JP7085390B2 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
JP7085390B2
JP7085390B2 JP2018074689A JP2018074689A JP7085390B2 JP 7085390 B2 JP7085390 B2 JP 7085390B2 JP 2018074689 A JP2018074689 A JP 2018074689A JP 2018074689 A JP2018074689 A JP 2018074689A JP 7085390 B2 JP7085390 B2 JP 7085390B2
Authority
JP
Japan
Prior art keywords
active material
single cell
electrode active
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018074689A
Other languages
English (en)
Other versions
JP2019186003A (ja
Inventor
智裕 蕪木
和之 依田
栄治 峰岸
昇 山内
悠祐 江守
秀樹 石溪
昌典 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2018074689A priority Critical patent/JP7085390B2/ja
Priority to PCT/JP2019/011845 priority patent/WO2019198454A1/ja
Priority to EP19785619.8A priority patent/EP3780215A4/en
Priority to US16/979,893 priority patent/US11837691B2/en
Priority to CN201980024386.0A priority patent/CN111937210A/zh
Publication of JP2019186003A publication Critical patent/JP2019186003A/ja
Application granted granted Critical
Publication of JP7085390B2 publication Critical patent/JP7085390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、電池の製造方法に関する。
電気自動車(EV)やハイブリッド電気自動車(HEV)のモータ駆動用電源として、繰り返し充放電可能な二次電池の開発が盛んである。二次電池は、正極活物質を含む正極活物質層を備えた正極と、負極活物質を含む負極活物質層を備えた負極とがセパレータを介して積層されてなる単セルを形成し、当該複数の単セルを積層した積層体を外装体の内部に封入して製造される。
例えば、下記特許文献1には、電極活物質、バインダおよび溶媒を含む電極活物質スラリーを集電体の表面に塗工して塗膜を形成し、当該塗膜を乾燥させた乾燥電極を用いて単セルを作製する二次電池の製造方法が開示されている。
特開2009-295553号公報
本発明者らの検討によれば、上記特許文献1に開示されているようなバインダを含有する乾燥電極の製造工程においては、電極活物質スラリーを乾燥させる際にひび割れが生じる場合があることが判明した。電極のひび割れは電池性能を大きく低下させる原因となりうる。そこで本発明者らは、このようなひび割れの発生を防止するため、電極活物質スラリーの乾燥工程を含まない製造方法として、集電体と、電解液を含む活物質層とからなる電極を用いて単セルを作製する方法について検討を進めた。
ここで、電解液を含む電極は、乾燥電極に比べて柔らかく変形し易い。また、電解液を含む電極は湿っているため、乾燥電極に比べて単セルを形成する際に集電体やセパレータに皺(凹凸)が発生し易い。本発明者らの検討によれば、このように電極が変形したり、表面に皺が残ったりした状態の単セルに初回充電を行うと、偏ったガスの発生や体積変化によって、単セルが過剰に変形する可能性があることが判明した。過剰に変形した単セルは、初回充電工程後に成形することが難しいため、電池の内部抵抗が高くなってしまう。
そこで本発明は、上記事情に鑑みてなされたものであり、初回充電工程の前に単セルを成形することによって電池の内部抵抗を低減できる電池の製造方法を提供することを目的とする。
上記目的を達成するための本発明の電池の製造方法は、単セル形成工程、面プレス工程、および面プレス工程の後に実施される初回充電工程を有する。前記単セル形成工程では、正極集電体に電解液を含む正極活物質層が形成されてなる正極と、負極集電体に電解液を含む負極活物質層が形成されてなる負極とを、セパレータを介して積層して単セルを形成する。前記面プレス工程では、1つの前記単セルまたは発電要素をなす積層体を構成する前記単セルの個数よりも少ない個数積層された前記単セルに積層方向から加圧部の加圧面を面接触させて加圧する。前記初回充電工程では、前記面プレス工程で加圧した1つの前記単セルまたは2つ以上積層された前記単セルを充電する。
本発明に係る電池の製造方法によれば、単セルを積層方向から面プレスすることによって、集電体やセパレータに発生した皺(凹凸)を平らにすることができる。このような面プレスによる単セルの成形を初回充電工程の前に行うことによって、初回充電工程における単セルの過剰な変形を抑制し、電池の内部抵抗を低減できる。
本発明の一実施形態に係る電池の全体構造の概略を示す断面図である。 図1の二次電池の単セルを示す断面図である。 本発明の一実施形態に係る電池の製造方法の一連の工程の一例を示す概略図である。 本発明の一実施形態に係る電池の製造方法を説明するためのフローチャートである。 本発明の他の実施形態に係る電池の製造方法を説明するためのフローチャートである。 図4に示す電極形成工程(S10)のサブルーチンフローチャートである。 面プレス工程(S40)に用いる面プレス装置の一例を示す断面図である。 本発明の一実施形態に係る面プレス工程(S40)を模式的に示す断面図である。 図4に示す電池形成工程(S60)のサブルーチンフローチャートである。 比較例に係るロールプレス工程を模式的に示す断面図である。
以下、図面を参照しながら、本発明の実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、以下では、便宜上本発明に係る電池の説明をした後、本発明に係る電池の製造方法について詳説する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。
<電池>
本発明の実施形態に係る電池の一例として非水電解質二次電池の1種である双極型リチウムイオン二次電池について説明するが、本発明を適用する電池は双極型リチウムイオン二次電池に制限されない。ここで、双極型リチウムイオン二次電池とは、双極型電極を含み、正極と負極との間をリチウムイオンが移動することで充電や放電を行う二次電池である。例えば、本発明は、発電要素において電極が並列接続されてなる形式のいわゆる並列積層型電池などの従来公知の任意の二次電池にも適用可能である。なお、以下の説明では、双極型リチウムイオン二次電池を単に「電池」と称する。
図1は、本発明の一実施形態に係る電池10を模式的に表した断面図である。電池10は、外部からの衝撃や環境劣化を防止するために、図1に示すように、実際に充放電反応が進行する発電要素が外装体12の内部に封止された構造とするのが好ましい。
図1に示すように、本実施形態の電池10の発電要素は、複数の単セル20が積層されてなる積層体11である。以下、発電要素のことを「積層体11」とも称する。なお、単セル20の積層回数は、所望する電圧に応じて調節することが好ましい。
