WO2012081128A1 - リチウム二次電池の製造方法 - Google Patents

リチウム二次電池の製造方法 Download PDF

Info

Publication number
WO2012081128A1
WO2012081128A1 PCT/JP2010/072815 JP2010072815W WO2012081128A1 WO 2012081128 A1 WO2012081128 A1 WO 2012081128A1 JP 2010072815 W JP2010072815 W JP 2010072815W WO 2012081128 A1 WO2012081128 A1 WO 2012081128A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
charging
lithium
secondary battery
Prior art date
Application number
PCT/JP2010/072815
Other languages
English (en)
French (fr)
Inventor
藤巻 寿隆
勝之 北条
智生 萩野
博行 河木
慎矢 鎌田
久尚 小島
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020137018610A priority Critical patent/KR101550116B1/ko
Priority to US13/993,135 priority patent/US9406967B2/en
Priority to PCT/JP2010/072815 priority patent/WO2012081128A1/ja
Priority to JP2012548605A priority patent/JP5626607B2/ja
Priority to CN201080070734.7A priority patent/CN103262327B/zh
Publication of WO2012081128A1 publication Critical patent/WO2012081128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a method for manufacturing a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode having a positive electrode active material made of a lithium-containing composite oxide, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, a separator interposed between the positive electrode and the negative electrode, A positive electrode, a negative electrode, and a nonaqueous electrolyte impregnated in the separator.
  • charging is performed after assembling a positive electrode, a negative electrode, and a separator and impregnating them with a nonaqueous electrolyte.
  • metal foreign matter such as copper or iron may be mixed from the outside.
  • these metal foreign substances are dissolved in the non-aqueous electrolyte during charging and are intensively deposited on the negative electrode, the deposit may break through the separator and reach the positive electrode, which may cause a short circuit.
  • various techniques have been proposed in order to prevent a short circuit caused by a metallic foreign object.
  • the closed circuit potential of the positive electrode is 3.8 V to 4.2 V with respect to the dissolution / deposition potential of lithium (in other words, the oxidation-reduction potential), and the positive circuit is closed. It is described that a pulse voltage is applied 100 to 10,000 times at a cycle of 1 to 100 ms so that the potential is 4.4 V to 4.5 V with respect to the dissolution and precipitation potential of lithium. In Patent Document 1, by repeatedly applying such a minute pulse voltage, the residual alkali present on the surface of the nickel-based positive electrode active material can be effectively decomposed, and the gas generated by the decomposition is degassed. After that, it is described that the battery case can be sealed to suppress the expansion of the battery and the increase in internal resistance.
  • Patent Document 2 describes that initial charging is performed in a state where the potential E 1 of the negative electrode is maintained in a range of 2.5 V ⁇ E 1 ⁇ 3.2 V.
  • Patent Document 3 after charging for one hour at least once, discharging is performed until the potential of the negative electrode becomes 2.0 V or more and 3.35 V or less with respect to the oxidation-reduction potential of lithium, and in that state, 3 It is described that it is left for more than a minute.
  • Patent Document 4 describes that an additive that is reduced on the negative electrode at a potential of 1.5 V or higher is mixed in the electrolyte solution, and only the positive electrode is charged by the first charge.
  • Patent Document 5 describes a technique for efficiently removing metal particles when refining a carbon material that can be used as a negative electrode active material.
  • Patent Document 6 describes that an internal short circuit can be suppressed by setting the amount of the transition metal element other than the transition metal element constituting the positive electrode active material to a predetermined value or less.
  • Patent Document 7 describes that 0.01% to 0.1% of the battery capacity is charged at the time of the first charge, and then a standing time of 1 to 48 hours is provided.
  • Japanese Patent Application Publication No. 2005-235624 Japanese Patent Application Publication No. 2003-234125 Japanese Patent Application Publication No. 2006-269245 Japanese Patent Application Publication No. 2007-026752 Japanese Patent Application Publication No. 2010-138039 Japanese Patent Application Publication No. 2002-074460 Japanese Patent Application Publication No. 2005-243537
  • Patent Document 1 According to the technique described in Patent Document 1 that repeats minute charging after assembly, it is expected that residual alkali is removed from the surface of the nickel-based positive electrode active material. However, the potential of the negative electrode remains lowered due to repeated microcharging. Therefore, there is a possibility that metal foreign substances are concentrated on the negative electrode and the precipitate grows toward the positive electrode side.
  • An object of the present invention is to provide a method for manufacturing a lithium secondary battery in which intensive deposition of metal foreign substances on the negative electrode is suppressed and short-circuiting is unlikely to occur.
  • a positive electrode having a positive electrode active material comprising a lithium-containing composite oxide, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and a separator interposed between the positive electrode and the negative electrode
  • a method for producing a lithium secondary battery comprising: a non-aqueous electrolyte impregnated in the positive electrode, the negative electrode, and the separator.
  • the manufacturing method is such that after the positive electrode, the separator, and the negative electrode are assembled with each other and impregnated with the non-aqueous electrolyte, the highest potential reached by the positive electrode is 3.2 V or more with respect to the redox potential of lithium.
  • the metal foreign matter on the positive electrode dissolves as the potential of the positive electrode increases, and moves to the negative electrode side as metal ions.
  • the diffusion rate of metal ions is relatively slow, if charging is continued for a long time, the metal ions may reach the negative electrode and be concentrated on the negative electrode.
  • the charging time is within one minute and is relatively short.
  • the battery is discharged after being left for a short time after charging. Therefore, diffusion of metal ions is promoted, and intensive precipitation on the negative electrode is suppressed.
  • the method further includes a step of leaving the discharge after the discharge is completed. Further, the charging step, the leaving step after charging, the discharging step, and the leaving step after discharging are repeated once or twice or more. Accordingly, it is possible to repeatedly promote the dissolution of the metal foreign matter from the positive electrode and the relaxation of the precipitation of the metal foreign matter at the negative electrode. Therefore, intensive precipitation on the negative electrode can be effectively suppressed while sufficiently dissolving the metal foreign matter.
  • the positive electrode active material is composed of a lithium-containing composite oxide containing at least manganese, cobalt, and nickel.
  • the charging time is longer than the discharging time.
  • a lithium-containing composite oxide containing manganese, cobalt, and nickel there is a strong tendency that the positive electrode potential continues to decrease when charging and discharging are repeated.
  • the charging time is made longer than the discharging time, the decrease in the positive electrode potential can be suppressed, and the dissolution can be continued until the metal foreign matter is sufficiently diffused.
  • the charging step, the leaving step after charging, the discharging step, and the leaving step after discharging are repeated 10 times or more.
  • a current of 1 C or more is supplied during the charging. In another preferred embodiment, a current of 1 C or more is supplied during the discharging.
  • charging is performed for 1 to 10 seconds in the charging step.
  • discharging is performed for 1 to 10 seconds in the discharging step.
  • the highest ultimate potential of the negative electrode is 3.2 V or less with respect to the oxidation-reduction potential of lithium. This suppresses the metal foreign matter deposited on the negative electrode from dissolving again from the negative electrode.
  • the method further includes a step of leaving for 30 minutes or more after all the steps are completed, and a step of charging for more than 1 minute thereafter.
  • the diffusion of metal ions is promoted by leaving for 30 minutes or more.
  • the main charge is performed after the metal ions are sufficiently diffused.
  • FIG. 1A is a diagram schematically illustrating a state in which a metal foreign matter is included in a positive electrode of a lithium secondary battery.
  • FIG. 1B is a diagram schematically illustrating a state in which the metal foreign matter of the positive electrode is dissolved.
  • FIG. 1C is a diagram schematically showing a state in which dissolved metal ions are concentrated on the negative electrode.
  • FIG. 2A is a diagram schematically illustrating a state in which the metal foreign matter of the positive electrode is dissolved.
  • FIG. 2B is a diagram schematically illustrating a state in which dissolved metal ions are diffused.
  • FIG. 2C is a diagram schematically illustrating a state where dissolved metal ions are dispersed and deposited on the negative electrode.
  • FIG. 1A is a diagram schematically illustrating a state in which a metal foreign matter is included in a positive electrode of a lithium secondary battery.
  • FIG. 1B is a diagram schematically illustrating a state in which the metal foreign matter of the
  • FIG. 3 is a diagram for explaining an example of preliminary charging / discharging.
  • FIG. 4 is a graph showing the redox potentials of various metal elements with respect to the redox potential of lithium.
