WO2013118354A1 - フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材 - Google Patents

フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材 Download PDF

Info

Publication number
WO2013118354A1
WO2013118354A1 PCT/JP2012/077676 JP2012077676W WO2013118354A1 WO 2013118354 A1 WO2013118354 A1 WO 2013118354A1 JP 2012077676 W JP2012077676 W JP 2012077676W WO 2013118354 A1 WO2013118354 A1 WO 2013118354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoride
particles
sprayed
film
sprayed coating
Prior art date
Application number
PCT/JP2012/077676
Other languages
English (en)
French (fr)
Inventor
原田 良夫
健一郎 戸越
Original Assignee
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社 filed Critical トーカロ株式会社
Priority to KR1020147022157A priority Critical patent/KR20140110069A/ko
Priority to US14/376,647 priority patent/US9421570B2/en
Priority to CN201280069358.9A priority patent/CN104105820B/zh
Publication of WO2013118354A1 publication Critical patent/WO2013118354A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/30Change of the surface
    • B05D2350/33Roughening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound

Definitions

  • the present invention relates to a method for forming a fluoride spray coating and a fluoride spray coating coating member, and in particular, a fluoride excellent in corrosion resistance and plasma etching resistance on the surface of a semiconductor processing apparatus member subjected to plasma etching processing.
  • the present invention relates to a method for forming a sprayed coating and a fluoride sprayed coating-coated member obtained by carrying out this method.
  • Equipment and the like used in semiconductor processing processes and liquid crystal manufacturing processes are required to have a clean processing environment because of the demand for improved processing accuracy due to higher integration of circuits formed on a substrate. Moreover, since the processing environment is made of highly corrosive gas or aqueous solution such as fluoride and chloride, the members used in the apparatus are severely worn away by corrosion, and the corrosion products are not suitable. The next environmental pollution cannot be ignored.
  • Semiconductor device manufacturing / processing steps belong to a so-called dry process in which a compound semiconductor composed mainly of Si, Ga, As, P, or the like is used and processed in a vacuum or a reduced pressure environment.
  • processes such as film formation, impurity implantation, etching, ashing, and cleaning are repeatedly performed in the environment.
  • Equipment and members used in such dry processes include oxidation furnaces, CVD equipment, PVD equipment, epitaxial growth equipment, ion implantation equipment, diffusion furnaces, reactive ion etching equipment, and piping attached to these equipment, There are components and parts such as exhaust fans, vacuum pumps, and valves.
  • these devices and the like include fluorides such as BF 3 , PF 3 , PF 6 , NF 3 , WF 3 , HF, BCl 3 , PCl 3 , PCl 5 , POCl 3 , AsCl 3 , SnCl 4 , TiCl 4 , It is known to come into contact with chlorides such as SiH 2 Cl 2 , SiCl 4 , HCl and Cl 2 , bromides such as HBr, and highly corrosive agents and gases such as NH 3 and CH 3 F.
  • plasma low temperature plasma
  • the halide becomes a highly corrosive atomic or ionized F, Cl, Br, or I, and has a great effect on fine processing of a semiconductor material.
  • fine particles of SiO 2 , Si 3 N 4 , Si, W, etc. scraped by the etching process float in the processing environment from the surface of the plasma-treated semiconductor material, and these are processed. There is a problem that the quality of the processed product is deteriorated by adhering to the surface of the device during or after processing.
  • Patent Document 10 discloses a method in which a surface of a ceramic sintered body such as silicon nitride or silicon carbide is coated with a rare earth element or alkaline earth element fluoride by a magnetron sputtering method, a CVD method, a thermal spraying method, or the like.
  • Patent Document 11 discloses a member in which a YF 3 film is formed on an A1 2 O 3 base material.
  • Patent Document 12 discloses a method for producing a susceptor using a powder mainly composed of a fluoride of Y and a lanthanoid element
  • Patent Documents 13 and 14 include fluoride particles of Group IIIa elements in the periodic table.
  • a technique for forming a film by a spraying heat source such as an inert gas plasma or a combustion gas flame and then performing a heat treatment at 200 ° C. to 250 ° C. to change the crystal to a stable orthorhombic crystal.
  • Patent Document 15 proposes particles for spraying a rare earth-containing mixture (oxide, fluoride, chloride) containing Y of particles granulated from primary particles having an average particle diameter of 0.05 ⁇ m to 10 ⁇ m.
  • Patent Document 16 discloses a technique that uses a cold spray method or an aerosol deposition method in addition to a plasma spray method at a high heat source temperature as a method for forming a fluoride spray coating.
  • the following problems (1) to (7) relating to the fluoride spray coating formed by the spraying method and the coating forming method are improved, and the halogen corrosion resistance is improved.
  • the components of the fluoride particles are changed, and the formed fluoride film is stoichiometrically changed.
  • F 2 gas is released in the heat source and changes to a fluoride represented by YF 3-X .
  • Patent Document 13 discloses that an amorphous fluoride sprayed coating immediately after film formation is changed to orthorhombic by heat treatment at a temperature of 200 ° C. to 500 ° C. as a countermeasure against a change in the color of the film and a decrease in corrosion resistance. Proposing technology. However, as described in paragraph (0014), this technique is only a measure that the change in the color of the film is reduced, and is not a drastic measure.
  • Patent Document 16 does not specifically describe the fluoride cold spray method. That is, in this document, in order to further increase the plasma heat source temperature of the plasma spraying method, a method of forming a fluoride film in which H 2 gas is mixed in an inert gas such as Ar or He is recommended. This is technically contradictory to the film formation method at a low gas temperature by the cold spray method, and the explanation is not rational.
  • the fluoride particles for film formation are thermally decomposed in a high-temperature heat source, and harmful F 2 accompanied with a bad odor. Since the gas is released, the working environment is deteriorated and there is a problem in the safety and health of the work.
  • Patent Document 13 and Patent Document 16 only disclose roughening the surface of the base material with steel balls or corundum (Al 2 O 3 ), and Patent Document 17 discloses roughening with Al 2 O 3. .
  • each of the above-mentioned patent documents employs a method in which a fluoride sprayed coating is directly formed on the surface of a substrate, and conditions for blasting as a pretreatment for forming a fluoride sprayed coating. It is clear that the adhesiveness of the fluoride sprayed coating is not regarded as important because there is no description about the necessity of an undercoat layer. Therefore, despite the problem that the film often peels, no investigation has been made on how to solve the problem.
  • an object of the present invention is to propose a method for forming a fluoride sprayed coating capable of suppressing a thermal decomposition reaction and an oxidation reaction by thermal spraying in an inert gas at a relatively low temperature, as well as adhesion and corrosion resistance.
  • Another object of the present invention is to propose a fluoride spray-coated member having excellent properties such as plasma etching resistance.
  • the general method of forming a fluoride sprayed coating employs a spraying method with a high heat source temperature ( ⁇ 2000 ° C.), so that not only the chemical and physical properties of the formed coating deteriorate, but also adhesion There was a problem of being bad.
  • the present invention is a technology developed by obtaining knowledge that a new method of forming a fluoride sprayed coating from the following viewpoint to solve such problems is advantageous.
  • Fluoride for film formation may be sprayed using an inert gas such as Ar, N 2 , He or the like at a heat source temperature of about 600 ° C. to 1300 ° C. preferable.
  • an inert gas such as Ar, N 2 , He or the like
  • the coated and sprayed fluoride sprayed film is roughened on the surface of the substrate or uneven in the film-like undercoat layer of carbide cermet, or part of the particles are sparse on the surface of the substrate and like a pile.
  • the flocked state can be formed and firmly fixed through the non-film-form sprayed particle interspersed portion of the carbide cermet in the state of being stabbed into the surface. That is, this can improve the adhesion of the fluorine sprayed coating.
  • substrate for coating a fluoride spray coating in compliance with the ceramic sprayed coating work standard pre JIS H9302 defining its surface, with degreasing or descaling, abrasives such as A1 2 O 3 and SiC It is preferable to form a concavo-convex portion by blast roughening using the particles, or to preheat.
  • the carbonaceous cermet coating formed on the substrate surface is made of a carbide cermet material such as WC-Co or WC-Ni-Cr by the method (2) above. It is preferable to flame spray.
  • the undercoat layer using a carbide cermet is preferably a film-like layer that covers the entire surface of the substrate substantially evenly.
  • the sprayed particle interspersed portion using carbide cermet is a non-film in which the sprayed particles of carbide cermet are sparsely scattered in an area ratio (ratio covering the substrate surface) of 8 to 50%. It is preferable that it is the part which has a shape. This portion is distinguished from the carbide cermet undercoat layer in which the entire surface of the substrate is coated with a substantially uniform thickness to form a film.
  • the distance between the nozzle of the thermal spray gun that uses a low temperature inert gas as the driving source and the substrate surface is kept at 5 to 50 mm. By this, it is preferable to coat and form a fluoride sprayed coating having excellent adhesion.
  • the present invention which has been developed based on such knowledge, is prepared by applying a fluoride spray material and an inert gas such as Ar, N 2 , He, or a mixed gas thereof to the substrate surface or the pretreated substrate surface.
  • a fluoride spray material and an inert gas such as Ar, N 2 , He, or a mixed gas thereof
  • a spray gun as a working gas for film formation
  • a spray gas atmosphere maintained at a temperature of 600 ° C. to 1300 ° C., flight speed: 500 m / sec.
  • a fluoride sprayed coating is formed, in which at least a part of the fluoride sprayed particles is adhered so as to form a flocking structure that bites into the concave portion of the substrate surface.
  • This is a method for forming a chemical spray coating.
  • a carbide cermet material is first applied to a flying speed of 150 to 600 m / sec. , Preferably 300 to 600 m / sec.
  • the undercoat layer formed into a film is coated by spraying at a spraying speed of, and then, a fluoride sprayed material is coated on the undercoat layer with an inert material such as Ar, N 2 , He or a mixed gas thereof.
  • an inert material such as Ar, N 2 , He or a mixed gas thereof.
  • the flight speed is 500 m / sec.
  • the surface of the substrate is roughened by spraying abrasive particles such as Al 2 O 3 and SiC in advance, and then a commercially available normal
  • abrasive particles such as Al 2 O 3 and SiC
  • carbide cermet particles such as WC—Co, Cr 3 C 2 —Ni—Cr are supplied to the spray gun at a rate of 100 to 200 g / min.
  • the moving speed is set to 300 to 1000 mm / sec.
  • spraying is performed 6 times or more of the number of times of spraying (the number of repetitions of movement) so that the film has a substantially uniform film thickness of 30 to 200 ⁇ m.
  • the carbide cermet particles are applied at a flight speed of 150 to 600 m. / Sec. , Preferably 300 to 600 m / sec.
  • the flight speed 500 m / sec.
  • a commercially available high-speed flame spraying device (gun) is used after roughening the substrate surface with the abrasive particles.
  • carbide cermet particles such as WC—Co, Cr 3 C 2 —Ni—Cr, etc.
  • the amount supplied to the spray gun is 100 to 200 g / min.
  • the moving speed is set to 300 to 1000 mm / sec.
  • the number of spraying (transfer) is 5 times or less, preferably 3 times or less, by the same operation as the formation of the undercoat layer, so that the carbide cermet having an area ratio of 8 to 50% is obtained. It can be set as the spray particle interspersed part.
  • the present invention is a member comprising a substrate and a fluoride spray coating formed on the substrate surface, and the fluoride spray coating is applied directly to the substrate surface or the substrate surface.
  • the fluoride spray coating is applied directly to the substrate surface or the substrate surface.
  • a fluoride spray coating covering member characterized by having a skewered flocking structure at the tip of a hard carbide cermet.
  • another fluoride sprayed coating member of the present invention is a member comprising a substrate and a fluoride sprayed coating formed on the surface of the substrate, between the substrate and the fluoride sprayed coating.
  • it has an undercoat layer of carbide cermet adhered and coated in a film form with carbide cermet spray particles such as WC-Co, WC-Ni-Cr, WC-Co-Cr, Cr 3 C 2 -Ni-Cr. It is characterized by that.
  • another fluoride sprayed coating coated member of the present invention is a member comprising a substrate and a fluoride sprayed coating coated on the surface of the substrate, and between the substrate and the fluoride sprayed coating.
  • the carbide cermet spray particles such as WC—Co, WC—Ni—Cr, WC—Co—Cr, Cr 3 C 2 —Ni—Cr is 8% in area ratio on the surface of the substrate. It is characterized by having non-film-like sprayed particle interspersed portions with carbide cermet particles stuck and deposited in a sparse and forested state like a pile, piercing over a range of ⁇ 50%.
  • the pretreatment is descaling, degreasing, roughening treatment, and preheating treatment, that is, treatment for heating the substrate to a temperature of 80 to 700 ° C.
  • a grinding material such as Al 2 O 3 or SiC is sprayed on the surface of the base material, and the surface roughness is Ra: 0.05 to 0.74 ⁇ m, Rz: 0.09 to 2.
  • the base material is any of Al and alloys thereof, Ti and alloys thereof, steel containing carbon, various stainless steels, Ni and alloys thereof, oxides, nitrides, carbides, silicides, and carbon sintered bodies.
  • the fluoride sprayed coating is a lanthanoid metal with atomic number 57 to 71 on the substrate surface, Mg of periodic table group IIa, Al of periodic table group IIIb, Y of periodic table group IIIa Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Eurobium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), One or more kinds of fluoride particles selected from holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) fluoride particles having a particle diameter of 5 ⁇ m to 80 ⁇ m are sprayed, and 20 ⁇ m It is formed to a film thickness of ⁇ 500 ⁇ m, (5)
  • the carbide cermet is at least one selected from WC—Co, WC—N
  • the distance between the tip of the thermal spray nozzle and the substrate surface when spraying fluoride particles is maintained at an interval of 5 to 50 mm.
  • the flying speed of the spray particles is 600 m / sec. 800 m / sec.
  • the flying speed of the spray particles is 650 m / sec. 1000 m / sec.
  • the temperature of the working gas and the spraying atmosphere should be 700 ° C. or higher and 1300 ° C. or lower,
  • the following effects can be expected.
  • an inert gas such as Ar, N 2 , and He is used as a thermal spray heat source for heating the fluoride spray material for film formation
  • fluoride particles flying in the thermal spray heat source are oxidized and altered. It reaches the adherend surface without forming a sprayed coating. Therefore, since the thermal spraying is performed in a non-oxidizing atmosphere, the oxidation reaction is suppressed, and the original performance of the fluoride is not impaired, and a stable quality is obtained.
  • the spraying heat source temperature of the inert gas for heating the fluoride particles is as follows: heat source temperature of a general plasma spraying method: 5000 ° C.
  • heat source temperature of a high-speed flame spraying method 1800 ° C. to 2800 ° C.
  • the far lower temperature of 600 ° C to 1300 ° C makes it possible to form a thermal spray coating that suppresses the thermal decomposition reaction of fluoride particles and does not cause chemical mass changes and associated physicochemical property degradation. it can.
  • the velocity of the fluoride particles flying in the inert gas is set to 500 m / sec. Since it is set as described above, the temperature exposure time of the particles is short (1/1000 second), and the effects of the above (1) and (2) are further enhanced, and also obtained by applying large kinetic energy to the fluoride particles.
  • the tip of the sprayed particle flying will be buried in the concave part of the deposition surface due to an increase in the collision energy to the surface of the substrate.
  • the adhesion of the thermal spray coating can be improved by biting into the gaps in the existing portion or sticking to the tip of the carbide cermet that has been stuck. (4) By aligning the above-mentioned conditions such as low temperature, inert gas heat source, high speed flying particles, etc., high vapor pressure fluoride particles (for example, AlF) at high temperatures that could not be formed by the current plasma spraying method etc. 3 ) and the like can be easily formed.
  • the base material surface for depositing the thermal spray coating is first subjected to roughening by blasting or pretreatment for preheating the base material to 80 ° C. to 700 ° C. Then, since the undercoat layer of the carbide cermet or the sprayed particle interspersed portion thereof is formed, the adhesion force (adhesion force) of the fluoride sprayed particles can be improved.
  • the base material is pretreated and roughened (Ra: 0.1 to 0.85 ⁇ m, Rz: about 0.10 to 2.0 ⁇ m)
  • a high-speed flame spraying method is applied to the surface of the base material.
  • the fluoride which is the top coat and the carbide cermet below (the main component is carbon) and the like have strong chemical affinity with each other and have a characteristic of being wetted well.
  • the chemical affinity acts synergistically to improve the adhesion of the film.
  • FIG. 1 A photograph of a YF 3 spray coating formed by application of the present invention method, (a) shows the film surface photographs, (b) is a film cross-sectional photograph.
