WO2018012454A1 - サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材 - Google Patents

サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材 Download PDF

Info

Publication number
WO2018012454A1
WO2018012454A1 PCT/JP2017/025117 JP2017025117W WO2018012454A1 WO 2018012454 A1 WO2018012454 A1 WO 2018012454A1 JP 2017025117 W JP2017025117 W JP 2017025117W WO 2018012454 A1 WO2018012454 A1 WO 2018012454A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
slurry
thermal spray
suspension plasma
fluoride
Prior art date
Application number
PCT/JP2017/025117
Other languages
English (en)
French (fr)
Inventor
康 高井
典明 浜谷
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60952506&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018012454(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US16/316,158 priority Critical patent/US20210277509A1/en
Priority to JP2017551340A priority patent/JP6315151B1/ja
Priority to CN201780043494.3A priority patent/CN109477199B/zh
Priority to KR1020227036583A priority patent/KR102656926B1/ko
Priority to KR1020197003930A priority patent/KR102459191B1/ko
Publication of WO2018012454A1 publication Critical patent/WO2018012454A1/ja
Priority to US18/384,076 priority patent/US20240051839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/259Oxyhalides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a thermal spray member suitable as a member exposed to a halogen-based gas plasma atmosphere in an etching process or the like in semiconductor manufacturing, a slurry for suspension plasma spraying used in the manufacturing, and a rare earth oxyfluoride thermal spray using the slurry.
  • the present invention relates to a film forming method.
  • an etching process is performed in a halogen gas plasma atmosphere having high corrosivity.
  • ceramics such as metallic aluminum or aluminum oxide, yttrium oxide (Patent Document 1: JP 2002-080954 A, Patent Document 2: JP 2007-308794 A) or yttrium fluoride (Patent Document 3: Special)
  • yttrium oxide Patent Document 1: JP 2002-080954 A
  • Patent Document 2 JP 2007-308794 A
  • yttrium fluoride Patent Document 3: Special
  • Such a thermal spray member is employed in a portion of the etching apparatus (etcher) that comes into contact with the halogen-based gas plasma.
  • Halogen-based corrosive gases used in the manufacturing process of semiconductor products include SF 6 , CF 4 , CHF 3 , ClF 3 , HF and the like as fluorine-based gases, and Cl 2 and BCl 3 as chlorine-based gases. HCl or the like is used.
  • An yttrium oxide film-forming member produced by plasma spraying yttrium oxide has few technical problems and has been put to practical use as a thermal spray member for semiconductors from an early stage.
  • the yttrium oxide film forming member has a problem in that the yttrium oxide on the outermost surface reacts with fluoride in the early stage of the etching process, and the concentration of fluorine gas in the etching apparatus changes, so that the etching process is not stable. is there. This problem is called process shift.
  • yttrium fluoride tends to have a slightly lower corrosion resistance in a halogen-based gas plasma atmosphere than yttrium oxide. Further, the yttrium fluoride sprayed film has a problem that the surface has many cracks and more particles are generated than the yttrium oxide sprayed film.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2014-009361.
  • fluorine decreases due to oxidation, oxygen increases, composition shifts, and yttrium oxide is generated. It is difficult to form a stable film as yttrium oxyfluoride.
  • suspension plasma spraying has been developed as a film forming technique that replaces plasma spraying (hereinafter simply referred to as plasma spraying) in which a thermal spray material is supplied as a solid.
  • Suspension plasma spraying is a method of supplying a thermal spray material as a slurry, and has a feature that a thermal sprayed film with less surface cracks can be formed as compared with plasma spraying.
  • Application of a thermal spray member by suspension plasma spraying to a member in contact with a halogen-based gas plasma of an etching apparatus for semiconductor manufacturing or a CVD apparatus has been studied.
  • suspension plasma spraying using a slurry material of yttrium oxide (Patent Document 6: JP 2010-150617 A) or a slurry material of yttrium oxyfluoride (Patent Document 7: International Publication No. 2015/019673) has been proposed. Yes. However, even when a slurry material of yttrium oxyfluoride is used, even with suspension plasma spraying, it is difficult to stably form a sprayed film as yttrium oxyfluoride as in plasma spraying.
  • the present invention has been made in view of the above circumstances, and in order to obtain a rare earth oxyfluoride sprayed film with less process shift and particle generation compared to an yttrium oxide sprayed film or a yttrium fluoride sprayed film, a suspension plasma is obtained.
  • Slurry for suspension plasma spraying capable of stably forming a rare earth oxyfluoride sprayed film by thermal spraying, a method for forming a rare earth oxyfluoride sprayed film using the slurry, and thermal spraying suitably manufactured by suspension plasma spraying using the slurry
  • An object is to provide a member.
  • the inventors of the present invention contain rare earth fluoride particles having a maximum particle diameter (D100) of 12 ⁇ m or less in an amount of 5% by mass to 40% by mass, and water and an organic solvent.
  • D100 maximum particle diameter
  • the inventors of the present invention contain rare earth fluoride particles having a maximum particle diameter (D100) of 12 ⁇ m or less in an amount of 5% by mass to 40% by mass, and water and an organic solvent.
  • the present invention provides the following slurry for slurry plasma spraying, a method for forming a rare earth oxyfluoride sprayed film, and a sprayed member.
  • a slurry for suspension plasma spraying characterized by using one or more selected from water and an organic solvent as a solvent.
  • the suspension plasma spraying slurry according to [1] further containing 3% by mass or less of an anti-aggregation agent composed of an organic compound.
  • the rare earth element is one or more selected from yttrium (Y), gadolinium (Gd), holmium (Ho), erbium (Er), ytterbium (Yb), and lutetium (Lu).
  • the slurry for suspension plasma spraying according to any one of [1] to [3].
  • [6] including a step of forming a sprayed coating on the base material by suspension plasma spraying in an atmosphere containing a gas containing oxygen using the slurry according to any one of [1] to [4] as a spraying material.
  • a method for forming a rare earth oxyfluoride sprayed film [7] The forming method according to [6], wherein the suspension plasma spraying is atmospheric suspension plasma spraying. [8] The method according to [6] or [7], wherein the sprayed film contains a rare earth oxyfluoride as a main phase.
  • the rare earth acid fluoride is one or more selected from ReOF, Re 5 O 4 F 7 , Re 6 O 5 F 8 and Re 7 O 6 F 9 (Re represents a rare earth element).
  • a thermal spray member comprising: a base material on which a thermal spray film is formed; and a thermal spray film including a rare earth oxyfluoride as a main phase.
  • the rare earth element is one or more selected from yttrium (Y), gadolinium (Gd), holmium (Ho), erbium (Er), ytterbium (Yb), and lutetium (Lu).
  • the rare earth acid fluoride is one or more selected from ReOF, Re 5 O 4 F 7 , Re 6 O 5 F 8 and Re 7 O 6 F 9 (Re represents a rare earth element).
  • a suspension plasma is formed on a substrate by spraying a sprayed film containing rare earth oxyfluoride with less process shift and particle generation in an atmosphere containing oxygen-containing gas. It can be stably formed by thermal spraying.
  • the thermal spray member provided with this thermal spray film is excellent in corrosion resistance against halogen-based gas plasma.
  • the slurry of the present invention is suitably used for suspension plasma spraying in an atmosphere containing an oxygen-containing gas, in particular, air suspension plasma spraying for forming plasma in an air atmosphere.
  • an atmosphere containing an oxygen-containing gas in particular, air suspension plasma spraying for forming plasma in an air atmosphere.
  • the case where the ambient atmospheric gas in which plasma is formed is the atmosphere is called atmospheric suspension plasma spraying.
  • the pressure at which the plasma is formed may be under normal pressure such as atmospheric pressure, under pressure, or under reduced pressure.
  • the slurry for suspension plasma spraying of the present invention stably stabilizes a sprayed film containing a rare earth acid fluoride, particularly a sprayed film containing a rare earth acid fluoride as a main phase, by suspension plasma spraying in an atmosphere containing an oxygen-containing gas. Can be formed.
  • rare earth fluoride is plasma sprayed in an air atmosphere, the oxygen concentration (oxygen content) of the sprayed film increases while the fluorine concentration (fluorine content) decreases.
  • a sprayed film containing rare earth oxyfluoride can be formed from rare earth fluoride, but when the degree of oxidation is too low, the characteristics of rare earth fluoride are On the other hand, if the degree of oxidation is too high, the characteristics of the rare earth oxide will be superior.
  • the slurry supplied in suspension plasma spraying is a rare earth having a maximum particle size (D100 (volume basis)) of 12 ⁇ m or less.
  • a slurry in which fluoride particles are dispersed in a solvent is prepared.
  • particles having an average particle diameter (D50) of 20 to 50 ⁇ m are supplied to a plasma flame to melt the particles to form a sprayed film.
  • D50 average particle diameter
  • rare earth fluoride particles having a maximum particle size (D100) of 12 ⁇ m or less are used in consideration of the above-described oxidation in the air atmosphere.
