WO2013117017A1 - 具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法 - Google Patents

具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法 Download PDF

Info

Publication number
WO2013117017A1
WO2013117017A1 PCT/CN2012/071301 CN2012071301W WO2013117017A1 WO 2013117017 A1 WO2013117017 A1 WO 2013117017A1 CN 2012071301 W CN2012071301 W CN 2012071301W WO 2013117017 A1 WO2013117017 A1 WO 2013117017A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceo
mno
catalytic
composite catalyst
reaction
Prior art date
Application number
PCT/CN2012/071301
Other languages
English (en)
French (fr)
Inventor
李远志
侯静涛
任璐
代洋
胡胜鹰
赵修建
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2013117017A1 publication Critical patent/WO2013117017A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the invention relates to a preparation method of a CeO 2 -MnO 2 composite catalyst, which can efficiently purify volatile organic pollutants such as benzene, toluene and acetone under the synergistic effect of photothermal treatment.
  • VOCs Volatile organic pollutants
  • the treatment technologies of VOCs include adsorption, catalytic oxidation, and photocatalysis. Among them, the adsorption technology using activated carbon or molecular sieve as adsorbent and the catalytic oxidation technology using supported noble metal as catalyst are the most reported.
  • 6,458,741 uses a dip decomposition method, a precipitation deposition method and a coprecipitation method to prepare a ruthenium-containing binary or multi-component composite oxide, and supports precious metals Pt and Pd on these composite oxides, and the obtained composite catalyst has better properties.
  • Chinese patent CN200510093318.2 catalyzed by supported Mn-Ce composite oxides by impregnation method, the catalyst has good catalytic oxidation activity for VOCs. Tang et al.
  • CeO 2 not only has good catalytic oxidation performance, but also has a certain photocatalytic activity as a broadband n-type semiconductor. Recently, Li Yuanzhi et al. found that nano-mesoporous CeO 2 has excellent photocatalytic coupling performance of oxygen ion conduction coupling, and exhibits high-efficiency low-temperature catalytic oxidation activity and stability for gas pollutants such as benzene, cyclohexane and acetone (YZ). , Li, * Q. Sun, M. Kong, et al. J. Phys. Chem. C, 2011, 115, 14050).
  • the technical problem to be solved by the present invention is to provide a preparation method of a CeO 2 -MnO 2 composite catalyst with high-efficiency photothermal synergistic catalytic purification of VOCs for the above prior art, which is cheap and easy to obtain, simple and easy to process. industrialization.
  • the technical solution adopted by the present invention to solve the above technical problem is a method for preparing a CeO 2 -MnO 2 composite catalyst with high-efficiency photothermal synergistic catalytic purification of VOCs, which is characterized by comprising the following steps:
  • reaction vessel is cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner is taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 composite catalyst having photothermal synergy.
  • the Ce(III) salt is cerium nitrate, cerium chloride or cerium sulfate.
  • the reaction temperature of the hydrothermal oxidation-reduction reaction is from 90 ° C to 180 ° C, and the reaction time is from 12 to 72 hours.
  • the invention utilizes the excellent photothermal synergistic catalytic oxidation performance of CeO 2 and the good thermal catalytic oxidation performance of MnO 2 , the Ce(III) salt as a reducing agent and the KMnO 4 as an oxidant, using a hydrothermal redox synthesis method in a mild Under the reaction conditions, the preparation method of CeO 2 -MnO 2 composite catalyst was designed innovatively, and the synergistic catalysis between the active components CeO 2 and MnO 2 in CeO 2 -MnO 2 composite catalyst was realized. Compared with the traditional thermocatalytic oxidation, the catalytic oxidation activity of the obtained CeO 2 -MnO 2 composite catalyst is significantly improved by the combination of light and heat.
  • the root cause is the reactivity of the lattice oxygen and the organic pollutant molecules in the composite catalyst.
  • the heat synergy has been significantly improved.
  • the photothermal synergistic catalytic oxidation activity of the CeO 2 -MnO 2 composite catalyst obtained by the invention is much higher than the photothermal synergistic catalytic oxidation activity of CeO 2 or MnO 2 alone, and the thermal catalytic oxidation activity of the MnO 2 -CeO 2 composite oxide.