図1に示すように、正極30aおよび負極30bは、集電体31の一方の面に電気的に結合した正極活物質層32aが形成され、集電体31の反対側の面に電気的に結合した負極活物質層32bが形成された双極型電極35を構成する。
なお、図1では、集電体31は、正極集電体31aおよび負極集電体31bを組み合わせた積層構造(2層構造)として図示しているが、単独の材料からなる単層構造であってもよい。
さらに、図1に示す電池10では、正極側の集電体31aに隣接するように正極集電板(正極タブ)34aが配置され、これが延長されて外装体12から導出している。一方、負極側の集電体31bに隣接するように負極集電板(負極タブ)34bが配置され、同様にこれが延長されて外装体12から導出している。
[単セル]
図2に示すように、単セル20は、正極30aおよび負極30bを、電解質層40を介して積層して構成される。正極30aは、電解液を含む正極活物質層32aが正極集電体31aに配置されてなる。負極30bは、電解液を含む負極活物質層32bが負極集電体31bに配置されてなる。
正極活物質層32aと負極活物質層32bとは、電解質層40を介して互いに向かい合うように配置されている。正極集電体31aおよび負極集電体31bは、単セル20の最外層に位置する。
単セル20の外周部には、シール部50が配置されている。シール部50は、正極活物質層32a、負極活物質層32bおよび電解質層40の周囲を液密に封止し、電解液の漏れによる液絡を防止している。また、単セル20内で正極集電体31aと負極集電体31bとを電気的に隔てて、正極集電体31aと負極集電体31bとが接触することによる短絡を防止している。
[集電体]
集電体31(隣接する正極集電体31aおよび負極集電体31b)は、正極活物質層32aと接する一方の面から、負極活物質層32bと接する他方の面へと電子の移動を媒介する機能を有する。集電体31を構成する材料は、特に限定されないが、例えば、導電性を有する樹脂や、金属が用いられうる。
集電体31の軽量化の観点からは、集電体31は、導電性を有する樹脂によって形成された樹脂集電体であることが好ましい。なお、単セル20間のリチウムイオンの移動を遮断する観点からは、樹脂集電体の一部に金属層を設けてもよい。
具体的には、樹脂集電体の構成材料である導電性を有する樹脂としては、導電性高分子材料または非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂が挙げられる。導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、ニッケル、チタン、アルミニウム、銅、白金、鉄、クロム、スズ、亜鉛、インジウム、アンチモン、およびカリウムからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ(CNT)、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むことが好ましい。
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、好ましくは、5~35体積%程度である。
また、集電体31が金属によって形成される場合は、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属のめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
[電極活物質層(正極活物質層、負極活物質層)]
電極活物質層(正極活物質層32a、負極活物質層32b)32は、電極活物質(正極活物質または負極活物質)および電解液を含む。また、電極活物質層32は、必要に応じて、被覆剤(被覆用樹脂、導電助剤)、導電部材等を含んでもよい。さらに、電極活物質層32は、必要に応じてイオン伝導性ポリマー等を含んでもよい。
電極活物質層32に含まれる電解液は、後述するスラリー調製工程において、電極活物質の分散媒として機能する。電極30を形成した後の工程で電解液を注入する工程を省いて工数を削減する観点から、電極活物質層32の電解液は、電池10の電解質層40に含まれる電解液と同じ組成を有することがより好ましい。
電解液は、溶媒にリチウム塩が溶解した形態を有する。電解液を構成する溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が挙げられる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsFLiClO、Li[(FSON](LiFSI)等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO、およびLiC(CFSO等の有機酸のリチウム塩等が挙げられる。
(正極活物質)
正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられる。さらに好ましくはLi(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)、またはリチウム-ニッケル-コバルト-アルミニウム複合酸化物(以下単に、「NCA複合酸化物」とも称する)などが用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有する。そして、遷移金属1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。
(負極活物質)
負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料(スズ、シリコン)、リチウム合金系負極材料(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金、リチウム-アルミニウム-マンガン合金等)などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料、リチウム-遷移金属複合酸化物、リチウム合金系負極材料が、負極活物質として好ましく用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。また、(メタ)アクリレート系共重合体等の被覆用樹脂は特に炭素材料に対して付着しやすいという性質を有している。したがって、構造的に安定した電極材料を提供するという観点からは、負極活物質として炭素材料を用いることが好ましい。
(導電助剤)
導電助剤は、被覆用樹脂とともに電極活物質の表面を被覆する被覆剤として用いられる。導電助剤は、被覆剤中で電子伝導パスを形成し、電極活物質層32の電子移動抵抗を低減することで、電池の高レートでの出力特性向上に寄与し得る。
導電助剤としては、例えば、アルミニウム、ステンレス、銀、金、銅、チタン等の金属、これらの金属を含む合金または金属酸化物;グラファイト、炭素繊維(具体的には、気相成長炭素繊維(VGCF)等)、カーボンナノチューブ(CNT)、カーボンブラック(具体的には、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等のカーボンが挙げられるが、これらに限定されない。また、粒子状のセラミック材料や樹脂材料の周りに上記金属材料をめっき等でコーティングしたものも導電助剤として使用できる。これらの導電助剤のなかでも、電気的安定性の観点から、アルミニウム、ステンレス、銀、金、銅、チタン、およびカーボンからなる群より選択される少なくとも1種を含むことが好ましく、アルミニウム、ステンレス、銀、金、およびカーボンからなる群より選択される少なくとも1種を含むことがより好ましく、カーボンを少なくとも1種を含むことがさらに好ましい。これらの導電助剤は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。