  • a rare earth fluoride particle having a relatively small particle size is used as a slurry containing one or more kinds selected from water and an organic solvent as a dispersion medium, in an atmosphere containing an oxygen-containing gas, particularly in an atmospheric atmosphere.
  • the degree of oxidation by suspension plasma spraying at Raw material rare earth fluoride base (hereinafter, referred to as a fine particle additive, etc.) that forms a sprayed film together with the raw material rare earth fluoride without burning or volatilizing by passing the plasma
  • the raw material rare earth fluoride base), oxygen content is 1 mass% (+1 point) or more, especially 2 mass% (+2 points) or more, 5 mass% (+5 points) ) Or less, particularly 4 wt% (+ 4 points) or less, especially 3% by weight of (+ 3 points) increased sprayed film hereinafter, it can be controlled with good formation.
  • the solvent water contributes to the oxidation of fluoride.
  • the oxygen content of the rare earth fluoride particles in the slurry is 2% by mass
  • the oxygen content of the sprayed film is The oxygen content of the raw material rare earth fluoride can be 3% by mass or more, particularly 4% by mass or more, 7% by mass or less, particularly 6% by mass or less, and particularly 5% by mass or less.
  • the sprayed film has an oxygen content of 1% by mass or more, particularly 2% in terms of oxygen content based on the raw material rare earth fluoride.
  • the content may be 5% by mass or more, 5% by mass or less, particularly 4% by mass or less, and particularly 3% by mass or less.
  • the organic solvent has a lower proportion of oxygen in the constituent elements than water, so the degree of oxidation is low.
  • the oxygen content of the rare earth fluoride particles in the slurry is 0.00. If it is 5% by mass, the oxygen content of the sprayed film is 0.1% by mass or more, particularly 0.3% by mass or more and 3% by mass or less, particularly 2% by mass, based on the raw material rare earth fluoride base. In particular, it can be 1% by mass or less.
  • the fluorine content of the sprayed film is usually 31.6% by mass or more, particularly 33.5% by mass when the raw material rare earth fluoride is yttrium fluoride and the slurry does not contain the fine particle additive described later. Above, it is 38 mass% or less, especially 37 mass% or less, and especially 35 mass% or less.
  • the maximum particle diameter (D100) of the rare earth fluoride particles contained in the slurry of the present invention is preferably 10 ⁇ m or less, particularly preferably 8 ⁇ m or less.
  • the lower limit of the maximum particle size (D100) is usually 6 ⁇ m or more.
  • the average particle diameter (D50 (volume basis)) of the rare earth fluoride particles is preferably 1 ⁇ m or more and 5 ⁇ m or less, particularly 3 ⁇ m or less.
  • the average particle diameter (D50) of the rare earth fluoride particles be 1 ⁇ m or more and 3 ⁇ m or less.
  • the specific surface area (BET surface area) of the rare earth fluoride particles is preferably 5 m 2 / g or less, particularly 3 m 2 / g or less, particularly 2 m 2 / g or less.
  • the lower limit of the specific surface area (BET surface area) of the rare earth fluoride particles is not particularly limited, but is usually 0.5 m 2 / g or more, preferably 1 m 2 / g or more, more preferably 1.5 m 2 / g. That's it.
  • the rare earth fluoride those produced by a conventionally known method can be used.
  • a rare earth oxide powder and an acidic ammonium fluoride powder equivalent to 1.1 times or more of the rare earth oxide are mixed. And it can manufacture by baking at 300 degreeC or more and 800 degrees C or less for 1 hour or more and 10 hours or less in atmosphere without oxygen, such as nitrogen gas atmosphere.
  • the rare earth fluoride may be a commercial product. These can be used as particles having a predetermined particle size by pulverization with a jet mill or the like, classification with air classification or the like, if necessary.
  • the rare earth fluoride that is a raw material is allowed to contain oxygen if it is in a small amount.
  • a part of the rare earth fluoride may be present as a rare earth oxide or a rare earth oxyfluoride, but most of the raw material rare earth fluoride used in the present invention, for example, 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more, and still more preferably 99% by mass or more is composed of rare earth trifluoride. This is different from the case of using a compound.
  • Substantially all of the raw material rare earth fluoride may be composed of rare earth trifluoride.
  • the oxygen content of the rare earth fluoride can be 10% by mass or less, particularly 5% by mass or less, but the oxygen content of the rare earth fluoride is preferably 2% by mass or less, particularly 1% by mass. % Or less is preferable, and oxygen may not be substantially contained (for example, the oxygen content is 0.1% by mass or less).
  • the concentration of rare earth fluoride particles in the slurry is 5% by mass or more and 40% by mass or less. This concentration is preferably 20% by mass or more, and more preferably 30% by mass or less. If the concentration of the rare earth fluoride particles in the slurry is less than 5% by mass, the spraying efficiency is low, and the oxidation of the rare earth fluoride in the plasma proceeds excessively, which is not preferable. On the other hand, if it exceeds 40 mass%, droplets cannot be stably formed in the plasma, and oxidation of the rare earth fluoride in the plasma is insufficient, which is not preferable.
  • the solvent which is another essential component constituting the slurry one or more selected from water and organic solvents are used.
  • water may be used alone, mixed with an organic solvent, or used alone.
  • an aqueous slurry is preferable, and when it is desired to suppress an increase in the oxygen content of the sprayed film, an organic solvent A slurry is preferred.
  • the organic solvent is preferably selected in consideration of harmfulness and influence on the environment, and examples thereof include alcohols, ethers, esters and ketones.
  • monohydric or dihydric alcohol having 2 to 6 carbon atoms ether having 3 to 8 carbon atoms such as ethyl cellosolve, and glycol having 4 to 8 carbon atoms such as dimethyldiglycol (DMDG).
  • DMDG dimethyldiglycol
  • glycol esters having 4 to 8 carbon atoms such as ether, ethyl cellosolve acetate and butyl cellosolve acetate
  • cyclic ketones having 6 to 9 carbon atoms such as isophorone.
  • the organic solvent is particularly preferably a water-soluble organic solvent that can be mixed with water from the viewpoint of combustibility and safety.
  • the solvent is water
  • the amount of heat is lost to the evaporation of water, and droplets may not be formed.
  • the solvent is an organic solvent
  • the amount of heat is compensated for by combustion. Can do. Therefore, when the plasma applied power during spraying (spraying power) is high, for example, 100 kW or more, it is advantageous to use only water from the viewpoint of safety, and when the spraying power is low, for example, less than 100 kW, particularly less than 50 kW. In this case, it is advantageous to use only an organic solvent from the above viewpoint.
  • the spraying power is 50 kW or more and less than 100 kW, a mixture of water and an organic solvent may be used.
  • the slurry of the present invention may contain an aggregation inhibitor composed of an organic compound, particularly a water-soluble organic compound, in order to prevent aggregation of rare earth fluoride particles.
  • an aggregation inhibitor composed of an organic compound, particularly a water-soluble organic compound, in order to prevent aggregation of rare earth fluoride particles.
  • a surfactant or the like is suitable. Since the rare earth fluoride is charged with a zeta potential of +, an anionic surfactant is preferable, and in particular, a polyethyleneimine anionic surfactant, a polycarboxylic acid type polymer anionic surfactant, or the like is used. Is preferred.
  • the solvent contains water, an anionic surfactant is preferred, but when the solvent is only an organic solvent, a nonionic surfactant can also be used.
  • the concentration of the aggregation inhibitor in the slurry is 3% by mass or less, particularly preferably 1% by mass or less, more preferably 0.01% by mass or
  • the slurry of the present invention may contain one or more fine particle additives selected from rare earth oxides, rare earth hydroxides and rare earth carbonates.
  • the average particle diameter (D50 (volume basis)) of the fine particle additive is preferably 1/10 or less of the average particle diameter (D50 (volume basis)) of the rare earth fluoride particles.
  • the concentration of the fine particle additive in the slurry is preferably 5% by mass or less, particularly preferably 4% by mass or less, more preferably 0.1% by mass or more, and particularly preferably 2% by mass or more.
  • the slurry can be produced by mixing a predetermined amount of rare earth fluoride, a solvent, and, if necessary, other components such as an aggregation inhibitor and a fine particle additive.
  • a resin ball mill and a resin ball for example, 10 mm ⁇ or more
  • the mixing time can be, for example, 1 hour or more and 6 hours or less.
  • a thermal spray member applied to a member for a semiconductor manufacturing apparatus is manufactured by forming a thermal spray film on a base material by suspension plasma spraying in an atmosphere containing a gas containing oxygen using the above-described slurry as a thermal spray material.
  • a rare earth oxyfluoride sprayed film can be formed on the substrate.
  • the base material is selected from stainless steel, aluminum, nickel, chromium, zinc and alloys thereof, alumina, aluminum nitride, silicon nitride, silicon carbide, and quartz glass, and is used for thermal spray members, for example, thermal spraying for semiconductor manufacturing equipment.
