金属異物の溶解挙動に対して電位挙動以外の影響因子が認められる場合には、その影響を考慮した範囲で金属異物の無害化処理の時間を適切に設定し得ることをも見出した。
 すなわち、ここに開示される二次電池の製造方法は、正極活物質層を備える正極と、負極活物質層を備える負極と、非水電解質とを備える二次電池の製造方法である。かかる製造方法は、
 上記正極、上記負極および上記非水電解質を含むセルを構築する工程; 
 正極電位が鉄(Fe)の酸化電位以上、かつ、負極電位が鉄(Fe)の還元電位以上となる充電状態に、該構築されたセルの容量の0.01%~0.5%まで1時間以上かけて充電し、該充電状態を維持する微小充電工程;および、
 初回コンディショニング充電を行う工程、
を包含することを特徴としている。
 上記の微小充電工程においては、微小充電工程において、セルの容量の0.01%~0.5%というごく微少量の充電を1時間以上の十分な時間をかけてゆっくりと行うようにしている。充電初期は正負極間の電位差が急激に変化し得るために負極電位が不安定となり鉄(Fe)酸化電位を下回ることや急激な電位の上昇もあり得る。そのため、かかる緩慢な充電により、負極電位の低下および急激な上昇を抑え、金属異物の析出を確実に防止するようにしている。すなわち、ここに開示される製造方法においては、例えばパルス状、即ち微小時間での衝撃的な充電は全く行わない。
 また、正極電位が鉄(Fe)の酸化電位以上、負極電位が鉄(Fe)の還元電位以上である充電状態を達成した後は、そのまま放置することなく、上記電位を維持することで上記充電状態を積極的に維持、管理するようにしている。かかる構成によると、正極においては常に金属異物の溶解が継続的に行われ、また溶解した金属イオンが負極に析出されることを抑止することができる。このため、溶解した金属イオンは電解質に広範囲に均一に拡散することができ、金属イオンの局所的な析出をより確実に抑制することができる。また、上記充電状態は金属異物の影響が解消されるまで積極的に維持されるため、電極の種類やバラつき等に因る影響を抑えることが可能となる。
 なお、例えば上記鉄(Fe)の酸化電位と還元電位は、理想状体であれば同一の電位となる。しかしながら、実際には、電解質の添加剤や電極材料などの影響により、酸化の反応が進行する電位と還元の反応が進行する電位とがずれることがあり得る(過電圧という)。そのため、本明細書においては、これらを区別して記載するようにしている。
 ここに開示される二次電池の製造方法の好ましい一態様では、上記正極電位は、鉄(Fe)の酸化電位以上で銅(Cu)の酸化電位より低いことを特徴としている。かかる製造方法において、無害化の対象である金属異物としては、二次電池の製造工程において混入する可能性のある金属性の異物のうちで、該二次電池の作動電圧範囲内に酸化還元電位を有し、溶解する(イオン化する)可能性のあるものを考慮することができる。したがって、正極等に混入することが予想される金属性の異物であっても、該二次電池の作動電圧範囲内でイオンになる(溶解する)可能性のない金属については、上記の短絡の原因とはなり得ず、金属異物として考慮する必要はない。一般的には、かかる金属異物として、例えば、鉄(Fe)、銅(Cu)、錫(Sn)、亜鉛(Zn)、ステンレス鋼等を考慮し得る。しかしながら、ここに開示される微小充電工程においては、銅(Cu)を無害化の対象である金属異物として考慮せず、正極電位を銅(Cu)の酸化電位以上に上げないようにしている。かかる構成によると、銅(Cu)が正極において溶解されて負極上に析出することがないため、より抵抗が高いために溶解の遅い鉄(Fe)を確実に無害化することができる。また、ここに開示される発明は金属異物を積極的に溶解させるものであるが、負極集電体としても用いられる銅(Cu)を積極的な溶解の対象から除外することができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、上記微小充電工程を定電流定電圧(CC-CV)充電により行い、CC充電時の電流を0.01C以下とすることを特徴としている。上記のように、充電初期は正負極間の電位差が急激に変化し得る。かかる構成によると、充電時の電流を0.01C以下と小さくし、電位が急激に上昇するのを防ぐようにするため、電位調整精度を向上させることができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、上記微小充電工程において、CV充電時の正負極間電位差が0.5V以上1.3V以下となるように設定することを特徴としている。かかる構成によると、鉄(Fe)および銅(Cu)を負極に析出させることなく鉄(Fe)をより短い時間で電解質中に安定的に溶解させることができる。かかる構成によると、短時間での金属異物の無害化処理を行うことができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、上記微小充電工程において、CV充電時の負極の外装缶との電位差が-0.5V以上0.2V以下となるように設定することを特徴としている。一般的に、二次電池では、外装缶を金属、代表的にはアルミニウムまたはアルミニウム合金により形成している。そこで、上記のとおり正負極間の電位を設定するとともに、負極電位が外装缶に由来するアルミニウムまたはアルミニウム合金の析出電位以上に保つことで、外装缶に由来するアルミニウムまたはアルミニウム合金等の金属異物が負極に析出するのを防ぐようにする。
 ここに開示される二次電池の製造方法の好ましい一態様では、上記微小充電工程を定電流定電圧充電により行い、充電状態を5時間以上24時間以内維持することを特徴としている。かかる構成においては、金属異物の溶解を積極的に促進するものとなり得るため、より短時間で金属異物の無害化処理を完了することができる。したがって、かかる充電状態は、典型的には5時間以上24時間以内で完了することができ、より限定的には、10時間以上20時間以内程度で完了することができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、予め設定された所定温度域における標準充電維持時間に対し、実際の環境温度が、上記所定温度域より低いときには、上記標準充電維持時間より長い充電が行われるよう充電時間が設定され、上記所定温度域より高いときには、上記標準充電維持時間より短い充電が行われるよう充電時間が設定されることを特徴としている。金属異物の溶解挙動に対しては、環境温度も大きな影響を与え得る。かかる構成によると、環境温度による金属異物の溶解挙動に対する影響を、微小充電工程における充電時間を適切に調整することで解消するようにしている。したがって、処理対象である二次電池の状態に応じて、最短の処理時間で金属異物の無害化処理を行うことができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、セル構築工程において構築されたセルを複数個電気的に接続して組電池を構築し、該構築した組電池の全体に対して上記微小充電工程を実施することを特徴としている。かかる構成によると、例えば複数の二次電池(単一のセル)を直列に接続した組電池の状態で上記の微小充電工程を施すため、一度の処理時間で複数の二次電池に対して微小充電工程を行うことができて簡便かつより経済的である。
 ここに開示される二次電池の製造方法の好ましい一態様では、予め設定された所定拘束圧域における標準充電維持時間に対し、実際の拘束圧が、上記所定拘束圧域より低いときには、上記標準充電維持時間より短い充電が行われるよう充電時間が設定され、上記所定温度域より高いときには、上記標準充電維持時間より長い充電が行われるよう充電時間が設定されることを特徴としている。金属異物の溶解挙動に対しては、セルの拘束圧も大きな影響を与え得る。かかる構成によると、拘束圧による金属異物の溶解挙動に対する影響を、微小充電工程における充電時間を適切に調整することで解消するようにしている。したがって、処理対象である二次電池の状態に応じて、最短の処理時間で金属異物の無害化処理を行うことができる。
 ここに開示される二次電池の製造方法の好ましい一態様では、初回コンディショニング充電工程の後に、更に、該充電されたセルの電圧降下量を計測する自己放電検査工程を含み、上記自己放電検査工程は15時間以内で行われることを特徴としている。上記の製造方法によると、金属異物の無害化処理が確実に行われ得るため、このような処理が為された二次電池は金属異物、特に鉄(Fe)からなる金属異物の局所的な析出による短絡の可能性が十分に低減されたものであり得る。したがって、その後に自己放電検査工程を行う場合、抵抗が高く溶解するのに時間を要する金属異物(鉄(Fe))による短絡の可能性を考慮しなくてもよいため、自己放電検査工程を例えば15時間以内という極めて短時間で行うことが可能とされる。