導電助剤の形状は、粒子状または繊維状であることが好ましい。導電助剤が粒子状である場合、粒子の形状は特に限定されず、粉末状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状等、いずれの形状であっても構わない。導電助剤が粒子状である場合の平均粒子径(一次粒子径)は、100nm以下であることが好ましい。なお、本明細書中において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
(導電部材)
導電部材は、電極活物質層32中で電子伝導パスを形成する機能を有する。特に、導電部材の少なくとも一部が、電極活物質層32の2つの主面同士を電気的に接続する導電通路を形成していることが好ましい。このような形態を有することで、電極活物質層32中の厚さ方向の電子移動抵抗がさらに低減されるため、電池の高レートでの出力特性をより一層向上しうる。なお、導電部材の少なくとも一部が、電極活物質層32の2つの主面同士を電気的に接続する導電通路を形成しているか否かは、SEMや光学顕微鏡を用いて電極活物質層32の断面を観察することにより確認することができる。
導電部材は、繊維状の形態を有する導電性繊維であることが好ましい。具体的には、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレスのような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を、導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。なかでも、導電性に優れ、軽量であることから炭素繊維が好ましい。
本実施形態の電池10において、電極活物質層32の厚さは、正極活物質層32aについては、好ましくは150~1500μmであり、より好ましくは180~950μmであり、さらに好ましくは200~800μmである。また、負極活物質層32bの厚さは、好ましくは150~1500μmであり、より好ましくは180~1200μmであり、さらに好ましくは200~1000μmである。電極活物質層32の厚さが上述した下限値以上の値であれば、電池のエネルギー密度を十分に高めることができる。一方、電極活物質層32の厚さが上述した上限値以下の値であれば、電極活物質層32の構造を十分に維持することができる。
なお、本実施形態の電池10においては、電極活物質層32の構成部材として、上記の電極活物質や、必要に応じて用いられる導電部材、イオン伝導性ポリマー、リチウム塩、被覆剤(被覆用樹脂、導電助剤)以外の部材を適宜使用しても構わない。しかしながら、電池のエネルギー密度を向上させる観点から、充放電反応の進行にあまり寄与しない部材は、含有させないほうが好ましい。例えば、電極活物質とその他の部材とを結着させ、電極活物質層32の構造を維持するために添加されるバインダは、極力使用しないことが好ましい。上記の機能を有するバインダとしては、例えば、ポリフッ化ビニリデン(PVdF)等の溶剤系バインダや、スチレン-ブタジエンゴム(SBR)等の水系バインダ等が挙げられる。具体的には、バインダの含有量は、電極活物質層32に含まれる全固形分量100質量%に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下であり、特に好ましくは1質量%以下であり、最も好ましくは0質量%である。
[電解質層]
電解質層40は、セパレータに電解質が保持されてなる層であり、正極活物質層32aと負極活物質層32bとの間にあって両者が直接に接触することを防止する。本実施形態の電解質層40に使用される電解質は、特に制限はなく、例えば、電解液またはゲルポリマー電解質などが挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保されうる。
電解液は、上述の電極活物質層32に使用される電解液と同様のものが用いられうる。なお、電解液におけるリチウム塩の濃度は、0.1~3.0Mであることが好ましく、0.8~2.2Mであることがより好ましい。また、添加剤を使用する場合の使用量は、添加剤を添加する前の電解液100質量%に対して、好ましくは0.5~10質量%、より好ましくは0.5~5質量%である。
添加剤としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の電解液が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリメチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
ゲルポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
セパレータは、電解質を保持して正極30aと負極30bとの間のリチウムイオン伝導性を確保する機能、および正極30aと負極30bとの間の隔壁としての機能を有する。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
[正極集電板および負極集電板]
集電板34a、34bを構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板34a、34bの構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板34aと負極集電板34bとでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[シール部]
シール部50は、集電体31同士の接触や単セル20の端部における短絡を防止する機能を有する。シール部50を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム(エチレン-プロピレン-ジエンゴム:EPDM)、等が用いられうる。また、イソシアネート系接着剤や、アクリル樹脂系接着剤、シアノアクリレート系接着剤などを用いてもよく、ホットメルト接着剤(ウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂)などを用いてもよい。なかでも、耐食性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられ、非結晶性ポリプロピレン樹脂を主成分とするエチレン、プロピレン、ブテンを共重合した樹脂を用いることが好ましい。
[外装体]
図1に示す本実施形態では、外装体12は、ラミネートフィルムによって袋状に構成されているが、これに限定されず、例えば、公知の金属缶ケースなどを用いてもよい。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点からは、外装体12は、ラミネートフィルムによって構成することが好ましい。ラミネートフィルムには、例えば、ポリプロピレン(PP)、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。また、外部から掛かる積層体11への群圧を容易に調整することができ、所望の電解質層40の厚みへと調整容易であることから、外装体12はアルミネートラミネートがより好ましい。
<電池の製造方法>
本発明の一形態は、電池の製造方法に関するものである。本実施形態に係る電池の製造方法を用いて製造された電池は、例えば上述した実施形態に係る双極型電池等の非水電解質二次電池として用いられうる。
図3は、本実施形態に係る電池10の製造方法の一連の工程の一例を示す概略図である。図4は、本実施形態に係る電池10の製造方法を説明するためのフローチャートである。図5は、他の実施形態に係る電池の製造方法を説明するためのフローチャートである。
電池10の製造方法は、図3および図4に示すように、電極形成工程(S10)、単セル形成工程(S20)、シール工程(S30)と、面プレス工程(S40)、初回充電工程(S50)、および電池形成工程(S60)を有する。