  • a suitable substrate is selected as the member.
  • the atmosphere of thermal spraying that is, the atmosphere surrounding the plasma is an atmosphere containing a gas containing oxygen because it is necessary to oxidize the rare earth fluoride.
  • the atmosphere containing a gas containing oxygen include an oxygen gas atmosphere, a mixed gas atmosphere of oxygen gas and a rare gas such as argon gas and / or nitrogen gas, and typically an air atmosphere.
  • the air atmosphere may be a mixed gas atmosphere of air and a rare gas such as argon gas and / or nitrogen gas.
  • the plasma gas for forming plasma is preferably a mixed gas in which at least two kinds selected from argon gas, hydrogen gas, helium gas, and nitrogen gas are combined, and in particular, two kinds of argon gas and nitrogen gas are used. 3 types of mixed gas, argon gas, hydrogen gas and nitrogen gas, or 4 types of mixed gas of argon gas, hydrogen gas, helium gas and nitrogen gas are suitable.
  • a slurry supply device is filled with a slurry containing rare earth fluoride particles, and a plasma spray gun tip is formed by a carrier gas (usually argon gas) using a pipe (powder hose).
  • a slurry containing rare earth fluoride particles is supplied.
  • the piping preferably has an inner diameter of 2 to 6 mm ⁇ .
  • the slurry is sprayed in droplets from the plasma spray gun into the plasma flame, and powder, that is, rare earth fluoride particles are continuously supplied, so that the rare earth fluoride is melted and liquefied, and the liquid flame is formed by the power of the plasma jet.
  • the solvent evaporates in the plasma flame. Therefore, by using the slurry of the present invention, fine particles that could not be obtained by plasma spraying in which the sprayed material is supplied as a solid can be melted and coarse. Since there are no particles, droplets having a uniform size can be obtained. Then, by bringing the liquid frame into contact with the base material, the molten rare earth fluoride adheres to the surface of the base material and solidifies and accumulates.
  • the rare earth fluoride before melting, the molten rare earth fluoride, and the rare earth fluoride deposited on the substrate are oxidized at each stage to become a rare earth oxyfluoride.
  • the rare earth oxyfluoride sprayed film is formed by scanning a predetermined area on the substrate surface while moving the liquefaction frame left and right or up and down along the substrate surface using an automatic machine (robot) or human hands. can do.
  • the thickness of the sprayed film is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, and is preferably 150 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • the spraying conditions such as spraying distance, current value, voltage value, gas type, and gas supply amount, and conventionally known conditions can be applied. What is necessary is just to set suitably according to the use of the slurry to contain, the thermal spraying member obtained, etc.
  • a rare earth oxide layer having a thickness of about 50 to 300 ⁇ m is previously used as an underlayer film, for example, atmospheric plasma sprayed at normal pressure.
  • the rare earth oxyfluoride sprayed film may be formed after the atmospheric suspension plasma spraying.
  • a sprayed film containing a rare earth oxyfluoride in particular, a sprayed film containing a rare earth oxyfluoride as a main phase.
  • a thermal spray member provided with a film can be manufactured.
  • the rare earth acid fluoride includes one or more rare earth acids selected from ReOF, Re 5 O 4 F 7 , Re 6 O 5 F 8 and Re 7 O 6 F 9 (Re represents a rare earth element). It is preferable that fluoride is contained.
  • the sprayed film may contain a material other than the rare earth oxyfluoride.
  • the sprayed film may contain a rare earth oxide and / or a rare earth fluoride in addition to the rare earth oxyfluoride.
  • the sprayed film is particularly preferably a mixture of rare earth oxyfluoride, rare earth oxide and rare earth fluoride.
  • the sprayed film in which the rare earth oxyfluoride is the main phase is a rare earth oxyfluoride with respect to the sum of the maximum peaks of the crystal phases constituting the sprayed film.
  • the sum of the maximum peaks of the assigned peak phase may be 50% or more, particularly 60% or more, and it is particularly preferable that the maximum peak is a peak attributed to the rare earth acid fluoride. Furthermore, in suspension plasma spraying using the slurry of the present invention, a dense sprayed film having a porosity of 1% by volume or less, particularly 0.5% by volume or less can be obtained.
  • Re 7 O 6 F 9 Re represents a rare earth element
  • the element is preferably one or more selected from yttrium (Y), gadolinium (Gd), holmium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu), and the rare earth element is yttrium.
  • Y yttrium
  • Gd gadolinium
  • Ho holmium
  • Er erbium
  • Yb ytterbium
  • Lu lutetium
  • the rare earth element is yttrium.
  • Gadolinium, ytterbium and lutetium, especially rare earth elements are yttrium only or Minutes and yttrium (e.g. 90 mol% or more), it is preferably made of the remainder of ytterbium or lutetium.
  • Examples 1 to 7, Comparative Examples 1 and 2 [Production of rare earth fluoride particles and slurries of Examples 1 to 7] It adjusts with the rare earth element composition ratio of the rare earth fluorides shown in Table 1 or Table 2, and 1.2 kg of acidic ammonium fluoride powder is mixed with 1 kg of rare earth oxide, and in a nitrogen atmosphere at 650 ° C., 2 The rare earth fluoride was obtained by baking for a time. The obtained rare earth fluoride was pulverized with a jet mill and air classified to obtain rare earth fluoride particles having the maximum particle diameter (D100) shown in Table 1 or Table 2. Table 1 or Table 2 shows the particle size distribution (D100, D50) and BET specific surface area of the obtained rare earth fluoride particles.
  • D100 maximum particle diameter
  • Table 1 or Table 2 shows the particle size distribution (D100, D50) and BET specific surface area of the obtained rare earth fluoride particles.
  • the particle size distribution was measured by a laser diffraction method, and the BET specific surface area was measured by a fully automatic specific surface area measuring device Macsorb HM model-1280 manufactured by Mountec Co., Ltd. (hereinafter the same).
  • Table 1 or Table 2 shows the oxygen concentration (oxygen content) and fluorine concentration (fluorine content) of the obtained particles.
  • the oxygen concentration was analyzed by an inert gas melting infrared absorption method using THC600 manufactured by LECO, and the fluorine concentration was analyzed by a dissolved ion chromatography method (the same applies hereinafter).
  • the aggregation inhibitor shown in Table 1 or 2 and the fine particle additive are added to the rare earth fluoride particles obtained, and further shown in Table 1 or Table 2.
  • a solvent was added, and these were put into a nylon pot containing 15 mm ⁇ nylon balls and mixed for about 2 hours.
  • the obtained mixture was passed through a sieve having an opening of 500 mesh (25 ⁇ m) to obtain a rare earth fluoride slurry. .
  • the aggregation inhibitor shown in Table 1 or Table 2 was added to the obtained yttrium oxyfluoride particles, and further the solvent shown in Table 1 or Table 2 was added, and 15 mm ⁇ nylon balls were added to these particles.
  • the mixture was put into a nylon pot and mixed for about 2 hours, and the obtained mixture was passed through a sieve having an opening of 500 mesh (25 ⁇ m) to obtain a slurry of yttrium oxyfluoride.
  • thermal spraying was performed with a thermal sprayer Triplex manufactured by Oerlikon Metco Co.
  • thermal spraying was performed with a thermal spraying machine CITS manufactured by Progressive.
  • the sprayed film was scraped from the obtained sprayed member and analyzed by X-ray diffraction. From the obtained X-ray profiles, the phases constituting each of the obtained sprayed films were identified, and the maximum peak intensity ratio was measured. Further, the oxygen concentration (oxygen content) of the sprayed film was analyzed by an inert gas melting infrared absorption method using THC600 manufactured by LECO, and the fluorine concentration (fluorine content) was analyzed by a solution ion chromatography method. .
  • the porosity was measured by image analysis from the electron micrograph of the cross section of the sprayed film, and the hardness of the surface of the sprayed film was measured with a Vickers hardness meter AVK-C1 manufactured by Akashi Co., Ltd. (currently Mitutoyo Co., Ltd.). The results are shown in Table 5 or Table 6.
  • the masking tape is peeled off, and using a laser microscope, the height difference due to corrosion between the exposed part and the masking part is measured at four points, and the average value is obtained as the height change amount. Corrosion resistance was evaluated. The results are shown in Table 5 or Table 6.
  • Examples 1 to 7 in which a sprayed film was formed by atmospheric plasma suspension spraying using a slurry of rare earth fluoride particles having a maximum particle size (D100) of 12 ⁇ m or less, the rare earth fluoride particles were oxidized during the spraying, and the rare earth acid A fluoride is deposited.
  • a sprayed film having a rare earth oxyfluoride as a main phase was obtained.
  • a sprayed film having a low porosity, a high hardness, and excellent corrosion resistance was obtained. It has been.
  • Examples 1 to 5 using an aqueous slurry the oxygen content of the sprayed film was further increased, and in Examples 6 and 7 using an organic solvent slurry, an increase in the oxygen content was suppressed.