 ここに開示される発明が他の側面において提供する二次電池は、上記のいずれかの製造方法により製造されていることを特徴としている。かかる二次電池は、単一のセルの状態のものと、該セルを2個以上電気的に接続した組電池の形態のものであり得る。かかる二次電池は、金属異物の無害化処理が確実に行われており、金属異物の局所的な析出による短絡の可能性が十分に低減された信頼性の高いものであり得る。また、この無害化処理および自己放電検査は、より短時間での実施が可能とされるため、これらの工程に費やす時間を削減することができて生産性が高く、経済的であり得る。そのため、かかる二次電池は、特に高い安全性と信頼性が求められる自動車等の車両に搭載される駆動用電源として好適に使用することができる。したがって、本発明は、例えば図6に示すように、かかる二次電池10(組電池100の形態であり得る。)を車両駆動用モータ(電動機)等の電源として備える自動車等の車両1をも提供することができる。車両1の種類は特に限定されないが、典型的には、ハイブリッド自動車、電気自動車、燃料電池自動車等であり得る。
図1は、本発明の一実施形態に係る工程フロー図である。 図2は、本発明の製造方法における電位挙動の一例を示した図である。 図3は、図2における充電電流および正負極間電圧と経過時間との関係を抽出して示した図である。 図4は、図3における経過時間が30分間までの充電電流および正負極間電圧の様子を拡大して示した図である。 図5は、複数の二次電池を拘束する様子を説明する斜視図である。 図6は、一実施形態に係る二次電池を備えた車両を例示した側面図である。 図7Aは、一実施形態に係る微小充電工程後の正極表面の様子を示した観察像である。 図7Bは、一実施形態に係る微小充電工程後のセパレータの正極側表面の様子を示した観察像である。 図7Cは、一実施形態に係る微小充電工程後の負極表面の様子を示した観察像である。 図7Dは、一実施形態に係る微小充電工程後のセパレータの負極側表面の様子を示した観察像である。 図8は、一実施形態に係る微小充電工程後の金属異物の溶解量と温度との関係を示した図である。 図9は、一実施形態に係る微小充電工程後の金属異物の溶解量と拘束圧との関係を示した図である。 図10Aは、従来の金属異物の無害化処理工程おける電位挙動の一例を示した図である。 図10Bは、従来の金属異物の無害化処理工程おける電位挙動の他の一例を示した図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 なお、本明細書において「二次電池」とは、電荷の移動により繰り返し充放電可能な電池一般をいい、典型的には、ニッケル水素電池、リチウム二次電池、リチウムポリマー電池等を包含する。
 また、本明細書において「活物質」は、二次電池において電荷担体となる化学種(例えば、リチウムイオン電池ではリチウムイオン)を可逆的に吸蔵および放出(典型的には挿入および脱離)可能な物質をいう。
 本実施形態に係る製造方法は、正極活物質層を備える正極と、負極活物質層を備える負極と、非水電解質とを備える二次電池の製造方法である。この二次電池には、代表的には、上記正極と上記負極との間にセパレータが介在され得る。
 このような二次電池は、セル(即ち二次電池を構成する構造体。)を構築する工程において、正極と、代表的にはセパレータと、負極とを組み立て、それらを非水電解質と共に電池ケースに収容し、電池ケースを密封することによってセルとなる。この二次電池(セル)の組み立てに際して、例えば、正極(例えば正極集電体上に形成された正極活物質層)に、製造装置の摺動部材等から銅、鉄等の金属異物が含まれてしまう場合がある。正極に金属異物が含まれると、充電時に正極の電位が金属異物の溶解電位よりも高くなった場合に、その金属異物が溶解して金属イオンが生じる。この金属イオンは、通常は正負極間(典型的にはセパレータ内)を負極に向かって直線的に移動するため、充電を継続すると金属イオンは負極に達して、負極の対向する位置に局所的に析出していた。そして充電が進むにつれ、負極上の析出物は正極側に向かって徐々に成長していくことになる。
 本実施形態では、上述のような析出物の成長を抑えるために、上記の構築されたセルに対して、初期コンディショニング充電を行うに先立って、以下に説明する微小充電工程を包含する、金属異物の無害化処理を行うことを特徴とする。特に、比較的抵抗が高く、電解質中に溶解し難い(溶解するのに時間を要する)鉄(Fe)を溶解すべき主な金属異物とし、この鉄(Fe)の無害化処理を確実に行うようにしている。
 以下、二次電池としてリチウム二次電池を製造する場合を例として、ここに開示される発明の説明を行う。
 図1は、ここに開示される二次電池の製造方法の一実施形態を示すフロー図である。また図2は、一実施形態としてのリチウム二次電池に対して微小充電工程を施した場合の電位状態を説明する図であり、図中のプロット線は、グラフの上から、正極電位、負極電位、正極と負極との間の電位差(以下、正負極間電圧という場合もある。)、および供給される電流の時間変化を表す。
 すなわち、例えば図1に示されるように、かかる微小充電工程(S30)は、セル構築工程(S10)において上記のとおりセルを構築した後、このセル(単一のセル)に対して、あるいは組電池構築工程(S20)を経て単一のセルを複数個電気的に接続することで構築される組電池に対して、施すことができる。
 微小充填工程(S30)は、例えば図2の正極電位および負極電位の時間変化に示されるように、金属リチウム(Li)基準極に対する正極電位が鉄(Fe)の酸化電位以上、かつ、負極電位が鉄(Fe)の還元電位以上となる充電状態に充電を行い、この充電状態を維持するようにする。
 かかる充電状態においては、常に正極電位が鉄(Fe)の酸化電位以上で、かつ、負極電位が鉄(Fe)の還元電位以上となるように制御し、常に正極は鉄(Fe)および鉄よりも酸化電位(溶解電位)が低い金属種が確実に溶解可能な状態にあり、負極はその溶解された金属種が析出できない状態とする。すなわち、この微小充電工程においては、正極で確実に溶解させる金属種として鉄(Fe)および鉄よりも溶解電位の低い金属種を想定している。例えば、鉄(Fe)よりも酸化電位の高い金属種である銅(Cu)についてはその対象から外すことができる。ここで、鉄(Fe)の酸化電位は、この実施形態では約2.5V(Li基準)の場合を示しているが、この値に限定されることなく、対象とするセルにおける実際の鉄(Fe)の酸化電位を基準として設定すればよい。
 ここで、正極電位は、鉄(Fe)の酸化電位以上で銅(Cu)の酸化電位より低いことが好ましい。というのは、正極電位が銅(Cu)の酸化電位より高い場合は、正極において銅(Cu)が溶解し得るが、溶解された銅(Cu)(すなわちCuイオン)は負極に向かって移動する。ここで負極電位は鉄(Fe)の還元電位以上であるものの銅(Cu)の還元電位未満となるため、負極に到達したCuイオンは直ちに還元されて負極上に析出し得る。かかるCuの析出は局所的に生じ得るため好ましいものではない。したがって、かかる微小充電工程においては、正極電位は銅(Cu)の溶解が起こらない状態とするのが好ましい。なお、正極電位は、銅(Cu)の酸化電位より低い範囲で、なるべく高く設定することが好ましい。
 なお、この充電は、セルの容量の0.01%~0.5%までの電荷を1時間以上かけて充電する、緩慢な充電速度での充電により行うことが必須とされる。一般に、電解質の含浸後の正極および負極の電位は、例えば、3.0V前後(Li基準)程度となる。また、充電初期に急速ないしは通常の充電速度で充電を行うと、正負極の電位の急激な変化を招き得る。ここに開示される発明においては、このような緩慢な充電速度での充電を行うことにより正負極の電位の急激な変化を防ぎ、正極および負極の電位が常に鉄(Fe)の還元電位以上を維持し得るため、負極上に鉄(Fe)が析出されることはない。
 図3は、図1における電流と正負極間電圧の時間変化の様子のみを示した図であり、図4は、図3における経過時間が30分までの領域を拡大して示した図である。このような緩慢な充電速度での充電を行うことにより、充電初期に見られがちな正負極間電圧の変化をも防ぎ、例えば図4に示すような、より精度の高い電位調整および電位の制御が可能となる。