なお、図3および図4に示す電池10の製造方法では、電池形成工程(S60)の前に単セル20の初回充電工程(S50)を行っているが、これに限定されず、図5に示すように電池形成工程(S60)の後に初回充電工程(S70)を行ってもよい。単セル20毎に初回充電を行う場合に比べて、一度の初回充電工程(S70)で済むため、製造工程の工数を削減することができる。また、図3に示す電極形成工程(S10)では、塗工工程によって得られた塗膜を切り出した後に一枚毎にプレスする例を示しているが、これに限定されず、ロールトゥロール方式を用いて連続的に塗工工程およびプレス工程を行ってもよい。
本実施形態に係る電池10の製造方法は、1つの単セル20または2つ以上積層された単セル20に積層方向から加圧部の加圧面を面接触させて加圧する面プレス工程(S40)、および面プレス工程(S40)の後に、1つの単セル20または2つ以上積層された単セル20を充電する初回充電工程(S50)を必須に含む。本実施形態に係る電池10の製造方法によれば、面プレス工程(S40)において、単セル20を積層方向から面プレスすることによって、単セル20の厚みを一定にし、電極間距離(各活物質層の表面間の距離)を調整することができる。また、面プレスによって集電体31やセパレータに発生した皺(凹凸)を平らにすることができる。このような面プレス工程(S40)による単セル20の成形を初回充電工程(S50)の前に行うことによって、電池の内部抵抗を低減できる。
以下、上述した特徴も含め、本実施形態に係る電池10の製造方法について、詳細に説明する。
[電極形成工程]
まず、図6を参照して電極形成工程(S10)について説明する。図6は、図4に示す電極形成工程(S10)のサブルーチンフローチャートである。図6に示すように、本実施形態に係る電極形成工程(S10)は、活物質製造工程(S11)と、スラリー調製工程(S12)と、塗工工程(S13)と、プレス工程(S14)とを含むことが好ましい。
(活物質製造工程)
活物質製造工程では、被覆電極活物質を製造する。被覆電極活物質の製造方法は、特に制限されないが、例えば以下の方法が挙げられる。まず電極活物質を万能混合機に入れて10~500rpmで撹拌した状態で、被覆用樹脂および溶媒を含む溶液(被覆用樹脂溶液)を1~90分間かけて滴下混合する。この際の溶媒としては、メタノール、エタノール、イソプロパノールなどのアルコール類が好適に使用できる。その後、さらに導電助剤を添加し、混合する。そして、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に、10~150分間保持することにより、被覆電極活物質を得ることができる。
(スラリー調製工程)
電極活物質および分散媒である電解液を混合して電極活物質スラリーを調製する。電極活物質スラリーは、電極活物質および電解液を必須に含む混合物である。ここで、電極活物質スラリーに含まれる固形分((被覆)電極活物質、導電部材、イオン伝導性ポリマー、リチウム塩など)の具体的な構成(種類や含有量など)については、上述において説明したものと同様の構成が採用されうるため、ここでは詳細な説明を省略する。また、必要に応じて少量のバインダを塗布液に添加しても構わない。ただし、バインダの含有量は、上述したように、電極活物質層32に含まれる全固形分量100質量%に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下であり、特に好ましくは1質量%以下であり、最も好ましくは0質量%である。
電極活物質スラリーを構成する電解液(分散媒)は、最終的に電極活物質層32を構成する電解液となる。電極活物質スラリーを構成する電解液(分散媒)は、上述した電極活物質層32を構成する電解液と同様のため、ここでは詳細な説明を省略する。
ここで、電極活物質スラリーに含まれる各成分を混合して電極活物質スラリーを調製する方法については特に制限はなく、部材の添加順、混合方法等、従来公知の知見が適宜参照されうる。ただし、上記電極活物質スラリーの固形分濃度は比較的高いことから、各材料を混合する混合機として、高せん断を付与できる混合機を用いることが好ましい。具体的には、プラネタリーミキサー、ニーダー、ホモジナイザー、超音波ホモジナイザー、ディスパージャー等のブレード型撹拌機が好ましく、特に固練りをするという観点からはプラネタリーミキサーが特に好ましい。また、混合の具体的な方法についても特に制限はないが、最終固形分濃度よりも高い固形分濃度で固練りを実施した後に分散媒成分を追加してさらに混合を行うことで電極活物質スラリーを調製することが好ましい。なお、混合時間は特に制限されず、均一な混合が達成されればよい。一例として、固練りおよびその後の混合はそれぞれ10~60分程度行えばよく、各工程は一度に行ってもよいし数回に分けて行ってもよい。
(塗工工程)
塗工工程では、上記で得られた電極活物質スラリーを集電体の表面に塗工して塗膜を形成する。この塗膜は、最終的に電極活物質層を構成することとなる。
塗工工程における電極活物質スラリーの塗工によって得られる塗膜の厚さについて特に制限はなく、上述した電極活物質層の厚さが達成されるように適宜設定すればよい。
塗工工程における塗工を実施するための塗工手段についても特に制限はなく、従来公知の塗工手段が適宜用いられうる。なかでも、固形分濃度の高い電極活物質スラリーを塗工することにより平坦性の高い表面を有する塗膜(電極活物質層)を得るという観点からは、塗工時に比較的高いせん断応力が加えられるような塗工速度で電極活物質スラリーの塗工を行うことができる塗工手段が用いられることが好ましい。なかでも、スリットから電極活物質スラリーを塗出して塗工するスリットダイコーターによる塗工方式は薄膜の塗工および塗工厚みの均一性に優れていることから、好適な塗工手段の一例である。
本実施形態に係る塗工工程では、電極活物質スラリーを塗工して塗膜を得た後に、得られた塗膜に対して加熱による乾燥処理を施さない。これにより、電極活物質層のひび割れを抑制できるとともに、乾燥処理に必要な製造コストを削減することができる。電極活物質スラリーの塗工後に加熱乾燥しない場合には、電極活物質スラリーの塗工後に所望の面積に電極を切り出すことが難しい。よって、本実施形態に係る電池10の製造方法においては、所望の面積となるように電極活物質スラリーを集電体の表面に塗工することが必要となる。そのためには、予め塗工部分以外の集電体の表面にマスキング処理等を施してもよい。
(プレス工程)
本実施形態に係る電池10の製造方法では、電極活物質スラリーの塗工によって得られた塗膜に対してプレス処理を施してもよい。このプレス処理を施す際には、塗膜の表面に多孔質シートを配置した状態でプレスを行うことが好ましい。このようなプレス処理を施すことで、より表面の均一性の高い電極活物質層が得られる。なお、多孔質シートは、塗膜をプレスする際に、プレス装置にスラリーが付着するのを防ぐ目的、プレスの際に滲出する余分な電解液を吸収する目的などで使用される。そのため、多孔質シートの材料や形態は、上記目的を達成できるものであれば特に制限されない。
一例を挙げると、多孔質シートとして、本技術分野でセパレータとして使用される、微多孔膜、不織布などと同様のものを使用することができる。具体的には、微多孔膜としては、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔膜が挙げられる。また、不織布としては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなどを、単独または混合して用いた不織布が挙げられる。
なお、上記多孔質シートは、プレス後に取り除いてもよいし、そのまま電池10のセパレータとして用いても構わない。プレス後に多孔質シートをそのままセパレータとして用いる場合は、当該多孔質シートのみをセパレータとして電解質層を形成してもよいし、当該多孔質シートと別のセパレータとを組み合わせて(すなわち、セパレータを2枚以上として)電解質層を形成してもよい。