  • FIG. 1 shows the flow of steps for carrying out the method of the present invention.
  • the present invention will be described in the order of the steps.
  • the base material that can be used in the present invention includes Al and its alloys, Ti and its alloys, various alloy steels including stainless steel, carbon steel, Ni and their alloys, and the like.
  • ceramic sintered bodies such as oxides, nitrides, carbides, silicides, and sintered carbon materials may be used.
  • This treatment is preferably performed on the surface of the substrate in accordance with a ceramic spraying work standard defined in JIS H9302. For example, degreasing and descaling of the surface of the base material, and then roughening (blasting) by spraying grinding particles such as Al 2 O 3 and SiC to obtain an uneven surface state in which fluoride particles and the like are likely to adhere. To do.
  • the surface roughness of the substrate after roughening is preferably about Ra: 0.05 to 0.74 ⁇ m and Rz: about 0.09 to 2.0 ⁇ m so that the fluoride sprayed coating tends to have a flocked structure.
  • the base material is preferably preheated to about 80 to 700 ° C. in order to further ensure the bonding property with the undercoat layer or particle interspersed portion of the carbide cermet of fluoride spray particles described later.
  • Carbide cermet film-like undercoat layer Carbide having a particle size of 5 to 80 ⁇ m is applied to the roughened substrate surface after blasting by the same method as the high-speed flame spraying method or the inert gas spraying method specific to the present invention described later.
  • a cermet (spraying) material By spraying a cermet (spraying) material, at least a part of the tip of the sprayed particles is stuck into the surface of the base material, and the other part is adhered and deposited on the surface of the base material. In this state, an undercoat layer attached to the carbide cermet film is formed.
  • This undercoat layer is formed from a carbide cermet material (particle size: 5 ⁇ m to 80 ⁇ m) at 150 to 600 m / sec. , Preferably 300 to 600 m / sec.
  • a spray gun with a flying speed of, the film is sprayed while being moved from 6 to 10 times. If the flying speed of the sprayed particles is less than 150 ⁇ m, the penetration depth of the particles into the substrate surface becomes insufficient and the adhesion strength becomes weak. On the other hand, 600 m / sec. In the case of carbide cermet particles, the effect is saturated. And if the frequency
  • FIG. 2 shows an initial stage when a carbide cermet undercoat layer is applied, that is, a flying speed of particles of 550 m / sec.
  • rate and its part is shown.
  • FIG. 2 (b) shows that some of the sprayed WC-Co cermet particles are attached to the surface of the substrate so as to decrease, while other WC-Co cermet particles are caused by collision energy to the substrate. , It is in a state of being partly crushed and dispersed and coated.
  • FIG. 2 (c) is a cross-sectional view of the distribution of WC—Co cermet particles sprayed on the surface layer of the base material in the initial stage before the film formation.
  • the WC-Co cermet particles are in a state where the tip portion is driven into the substrate surface and stabbed into the embedded state, and the other part is simply attached or buried.
  • the film becomes more uniform as the number of times of thermal spraying is increased.
  • the WC-Co sprayed material is sprayed repeatedly ( ⁇ 6 times) by the high-speed flame spraying method on the substrate surface to which the WC-Co cermet spray particles are attached,
  • the WC—Co particles are gradually deposited also on the black portion in FIG. 2A, and a film-like undercoat layer is formed in which the WC—Co cermet particles are coated over the entire surface.
  • a general metallic undercoat such as Ni—Cr or Ni—Al, which is widely used for forming an oxide ceramic sprayed coating, is buried in a substrate as shown in FIG. No particles are observed.
  • the application of the carbide cermet undercoat layer on the surface of the substrate increases the adhesion to the undercoat / substrate and the undercoat / topcoat (fluoride) by the behavior form of the hard carbide cermet. Due to the synergistic effect of both the roughness of the surface of the undercoat layer and the chemical affinity (of carbon and fluoride), the adhesion of the fluoride sprayed coating is improved.
  • the carbide cermet spray particles in which the particles in the lowermost layer of the undercoat layer are stuck into the surface of the base material are firmly bonded to the base material and have a large compressive strain on the surface of the base material.
  • it also improves the adhesion between the carbide cermet undercoat layer itself and the base material, and the foot coating on the base material. It also improves the adhesion with the chemical spray coating.
  • the carbide cermet undercoat layer deposited and deposited on the surface of the substrate in a state where a part of the spray particles is buried is soft and Al and its alloys that are susceptible to deformation and strain under load in the use environment. It is particularly effective for substrates such as Ti and its alloys, mild steel, and various stainless steels, and ensures the formation of a fluoride sprayed coating having a stable and high adhesive force regardless of the type of substrate.
  • the fluoride film is originally poor in ductility, has a low surface energy and is difficult to bond to a metal-based substrate, and the film easily peels off due to slight deformation or distortion of the substrate.
  • the thickness of the carbide cermet undercoat layer formed on the substrate surface is preferably in the range of 30 to 200 ⁇ m, and more preferably in the range of 80 to 150 ⁇ m. If the thickness of the undercoat layer is less than 30 ⁇ m, the film thickness tends to be uneven, and even if the film thickness exceeds 200 ⁇ m, the effect as the undercoat layer is saturated and it is not economical.
  • sprayed particle interspersed portion by carbide cermet A particle size of 5 to 80 ⁇ m is applied to the surface of the substrate roughened by blasting by the same method as the high-speed flame spraying method or the inert gas spraying method specific to the present invention described later.
  • the carbide cermet particles are sprayed at a high speed, and the tip of at least some of the sprayed hard carbide cermet sprayed particles are pierced into the surface of the base material in an independent state, and the pile is in a forested state. Like that.
  • sprayed particle interspersed portions in which carbide cermet particles adhere to the base material surface in a sparse pattern are formed.
  • the particle size of the carbide cermet particles is smaller than 5 ⁇ m, the amount supplied to the spray gun is uneven and uniform spraying is not possible, and the amount of piercing is reduced and effective sprayed particle interspersed portions are formed. become unable. On the other hand, when the particle diameter exceeds 80 ⁇ m, the piercing effect is weakened.
  • the sprayed particle interspersed portion is formed of a carbide cermet material (particle size: 5 to 80 ⁇ m), 150 to 600 m / sec. , Preferably 300 to 600 m / sec.
  • the number of sprays is set to 5 times or less, preferably 3 times or less, and the sprayed particles are sparsely and piled on the surface of the base material where the area ratio is 8 to 50%. It is the part made to adhere in the state stabbed like.
  • Sparsely dispersed carbide cermet sprayed particle interspersed portions in this treatment step are not completely film-like, but have the following structure. That is, the WC-Co cermet sprayed as shown in FIGS. 2 (a) and 2 (b) showing the appearance when the particles of the carbide cermet material of WC-12mass% Co are sprayed onto the surface of the SUS310 steel substrate. A part of the particles are attached so as to be reduced to 8 to 50% of the surface of the substrate. The other WC-Co cermet particles are also dispersed and attached in a state of being pulverized by the collision energy to the substrate surface, and the other part is completely buried in the substrate. As a result, a reinforcing layer made of carbide cermet is formed on the surface layer of the sprayed coating.
  • FIG. 2 (c) is a cross-sectional view of the distribution state of the sprayed WC-Co cermet particles present in the surface layer portion of the substrate.
  • the WC-Co cermet particles exist in a state where small piles are sparsely forested by being driven into the surface of the substrate, and the other part is simply attached or buried. It has become.
  • the surface of the substrate in such a state that is, the sprayed particle interspersed portion with the carbide cermet particles adhering in such a state (this does not form a complete layer).
  • the white portion is based on the carbide cermet particles and the black portion is based on the SEM photograph of FIG. 2 (a) or 2 (b).
  • the area ratio (area occupancy) of the carbide cermet particles was determined. As a result, it was confirmed that the ratio occupied by the sprayed particles, that is, the area ratio, is preferably in the range of 8 to 50%.
  • the state of the substrate surface sprayed with the area ratio of carbide cermet particles in the range of 8 to 50% is called “sprayed particle interspersed portion”.
  • the carbide cermet sprayed material usable in the present invention WC—Co, WC—Ni—Cr, WC—Co—Cr, Cr 3 C 2 —Ni—Cr and the like can be used.
  • the ratio of the metal component in the carbide cermet is preferably in the range of 5 to 40 mass%, and particularly preferably 10 to 30 mass%. When the metal component is less than 5 mass%, the hard carbide becomes a small powder and the ratio of remaining on the substrate surface is small.
  • the metal component exceeds 40 mass%, the hardness and corrosion resistance are reduced, and fluoride The effect of entanglement with the particles is reduced, and the base material is easily corroded by corrosive gas entering from the through-holes of the fluoride spray coating. In addition, the bonding force of the fluoride spray coating is lost to induce peeling. become.
  • the carbide cermet particles preferably have a particle size of 5 to 80 ⁇ m, and particularly preferably 10 to 45 ⁇ m.
  • the particle size is less than 5 ⁇ m, the supply to the spray gun becomes discontinuous, and it becomes difficult to form a uniform film. It is because it is hard to remain in the.
  • the particle diameter is larger than 80 ⁇ m, the effect is saturated and it is difficult to obtain a commercial product.
  • the base material after the roughening treatment and the base material after forming the carbide cermet undercoat layer and the sprayed particle interspersed portion are preheated prior to the fluoride spraying treatment.
  • the preheating temperature is preferably controlled by the base material, and the following temperatures are recommended. Further, this preheating may be performed as one of the pretreatments.
  • the preheating may be performed in the atmosphere, in a vacuum, or in an inert gas, but it is necessary to avoid an atmosphere in which the base material is oxidized by preheating and an oxide film is formed on the surface.
  • one of the biggest reasons for preheating the substrate is that when an inert gas is injected from the nozzle at a high speed, the gas temperature of, for example, about 600 ° C. reaches about 50 ° C. due to the adiabatic expansion phenomenon of the gas. This is because there is a risk that the temperature of the base material is lowered and the substrate is thereby cooled. If the surface temperature of the substrate becomes such a low temperature, the fluoride spray particles injected from the nozzle (the melting point of fluoride is 1152 ° C. for YF 3 and 1350 ° C.
  • the present invention is based on pretreatment of the substrate surface, formation of a carbide cermet undercoat layer, etc. on the substrate surface, and hot high-speed spraying of fluoride particles with an inert gas described later on the substrate surface. By applying large kinetic energy, the adhesion of fluoride particles is improved.
  • the fluoride spray material used in the present invention includes elemental periodic group IIa group Mg, periodic table group IIIb group Al, periodic table group IIIa group Y, and lanthanoids belonging to atomic numbers 57 to 71. It is a fluoride of a metallic metal.
  • the metal element names of atomic numbers 57 to 71 are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd). , Terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) can be used.
  • the metal fluoride particles adjusted to a particle size of 5 to 80 ⁇ m are used. That is, when the sprayed material is less than 5 ⁇ m, it has the disadvantage that more particles are scattered when it collides with the surface of the substrate, and for particles larger than 80 ⁇ m, the feed rate to the spray gun is increased. This is because the tendency to increase the pores of the formed film becomes remarkable while it becomes difficult to make uniform.
  • the sprayed coating of fluoride particles formed on the surface of the surface after the roughening treatment or the formation of the carbide cermet undercoat layer and sprayed particle interspersed portions, and the preheated substrate, etc. has a thickness of 20 to 500 ⁇ m. In particular, the range of 50 to 200 ⁇ m is preferable. That is, when the film is thinner than 20 ⁇ m, a uniform film thickness cannot be obtained. When the film is thicker than 500 ⁇ m, the residual stress at the time of forming the fluoride film increases, resulting in a decrease in adhesion to the base material and peeling. It is easy to do.
  • FIG. 2 and FIG. 3 show a preferred example of an apparatus effective for forming the fluoride sprayed coating according to the present invention on the surface of the substrate in such an apparatus.
  • l is a working gas source supplied from a compressed gas cylinder
  • 2 is a spraying material supplier
  • 3 is a gas pressure heat exchanger
  • 4 is a spraying container
  • 5 is a spray gun
  • 6 is a nozzle
  • 7 is a workpiece.
  • a silencer 9 is a main gas pipe for working gas
  • 10 is a sub-gas pipe for conveying the sprayed material powder
  • 11 is a rectifying plate for working gas
  • 12 and 13 are flow control valves provided in the respective gas pipes. It is.
  • the high-pressure inert gas supplied from the working gas source 1 is divided into two, and one of the gases is sent to the heat exchanger 3 as a film forming working gas and heated to 600 to 1300 ° C. And it is made to inject toward the to-be-processed object 7 from the nozzle 6 as injection gas of a supersonic flow.
  • temperature control is performed so as to prevent an extremely low temperature accompanying adiabatic expansion.
  • the lower limit temperature of the preferred working gas is 700 ° C. or higher, more preferably 800 ° C. or higher.
  • a preferable upper limit temperature is 1200 ° C.
  • the temperature of the working gas is less than 600 ° C., the temperature becomes about 50 ° C. due to the adiabatic expansion phenomenon at the outlet of the injection gun, and the temperature rise effect of the fluoride particles cannot be obtained. About 800 degreeC, it is more effective.
  • the temperature exceeds 1300 ° C., the energy required for heating the inert gas increases, and the cost for heat-resistant measures for the attached equipment increases. This effect can be set to about 1200 ° C. or less.
  • the other branched gas is used as a gas for conveying the spray powder material, but is merged with the working gas in the spray gun 5 to form a supersonic gas flow in the nozzle 6 (in the case of FIG. 3).
  • the sprayed material particles are caused to fly and collide toward the object to be processed at a high speed, and sprayed so that at least a part of the sprayed material bites into the adherend surface and gradually thickened to form a sprayed coating having a predetermined thickness.
  • the spray material particles may be introduced from a pressure reducing portion at the outlet of the spray gun 5 (near the attachment portion of the nozzle 6).
  • the distance between the nozzle 6 and the object to be processed is 5 to 50 mm, preferably 10 to 30 mm. If the distance is smaller than 5 mm, the gas flow is obstructed, and if the distance is larger than 50 mm, the adhesion rate of fluoride particles. Is significantly reduced.
  • the inert gas from the nozzle 6 of the thermal spray gun 5 is used as the film forming operation gas, and fluoride spray material particles are added at 500 m / sec.
  • the object 7 is sprayed at the above flight speed.
  • the flight speed at this time is 500 m / sec.
  • the reason for the above is 500 m / sec. It is because the adhesion rate of the fluoride particle with respect to the base material surface will fall extremely if less than.
  • the preferred lower limit speed is 600 m / sec. , More preferably 650 m / sec. It is.
  • the upper limit of the flight speed is limited by the performance of the thermal spray apparatus parts, but is 800 m / sec. Or less, more preferably 750 m / sec. It is preferable to set the speed to a certain level.
  • the supersonic gas generating part (nozzle 6) and the object 7 are protected by the steel spraying container 4, and the shock wave sound generated by the supersonic gas is combined with the action of the silencer 8.
  • the structure is such that it does not leak to the outside.
  • the characteristic feature of the present invention is that an inert gas such as Ar, N 2 or He alone or a mixed gas thereof is used as the high-pressure working gas to be used.
  • the pressure of these gases is preferably controlled within the range of 0.5 to less than 1.0 MPa.
  • the reason why attention is given to the inert gas as an example as the working gas is that, even if heated to a high temperature of 1300 ° C., various metal members constituting the thermal spraying apparatus are not oxidized and consumed. This is because the physicochemical change due to the oxidation reaction of the particles can be minimized even when the chemical particles are heated.
  • the reason why the pressure is made less than 0.5 to 1.0 MPa is that it is suitable for utilizing the kinetic energy of the heat source inert gas.
  • the use of a pressure gas of 1 MPa or higher is not a problem in film formation, but requires legal measures in handling high-pressure gas, and is not preferable from the viewpoint of stability of work.
  • the method used to form the fluoride spray coating has been described using the example of the apparatus used in the low temperature spraying method described in the patent number 4628578 previously proposed by the inventors.
  • a similar low temperature spraying device may be used.
  • any apparatus capable of obtaining the coating formation conditions of the fluoride spray coating specifically, the type, temperature, flow rate, etc. of the working gas can be used. It is not limited to the above example.