 また、上記の充電状態への充電は、定電流定電圧(CC-CV)充電により行うのが好ましい。CC-CV充電とすることにより、より高精度な電位制御が可能とされる。なお、例えばセルの容量の0.01%の充電を1時間かけてCC充電により行うと、その電流は0.01Cとなる。ここに開示される微小充電工程は、より緩慢な充電速度での充電が望ましいことから、かかるCC充電時の電流は0.01C以下、例えば0.008C以下、より限定的には0.005C以下とするのが好ましい。
 CV充電時の正負極間電圧については、0.5V以上1.3V以下となるように設定するのが好ましい。正負極間電圧は0.5V未満であっても無害化処理は可能である。しかしながら、正負極間電圧が0.5V未満であると、金属異物を溶解させるのに必要以上に長い時間を要してしまうために好ましくない。したがって、正極で溶解された金属異物の溶解速度を高め、無害化処理に要する時間を短縮するという観点から、正負極間電圧を0.5V以上とするのが好ましい。また、正負極間電圧が1.3Vを超過した場合であっても無害化処理は可能である。しかしながら、1.3Vを超える正負極間電圧を確保するにはより厳密な正極電位および負極電位の管理が必要となり、正極が銅(Cu)の酸化電位以上となって負極上に銅(Cu)が析出したり、またはその逆で、負極が鉄(Fe)の還元電位以下となって負極上に鉄(Fe)が析出する可能性が高くなるため好ましくない。本発明者らの検討によると、様々な状況により条件は異なってくるものの、かかる微小充電工程において正負間電圧がおおよそ1.3Vを超過するあたりから、例えば、負極に鉄(Fe)の析出が認められることがあり得る。これらのことから、より安定的にかつ短時間で無害化処理を行うためには、正負極間電圧を0.5V以上1.3V以下、例えば0.6V以上1.0V以下好ましくは0.7V以上0.9V以下、より限定的には0.8±0.05V程度とすることを目安にするのが好適な例として示される。
 また、微小充電工程のCV充電の際には、負極の外装缶との電位差が-0.5V以上0.2V以下となるように設定するのも好ましい。かかる電位差は、電解質中のアルミニウム(Al)の析出電位に基づいて規定した値である。一般的に、二次電池では、外装缶を金属、代表的にはアルミニウムまたはアルミニウム合金により形成している。この外装缶は、上記の無害化処理に際して電池内部で電解質と触れることにより、正極および負極に対して電位を有する。また、外装缶と、正極および負極との電位をそれぞれ分離して計測することが可能となる。そこで、上記のとおり正負極間の電位を設定するとともに、外装缶と負極との間の電位についても計測し、負極電位を外装缶に由来するアルミニウムまたはアルミニウム合金の析出電位以上に保つようにしている。負極と外装缶との電位差をこのように設定することで、外装缶に由来するアルミニウムまたはアルミニウム合金等の金属異物が負極に析出するのを防ぐことができる。かかる構成により、より安全で品質に優れた二次電池の製造が可能とされる。
 以上の微小充電工程における充電状態は、無害化の対象である金属異物が十分に溶解および拡散されると判断される時間まで維持することができる。かかる充電状態の維持時間については、例えば、主に(1)溶解速度が比較的遅い鉄(Fe)を含む金属異物の大きさ、(2)正負間電圧、(3)目標とする全体の処理時間、等を考慮して決定することができる。そしてここに開示される方法においては、充電状態を5時間以上24時間以内の時間で維持することを一つの目安とすることができる。なお、この維持時間は、例えば、環境温度25℃において、正負極間電圧を0.8Vとする条件で微小充電工程を行った際に、直径200μm、厚み10μmの鉄(Fe)粒子を完全に溶解し得る時間が10時間であり、おおよその金属異物の無害化がこの10時間を含む5時間(10時間の1/2)以上24時間(10時間のおよそ2倍強)以内の範囲で完了し得るものとして把握することができる。
 なお、本発明者らの詳細な検討によると、例えば、微小充電工程において所定の大きさの金属異物を溶解するに必要な充電維持時間は、さらに、様々な因子により影響を受ける。例えば、既に例示した環境温度、正負極間電圧、金属異物の溶解速度の他に、二次電池の構成材料の仕様の違いおよびばらつき等を考慮することができる。より具体的には、二次電池の構成材料の仕様の違いとしては、活物質の種類、電解質に加える添加剤の濃度等の影響を考慮することができる。例えば、具体的には、電解質に加える添加剤の濃度がより高濃度となることで、金属異物の溶解速度が低下する傾向にあることが確認されている。また、二次電池の構成材料のばらつきについては、電極の管理しきれない水分量の違いや、金属異物の混入状態(正極活物質層への埋まり具合や、電解質との濡れ具合等)、電解質の電極およびセパレータへの含浸度合等を考慮することができる。例えば、具体的には、電極のドライルームでの保管期間が長くなることや、瞬時に大気中にさらされた場合などに、金属異物の溶解速度が低下することが確認されている。これらは、電極中の水分量が上昇したことによるものであると考えられる。
 したがって、ここに開示される製造方法においては、上記に例示した因子による影響やその他の影響も含め、より短時間で確実に無害化処理を行える充電維持時間を設定することができる。例えば、ここに開示される製造方法では、以下の手法により、無害化処理の環境あるいは二次電池の状態に応じて、より適切な処理時間で確実に無害化処理を行うようにしている。すなわち、予め、所定の充電維持時間において、所定の大きさの金属異物(好ましくは鉄(Fe)粒子)を正極表面に配置し、その他の条件(例えば、ここでは環境温度および拘束圧)を様々に変化させて微小充電工程を実施する。このとき、所定の時間で溶解される金属異物の溶解量と、変動させた条件(環境温度および拘束圧)との関係を予め調べておくことで、実際の環境温度における、適切かつ最短の充電維持時間を設定することができる。
 図8に、正極に直径200μm、厚み10μmの鉄(Fe)粒子を配置して、正負極間電圧を0.8V、充電維持時間を10時間とし、環境温度を変化させて微小充電工程を行った際の、鉄(Fe)粒子の溶解量と環境温度との関係を示した。なお、この例の場合は、セルの拘束圧も変化させている。この図8からわかるように、環境温度が25℃以上の温度域では鉄(Fe)粒子の溶解量は環境温度による影響をほとんど受けないものの、25℃未満の温度域では拘束圧が高くなると溶解量が減少し、溶解させるのに時間を要することがわかる。したがって、より具体的には、例えば図1において、工程C10で示したように、予め設定された所定温度域における標準充電維持時間に対し、実際の環境温度が、上記所定温度域より低いときには、標準充電維持時間より長い充電が行われるよう充電時間を設定し、所定温度域より高いときには、標準充電維持時間より短い充電が行われるよう充電時間を設定することができる。また、標準充電維持時間から延長および短縮する時間についても、図8に示した関係から適切に求めることができる。
 図9に、図8に示したデータを溶解量と拘束圧との関係として示した。この図9からわかるように、拘束圧が無加圧(0.1MPa以下)の拘束圧域では鉄(Fe)粒子の溶解量はあまり影響を受けないものの、0.2MPa以上の拘束圧域では拘束圧が高くなるにつれて溶解量が減少し、溶解させるのに時間を要することがわかる。したがって、より具体的には、例えば図1において、工程C20で示したように、セルを拘束治具(図5参照)により拘束された状態において、予め設定された所定拘束圧域における標準充電維持時間に対し、実際の拘束圧が、この所定拘束圧域より低いときには、標準充電維持時間より短い充電が行われるよう充電時間を設定し、所定温度域より高いときには、標準充電維持時間より長い充電が行われるよう充電時間を設定することができる。
 なお、この実施形態においては、微小充電工程において環境温度および拘束圧の条件を変動させるようにしたが、その他の条件を変動させることで標準充電維持時間における該条件と溶解量との関係を求め、該条件が変動した場合のより適切な充電維持時間を設定するようにしても良い。また、図1における工程C10および工程C20は必須の工程ではなく、いずれか一方または両方を任意に採用することで、より適切な充電時間を設定することができる。工程C10および工程C20を両方行う場合は、必ずしも環境温度および拘束圧の条件を各々別工程として、この順に考慮して充電時間を設定する必要はない。例えば、環境温度および拘束圧を複合的に考慮して充電時間を設定するなどしても良い。