プレス処理を施すためのプレス装置は、塗膜の全面に均一に圧力を加えられる装置であることが好ましい。プレスの際に塗膜の単位面積あたりにかかる圧力は、特に制限されないが、好ましくは0.01~2MPaであり、より好ましくは0.1~1MPaである。圧力が上記範囲であると、上述した好ましい実施形態に係る電極活物質層の空隙率や密度を容易に実現することができる。
[単セル形成工程]
単セル形成工程(S20)では、図2に示すように、正極30aの正極活物質層32aと負極30bの負極活物質層32bとがセパレータを介して向かい合うように、正極30a、負極30bおよびセパレータを積層して単セル20を形成する。この際、正極集電体31aの外周部と、負極集電体31bの外周部との間には、シール部50を介在させる。シール部50は、集電体31の外周部に沿って枠状に配置することが好ましい。なお、集電体31の外周部よりも面方向の外側にシール部50を配置してもよい。
本実施形態のように、電解液を含む電極活物質層32の場合は、電極活物質層32の表面が湿っているため、単セル形成工程においてセパレータが電極活物質層32に張り付いてセパレータに皺が残り易い。仮に、電極活物質層が乾燥していれば、電解質層が電極活物質層32に張り付くことがなく、積層する際に皺を容易に伸ばすことができる。また、電極活物質層32が柔らかいため、集電体31の表面にも皺が発生し易い。特に、電極30の面積が大きい場合は、セパレータや集電体31に皺がより発生しやすくなる。セパレータや集電体31生じた皺を取り除く方法については、積層工程(S61)の説明で詳述する。
[シール工程]
シール工程(S30)では、シール部50を含む電極30の外周部をシールする。シール手段は特に限定されないが、長期信頼性の観点から、ヒートシールが好ましく用いられうる。また、シール工程は、略真空状態の雰囲気中で行うことが好ましい。略真空状態とすることによって、単セル20の集電体31およびシール部50によって囲まれた内部に外気が侵入することを効率的に防止して密封することができる。シール工程を実施するための装置については特に制限はなく、従来公知のヒートシーラーが適宜用いられうる。
集電体31が樹脂によって形成された樹脂集電体の場合は、シール工程においてヒートシールする際の熱によって集電体31が収縮し、単セル20の表面層に位置する集電体31に皺が発生する可能性がある。後述するようにシール工程の後に面プレス工程(S40)を行うことによって、単セル20の表面の凹凸を平らにすることができる。
[面プレス工程]
面プレス工程(S40)では、1つの単セル20または2つ以上積層された単セル20の表面に積層方向から加圧部の加圧面を面接触させて加圧する。ここで、単セル20の表面とは、単セル20の外表面のうち積層方向に交差する面を意味する。なお、面プレス工程では、単セル20を確実に成形する観点から、単セル20を1枚ずつ加圧することが好ましいが、これに限定されず、複数の単セル20を同時に加圧して成形してもよい。
面プレス工程を実施するための面プレス装置については、加圧面を備える加圧部を有する限りにおいて、特に制限はなく、従来公知の面プレス装置が適宜用いられうる。例えば、図7に示すような面プレス装置100を用いることができる。面プレス装置100は、加圧面110Sを備える加圧部110、載置台120および駆動部130を有する。
加圧部110は、単セル20の表面に対して略平行に設置された加圧面110Sを備える。図8に示すように加圧部110の加圧面110Sは、単セル20の表面の全面に面接触することが好ましい。仮に、単セル20の表面を部分的に加圧した場合は、片あたりが発生し、単セル20の厚みが不均一となって抵抗が上昇する等の不具合が発生する可能性がある。全面に面接触させることによって、単セル20に均等に圧力を加えることができるため、単セル20の厚みを均一にすることができる。
駆動部130は、例えば、油圧等の流体圧を用いて加圧部110を載置台120に載置された単セル20に対して接近離反するように駆動するシリンダー131と、シリンダー131に供給する流体の流体圧を計測する圧力計132とを備える。圧力計132の値を基にシリンダー131内の流体圧を制御することによって、加圧部110の加圧力を調整することができる。
面プレス工程において、単セル20を加圧する際の圧力は、9.8[Pa]以上39.2[Pa]以下であることが好ましく、14.7[Pa]以上39.2[Pa]以下であることがより好ましく、14.7[Pa]以上29.4[Pa]以下であることがさらに好ましい。本実施形態に係る電池10を電気自動車、ハイブリッド電気自動車、燃料電池車、ハイブリッド燃料電池自動車などの車両の電源として用いる場合、車両に搭載した電池10の単セル20にかかる圧力は約9.8[Pa]である。仮に、車両に搭載した際の圧力よりも面プレス工程における圧力が小さい場合、面プレス工程において成形した単セル20が車両に搭載した際にかかる圧力によって変形する可能性がある。また、面プレス工程の圧力を大きくすることによって、短時間で単セル20の厚みを調整して抵抗を下げることができる。このため、製造時間を短縮することができる。一方で、圧力を過度に大きくすると、セパレータが破損して短絡が生じる可能性がある。従って、単セル20を加圧する際の圧力が、上述した下限値以上の値であれば、車両に搭載した際に変形することを抑制でき、単セル20の成形に要する時間も短縮することができる。一方、単セル20を加圧する際の圧力が上述した上限値以下の値であれば、面プレス工程の加圧によってセパレータが破損することを防止できる。
[初回充電工程]
次に、初回充電工程について説明する。初回充電工程は、面プレス工程(S40)の後に行われる。面プレス工程(S40)の後であれば、図4に示すように単セル形成工程(S20)と電池形成工程(S60)との間で行ってもよいし、図5に示すように電池形成工程(S60)の後に行ってもよい。
初回充電工程では、単セル形成工程(S20)で得た単セル20、または電池形成工程(S60)で得た電池10に対して初回充電を行う。初回充電は、単セル20または電池10を加圧した状態で行うことが好ましい。初回充電工程において単セル20または電池10に対して加圧する際の圧力は、面プレス工程において単セル20に対して加圧する際の圧力と同程度であることが好ましい。
仮に、初回充電工程後に面プレス工程によって単セル20を成形した場合、単セル20の厚みが不均一だったり皺が残ったりした状態で初回充電を行うことになる。このため、初回充電時の偏ったガスの発生や、体積変化によって、単セル20が過剰に変形する可能性がある。過剰に変形した単セル20は、初回充電工程後に成形することが難しい。このため、電池の内部抵抗が高くなってしまう。本実施形態のように、面プレス工程で単セル20を成形した後に、初回充電を行うことによって、単セル20が過剰に変形することを抑制し、電池の内部抵抗を低減できる。
[電池形成工程]
次に、図9を参照して本実施形態に係る電池形成工程(S60)について説明する。図9は、図4に示す電池形成工程(S60)のサブルーチンフローチャートである。本実施形態に係る電池形成工程(S60)は、積層工程(S61)と、密封工程(S62)と、を有する。
(積層工程)
積層工程(S61)では、複数の単セル20を積層して発電要素である積層体11を形成する。
(密封工程)
密封工程(S62)では、発電要素である積層体11を外装体12の内部に封入する。これにより、図1に示すような電池10を得ることができる。
密封工程において積層体11を外装体12の内部に封入する方法については特に限定されない。例えば、外装体12がラミネートフィルムである場合には、積層体11を積層方向に沿った両側から挟持するように被覆して、端部を熱融着等によって封止する方法が挙げられる。また、外装体12が金属缶ケースである場合は、積層体11を金属缶ケースの内部に収容して密閉した後に、金属缶ケースの内部を公知の減圧装置を用いて減圧する方法が挙げられる。
以上説明した本実施形態に係る電池10の製造方法は、以下の効果を奏する。