  • the CeO 2 -MnO 2 composite catalyst can efficiently degrade the volatile organic pollutants such as benzene, toluene and acetone.
  • the CeO 2 -MnO 2 composite catalyst prepared by the invention has the catalytic activity of high-efficiency low-temperature photothermal synergistic catalytic oxidation of VOCs, and the photothermal synergistic catalytic activity is much higher than the thermal catalytic activity at the same reaction temperature, which is much higher than pure
  • the photothermal synergistic catalytic activity of CeO 2 or MnO 2 greatly improves the catalytic purification efficiency of volatile organic gases
  • Curves A in Figure 1 - Figure 11 below are photothermal synergistic catalysis, and curve B is thermal catalysis:
  • 1 is a comparison diagram of a CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3) at 120 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of benzene to form CO 2 concentration;
  • CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3) at 160 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of benzene to form CO 2 concentration;
  • CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3) at 200 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of acetone to form a CO 2 concentration change;
  • FIG. 6 is a comparison diagram of a CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3) at 200 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of benzene to form a CO 2 concentration;
  • CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3) at 200 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of benzene to form CO 2 concentration;
  • FIG. 9 is a comparison diagram of a CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:1) at 200 ° C, photothermal synergistic catalysis and thermal catalytic degradation of 100 ⁇ l of benzene to form CO 2 concentration;
  • FIG. 10 is a comparison diagram of the change of CO 2 concentration of 100 ⁇ l of benzene by photothermal co-catalysis and thermal catalytic degradation at 200 ° C in a CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 1:3);
  • Figure 11 is a graph showing the comparison of the concentration of CO 2 produced by photothermal co-catalysis and thermal catalytic degradation of 100 ⁇ l of benzene by CeO 2 -MnO 2 catalyst (Ce/Mn molar ratio 2:3) at 200 °C.
  • reaction vessel is cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner is taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 composite catalyst.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was used to photocatalyze the degradation of 100 ⁇ l of benzene by photothermal reaction.
  • the specific experimental procedures are as follows:
  • Example 1 The CeO 2 -MnO 2 catalyst obtained in Example 1 was weighed and mixed with distilled water in a ratio of 0.5 g: 20 ml, sonicated for 10 min to obtain a suspension, and the suspension was transferred to a glass petri dish having a diameter of 11 mm, and Drying under infrared light;
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was used to thermally degrade 100 ⁇ l of benzene.
  • the specific experimental procedure was basically the same as that of Application Example 1, except that the high pressure mercury lamp was turned off during the catalytic reaction.
  • CeO 2 -MnO 2 photothermal catalyst at 120 °C synergistic catalytic degradation 100 ⁇ l benzene CO 2 production rate is 5.56 times the thermal catalysis.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was photocatalyzed to 100 ⁇ l of benzene by photothermal reaction, and the catalytic reaction temperature was 160 °C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 160 °C.
  • Comparative Example 2 The relationship between the change of CO 2 concentration produced by thermal catalytic degradation of 100 ⁇ l of benzene and time is shown in curve B in Fig. 2, after 60 min of thermal catalysis, the CO 2 increment is 5528 mg/m 3 and the rate of CO 2 formation is 2.1 ⁇ mol/ Min ⁇ m 3 .
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was photocatalyticly degraded to 100 ⁇ l of benzene, and the catalytic reaction temperature was 200 °C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was used to thermally degrade 100 ⁇ l of benzene, and the catalytic reaction temperature was 200 °C.
  • the obtained CeO 2 catalyst was photothermally synergistically thermally degraded to 100 ⁇ l of benzene, and the catalytic reaction temperature was 200 °C.
  • the relationship between the change of CO 2 concentration produced by CeO 2 photothermal synergistic catalytic degradation of 100 ⁇ l of benzene and time is shown in curve C in Fig. 3. After 35 min of photothermal synergistic catalysis, the CO 2 increase is 16305 mg/m 3 , and the rate of CO 2 formation is 10.59 ⁇ mol/min ⁇ m 3 .
  • the obtained MnO 2 catalyst was photothermally synergistically thermally degraded to 100 ⁇ l of benzene, and the catalytic reaction temperature was 200 °C.