Abstract

酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とするサスペンションプラズマ溶射用スラリー。基材上に、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、安定して形成することができる。この溶射膜を備える溶射部材は、ハロゲン系ガスプラズマに対する耐食性に優れている。

Description

サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材
 本発明は、半導体製造におけるエッチング工程などにおいてハロゲン系ガスプラズマ雰囲気に曝される部材などとして好適な溶射部材、その製造に用いられるサスペンションプラズマ溶射用スラリー、及び該スラリーを用いた希土類酸フッ化物溶射膜の形成方法に関する。
 半導体製造においては、エッチング工程(エッチャー工程)において、腐食性が高いハロゲン系ガスプラズマ雰囲気で処理される。金属アルミニウム又は酸化アルミニウムなどのセラミックスの表面に、酸化イットリウム(特許文献1:特開2002-080954号公報、特許文献2:特開2007-308794号公報)や、フッ化イットリウム(特許文献3:特開2002-115040号公報、特許文献4:特開2004-197181号公報)を大気圧プラズマ溶射することで、これらの膜を成膜した部材が、耐腐食性に優れたものとなることが知られており、エッチング装置(エッチャー)のハロゲン系ガスプラズマに触れる部分には、そのような溶射部材が採用されている。半導体製品の製造工程で用いられるハロゲン系腐食ガスには、フッ素系ガスとしては、SF6、CF4、CHF3、ClF3、HFなどが、また、塩素系ガスとしては、Cl2、BCl3、HClなどが用いられる。
 酸化イットリウムをプラズマ溶射して製造する酸化イットリウム成膜部材は、技術的な問題が少なく、早くから半導体用溶射部材として実用化されている。しかし、酸化イットリウムの成膜部材には、エッチング工程のプロセス初期に、最表面の酸化イットリウムがフッ化物に反応し、エッチング装置内のフッ素ガス濃度が変化して、エッチング工程が安定しないという問題がある。この問題は、プロセスシフトと呼ばれる。
 この問題に対応するため、フッ化イットリウムの成膜部材を採用することが検討されている。しかし、フッ化イットリウムは、酸化イットリウムと比べて、僅かながらハロゲン系ガスプラズマ雰囲気での耐食性が低い傾向にある。また、フッ化イットリウム溶射膜は酸化イットリウム溶射膜と比べて、表面のヒビが多く、パーティクルの発生が多いという問題もある。
 そこで、溶射材料として、酸化イットリウムとフッ化イットリウムの両方の性質をもつオキシフッ化イットリウムが着目され、近年では、オキシフッ化イットリウムを用いる検討がなされ始めている(特許文献5:特開2014-009361号公報)。しかし、オキシフッ化イットリウム成膜部材は、オキシフッ化イットリウムを溶射材料として大気プラズマ溶射する際、酸化によってフッ素が減少し酸素が増加し、組成がずれて、酸化イットリウムを生成してしまうため、溶射膜をオキシフッ化イットリウムとして安定して成膜することが難しい。
 一方、溶射材料を固体のまま供給するプラズマ溶射(以下、単に、プラズマ溶射と呼ぶ)に代わる成膜技術として、サスペンションプラズマ溶射(SPS)が開発された。サスペンションプラズマ溶射は、溶射材料をスラリーで供給する方法であり、プラズマ溶射と比べて、表面のヒビが少ない溶射膜を成膜できるという特徴がある。サスペンションプラズマ溶射による溶射部材は、半導体製造用エッチング装置やCVD装置のハロゲン系ガスプラズマに接触する部材への適用が検討されている。例えば、酸化イットリウムのスラリー材料(特許文献6:特開2010-150617号公報)やオキシフッ化イットリウムのスラリー材料(特許文献7:国際公開第2015/019673号)を用いたサスペンションプラズマ溶射が提案されている。しかし、オキシフッ化イットリウムのスラリー材料を用いた場合も、サスペンションプラズマ溶射であっても、プラズマ溶射同様、溶射膜をオキシフッ化イットリウムとして安定して成膜することは難しい。
特開2002-080954号公報 特開2007-308794号公報 特開2002-115040号公報 特開2004-197181号公報 特開2014-009361号公報 特開2010-150617号公報 国際公開第2015/019673号
 本発明は、上記事情に鑑みてなされたものであり、酸化イットリウム溶射膜やフッ化イットリウム溶射膜と比べて、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物溶射膜を得るため、サスペンションプラズマ溶射で希土類酸フッ化物溶射膜を安定して成膜できるサスペンションプラズマ溶射用スラリー、スラリーを用いた希土類酸フッ化物溶射膜の形成方法、及びスラリーを用いたサスペンションプラズマ溶射により好適に製造される溶射部材を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とするスラリーを溶射材料として、酸素を含有するガスを含む雰囲気下でサスペンションプラズマ溶射により溶射膜を形成することにより、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を安定して形成することができ、基材上に、このようなスラリーを用いて形成した溶射膜を備える溶射部材が、希土類酸フッ化物を含み、ハロゲン系ガスプラズマに対する耐食性に優れたものであることを見出し、本発明をなすに至った。
 従って、本発明は、下記のサスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材を提供する。
[1] 酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とすることを特徴とするサスペンションプラズマ溶射用スラリー。
[2] 更に、有機化合物からなる凝集防止剤を3質量%以下含有することを特徴とする[1]記載のサスペンションプラズマ溶射用スラリー。
[3] 更に、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を5質量%以下含有することを特徴とする[1]又は[2]記載のサスペンションプラズマ溶射用スラリー。
[4] 希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする[1]乃至[3]のいずれかに記載のサスペンションプラズマ溶射用スラリー。
[5] 上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする[1]乃至[4]のいずれかに記載のサスペンションプラズマ溶射用スラリー。
[6] 基材上に、[1]乃至[4]のいずれかに記載のスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成する工程を含むことを特徴とする希土類酸フッ化物溶射膜の形成方法。
[7] 上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする[6]記載の形成方法。
[8] 上記溶射膜が、希土類酸フッ化物を主相として含むことを特徴とする[6]又は[7]記載の形成方法。
[9] 上記希土類酸フッ化物が、ReOF、Re547、Re658及びRe769(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする[6]乃至[8]のいずれかに記載の形成方法。
[10] 上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする[6]乃至[9]のいずれかに記載の形成方法。
[11] 溶射膜が形成される基材と、希土類酸フッ化物を主相として含む溶射膜とを備えることを特徴とする溶射部材。
[12] 希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする[11]記載の溶射部材。
[13] 上記希土類酸フッ化物が、ReOF、Re547、Re658及びRe769(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする[11]又は[12]記載の溶射部材。
[14] 上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする[11]乃至[13]のいずれかに記載の溶射部材。
[15] 上記溶射膜の厚さが、10μm以上150μm以下であることを特徴とする[11]乃至[14]のいずれかに記載の溶射部材。
[16] 上記溶射膜の気孔率が1%以下であることを特徴とする[11]乃至[15]のいずれかに記載の溶射部材。
 本発明のサスペンションプラズマ溶射用スラリーを用いることにより、基材上に、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、安定して形成することができる。この溶射膜を備える溶射部材は、ハロゲン系ガスプラズマに対する耐食性に優れている。
 以下、本発明について、更に詳細に説明する。
 本発明のスラリーは、酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射、特に、大気雰囲気下でプラズマを形成する大気サスペンションプラズマ溶射に好適に用いられる。本発明においては、プラズマが形成される周囲の雰囲気ガスが、大気の場合を、大気サスペンションプラズマ溶射と呼ぶ。また、プラズマが形成される場の圧力は、大気圧下などの常圧の他、加圧下、減圧下であってもよい。
 本発明のサスペンションプラズマ溶射用スラリーは、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、希土類酸フッ化物を含む溶射膜、特に希土類酸フッ化物を主相とする溶射膜を、安定して形成することができるものである。希土類フッ化物を、大気雰囲気下でプラズマ溶射すると、溶射膜の酸素濃度(酸素含有率)が増える一方、フッ素濃度(フッ素含有率)は減少する。このような希土類フッ化物の酸化により、希土類フッ化物から希土類酸フッ化物を含む溶射膜を形成することができるが、得られる溶射膜は、酸化の程度が低すぎる場合は、希土類フッ化物の特性が優位となってしまう一方、酸化の程度が高すぎる場合は、希土類酸化物の特性が優位となってしまう。
 本発明では、上述した希土類フッ化物の酸化によって、希土類酸フッ化物を含む溶射膜を得るために、サスペンションプラズマ溶射において供給するスラリーを、最大粒子径(D100(体積基準))が12μm以下の希土類フッ化物粒子を溶媒に分散させたスラリーとする。溶射材料を固体のまま供給するプラズマ溶射では、一般に、平均粒径(D50)が20~50μmの粒子をプラズマ炎に供給して粒子を溶融させて、溶射膜を形成する。プラズマ溶射の場合は、粒径が小さすぎると、粒子が飛散してプラズマ炎に入らず、粒径が大きすぎると、プラズマ炎から落下し、溶融しないため、このような粒径のものが用いられる。