電池10の製造方法は、1つの単セル20または2つ以上積層された単セル20に積層方向から加圧部の加圧面を面接触させて加圧する面プレス工程と、面プレス工程の後に、1つの単セル20または2つ以上積層された単セル20を充電する初回充電工程と、を有する。
上記電池10の製造方法によれば、面プレスによって集電体31やセパレータに発生した皺(凹凸)を平らにすることができる。このような面プレスによる単セル20の成形を初回充電工程の前に行うことによって、初回充電工程における単セルの過剰な変形を抑制し、電池10の内部抵抗を低減できる。
また、集電体31が樹脂集電体である場合、面プレス工程の前に、樹脂集電体の外周部をヒートシールするシール工程をさらに有することが好ましい。集電体31が樹脂集電体である場合は、シール工程においてシールする際の熱によって、樹脂集電体が収縮し、単セル20の表面に皺が発生する可能性がある。シール工程の後に面プレス工程を行うことによって、単セル20の表面の凹凸を平らにすることができる。
また、面プレス工程において、単セル20を加圧する際の圧力は、14.7[Pa]以上39.2[Pa]以下であることが好ましい。単セル20を加圧する際の圧力を車両に搭載した際にかかる圧力約9.8[Pa]よりも大きくすることによって、単セル20が車両に搭載した際にかかる圧力による変形を抑制できる。また、圧力を39.2[Pa]以下に設定することによって、セパレータが破損して短絡が生じることを抑制できる。
また、電極30の電極活物質層32におけるバインダの含有量が、全固形分量100質量%に対して、1質量%以下であることが好ましい。これにより、バインダの含有量を少なくするあるいはバインダを含有しないようにすることによって、電池のエネルギー密度を向上させることができる。また、電極活物質層32が柔らかいため、単セル20を形成後に加圧して成形しない場合は単セル20の厚みが不均一となる可能性がある。従って、本実施形態のように、初回充電工程の前に、単セル20を面プレスして成形することによって、電池10の内部抵抗を低減することができる。
以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
[比較例1]
<負極活物質被覆用樹脂溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロートおよび窒素ガス導入管を付した4つ口フラスコに、酢酸エチル83部とメタノール17部とを仕込み68℃に昇温した。
次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、酢酸エチル52.1部およびメタノール10.7部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.263部を酢酸エチル34.2部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.583部を酢酸エチル26部に溶解した開始剤溶液を、滴下ロートを用いて2時間かけて連続的に追加した。さらに、沸点で重合を4時間継続した。溶媒を除去し、樹脂582部を得た後、イソプロパノールを1,360部加えて、樹脂固形分濃度30質量%のビニル樹脂からなる負極活物質被覆用樹脂溶液を得た。
<被覆負極活物質の作製>
難黒鉛化性炭素(ハードカーボン)((株)クレハ・バッテリー・マテリアルズ・ジャパン製 カーボトロン(登録商標)PS(F))88.4部を万能混合機に入れ、室温、150rpmで撹拌した状態で、上記で得られた負極活物質被覆用樹脂溶液(樹脂固形分濃度30質量%)を樹脂固形分として10部になるように60分かけて滴下混合し、さらに30分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]1.6部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持し、被覆負極活物質を得た。なお、被覆負極活物質がコア-シェル構造を有していると考えると、コアとしての難黒鉛化性炭素粉末の平均粒子径は9μmであった。また、被覆負極活物質100質量%に対する、アセチレンブラックの固形分量は1.6質量%であった。
<被覆正極活物質の作製>
ニッケル・アルミ・コバルト酸リチウム(NCA)(BASF戸田バッテリーマテリアルズ合同会社製)140.0部を万能混合機に入れ、室温、15m/sで撹拌した状態で、上記で得られた正極活物質被覆用樹脂溶液(樹脂固形分濃度30質量%)0.48部にジメチルホルムアミド14.6部を追加混合した溶液を3分かけて滴下混合し、さらに5分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]8.6部を混合し、60分撹拌したままで140℃に昇温し、0.01MPaまで減圧し5時間保持し、被覆正極活物質を得た。なお、被覆正極活物質がコア-シェル構造を有していると考えると、コアとしてのニッケル・アルミ・コバルト酸リチウム粉末の平均粒子径は6μmであった。また、被覆正極活物質100質量%に対する、アセチレンブラックの固形分量は0.1質量%であった。
<電解液の調製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)に、Li[(FSO2)2N](LiFSI)を2mol/Lの割合で溶解させて、電解液を得た。
<負極活物質スラリーの調製>
上記で得た被覆負極活物質から、平均粒子径(D50)20μmのものを616部取り分け、平均粒子径(D50)5μmのものを264部取り分け、これに導電部材としての炭素繊維(大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)76.5部を添加し、120℃、100mmHgの減圧下で16時間乾燥させ、含有水分の除去を行った。
次に、ドライルーム中で、上記の乾燥済みの材料に、上記で得た電解液637.7部を添加した。この混合物を、混合撹拌機(DALTON社製、5DM-r型(プラネタリーミキサー))を用いて、自転:63rpm、公転:107rpmの回転数で30分撹拌することにより、固練りを実施した。
その後、上記で得た電解液638.9gをさらに添加し、上記と同様の混合撹拌機を用いて、自転:63rpm、公転:107rpmの回転数で10分×3回撹拌することにより、固練りを実施した。このようにして、負極活物質スラリーを得た。なお、このようにして得られた負極活物質スラリーの固形分濃度は41質量%であった。
<正極活物質スラリーの調製>
上記で得た被覆正極活物質1543.5部に導電部材としての炭素繊維(大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)31.5部を添加し、120℃、100mmHgの減圧下で16時間乾燥させ、含有水分の除去を行った。
次に、ドライルーム中で、上記の乾燥済みの材料に、上記で得た電解液393.8部を添加した。この混合物を、混合撹拌機(DALTON社製、5DM-r型(プラネタリーミキサー))を用いて、自転:63rpm、公転:107rpmの回転数で30分撹拌することにより、固練りを実施した。
その後、上記で得た混合物に電解液417.6部をさらに添加し、上記と同様の混合撹拌機を用いて、自転:63rpm、公転:107rpmの回転数で10分×3回撹拌することにより、攪拌希釈を実施した。このようにして、正極活物質スラリーを得た。なお、このようにして得られた正極活物質スラリーの固形分濃度は66質量%であった。
<樹脂集電体の作製>
2軸押出機にて、ポリプロピレン[商品名「サンアロマー(登録商標)PL500A」、サンアロマー(株)製](B-1)75質量%、アセチレンブラック(AB)(デンカブラック(登録商標))20質量%、樹脂集電体用分散剤(A)として変性ポリオレフィン樹脂(三洋化成工業(株)製ユーメックス(登録商標)1001)5質量%を180℃、100rpm、滞留時間10分の条件で溶融混練して樹脂集電体用材料を得た。得られた樹脂集電体用材料を、押し出し成形することで、樹脂集電体(20%AB-PP)を得た。