  • FIG. 5 is a cross-sectional view showing a part of the lithium ion secondary battery according to one embodiment.
  • FIG. 6 is a side view showing a vehicle including a lithium ion secondary battery according to an embodiment.
  • FIG. 7 is a diagram illustrating temporal changes in current, positive electrode potential, negative electrode potential, and potential difference between positive and negative electrodes in the example.
  • FIG. 8 is a diagram showing temporal changes in current, positive electrode potential, negative electrode potential, and potential difference between positive and negative electrodes in the example.
  • FIG. 9 is an image of the positive electrode surface according to the example.
  • FIG. 10 is an image of the negative electrode surface according to the example.
  • FIG. 11 is an X-ray CT image of the cross section of the separator according to the example.
  • the embodiment described below includes a positive electrode having a positive electrode active material made of a lithium-containing composite oxide, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and being interposed between the positive electrode and the negative electrode And a non-aqueous electrolyte impregnated in the positive electrode, the negative electrode, and the separator.
  • the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally referred to as a lithium ion secondary battery is a typical example included in the lithium secondary battery in this specification.
  • FIG. 1A is a diagram schematically illustrating a state in which the foreign metal 40 is included in the positive electrode 10.
  • the potential of the positive electrode 10 becomes higher than the dissolution potential of the metal foreign object 40. Therefore, as shown in FIG. 1B, the metal foreign matter 40 is dissolved to generate metal ions 41, and the metal ions 41 move toward the negative electrode 20 in the separator 30.
  • the metal ions 41 reach the negative electrode 20 and are deposited on the negative electrode 20.
  • the precipitate 42 on the negative electrode 20 gradually grows toward the positive electrode 10 side.
  • the preliminary charge and discharge described below is performed before charging the lithium secondary battery with a predetermined capacity (hereinafter referred to as main charging).
  • main charging a predetermined capacity
  • micro charge charging within 1 minute
  • micro discharge discharge within 1 minute
  • the potential of the positive electrode 10 temporarily becomes higher than the dissolution potential of the metal foreign matter 40. Therefore, as shown in FIG. 2A, the metal foreign matter 40 is dissolved to generate metal ions 41, and the metal ions 41 move toward the negative electrode 20 in the separator 30. However, the minute charge is continued for a minute time, and then left unattended. Furthermore, a minute discharge is performed after being left. As a result, as shown in FIG. 2B, the movement of the metal ions 41 toward the negative electrode 20 is relaxed, and the metal ions 41 are sufficiently diffused in the separator 30. It is suppressed that the metal ions 41 are intensively deposited at a predetermined portion of the negative electrode 20.
  • the metal ions 41 reach the negative electrode 20 after being diffused. As shown in FIG. 2C, the metal ions 41 are spread and deposited on the negative electrode 20. Therefore, the deposit 43 of the metal ion 41 is formed relatively thin over a wide range, and the growth of the deposit 43 on the positive electrode 10 side is suppressed. There are no particular restrictions on the number of repetitions of minute charge, neglect, minute discharge, and neglect, but the greater the number of repeats, the more effective the suppression of intensive deposition of metal ions 41 is expected.
  • the number of repetitions may be, for example, 5 times or more, or 10 times or more. On the other hand, if the number of repetitions is too large, the time spent for preliminary charging / discharging becomes long, and the manufacturing time of the lithium secondary battery tends to become long.
  • the number of repetitions may be, for example, 30 times or less, or 20 times or less.
  • FIG. 3 is a diagram for explaining an example of pre-charging / discharging, and represents a change over time of a supplied current, a positive electrode potential, a negative electrode potential, and a potential difference between the positive electrode and the negative electrode (hereinafter simply referred to as a potential difference). .
  • the time for micro charge can be set appropriately. If the time for the minute charge is too short, the metal foreign matter tends to be hardly dissolved. If the time for microcharging is too long, metal ions tend to be concentrated on the negative electrode.
  • the minute charging time is not particularly limited, it can be set to, for example, 1 to 10 seconds as an example of a suitable time.
  • the time for each micro charge may be the same or different. In the example shown in FIG. 3, the time for the first micro charge is 10 seconds, and the time for the second micro charge is 4 seconds.
  • the leaving time is within 10 minutes.
  • the leaving time is preferably within 5 minutes, more preferably within 3 minutes, and even more preferably within 1 minute.
  • the standing time may be, for example, 20 seconds to 40 seconds.
  • the time of each discharge may be the same or different. In the example shown in FIG. 3, the standing time after the minute charge is about 44 seconds.
  • ⁇ Minute discharge time can also be set appropriately. If the time for the minute discharge is too short, the potential of the negative electrode cannot be sufficiently increased, and the deposition of metal ions tends to be effectively inhibited. If the time for the minute discharge is too long, the potential of the negative electrode increases too much, and extra time and energy may be required to increase the potential of the positive electrode during subsequent charging.
  • the time for the minute discharge is not particularly limited, an example of a suitable time can be, for example, 1 to 10 seconds.
  • the time of each micro discharge may be the same or different. In the example shown in FIG. 3, the minute discharge time is 2 seconds.
  • the potential of the negative electrode is relatively high, so that metal ions do not easily precipitate. Even if the standing time after the minute discharge is long, the metal ions are hardly precipitated. However, if the leaving time after the minute discharge is too long, the time until the subsequent minute charging becomes too long, and a lot of time is required to complete the entire preliminary charging / discharging. Therefore, the leaving time is preferably within 10 minutes, and may be within 5 minutes. Alternatively, the standing time may be within 3 minutes or within 1 minute. The standing time may be, for example, 20 seconds to 40 seconds. In addition, the time of leaving each time may be the same, and may differ. In the example shown in FIG. 3, the standing time after the minute discharge is about 30 seconds.
  • the time for micro charge and the time for micro discharge may be the same, and one may be longer than the other.
  • the charging time is shorter than the discharging time, the whole battery is discharged including the influence of self-discharge, and the positive electrode potential may continue to decrease.
  • the self-discharge amount is large, and the positive electrode potential continues to decrease. The tendency is strong.
  • it is preferable that the time for micro charge is longer than the time for micro discharge.
  • a pulse voltage is applied between the positive electrode 10 and the negative electrode 20 so that the current waveform becomes a pulse shape during a minute charge and a minute discharge.
  • the current value in the micro charge is relatively high.
  • the current value in the micro discharge is preferably relatively high. This is because the potential of the positive electrode can be rapidly decreased and the potential of the negative electrode can be rapidly increased.
  • the current value at the time of minute charge and minute discharge is not particularly limited, for example, 1C or more is preferable, and 2C or more is more preferable.
  • the current value at the time of micro charge and micro discharge is 1 C or more, and is 4 A or more.
  • the current value of the minute charge and the current value of the minute discharge may be the same or different.
  • micro charge is performed several times. The current value at each time may be the same or different. The same applies to minute discharges.
  • the current value of the minute charge and minute discharge is about 5A.
  • the current during charging is represented as a positive current, and the current during discharging is represented as a negative current.
  • FIG. 4 is a graph showing the redox potentials of various metal elements with respect to the redox potential of lithium.
  • the redox potential is synonymous with the dissolution precipitation potential. It can be seen that among the metal foreign matters that are likely to be mixed, the one having the highest oxidation-reduction potential is copper (Cu), and the oxidation-reduction potential is about 3.2V.
  • the voltage is set to 3.2 V or higher, and the maximum potential of the negative electrode during micro discharge is set to 3.2 V or lower.
  • the maximum potential of the positive electrode at the first micro charge is about 4.5 V
  • the maximum potential of the negative electrode at the time of micro discharge is about 2.5 V
  • the maximum of the positive electrode at the second micro charge is about 4.1V.
  • the positive electrode potential is raised above the dissolution potential of the foreign matter by microcharging, and the foreign matter is dissolved (ionized) from the positive electrode.
  • the dissolved metal ions are diffused into the non-aqueous electrolyte by leaving them to stand. Thereafter, the potential gradient between the positive and negative electrodes is relaxed by a micro discharge, and the movement of metal ions to the negative electrode is suppressed.