 一方、本発明においては、大気サスペンションプラズマ溶射などの、酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射において、溶射材料の粒子又はそれが溶融した液滴を酸化させるが、酸化は粒子又は液滴の表面から進行するため、希土類フッ化物を酸化させるためには、上述したプラズマ溶射で用いられるような大粒子では、プラズマ内での滞留時間を長くする必要が生じる。しかし、滞留時間を長くすると、プラズマ炎からの落下につながり、粒子又は液滴同士の結合も進行するため、プラズマ炎から落下する確率が高くなる。そのため、大粒径の粒子では、酸化の程度と溶射状態とを同時に制御することが困難である。
 これに対して、本発明では、上述した大気雰囲気下における酸化を考慮し、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を用いる。このような比較的小粒径の希土類フッ化物粒子を、水及び有機溶媒から選ばれる1種又は2種以上を分散媒とするスラリーとして、酸素を含有するガスを含む雰囲気下、特に大気雰囲気下でサスペンションプラズマ溶射することにより、酸化の程度を、希土類酸フッ化物の特性が効果的に発揮される酸素含有率、例えば、原料希土類フッ化物粒子の酸素含有率(質量%)と比較して、プラズマを通過することによって燃焼したり、揮発したりせずに、原料希土類フッ化物と共に溶射膜を形成する無機成分(例えば、後述する微粒子添加剤など)を除いた原料希土類フッ化物ベース(以下、単に原料希土類フッ化物ベースという)で、酸素含有率が1質量%(+1ポイント)以上、特に2質量%(+2ポイント)以上で、5質量%(+5ポイント)以下、特に4質量%(+4ポイント)以下、とりわけ3質量%(+3ポイント)以下増加した溶射膜を、制御性よく形成することができる。
 溶媒が水を含む場合、溶媒である水がフッ化物の酸化に寄与するので、例えば、スラリー中の希土類フッ化物粒子の酸素含有率が2質量%であれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で3質量%以上、特に4質量%以上で、7質量%以下、特に6質量%以下、とりわけ5質量%以下とすることができる。また、スラリー中の希土類フッ化物粒子が、実質的に酸素を含有していないものであれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で1質量%以上、特に2質量%以上で、5質量%以下、特に4質量%以下、とりわけ3質量%以下とすることができる。溶媒が有機溶媒のみの場合、有機溶媒は、構成元素中の酸素の割合が水と比べて低いので、酸化の程度が低くなり、例えば、スラリー中の希土類フッ化物粒子の酸素含有率が0.5質量%であれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で0.1質量%以上、特に0.3質量%以上で、3質量%以下、特に2質量%以下、とりわけ1質量%以下とすることができる。一方、溶射膜のフッ素含有率は、例えば、原料希土類フッ化物がイットリウムフッ化物であり、スラリーが後述する微粒子添加剤を含まない場合、通常、31.6質量%以上、特に33.5質量%以上で、38質量%以下、特に37質量%以下、とりわけ35質量%以下である。
 本発明のスラリーに含まれる希土類フッ化物粒子の最大粒子径(D100)は、10μm以下、特に8μm以下であることが好ましい。最大粒子径(D100)の下限は、通常6μm以上である。また、希土類フッ化物粒子の平均粒径(D50(体積基準))は、1μm以上で、5μm以下、特に3μm以下が好適である。特に、溶射時のプラズマ印加電力(溶射電力)が120kW以下の場合は、希土類フッ化物粒子の平均粒径(D50)を、1μm以上3μm以下とすることがより好ましい。更に、希土類フッ化物粒子の比表面積(BET表面積)は、5m2/g以下、特に3m2/g以下、とりわけ2m2/g以下が好ましい。希土類フッ化物粒子の比表面積(BET表面積)の下限は、特に限定されるものではないが、通常0.5m2/g以上、好ましくは1m2/g以上、より好ましくは1.5m2/g以上である。
 希土類フッ化物は、従来公知の方法で製造されたものを用いることができ、例えば、希土類酸化物粉末と、希土類酸化物に対して当量で1.1倍以上の酸性フッ化アンモニウム粉末とを混合し、窒素ガス雰囲気などの酸素のない雰囲気下で、300℃以上800℃以下で、1時間以上10時間以下焼成することにより製造することができる。希土類フッ化物は、市販品であってもよい。これらは必要に応じて、ジェットミルなどで粉砕し、空気分級などで分級して、所定の粒径の粒子として用いることができる。
 原料である希土類フッ化物は、少量であれば酸素の含有は許容される。希土類フッ化物が酸素を含有している場合、その一部が、希土類酸化物や希土類酸フッ化物などで存在していることが考えられるが、本発明で用いられる原料希土類フッ化物のほとんど、例えば90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上、更に好ましくは99質量%以上が、希土類三フッ化物で構成されている点において、原料として希土類酸化物や希土類酸フッ化物を用いる場合とは異なる。原料希土類フッ化物は、実質的に全て(例えば99.9質量%以上)が希土類三フッ化物で構成されていてもよい。希土類フッ化物の酸素含有率は、10質量%以下、特に5質量%以下のものでも使用可能であるが、希土類フッ化物の酸素含有率は、2質量%以下であることが好ましく、特に1質量%以下であることが好ましく、実質的に酸素が含有されていない(例えば、酸素含有率が0.1質量%以下)であってもよい。
 スラリー中の希土類フッ化物粒子の濃度は、5質量%以上40質量%以下とする。この濃度は、20質量%以上が好ましく、また、30質量%以下が好ましい。スラリー中の希土類フッ化物粒子の濃度が5質量%未満では、溶射効率が低く、また、プラズマ中での希土類フッ化物の酸化が進行しすぎるため好ましくない。一方、40質量%を超えると、プラズマ中で安定して液滴を形成することができず、また、プラズマ中での希土類フッ化物の酸化が不足するため好ましくない。
 スラリーを構成する他の必須成分である溶媒としては、水及び有機溶媒から選ばれる1種又は2種以上を用いる。溶媒は、水は単独で用いても、有機溶媒と混合して用いても、有機溶媒単独で用いてもよい。スラリー中の原料希土類フッ化物粒子の酸素含有率に対して、溶射膜の酸素含有率をより高めたいときには、水系のスラリーがよく、溶射膜の酸素含有率の増大を抑えたいときには、有機溶媒のスラリーが好ましい。有機溶媒としては、有害性や環境への影響を考慮して選択することが好ましく、例えば、アルコール、エーテル、エステル、ケトンなどが挙げられる。より具体的には、炭素数が2~6の一価又は二価のアルコール、エチルセロソルブ等の炭素数が3~8のエーテル、ジメチルジグリコール(DMDG)等の炭素数が4~8のグリコールエーテル、エチルセロソルブアセテート、ブチルセロソルブアセテート等の炭素数が4~8のグリコールエステル、イソホロン等の炭素数が6~9の環状ケトンなどが好ましい。有機溶媒は、燃焼性や安全性の観点から、水と混合できる水溶性有機溶媒が特に好適である。
 溶媒が水の場合は、プラズマが低温であると、水の蒸発に熱量が奪われてしまい、液滴を形成できない場合があるが、溶媒が有機溶媒であれば、その燃焼により熱量を補うことができる。そのため溶射時のプラズマ印加電力(溶射電力)が高い場合、例えば100kW以上の場合は、安全性の観点から水のみを用いることが有利であり、溶射電力が低い場合、例えば100kW未満、特に50kW未満の場合は、上記観点から有機溶媒のみを用いることが有利である。また、溶射電力が50kW以上100kW未満の場合は、水と有機溶媒との混合物を用いてもよい。
 本発明のスラリーには、希土類フッ化物粒子の凝集を防ぐため、有機化合物、特に水溶性有機化合物からなる凝集防止剤を含んでいてもよい。凝集防止剤としては、界面活性剤などが好適である。希土類フッ化物は、ゼータ電位が+に帯電しているので、アニオン界面活性剤が好ましく、特に、ポリエチレンイミン系のアニオン界面活性剤、ポリカルボン酸型高分子系のアニオン界面活性剤などを用いることが好ましい。溶媒が水を含むものの場合は、アニオン界面活性剤が好ましいが、溶媒が有機溶媒のみの場合は、ノニオン界面活性剤を用いることもできる。スラリー中の凝集防止剤の濃度は、3質量%以下、特に1質量%以下が好ましく、0.01質量%以上、特に0.03質量%以上がより好ましい。
 本発明のスラリーは、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を含んでいてもよい。微粒子添加剤を添加することでも、希土類フッ化物粒子の凝集防止や沈降防止の効果が得られる。微粒子添加剤の平均粒径(D50(体積基準))は、希土類フッ化物粒子の平均粒径(D50(体積基準))の1/10以下が好ましい。スラリー中の微粒子添加剤の濃度は、5質量%以下、特に4質量%以下が好ましく、0.1質量%以上、特に2質量%以上がより好ましい。
 スラリーは、所定量の希土類フッ化物と、溶媒と、必要に応じて凝集防止剤、微粒子添加剤などの他の成分を混合することにより、製造することができる。特に、希土類フッ化物や微粒子添加剤などの固体成分を過度に粉砕しないようにするためには、例えば、樹脂製ボールミルと樹脂製ボール(例えば10mmφ以上)とを用いることが好ましい。この場合、混合時間は、例えば1時間以上6時間以下とすることができる。更に、凝集した粒子の解砕と、混入物の除去のためには、混合後のスラリーを、500メッシュ(目開き25μm)以下の篩に通すことが有効である。
 半導体製造装置用部材などに適用される溶射部材は、基材上に、上述したスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成することにより製造することができ、このような方法により、基材上に、希土類酸フッ化物溶射膜を形成することができる。
 基材としては、ステンレス、アルミニウム、ニッケル、クロム、亜鉛及びそれらの合金、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素及び石英ガラスなどから選ばれ、溶射部材の用途、例えば、半導体製造装置用の溶射部材として好適な基材が選択される。溶射の雰囲気、即ち、プラズマを取り囲む雰囲気は、希土類フッ化物を酸化させる必要があるため、酸素を含有するガスを含む雰囲気とする。酸素を含有するガスを含む雰囲気としては、酸素ガス雰囲気、酸素ガスと、アルゴンガスなどの希ガス及び/又は窒素ガスとの混合ガス雰囲気などが挙げられ、典型的には、大気雰囲気が挙げられる。また、大気雰囲気は、大気と、アルゴンガスなどの希ガス及び/又は窒素ガスとの混合ガス雰囲気であってもよい。