  • FIG. 5 shows an SEM image of the cross section and the surface of the YF 3 sprayed coating formed on the substrate surface by the above-described method according to the present invention. It can be seen that the coating is formed on the surface of the substrate with a relatively dense thermal spray coating and in good condition.
  • the fluoride particles constituting the thermal spray coating collide with the substrate and the surface of the substrate on which the carbide cermet formed on the surface exists due to a large kinetic energy, thereby forming a flocked structure.
  • a carbide cermet undercoat layer or particle interspersed portion is provided on the surface of the substrate, the adhesion of the film is also improved, and the above-mentioned problems that fluoride has The point can be solved. That is, the effect of preventing the peeling of the film and cracking and preventing the corrosion of the base material by preventing the intrusion of the cleaning liquid associated therewith occurs.
  • the fluoride spray coating formed in conformity with the present invention can be used as it is, but if necessary, heat treatment at 250 ° C. to 500 ° C. is performed after film formation to release the residual stress.
  • the present invention does not particularly limit the implementation of these treatments.
  • the reason for limiting the temperature of this heat treatment to the above-mentioned range is that if it is 250 ° C. or lower, it takes a long time to release the residual stress of the coating, and crystallization is insufficient, and if it is 500 ° C. or higher, the fluoride sprayed coating This is because it may promote changes in physicochemical properties.
  • Example 1 In this example, YF 3 and AlF 3 were used as fluorides, and the temperature of the working gas for film formation and the feasibility of forming a fluoride spray coating were investigated.
  • Base material SUS304 steel (dimensions: 30 mm ⁇ 30 mm ⁇ thickness 5 mm) is used as the base material, and after blast roughening the surface, WC-12Co is sprayed by high-speed flame spraying (flight). Speed: 630 m / sec.
  • the undercoat layer was applied to a thickness of 100 ⁇ m under the condition of 8 thermal sprays, and then preheated to 180 ° C. for use.
  • the thermal spraying method of the invention example uses an inert residue consisting of Ar, N 2 and He as a working gas for film formation, and the temperature of each gas is set to a maximum of 1300 ° C.
  • the flying speed of the fluoride particles is 600 to 660 m / sec.
  • the presence / absence and quality of the fluoride film formed on the surface of the base material was examined while maintaining within the range.
  • Fluoride material for film formation YF 3 and AlF 3 having a particle size of 10 to 35 ⁇ m were used as fluorides.
  • thermal spraying method of the comparative example a conventional atmospheric plasma spraying method using Ar and hydrogen gas as plasma working gas and a low pressure plasma spraying method (particle flight speed: 350 to 500 m / sec.) are used, and each plasma jet is used. YF 3 and AlF 3 were deposited as heat sources.
  • Table 1 shows the test results.
  • the thermal spraying method proposed in the present invention the formation of a fluoride film is not observed when the working gas for film formation (Ar, N 2 , He) is less than 500 ° C. (fluoride) Even in the case where adhesion of particles is observed, the film is porous and cannot be used practically).
  • the gas temperature is set to 600 ° C. or higher, formation of a good film can be confirmed in appearance.
  • the conventional atmospheric plasma spraying method and low pressure plasma spraying method YF 3 film formation is observed, but the AlF 3 film has many defects (porosity and poor uniformity) and is practical. No film properties were obtained. This is presumably because AlF 3 has a very high vapor pressure, and thus vaporized or decomposed from the surface of AlF 3 particles when flying in a high-temperature plasma jet.
  • Example 2 In this example, the influence of the film formation method and the pretreatment on the base material on the porosity of the fluoride spray coating formed on the surface of SS400 steel was investigated.
  • Base material SS400 steel (dimensions: width 50 mm x length 50 mm x thickness 3.2 mm) was used as the base material, and the WC-12Co undercoat was only subjected to the blast roughening treatment with the current alumina particles.
  • Two types were prepared: one having a thickness of 80 ⁇ m applied by the same method as in Example 1.
  • Test results are shown in Table 2. As is apparent from the results shown in this table, it was found that blue spots were generated from all the fluoride spray coatings tested, and through pores were present in the coating. However, when looking at the number of blue spots, 3-7 large blue spots are seen in the coatings (Nos. 3 and 4) formed by the atmospheric plasma spraying method and the high-speed flame spraying method of the comparative example.
  • the coating formed by thermal spraying according to the method of the present invention has a small number of spots and shows a tendency toward densification compared to the former. It was also found that the coating formed on the substrate surface sprayed with WC-Co particles has few through pores and can be put to practical use as a pretreatment for forming a fluoride coating.
  • Example 3 In this example, the flying speed of the fluoride particles and the preheating temperature of the base material were respectively changed to obtain the flying speed and the preheating temperature necessary for forming the fluoride film.
  • Substrate The same stainless steel as in Example 1 was used. After blast roughening, a WC-8Co-5Cr undercoat layer was applied to a thickness of 120 ⁇ m under the same conditions as in Example 1, and then 20 A test piece preheated in the range of from °C to 520 °C was prepared.
  • Ar gas heated to 750 ° C. is used as a working gas for film formation, and the velocity of fluoride particles flying in such a spraying atmosphere is set to 500 m / sec. Less than 600 to 700 m / sec. 750 m / sec. The film was formed under the three conditions.
  • Fluoride for film formation YF 3 (particle size: 10 to 35 ⁇ m)
  • Table 3 shows the test results.
  • the flight speed of YF 3 particles is 500 m / sec. If it is less than 1, sufficient film formation could not be obtained even if the preheating temperature of the substrate was changed from 20 ° C. to 520 ° C. (No. 1).
  • the flying speed of the fluoride spray particles is set to 600 ° C. or higher, the film is formed when the preheating temperature of the substrate is maintained at 80 ° C. or higher, and this tendency causes the flight speed to be 750 m / sec. Even with the above, there was almost no change, and the formation of a good thermal spray coating was observed.
  • the flying speed of the fluoride spray particles necessary for forming the fluoride film is 600 m / sec.
  • the preheating temperature of the base material SUS304 steel
  • the maximum preheating temperature of the base material varies depending on the base material quality, and non-ferrous metals such as Al and Ti undergo deformation and metallurgical changes as the temperature rises, and steel materials generate oxide scale on the surface. Since a change occurs, it is preferable to suppress to a low temperature. In this respect, sintered bodies such as carbides and oxides are less affected by the heating temperature, so that a better thermal sprayed film is formed when the production temperature is as high as possible. .
  • Example 4 In this example, the flight speed of fluoride particles, the roughened state of the substrate surface, and the formation state of the film on the construction surface of the carbide cermet undercoat layer were investigated.
  • Substrate The same SUS304 steel test piece as in Example 1 was used, the surface was subjected to blast roughening, and the undercoat layer of WC-18Co was applied in the same manner as in Example 1. I prepared something. All the substrates were preheated to 200 ° C.
  • Fluoride for film formation YF 3 (particle size: 5 to 30 ⁇ m)
  • Test results Table 4 shows the test results.
  • the flying speed of the fluoride particles is 500 m / sec. If it is less than 1, even if a carbide cermet undercoat layer is formed on the surface of the substrate, the fluoride film is not sufficiently formed, and even if formed, it is porous and non-uniform.
  • the particle velocity is 600 m / sec.
  • a blast roughened surface No. 2 formed a good film when both WC-Co particles were sprayed, and in particular, the film on the test piece sprayed with WC-Co particles showed a good appearance (No. .3).
  • a fluoride spray coating is formed on the surface of an Al alloy substrate (dimensions: width 30 mm ⁇ length 50 mm ⁇ thickness 3 mm) by a method suitable for the present invention, and the plasma etching resistance of the coating is formed. Evaluated.
  • Substrate After blasting roughening the surface of the (A3003 of JIS H4000 defined) Al alloy, in the same manner as in Example 1 an undercoat layer of Cr 3 C 2 -18Ni-8Cr of 150 ⁇ m thickness Then, it was preheated to 200 ° C.
  • Spraying atmosphere He gas heated to 800 ° C.
  • Fluoride for film formation YF 3 , DyF 3 , CeF 3 (particle diameter 5 to 45 ⁇ m) was sprayed to form a film with a film thickness of 180 ⁇ m.
  • a film in which Y 2 O 3 , Dy 2 O 3 , and CeO 2 were formed to 180 ⁇ m by the atmospheric plasma spraying method was evaluated under the same conditions.
  • the plasma erosion resistance and the environmental pollution resistance were investigated by measuring the number of particles of the film component scattered from the test film by the etching treatment.
  • the number of particles was measured by measuring the time required for the number of particles having a particle size of 0.2 ⁇ m or more attached to the surface of an 8-inch diameter silicon wafer disposed in the test container to reach 30 particles.
  • Test results Table 5 shows the test results.
  • the oxide film (No. 1, 3, 5) of the comparative example has the least amount of generation of particles in the CH-containing gas, and is slightly increased in the F-containing gas to reach the allowable value. There is a situation where becomes shorter.
  • the number of particles generated in an atmosphere in which F-containing gas and CH-containing gas are alternately repeated is further increased. This is considered to be because the oxide film on the surface of the oxide ceramic film is always in an unstable state and scattered due to the repetition of the oxidizing action of the fluorinated gas and the reducing action of the CH gas in the F-containing gas.
  • Example 6 In this example, the influence of the pretreatment of the substrate surface on the adhesion of the fluoride spray coating was investigated.
  • (1) kind of pretreatment The following pretreatment was performed on one side of an Al3003 alloy (dimension: diameter 25 mm x thickness 5 mm) as a base material.
  • Ni-50Cr is formed into a 50 ⁇ m-thick film by atmospheric plasma spraying (metal undercoat)
  • metal undercoat metal undercoat
  • an undercoat layer having a thickness of 80 ⁇ m is formed with WC-12Co by a high-speed flame spraying method (speed: 680 m / sec.
  • Example 7 In this example, the influence of the film forming method and the surface roughening method on the porosity of the fluoride sprayed coating formed on the surface of stainless steel (SS400) was investigated.
  • Base material SS400 steel (dimensions: width 50 mm ⁇ length 50 mm ⁇ thickness 3.2 mm) is used as the base material, and only normal blast roughening with alumina particles (comparative example) and the present invention
  • the WC-Co particles are blown at a flight speed of 720 m / sec.
  • Two types of spraying treatment were performed under the condition of the number of spraying of 6 times, and a sprayed particle interspersed part with an area ratio of 30 to 32% was applied.
  • Test results are shown in Table 7. As is apparent from the results shown in this table, it was found that blue spots were generated from all the fluoride spray coatings tested, and through pores were present in the coating. However, when looking at the number of blue spots, 3-7 large blue spots are seen in the coatings (Nos. 3 and 4) formed by the atmospheric plasma spraying method and the high-speed flame spraying method of the comparative example. In the coatings 1 (coating having sprayed particles with an area ratio of 32%) and 2 (area ratio 30%) formed by thermal spraying according to the method of the present invention, the number of spots is small, compared with the comparative example. It shows the tendency of densification. It was also found that the coating formed on the substrate surface sprayed with WC-Co particles has few through pores and can be put to practical use as a pretreatment for forming a fluoride coating.
  • Example 8 In this example, the flying speed of the fluoride particles and the preheating temperature of the base material were respectively changed to obtain the flying speed and the preheating temperature necessary for forming the fluoride film.
  • Substrate The same stainless steel as in Example 7 was used, a blast roughening treatment was performed, and a test piece preheated in the range of 20 ° C. to 520 ° C. was prepared.
  • Thermal spray atmosphere Ar gas heated to 750 ° C. was used as the working gas for film formation, and the velocity of the fluoride particles flying through this was set to 500 m / sec. Less than 600 to 700 m / sec. 750 m / sec. The film was formed under the three conditions.
  • Fluoride for film formation YF 3 (particle size: 10 to 35 ⁇ m)
  • Table 8 shows the test results.
  • the flight speed of YF 3 particles is 500 m / sec. If it is less than 1, sufficient film formation could not be obtained even if the preheating temperature of the substrate was changed from 20 ° C. to 520 ° C. (No. 1). However, the flying speed of the particles is 600 m / sec.
  • the preheating temperature of the substrate is maintained at 80 ° C. or more, the film is formed, and this tendency causes the flight speed to be 750 m / sec. Even with the above, there was almost no change, and the formation of a good thermal spray coating was observed.
  • the flying speed of the fluoride particles necessary for forming the fluoride film is 600 m / sec.
  • the preheating temperature of the base material SUS304 steel
  • the maximum preheating temperature of the base material varies depending on the base material quality, and non-ferrous metals such as Al and Ti undergo deformation and metallurgical changes as the temperature rises, and steel materials generate oxide scale on the surface. Since a change occurs, it is preferable to suppress to a low temperature. In this respect, sintered bodies such as carbides and oxides are less affected by the heating temperature, so that a better thermal sprayed film is formed when the production temperature is as high as possible. .
  • Example 9 the film formation state due to the difference in the flying speed of the fluoride particles and the roughened state of the substrate surface was investigated.
  • Substrate The same SUS304 steel test piece as in Example 1 was used, the surface thereof was subjected to blast roughening treatment, and WC-Co particles were subjected to high-speed flame spraying under the same conditions as in Example 7 (750 m / sec. ) And spraying to form sprayed particles with an area ratio of 28% was prepared. All the substrates were preheated to 200 ° C.
  • Thermal spraying atmosphere Ar gas heated to 700 ° C. was used as the film forming working gas, and the flying speed of the fluoride particles flying through this was set at 500 m / sec. Less than 750 m / sec. It was adjusted to become.
  • Fluoride for film formation YF 3 (particle size: 5 to 30 ⁇ m)
  • Example 10 the corrosion resistance of a fluoride spray coating formed by a method conforming to the present invention to the halogen acid vapor was investigated.
  • Substrate SS400 steel substrate (dimensions: width 30 mm ⁇ length 50 mm ⁇ thickness 3.2 mm) was used, and the surface was blast roughened and preheated to 180 ° C. to form a film.
  • Thermal spraying atmosphere Ar gas heated to 850 ° C. was used as a working gas for film formation, and the flying speed of fluoride particles flying through the working gas was 680 to 720 m / sec. Controlled to the range.
  • a fluoride film having a thickness of 250 ⁇ m was prepared using AlF 3 , YF 3 (particle size: 10 to 60 ⁇ m) as a fluoride.
  • (4) Corrosion test (a) Corrosion test with HCl vapor is carried out by adding 100 ml of 30% HCl aqueous solution to the bottom of a dish for chemical experiments and suspending a test piece on the top to generate HCl generated from an aqueous HCl system. The method of exposure to vapor was adopted. The corrosion test temperature is 30 ° C. to 50 ° C., and the time is 96 hours.
  • Example 11 In this example, the influence of the pretreatment of the substrate surface on the adhesion of the fluoride spray coating was investigated.
  • (1) kind of pretreatment The following pretreatment was performed on one side of an Al3003 alloy (dimension: diameter 25 mm x thickness 5 mm) as a base material.
  • Ni-20 mass% Cr is formed into a 50 ⁇ m-thick film by atmospheric plasma spraying (undercoat layer of alloy)
  • WC-12 mass% Co was sprayed in a sparse pattern by high-speed flame spraying (area ratio 22%) to form sprayed particle interspersed portions.
  • the fluoride film obtained by thermal spraying using a relatively low to ultra-high speed, inert gas as a working fluid according to the present invention can be obtained by thermally decomposing fluoride particles for film formation or removing F Since the two- component phenomenon does not occur, the formed fluoride film exhibits the original physicochemical properties of fluoride.
  • a hard sprayed fluoride coating with high adhesion by applying an undercoat layer or particle-scattering part where hard carbide cermet particles are buried in the surface of the substrate that collides with large kinetic energy. can be coated.
  • the fluoride spray coating formed in this way has better adhesion, acid resistance, halogen gas resistance, plasma erosion resistance, etc., compared to coatings formed by conventional plasma spraying and high-speed flame spraying methods. It has excellent physicochemical properties, and it can be expected to be used in fields where more stringent and superior performance is required as a coating for general petrochemical / chemical plants as well as coatings for current semiconductor processing equipment members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】熱分解反応と酸化反応を抑制することで品質面で良好な特性を有するフッ化物溶射皮膜を密着させてなるフッ化物溶射皮膜被覆部材の提供と、その皮膜を強固に付着させて被覆形成する方法とを提案すること。 【解決手段】基材または前処理した基材表面に、必要に応じて炭化物サーメットのアンダーコート層または溶射粒子点在部を介して、フッ化物溶射材料粒子を、不活性ガスを成膜用作動ガスにより、不活性ガス温度600℃~1300℃、飛行粒子速度:500m/sec.以上の速度にて吹き付けて、該基材表面にフッ化物溶射皮膜植毛構造に形成する方法、およびフッ化物溶射皮膜被覆部材。