  • the micro charge is performed again, and the positive electrode potential is increased to dissolve the foreign matter from the positive electrode again. Thereafter, the same process is repeated to sufficiently dissolve the foreign matter on the positive electrode and sufficiently diffuse the dissolved metal ions. As a result, the foreign matter is dispersed and deposited on the negative electrode.
  • the form, capacity, usage, etc. of the lithium secondary battery manufactured by the manufacturing method according to the present embodiment are not particularly limited.
  • a lithium ion secondary battery 1 will be described as an example of a lithium secondary battery with reference to FIG.
  • the lithium ion secondary battery 1 includes a flat and square battery case 15.
  • the electrode body 5 is accommodated in the battery case 15.
  • the electrode body 5 includes a positive electrode 10, a negative electrode 20, and two separators 30 each formed in a sheet shape.
  • the positive electrode 10, the negative electrode 20, and the two separators 30 are overlapped with each other and wound.
  • the wound electrode body 5 is formed into a flat shape by being pressed from the side so as to match the shape of the battery case 15.
  • the positive electrode 10 has a positive electrode current collector 11 and a positive electrode active material layer 12 containing a positive electrode active material and provided on the positive electrode current collector 11.
  • the positive electrode active material layer 12 is formed on both surfaces of the positive electrode current collector 11.
  • the negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22 including a negative electrode active material and provided on the negative electrode current collector 21.
  • the negative electrode active material layer 22 is formed on both surfaces of the negative electrode current collector 21.
  • the positive electrode active material layer 12 is not formed at one end in the longitudinal direction of the positive electrode current collector 11.
  • a positive electrode terminal 14 is connected to the exposed portion 11 ⁇ / b> A of the positive electrode current collector 11.
  • the negative electrode active material layer 22 is not formed at one end in the longitudinal direction of the negative electrode current collector 21, and the negative electrode terminal 16 is connected to the exposed portion 21 ⁇ / b> A of the negative electrode current collector 21. .
  • the lithium ion secondary battery 1 is constructed by inserting the electrode body 5 to which the terminals 14 and 16 are connected into the battery case 15, supplying a nonaqueous electrolyte therein, and then sealing the battery case 15. .
  • the non-aqueous electrolyte includes a lithium salt as a supporting salt in an organic solvent (non-aqueous solvent).
  • a nonaqueous electrolyte that is liquid at room temperature (that is, an electrolytic solution) can be preferably used.
  • the lithium salt for example, a known lithium salt conventionally used as a supporting salt for a non-aqueous electrolyte of a lithium ion secondary battery can be appropriately selected and used. Examples of such lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like. These supporting salts can be used alone or in combination of two or more. A particularly preferred example is LiPF 6 .
  • non-aqueous solvent an organic solvent used in a general lithium ion secondary battery can be appropriately selected and used.
  • Particularly preferred non-aqueous solvents include carbonates such as ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC). These organic solvents can be used alone or in combination of two or more.
  • a conductive member made of a metal having good conductivity is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the positive electrode active material layer 12 may contain a conductive material, a binder, and the like as necessary in addition to the positive electrode active material.
  • the conductive material for example, carbon materials such as carbon black (for example, acetylene black) and graphite powder can be preferably used.
  • the binder polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), or the like can be used.
  • the positive electrode active material a material capable of inserting and extracting lithium is used, and one or more of materials conventionally used in lithium ion secondary batteries (for example, a layered oxide or a spinel oxide) Can be used without any particular limitation.
  • materials conventionally used in lithium ion secondary batteries for example, a layered oxide or a spinel oxide
  • lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, lithium manganese composite oxides, and lithium magnesium composite oxides.
  • the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and nickel) in addition to lithium and nickel.
  • Examples of the metal element other than Li and Ni include, for example, cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), and titanium (Ti ), Zirconium (Zr), niobium (Nb), molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) ), And one or more metal elements selected from the group consisting of cerium (Ce). The same meaning is applied to lithium cobalt complex oxides, lithium manganese complex oxides, and lithium magnesium complex oxides.
  • An olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, Fe; for example, LiFeO 4 , LiMnPO 4 ) may be used as the positive electrode active material.
  • M is at least one element of Co, Ni, Mn, Fe; for example, LiFeO 4 , LiMnPO 4
  • a so-called ternary lithium transition metal oxide containing at least manganese, cobalt, and nickel may be used.
  • a lithium transition metal oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) containing approximately the same atomic ratio of manganese, cobalt, and nickel may be used.
  • a conductive member made of a metal having good conductivity is preferably used.
  • copper or an alloy containing copper as a main component can be used.
  • the negative electrode active material layer 22 can contain the same conductive material, binder, and the like as the positive electrode active material layer 12 as necessary.
  • the negative electrode active material one type or two or more types of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation.
  • a carbon particle is mentioned as a suitable negative electrode active material.
  • a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. can do.
  • a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP) can be suitably used.
  • a uniaxially or biaxially stretched porous resin film can be suitably used.
  • a porous resin film uniaxially stretched in the longitudinal direction is particularly preferable because it has an appropriate strength and has little heat shrinkage in the width direction.
  • the lithium secondary battery according to the present embodiment can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.
  • the lithium ion secondary battery 1 can be suitably used as a power source for a vehicle driving motor (electric motor) mounted on a vehicle 2 such as an automobile.
  • the type of the vehicle 2 is not particularly limited, but is typically a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or the like.
  • Such lithium ion secondary battery 1 may be used alone, or may be used in the form of an assembled battery that is connected in series and / or in parallel.
  • a positive electrode, a separator, and a negative electrode were superposed on each other, wound, and then housed in a battery case, and impregnated with a non-aqueous electrolyte, thereby producing a lithium ion secondary battery.
  • the active material of the positive electrode active material layer is a ternary lithium transition metal oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), the conductive material is acetylene black (AB), and the binder is Polyvinylidene fluoride (PVDF) was used.
  • the dimension of the positive electrode is 85 mm ⁇ 5 m.
  • the separator is a three-layer film of PE-PP-PE, and its thickness is 20 ⁇ m. Graphite was used as the negative electrode active material.
  • the dimension of the negative electrode is 90 mm ⁇ 5 m.
  • the non-aqueous electrolyte contains LiPF 6 as a lithium salt and contains ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) as non-aqueous solvents.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FIGS. 7 and 8 are graphs showing temporal changes in supply current, positive electrode potential, negative electrode potential, and potential difference between the positive electrode and the negative electrode (hereinafter simply referred to as potential difference).
  • the first micro charge was performed for 10 seconds and then left for 30 seconds. Thereafter, a series of steps of 2 seconds of minute discharge, 30 seconds of standing, 4 seconds of minute charging, and 30 seconds of standing were repeated a total of 10 times. Then, it was left for about 30 minutes.
  • a pulsed current of 5 A was supplied by applying a pulse voltage between the positive electrode and the negative electrode.
  • the maximum potential of the positive electrode at the first micro charge is 4.5V
  • the maximum potential of the positive electrode at the second and subsequent micro charges is about 3.8V to about 4.1V, both of which are above 3.2V. It was.
  • the maximum ultimate potential of the negative electrode during microdischarge was about 1.5 V to about 2.7 V, and all were 3.2 V or less.
  • FIG. 9 is an observation image of the surface of the positive electrode
  • FIG. 10 is an observation image of the surface of the negative electrode
  • FIG. 11 is an X-ray CT image of the separator cross section.
  • FIG. 9 it was confirmed that all of the copper particles were dissolved on the surface of the positive electrode and there was no undissolved residue.
  • FIG. 10 it was confirmed that copper was dispersed and precipitated on the surface of the negative electrode. From FIG. 11, it was confirmed that the growth of precipitates stopped in the middle of the separator, and no growth of precipitates causing a short circuit was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極における金属異物の集中的な析出が抑制され、短絡が生じにくいリチウム二次電池の製造方法が提供される。本製造方法は、正極、セパレータ、および負極を互いに組み立てて非水電解質を含浸させた後に、正極の最高到達電位がリチウムの酸化還元電位に対して3.2V以上となるように1分間以内の充電を行う工程と、前記充電の終了時から10分間以内放置する工程と、前記放置後に1分間以内の放電を行う工程と、を包含する。