 プラズマを形成するためのプラズマガスは、アルゴンガス、水素ガス、ヘリウムガス、窒素ガスから選択される少なくとも2種類以上を組み合わせた混合ガスであることが好ましく、特に、アルゴンガス及び窒素ガスの2種の混合ガス、アルゴンガス、水素ガス及び窒素ガスの3種の混合ガス、又はアルゴンガス、水素ガス、ヘリウムガス及び窒素ガスの4種の混合ガスが好適である。
 溶射操作として具体的には、例えば、まず、スラリー供給装置に希土類フッ化物粒子を含むスラリーを充填し、配管(パウダーホース)を用いてキャリアガス(通常、アルゴンガス)により、プラズマ溶射ガン先端部まで希土類フッ化物粒子を含むスラリーを供給する。配管は内径が2~6mmφのものが好ましい。この配管のいずれか、例えば、配管へのスラリー供給口には、500メッシュ(目開き25μm)以下の篩を設けることで、配管やプラズマ溶射ガンでの詰まりを防止することができる。この篩の目開きは、スラリー中の希土類フッ化物粒子の最大粒子径(D100)の2倍程度の大きさが、スラリーを安定して供給できるため好ましい。
 プラズマ溶射ガンからプラズマ炎の中にスラリーを液滴で噴霧して、パウダー、即ち、希土類フッ化物粒子を連続供給することで、希土類フッ化物が溶けて液化し、プラズマジェットの力で液状フレーム化する。サスペンションプラズマ溶射では、プラズマ炎内で溶媒が蒸発するため、本発明のスラリーを用いることにより、溶射材料を固体のまま供給するプラズマ溶射ではできなかった細かい粒子を溶融させることができ、また、粗い粒子がないので、大きさが一定に揃った液滴とすることができる。そして、基材に液状フレームを接触させることにより、溶融した希土類フッ化物が基材表面に付着し、固化して堆積する。この際、溶融前の希土類フッ化物、溶融した希土類フッ化物、及び基材上に堆積した希土類フッ化物が、各段階で酸化して、希土類酸フッ化物となる。希土類酸フッ化物溶射膜は、自動機械(ロボット)や人間の手を使って、液化フレームを基材表面に沿って左右又は上下に動かしながら、基板表面上の所定の範囲を走査することによって形成することができる。溶射膜の厚さは、10μm以上、特に30μm以上であることが好ましく、150μm以下、特に100μm以下であることが好ましい。
 サスペンションプラズマ溶射における、溶射距離、電流値、電圧値、ガス種類、ガス供給量などの溶射条件に、特に制限はなく、従来公知の条件を適用することができ、基材、希土類フッ化物粒子を含むスラリー、得られる溶射部材の用途などに応じて、適宜設定すればよい。また、基材上に希土類酸フッ化物溶射膜を形成する前に、予め、例えば、厚さが50~300μm程度の希土類酸化物の層を、下地膜として、例えば常圧での、大気プラズマ溶射、大気サスペンションプラズマ溶射などで形成した後、希土類酸フッ化物溶射膜を形成してもよい。
 本発明のスラリーを用いたサスペンションプラズマ溶射により、希土類酸フッ化物を含む溶射膜、特に、希土類酸フッ化物を主相として含む溶射膜を形成することができ、基材上に、このような溶射膜を備える溶射部材を製造することができる。この希土類酸フッ化物には、ReOF、Re547、Re658及びRe769(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物が含まれていることが好ましい。溶射膜には、希土類酸フッ化物以外が含まれていてもよく、例えば、希土類酸フッ化物以外に、希土類酸化物及び/又は希土類フッ化物を含んでいてもよい。この場合、溶射膜は、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることが特に好ましい。希土類酸フッ化物が主相である溶射膜は、例えば、溶射膜のX線回折(XRD)において、溶射膜を構成する結晶相の各相の最大ピークの和に対して、希土類酸フッ化物に帰属するピーク相の最大ピークの和が50%以上、特に60%以上であるものとすることができ、特に、最大ピークが希土類酸フッ化物に帰属するピークであることが好ましい。更に、本発明のスラリーを用いたサスペンションプラズマ溶射では、気孔率が1体積%以下、特に0.5体積%以下の緻密な溶射膜を得ることができる。
 本発明において、スラリーに含まれる希土類酸フッ化物、希土類酸化物、希土類水酸化物、希土類炭酸塩などにおける希土類元素、及び溶射膜を構成するReOF、Re547、Re658、Re769(Reは希土類元素を表す)などの希土類酸フッ化物、更には、溶射膜に希土類酸フッ化物と共に含まれていてもよい希土類酸化物、希土類フッ化物などにおける希土類元素としては、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上が好ましく、希土類元素として、イットリウム、ガドリニウム、イッテルビウム及びルテチウムのいずれかを含むこと、特に、希土類元素が、イットリウムのみ、又は主成分(例えば90モル%以上)であるイットリウムと、残部のイッテルビウム又はルテチウムとで構成されていることが好ましい。
 以下に、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例1~7、比較例1、2]
 〔実施例1~7の希土類フッ化物粒子及びスラリーの製造〕
 表1又は表2に示される希土類フッ化物の希土類元素の組成比で調整し、希土類酸化物1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、2時間焼成して、希土類フッ化物を得た。得られた希土類フッ化物は、ジェットミルで粉砕し、空気分級して、表1又は表2に示される最大粒子径(D100)の希土類フッ化物粒子とした。得られた希土類フッ化物粒子の粒度分布(D100、D50)及びBET比表面積を表1又は表2に示す。粒度分布はレーザー回折法、BET比表面積は、(株)マウンテック製、全自動比表面積測定装置 Macsorb HM model-1280で、各々測定した(以下同じ)。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。酸素濃度は、LECO社製、THC600を用いて不活性ガス融解赤外吸収法により、フッ素濃度は、溶解イオンクロマトグラフィ法により、各々分析した(以下同じ)。
 次に、得られた希土類フッ化物粒子に、表1又は表2に示される凝集防止剤と、微粒子添加剤(実施例3~5のみ)とを加え、更に、表1又は表2に示される溶媒を加え、これらを15mmφのナイロンボールが入ったナイロンポットに入れて約2時間混合し、得られた混合物を目開き500メッシュ(25μm)の篩に通して、希土類フッ化物のスラリーを得た。
 〔比較例1の酸フッ化イットリウム粒子及びスラリーの製造〕
 酸化イットリウム1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、4時間焼成して、酸フッ化イットリウムを得た。得られた酸フッ化イットリウムは、ジェットミルで粉砕し、空気分級して、表1又は表2に示される最大粒子径(D100)の酸フッ化イットリウム粒子とした。得られた酸フッ化イットリウム粒子の粒度分布(D100、D50)を表1又は表2に示す。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。
 次に、得られた酸フッ化イットリウム粒子に、表1又は表2に示される凝集防止剤を加え、更に、表1又は表2に示される溶媒を加え、これらを15mmφのナイロンボールが入ったナイロンポットに入れて約2時間混合し、得られた混合物を目開き500メッシュ(25μm)の篩に通して、酸フッ化イットリウムのスラリーを得た。
 〔比較例2のフッ化イットリウム粒子の製造〕
 酸化イットリウム1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、2時間で焼成して、フッ化イットリウムを得た。得られたフッ化イットリウムは、ジェットミルで粉砕し、バインダーとしてポリビニルアルコール(PVA)を添加してスラリーとし、スプレードライヤーを用いて造粒した後、窒素雰囲気中、700℃で、4時間焼成して、表1又は表2に示される最大粒子径(D100)のフッ化イットリウム粒子とした。得られたフッ化イットリウム粒子の粒度分布(D100、D50)を表1又は表2に示す。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 〔溶射膜の形成及び溶射部材の製造〕
 実施例1~7及び比較例1の各々のスラリー又は比較例2の粒子を用い、予め常圧下の大気プラズマ溶射により、表面上に厚さ150μmの酸化イットリウムの下地膜を形成したアルミニウム基材に、表3又は表4に示される条件で、大気プラズマサスペンション溶射(実施例1~7及び比較例1)又は大気プラズマ溶射(比較例2)により、表3又は4に示される膜厚の溶射膜を形成した。実施例1、4及び5並びに比較例2は、エリコンメテコ社の溶射機Triplexにて、実施例2、3、6及び7並びに比較例1は、プログレッシブ社の溶射機CITSにて溶射を実施した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 〔溶射膜の物性の評価〕
 得られた溶射部材から溶射膜を削り取り、X線回折法により分析した。得られたX線プロファイルから、得られた各々の溶射膜を構成する相を同定し、それらの最大ピーク強度比を測定した。また、溶射膜の酸素濃度(酸素含有率)は、LECO社製、THC600を用いて不活性ガス融解赤外吸収法により、フッ素濃度(フッ素含有率)は、溶解イオンクロマトグラフィ法により、各々分析した。更に、溶射膜の断面の電子顕微鏡写真から画像解析で気孔率を、溶射膜表面の硬度を、(株)アカシ(現(株)ミツトヨ)製ビッカース硬度計AVK-C1により、各々測定した。結果を表5又は表6に示す。
 〔溶射膜の耐食性の評価〕
 得られた溶射部材の溶射膜の表面上に、マスキングテープでマスキングした部分と、マスキングテープでマスキングしていない露出部分を形成し、リアクティブイオンプラズマ試験装置にセットして、周波数13.56MHz、プラズマ出力1,000W、エッチングガスCF4(80vol%)+O2(20vol%)、流量50sccm、ガス圧50mtorr(6.7Pa)、12時間の条件で、プラズマ耐食性試験を行った。試験後、マスキングテープを剥がし、レーザー顕微鏡を使用して、露出部分とマスキング部分との間の、腐食による高さの差を4点測定して、平均値を高さ変化量として求めることにより、耐食性を評価した。結果を表5又は表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 最大粒子径(D100)が12μm以下の希土類フッ化物粒子のスラリーを用いて大気プラズマサスペンション溶射で溶射膜を形成した実施例1~7では、溶射中に、希土類フッ化物粒子が酸化され、希土類酸フッ化物が成膜される。実施例1~7では、希土類酸フッ化物を主相とする溶射膜が得られており、その結果、気孔率が低い緻密な膜であり、高硬度で、かつ耐食性に優れた溶射膜が得られている。また、水系のスラリーを用いた実施例1~5では溶射膜の酸素含有率がより高まり、有機溶媒のスラリーを用いた実施例6、7では、酸素含有率の増大が抑えられている。