 かかる実施形態で例示したように、ここに開示される微小充電工程は、単一のセルに対して行うこともできるし、セルを複数個電気的に接続して組電池を構築した組電池の全体に対して実施することもできる。ここで、組電池については、セルを複数個電気的に接続した形態のものであればよく、例えば、拘束圧の有無あるいは拘束圧の大きさ等により制限されない。また、複数のセルの配設の形態についても特に限定されない。例えば、隣り合うセルの間にスペーサーとも呼ばれる緩衝材が挟まれていても良いし、セル同士が直接接していても良い。また、各セルの全体が所定の組電池ケースに収容されていても良いし、各セルの一部が所定の組電池ホルダ等で固定された形態のものであっても良い。また、例えば図5に示したように、各セルを収容した後、セルの平面に任意の拘束圧を印加する機能を備えた治具等を用いて組電池を構築するようにしても良い。
 なお、ここでいう拘束圧は、正極および負極の積層面(代表的にはセルの平面に一致する。)に略垂直な方向に加わる圧力であって、単一のセルまたは組電池のいずれに加えられていても良い。かかる拘束圧は、例えばロードセルを用いたり、ひずみゲージを利用して算出する等して求めることができる。
 以上の微小充電工程によると、セル内に混入した金属異物は溶解され、イオンの状態で電解質中に拡散され得る。そして図1に示したように、その後に行う初回コンディショニング充電工程(S40)において電位が下がった際に、セル内で十分に拡散された状態の金属異物のイオンが負極上の広範囲に(好ましくは全面に渡って)ごく薄く析出する。すなわち、金属異物のイオンは拡散した後に負極に到達するため、負極の所定の箇所に局所的に析出することが抑制される。そしてかかる析出は短絡を引き起こすものとはなり得ないため、これによりセル内に混入した金属異物は無害化される。
 なお、かかる初回コンディショニング工程における具体的な充電処理等については特に制限されず、対象となる二次電池を性能良く活性化し得る各種の条件での充電処理等を行うことができる。例えば、適切な充電量の充電を行った後、所定の時間にわたって放置し、所定の電圧まで放電する操作を繰り返すこと等が例示される。かかる初期コンディショニング工程により、二次電池は所定の電池容量にまで充電される。
 なお、ここに開示される製造方法においては、上記の初回コンディショニング工程の後に、更に自己放電検査工程を含むようにしても良い。かかる自己放電検査工程は、初回コンディショニングにより充電されたセルの電圧降下量を計測することで、内部短絡の有無を判定するものである。ここで検査の対象とする内部短絡は、正極側になお残存している金属異物の局所的な析出による微細な短絡である。そのため、かかる微細な短絡の有無を正確に計測するには、例えば、従来では少なくとも5日間程度、場合によっては10日間程度の検査時間を要していた。これは主として、抵抗が高く溶解するのに時間を要する鉄(Fe)が金属異物としてセル内に残存していた場合を想定し、この鉄(Fe)による内部短絡が生じ、これを計測するのに5日間以上の期間が必要との見解に基づき、検査時間を設定していたことによるものである。
 これに対し、ここに開示される製造方法においては、微小充電工程において溶解するのに時間を要する鉄(Fe)を確実に溶解させ、その後の初回コンディショニング工程において負極上に拡散した状態で薄く析出させることで無害化しているため、自己放電検査においては鉄(Fe)による内部短絡の可能性を考慮しなくてよい。したがって、かかる自己放電検査工程は、例えば、鉄(Fe)以外の金属種による内部短絡の有無の検査を行えばよい。かかる検査は、例えば24時間以内で行うことができ、より限定的には15時間以内、好適には10時間以内、更には2~5時間程度で行うことができる。これにより、自己放電検査工程の著しい時間の短縮を図ることができ、生産性が著しく向上される。
 そして、ここに開示される微小充電工程において溶解の対象から外すことのできる銅(Cu)については、抵抗が小さいため、数時間(例えば、1~2時間)程度で短絡の有無を検査し得る。なお、二次電池内に混入される銅(Cu)を含む金属異物の無害化については、ここに開示されていない他の手法により行うようにしてもよい。例えば、セル容量の0.01%未満の充電をパルス的に行う操作を2回以上繰り返すことで、銅(Cu)の溶解および拡散を行うようにする手法等を採用することが例示される。
 ここに開示される製造方法によって製造される二次電池は、その詳細な構成、形態、容量、用途等は特に限定されない。そこで以下、二次電池の一例としてリチウムイオン電池を例にし、適宜図面を参照しつつ、本願発明についてより具体的に説明する。
 リチウムイオン電池は、偏平な角型形状の電池ケース(例えば、図5参照)を備える。この電池ケースの中に電極体が収容されている。電極体は、それぞれシート状に形成された正極、負極、および2枚のセパレータが積層されることによって構成されている。典型的には、これらは、セパレータ、正極、セパレータ、負極のように互いに重ね合わされ、捲回されている。捲回された電極体は、電池ケースの形状に合うように、側方からプレスされることによって偏平形状に成形されている。
 正極は、典型的には、正極集電体の表面に正極活物質を有する正極活物質層が形成されている。正極活物質層は、典型的には正極集電体の両面に形成されているが、片面に形成されることもあり得る。負極は、負極集電体の表面に負極活物質を有する負極活物質層が形成されている。負極活物質層は、典型的には負極集電体の両面に形成されているが、片面に形成されることもあり得る。正極集電体の長手方向の一方の端部には、正極活物質層が形成されていない未塗工部が設けられており、この未塗工部には、正極端子が接続されている。同様に、負極集電体の長手方向の一方の端部には負極活物質層が形成されていない未塗工部が設けられており、この未塗工部には負極端子が接続されている。
 正極端子および負極端子が接続された電極体を電池ケースに挿入し、その内部に非水電解質を供給した後、電池ケースを封止することにより、リチウムイオン電池を構築することができる。
 正極集電体には、従来のリチウム二次電池(典型的にはリチウムイオン電池)の正極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウム、ニッケル、チタン、鉄等を主成分とする金属またはそれらを主成分とする合金を用いることができる。正極集電体の形状については特に制限はなく、リチウム二次電池の形状等に応じて様々なものを考慮することができる。例えば、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。典型的にはシート状のアルミニウム製の正極集電体が用いられる。
 正極活物質としては、リチウムを吸蔵および放出可能なリチウム含有遷移金属酸化物が用いられ、従来からリチウム二次電池に用いられる物質(例えば、岩塩型構造、層状構造あるいはスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムマグネシウム系複合酸化物等のリチウム含有複合酸化物が挙げられる。また、本発明の利点をより効果的に得られる正極活物質として、マンガンとニッケルとコバルトを含む三元系のリチウム含有遷移金属酸化物(特に、リチウム含有複合酸化物を構成する遷移金属におけるニッケルの含有割合が50モル%未満のもの)を挙げることができる。
 ここで、例えば、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とするα-NaFeO型のニッケル酸リチウム(LiNiO)の他、このLiNiOのニッケルサイト(遷移金属サイト)にリチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、ニッケルの割合が50%以上を維持するように含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、コバルト(Co)、アルミニウム(Al)、マンガン(Mn)、クロム(Cr)、鉄(Fe)、バナジウム(V)、マグネシウム(Mg)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、ランタン(La)、およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。なお、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、およびリチウムマグネシウム系複合酸化物についても同様の意味である。
 また、その他、一般式:
Li(LiMnCoNi)O
(前式中のa、x、y、zはa+x+y+z=1を満たす。)
で表わされるような、遷移金属元素を3種含むいわゆる三元系リチウム過剰遷移金属酸化物や、一般式:
xLi[Li1/3Mn2/3]O・(1-x)LiMeO