Description

リチウム二次電池の製造方法
 本発明は、リチウム二次電池の製造方法に関する。
 従来から、高性能な二次電池としてリチウム二次電池が活用されている。リチウム二次電池は、リチウム含有複合酸化物からなる正極活物質を有する正極と、リチウムイオンの吸蔵および放出が可能な負極活物質を有する負極と、正極と負極との間に介在するセパレータと、それら正極、負極、およびセパレータに含浸される非水電解質とを備える。リチウム二次電池の製造の際には、正極、負極、およびセパレータを組み立て、それらに非水電解質を含浸させた後、充電が行われる。
 リチウム二次電池の製造にあたって、外部から銅または鉄等の金属異物が混入する場合がある。充電時にこれらの金属異物が非水電解質中に溶解し、負極上に集中的に析出すると、析出物がセパレータを突き破って正極に達し、短絡が発生するおそれがある。そこで従来から、金属異物に起因する短絡を防止するために、各種の技術が提案されている。
 特許文献1には、正極の閉回路電位がリチウムの溶解析出電位(言い換えると、酸化還元電位)に対して3.8V~4.2V、かつ、電池ケースが開口した状態で、正極の閉回路電位がリチウムの溶解析出電位に対して4.4V~4.5Vとなるように、1~100msの周期でパルス電圧を100~10000回印加することが記載されている。特許文献1には、このような微小なパルス電圧を繰り返し印加することにより、ニッケル系正極活物質の表面に存在する残留アルカリを効果的に分解することができ、分解によって生じたガスを脱気した後に電池ケースを封口することで、電池の膨張や内部抵抗の上昇を抑制できる旨が記載されている。
 特許文献2には、負極の電位Eを2.5V<E<3.2Vの範囲に保持した状態で初回充電を行うことが記載されている。特許文献3には、1時間の充電を少なくとも一回行った後に、負極の電位がリチウムの酸化還元電位に対して2.0V以上かつ3.35V以下となるまで放電を行い、その状態で3分間以上放置することが記載されている。特許文献4には、1.5V以上の電位において負極上で還元される添加剤を電解液中に混合し、初回の充電で正極のみを充電することが記載されている。特許文献5には、負極活物質として利用され得る炭素材料の精製に際して、金属粒子を効率良く除去するための技術が記載されている。特許文献6には、正極活物質を構成する遷移金属元素以外の遷移金属元素の混入量を所定値以下とすることにより、内部短絡を抑えられることが記載されている。特許文献7には、初回の充電時に電池容量の0.01%~0.1%充電し、その後に1時間~48時間の放置時間を設けることが記載されている。
日本国特許出願公開2005-235624号公報 日本国特許出願公開2003-234125号公報 日本国特許出願公開2006-269245号公報 日本国特許出願公開2007-026752号公報 日本国特許出願公開2010-138039号公報 日本国特許出願公開2002-075460号公報 日本国特許出願公開2005-243537号公報
 組立後に微小な充電を繰り返す特許文献1記載の技術によれば、ニッケル系正極活物質の表面から残留アルカリが除去されることが期待される。しかし、微小充電の繰り返しによって、負極の電位は下がったままの状態となる。そのため、負極上で金属異物が集中的に析出し、析出物が正極側に向かって成長するおそれがある。
 長時間の充電後に放電および放置を行う技術(特許文献3参照)では、放電によって負極電位が上昇し、放置時には、溶解した金属イオンが拡散することが期待される。そのため、放置時には、負極上における集中的な析出が抑制されることが期待される。しかし、上記放電前の長時間の充電時に、負極において析出が起こり、その析出物が成長するおそれがある。
 微小充電後に長時間放置する技術(特許文献7参照)であっても、充電時に負極電位が低下し、その状態で長時間放置されるので、負極において析出が生じ、その析出物が成長するおそれがある。
 本発明の目的は、負極における金属異物の集中的な析出が抑制され、短絡が生じにくいリチウム二次電池の製造方法を提供することである。
 本発明によると、リチウム含有複合酸化物からなる正極活物質を有する正極と、リチウムイオンの吸蔵および放出が可能な負極活物質を有する負極と、前記正極と前記負極との間に介在するセパレータと、前記正極と前記負極と前記セパレータとに含浸される非水電解質と、を備えるリチウム二次電池の製造方法が提供される。該製造方法は、前記正極、前記セパレータ、および前記負極を互いに組み立てて前記非水電解質を含浸させた後に、正極の最高到達電位がリチウムの酸化還元電位に対して3.2V以上となるように、1分間以内の充電を行う工程と、前記充電の終了時から10分間以内放置する工程と、前記放置後に1分間以内の放電を行う工程とを包含する。
 かかる方法によると、充電工程において、正極の電位が上昇することで正極上の金属異物は溶解し、金属イオンとなって負極側へ移動する。金属イオンの拡散速度は比較的遅いが、充電を長時間継続すると、金属イオンが負極に達し、負極上で集中的に析出するおそれがある。しかし前記方法によれば、前記充電の時間は1分間以内であり、比較的短い。それに加え、充電後に短時間放置された後、放電が行われる。そのため、金属イオンの拡散が促進され、負極上における集中的な析出は抑制される。
 ここに開示される方法の好ましい一態様では、前記放電が終了した後に放置する工程を更に包含する。更に、前記充電工程、前記充電後の放置工程、前記放電工程、および前記放電後の放置工程を1回または2回以上繰り返す。このことにより、正極からの金属異物の溶解の促進と、負極における金属異物の析出の緩和とを、繰り返し行うことができる。そのため、金属異物を充分に溶解させつつ、負極上での集中的な析出を効果的に抑えることができる。
 ここに開示される方法の他の好ましい一態様では、前記正極活物質は、少なくともマンガン、コバルト、およびニッケルを含むリチウム含有複合酸化物からなる。前記充電の時間は前記放電の時間よりも長い。マンガン、コバルト、およびニッケルを含むリチウム含有複合酸化物の場合、充電および放電を繰り返すと、正極電位が下がり続ける傾向が強い。しかし、充電時間を放電時間よりも長くすることとすれば、正極電位の下降を抑制することができ、金属異物が充分に拡散するまで溶解を持続させることができる。
 他の好ましい一態様では、前記充電工程、前記充電後の放置工程、前記放電工程、および前記放電後の放置工程を10回以上繰り返す。
 他の好ましい一態様では、前記充電時に1C以上の電流を供給する。他の好ましい一態様では、前記放電時に1C以上の電流を供給する。短時間の充電または放電のときに大きな電流を供給することにより、正極と負極の電位を短時間で調整することができるため、負極上での集中的な析出を抑えつつ金属イオンを充分に拡散させることができる。
 他の好ましい一態様では、前記充電工程において、充電を1~10秒間行う。他の好ましい一態様では、前記放電工程において、放電を1~10秒間行う。
 他の好ましい一態様では、前記放電工程において、前記負極の最高到達電位がリチウムの酸化還元電位に対して3.2V以下となるようにする。このことにより、負極に析出した金属異物が負極から再び溶解することが抑制される。
 他の好ましい一態様では、前記の全工程が終了してから30分間以上放置する工程と、その後に1分間を超える充電を行う工程と、を更に包含する。前記30分以上の放置により、金属イオンの拡散が促進される。金属イオンが充分に拡散した後に、本充電が行われる。
図1Aは、リチウム二次電池の正極に金属異物が含まれている状態を模式的に表す図である。 図1Bは、正極の金属異物が溶解する状態を模式的に表す図である。 図1Cは、溶解した金属イオンが負極上に集中的に析出する状態を模式的に表す図である。 図2Aは、正極の金属異物が溶解する状態を模式的に表す図である。 図2Bは、溶解した金属イオンが拡散する状態を模式的に表す図である。 図2Cは、溶解した金属イオンが負極上に分散して析出する状態を模式的に表す図である。 図3は、予備充放電の一例を説明するための図である。 図4は、リチウムの酸化還元電位に対する各種金属元素の酸化還元電位を示すグラフである。 図5は、一実施形態に係るリチウムイオン二次電池の一部を切り欠いて示す断面図である。 図6は、一実施形態に係るリチウムイオン二次電池を備えた車両を示す側面図である。 図7は、実施例における電流、正極電位、負極電位、および正負極間の電位差の時間変化を示す図である。 図8は、実施例における電流、正極電位、負極電位、および正負極間の電位差の時間変化を示す図である。 図9は、実施例に係る正極表面の画像である。 図10は、実施例に係る負極表面の画像である。 図11は、実施例に係るセパレータ断面のX線CT画像である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 以下に説明する実施形態は、リチウム含有複合酸化物からなる正極活物質を有する正極と、リチウムイオンの吸蔵および放出が可能な負極活物質を有する負極と、前記正極と前記負極との間に介在するセパレータと、前記正極と前記負極と前記セパレータとに含浸される非水電解質と、を備えるリチウム二次電池の製造方法である。なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。一般にリチウムイオン二次電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 このようなリチウム二次電池は、正極とセパレータと負極とを互いに組み立て、それらを非水電解質と共に電池ケースに収容し、電池ケースを密封することによって製造される。リチウム二次電池の製造に際して、正極の正極活物質に銅、鉄等の金属異物が含まれてしまう場合がある。図1Aは、正極10に金属異物40が含まれている状態を模式的に表す図である。充電時には正極10の電位が金属異物40の溶解電位よりも高くなる。そのため、図1Bに示すように、金属異物40が溶解して金属イオン41が生じ、金属イオン41はセパレータ30内を負極20に向かって移動する。充電を継続していくと、その後、金属イオン41は負極20に達し、負極20上に析出する。充電が進むにつれ、図1Cに示すように、負極20上の析出物42は正極10側に向かって徐々に成長していく。