Claims (16)

  1.  酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とすることを特徴とするサスペンションプラズマ溶射用スラリー。
  2.  更に、有機化合物からなる凝集防止剤を3質量%以下含有することを特徴とする請求項1記載のサスペンションプラズマ溶射用スラリー。
  3.  更に、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を5質量%以下含有することを特徴とする請求項1又は2記載のサスペンションプラズマ溶射用スラリー。
  4.  希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする請求項1乃至3のいずれか1項記載のサスペンションプラズマ溶射用スラリー。
  5.  上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする請求項1乃至4のいずれか1項記載のサスペンションプラズマ溶射用スラリー。
  6.  基材上に、請求項1乃至4のいずれか1項記載のスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成する工程を含むことを特徴とする希土類酸フッ化物溶射膜の形成方法。
  7.  上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする請求項6記載の形成方法。
  8.  上記溶射膜が、希土類酸フッ化物を主相として含むことを特徴とする請求項6又は7記載の形成方法。
  9.  上記希土類酸フッ化物が、ReOF、Re547、Re658及びRe769(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする請求項6乃至8のいずれか1項記載の形成方法。
  10.  上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする請求項6乃至9のいずれか1項記載の形成方法。
  11.  溶射膜が形成される基材と、希土類酸フッ化物を主相として含む溶射膜とを備えることを特徴とする溶射部材。
  12.  希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする請求項11記載の溶射部材。
  13.  上記希土類酸フッ化物が、ReOF、Re547、Re658及びRe769(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする請求項11又は12記載の溶射部材。
  14.  上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする請求項11乃至13のいずれか1項記載の溶射部材。
  15.  上記溶射膜の厚さが、10μm以上150μm以下であることを特徴とする請求項11乃至14のいずれか1項記載の溶射部材。
  16.  上記溶射膜の気孔率が1%以下であることを特徴とする請求項11乃至15のいずれか1項記載の溶射部材。
PCT/JP2017/025117 2016-07-14 2017-07-10 サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材 WO2018012454A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/316,158 US20210277509A1 (en) 2016-07-14 2017-07-10 Slurry for suspension plasma spraying, method for forming rare earth acid fluoride sprayed film, and spraying member
JP2017551340A JP6315151B1 (ja) 2016-07-14 2017-07-10 サスペンションプラズマ溶射用スラリー、及び希土類酸フッ化物溶射膜の形成方法
CN201780043494.3A CN109477199B (zh) 2016-07-14 2017-07-10 悬浮等离子体热喷涂用浆料、稀土类氧氟化物热喷涂膜的形成方法和热喷涂构件
KR1020227036583A KR102656926B1 (ko) 2016-07-14 2017-07-10 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
KR1020197003930A KR102459191B1 (ko) 2016-07-14 2017-07-10 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
US18/384,076 US20240051839A1 (en) 2016-07-14 2023-10-26 Sprayed article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-139090 2016-07-14
JP2016139090 2016-07-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,158 A-371-Of-International US20210277509A1 (en) 2016-07-14 2017-07-10 Slurry for suspension plasma spraying, method for forming rare earth acid fluoride sprayed film, and spraying member
US18/384,076 Division US20240051839A1 (en) 2016-07-14 2023-10-26 Sprayed article