(前式中、Meは1種または2種以上の遷移金属であり、xは0<x≦1を満たす。)
で表わされるような、いわゆる固溶型のリチウム過剰遷移金属酸化物等であってもよい。
 このような正極活物質を構成する化合物は、例えば、公知の方法で調製し、提供することができる。例えば、原子組成に応じて適宜選択されるいくつかの原料化合物を所定のモル比で混合し、その混合物を適当な手段および所定温度で焼成することによって目的のリチウム含有複合酸化物を調製することができる。また、焼成物を適当な手段で粉砕、造粒および分級することにより、所望する平均粒径および/または粒径分布を有する二次粒子によって実質的に構成された粒状の正極活物質粉末を得ることができる。なお、正極活物質(リチウム含有複合酸化物粉末等)の調製方法自体は本発明を何ら特徴付けるものではない。
 正極活物質層は、上記の正極活物質の他、必要に応じて導電材、結着剤等を含有し得る。導電材としては、例えば、カーボンブラック(例えばアセチレンブラック、ファーネスブラック、ケッチェンブラック)、グラファイト粉末等のカーボン材料を好ましく用いることができる。これらのうち一種または二種以上を併用してもよい。結着剤としては、水に溶解または分散するポリマー材料を好ましく採用することができる。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のビニル系重合体;ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)等のゴム類等が例示される。なお、結着剤については水系のものに限定されることなく、ポリフッ化ビニリデン(PVDF)等の溶剤系バインダを用いることもできる。
 また、特に限定するものではないが、上記正極活物質100質量部に対する導電材の使用量は、例えば1~20質量部(好ましくは5~15質量部)とすることができる。また、正極活物質100質量部に対する結着剤の使用量は、例えば0.5~10質量部とすることができる。
 負極集電体には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅材やニッケル材あるいはそれらを主体とする合金材を用いることが好ましい。負極集電体の形状は、正極の形状と同様であり得る。典型的にはシート状の銅製の負極集電体が用いられる。
 負極活物質としては、リチウムを吸蔵および放出可能な材料であればよく、従来からリチウム二次電池に用いられる負極活物質の一種または二種以上を特に限定なく使用することができる。例えば、黒鉛(グラファイト)等の炭素材料、リチウム・チタン酸化物(LiTi12)等の酸化物材料、スズ、アルミニウム(Al)、亜鉛(Zn)、ケイ素(Si)等の金属若しくはこれらの金属元素を主体とする金属合金からなる金属材料、等が挙げられる。典型例として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、非晶質のもの(アモルファスカーボン)や、これらを組み合わせた構造を有するもののいずれの炭素材料も、好適に使用することができる。
 負極に形成される負極活物質層には、上記負極活物質の他に、例えば上記正極活物質層に配合され得る一種または二種以上の材料を必要に応じて含有させることができる。そのような材料として、上記の正極活物質層の構成材料として列挙したような導電材、バインダおよび分散剤等として機能し得る各種の材料を同様に使用し得る。なお、バインダについては水系のものを好ましく用いることができるが、これに限定されることなく、ポリフッ化ビニリデン(PVDF)等の溶剤系バインダを用いることもできる。
 また、特に限定されるわけではないが、負極活物質100質量部に対する導電材の使用量は、例えば、およそ1~30質量部(好ましくは、およそ2~20質量部、例えば5~10質量部程度)とすることができる。また、負極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部とすることができる。
 本実施形態に係る正極および負極は、常法により製造することができる。すなわち、上記の活物質と結着材等とを従来と同様の適当な溶媒(水、有機溶媒等)に分散させてなるペースト状の組成物(以下、活物質層形成用ペーストという)を調製する。調製した活物質層形成用ペーストを集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、集電体に活物質層が備えられた電極が得られる。
 非水電解質は、支持塩としてのリチウム塩を有機溶媒(非水溶媒)中に含んだものである。常温で液状の非水電解質(すなわち電解液)を好ましく使用することができる。リチウム塩としては、例えば、従来からリチウム二次電池の非水電解質の支持塩として用いられている公知のリチウム塩を、適宜選択して使用することができる。例えば、かかるリチウム塩として、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特に好ましい例として、LiPFが挙げられる。かかる非水電解質には、必要に応じて、ガス発生添加剤、被膜形成添加剤等に代表される各種の添加剤が加えられていても良い。
 上記非水溶媒としては、一般的なリチウム二次電池に用いられる有機溶媒を適宜選択して使用することができる。特に好ましい非水溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等のカーボネート類が例示される。これら有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 セパレータとしては、従来と同様のセパレータを使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。かかる多孔性シートの構成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン等のポリオレフィン系樹脂が好ましい。特に、PEシート、PPシート、PE層とPP層とが積層された二層構造シート、二層のPP層の間に一層のPE層が挟まれた態様の三層構造シート等、の多孔質ポリオレフィンシートを好適に使用し得る。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 本実施形態に係るリチウム二次電池の用途は特に限定されない。上述の通り、本実施形態に係るリチウム二次電池によれば、セルに混入した金属異物に起因する内部短絡を短時間で確実に防止し得ることから、安全性および信頼性が高く、各種特性が如何なく発揮できるものとなり得る。そのため、本実施形態に係るリチウム二次電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用することができる。例えば図6に示すように、リチウムイオン電池10(組電池100の形態であり得る。)は、自動車等の車両1に搭載される車両駆動用モータ(電動機)の電源として好適に利用することができる。車両1の種類は特に限定されないが、典型的には、ハイブリッド自動車、電気自動車、燃料電池自動車等であり得る。かかるリチウムイオン電池10は、単独で使用されてもよく、直列および/または並列に複数接続されてなる組電池の形態で使用されてもよい。
 次に、本発明の一実施例を説明する。ただし、以下の説明は、本発明をかかる具体例に限定することを意図したものではない。
[微小充電工程の評価]
<評価用セルの準備>
 評価用の小型ラミネートセル(リチウム二次電池)を以下の手順に従って構築した。
 まず、正極活物質としての三元系のリチウム遷移金属酸化物(LiNi1/3Mn1/3Co1/3)と、導電材としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを用い、これらの材料を質量比で87:10:3となるようにイオン交換水と混合することにより正極活物質層形成用ペーストを調製した。次いで、正極集電体としてのアルミニウム箔(厚さ15μm)に単位面積あたりの正極活物質の被覆量がおよそ12mg/cmとなるように該正極活物質層形成用ペーストを正極集電体の片面に塗布して乾燥させた。乾燥後、ローラプレス機にてシート状に引き伸ばすことにより厚さをおよそ90μmに成形し、正極活物質層が所定の幅を有するようにスリットして、寸法が約23mm×23mmの正極を作製した。
 なお、このように作製した正極の活物質層上に、金属異物として直径200μm、厚み10μmのFe製の金属異物モデル粒子を付着させた。