  • the relationship between the change of CO 2 concentration produced by MnO 2 photothermal synergistic catalytic degradation of 100 ⁇ l of benzene and time is shown in curve D in Fig. 3. After 35 min of photothermal synergistic catalysis, the CO 2 increment is 5147 mg/m 3 and the rate of CO 2 formation is 3.34. ⁇ mol/min ⁇ m 3 .
  • the formation rate of 100 ⁇ l of benzene CO 2 by CeO 2 -MnO 2 catalyzed photocatalytic degradation at 200 ° C is 1.82 times that of thermal catalysis, 2.46 times that of CeO 2 photothermal synergistic catalysis, and is MnO 2 photothermal synergistic catalysis. 7.81 times.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was photocatalytically degraded to 100 ⁇ l of acetone at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 oxide catalyst obtained in Example 1 was thermally catalyzed to degrade 100 ⁇ l of acetone at a catalytic temperature of 200 °C.
  • Comparative Example 4 The relationship between the change of CO 2 concentration produced by thermal catalytic degradation of 100 ⁇ l of acetone and time is shown in curve B in Fig. 4, after 15 min of thermal catalysis, the concentration of CO 2 is increased by 5682 mg/m 3 and the rate of formation of CO 2 is 8.6 ⁇ mol. /min ⁇ m 3 .
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was photocatalyticly degraded to 100 ⁇ l of toluene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 1 was thermally catalyzed to degrade 100 ⁇ l of toluene at a catalytic temperature of 200 °C.
  • Comparative Example 5 The relationship between the change of CO 2 concentration produced by thermal catalytic degradation of 100 ⁇ l of toluene and time is shown in curve B in Fig. 5, after 30 min of thermal catalysis, the CO 2 increment is 3167 mg/m 3 and the rate of CO 2 formation is 2.40 ⁇ mol/min. ⁇ m 3 .
  • reaction vessel is cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner is taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 composite catalyst.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 2 was photocatalyticly degraded to 100 ⁇ l of benzene by a photothermal reaction at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 2 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.
  • Comparative Example 1 The relationship between the change of CO 2 concentration produced by thermal catalytic degradation of 100 ⁇ l of benzene and time is shown in curve B in Fig. 6.
  • the increase of CO 2 concentration after irradiation for 60 min is 4634 mg/m 3
  • the rate of formation of CO 2 is 1.76 ⁇ mol/min. ⁇ m 3 .
  • reaction vessel was cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner was taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 catalyst.
  • the CeO 2 -MnO 2 catalyst obtained in Example 3 was photocatalytically degraded to 100 ⁇ l of benzene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 3 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.
  • reaction vessel was cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner was taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 catalyst.
  • the CeO 2 -MnO 2 catalyst obtained in Example 4 of the present invention was photocatalyticly degraded to 100 ⁇ l of benzene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite oxide catalyst obtained in Example 4 of the present invention was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.
  • Comparative Example 1 The relationship between the change in CO 2 concentration produced by thermal catalytic degradation of 100 ⁇ l of benzene and time is shown in curve B in FIG. After 30 min of thermal catalysis, the CO 2 increase was 33,866 mg/m 3 and the CO 2 production rate was 25.7 ⁇ mol/min ⁇ m 3 .
  • reaction vessel was cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner was taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 catalyst.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 5 of the present invention was photocatalyticly degraded to 100 ⁇ l of benzene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 4 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.
  • reaction vessel was cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner was taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 catalyst.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 6 of the present invention was photocatalyticly degraded to 100 ⁇ l of benzene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 6 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.
  • reaction vessel was cooled to room temperature, and the precipitate in the polytetrafluoroethylene liner was taken out, filtered, washed, and dried to obtain a CeO 2 -MnO 2 catalyst.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 7 of the present invention was photocatalyticly degraded to 100 ⁇ l of benzene at a catalytic temperature of 200 ° C.