Publications (1)

Publication Number Publication Date
WO2018012454A1 true WO2018012454A1 (ja) 2018-01-18

Family

ID=60952506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025117 WO2018012454A1 (ja) 2016-07-14 2017-07-10 サスペンションプラズマ溶射用スラリー、希土類酸フッ化物溶射膜の形成方法及び溶射部材

Country Status (6)

Country Link
US (2) US20210277509A1 (ja)
JP (2) JP6315151B1 (ja)
KR (1) KR102459191B1 (ja)
CN (1) CN109477199B (ja)
TW (2) TWI735618B (ja)
WO (1) WO2018012454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499486A (zh) * 2018-05-18 2019-11-26 信越化学工业株式会社 喷涂材料、喷涂部件和制造方法
KR20230121818A (ko) 2020-12-15 2023-08-21 신에쓰 가가꾸 고교 가부시끼가이샤 플라스마 용사용 슬러리, 용사막의 제조 방법, 산화알루미늄용사막 및 용사 부재

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156203B2 (ja) * 2018-08-10 2022-10-19 信越化学工業株式会社 サスペンションプラズマ溶射用スラリー及び溶射皮膜の形成方法
JP6939853B2 (ja) * 2018-08-15 2021-09-22 信越化学工業株式会社 溶射皮膜、溶射皮膜の製造方法、及び溶射部材
KR20220116489A (ko) * 2019-12-18 2022-08-23 신에쓰 가가꾸 고교 가부시끼가이샤 불화이트륨계 용사 피막, 용사 부재, 및 불화이트륨계 용사 피막의 제조 방법
KR102284838B1 (ko) * 2020-05-06 2021-08-03 (주)코미코 서스펜션 플라즈마 용사용 슬러리 조성물, 그 제조방법 및 서스펜션 플라즈마 용사 코팅막

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019673A1 (ja) * 2013-08-08 2015-02-12 日本イットリウム株式会社 溶射用スラリー
JP2016089241A (ja) * 2014-11-08 2016-05-23 リバストン工業株式会社 皮膜付き基材、その製造方法、その皮膜付き基材を含む半導体製造装置部材

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456939B1 (en) * 1990-05-18 1995-02-22 Japan Gore-Tex, Inc. Hydrophilic porous fluoropolymer membrane
JP3672833B2 (ja) 2000-06-29 2005-07-20 信越化学工業株式会社 溶射粉及び溶射被膜
JP3523222B2 (ja) 2000-07-31 2004-04-26 信越化学工業株式会社 溶射材料およびその製造方法
US6716770B2 (en) * 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
JP3894313B2 (ja) 2002-12-19 2007-03-22 信越化学工業株式会社 フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
TWI324176B (en) * 2004-09-03 2010-05-01 Showa Denko Kk Mixed rare earth oxide, mixed rare earth fluoride, cerium-based abrasive using the materials and production processes thereof
JP5324029B2 (ja) * 2006-03-20 2013-10-23 東京エレクトロン株式会社 半導体加工装置用セラミック被覆部材
JP4905697B2 (ja) 2006-04-20 2012-03-28 信越化学工業株式会社 導電性耐プラズマ部材
US20090214825A1 (en) * 2008-02-26 2009-08-27 Applied Materials, Inc. Ceramic coating comprising yttrium which is resistant to a reducing plasma
US8206829B2 (en) * 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
JP5669353B2 (ja) 2008-12-25 2015-02-12 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜の形成方法、及び溶射皮膜
JP5861612B2 (ja) * 2011-11-10 2016-02-16 信越化学工業株式会社 希土類元素フッ化物粉末溶射材料及び希土類元素フッ化物溶射部材
CN104105820B (zh) * 2012-02-09 2016-11-23 东华隆株式会社 氟化物喷涂覆膜的形成方法及氟化物喷涂覆膜覆盖部件
KR20150006091A (ko) * 2012-02-29 2015-01-15 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. 금속 전구체 나노입자들을 함유한 잉크
JP5396672B2 (ja) 2012-06-27 2014-01-22 日本イットリウム株式会社 溶射材料及びその製造方法
JP5636573B2 (ja) * 2013-01-18 2014-12-10 日本イットリウム株式会社 溶射材料
US11066734B2 (en) * 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019673A1 (ja) * 2013-08-08 2015-02-12 日本イットリウム株式会社 溶射用スラリー
JP2016089241A (ja) * 2014-11-08 2016-05-23 リバストン工業株式会社 皮膜付き基材、その製造方法、その皮膜付き基材を含む半導体製造装置部材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499486A (zh) * 2018-05-18 2019-11-26 信越化学工业株式会社 喷涂材料、喷涂部件和制造方法
JP2019203192A (ja) * 2018-05-18 2019-11-28 信越化学工業株式会社 溶射材料、溶射部材及びその製造方法
JP7147675B2 (ja) 2018-05-18 2022-10-05 信越化学工業株式会社 溶射材料、及び溶射部材の製造方法
KR20230121818A (ko) 2020-12-15 2023-08-21 신에쓰 가가꾸 고교 가부시끼가이샤 플라스마 용사용 슬러리, 용사막의 제조 방법, 산화알루미늄용사막 및 용사 부재

Also Published As

Publication number Publication date
JP6315151B1 (ja) 2018-04-25
TW201815680A (zh) 2018-05-01
JP2018080401A (ja) 2018-05-24
JPWO2018012454A1 (ja) 2018-07-12
US20210277509A1 (en) 2021-09-09
KR20190027880A (ko) 2019-03-15
CN109477199A (zh) 2019-03-15
TWI735618B (zh) 2021-08-11
TW202128565A (zh) 2021-08-01
CN109477199B (zh) 2021-07-06
TWI759124B (zh) 2022-03-21
JP6347310B2 (ja) 2018-06-27
KR20220148320A (ko) 2022-11-04
KR102459191B1 (ko) 2022-10-26
US20240051839A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6347310B2 (ja) 溶射部材
JP5939084B2 (ja) 希土類元素オキシフッ化物粉末溶射材料の製造方法
WO2016129457A1 (ja) 成膜用粉末及び成膜用材料
JP7147675B2 (ja) 溶射材料、及び溶射部材の製造方法
JP7367824B2 (ja) 希土類酸化物粒子
JP6650385B2 (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2006152408A (ja) 溶射用粉末、溶射方法及び溶射皮膜
JP6668024B2 (ja) 溶射材料
JP6706894B2 (ja) 溶射材料
JP6281507B2 (ja) 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材の製造方法
TWI733897B (zh) 熔射用材料
KR102656926B1 (ko) 서스펜션 플라스마 용사용 슬러리, 희토류산 불화물 용사막의 형성 방법 및 용사 부재
JP6620793B2 (ja) 希土類元素オキシフッ化物粉末溶射材料、及び希土類元素オキシフッ化物溶射部材の製造方法
JP2020056115A (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
TWI834664B (zh) 噴塗材料、噴塗構件及製造方法
US20230062876A1 (en) Method of manufacturing high-density yf3 coating layer by using hvof, and high-density yf3 coating layer manufactured through same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017551340

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003930

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17827581

Country of ref document: EP

Kind code of ref document: A1