Description

フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
 本発明は、フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材に関し、特に、プラズマエッチング加工が施される半導体加工装置用部材などの表面に、耐食性や耐プラズマエッチング特性に優れたフッ化物溶射皮膜を形成する方法と、この方法の実施によって得られるフッ化物溶射皮膜被覆部材に関する。
 半導体加工プロセスや液晶製造プロセスに使用される装置等は、基板に形成される回路の高集積化に伴う加工精度の向上という要請から、加工環境の清浄性が求められている。しかも、その加工環境は、フッ化物、塩化物をはじめとする腐食性の強いガスあるいは水溶液が用いられるため、前記装置に用いられている部材等は腐食損耗が激しく、また、腐食生成物による二次的な環境汚染も無視できない。
 半導体ディバイスの製造・加工工程は、SiやGa、As、Pなどからなる化合物半導体を主体としたものを用いて、真空中もしくは減圧環境の中で処理されるいわゆるドライプロセスに属している。このドライプロセスでは、前記環境中において、成膜や不純物の注入、エッチング、アッシング、洗浄などの処理が繰り返し行なわれる。このようなドライプロセスで用いられる装置・部材としては、酸化炉、CVD装置、PVD装置、エピタキシャル成長装置、イオン注入装置、拡散炉、反応性イオンエッチング装置およびこれらの装置に付属している配管、給排気ファン、真空ポンプ、バルブ類などの部材、部品がある。しかも、これらの装置等は、BF、PF、PF、NF、WF、HFなどのフッ化物、BCl、PCl、PCl、POCl、AsCl、SnCl、TiCl、SiHCl、SiCl、HCl、Clなどの塩化物、HBrなどの臭化物、NH、CHFなどの腐食性の強い薬剤およびガスと接することが知られている。
 また、ハロゲン化物を用いる前記ドライプロセスでは、反応の活性化と加工精度向上のため、しばしばプラズマ(低温プラズマ)が用いられる。こうしたプラズマを使用する環境では、ハロゲン化物は、腐食性の強い原子状またはイオン化したF、Cl、Br、Iとなって半導体素材の微細加工に大きな効果を発揮する。しかし、その一方で、プラズマ処理された半導体素材の表面からは、エッチング処理によって削り取られた微細なSiO、Si、Si、Wなどのパーティクルが処理環境中に浮遊し、これらが加工中あるいは加工後のディバイスの表面に付着して加工製品の品質を低下させるという問題があった。
 これらの問題に対する対策の一つとして、従来、半導体製造・加工装置用部材の表面をアルミニウム陽極酸化物(アルマイト)によって表面処理する方法がある。その他、Al、Al・Ti、Yなどの酸化物をはじめ、周期律表IIIa族金属の酸化物を溶射法や蒸着法(CVD法、PVD法)などによって、該部材の表面を被覆したり、また、これらを焼結体として利用する技術がある(特許文献1~5)。
 さらに最近では、Y、Y-A1溶射皮膜の表面にレーザービームや電子ビームを照射して該溶射皮膜の表面を再溶融することによって、耐プラズマエロージョン性を向上させる技術もある(特許文献6~9)。
 また、ハロゲン化合物に属する金属元素のフッ化物被膜を半導体加工装置用部材の耐食性被覆として使用する提案もある。例えば、特許文献10には、窒化珪素、炭化珪素などのセラミックス焼結体の表面に希土類元素及びアルカリ土類元素のフッ化物をマグネトロンスパッタ法、CVD法、溶射法などによって被覆する方法が開示されている。また、特許文献11には、A1基材上にYF皮膜を形成した部材についての開示がある。
 また、特許文献12には、Yとランタノイド元素のフッ化物を主成分とする粉末を用いるサセプタの製造方法が開示され、特許文献13、14には、周期律表IIIa族元素のフッ化物粒子を不活性ガスプラズマや燃焼ガスフレームなどの溶射熱源によって成膜した後、200℃~250℃の熱処理を施して、安定した斜方晶の結晶に変化させる技術についての開示がある。
 さらに、特許文献15には、平均粒径が0.05μm~10μmの一次粒子から造粒された粒子のYを含む希土類含有混合物(酸化物、フッ化物、塩化物)溶射用粒子などの提案があり、特許文献16には、フッ化物溶射皮膜の形成方法として、高熱源温度のプラズマ溶射法に加え、コールドスプレー法やエアロゾルデポジション法を利用する技術についての開示がある。
特開平6-36583号公報 特開平9-69554号公報 特開2001-164354号公報 特開平11-80925号公報 特開2007-107100号公報 特開2005-256093号公報 特開2005-256098号公報 特開2006-118053号公報 特開2007-217779号公報 特開平11-80925号公報 特開2002-001865号公報 特開2001-351966号公報 特開2004-197181号公報 特開2005-243988号公報 特開2002-302754号公報 特開2007-115973号公報 特開2007-308794号公報
 本発明では、上掲の従来技術のうち特に、溶射法によって形成されたフッ化物溶射皮膜およびその皮膜形成方法に関しての次のような問題点(1)~(7)を改善し、耐ハロゲン腐食性や耐プラズマエッチング性に優れたフッ化物溶射皮膜被覆部材と溶射皮膜の形成方法を提案する。
(1)特許文献12に開示されている不活性ガス(Ar、He)プラズマ溶射や炭化水素ガス、灯油などの燃焼ガスフレーム溶射法で成膜すると、次のような現象が起こる。即ち、プラズマを熱源とする溶射法では、高温のジェットフレーム中を飛行するフッ化物粒子が、5000℃~7000℃の高温環境に曝され、また、燃焼フレームであっても2000℃~2800℃の高温雰囲気が構成されているため、いずれの熱源中においても、フッ化物粒子の一部は熱分解反応と酸化反応を誘発して、Fガスが放出される。
 そして、そのFガスの放出に伴って、フッ化物粒子の成分が変化し、成膜されたフッ化物の皮膜は、化学量論的に変化したものになっている。例えば、YF粒子を用いてプラズマ溶射すると、熱源中においてFガスが放出されYF3-Xで表示されるフッ化物に変化するものと推定している。
 しかし、このYF3-Xで表示されるフッ化イットリウム溶射皮膜の耐ハロゲン性は、成膜用フッ化物粒子(YF)に比較して、化学的に不安定になることが推定される。このことは、特許文献13の(0010)段落におけるフッ化イットリウム膜について、「フッ化イットリウムを用いるだけでは、腐食性ハロゲンガスにより、フッ化イットリウム膜の色が変化することを見出した。また、フッ化イットリウムを用いるだけでは耐食性は十分でなく、フッ化イットリウム膜が減耗して行くことを見出した。」の記載からも伺い知ることができる。
(2)特許文献13は、皮膜の色の変化と耐食性低下対策として、成膜直後の非晶質フッ化物溶射皮膜を200℃~500℃の温度で熱処理することにより、斜方晶へ変化させる技術を提案している。しかし、この技術は、(0014)段落に記載されているように、皮膜の色の変化が少なくなるという程度に止まり、抜本的な対策になっていない。
(3)特許文献16に記載のフッ化物皮膜の形成方法は、コールドスプレー法やエアロゾルデポジション法等が望ましいと記載している。その一方で、溶射法として適用する場合、「アルゴンやヘリウムのプラズマガスに、さらに、水素ガスを混合すると、プラズマ温度が高くなり、より緻密な成膜が可能となる」としている。しかし、コールドスプレー法というのは、日本溶射協会監修誌「溶射技術Vol.26 No.2/3 2007年1月31日発行18頁~25頁 コールドスプレーの概要と研究・開発の動向」によると、Ar、N、Heなどの不活性ガスを500℃に加熱し、成膜粒子を300~1200m/sec.の高速で吹き付ける方法である。
 この方法では、500℃のガスがノズルの吹き付け部では、断熱膨張現象によって、室温まで低下するとの説明があり、この条件ではフッ化物の成膜用として適した方法と言えない。
 また、この特許文献16には、フッ化物のコールドスプレー法について具体的な説明はない。即ち、この文献では、プラズマ溶射法のプラズマ熱源温度をもっと高めるため、Ar、Heなどの不活性ガス中にHガスを混入して成膜するフッ化物皮膜の形成方法を推奨している。これはコールドスプレー法による低いガス温度での成膜法とは技術的に矛盾しており、説明に合理性がない。
(4)また、特許文献13、16のようにフッ化物溶射皮膜を熱処理する方法では、製造工程が増加することに加え、生産効率の低下とコストアップを招く問題点がある他、熱処理を施しても皮膜の耐食性を十分に回復させられないという問題点があった。
(5)また、フッ化物溶射皮膜を、大気プラズマ溶射法や高速フレーム溶射法によって形成するプロセスでは、高温の熱源中で成膜用フッ化物粒子が熱分解して、異臭を伴う有害なFガスを放出するため、作業環境が悪化し、作業の安全衛生上にも問題がある。
(6)さらに、フッ化物溶射皮膜は、優れた耐ハロゲン性を有しているものの、基材に対する密着性に乏しい欠点がある。しかし、この原因と対策について記載した先行技術文献は殆どない。また、開示されていたとしても、一般的なブラスト処理の適用のみであり、フッ化物溶射皮膜の密着性を向上させようとする意図は認められない。
 例えば、特許文献13、特許文献16では、基材の表面を鋼玉やコランダム(Al)による粗面化、特許文献17ではAlによる粗面化が開示されているのみである。
(7)しかも、前記各特許文献は、フッ化物溶射皮膜を基材の表面に直接、被覆形成する方法を採用しており、フッ化物溶射皮膜を形成するための前処理としてのブラスト処理の条件やアンダーコート層の必要性などについての記載が認められないことから、フッ化物溶射皮膜の密着性を重要視していないことが明らかである。そのために、皮膜がしばしば剥離するという問題があるにも拘わらず、その解決手段についての検討が行なわれることはなかった。
 そこで、本発明の目的は、比較的低温の不活性ガス中での溶射によって熱分解反応と酸化反応とを抑制することのできるフッ化物溶射皮膜の形成方法を提案すること、及び密着性や耐食性や耐プラズマエッチング性などの特性に優れたフッ化物溶射皮膜被覆部材を提案することにある。
 フッ化物溶射皮膜の一般的な形成方法は、熱源温度が高い(≧2000℃)溶射法を採用しているため形成された皮膜の化学的・物理的特性が低下するだけでなく、密着性も悪いという問題点があった。本発明は、このような問題点を解決するための、次のような視点に立った新しいフッ化物溶射皮膜の形成方法が有利であるとの知見を得て、開発した技術である。
(1)成膜用フッ化物(溶射材料)は、熱源温度が600℃~1300℃程度の温度で、ArやN、Heなどの単独または混合状態の不活性ガスを用いて溶射することが好ましい。
(2)フッ化物溶射材料の溶射は、毎秒500m以上の高速度で飛行させることが好ましい。このような高速溶射により、溶射粒子は、基材表面に大きな運動エネルギーで衝突するため少なくとも一部の溶射粒子が被着面の凹部などに食い込んだ状態、即ち、植毛構造となって付着する。その結果、被覆形成されたフッ化物溶射皮膜は、基材の粗面化凹部あるいは炭化物サーメットの膜状のアンダーコート層の凹凸部、もしくは一部の粒子が基材表面に疎らにかつ杭のように突き刺さった状態の炭化物サーメットの非膜状の溶射粒子点在部を介して植毛状態を形造って強く固着させることができる。即ち、このことによって、フッ物溶射皮膜の密着性の向上を図ることができる。
(3)フッ化物溶射皮膜を被覆するための基材は、その表面を予めJIS H9302規定のセラミック溶射皮膜作業標準に準拠して、脱脂や脱スケールと共に、A1やSiCなどの研削材粒子を用いてブラスト粗面化処理して凹凸部を形成したり、さらには予熱することが好ましい。
(4)フッ化物溶射皮膜の被覆に先立ち、基材表面に形成する炭材物サーメットの皮膜は、WC-CoやWC-Ni-Crなどの炭化物サーメット材料を、上記(2)の方法によって高速フレーム溶射することが好ましい。
(5)炭化物サーメットを用いた前記アンダーコート層は、基材表面の全体を略均等に覆う膜状化した状態の層であることが好ましい。
(6)炭化物サーメットを用いた前記溶射粒子点在部は、炭化物サーメットの溶射粒子が面積率(基材表面を被覆する割合)で8~50%相当の部分が疎らに点在して非膜状になっている部分であることが好ましい。この部分は、基材全表面が略均等の厚みで被覆されて膜状化した炭化物サーメットのアンダーコート層とは区別される。
(7)低温の不活性ガスを駆動源とする溶射ガンのノズルと基材表面との距離は、5~50mmに保持する。このことによって、密着性に優れたフッ化物溶射皮膜を被覆形成することが好ましい。
 このような知見の下に開発された本発明は、基材表面または前処理した基材表面に、フッ化物溶射材料を、ArやN、Heまたはそれらの混合ガスのような不活性ガスを成膜用作動ガスとする溶射ガンを用いて、600℃~1300℃の温度に保持される溶射ガス雰囲気中において、飛行速度:500m/sec.以上の速度で吹き付けることにより、該フッ化物溶射粒子の少なくとも一部が基材表面の凹部に食い込んだ植毛構造となるように付着させてなるフッ化物溶射皮膜を被覆形成することを特徴とするフッ化物溶射皮膜の形成方法である。
 また、本発明の他のフッ化物溶射皮膜の形成方法は、前記基材表面または前処理した基材表面に、まず、炭化物サーメット材料を飛行速度150~600m/sec.、好ましくは300~600m/sec.の吹き付け速度で溶射して、膜状化したアンダーコート層を被覆形成し、その後、そのアンダーコート層上に、フッ化物溶射材料を、ArやN、Heまたはそれらの混合ガスのような不活性ガスを成膜用作動ガスとする溶射ガンを用い、600℃~1300℃の温度に保持される溶射ガス雰囲気中において、飛行速度:500m/sec.以上の速度で吹き付けることにより、該フッ化物溶射粒子の少なくとも一部が該アンダーコート層の凹部に食い込んだ植毛構造となるように付着させてなるフッ化物溶射皮膜を被覆形成することを特徴とする。
 なお、基材表面に膜状のアンダーコート層を形成するには、あらかじめ基材表面に対して、Al、SiCなどの研削材粒子を吹き付けて粗面化した後、市販の通常のガン移動速度で運転される高速フレーム装置によって、WC-Co、Cr-Ni-Crなどの炭化物サーメット粒子を、溶射ガンへの供給量100~200g/min.、溶射ガンが基材表面上を繰り返し移動するとき移動速度を300~1000mm/sec.に制御した条件で、溶射回数(移動の繰り返し数)を6回以上吹き付けて、30~200μmの略均一な膜厚さになるように施工する。
 また、本発明のさらに他のフッ化物溶射皮膜の形成方法は、前記基材表面または前処理した基材表面を研削材による粗面化処理した後、まず、炭化物サーメット粒子を飛行速度150~600m/sec.、好ましくは300~600m/sec.の吹き付け速度で溶射して、炭化物サーメット溶射粒子の少なくとも一部の先端部が面積率にして8~50%の部分が疎らにかつ杭のように突き刺さった状態で付着している炭化物サーメットの溶射粒子点在部の上から、その溶射粒子点在部を介在させて、フッ化物溶射材料を、ArやN、Heまたはそれらの混合ガスのような不活性ガスを成膜用作動ガスとする溶射ガンを用い、600℃~1300℃の温度に保持される溶射雰囲気中において、飛行速度:500m/sec.以上の速度で吹き付けて、フッ化物の溶射粒子を炭化物サーメットの溶射粒子点在部の粒子間の間隙に食い込むように付着させることにより、フッ化物溶射皮膜を被覆形成することを特徴とする。
 なお、基材表面に、非膜状の炭化物サーメットの溶射粒子点在部を形成するには、前記研削材粒子による基材表面の粗面化処理後、市販の高速フレーム溶射装置(ガン)を用いて、WC-Co、Cr-Ni-Crなどの炭化物サーメット粒子を、溶射ガンへの供給量100~200g/min.、溶射ガンが基材表面上を繰り返し移動するとき移動速度を300~1000mm/sec.に制御した条件で、アンダーコート層の形成と同様な操作によって、溶射(移動)回数については5回以下、好ましくは3回以下の操作を行なうことによって、面積率8~50%の炭化物サーメットの溶射粒子点在部とすることができる。
 また、本発明は、基材と、その基材表面に被覆形成されたフッ化物溶射皮膜とからなる部材であって、そのフッ化物溶射皮膜は、基材表面に直接または基材表面に施工された炭化物サーメットのアンダーコート層の表面もしくは炭化物サーメットの溶射粒子点在部上に、該フッ化物溶射粒子の少なくとも一部が、それらの表面の凹部や点在粒子間に食い込んだり、基材に突き刺さった硬質の炭化物サーメットの先端部に串刺し状態の植毛構造を有することを特徴とするフッ化物溶射皮膜被覆部材を提案する。
 また、本発明の他のフッ化物溶射皮膜被覆部材は、基材と、その基材表面に被覆形成されたフッ化物溶射皮膜とからなる部材において、前記基材と前記フッ化物溶射皮膜との間に、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crのような炭化物サーメット溶射粒子による膜状に付着・被覆された炭化物サーメットのアンダーコート層を有することを特徴とする。
 また、本発明のさらに他のフッ化物溶射皮膜被覆部材は、基材と、その基材表面に被覆されたフッ化物溶射皮膜とからなる部材において、前記基材と前記フッ化物溶射皮膜との間に、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crのような炭化物サーメット溶射粒子の少なくとも一部が該基材の表面に、面積率にして8~50%の範囲に亘って突き刺さって疎らにかつ杭のように林立した状態で付着・堆積してなる炭化物サーメット粒子による非膜状の溶射粒子点在部を有することを特徴とする。
 本発明においては、さらに下記のような構成にすることがより好ましい。
(1)前記前処理は、脱スケール、脱脂、粗面化処理、および予熱処理、即ち、基材を80~700℃の温度に加熱する処理であること、
(2)前記粗面化処理は、AlやSiCなどの研削材を、基材表面に吹き付け、表面粗さがRa:0.05~0.74μm、Rz:0.09~2.0μm程度にするものであること、
(3)前記基材は、Alおよびその合金、Tiおよびその合金、炭素を含む鋼鉄、各種ステンレス鋼、Ni及びその合金、酸化物、窒化物、炭化物、珪化物、炭素焼結体のいずれかであること、
(4)前記フッ化物溶射皮膜は、基材表面に、周期律表IIa族のMg、周期律表IIIb族のAl、周期律表IIIa族のY、原子番号57~71のランタノイド系金属であるランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロビウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジズプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のフッ化物から選ばれる1種以上の、粒径が5μm~80μmのフッ化物粒子を吹き付けて、20μm~500μmの膜厚に形成したものであること、
(5)前記炭化物サーメットは、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crなどから選ばれるいずれか少なくとも1種以上であること、
(6)前記不活性ガスを成膜用作動ガスとして用いる溶射法では、フッ化物粒子を噴射するときの溶射ノズル先端と基材表面との距離は、5~50mmの間隔に保持されること、
(7)溶射粒子の飛行速度は、600m/sec.以上800m/sec.以下の速さにすること、
(8)溶射粒子の飛行速度は、650m/sec.以上1000m/sec.以下の速さにすること、
(9)作動ガスおよび溶射雰囲気の温度は、700℃以上1300℃以下にすること、
 前記のような構成を有する本発明によれば、つぎのような効果が期待できる。
(1)成膜用のフッ化物溶射材料を加熱するための溶射熱源として、ArやN、Heなどの不活性ガスを用いているため、溶射熱源中を飛行するフッ化物粒子が酸化、変質することなく被着面に達して溶射皮膜となる。従って、無酸化雰囲気下での溶射になるため酸化反応が抑制され、フッ化物本来の性能を損ねるようなことがなく、安定した品質のものが得られる。
(2)フッ化物粒子を加熱するための前記不活性ガスの溶射熱源温度が、一般的なプラズマ溶射法の熱源温度:5000℃~7000℃、高速フレーム溶射法の熱源温度:1800℃~2800℃に比べて、はるかに低温の600℃~1300℃であるため、フッ化物粒子の熱分解反応を抑えて化学的質量変化とそれに伴う物理化学的性質の劣化を起こさないような溶射皮膜が成膜できる。
(3)不活性ガス中を飛行するフッ化物粒子の速度を500m/sec.以上に設定しているため、粒子の温度被曝時間が短く(1/1000秒)、前記(1)、(2)の効果を一段と高めると共に、フッ化物粒子に大きな運動エネルギーを付与することで得られる基材表面への衝突エネルギーの増大によって、飛行する溶射粒子先端が被着表面のとくに凹部に食い込むように埋没すると共に、炭化物サーメットのアンダーコート層や溶射粒子点在部がある場合、その点在部の間隙中に食い込んだり、突き刺さった炭化物サーメットの先端部に串刺し状態に付着することで、溶射皮膜の密着力を向上させることができる。
(4)低温度、不活性ガス熱源、高速度飛行粒子など前述した条件を揃えることにより、現在のプラズマ溶射法などでは成膜できなかった高温下で高蒸気圧性のフッ化物粒子(例えば、AlF)などの成膜が容易となる。
(5)前記溶射法の条件に加え、溶射皮膜を被成するための基材表面は、まず、ブラスト処理による粗面化や基材を80℃~700℃に予熱する前処理を行なう。その後、炭化物サーメットのアンダーコート層あるいはその溶射粒子点在部が形成されているので、フッ化物溶射粒子の付着力(密着力)を向上させることができる。
(6)基材を前処理して粗面化(Ra:0.1~0.85μm、Rz:0.10~2.0μm程度)した場合、その基材表面に対して、高速フレーム溶射法によって形成した、WC-Ni-Cr、Cr-Ni-Crなどの硬質の炭化物サーメットのアンダーコート層や溶射粒子点在部の上に吹き付けられたフッ化物溶射粒子の一部が投錨作用(粒子が基材の粗面(凹凸面)に機械的に噛み合うことによって、フッ化物溶射皮膜と基材の密着度を向上させる働き)や串刺し状態になる現象をもつ植毛構造となって、トップコートである該フッ化物溶射材料粒子の付着堆積率の向上と密着力の向上とが図れる。
(7)フッ化物は、表面エネルギーが小さいため、皮膜を構成するフッ化物粒子の相互結合力や基材との密着性が低く、しばしば剥離する欠点がある。この点、本発明によれば、トップコートであるフッ化物とその下の炭化物サーメット(主成分は炭素)等とは、互いの化学的親和力が強くかつよく濡れ合う特性があるため、前記粗面化によるフッ化物粒子の物理的付着作用に加え、化学的親和力とが相乗的に作用して、皮膜の密着力が向上する。
(8)基材の表面は、炭化物サーメット粒子の一部が突き刺さって埋没した状態となるので、基材表面の強度が上がる。