 本実施形態では、上述のような析出物42の成長を抑えるために、リチウム二次電池に対する所定容量の充電(以下、本充電という)を行う前に、以下に説明する予備的な充放電を行う。すなわち、まず1分間以内の充電(以下、微小充電という)を行い、その充電の終了時から10分間以内の所定時間にわたって放置し、該放置後に1分間以内の放電(以下、微小放電という)を行う。
 微小充電により、正極10の電位は一時的に金属異物40の溶解電位よりも高くなる。そのため、図2Aに示すように、金属異物40が溶解して金属イオン41が生じ、金属イオン41はセパレータ30内を負極20に向かって移動する。しかし、微小充電は微小時間だけ継続され、その後は放置される。更に、放置の後に微小放電が行われる。その結果、図2Bに示すように、負極20に向かう金属イオン41の移動が緩和され、金属イオン41はセパレータ30内で充分に拡散する。金属イオン41が負極20の所定箇所に集中的に析出することは抑制される。
 本実施形態では、微小放電の後に、更に放置を行う。その後、微小充電、放置、微小放電、および放置の工程を1回または2回以上繰り返す。その結果、金属イオン41は拡散した後に負極20に到達する。図2Cに示すように、金属イオン41は、負極20上に広がって析出する。したがって、金属イオン41の析出物43は広範囲にわたって比較的薄く形成され、析出物43の正極10側への成長は抑制される。微小充電、放置、微小放電、および放置の繰り返し回数は特に限定されないが、繰り返し回数が多いほど、金属イオン41の集中的な析出を抑制する効果が期待される。繰り返し回数は、例えば5回以上としてもよく、10回以上としてもよい。一方、繰り返し回数が多すぎると、予備的な充放電に費やされる時間が長くなり、リチウム二次電池の製造時間が長くなる傾向にある。繰り返し回数は、例えば、30回以下であってもよく、20回以下としてもよい。
 図3は、予備充放電の一例を説明するための図であり、供給される電流、正極電位、負極電位、および正極と負極との間の電位差(以下、単に電位差という)の時間変化を表す。
 微小充電の時間は、適宜に設定することができる。微小充電の時間が短すぎると、金属異物を充分に溶解し難くなる傾向にある。微小充電の時間が長すぎると、金属イオンが負極に集中的に析出しやすくなる傾向にある。微小充電の時間は特に限定されないが、好適な時間の一例として、例えば1秒間~10秒間とすることができる。各回の微小充電の時間は同一であってもよく、異なっていてもよい。図3に示す例では、1回目の微小充電の時間は10秒間であり、2回目の微小充電の時間は4秒間である。
 微小充電後の放置の工程では、自己放電はあるものの、正極および負極の電位は実質的に維持される。放置時間が長すぎると、金属イオンが負極上に集中的に析出しやすくなる傾向にある。そこで、本実施形態では、放置の時間は10分間以内としている。放置の時間は5分間以内が好ましく、3分間以内がより好ましく、1分間以内が更に好ましい。放置時間は、例えば20秒間~40秒間であってもよい。なお、各回の放電の時間は同一であってもよく、異なっていてもよい。図3に示す例では、微小充電後の放置時間は約44秒間である。
 微小放電の時間も適宜に設定することができる。微小放電の時間が短すぎると、負極の電位を充分に高めることができず、金属イオンの析出を効果的に抑制できなくなる傾向にある。微小放電の時間が長すぎると、負極の電位が上昇しすぎて、その後の充電時に正極の電位を上げるために余分な時間とエネルギーが必要となるおそれがある。微小放電の時間は特に限定されないが、好適な時間の一例として、例えば1秒間~10秒間とすることができる。各回の微小放電の時間は同一であってもよく、異なっていてもよい。図3に示す例では、微小放電の時間は2秒間である。
 微小放電後は、負極の電位は比較的高いため、金属イオンの析出は起こりにくい。微小放電後の放置の時間が長くても、金属イオンの析出は生じにくい。しかし、微小放電後の放置の時間が長すぎると、その後の微小充電までの時間が長くなりすぎて、予備充放電の全体を終了するために多くの時間が必要となる。そこで、放置の時間は10分間以内が好ましく、5分間以内であってもよい。あるいは、放置の時間は3分間以内であってもよく、1分間以内であってもよい。放置時間は、例えば20秒間~40秒間であってもよい。なお、各回の放置の時間は同一であってもよく、異なっていてもよい。図3に示す例では、微小放電後の放置時間は約30秒間である。
 微小充電の時間と微小放電の時間とは同一であってもよく、一方が他方よりも長くてもよい。ただし、充電時間が放電時間よりも短い場合、自己放電の影響も含めて全体として放電されてしまうため、正極電位が下がり続ける可能性がある。特に、正極活物質としてマンガン(Mn)、コバルト(Co)、およびニッケル(Ni)を含むいわゆる三元系のリチウム遷移金属酸化物を使用した場合、自己放電量が大きいため、正極電位が下がり続ける傾向が強い。そのため、微小充電の時間を微小放電の時間よりも長くすることが好ましい。微小充電の時間を微小放電の時間よりも長くすることにより、正極電位の下降を抑制し、金属異物が充分に拡散するまで溶解を持続させることができる。
 本実施形態では、微小充電および微小放電の際に、電流波形がパルス状となるように、正極10と負極20との間にパルス状の電圧を印加する。金属異物の溶解を促進する観点から、微小充電における電流値は比較的高い方が好ましい。金属イオンの析出を充分に緩和する観点から、微小放電における電流値は比較的高い方が好ましい。正極の電位を急激に低下させ、また、負極の電位を急激に上昇させることができるからである。微小充電および微小放電の際の電流値は特に限定される訳ではないが、例えば、1C以上が好ましく、2C以上がより好ましい。本実施形態では、微小充電および微小放電の際の電流値は1C以上であって、4A以上である。なお、微小充電の電流値と微小放電の電流値とは同一であってもよく、異なっていてもよい。また、微小充電は複数回行われる。各回の電流値は同一であってもよいが、異なっていてもよい。微小放電においても同様である。図3に示す例では、微小充電および微小放電の電流値は約5Aである。なお、図3では、充電時の電流をプラスの電流、放電時の電流をマイナスの電流として表記している。
 微小充電時の正極の最高到達電位および微小放電時の負極の最高到達電位は、例えば、混入する可能性のある金属異物または混入する可能性の高い金属異物の種類に応じて、適宜に設定することができる。図4は、リチウムの酸化還元電位に対する各種金属元素の酸化還元電位を示すグラフである。なお、酸化還元電位は、溶解析出電位と同義である。混入する可能性の高い金属異物のうち、酸化還元電位が最も高いものは銅(Cu)であり、その酸化還元電位は約3.2Vであることが分かる。本実施形態では、鉄(Fe)だけでなく銅も対象とし、それらの正極からの溶解の促進および負極における集中的な析出を抑制することを狙って、微小充電時の正極の最高到達電位は3.2V以上に設定され、微小放電時の負極の最高到達電位は3.2V以下に設定されている。図3に示す例では、1回目の微小充電時の正極の最高到達電位は約4.5V、微小放電時の負極の最高到達電位は約2.5V、2回目の微小充電時の正極の最高到達電位は約4.1Vである。
 上記の予備的な充電および放電を終了した後は、例えば30分間以上の時間にわたって放置し、その後に本充電を行う。微小充電と異なり、本充電は1分間を超える時間にわたって行われる。本充電により、リチウム二次電池は所定の電池容量にまで充電される。
 以上のように本実施形態に係る製造方法では、まず微小充電によって、異物の溶解電位以上に正極電位を高め、正極から異物を溶解(イオン化)させる。次に、放置することによって、溶解した金属イオンを非水電解質中に拡散させる。その後、微小放電によって、正負極間の電位勾配を緩和し、金属イオンの負極への移動を抑制する。その後しばらく放置して金属イオンの拡散を促した後、再び微小充電を行い、正極電位を高めることによって再び正極から異物を溶解させる。その後、同様の工程を繰り返すことにより、正極上の異物を充分に溶解させると共に、溶解した金属イオンを充分に拡散させる。その結果、異物は負極上に分散して析出することになる。
 本実施形態に係る製造方法によって製造されるリチウム二次電池の形態、容量、用途等は特に限定されない。次に、図5を参照しながら、リチウム二次電池の一例として、リチウムイオン二次電池1について説明する。