 次に、負極活物質としての黒鉛と、結着材としてのスチレンブタジエンブロック共重合体(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量%比が98:1:1となるようにイオン交換水と混合することにより負極活物質層形成用ペーストを調製した。このペーストを、負極集電体としての銅箔(厚さ10μm)に単位面積あたりの負極活物質の被覆量がおよそ6.5mg/cmになるように負極集電体の片面に塗布し乾燥させた。乾燥後、ローラプレス機にてシート状に引き伸ばすことにより厚さおよそ60μmに成形し、負極活物質層が所定の幅を有するようにスリットして寸法が約25mm×25mmの負極を作製した。
<評価用セルの組み立て>
 上記調製した正極と負極とを用いて評価用のラミネートセルを構築した。すなわち、セパレータを間に介して、上記で作製した正極と負極とを、両電極の互いの活物質層が対向するように積層して電極体を作製した。なお、正極、負極それぞれのリチウム基準電位を計測するために、セパレータの負極側面に、ニッケルリードにリチウム金属箔を貼り付けた参照極を負極から離して設置した。セパレータとしては、ポリプロピレン/ポリエチレン/ポリプロピレン製の三層フィルム(PP/PE/PPフィルム)を用いた。
 この電極体を非水電解液とともにラミネート製の袋状電池容器に収容し、封口して試験用リチウム二次電池を構築した。非水電解質(電解液)としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の3:3:4(体積比)混合溶媒に、リチウム塩としての1mol/LのLiPF(LPFO)と、添加剤としての0.05mol/LのLi[B(C]を溶解させたものを用いた。なお、使用した電解液量は0.025mlで、電解液の含浸時間は5時間とした。
 かかる評価用の小型ラミネートセルの容量は、3.7mAhである。
<微小充電工程>
 上記で構築した評価用の小型ラミネートセルに対して、下記の条件で微小充電工程を施した。すなわち、0.015mA(0.004C)で正負極間電圧が0.8Vとなる条件までCC充電を行い、正負間電圧を保ったまま全微小充電時間が10時間となるまでCV充電を行った。この微小充電工程における電位挙動を図2~4に示した。
<評価>
 微小充電工程後の評価用セルを分解し、光学顕微鏡を用いて正極、負極およびセパレータの両面の表面を観察した。なお、図7A~図7Dは、それぞれ微小充電後のA:正極の表面の観察画像、B:セパレータの正極側表面の観察画像、C:負極表面の観察画像、およびD:セパレータの負極側表面の観察画像である。これらの観察結果から、微小充電を行うことで、正極上に配設したFe製の金属異物モデル粒子がほぼ全て溶解していること、該モデル粒子は溶解後にセパレータの正極側表面にうっすらと析出しているのが確認できるが、セパレータ負極側表面および負極表面への析出は確認できなかった。
 このように正負極間でCC-CV充電を行うことで、正極上の金属異物を安定的に短時間で溶解させ、しかも活負極上に析出させることなく、無害化処理を行えることが確認できた。また、鉄(Fe)は抵抗が高い金属種であるが、このFeからなる直径200μm、厚み10μmという比較的大きな金属異物であっても、全体として10時間で完全に無害化処理し得ることがわかった。
 したがって、初回コンディショニング工程後の自己放電検査において、鉄の金属異物による短絡の可能性はないと考えられるため、検査時間を数時間(例えば、5時間程度)に短縮することが可能となる。なお、かかる微小充電工程においては継続的な充電を行うが、実際の充電量は極少量であるため、充電用の電源としては、例えば、ボタン電池や乾電池等による電圧が利用可能なレベルである。これらのことから、微小充電工程における継続的な充電によるコストの増加は、これにより得られる効果から見て相殺して余りあるものであるといえる。
[環境温度および拘束圧の影響]
 上記と同様にして、評価用の小型ラミネートセルを構築した。得られた評価用の小型ラミネートセルに対して、下記の条件で微小充電工程を施した。すなわち、0.015mA(0.004C)で正負極間電圧が0.8Vとなる条件までCC充電を行い、正負間電圧を保ったまま全微小充電時間が10時間となるまでCV充電を行った。なお、微小充電工程を行うに際し、環境温度を21℃~29℃の間で変化させ、セルの拘束圧を約0.04MPa(無拘束)~0.85MPaの間で変化させた。各条件においてサンプル数n=10で試験を行った。
 環境温度は、微小充電工程を各試験温度に設定した恒温槽の中で実施することで調製した。ラミネートセルの拘束力は、コイルスプリングを用いた拘束治具を用い、ラミネートセルの電極表面に垂直な方向に圧力を加えることで調製した。なお、ラミネートセルに実際に加えた拘束圧力は、拘束治具に取り付けたひずみゲージから算出した。
<評価>
 微小充電工程後の評価用セルを分解し、光学顕微鏡を用いて正極に残存するFe製金属異物モデル粒子の量を調べることにより、上記の微小充電工程により溶解された金属異物の溶解量を算出した。その結果を、図8および図9に示した。図8および図9は同一のデータ基づいたプロットであるが、図8は溶解量と環境温度との関係を示し、図9は溶解量と拘束圧の関係を示したものである。図8および図9において、マーカーは平均値(n=10)を示し、バーはデータのバラつきを示している。
 溶解量は、正極に混入させたFe製金属異物モデル粒子の投影面積を利用して算出した。すなわち、微小充電工程終了後のセルを分解して正極表面またはセパレータ正極側表面に溶け残っているFe製金属異物モデル粒子の電子顕微鏡像を取得し、溶け残り部分の投影面積を、最初に混入したモデル粒子の投影面積から差し引くことで、溶解量を算出した。また投影面積は、取得した電子顕微鏡像から目視でモデル粒子の輪郭を識別し、輪郭線で囲まれた面積を画面処理により算出することで得た。
 なお、目視での輪郭識別による投影面積のバラつきを評価するために、同一のモデル粒子画像について5回、投影面積の算出を行った。その結果、標準偏差1σは約30~100μmであり、10セル(n=10)間の溶解量の標準偏差1σである3000~5000μmと比較して十分に無視できるほど小さいことを確認した。なお、このようなセル間の溶解量のバラつきは、電極への金属異物モデル粒子の埋め込み状態や、電解液の触れ方などの、「金属異物モデル粒子の混入状態」に起因するバラつきであると考えられる。
 図8から、環境温度が約25℃以上の範囲では、溶解量はほぼ飽和し、拘束圧、温度と溶解量による大きな影響はないことがわかる。なお、溶解量の算出のための投影面積のバラつき(1σ)の最大が約6700μmであることより、当初投影面積(31416μm)-投影面積の最大バラつき(6700μm)から概算で求められる溶解量(2500μm)を一つの無害化完了レベルと考えることができる。拘束力が0.42MPa以下の場合には、環境温度が25℃以上ならばφ200μm×厚み10μmのFe金属異物が10時間以内にほぼ溶解され、無害化完了レベルに達していることがわかった。
 一方で、環境温度が25℃以下の範囲では、拘束圧によって溶解量に大きな影響がみられる場合があることが確認できた。例えば、環境温度が25℃から22℃に低下すると、0.42MPa以上の拘束圧がある場合は溶解量が半減することがわかる。
 また、図9からも、環境温度が約25℃以上の範囲では、溶解量は拘束圧よる大きな影響はないことがわかる。しかしながら、環境温度が下がるほど溶解量が低減すること、環境温度が25℃を下回る範囲では、溶解量は拘束圧により大きな影響を受けることが確認できる。例えば、拘束圧が無加圧から0.2MPa程度に増加すると、環境温度が25℃を下回る場合には溶解量が半減することがわかる。
 したがって、充電維持時間の設定としては、例えば、22℃で、0.42MPa以上の拘束圧がある二次電池に対する微小充電工程においては、例えば、充電維持時間を20時間に延長することで、より確実に金属異物の無害化を行えることがわかる。
 また、例えば、22℃で、0.2MPaの拘束圧がある二次電池に対する微小充電工程においては、例えば、充電維持時間を20時間に延長することで、より確実に金属異物の無害化を行えることがわかる。
 ここで開示された製造方法により得られるリチウム二次電池は、セルの構築時に金属異物が含まれていても、その後の微小充電工程および初回コンディショニング工程により該金属異物が無害化され、電池性能に影響を及ぼすことはなく、より低コストで、信頼性の高いものとして提供されることになる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 ここで開示される技術によると、金属異物が混入した場合であっても、短絡を起こすことのない二次電池を、より短時間で生産性良く製造できる方法が提供される。この製造方法によると、より安全で信頼性の高い二次電池を提供することができる。従って、本発明によると、図6に示されるように、かかる二次電池10(当該電池10を複数個直列に接続して形成される組電池100の形態であり得る。)を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車のような電動機を備える自動車)を提供することができる。