本発明方法を実施するための工程の流れを示した図である。 高速フレーム溶射法によって、基材表面にWC-12mass%Co組成の炭化物サーメット溶射粒子を吹き付けた初期段階の粒子挙動状態を示すSEM像の図である。(a)は前記炭化物サーメット粒子を吹き付けた表面の図、(b)は表面の拡大図、(c)はサーメット粒子を吹き付けた基材の断面図である。 本発明方法で利用する低温溶射皮膜形成用装置の略線図である。 本発明方法で利用するの他の低温溶射皮膜形成用装置の略線図である。 本発明方法の適用によって形成されたYF溶射皮膜の写真であり、(a)は皮膜表面写真、(b)は皮膜断面写真である。
 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明方法を実施するための工程の流れを示したものである。以下、この工程順に従って本発明を説明する。
(1)基材
 本発明で使用することができる基材は、Alおよびその合金、Tiおよびその合金、ステンレス鋼を含む各種の合金鋼、炭素鋼、Niおよびその合金などである。その他、酸化物や窒化物、炭化物、珪化物などのセラミック焼結体、焼結炭素材料であってもよい。
(2)前処理
 この処理は、前記基材表面を、JIS H9302に規定されているセラミック溶射作業標準に準拠して実施することが好ましい。例えば、基材表面の脱脂や脱スケールを行ない、その後、AlやSiCなどの研削粒子を吹き付けて粗面化(ブラスト処理)して、フッ化物粒子等が付着しやすい凹凸表面状態にする。粗面化後の基材表面粗さは、フッ化物溶射皮膜が植毛構造となりやすいように、Ra:0.05~0.74μm、Rz:0.09~2.0μm程度にすることが好ましい。さらに好ましくは、後述するフッ化物溶射粒子の炭化物サーメットのアンダーコート層や粒子点在部との結合性をより確実にするために、基材を80~700℃程度に予熱することが好ましい。
(3)炭化物サーメットによる膜状のアンダーコート層または非膜状の溶射粒子点在部の形成
a.炭化物サーメットの膜状アンダーコート層
 ブラスト処理後の粗面化基材表面に、高速フレーム溶射法または後述する本発明に特有の不活性ガス溶射法などと同じ方法によって、粒径5~80μmの炭化物サーメット(溶射)材料を吹き付けることにより、溶射粒子の少なくともその一部の先端部が基材表面に突き刺さって埋没したような状態にすると共に、他の一部は基材表面に付着堆積して被覆した状態にすることにより、該炭化物サーメットの膜状に付着したアンダーコート層を形成する。このアンダーコート層は、炭化物サーメット材料(粒径:5μm~80μm)を、150~600m/sec.、好ましくは300~600m/sec.の飛行速度の溶射ガンを用いて、溶射回数を6回以上10回程度移動させつつ吹き付けることで膜状にする。なお、吹き付け粒子の飛行速度が150μm未満では粒子の基材表面への食い込み深さが不十分となって付着強さが弱くなる。一方、600m/sec.超では炭化物サーメット粒子の場合、効果が飽和する。そして、溶射回数が5回以下では溶射皮膜が均一に膜状化し難い。
 図2は、炭化物サーメットのアンダーコート層を施工する際の初期段階、即ち、炭化物サーメット粒子を高速フレーム溶射法によって粒子の飛行速度550m/sec.の速度にて吹き付けた直後の基材表面とその部分の断面の形態を示したものである。図2(b)は、吹き付けられたWC-Coサーメット粒子の一部が基材表面に、それぞれ減り込むように付着している一方、他のWC-Coサーメット粒子は基材への衝突エネルギーによって、一部が破砕された状態で分散して付着被覆された状態である。また、図2(c)は、同様に膜状化する前の初期段階において、基材表層部に吹き付けられたWC-Coサーメット粒子の分布状況を断面状態で観察したものである。この写真から明らかなように、WC-Coサーメット粒子は、初期段階において、その先端部が基材表面に打ち込まれて突き刺さって埋没した状態になると共に、他の一部は、単に付着するか埋没した状態となって、溶射回数を重ねるほど均一な膜になる。
 即ち、WC-Coサーメット溶射粒子が付着している基材表面に対して、引き続いて高速フレーム溶射法によってWC-Co溶射材料を繰り返し(≧6回)吹き付けると、基材表面の未付着部(図2(a)の黒色部)にもWC-Coの粒子が次第に堆積し、やがて全面にわたってWC-Coサーメット粒子が被覆された膜状のアンダーコート層が形成される。これに対し、酸化物セラミック溶射皮膜の形成時などに汎用されているNi-Cr、Ni-Alなどの一般的な金属質アンダーコートでは、図2に示すような基材中に埋没するような粒子は認められない。
 本発明において、基材表面に炭化物サーメットのアンダーコート層を施工することは、硬質の炭化物サーメットの挙動形態によって、アンダーコート/基材との密着性を高めると共に、アンダーコート/トップコート(フッ化物溶射皮膜)とが、アンダーコート層表面の粗さと化学的親和力(炭素とフッ化物との)との両方の相乗作用によって、該フッ化物溶射皮膜の密着性の向上が達成される。
 なお、該アンダーコート層の最下層にある粒子が基材の表面に突き刺さった状態にある少なくとも一部の炭化物サーメット溶射粒子は、基材と強固に結合すると共に、該基材表面に大きな圧縮歪を与え、該基材の機械的な変形に対して、大きな抵抗力を付与するだけでなく、炭化物サーメットのアンダーコート層自体と基材との密着力を向上させ、その上に被覆されるフッ化物溶射皮膜との密着力をも向上させる。
 本発明では、溶射粒子の一部が埋没した状態で基材表面に付着し堆積している炭化物サーメットのアンダーコート層は、軟質で使用環境中の負荷で変形や歪を受け易いAlおよびその合金、Tiおよびその合金、軟鋼、各種ステンレス鋼などの基材に対して、特に有効であり、基材質の種類に関係なく、常に安定した高い密着力を有するフッ化物溶射皮膜の形成を保障する。
 即ち、フッ化物の皮膜はもともと延性に乏しく、表面エネルギーが小さくて金属系の基材に接合しにくく、僅かな基材の変形や歪の発生によって、容易に皮膜剥離が起こるところ、炭化物サーメット粒子の基材表面への埋没による基材変形能の抑制と、その上に形成する炭化物サーメットアンダーコート層の施工によって、フッ化物皮膜が受ける外部応力や歪を抑制することができるようになる。
 基材表面に形成される前記炭化物サーメットのアンダーコート層の厚さは、30~200μmの範囲がよく、特に、80~150μmの範囲が好適である。アンダーコート層厚さが30μm未満では膜厚が不均等になりやすく、また、200μm超の膜厚にしてもアンダーコート層としての効果が飽和し、経済的でないからである。
b.炭化物サーメットによる溶射粒子点在部の形成
 ブラスト処理によって粗面化した基材表面に、高速フレーム溶射法または後述する本発明に特有の不活性ガス溶射法と同一の方法によって、粒径5~80μmの炭化物サーメット粒子を高速で吹き付け、吹き付けた硬質の炭化物サーメット溶射粒子の少なくとも一部の粒子の先端部を、独立した状態で該基材表面に突き刺して杭が林立しているような状態となるようにする。しかも、このような方法によって、前記基材表面に対して炭化物サーメット粒子が疎ら模様となって付着した溶射粒子点在部が形成される。この場合において、炭化物サーメット粒子の粒径が5μmより小さいと、溶射ガンへの供給量が不均等となって均等な吹き付けができない他、突き刺さり量が少なくなって有効な溶射粒子点在部が形成できなくなる。一方、80μm超の粒径では、突き刺し効果が弱まる。
 なお、この溶射粒子点在部は、アンダーコート層と同じように炭化物サーメット材料(粒径5~80μm)を、150~600m/sec.、好ましくは300~600m/sec.の飛行速度の溶射ガンを用いて、溶射回数を5回以下、このましくは3回以下に設定して面積率で8~50%の部分の基材表面に、溶射粒子が疎らにかつ杭のように突き刺さった状態で付着させた部分である。
 この処理工程における疎らに分散した炭化物サーメットの溶射粒子点在部とは、完全に膜状化したものではなく、次のような構造を形造っている。即ち、WC-12mass%Coの炭化物サーメット材料の粒子を、SUS310鋼基材の表面に吹き付けた際の外観状態を示す図2(a)、(b)に明らかように、吹き付けたWC-Coサーメット粒子の一部が、基材の表面の8~50%の部分にそれぞれ減り込むように付着している状態である。なお、他のWC-Coサーメット粒子はまた、基材表面への衝突エネルギーによって一部が粉砕された状態で分散して付着したものであり、さらに他の一部は基材中に完全に埋没したようになって、溶射皮膜表面層に炭化物サーメットによる強化層を形成した状態になっている。
 また、図2(c)は、基材表層部に存在する吹き付けられたWC-Coサーメット粒子の分布状態を断面状態で観察したものである。この写真から明らかなように、WC-Coサーメット粒子は、基材表面に打ち込まれて小さな杭が疎らに林立した状態で存在していると共に、他の一部は単に付着するか、埋没した状態となっている。本発明では、このような状態の基材表面、即ち、このような状態で付着している炭化物サーメット粒子による溶射粒子点在部(これは、完全な層を形造るものではない)の上にフッ化物粒子を溶射すると、杭状に林立した硬質WC-Coサーメット粒子(フッ化物溶射粒子)との相互の絡み合いの作用(植毛構造)や串刺し現象を利用して密着性の高いフッ化物溶射皮膜を形成しようとするものである。
 なお、本発明では、前記炭化物サーメットの溶射粒子点在部について、図2(a)または図2(b)のSEM写真を用いて画像解析装置によって、白色部を炭化物サーメット粒子、黒色部を基材の露出面として、炭化物サーメット粒子の面積率(面積占有率)を求めた。その結果は、溶射粒点在部が占める割合、即ち、面積率は、8~50%の範囲内とすることが好適であることを確認した。8%未満では、炭化物サーメット粒子による楔止めの効果が弱く、また、50%超では、後述する炭化物サーメットのアンダーコート層と同様な作用機構となり、フッ化物粒子の楔止め効果が小さくなるからである。本発明では、炭化物サーメット粒子の面積率が8~50%の範囲で吹き付けられた基材表面の状態を「溶射粒子点在部」と呼ぶことにした。
 本発明で使用可能な炭化物サーメット溶射材料としては、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crなどを用いることができる。なお、この炭化物サーメットに占める金属成分の割合は5~40mass%の範囲がよく、特に、10~30mass%が好適である。金属成分が5mass%より少ないと、硬質の炭化物は小さな粉体となって基材表面に残留する割合が少なく、一方、金属成分が40mass%超と多くなると、硬度および耐食性が低下し、フッ化物粒子との絡み合いの効果が低下したり、フッ化物溶射皮膜の貫通気孔から侵入する腐食性ガスによって基材が腐食されやすくなる他、フッ化物溶射皮膜の結合力を消失させて剥離を誘発するようになる。
 一方、炭化物サーメット粒子は、粒径5~80μmの粒径のものがよく、特に、10~45μmの大きさのものが好適である。粒径が5μm未満の場合には、溶射ガンへの供給が不連続となって、均等な皮膜の形成が困難になる他、基材に衝突した際さらに小さく粉砕されて飛散し、基材面に残留し難いからである。一方、80μmより大きな粒径のものでは、効果が飽和するとともに市販品の入手が困難になる。
(4)基材の予熱
 前記粗面化処理後の基材及び炭化物サーメットのアンダーコート層や溶射粒子点在部を形成した後の基材は、フッ化物溶射処理に先駆けて予熱を行う。この予熱の温度は、基材質によって管理することが好ましく、下記の温度が推奨される。また、この予熱は、前処理の1つとして行なってもよい。
(i)Al、Ti及びそれらの合金:80℃~250℃
(ii)鋼鉄(低合金鋼):80℃~250℃
(iii)ステンレス鋼:80℃~250℃
(iv)酸化物・炭化物などのセラミック焼結体:120℃~500℃
(v)焼結炭素:200℃~700℃
 また、この予熱は、大気中、真空中、不活性ガス中のいずれであってもよいが、基材質が予熱によって酸化され、表面に酸化膜が生成するような雰囲気は避ける必要がある。
 本発明方法において、基材を予熱する最も大きな理由の一つは、不活性ガスをノズルから高速で噴射するとき、ガスの断熱膨張現象によって、例えば600℃程度のガス温度が50℃前後にまで低下し、これによって基材が冷却されるおそれがあるからである。もし、基材の表面温度がこのような低い温度になると、ノズルから噴射されたフッ化物溶射粒子(フッ化物の融点は、YFの場合1152℃、ErFの場合1350℃は、ガス中で溶融することなく、そのまま基材表面に衝突した場合、その大部分が飛散して成膜する確率が非常に低くなるうえ、もし成膜できたとしてもフッ化物粒子の相互結合力が弱く、かつ気孔率の大きい皮膜となるなどの品質の低下を招くからである。
 本発明は、基材表面の前処理、該基材表面への炭化物サーメットのアンダーコート層などの形成、さらに該基材表面への後述の不活性ガスによるフッ化物粒子の熱間高速度吹き付けによる大きな運動エネルギーの付与によって、フッ化物粒子の付着力の向上を図るものである。
(5)フッ化物溶射皮膜(トップコート)の形成
a.フッ化物溶射材料
 本発明において用いられるフッ化物溶射材料としては、元素の周期律表IIa族のMg、周期律表IIIb族のAl、周期律表IIIa族のY、原子番号57~71に属するランタノイド系金属のフッ化物である。原子番号57~71の金属元素名は、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジズプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)の17種の使用が可能である。
 そして、溶射材料としては、前記金属のフッ化物粒子を5~80μmの粒径に調整したものを使用する。それは、溶射材料が5μm未満の細粒では、基材表面に衝突した際、成膜するより飛散するものが多くなる欠点があり、また80μm超と大きい粒子では、溶射ガンへの送給速度を均一化しにくくなる一方、成膜された皮膜の気孔が大きくなる傾向が顕著となるからである。
 前記粗面化処理後の、もしくは炭化物サーメットのアンダーコート層や溶射粒子点在部の形成、さらには予熱後の基材など表面に形成されるフッ化物粒子による溶射皮膜は、20~500μmの厚さにするのがよく、特に、50~200μmの範囲が好適である。それは、20μmより薄い膜では、均等な膜厚が得られず、また、500μmより厚くすると、フッ化物皮膜の形成時における残留応力が大きくなって、基材との密着力の低下を招いて剥離しやすくなるからである。
(b)溶射装置及び成膜方法
 本発明の実施に当たって用いる装置としては、発明者らが先に提案した特許番号第4628578号に記載の低温溶射皮膜被覆部材及びその製造方法において使用した装置を用いることができる。図2および図3は、そうした装置の中の本発明に係るフッ化物溶射皮膜を基材表面に形成するのに有効な装置の好適例を示すものである。図示のlは圧縮ガスボンベから供給される作動ガス源、2は溶射材料の供給器、3はガス加圧用熱交換器、4は溶射容器、5は噴射ガン、6はノズル、7は被処理体、8は消音器、9は作動ガス用主ガス管、10は溶射材料粉末搬送用の副ガス管、11は作動ガスの整流板、12、13はそれぞれのガス管に設けられた流量調整バルブである。
 例示したこれらの装置は、作動ガス源1から供給された高圧の不活性ガスを2つに分け、その一方のガスを成膜用作動ガスとして熱交換器3に送って600~1300℃に加熱し、超音速流の噴射ガスとしてノズル6から被処理体7に向けて噴射させる。この場合、断熱膨張に伴う極端な低温化を防ぐように温度制御する。好ましい作動ガスの下限の温度は、700℃以上、より好ましくは800℃以上である。一方、好ましい上限の温度は1200℃である。
 この作動ガスの温度が600℃未満では、噴射ガン出口における断熱膨張現象によって50℃前後の低温となって、フッ化物粒子の昇温効果が得られないので、600℃以上とするが、この作用について、800℃にするとより効果的である。一方、この温度が1300℃を超えると、不活性ガスの加熱に要するエネルギーが大きくなるうえ、付属機器の耐熱対策費用が大きくなる。この作用は、1200℃程度以下とすることもできる。
 なお、分岐させた他方のガスは、溶射粉末材料の搬送用ガスとして使用するが、噴射ガン5において前記の作動ガスと合流させ、(図3の場合)ノズル6中で超音速ガス流にして溶射材料粒子を高速度で被処理体に向けて飛行衝突させ、少なくとも一部が被着面に喰い込むように吹き付けて次第に肥厚化させて、所定の厚みの溶射皮膜を形成する。また、溶射材料粒子は、図3に示すように、噴射ガン5の出口(ノズル6の取付部近傍)の減圧部から投入してもよい。いずれの場合もノズル6と被処理体との距離は、5~50mm、好ましくは10~30mmがよく、5mmより小さい間隔では、ガス流の障害となり、50mmより大きい間隔ではフッ化物粒子の付着率が著しく低下する。
 前記溶射ガン5のノズル6から不活性ガスを成膜用作動用ガスとして、フッ化物溶射材料粒子を、500m/sec.以上の飛行速度で被処理体7に吹き付ける。このときの飛行速度は500m/sec.以上とする理由は、500m/sec.未満では基材表面に対するフッ化物粒子の付着率が極端に低下するからである。なお、好ましい下限の速度は600m/sec.、より好ましくは650m/sec.である。一方、この飛行速度の上限は、溶射装置部品の性能により限定されるが、800m/sec.以下、より好ましくは750m/sec.程度の速度にすることが好ましい。
 なお、超音速のガス発生部(ノズル6)や被処理体7は、鋼製の溶射容器4によって保護され、また、超音速ガスによって発生する衝撃波音は、消音器8の作用と相俟って外部には洩れないような構造にしてある。
 本発明において特徴的なことは、使用する高圧の作動ガスとして、不活性ガス、例えば、ArやNあるいはHe単体のガスまたはこれらの混合ガスを使用することにある。また、これらのガスの圧力は0.5~1.0MPa未満の範囲内に制御することが好適である。本発明において、該作動ガスとして、例示のような不活性ガスに着目した理由は、たとえ1300℃の高温に加熱しても、溶射装置を構成する各種の金属製部材を酸化消耗させない他、フッ化物粒子を加熱する際にも粒子の酸化反応による物理化学的変化を最小限にとどめ得るからである。そして、その圧力を0.5~1.0MPa未満にする理由は、熱源用不活性ガスの運動エネルギーを利用するのに適しているからである。1MPa以上の圧力ガスの使用は、成膜上の問題はないが、高圧ガス取扱上の法的な対策を必要とし、作業の安定上からも好ましいものでないからである。
 以上は、発明者等が先に提案した特許番号第4628578号に記載の低温溶射法において使用した装置を例にとって、フッ化物溶射皮膜の形成方法を説明したが、さらに他の作業性や経済性に優れた類似の低温溶射装置(コールドスプレー)を用いてもよい。従って、本発明については、フッ化物溶射皮膜の被覆形成条件、具体的には作動ガスの種類、温度、流速などが得られる装置であれば、いずれでも使用することができるので、溶射装置については上記の例に限定されるものではない。
 次に、図5は、本発明に係る上述した方法によって基材表面に形成されたYF溶射皮膜の断面と表面のSEM像を示したものである。比較的緻密な溶射皮膜の性状と良好な状態で基材表面に付着形成されていることがわかる。
(c)フッ化物溶射皮膜の特徴
 フッ化物自体の物理化学的性質としては、次の点を指摘することができる。即ち、フッ化物の膜は、金属皮膜やセラミック皮膜と比較して、ハロゲン系ガスに対する化学的安定性を有するものの、表面エネルギーが小さいため、皮膜を構成するフッ化物粒子の相互結合力及び基材の密着強さが弱い点が挙げられる。また、成膜時に大きな残留応力を発生しやすいため、成膜後基材が僅かに変形しても、容易に皮膜の剥離が起こることが多い。加えて、フッ化物は延性に乏しい性質を示すために皮膜が容易に“ひび割れ”し、前記成膜時に発生する気孔部とともに、酸やアルカリ洗浄液などの内部浸入によって、基材の腐食原因となるなど、フッ化物そのものの耐食性は良好であっても、その性質を防食膜としては利用できないという問題点もある。
 この点、本発明によれば、溶射皮膜を構成するフッ化物粒子が大きな運動エネルギーによって基材やその表面に形成した炭化物サーメットが存在する基材表面に衝突して植毛構造を形造るので、両者の相互結合力が向上し、特に、基材表面に炭化物サーメットのアンダーコート層や粒子点在部を設けた場合には、皮膜の密着性も向上して、フッ化物が抱えている上述した問題点を解消することができる。即ち、皮膜の剥離やひび割れの防止、それに伴う洗浄液の侵入を阻止して基材の腐食を防ぐという効果が発生するのである。
 なお、本発明に適合して形成されたフッ化物溶射皮膜は、成膜状態のままでも使用できるが、必要に応じて成膜後250℃~500℃の熱処理を行って、残留応力を開放したり、アモルファス状のものを結晶化(斜方晶系)することも容易であるので、本発明では、これらの処理の実施について、特に制限するものではない。この熱処理の温度を上記の範囲に限定する理由は、250℃以下では皮膜の残留応力の解放に長時間を要するだけでなく結晶化も不十分で、500℃以上の高温ではフッ化物溶射皮膜の物理化学的性質の変化を助長させる可能性があるからである。
(実施例1)
 この実施例では、フッ化物としてYFとAlFを用い、成膜用作動ガスの温度とフッ化物溶射皮膜の形成の可否について調査した。
(1)基材:基材として、SUS304鋼(寸法:30mm×30mm×厚さ5mm)を用い、その表面をブラスト粗面化処理後、高速フレーム溶射法により、WC-12Coを溶射(飛行)速度:630m/sec.、溶射回数8回の条件にて、アンダーコート層を100μmの厚さに施工し、その後、180℃に予熱したものを供試した。
(2)溶射雰囲気:発明例の溶射方法は、成膜用作動ガスとして、Ar、NおよびHeからなる不活性カスを用い、それぞれのガス温度を最高1300℃とし、そうした溶射雰囲気中を飛行するフッ化物粒子の飛行速度を600~660m/sec.の範囲内に維持しながら基材表面に形成されるフッ化物皮膜の有無と良否について調べた。
(3)成膜用フッ化物材料:フッ化物として粒径10~35μmのYFとAlFを用いた。また、比較例の溶射法として、Arと水素ガスをプラズマ作動ガスとする従来の大気プラズマ溶射法と減圧プラズマ溶射法(粒子飛行速度:350から500m/sec.)を用い、それぞれのプラズマジェットを熱源として、YFとAlFを成膜した。
(4)試験結果
 試験結果を表1に示した。この表に示す結果から明らかなように、本発明で提案する溶射方法では、成膜用作動ガス(Ar、N、He)が500℃未満ではフッ化物皮膜の形成が見らない(フッ化物粒子の付着が認められる場合でも、多孔質で実用できない状態)、しかし、600℃以上のガス温度にすることによって始めて、外観上、良好な皮膜の形成が確認できた。
 これに対して、従来の大気プラズマ溶射法、減圧プラズマ溶射法による方法では、YFの成膜は見られるが、AlFの皮膜は欠陥(多孔質、均一性に劣る)が多く、実用的な皮膜性状は得られなかった。この原因は、AlFは蒸気圧が非常に高いため、高温のプラズマジェット中を飛行する際、AlF粒子の表面から蒸気化したり、分解したためと思われる。