 リチウムイオン二次電池1は、偏平な角型形状の電池ケース15を備える。この電池ケース15の中に電極体5が収容されている。電極体5は、それぞれシート状に形成された正極10、負極20、および2枚のセパレータ30によって構成されている。正極10、負極20、および2枚のセパレータ30は、互いに重ね合わされ、捲回されている。電池ケース15の形状に合うように、捲回された電極体5は、側方からプレスされることによって偏平形状に形成されている。
 正極10は、正極集電体11と、正極活物質を含み且つ正極集電体11上に設けられた正極活物質層12とを有している。正極活物質層12は、正極集電体11の両面に形成されている。負極20は、負極集電体21と、負極活物質を含み且つ負極集電体21上に設けられた負極活物質層22とを有している。負極活物質層22は、負極集電体21の両面に形成されている。正極集電体11の長手方向の一方の端部には、正極活物質層12は形成されていない。正極集電体11の露出部分11Aには、正極端子14が接続されている。同様に、負極集電体21の長手方向の一方の端部には負極活物質層22が形成されておらず、負極集電体21の露出部分21Aには、負極端子16が接続されている。
 端子14,16が接続された電極体5を電池ケース15に挿入し、その内部に非水電解質を供給した後、電池ケース15を封止することにより、リチウムイオン二次電池1が構築される。
 非水電解質は、支持塩としてのリチウム塩を有機溶媒(非水溶媒)中に含んだものである。常温で液状の非水電解質(すなわち電解液)を好ましく使用することができる。リチウム塩としては、例えば、従来からリチウムイオン二次電池の非水電解質の支持塩として用いられている公知のリチウム塩を、適宜選択して使用することができる。例えば、かかるリチウム塩として、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特に好ましい例として、LiPFが挙げられる。
 上記非水溶媒として、一般的なリチウムイオン二次電池に用いられる有機溶媒を適宜選択して使用することができる。特に好ましい非水溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等のカーボネート類が例示される。これら有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 正極集電体11には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極活物質層12は、正極活物質の他、必要に応じて導電材、結着剤等を含有し得る。導電材としては、例えば、カーボンブラック(例えばアセチレンブラック)、グラファイト粉末等のカーボン材料を好ましく用いることができる。結着剤としては、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等を用いることができる。
 正極活物質としては、リチウムを吸蔵および放出可能な材料が用いられ、従来からリチウムイオン二次電池に用いられる物質(例えば、層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムマグネシウム系複合酸化物等のリチウム含有複合酸化物が挙げられる。
 ここで、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物の他、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合(典型的にはニッケルよりも少ない割合)で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、コバルト(Co)、アルミニウム(Al)、マンガン(Mn)、クロム(Cr)、鉄(Fe)、バナジウム(V)、マグネシウム(Mg)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、ランタン(La)、およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。なお、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、およびリチウムマグネシウム系複合酸化物についても同様の意味である。
 一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFeO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。少なくともマンガン、コバルト、およびニッケルを含むいわゆる三元系のリチウム遷移金属酸化物を使用してもよい。例えば、マンガン、コバルト、およびニッケルを概ね同程度の原子数比で含むリチウム遷移金属酸化物(LiNi1/3Mn1/3Co1/3)を使用してもよい。
 負極集電体21には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。負極活物質層22は、負極活物質の他、正極活物質層12と同様の導電材、結着剤等を必要に応じて含有し得る。負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も、好適に使用することができる。
 セパレータ30としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルムを好適に使用することができる。多孔質フィルムとして、一軸延伸または二軸延伸された多孔性樹脂フィルムを好適に用いることができる。中でも、長手方向に一軸延伸された多孔性樹脂フィルムは、適度な強度を備えつつ幅方向の熱収縮が少ないため、特に好ましい。
 本実施形態に係るリチウム二次電池の用途は特に限定されない。上述の通り、本実施形態に係るリチウム二次電池によれば、内部短絡を高度に防止し得ることから、信頼性が高く且つ入出力性能に優れたものとなり得る。そのため、本実施形態に係るリチウム二次電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用することができる。例えば図6に示すように、リチウムイオン二次電池1は、自動車等の車両2に搭載される車両駆動用モータ(電動機)の電源として好適に利用することができる。車両2の種類は特に限定されないが、典型的には、ハイブリッド自動車、電気自動車、燃料電池自動車等である。かかるリチウムイオン二次電池1は、単独で使用されてもよく、直列および/または並列に複数接続されてなる組電池の形態で使用されてもよい。
 次に、本発明の一実施例を説明する。ただし、以下の説明は、本発明をかかる具体例に限定することを意図したものではない。
 正極、セパレータ、および負極を互いに重ね合わせ、それらを巻回したうえで電池ケースに収容し、非水電解質を含浸させることにより、リチウムイオン二次電池を作製した。正極活物質層の活物質には三元系のリチウム遷移金属酸化物(LiNi1/3Mn1/3Co1/3)、導電材にはアセチレンブラック(AB)、結着剤にはポリフッ化ビニリデン(PVDF)を用いた。正極の寸法は85mm×5mである。セパレータは、PE-PP-PEの三層フィルムであり、その厚みは20μmである。負極活物質にはグラファイトを用いた。負極の寸法は90mm×5mである。非水電解質は、リチウム塩としてLiPFを含み、非水溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、およびエチルメチルカーボネート(EMC)を含んだものである。
 正極上に金属異物として直径100μm、厚み4μmの銅粒子を付着させた。非水電解質を含浸させてから20時間後に、図7および図8に示すような予備充放電を実施した。図7および図8は、供給電流、正極電位、負極電位、および正極と負極との間の電位差(以下、単に電位差という)の時間変化を示すグラフである。本実施例では、初回の微小充電を10秒間行った後、30秒間放置した。その後、2秒間の微小放電、30秒間の放置、4秒間の微小充電、および30秒間の放置という一連の工程を合計10回繰り返した。その後、約30分間放置した。微小充電時および微小放電時には、正極と負極との間にパルス電圧を印加することにより、5Aのパルス状の電流を供給した。初回の微小充電時の正極の最高到達電位は4.5V、2回目以降の微小充電時の正極の最高到達電位は約3.8V~約4.1Vであり、いずれも3.2V以上であった。微小放電時の負極の最高到達電位は約1.5V~約2.7Vであり、いずれも3.2V以下であった。
 上記電池を分解し、光学顕微鏡を用いて正極および負極の表面を観察した。また、セパレータの断面のX線CT画像を撮影した。図9は正極の表面の観察画像であり、図10は負極の表面の観察画像である。図11は、セパレータ断面のX線CT画像である。図9に示すように、正極の表面では銅粒子のすべてが溶解し、溶け残りがないことが確認された。図10に示すように、負極の表面では、銅は分散して析出していることが確認された。図11から、析出物の成長はセパレータの途中で止まっており、短絡を招くような析出物の成長は見られないことが確認された。
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
 1  リチウムイオン二次電池
 10 正極
 11 正極集電体
 12 正極活物質層
 15 電池ケース
 20 負極
 21 負極集電体
 22 負極活物質層
 30 セパレータ