 1 車両
 10 リチウムイオン電池
 50 拘束治具
 100 組電池

Claims (13)

  1.  正極活物質層を備える正極と、負極活物質層を備える負極と、非水電解質とを備える二次電池の製造方法であって、
     前記正極、前記負極および前記非水電解質を含むセルを構築する工程; 
     正極電位が鉄(Fe)の酸化電位以上、かつ、負極電位が鉄(Fe)の還元電位以上となる充電状態に、該構築されたセルの容量の0.01%~0.5%まで1時間以上かけて充電し、該充電状態を維持する微小充電工程;および、
     初回コンディショニング充電を行う工程、
    を包含する、二次電池の製造方法。
  2.  前記正極電位は、鉄(Fe)の酸化電位以上で銅(Cu)の酸化電位より低いことを特徴とする、請求項1に記載の二次電池の製造方法。
  3.  前記微小充電工程を定電流定電圧(CC-CV)充電により行い、CC充電時の電流を0.01C以下とする、請求項1または2に記載の二次電池の製造方法。
  4.  前記微小充電工程において、CV充電時の正負極間電位差が0.5V以上1.3V以下となるように設定する、請求項3に記載の二次電池の製造方法。
  5.  前記微小充電工程において、CV充電時の負極の外装缶との電位差が-0.5V以上0.2V以下となるように設定する、請求項3または4に記載の二次電池の製造方法。
  6.  前記微小充電工程を定電流定電圧充電により行い、充電状態を5時間以上24時間以内維持する、請求項1~5のいずれか1項に記載の二次電池の製造方法。
  7.  予め設定された所定温度域における標準充電維持時間に対し、実際の環境温度が、
     前記所定温度域より低いときには、前記標準充電維持時間より長い充電が行われるよう充電時間が設定され、
     前記所定温度域より高いときには、前記標準充電維持時間より短い充電が行われるよう充電時間が設定される、請求項1~6のいずれか1項に記載の二次電池の製造方法。
  8.  前記セル構築工程において構築されたセルを複数個電気的に接続して組電池を構築し、該構築した組電池の全体に対して前記微小充電工程を実施する、請求項1~7のいずれか1項に記載の二次電池の製造方法。
  9.  予め設定された所定拘束圧域における標準充電維持時間に対し、実際の拘束圧が、
     前記所定拘束圧域より低いときには、前記標準充電維持時間より短い充電が行われるよう充電時間が設定され、
     前記所定温度域より高いときには、前記標準充電維持時間より長い充電が行われるよう充電時間が設定される、請求項1~8のいずれか1項に記載の二次電池の製造方法。
  10.  初回コンディショニング充電工程の後に、更に、
     該充電されたセルの電圧降下量を計測する自己放電検査工程を含み、
     前記自己放電検査工程は15時間以内で行われる、請求項1~9のいずれか1項に記載の二次電池の製造方法。
  11.  請求項1~7のいずれか1項に記載の製造方法により製造されている、二次電池。
  12.  請求項8または9に記載の製造方法により製造されている、二次電池。
  13.  請求項11または12に記載の二次電池を駆動用電源として備える、車両。
PCT/JP2012/053707 2012-02-16 2012-02-16 二次電池の製造方法 WO2013121563A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/053707 WO2013121563A1 (ja) 2012-02-16 2012-02-16 二次電池の製造方法
KR1020147025323A KR101635300B1 (ko) 2012-02-16 2012-02-16 2차 전지의 제조 방법
CN201280069818.8A CN104115326B (zh) 2012-02-16 2012-02-16 二次电池的制造方法
JP2014500004A JP5907395B2 (ja) 2012-02-16 2012-02-16 二次電池の製造方法
US14/377,968 US10128547B2 (en) 2012-02-16 2012-02-16 Method for producing secondary battery
EP12868557.5A EP2816657B1 (en) 2012-02-16 2012-02-16 Method for manufacturing secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053707 WO2013121563A1 (ja) 2012-02-16 2012-02-16 二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2013121563A1 true WO2013121563A1 (ja) 2013-08-22

Family

ID=48983721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053707 WO2013121563A1 (ja) 2012-02-16 2012-02-16 二次電池の製造方法

Country Status (6)

Country Link
US (1) US10128547B2 (ja)
EP (1) EP2816657B1 (ja)
JP (1) JP5907395B2 (ja)
KR (1) KR101635300B1 (ja)
CN (1) CN104115326B (ja)
WO (1) WO2013121563A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173623A1 (en) * 2014-05-14 2015-11-19 Toyota Jidosha Kabushiki Kaisha Method of manufacturing secondary battery
JP2017139107A (ja) * 2016-02-03 2017-08-10 日立化成株式会社 リチウム二次電池の初充電方法
JP2019021510A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
JP2019021492A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 電池の製造方法
JP2019061937A (ja) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 電池モジュール
JP2022084169A (ja) * 2020-11-26 2022-06-07 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002615A1 (ja) * 2015-07-01 2017-01-05 Necエナジーデバイス株式会社 リチウムイオン二次電池の製造方法およびリチウムイオン二次電池の評価方法
JP6965839B2 (ja) * 2018-07-12 2021-11-10 トヨタ自動車株式会社 二次電池の充電方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234125A (ja) * 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2005243537A (ja) 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2006086060A (ja) 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd 二次電池の製造法
JP2007018963A (ja) 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法とその製造方法で作製した非水電解液二次電池