Figure JPOXMLDOC01-appb-T000001
(実施例2)
 この実施例では、SS400鋼の表面に形成したフッ化物溶射皮膜の気孔率に及ぼす成膜方法と基材への前処理の影響について調査した。
(1)基材:基材として、SS400鋼(寸法:幅50mm×縦50mm×厚さ3.2mm)を用い、現行のアルミナ粒子によるブラスト粗面化処理のみしたものとWC-12Coのアンダーコート層を実施例1と同じ方法により80μmの厚さに施工したものとの2種類を用意した。
(2)溶射雰囲気:発明例については、成膜用作動ガスとして750℃に加熱したArガスを用い、この条件の溶射雰囲気中を飛行するYF粒子の飛行速度を650~700m/sec.範囲に設定した。
(3)成膜用フッ化物:YF(粒径10~40μm)を用い、本発明の方法及び比較例の成膜として実施例1と同じ従来の大気プラズマ溶射法、高速フレーム溶射法により、120μmの厚さに形成させた。
(4)フェロキシル試験(気孔率)
 フェロキシル試験方法として、具体的には、次に示すような方法を用いた。すなわち、ヘキサシアノ鉄(III)酸カリウム10g及び塩化ナトリウム15gを1リットルの蒸留水に溶解し、これを分析用の濾紙に十分含浸させる。その後、この濾紙を試験片表面に貼り付けし、30分間静置した後、濾紙を剥がして、濾紙面での青色斑点の有無を目視判定した。これはアモルファス状膜に貫通気孔が存在するとフェロキシル試験液が浸透し、鉄基材界面に達して鉄イオンを生成させ、これにヘキサシアノ(III)酸カリウム塩が反応して、濾紙の表面に青色斑点を生成させることによって判定することができる。
(5)試験結果
 試験結果を表2に示した。この表に示す結果から明らかなように、供試したすべてのフッ化物溶射皮膜から青色斑点が発生し、皮膜に貫通気孔が存在していることが判明した。ただ青色斑点数を見ると、比較例の大気プラズマ溶射法や高速フレーム溶射法で形成された皮膜(No.3、4)には、3~7個の大きな青色斑点が見られるのに対し、本発明に適合する方法で溶射して形成した皮膜では斑点数が少なく、前者に比較して緻密化の傾向を示している。またWC-Co粒子を吹き付けた基材表面に形成した皮膜にも貫通気孔が少なく、フッ化物皮膜形成用の前処理として実用化できることが判明した。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 この実施例では、フッ化物粒子の飛行速度と基材の予熱温度をそれぞれ変化させ、フッ化物皮膜の形成に必要な飛行速度と予熱温度を求めた。
(1)基材:実施例1と同じステンレス鋼を用い、ブラスト粗面化処理の後、実施例1と同じ条件でWC-8Co-5Crのアンダーコート層を120μm厚に施工し、その後、20℃~520℃の範囲で予熱した試験片を準備した。
(2)溶射雰囲気を成膜用作動ガスとして750℃に加熱したArガスを用い、このような溶射雰囲気中を飛行するフッ化物粒子の速度を500m/sec.未満、600~700m/sec.、750m/sec.の3条件で成膜した。
(3)成膜用フッ化物:YF(粒径:10~35μm)
(4)試験結果
 試験結果を表3に示した。この表に示す結果から明らかなように、YF粒子の飛行速度が500m/sec.未満では基材の予熱温度を20℃~520℃に変化しても十分な成膜が得られなかった(No.1)。しかし、フッ化物溶射粒子の飛行速度を600℃以上にすると、基材の予熱温度を80℃以上に維持すると成膜し、この傾向は飛行速度を750m/sec.以上にしてもほぼ変化はなく、良好な状態の溶射皮膜の形成が認められた。このことから、フッ化物皮膜の形成に必要なフッ化物溶射粒子の飛行速度は600m/sec.以上、基材(SUS304鋼)の予熱温度を80℃~500℃であれば所定の効果が得られることが判明した。
 なお、基材の予熱温度の最高は、基材質によって異なり、Al、Tiなどの非鉄金属は温度の上昇に伴って変形や冶金的変化を受け、鉄鋼材料は表面に酸化スケールを生成するなどの変化が発生するため、低い温度に抑制することが好ましい。この点、炭化物、酸化物などの焼結体は加熱温度の影響を受けることが少ないので、生産上可能な限り高くする方が良好な溶射皮膜が形成されるため、最高温度を700℃とした。
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 この実施例では、フッ化物粒子の飛行速度と基材表面の粗面化状態と炭化物サーメットのアンダーコート層の施工面に対する皮膜の形成状態を調査した。
(1)基材:実施例1と同じSUS304鋼試験片を用い、その表面をブラスト粗面化処理したもの、および実施例1と同じ方法にてWC-18Coのアンダーコート層の施工を行ったものを準備した。また基材は、いずれも200℃に予熱した。
(2)溶射雰囲気:成膜用作動ガスとして700℃に加熱したArガスを用い、このような溶射雰囲気中を飛行するフッ化物粒子の飛行速度を500未満~750m/sec.になるように調整した。
(3)成膜用フッ化物:YF(粒径:5~30μm)
(4)試験結果
 試験結果を表4に示した。この表に示す結果から明らかなように、フッ化物粒子の飛行速度が500m/sec.未満では、基材の表面に炭化物サーメットのアンダーコート層を形成していてもフッ化物皮膜の形成は十分でなく、たとえ形成されたとしても多孔質、不均一なものであった。粒子速度を600m/sec.以上にすると、ブラスト粗面化したもの(No.2)WC-Co粒子吹き付けともに良好な皮膜を形成し、特にWC-Co粒子を吹き付けた試験片上の皮膜は、良好な外観を示した(No.3)。