Claims (10)

  1.  リチウム含有複合酸化物からなる正極活物質を有する正極と、リチウムイオンの吸蔵および放出が可能な負極活物質を有する負極と、前記正極と前記負極との間に介在するセパレータと、前記正極と前記負極と前記セパレータとに含浸される非水電解質と、を備えるリチウム二次電池の製造方法であって、
     前記正極、前記セパレータ、および前記負極を互いに組み立てて前記非水電解質を含浸させた後に、
     正極の最高到達電位がリチウムの酸化還元電位に対して3.2V以上となるように、1分間以内の充電を行う工程と、
     前記充電の終了時から10分間以内放置する工程と、
     前記放置後に1分間以内の放電を行う工程と、
    を包含するリチウム二次電池の製造方法。
  2.  前記放電が終了した後に放置する工程を更に包含し、
     前記充電工程、前記充電後の放置工程、前記放電工程、および前記放電後の放置工程を1回または2回以上繰り返す、請求項1に記載のリチウム二次電池の製造方法。
  3.  前記正極活物質は、少なくともマンガン、コバルト、およびニッケルを含むリチウム含有複合酸化物からなり、
     前記充電の時間は前記放電の時間よりも長い、請求項2に記載のリチウム二次電池の製造方法。
  4.  前記充電工程、前記充電後の放置工程、前記放電工程、および前記放電後の放置工程を10回以上繰り返す、請求項2または3に記載のリチウム二次電池の製造方法。
  5.  前記充電時に1C以上の電流を供給する、請求項1~4のいずれか一つに記載のリチウム二次電池の製造方法。
  6.  前記放電時に1C以上の電流を供給する、請求項1~5のいずれか一つに記載のリチウム二次電池の製造方法。
  7.  前記充電工程において、充電を1秒間~10秒間行う、請求項1~6のいずれか一つに記載のリチウム二次電池の製造方法。
  8.  前記放電工程において、放電を1秒間~10秒間行う、請求項1~7のいずれか一つに記載のリチウム二次電池の製造方法。
  9.  前記放電工程において、前記負極の最高到達電位がリチウムの酸化還元電位に対して3.2V以下となるようにする、請求項1~8のいずれか一つに記載のリチウム二次電池の製造方法。
  10.  前記の全工程が終了してから30分間以上放置する工程と、
     その後に1分間を超える充電を行う工程と、
    を更に包含する、請求項1~9のいずれか一つに記載のリチウム二次電池の製造方法。
PCT/JP2010/072815 2010-12-17 2010-12-17 リチウム二次電池の製造方法 WO2012081128A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137018610A KR101550116B1 (ko) 2010-12-17 2010-12-17 리튬 2차 전지의 제조 방법
US13/993,135 US9406967B2 (en) 2010-12-17 2010-12-17 Method for producing lithium secondary cell
PCT/JP2010/072815 WO2012081128A1 (ja) 2010-12-17 2010-12-17 リチウム二次電池の製造方法
JP2012548605A JP5626607B2 (ja) 2010-12-17 2010-12-17 リチウム二次電池の製造方法
CN201080070734.7A CN103262327B (zh) 2010-12-17 2010-12-17 锂二次电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072815 WO2012081128A1 (ja) 2010-12-17 2010-12-17 リチウム二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2012081128A1 true WO2012081128A1 (ja) 2012-06-21