JP2007026752A (ja) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2007042486A (ja) 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2010153275A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp 2次電池の良否判定方法および製造方法
WO2011111153A1 (ja) * 2010-03-08 2011-09-15 トヨタ自動車株式会社 非水電解液二次電池の処理装置および製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141032A (ja) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd 組電池
US7008728B2 (en) * 2001-04-09 2006-03-07 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2003045496A (ja) * 2001-07-31 2003-02-14 Shin Kobe Electric Mach Co Ltd リチウム二次電池の製造方法
US8823324B2 (en) * 2008-06-26 2014-09-02 Eveready Battery Company, Inc. Staggered multi-battery battery charging
WO2012081128A1 (ja) 2010-12-17 2012-06-21 トヨタ自動車株式会社 リチウム二次電池の製造方法
KR101571642B1 (ko) 2011-09-08 2015-11-24 도요타지도샤가부시키가이샤 리튬 이차 전지의 제조 방법
JP5822089B2 (ja) 2011-10-06 2015-11-24 トヨタ自動車株式会社 密閉型リチウム二次電池
US9306252B2 (en) * 2012-06-11 2016-04-05 Nucleus Scientific, Inc. Dynamic pressure control in a battery assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234125A (ja) * 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2005243537A (ja) 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2006086060A (ja) 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd 二次電池の製造法
JP2007018963A (ja) 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法とその製造方法で作製した非水電解液二次電池
JP2007026752A (ja) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2007042486A (ja) 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP2010153275A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp 2次電池の良否判定方法および製造方法
WO2011111153A1 (ja) * 2010-03-08 2011-09-15 トヨタ自動車株式会社 非水電解液二次電池の処理装置および製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173623A1 (en) * 2014-05-14 2015-11-19 Toyota Jidosha Kabushiki Kaisha Method of manufacturing secondary battery
JP2017139107A (ja) * 2016-02-03 2017-08-10 日立化成株式会社 リチウム二次電池の初充電方法
JP2019021510A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
JP2019021492A (ja) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 電池の製造方法
JP7107649B2 (ja) 2017-07-18 2022-07-27 トヨタ自動車株式会社 電池の製造方法
JP2019061937A (ja) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 電池モジュール
JP2022084169A (ja) * 2020-11-26 2022-06-07 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン電池の製造方法
JP7182590B2 (ja) 2020-11-26 2022-12-02 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン電池の製造方法

Also Published As

Publication number Publication date
EP2816657B1 (en) 2017-08-16
JPWO2013121563A1 (ja) 2015-05-11
KR20140128422A (ko) 2014-11-05
US10128547B2 (en) 2018-11-13
KR101635300B1 (ko) 2016-06-30
EP2816657A1 (en) 2014-12-24
US20150037669A1 (en) 2015-02-05
CN104115326B (zh) 2016-08-24
CN104115326A (zh) 2014-10-22
EP2816657A4 (en) 2016-01-20
JP5907395B2 (ja) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5907395B2 (ja) 二次電池の製造方法
KR101364828B1 (ko) 비수 전해액형 리튬 이온 2차 전지의 제조 방법
JP6160602B2 (ja) リチウムイオン二次電池
KR101649804B1 (ko) 리튬 2차 전지
KR101777095B1 (ko) 2차 전지와 그 제조 방법
JP5140193B2 (ja) リチウムイオン電池用正極活物質材料及びリチウムイオン電池
JP5614592B2 (ja) 二次電池用電極の製造方法
JP2010287512A (ja) リチウムイオン二次電池の製造方法
JP5682801B2 (ja) リチウム二次電池の製造方法
JP2013182712A (ja) 非水電解質二次電池とその製造方法
JP2013122907A (ja) 電池システム
KR101884521B1 (ko) 리튬 이차 전지용 정극 재료 및 그 제조 방법
KR20150034285A (ko) 비수 전해액 이차 전지
JP2019515474A (ja) リチウムイオンバッテリー用の正極
JP6250941B2 (ja) 非水電解質二次電池
WO2011058979A1 (ja) リチウム二次電池
JP5843107B2 (ja) 非水電解液二次電池の製造方法
US10153486B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2021018898A (ja) 非水電解質二次電池
JP2015149308A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500004

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012868557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012868557

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025323

Country of ref document: KR

Kind code of ref document: A