Figure JPOXMLDOC01-appb-T000004
(実施例5)
 この実施例では、Al合金基材(寸法:幅30mm×縦50mm×厚さ3mm)の表面に、本発明に適合するの方法によって、フッ化物溶射皮膜を形成し、その皮膜の耐プラズマエッチング特性を評価した。
(1)基材:Al合金(JIS H4000規定のA3003)の表面をブラスト粗面化処理した後、実施例1と同じ方法にてCr-18Ni-8Crのアンダーコート層を150μmの厚さに施工し、その後200℃に予熱した。
(2)溶射雰囲気:成膜用作動ガスとして800℃に加熱したHeガスを用い、この溶射雰囲気中を飛行するフッ化物粒子の飛行速度を650~700m/sec.の範囲に制御した。
(3)成膜用フッ化物:YF、DyF、CeF(粒径5~45μm)を溶射して、膜厚180μmに成膜した。なお、比較例の皮膜として、大気プラズマ溶射法によってY、Dy、CeOをそれぞれ180μmに成膜した皮膜を同一条件で評価した。
(4)プラズマエッチング雰囲気ガス組成とプラズマ出力
(i)雰囲気ガスと流量条件
(a)含Fガス:CHF/O/Ar=80/100/160(1分間当たりの流量cm
(b)含CHガス:C/Ar=80/100(1分間当たりの流量cm
(ii)プラズマ照射出力
 高周波電力:1300W
 圧力:4Pa
 温度:60℃
(iii)プラズマエッチング試験の雰囲気
(a)含Fガス雰囲気中で実施
(b)含CHガス雰囲気中で実施
(C)含Fガス雰囲気1h⇔含CHガス雰囲気1hを交互に繰り返す雰囲気中で実施
(5)評価方法
 耐プラズマエロージョン試験の評価は、エッチング処理によって供試皮膜から飛散する皮膜成分のパーティクル数を計測することによって、耐プラズマエロージョン性と耐環境汚染性を調査した。パーティクル数は、試験容器内の配設した直径8インチのシリコンウェハーの表面に付着する粒径0.2μm以上の粒子数が30個に達するまでの時間を測定することにより実施した。
(6)試験結果
 試験結果を表5に示した。この結果から明らかなように比較例の酸化物系皮膜(No.1、3、5)は、含CHガス中では最もパーティクルの発生が少なく、含Fガス中ではやや多くなり許容値に達する時間が短くなる状況が見られる。しかし、含Fガスと含CHガスを交互に繰り返す雰囲気下におけるパーティクルの発生数は一段と多くなっていることが判明した。この原因は、含Fガス中におけるフッ化ガスの酸化作用とCHガスの還元作用の繰り返しによって、酸化物セラミック皮膜の表面の酸化膜が常に不安定な状態となって飛散するためと考えられる。これに対して、フッ化物皮膜(No.2、4、6)は、含Fガス中、含CHガス中及びこれらのガス交互繰り返し雰囲気中でも化学的に安定な状態を維持し、パーティクルの発生を抑制したものと考えられる。なお、フッ化物皮膜からのものに比較して1/5~1/10程度小さいものが多い点も耐環境汚染性をよくしているものと思われる。
Figure JPOXMLDOC01-appb-T000005
(実施例6)
 この実施例では、フッ化物溶射皮膜の密着性に及ぼす基材表面の前処理の影響を調査した。
(1)前処理の種類
 基材としてAl3003合金(寸法:直径25mm×厚さ5mm)の片面に、次に示すような前処理を行なった。
(i)脱脂した後、ワイヤブラシで軽く研磨する。
(ii)脱脂後、Ni-20Crを大気プラズマ溶射法によって、50μm厚さの皮膜を形成する(金属アンダーコート)
(iii)脱脂後、高速フレーム溶射法(速度680m/sec.溶射回数7回)によってWC-12Coを、厚さ80μmのアンダーコート層を形成
(iv)脱脂後、Al研削材を用いて、ブラスト粗面化処理を行なう。
(v)同上のブラスト処理面に、Ni-20Crを大気プラズマ溶射法によって、80μm厚さの炭化物サーメットのアンダーコート層を形成
(vi)同上のブラスト処理面に、WC-12Coを高速フレーム溶射法によって、厚さ80μmの炭化物サーメットのアンダーコート層を形成
 以上の(i)、(ii)、(iv)、(v)は本発明の比較例、他の(iii)、(vi)は発明例である。
(2)フッ化物溶射皮膜の形成
 前記基材表面に、800℃に加熱したHeガスを用い、この中を飛行するフッ化物粒子の飛行速度を680~750m/sec.の範囲に制御したYF粒子によって、膜厚160μmのフッ化物溶射皮膜を形成した。
(3)密着性試験方法
 溶射皮膜の密着性は、JIS H8666セラミック溶射皮膜試験方法に規定されている密着強さ試験方法によって測定した。
(4)試験結果
 試験結果を表6に示した。この表に示す結果から明らかなように、基材表面を脱脂した後、軽くワイヤブラシングした面に形成したフッ化物溶射皮膜(No.1)は、密着力に乏しく0.5~1.2MPaで皮膜が剥離し、また、金属アンダーコートを施したフッ化物溶射皮膜(No.2)は、若干の密着力の向上が見られるが、その効果は小さい。これに対して、WC-12Coのアンダーコート層を形成したフッ化物溶射皮膜(No.3)は、12~17MPaの高い密着力を発揮した。一方、ブラスト粗面化面に形成されたフッ化物溶射皮膜(No.4)の密着力は、ワイヤブラッシング面より高い密着力を示し、この傾向は金属アンダーコート施工後のフッ化物溶射皮膜(No.5)にも認められる。これは、それぞれNo.1、No.2の場合に比較すると高くなる傾向があり、基材の粗面化や金属質アンダーコートの施工は、皮膜の密着性の向上に若干の効果が見られる。これに対して、本発明適合例であるWC-12Coのアンダーコート層を形成した皮膜の密着力は、供試皮膜中最大の密着力を示した(No.6)。また、炭化物サーメットのアンダーコート層は基材表面のブラスト粗面化処理の有無に拘わらず高い密着力を示しているので、粗面化処理の省略を可能とすることが期待できる。
Figure JPOXMLDOC01-appb-T000006
(実施例7)
 この実施例では、スレンレス鋼(SS400)の表面に形成したフッ化物溶射皮膜の気孔率に及ぼす成膜方法と基材の粗面化方法の影響について調査した。
(1)基材:基材として、SS400鋼(寸法:幅50mm×縦50mm×厚さ3.2mm)を用い、アルミナ粒子による通常のブラスト粗面化のみの処理(比較例)と、本発明に従う高速フレーム溶射法により、WC-Co粒子を飛行速度:720m/sec.溶射回数6回の条件で、吹き付け処理して面積率:30~32%の溶射粒子点在部を形成したものとの2種類を施工した。
(2)溶射雰囲気:成膜用作動ガスとして750℃に加熱したArガスを用い、この中を飛行するYF粒子の飛行速度を650~700m/sec.範囲に制御した。
(3)成膜用フッ化物:YF(粒径10~40μm)を用い、本発明に適合する方法及び比較例の成膜として、通常の大気プラズマ溶射法、高速フレーム溶射法により、120μmの厚さに形成した。
(4)フェロキシル試験(気孔率)
 フェロキシル試験方法として、具体的には、次に示すような方法を用いた。すなわち、ヘキサシアノ鉄(III)酸カリウム10g及び塩化ナトリウム15gを1リットルの蒸留水に溶解し、これを分析用の濾紙に十分含浸させる。その後、この濾紙を試験片表面に貼り付けし、30分間静置した後、濾紙を剥がして、濾紙面での青色斑点の有無を目視判定した。これはアモルファス状膜に貫通気孔が存在するとフェロキシル試験液が浸透し、鉄基材界面に達して鉄イオンを生成させ、これにヘキサシアノ(III)酸カリウム塩が反応して、濾紙の表面に青色斑点を生成させることによって判定することができる。
(5)試験結果
 試験結果を表7に示した。この表に示す結果から明らかなように、供試したすべてのフッ化物溶射皮膜から青色斑点が発生し、皮膜に貫通気孔が存在していることが判明した。ただ青色斑点数を見ると、比較例の大気プラズマ溶射法や高速フレーム溶射法で形成された皮膜(No.3、4)には、3~7個の大きな青色斑点が見られるのに対し、本発明に適合する方法で溶射して形成した皮膜1(面積率:32%の溶射粒子点在部を有する皮膜)および2(面積率30%)では斑点数が少なく、比較例に比べて緻密化の傾向を示している。また、WC-Co粒子を吹き付けた基材表面に形成した皮膜にも貫通気孔が少なく、フッ化物皮膜形成用の前処理として実用化できることが判明した。
Figure JPOXMLDOC01-appb-T000007
(実施例8)
 この実施例では、フッ化物粒子の飛行速度と基材の予熱温度をそれぞれ変化させ、フッ化物皮膜の形成に必要な飛行速度と予熱温度を求めた。
(1)基材:実施例7と同じステンレス鋼を用い、ブラスト粗面化処理を行い、20℃~520℃の範囲で予熱した試験片を準備した。
(2)溶射雰囲気:成膜用作動ガスとして750℃に加熱したArガスを用い、この中を飛行するフッ化物粒子の速度を500m/sec.未満、600~700m/sec.、750m/sec.の3条件で成膜した。
(3)成膜用フッ化物:YF(粒径:10~35μm)
(4)試験結果
 試験結果を表8に示した。この表に示す結果から明らかなように、YF粒子の飛行速度が500m/sec.未満では基材の予熱温度を20℃~520℃に変化しても十分な成膜が得られなかった(No.1)。しかし、粒子の飛行速度を600m/sec.以上にすると、基材の予熱温度を80℃以上に維持すると成膜し、この傾向は飛行速度を750m/sec.以上にしてもほぼ変化はなく、良好な状態の溶射皮膜の形成が認められた。このことから、フッ化物皮膜の形成に必要なフッ化粒子の飛行速度は600m/sec.以上、基材(SUS304鋼)の予熱温度を80℃~500℃であれば所定の効果が得られることが判明した。
 なお、基材の予熱温度の最高は、基材質によって異なり、Al、Tiなどの非鉄金属は温度の上昇に伴って変形や冶金的変化を受け、鉄鋼材料は表面に酸化スケールを生成するなどの変化が発生するため、低い温度に抑制することが好ましい。この点、炭化物、酸化物などの焼結体は加熱温度の影響を受けることが少ないので、生産上可能な限り高くする方が良好な溶射皮膜が形成されるため、最高温度を700℃とした。
Figure JPOXMLDOC01-appb-T000008
(実施例9)
 この実施例では、フッ化物粒子の飛行速度と基材表面の粗面化状態の相違による皮膜の形成状態を調査した。
(1)基材:実施例1と同じSUS304鋼試験片を用い、その表面をブラスト粗面化処理の有無、およびWC-Co粒子を実施例7と同じ条件で高速フレーム溶射(750m/sec.)して面積率:28%の溶射粒子点在部を形成する吹き付け処理を行ったものを準備した。また基材は、いずれも200℃に予熱した。
(2)溶射雰囲気:成膜用作動ガスとして700℃に加熱したArガスを用い、この中を飛行するフッ化物粒子の飛行速度を500m/sec.未満~750m/sec.になるように調整した。
(3)成膜用フッ化物:YF(粒径:5~30μm)
(4)試験結果
 試験結果を表9に示した。この表に示す結果から明らかなように、フッ化物粒子の飛行速度が500m/sec.未満では、基材の表面を粗面化していてもフッ化物皮膜の形成は十分でなく、たとえ形成されたとしても多孔質、不均一なものであった。粒子速度を600m/sec.以上にすると、ブラスト粗面化したもの(No.2)およびWC-Co粒子吹き付けて溶射粒子点在部を形成したものはともに良好な皮膜を形成し、特にWC-Co粒子を吹き付けた面積率:28%の溶射粒子点在部を形成した試験片上の皮膜は、良好な外観を示した(No.3)。
Figure JPOXMLDOC01-appb-T000009
(実施例10)
 この実施例では、本発明に適合する方法で形成されたフッ化物溶射皮膜のハロゲン系酸の蒸気に対する耐食性を調査した。
(1)基材:SS400鋼基材(寸法:横30mm×縦50mm×厚さ3.2mm)を用い、その表面をブラスト粗面化するとともに、180℃に予熱して成膜した。
(2)溶射雰囲気:成膜用作動ガスとして850℃に加熱したArガスを用い、この中を飛行するフッ化物粒子の飛行速度を680~720m/sec.の範囲に制御した。
(3)成膜用フッ化物:フッ化物として、AlF、YF(粒径10~60μm)を用いて、膜厚250μmの厚さに形成したものを準備した。
(4)腐食試験
(a)HCl蒸気による腐食試験は、化学実験用のデーシケ一夕ーの底部に30%HCl水溶液を100ml入れ、その上部に試験片を吊すことによってHCl水溶系から発生するHCl蒸気に曝露する方法を採用した。腐食試験温度は30℃~50℃、時間は96hrである。
(b)HF蒸気による腐食試験は、SUS316製のオートクレーブの底部にHF水溶液を100ml入れ、その上部に試験片を吊すことによってHF蒸気による腐食試験を実施した。腐食試験温度は30℃~50℃、曝露時間は96hrである。
(6)試験結果
 試験結果を表10に示した。表に示す結果から明らかなように、比較例の酸化物系皮膜(No.2、4)は、すべて多量の赤錆が皮膜表面にまで達していた。即ち、酸化物系皮膜には多くの貫通気孔が存在するため、HCl、HFなどの蒸気は、この貫通気孔を通って皮膜の内部に達してSS400鋼基材を腐食し、その腐食生成物としての鉄成分が貫通気孔を通して皮膜表面に達して赤錆状を呈したものと考えられる。これに対して、フッ化物皮膜(No.1、3)は、赤錆の発生は認められるものの、その程度は比較例の30~40%程度にとどまっていた。この結果からフッ化物皮膜にも貫通気孔は存在するが、酸化物系皮膜に比較すると少なく、さらにフッ化物皮膜そのものにも、優れた耐食性があるため、総合的な耐ハロゲン系酸の蒸気に対して良好な耐食性を発揮したものと思われる。

Figure JPOXMLDOC01-appb-T000010
(実施例11)
 この実施例では、フッ化物溶射皮膜の密着性に及ぼす基材表面の前処理の影響を調査した。
(1)前処理の種類
 基材としてAl3003合金(寸法:直径25mm×厚さ5mm)の片面に、次に示すような前処理を行なった。
(i)脱脂した後、ワイヤブラシで軽く研磨する。
(ii)脱脂後、Ni-20mass%Crを大気プラズマ溶射法によって、50μm厚さの皮膜を形成する(合金のアンダーコート層)
(iii)脱脂後、WC-12mass%Coを高速フレーム溶射法によって、疎ら模様となるように吹き付け(面積率22%)て、溶射粒子点在部を形成した。
(iv)脱脂後、Al研削材を用いて、ブラスト粗面化処理を行なう。
(v)同上のブラスト処理面に、Ni-20mass%Crを大気プラズマ溶射法によって、80μm厚さの皮膜を形成(合金のアンダーコート層)
(vi)同上のブラスト処理面に、WC-12mass%Coを高速フレーム溶射法によって、疎らに吹き付け(面積率18%)
 以上の(iii)、(vi)は発明例、他の(i)、(ii)、(iv)、(v)は比較例である。
(2)フッ化物溶射皮膜の形成
 前記前処理後の基材表面に、800℃に加熱したHeガスを用い、この中を飛行するフッ化物粒子の飛行速度を680~750m/sec.の範囲に制御したYF粒子によって、膜厚140μmのフッ化物溶射皮膜を形成した。
(3)密着性試験方法
 溶射皮膜の密着性は、JIS H8666セラミック溶射皮膜試験方法に規定されている密着強さ試験方法によって測定した。
(4)試験結果
 試験結果を表11に示した。この表に示す結果から明らかなように、基材表面を脱脂した後、軽ワイヤブラシングした面に形成したフッ化物溶射皮膜(No.1)は、密着力に乏しく0.5~1.2MPaで皮膜が剥離し、また、金属アンダーコートを施したフッ化物溶射皮膜(No.2)は、若干の密着力の向上が見られる。これに対して、WC-12mass%Coを疎らに吹き付けて溶射粒子点在部を形成した面に形成したフッ化物溶射皮膜(No.3)は、13~16MPaの高い密着力を発揮した。一方、ブラスト粗面化面に形成されたフッ化物溶射皮膜(No.4)の密着力は、4~6MPaを示し、また、ブラスト粗面化面に金属質のアンダーコートを施工したフッ化物溶射皮膜の密着力は、それぞれNo.1、No.2の場合に比較すると高くなる傾向があり、基材の粗面化や金属質アンダーコートの施工は、皮膜の密着性の向上に効果が見られる。これに対して、本発明に係る炭化物サーメット粒子を疎らに吹き付けることによって得られる溶射粒子点在部を形成した面(No.6)は、フッ化物溶射皮膜上との密着性が一段と向上し、13~15MPaの高い密着力を示した。

Figure JPOXMLDOC01-appb-T000011
 以上説明したように、本発明の比較的低温~超高速、不活性ガスを作動流体として、溶射加工して得たフッ化物皮膜は、成膜用のフッ化物粒子が熱分解したり、脱F成分の現象を発生しないため、形成されるフッ化物皮膜は、フッ化物本来の物理化学的性質を発揮する。さらに、成膜に際し、硬質の炭化物サーメット粒子が、大きな運動エネルギーによって衝突する基材表面に埋没するようなアンダーコート層や粒子散在部を施工することによって、緻密で密着力の高いフッ化物溶射皮膜を被覆形成することができる。このようにして形成されたフッ化物溶射皮膜は、従来のプラズマ溶射法や高速フレーム溶射法によって形成された皮膜に比較して、密着性、耐酸性、耐ハロゲンガス性、耐プラズマエロージョン性などの物理化学的性質に優れ、現行の半導体加工装置部材用の被覆はもとより、一般の石油化学・化学プラント用被覆として、より厳しく、より優れた性能が求められる分野への新しい用途が期待できる。
1 作動ガス源
2 溶射材料の供給器
3 ガス加熱用熱交換器
4 溶射容器
5 噴射ガン
6 ノズル
7 被処理体
8 消音器
9 主ガス管
10 副ガス管
11 作動ガス整流板
12、13 流量調整バルブ