Family

ID=46244255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072815 WO2012081128A1 (ja) 2010-12-17 2010-12-17 リチウム二次電池の製造方法

Country Status (5)

Country Link
US (1) US9406967B2 (ja)
JP (1) JP5626607B2 (ja)
KR (1) KR101550116B1 (ja)
CN (1) CN103262327B (ja)
WO (1) WO2012081128A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120226455A1 (en) * 2011-03-01 2012-09-06 Hitachi, Ltd. Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
US9385398B2 (en) 2011-09-08 2016-07-05 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium secondary battery
US10128547B2 (en) 2012-02-16 2018-11-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
US10367181B2 (en) 2015-10-30 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633390A (zh) * 2013-12-13 2014-03-12 天津力神电池股份有限公司 锂离子动力电池快速充电方法
JP6384729B2 (ja) * 2014-10-17 2018-09-05 トヨタ自動車株式会社 非水電解液二次電池とその製造方法
JP6604479B2 (ja) * 2015-10-30 2019-11-13 パナソニックIpマネジメント株式会社 リチウムイオン電池
JP7085390B2 (ja) * 2018-04-09 2022-06-16 日産自動車株式会社 電池の製造方法
JP7067490B2 (ja) * 2019-01-07 2022-05-16 トヨタ自動車株式会社 車両用電池制御装置
US20230101754A1 (en) * 2020-02-21 2023-03-30 Panasonic Intellectual Property Management Co., Ltd. Impurity processing device and impurity processing method
US20230102372A1 (en) * 2020-02-21 2023-03-30 Panasonic Intellectual Property Management Co., Ltd. Impurity processing device and impurity processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234565A (ja) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009238433A (ja) * 2008-03-26 2009-10-15 Toyota Central R&D Labs Inc リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
JP2010205563A (ja) * 2009-03-03 2010-09-16 Gs Yuasa Corp 非水電解質電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481174A (en) 1993-12-27 1996-01-02 Motorola, Inc. Method of rapidly charging a lithium ion cell
JP2002075460A (ja) 2000-06-13 2002-03-15 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2002313412A (ja) * 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd 二次電池の活性化方法
JP4138326B2 (ja) 2002-02-06 2008-08-27 松下電器産業株式会社 非水電解液二次電池の製造方法
JP2005235624A (ja) 2004-02-20 2005-09-02 Japan Storage Battery Co Ltd 非水電解液二次電池の製造方法
JP2005243537A (ja) 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP4639883B2 (ja) 2005-03-24 2011-02-23 パナソニック株式会社 非水電解液二次電池の製造方法
JP2007018963A (ja) 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法とその製造方法で作製した非水電解液二次電池
JP4899361B2 (ja) 2005-07-13 2012-03-21 パナソニック株式会社 非水電解液二次電池の製造法
JP4784194B2 (ja) 2005-08-04 2011-10-05 パナソニック株式会社 非水電解液二次電池の製造法
JP2007095354A (ja) 2005-09-27 2007-04-12 Sanyo Electric Co Ltd 非水電解質二次電池の充放電方法
JP5414962B2 (ja) * 2006-01-16 2014-02-12 パナソニック株式会社 ハイブリッド電源装置
JP2010138039A (ja) 2008-12-12 2010-06-24 Panasonic Corp 炭素材料の精製方法および精製装置、ならびに非水電解質二次電池
US20110070497A1 (en) * 2009-03-31 2011-03-24 Masaki Deguchi Method of producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234565A (ja) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009238433A (ja) * 2008-03-26 2009-10-15 Toyota Central R&D Labs Inc リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
JP2010205563A (ja) * 2009-03-03 2010-09-16 Gs Yuasa Corp 非水電解質電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120226455A1 (en) * 2011-03-01 2012-09-06 Hitachi, Ltd. Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
US9385398B2 (en) 2011-09-08 2016-07-05 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium secondary battery
US10128547B2 (en) 2012-02-16 2018-11-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
US10367181B2 (en) 2015-10-30 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion battery

Also Published As

Publication number Publication date
US20130255075A1 (en) 2013-10-03
JPWO2012081128A1 (ja) 2014-05-22
KR20130108644A (ko) 2013-10-04
CN103262327B (zh) 2015-08-19
US9406967B2 (en) 2016-08-02
KR101550116B1 (ko) 2015-09-03
CN103262327A (zh) 2013-08-21
JP5626607B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5626607B2 (ja) リチウム二次電池の製造方法
JP5553177B2 (ja) 二次電池再利用方法、車両駆動電源、及び車両
JP5273123B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池の運転方法
EP2945211B1 (en) Lithium titanate oxide as negative electrode in li-ion cells
JP2016058309A (ja) 非水電解質二次電池
JP2019016483A (ja) 非水電解質二次電池
JP2017528881A (ja) 最初の充電工程前の状態のカソードおよびこのカソードを含むリチウムイオン電池、リチウムイオン電池の化成方法、ならびに化成後のリチウムイオン電池
JP2017091664A (ja) 非水電解液二次電池
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
JP5682801B2 (ja) リチウム二次電池の製造方法
EP4113665A1 (en) Charge and discharge method for nonaqueous electrolyte secondary battery, and charge and discharge system for nonaqueous electrolyte secondary battery
CN105900276B (zh) 锂离子二次电池的制造方法
JP5472755B2 (ja) 非水電解液型リチウムイオン二次電池
JP6572882B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2011238568A (ja) リチウムイオン二次電池及び二次電池システム
CN109643828B (zh) 非水电解质蓄电元件
JP6668876B2 (ja) リチウムイオン二次電池の製造方法
JP5741942B2 (ja) リチウム二次電池の容量回復方法
US10249447B2 (en) Process for manufacturing an alkaline-based hybrid supercapacitor type battery, battery obtained by this process and process for recycling an anode material of an alkali-ion battery
WO2019163882A1 (ja) 非水二次電池用電解液及び非水二次電池
JP2015015084A (ja) 二次電池の製造方法
CN114447438B (zh) 锂离子二次电池用非水电解液的制造方法和使用该非水电解液的锂离子二次电池的制造方法
JP2016039030A (ja) 非水電解液二次電池
JP2017050156A (ja) 非水電解液二次電池
JP6268534B2 (ja) 非水電解質二次電池の製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548605

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137018610

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10860833

Country of ref document: EP

Kind code of ref document: A1