<電極の作製>
上記で得られた負極活物質スラリーおよび正極活物質スラリーを樹脂集電体の表面に塗工してプレス処理を施した。これにより負極および正極を得た。
<単セルの作製>
次に、正極および負極を、電解質層を介して積層して単セルを得た。正極の樹脂集電体の外周部と負極の樹脂集電体の外周部との間には、シール部を配置した。その後、単セルの外周部をヒートシールした。
上記で得られた単セルに対してプレス処理を施さなかった。
[比較例2]
上述した比較例1と同様の手法により、単セルを形成した。得られた単セルに対して、
図10に示すようにロールプレス装置(テスター産業製SA-602)を用いてロールプレスを行った。ロールプレス装置の加圧ロール200のプレス圧は、2.0[Pa]に設定した。
[実施例1]
上述した比較例1と同様の手法により、単セルを形成した。得られた単セルに対して、図7に示すような油圧式の面プレス装置100を用いて、図8に示すように面プレスを行った。面プレスのプレス圧は、29.4[Pa]に設定した。
[実施例2]
上述した比較例1と同様の手法により、単セルを形成した。得られた単セルに対して、図7に示すように油圧式の面プレス装置100を用いて、図8に示すように面プレスを行った。面プレスのプレス圧は、9.8[Pa]に設定した。
[単セルの評価]
比較例1、2および実施例1、2で得られた単セルの表面の皺を目視で評価し、皺発生エリア(%)を測定した。ここで、皺発生エリア(%)は、単セルの表面に皺(凹凸)が発生した領域を観察し、単セルの表面の全面積に対する凹凸が発生した領域の面積の比率とした。さらに、比較例1、2および実施例1、2で得られた単セルを、1Cの電流レートでSOC50%まで充電し、DCR(直流抵抗)の10秒値を測定し、抵抗値を算出した。比較例1、2および実施例1、2について、皺発生エリア(%)および抵抗値を下記の表1に示す。
Figure 0007085390000001
表1に示すように、比較例1(プレスなし)では、単セルの表面の80%に皺(凹凸)が確認され、DCRの抵抗値は7.5[mΩ/cell]だった。これは、電極形成工程やシール工程によって生じた集電体の皺がそのまま単セルの表面や内部に残っているためである。単セルの表面や内部に皺が残った状態では接触抵抗が高くなるためDCRの抵抗値も高くなる。
また、比較例2(ロールプレス)では、比較例1と同様に、単セルの表面の80%に皺(凹凸)が確認され、DCRの抵抗値は7.5[mΩ/cell]だった。このように、ロールプレスを行っても、単セルの表面に皺が残った状態となるのはロールプレスのプレス圧が低かったため単セルの表面や内部の皺を十分に伸ばすことができなかったと考えられる。しかしながら、面プレスと同様のプレス圧(9.8[Pa]以上)でロールプレスを行うとロールの圧延方向に単セルが引き伸ばされて変形する可能性があるため、大きくすることはできない。
一方、実施例1、2(面プレス)では、単セルの表面に皺(凹凸)は確認されなかった。この結果から、面プレスによって単セルの表面の凹凸が平らに成形されたことが分かる。また、実施例1、2(面プレス)のDCR値は、5.1[mΩ/cell]であり、比較例1、2よりも低かった。単セルの内部抵抗が下がったことから、単セルの内部(セパレータ)の皺も取り除くことができたことが分かる。
また、実施例1の方が実施例2よりもプレス圧が大きい。プレス圧が大きい実施例1の方が、より短時間で単セルの表面の皺(凹凸)を平らに成形することができるため、製造時間を短縮することができた。
10 電池、
11 積層体、
12 外装体、
20 単セル、
30 電極、
30a 正極、
30b 負極、
31 集電体、
31a 正極集電体、
31b 負極集電体、
32 電極活物質層、
32a 正極活物質層、
32b 負極活物質層、
40 電解質層、
50 シール部、
100 面プレス装置。

Claims (6)

  1. 正極集電体に電解液を含む正極活物質層が形成されてなる正極と、負極集電体に電解液を含む負極活物質層が形成されてなる負極とを、セパレータを介して積層して単セルを形成する単セル形成工程と、
    1つの前記単セルまたは発電要素をなす積層体を構成する前記単セルの個数よりも少ない個数積層された前記単セルに積層方向から加圧部の加圧面を面接触させて加圧する面プレス工程と、
    前記面プレス工程の後に、1つの前記単セルまたは2つ以上積層された前記単セルを充電する初回充電工程と、
    を有する、電池の製造方法。
  2. 前記正極集電体および前記負極集電体は、樹脂集電体であり、
    前記面プレス工程の前に、前記樹脂集電体の外周部をヒートシールするシール工程をさらに有する、請求項1に記載の電池の製造方法。
  3. 前記単セルを複数積層して前記積層体を形成する積層工程と、
    前記積層体を外装体の内部に密封する密封工程と、
    をさらに有し、
    前記密封工程の後に前記初回充電工程を行う、請求項1または請求項2に記載の電池の製造方法。
  4. 前記面プレス工程において、一または複数の前記単セルを加圧する圧力は、14.7[Pa]以上39.2[Pa]以下である、請求項1~3のいずれか1項に記載の電池の製造方法。
  5. 前記正極および前記負極の電極活物質層におけるバインダの含有量が、全固形分量100[質量%]に対して、1[質量%]以下である、請求項1~4のいずれか1項に記載の電池の製造方法。
  6. 前記面プレス工程は、1つの前記単セルに積層方向から加圧部の加圧面を面接触させて加圧する面プレス工程である、請求項1~5のいずれか1項に記載の電池の製造方法。
JP2018074689A 2018-04-09 2018-04-09 電池の製造方法 Active JP7085390B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018074689A JP7085390B2 (ja) 2018-04-09 2018-04-09 電池の製造方法
PCT/JP2019/011845 WO2019198454A1 (ja) 2018-04-09 2019-03-20 電池の製造方法
EP19785619.8A EP3780215A4 (en) 2018-04-09 2019-03-20 MANUFACTURING PROCESS FOR A BATTERY
US16/979,893 US11837691B2 (en) 2018-04-09 2019-03-20 Battery manufacturing method
CN201980024386.0A CN111937210A (zh) 2018-04-09 2019-03-20 电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018074689A JP7085390B2 (ja) 2018-04-09 2018-04-09 電池の製造方法

Publications (2)

Publication Number Publication Date
JP2019186003A JP2019186003A (ja) 2019-10-24
JP7085390B2 true JP7085390B2 (ja) 2022-06-16

Family

ID=68164016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074689A Active JP7085390B2 (ja) 2018-04-09 2018-04-09 電池の製造方法

Country Status (5)

Country Link
US (1) US11837691B2 (ja)
EP (1) EP3780215A4 (ja)
JP (1) JP7085390B2 (ja)
CN (1) CN111937210A (ja)