  • the CeO 2 -MnO 2 composite catalyst obtained in Example 7 was thermally catalyzed to degrade 100 ⁇ l of benzene at a catalytic temperature of 200 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,包括以下步骤:1)称取Ce(III)盐和KMnO4,磁力搅拌,得到混合溶液;2)将混合溶液转至反应釜中,进行水热氧化还原反应;3)反应完成后,待反应釜冷却至室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干即可。该制备方法具有工业简单,易于工业化,生产成本低的优点;所制备的催化剂具有很高的催化活性。

Description

具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法 技术领域
本发明涉及一种CeO2 -MnO2复合催化剂的制备方法,该复合催化剂在光热协同作用条件下,能高效催化净化苯、甲苯和丙酮等挥发性有机污染物。
背景技术
挥发性有机污染物(VOCs),如:苯、甲苯、甲醛、丙酮等,不仅对人体健康有极大的危害,而且会造成严重的环境污染。VOCs的治理技术包括吸附、催化氧化、以及光催化等,其中以活性炭或分子筛为吸附剂的吸附技术、以负载型贵金属为催化剂的催化氧化技术研究报道最多。但受吸附容量的限制,需对吸附剂进行再生处理,而负载型贵金属催化剂虽催化活性高,但价格昂贵,这些极大地限制了吸附技术、基于贵金属的催化氧化技术在VOCs治理中的广泛应用,因此急需研发低成本、具有高效催化净化VOCs的催化新材料及新技术。CeO2、二氧化锰、铈锰复合氧化物因具有良好的催化氧化性能而受到人们的广泛关注。美国专利US 6458741采用浸渍分解法、沉淀沉积法和共沉淀法制备了含铈二元或多元复合氧化物,并将贵金属Pt、Pd负载于这些复合氧化物上,所得的复合催化剂具有较好的VOCs低温催化氧化活性。中国专利CN200510093318.2 采用浸渍法制备了负载型Mn-Ce复合氧化物催化,该催化剂对VOCs具有较好的催化氧化活性。Tang等人以(NH4)2Ce(NO3)6、Mn(NO3)2·6H2O、(NH4)2Ce(NO3)6和柠檬酸为原料,采用共沉淀法制备了MnOx-CeO2复合物催化剂,该催化剂在100℃下,甲醛的转化率达到100%,且具有较好的稳定性(F. Tang, Y.G. Li, M. Huang, et al. Appl. Catal. B 2006, 62, 265)。Delimaris等人以Ce(NO3)6、Mn(NO3)2和尿素为原料,采用尿素-硝酸盐燃烧法制备了MnOx-CeO2复合氧化物,该催化剂对VOCs具有较好的催化氧化活性(D. Delimaris,T. Ioannides. Appl. Catal. B 2008, 84, 303)。
CeO2不仅具有良好的催化氧化性能,作为一种宽带n型半导体还具有一定的光催化活性。最近李远志等人发现了纳米介孔CeO2具有优良的氧离子传导耦合光热协同催化性能,对于苯、环己烷、丙酮等气体污染物表现出高效的低温催化氧化活性和稳定性(Y.Z, Li,* Q. Sun, M. Kong, et al. J. Phys. Chem. C, 2011, 115, 14050)。
技术问题
本发明所要解决的技术问题是针对上述现有技术而提出一种具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,该制备方法原料价廉易得、工艺简单和易于工业化。
技术解决方案
本发明解决上述技术问题所采用的技术方案是,具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,其特征在于包括有以下步骤:
1)称取0.04mol~0.01molCe(Ⅲ)盐和0.01mol~0.03molKMnO4,先后加入到装有水的烧杯中,磁力搅拌,得到Ce(Ⅲ)盐与KMnO4的混合溶液;
2)将混合溶液转至带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,进行水热氧化还原反应;
3)反应完成后,待反应釜冷却至室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到具有光热协同作用的CeO2-MnO2复合催化剂。
按上述方案,所述的Ce(Ⅲ) 盐为硝酸铈、氯化铈或硫酸亚铈。
按上述方案,所述的水热氧化还原反应的反应温度为90℃~180℃,反应时间为12~72小时。
本发明利用CeO2优良的光热协同催化氧化性能、以及MnO2良好的热催化氧化性能,以Ce(Ⅲ) 盐为还原剂,KMnO4为氧化剂,采用水热氧化还原合成法,在温和的反应条件下,创新性的设计了CeO2-MnO2复合催化剂制备方法,实现了在CeO2-MnO2复合催化剂中活性组分CeO2和MnO2之间的协同催化作用;同时首次发现,与传统的热催化氧化相比,在光热共同作用下,所得CeO2-MnO2复合催化剂的催化氧化活性显著提高,其根源在于复合催化剂中的晶格氧与有机污染物分子的反应活性在光热协同作用下得到了明显提高。本发明所得CeO2-MnO2复合催化剂的光热协同催化氧化活性远高于单纯CeO2或MnO2的光热协同催化氧化活性、以及MnO2-CeO2复合氧化物的热催化氧化活性,所得CeO2-MnO2复合催化剂能高效催化降解苯、甲苯、丙酮等气相挥发性有机污染物。