Claims (23)

  1.  基材表面または前処理した基材表面に、
     フッ化物溶射材料を、ArやN、Heまたはそれらの混合ガスのような不活性ガスを成膜用作動ガスとする溶射ガンを用いて、600℃~1300℃の温度に保持される溶射ガス雰囲気中において、飛行速度:500m/sec.以上の速度で吹き付けることにより、
     該フッ化物溶射粒子の少なくとも一部が基材表面の凹部に食い込んだ植毛構造となるように付着させてなるフッ化物溶射皮膜を被覆形成することを特徴とするフッ化物溶射皮膜の形成方法。
  2.  前記基材表面または前処理した基材表面に、フッ化物の溶射に先立ち、まず、炭化物サーメット材料を飛行速度150~600m/sec.の吹き付け速度で溶射して、炭化物サーメットの膜状のアンダーコート層を被覆形成することを特徴とする請求項1に記載のフッ化物溶射皮膜の形成方法。
  3.  前記基材表面または前処理した基材表面に、フッ化物の溶射に先立ち、まず、炭化物サーメット材料を飛行速度150~600m/sec.の吹き付け速度で溶射して、面積率にして8~50%の部分が疎らにかつ杭のように突き刺さった状態で付着している炭化物サーメットの溶射粒子点在部を形成することを特徴とする請求項1に記載のフッ化物溶射皮膜の形成方法。
  4.  前記フッ化物溶射皮膜の植毛構造は、フッ化物の溶射粒子の少なくとも一部が、基材表面や炭化物サーメットのアンダーコート層表面の凹部、あるいは炭化物サーメットの溶射粒子点在部の粒子間の隙間に、食い込むように付着したり、先端部に串刺し状態で結合したものであることを特徴とする請求項1または2に記載のフッ化物溶射皮膜の形成方法。
  5.  非膜状の炭化物サーメットの前記溶射粒子点在部は、溶射する炭化物サーメット溶射粒子の少なくとも一部が、基材表面に疎らにかつ突き刺さって杭が林立したような状態で該基材に付着させて形成したものであることを特徴とする請求項1に記載のフッ化物溶射皮膜の形成方法。
  6.  前記前処理は、脱脂、脱スケール粗面化および予熱のうちの1以上を行なう処理であることを特徴とする請求項1~5のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  7.  前記粗面化処理は、AlやSiCのような研削材を、基材表面に吹き付け、表面粗さを、Ra:0.05~0.74μm、Rz:0.09~2.0μm程度にするものであることを特徴とする請求項6に記載のフッ化物溶射皮膜の形成方法。
  8.  前記基材は、Alおよびその合金、Tiおよびその合金、炭素を含む鋼鉄、各種ステンレス鋼、Ni及びその合金、酸化物、窒化物、炭化物、珪化物、炭素焼結体のいずれかを用いることを特徴とする請求項1~7のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  9.  前記フッ化物溶射皮膜は、基材表面に、周期律表IIa族のMg、周期律表IIIb族のAl、周期律表IIIa族Y、原子番号57~71のランタノイド系金属であるランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロビウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジズプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のフッ化物から選ばれる1種以上の、粒径が5μm~80μmのフッ化物粒子を吹き付けて、20μm~500μmの膜厚に形成したものであることを特徴とする請求項1~8のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  10.  不活性ガスを成膜用作動ガスとする溶射法により、フッ化物粒子を噴射するときの該溶射ガンのノズル先端と基材表面との距離は、5~50mmの間隔に保持すること特徴とする請求項1~9のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  11.  溶射粒子の飛行速度は、600m/sec.以上800m/sec.以下の速さにすること特徴とする請求項1~10のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  12.  溶射粒子の飛行速度は、650m/sec.以上1000m/sec.以下の速さにすること特徴とする請求項1~10のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  13.  作動ガスおよび溶射雰囲気の温度は、700℃以上1300℃以下にすること特徴とする請求項1~12のいずれか1に記載のフッ化物溶射皮膜の形成方法。
  14.  前記炭化物サーメットのアンダーコート層は、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crなどから選ばれる1種以上の炭化物サーメット粒子を吹き付けて形成された30~200μmの厚さにした層であることを特徴とする請求項2に記載のフッ化物溶射皮膜の形成方法。
  15.  前記炭化物サーメットの粒子散在部は、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crなどから選ばれる1種以上の炭化物サーメット粒子を吹き付けて形成された溶射粒子が疎らにかつ杭のように突き刺さった部分であることを特徴とする請求項3に記載のフッ化物溶射皮膜の形成方法。
  16.  基材と、その基材表面に被覆形成されたフッ化物溶射皮膜とからなる部材であって、そのフッ化物溶射皮膜は、基材表面に直接または基材表面に施工された炭化物サーメットのアンダーコート層の表面もしくは炭化物サーメットの溶射粒子点在部上に、該フッ化物溶射粒子の少なくとも一部が、それらの表面に食い込んだ状態の植毛構造を有することを特徴とするフッ化物溶射皮膜被覆部材。
  17.  前記基材と前記フッ化物溶射皮膜との間に、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crのような炭化物サーメット溶射粒子が膜状に付着・被覆された炭化物サーメット溶射粒子による膜状のアンダーコート層を有することを特徴とする請求項16に記載のフッ化物溶射皮膜被覆部材。
  18.  前記基材と前記フッ化物溶射皮膜との間に、WC-Co、WC-Ni-Cr、WC-Co-Cr、Cr-Ni-Crのような炭化物サーメット溶射粒子の少なくとも一部が該基材の表面に突き刺さって疎らにかつ杭が林立した状態にあり、かつ他の粒子が基材表面に付着するか基材中に埋没した状態で、面積率にして8~50%が付着・堆積している炭化物サーメット粒子による非膜状の溶射粒子点在部を有することを特徴とする請求項16に記載のフッ化物溶射皮膜被覆部材。
  19.  前記フッ化物溶射皮膜は、20~500μmの膜厚を有することを特徴とする請求項16~18のいずれか1に記載のフッ化物溶射皮膜被覆部材。
  20.  前記基材は、脱脂、脱スケール、粗面化および予熱のうちのいずれか1以上の前処理されたものであることを特徴とする請求項16~19のいずれか1に記載のフッ化物溶射皮膜被覆部材。
  21.  前記粗面化処理は、AlやSiCのような研削材を、基材表面に吹き付け、表面粗さがRa:0.05~0.74μm、Rz:0.09~2.0μm程度のものであることを特徴とする請求項20に記載のフッ化物溶射皮膜被覆部材。
  22.  前記基材は、Alおよびその合金、Tiおよびその合金、炭素を含む鋼鉄、各種ステンレス鋼、Ni及びその合金、酸化物、窒化物、炭化物、珪化物、炭素焼結体のいずれかを用いることを特徴とする請求項16~21のいずれか1に記載のフッ化物溶射皮膜被覆部材。
  23.  前記フッ化物溶射皮膜は、周期律表IIa族のMg、周期律表IIIb族のAl、周期律表IIIa族Y、原子番号57~71のランタノイド系金属であるランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロビウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジズプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のフッ化物から選ばれる1種以上の、粒径が5μm~80μmのフッ化物粒子を吹き付けて、20μm~500μmの膜厚に形成された皮膜であることを特徴とする請求項16~22のいずれか1に記載のフッ化物溶射皮膜被覆部材。
PCT/JP2012/077676 2012-02-09 2012-10-26 フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材 WO2013118354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147022157A KR20140110069A (ko) 2012-02-09 2012-10-26 불화물 용사 피막의 형성 방법 및 불화물 용사 피막 피복 부재
US14/376,647 US9421570B2 (en) 2012-02-09 2012-10-26 Method for forming fluoride spray coating and fluoride spray coating covered member
CN201280069358.9A CN104105820B (zh) 2012-02-09 2012-10-26 氟化物喷涂覆膜的形成方法及氟化物喷涂覆膜覆盖部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012025699 2012-02-09
JP2012-025700 2012-02-09
JP2012-025699 2012-02-09
JP2012025700 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013118354A1 true WO2013118354A1 (ja) 2013-08-15

Family

ID=48947141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077676 WO2013118354A1 (ja) 2012-02-09 2012-10-26 フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材

Country Status (5)

Country Link
US (1) US9421570B2 (ja)
KR (1) KR20140110069A (ja)
CN (1) CN104105820B (ja)
TW (1) TWI495760B (ja)
WO (1) WO2013118354A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147981A (ja) * 2014-02-07 2015-08-20 地方独立行政法人 岩手県工業技術センター 被覆体
US20160076129A1 (en) * 2014-09-17 2016-03-17 Tokyo Electron Limited Component for plasma processing apparatus, and manufacturing method therefor
CN113652644A (zh) * 2021-08-17 2021-11-16 北方工业大学 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065302A (ja) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 プラズマ処理装置用の部品、及び部品の製造方法
KR102084235B1 (ko) * 2015-12-28 2020-03-03 아이원스 주식회사 투명 불소계 박막의 형성 방법 및 이에 따른 투명 불소계 박막
WO2018012454A1 (ja) * 2016-07-14 2018-01-18 信越化学工業株式会社 サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材
KR20240067976A (ko) * 2017-03-01 2024-05-17 신에쓰 가가꾸 고교 가부시끼가이샤 용사 피막, 용사용 분말, 용사용 분말의 제조 방법, 및 용사 피막의 제조 방법
JPWO2021182107A1 (ja) * 2020-03-11 2021-09-16
CN111363997B (zh) * 2020-05-13 2021-10-01 广东粤科新材料科技有限公司 一种利用高能超音速喷涂技术提高辊体使用寿命和使用性能的方法
KR102266658B1 (ko) * 2020-12-10 2021-06-18 주식회사 미코 용사용 이트륨계 과립 분말 및 이를 이용한 용사 피막
KR102430708B1 (ko) * 2021-07-19 2022-08-10 (주)코미코 대면적 코팅을 위한 박막 스트레스 제어 기반 코팅 방법 및 이를 이용한 코팅 구조물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345314A (ja) * 1999-06-04 2000-12-12 Tocalo Co Ltd 高硬度炭化物サーメット溶射皮膜被覆部材およびその製造方法
JP2005120451A (ja) * 2003-10-20 2005-05-12 Tocalo Co Ltd セラミック溶射の前処理方法およびその溶射皮膜被覆部材
JP2007138288A (ja) * 2005-10-21 2007-06-07 Shin Etsu Chem Co Ltd 多層コート耐食性部材
JP2008518110A (ja) * 2004-11-01 2008-05-29 ゼネラル・モーターズ・コーポレーション 耐食性のバイポーラプレートを製造する方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636583A (ja) 1992-07-21 1994-02-10 Nec Niigata Ltd Epromおよびeprom用ソケットおよびepromプログラム装置
JP2971369B2 (ja) 1995-08-31 1999-11-02 トーカロ株式会社 静電チャック部材およびその製造方法
JP3362113B2 (ja) 1997-07-15 2003-01-07 日本碍子株式会社 耐蝕性部材、ウエハー設置部材および耐蝕性部材の製造方法
JPH11219937A (ja) 1998-01-30 1999-08-10 Toshiba Corp プロセス装置
JP3510993B2 (ja) 1999-12-10 2004-03-29 トーカロ株式会社 プラズマ処理容器内部材およびその製造方法
JP4540221B2 (ja) 2000-04-21 2010-09-08 日本碍子株式会社 積層体、耐蝕性部材および耐ハロゲンガスプラズマ用部材
JP4387563B2 (ja) 2000-06-05 2009-12-16 住友大阪セメント株式会社 サセプタ及びサセプタの製造方法
JP3523216B2 (ja) 2001-04-06 2004-04-26 信越化学工業株式会社 溶射用希土類含有化合物粒子、これを溶射した溶射部材
JP4628578B2 (ja) * 2001-04-12 2011-02-09 トーカロ株式会社 低温溶射皮膜被覆部材およびその製造方法
US8067067B2 (en) * 2002-02-14 2011-11-29 Applied Materials, Inc. Clean, dense yttrium oxide coating protecting semiconductor processing apparatus
JP3894313B2 (ja) 2002-12-19 2007-03-22 信越化学工業株式会社 フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
JP4098259B2 (ja) 2004-02-27 2008-06-11 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4564765B2 (ja) 2004-03-11 2010-10-20 新日本製鐵株式会社 サーマルクラウン制御装置
JP2005260046A (ja) 2004-03-12 2005-09-22 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置用部材
JP4051351B2 (ja) 2004-03-12 2008-02-20 トーカロ株式会社 熱放射性および耐損傷性に優れるy2o3溶射皮膜被覆部材およびその製造方法
JP2007115973A (ja) 2005-10-21 2007-05-10 Shin Etsu Chem Co Ltd 耐食性部材
US7968205B2 (en) 2005-10-21 2011-06-28 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
JP4372748B2 (ja) 2005-12-16 2009-11-25 トーカロ株式会社 半導体製造装置用部材
JP4398436B2 (ja) 2006-02-20 2010-01-13 トーカロ株式会社 熱放射特性等に優れるセラミック溶射皮膜被覆部材およびその製造方法
JP4905697B2 (ja) 2006-04-20 2012-03-28 信越化学工業株式会社 導電性耐プラズマ部材
JP2007107100A (ja) 2006-11-30 2007-04-26 Tocalo Co Ltd プラズマ処理容器内複合膜被覆部材およびその製造方法
JP4973324B2 (ja) 2007-06-08 2012-07-11 株式会社Ihi コールドスプレー方法、コールドスプレー装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345314A (ja) * 1999-06-04 2000-12-12 Tocalo Co Ltd 高硬度炭化物サーメット溶射皮膜被覆部材およびその製造方法
JP2005120451A (ja) * 2003-10-20 2005-05-12 Tocalo Co Ltd セラミック溶射の前処理方法およびその溶射皮膜被覆部材
JP2008518110A (ja) * 2004-11-01 2008-05-29 ゼネラル・モーターズ・コーポレーション 耐食性のバイポーラプレートを製造する方法
JP2007138288A (ja) * 2005-10-21 2007-06-07 Shin Etsu Chem Co Ltd 多層コート耐食性部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147981A (ja) * 2014-02-07 2015-08-20 地方独立行政法人 岩手県工業技術センター 被覆体
US20160076129A1 (en) * 2014-09-17 2016-03-17 Tokyo Electron Limited Component for plasma processing apparatus, and manufacturing method therefor
CN113652644A (zh) * 2021-08-17 2021-11-16 北方工业大学 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法

Also Published As

Publication number Publication date
CN104105820B (zh) 2016-11-23
US20150017463A1 (en) 2015-01-15
TWI495760B (zh) 2015-08-11
US9421570B2 (en) 2016-08-23
CN104105820A (zh) 2014-10-15
TW201339366A (zh) 2013-10-01
KR20140110069A (ko) 2014-09-16

Similar Documents

Publication Publication Date Title
WO2013118354A1 (ja) フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
WO2013140668A1 (ja) フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
US6783863B2 (en) Plasma processing container internal member and production method thereof
TW200820325A (en) Low temperature aerosol deposition of a plasma resistive layer
JP4628578B2 (ja) 低温溶射皮膜被覆部材およびその製造方法
JP5568756B2 (ja) 耐食性や耐プラズマエロージョン性に優れるサーメット溶射皮膜被覆部材およびその製造方法
JP5521184B2 (ja) フッ化物溶射皮膜被覆部材の製造方法
JP5939592B2 (ja) フッ化物溶射皮膜の形成方法
JP4512603B2 (ja) 耐ハロゲンガス性の半導体加工装置用部材
WO2013114942A1 (ja) 白色フッ化物溶射皮膜の黒色化方法および表面に黒色層を有するフッ化物溶射皮膜被覆部材
JP5858431B2 (ja) フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
JP5463555B2 (ja) 黒色層を有するフッ化物溶射皮膜被覆部材およびその製造方法
JP5524993B2 (ja) フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
JP5524992B2 (ja) フッ化物溶射皮膜の形成方法およびフッ化物溶射皮膜被覆部材
JP2004269951A (ja) 耐ハロゲンガス皮膜被覆部材およびその製造方法
CN104204267B (zh) 氟化物喷涂覆膜的形成方法及氟化物喷涂覆膜覆盖部件
JP5406323B2 (ja) 白色フッ化物溶射皮膜の黒色化方法および表面に黒色層を有するフッ化物溶射皮膜被覆部材
JP5720043B2 (ja) 耐食性や耐プラズマエロージョン性に優れるサーメット溶射用粉末材料およびその製造方法
JP5406317B2 (ja) 白色フッ化物溶射皮膜の黒色化方法および表面に黒色層を有するフッ化物溶射皮膜被覆部材
JP2000178709A (ja) 耐プラズマエロージョン性に優れる溶射被覆部材およびその製造方法
JP2013181239A (ja) 白色フッ化物溶射皮膜の黒色化方法および表面に黒色層を有するフッ化物溶射皮膜被覆部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376647

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867937

Country of ref document: EP

Kind code of ref document: A1