WO (1) WO2019198454A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106254A (ko) 2020-02-20 2021-08-30 주식회사 엘지에너지솔루션 이차전지 압연장치
US11855473B2 (en) * 2020-06-24 2023-12-26 Thunderzee Industry Co., Ltd. Charging device and method of charging and rejuvenating battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147485A (ja) 2004-11-24 2006-06-08 Ngk Spark Plug Co Ltd 蓄電装置の製造方法
WO2006062204A1 (ja) 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. バイポーラ電池
JP2008147009A (ja) 2006-12-08 2008-06-26 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2009295553A (ja) 2008-06-09 2009-12-17 Nissan Motor Co Ltd 双極型電池の製造方法、および双極型電池の製造装置
JP2015097152A (ja) 2013-11-15 2015-05-21 株式会社オハラ ポリマー二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234878A (ja) * 2003-01-28 2004-08-19 Nissan Motor Co Ltd ゲルポリマー電解質を備える二次電池用電極およびその製造方法、ならびに、二次電池
JP4042613B2 (ja) * 2003-04-14 2008-02-06 日産自動車株式会社 バイポーラ電池
US7807295B2 (en) * 2006-11-30 2010-10-05 Nissan Motor Co., Ltd. Bipolar battery and method of manufacturing same
JP5358906B2 (ja) * 2006-12-08 2013-12-04 日産自動車株式会社 バイポーラ電池の製造方法
JP5552731B2 (ja) * 2007-10-25 2014-07-16 日産自動車株式会社 双極型電池の製造方法、および双極型電池
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
CN102598391A (zh) * 2009-11-02 2012-07-18 丰田自动车株式会社 固体电解质电池的制造方法
CN103262327B (zh) * 2010-12-17 2015-08-19 丰田自动车株式会社 锂二次电池的制造方法
JP6175934B2 (ja) * 2013-06-25 2017-08-09 トヨタ自動車株式会社 全固体電池の製造方法
JP6283487B2 (ja) * 2013-09-27 2018-02-21 オートモーティブエナジーサプライ株式会社 非水電解質二次電池の製造方法
JP6295638B2 (ja) 2013-12-18 2018-03-20 日産自動車株式会社 二次電池の製造方法、製造装置及び当該製造装置に用いられる押圧力付与部材
JP6032233B2 (ja) 2014-03-18 2016-11-24 トヨタ自動車株式会社 固体電池及びその製造方法並びに組電池及びその製造方法
WO2016031688A1 (ja) * 2014-08-25 2016-03-03 日産自動車株式会社 積層型電池およびその製造方法
JP2017084609A (ja) * 2015-10-28 2017-05-18 トヨタ自動車株式会社 全固体電池の製造方法
JP2018074689A (ja) 2016-10-26 2018-05-10 日本電産株式会社 絶縁シート挿入装置、絶縁シート挿入方法、ステータ製造装置、モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147485A (ja) 2004-11-24 2006-06-08 Ngk Spark Plug Co Ltd 蓄電装置の製造方法
WO2006062204A1 (ja) 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. バイポーラ電池
JP2008147009A (ja) 2006-12-08 2008-06-26 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2009295553A (ja) 2008-06-09 2009-12-17 Nissan Motor Co Ltd 双極型電池の製造方法、および双極型電池の製造装置
JP2015097152A (ja) 2013-11-15 2015-05-21 株式会社オハラ ポリマー二次電池

Also Published As

Publication number Publication date
JP2019186003A (ja) 2019-10-24
WO2019198454A1 (ja) 2019-10-17
EP3780215A4 (en) 2021-06-02
EP3780215A1 (en) 2021-02-17
CN111937210A (zh) 2020-11-13
US11837691B2 (en) 2023-12-05
US20210013539A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US9666858B2 (en) Negative electrode for secondary battery, and process for production thereof
JP5888012B2 (ja) 非水電解質二次電池およびその製造方法
JP5957947B2 (ja) 双極型電極およびこれを用いた双極型リチウムイオン二次電池
CN104810524A (zh) 锂离子电池
JP5601361B2 (ja) 電池用電極
JP7190314B2 (ja) 双極型二次電池
US10431810B2 (en) Method for making lithium ion battery electrode
JP5418088B2 (ja) リチウムイオン二次電池用集電体
JP6785110B2 (ja) リチウムイオン電池用集電体及びリチウムイオン電池
KR20180057686A (ko) 전극 및 그 제조 방법
WO2019198453A1 (ja) 電池の製造方法
CN105612650B (zh) 非水电解质二次电池及其制造方法
JP2019216061A (ja) リチウムイオン電池用電極、及び、リチウムイオン電池
JP7085390B2 (ja) 電池の製造方法
JP7356232B2 (ja) リチウムイオン電池用負極及びリチウムイオン電池
JP7037992B2 (ja) 電池の製造方法
JP5515257B2 (ja) 双極型二次電池
JP6978259B2 (ja) リチウムイオン電池用正極及びリチウムイオン電池
JP7097283B2 (ja) 電池用電極の製造方法および電池用電極の製造装置
JP7256706B2 (ja) 全固体リチウムイオン二次電池用電極活物質成形体、全固体リチウムイオン二次電池用電極、全固体リチウムイオン二次電池及び全固体リチウムイオン二次電池用電極活物質成形体の製造方法
JP2021064477A (ja) 活物質膜及び蓄電デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7085390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150