有益效果
本发明专利的有益效果在于:
1)本发明所制备的CeO2-MnO2复合催化剂,具有高效低温光热协同催化氧化VOCs的催化活性,其光热协同催化活性远高于相同反应温度下的热催化活性,远高于单纯的CeO2或MnO2的光热协同催化活性,极大地提高了挥发性有机气体催化净化效率;
2)本专利所发明的CeO2-MnO2复合催化剂制备方法,原料价廉易得、反应条件温和、工艺简单,易于工业化;
3)本发明所制备的CeO2-MnO2复合催化剂,无需负载贵金属,显著降低了成本。
附图说明
下述图1-图11中曲线A为光热协同催化,曲线B为热催化:
图1为实施例1 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在120℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图2为实施例1 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在160℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图3为实施例1CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化、CeO2光热协同催化(曲线C)和CeO2光热协同催化(曲线D)降解100μl苯生成CO2浓度变化对比图;
图4为实施例1 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化降解100μl丙酮生成CO2浓度变化对比图;
图5为实施例1 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化降解100μl甲苯生成CO2浓度变化对比图;
图6为实施例2 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图7为实施例3 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图8为实施例4 CeO2-MnO2催化剂(Ce/Mn摩尔比3:1)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图9为实施例5 CeO2-MnO2催化剂(Ce/Mn摩尔比1:1)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图10为实施例6 CeO2-MnO2催化剂(Ce/Mn摩尔比1:3)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图;
图11为实施例7 CeO2-MnO2催化剂(Ce/Mn摩尔比2:3)在200℃下,光热协同催化与热催化降解100μl苯生成CO2浓度变化对比图。
本发明的最佳实施方式
实施例1:
具有高效光热协同催化净化VOCs 的CeO2-MnO2复合催化剂(Ce/Mn摩尔比为1:3)的制备方法如下:
(1)称取0.01molCe(NO3)3·6H2O和0.03molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在120℃下反应24小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2复合催化剂。
应用实例1
将实施例1得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,具体实验步骤如下:
(1)称取实施例1所得CeO2-MnO2催化剂与蒸馏水以0.5g∶20ml比例混合,超声处理10min,得到悬浊液,将悬浊液转移至直径为11mm的玻璃培养皿中,并在红外灯下烘干;
(2)将培养皿放在一个上部设有石英玻璃窗口的气相光热催化反应器中,石英玻璃窗口放置一个高压汞灯(250W),反应器置于可控电热板之上,并通过自动取样装置与气相色谱仪连接,打开高压汞灯,调节电热板,催化反应温度保持120℃;
(3)当CO2浓度保持稳定后,向反应器中注入气体,催化反应产生的CO2浓度用气相色谱仪在线检测分析。
应用实例1光热协同催化降解苯产生的CO2浓度变化与时间关系见图1中的曲线A。120℃下,光热协同催化60min后,CO2增量为3948mg/m3,CO2生成速率为1.5μmol/min·m3
对比实例1
将实施例1得到的CeO2-MnO2复合催化剂热催化降解100μl苯,具体实验步骤与应用实例1基本相同,所不同的是,在催化反应过程中,关闭高压汞灯。
对比实例1中热催化降解100μl苯产生的CO2浓度变化与时间的关系见图1中的曲线B,热催化60min后,CO2增量为715mg/m3,CO2的生成速率为0.27μmol/min·m3
由图1可知,120℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的5.56倍。
应用实例2
将实施例1所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,催化反应温度为160℃。
应用实例2光热协同催化降解100μl苯产生的CO2浓度变化与时间的关系见图2中的曲线A。光热协同催化60min后,CO2增量为14346mg/m3,CO2的生成速率为5.43μmol/ min·m3
对比实例2
将实施例1得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为160℃。
对比实例2热催化降解100μl苯产生的CO2浓度变化与时间的关系见图2中的曲线B,热催化60min后,CO2增量为5528mg/m3,CO2的生成速率为2.1μmol/min·m3
由图2可知,160℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的2.60倍。
应用实例3:
将实施例1得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,催化反应温度为200℃。
应用实例3光热协同催化降解100μl苯产生的CO2浓度变化与时间的关系见图3中的曲线A,光热协同催化35min后,CO2增量为40179mg/m3,CO2的生成速率为26.1μmol/ min·m3
对比实例3(a)
将实施例1得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化反应温度为200℃。
对比实例3中热催化降解100μl苯产生的CO2浓度变化与时间的关系见图3中的曲线B,热催化35min后,CO2增量为22094mg/m3,CO2的生成速率为14.4μmol/min·m3
对比实例3(b)
称取15gCe(NO3)3·6H2O 和6g尿素,加入到装有40ml蒸馏水的250ml圆底烧瓶中,超声处理。将烧瓶放入微波炉(50Hz,800W)中,加热反应30min。反应结束,取出沉淀,用蒸馏水过滤、洗涤、烘干,然后在400℃下煅烧2h,得到纳米CeO2粉末。
将所得到的CeO2催化剂光热协同热催化降解100μl苯,催化反应温度为200℃。CeO2光热协同催化降解100μl苯产生的CO2浓度变化与时间的关系见图3中的曲线C, 光热协同催化35min后,CO2增量为16305mg/m3,CO2的生成速率为10.59μmol/min·m3
对比实例3(c)
称取0.01molMn(NO3)2和0.02molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Mn(NO3)2与KMnO4混合溶液;将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在120℃下反应24小时;反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到MnO2粉末。
将所得到的MnO2催化剂光热协同热催化降解100μl苯,催化反应温度为200℃。MnO2光热协同催化降解100μl苯产生的CO2浓度变化与时间关系见图3中的曲线D, 光热协同催化35min后,CO2增量为5147mg/m3,CO2的生成速率为3.34μmol/min·m3
由图3可知,200℃下CeO2-MnO2催化光热协同催化降解100μl苯CO2生成速率是热催化的1.82倍,是CeO2光热协同催化的2.46倍,是MnO2光热协同催化的7.81倍。
应用实例4
将实施例1所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl丙酮,催化温度为200℃。
应用实例4光热协同催化降解100μl丙酮产生的CO2浓度变化与时间的关系见图4中的曲线A。光热协同催化15min后,CO2增量为24626mg/m3,CO2的生成速率为37.3μmol/min·m3
对比实例4
将实施例1所得到的CeO2-MnO2氧化物催化剂热催化降解100μl丙酮,催化温度为200℃。
对比实例4热催化降解100μl丙酮产生的CO2浓度变化与时间的关系见图4中的曲线B,热催化15min后,CO2浓度增量为5682mg/m3,CO2的生成速率为8.6μmol/min·m3
由图4可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl丙酮的CO2生成速率是热催化的4.33倍。
应用实例5
将实施例1所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl甲苯,催化温度为200℃。
应用实例5光热协同催化降解100μl甲苯产生的CO2浓度变化与时间关系见图5中的曲线A。光热协同催化30min后,CO2增量为13053mg/m3,CO2的生成速率为9.89μmol/min·m3
对比实例5
将实施例1所得到的CeO2-MnO2复合催化剂热催化降解100μl甲苯,催化温度为200℃。
对比实例5热催化降解100μl甲苯产生的CO2浓度变化与时间关系见图5中的曲线B,热催化30min后,CO2增量为3167mg/m3,CO2的生成速率为2.40μmol/min·m3
由图5可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl甲苯的CO2生成速率是热催化用的4.12倍。
本发明的实施方式
实施例2
具有高效光热协同催化净化VOCs 的CeO2-MnO2复合催化剂(Ce/Mn摩尔比为1:3)的制备方法如下:
(1)称取0.01molCe(NO3)3·6H2O和0.03molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在180℃下反应24小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2复合催化剂。
应用实例1:
将实施例2所得到的CeO2-MnO2复合催化剂应光热协同催化降解100μl苯,催化温度为200℃。
应用实例2光热协同催化降解100μl苯产生的CO2浓度变化与时间的关系见图6中的曲线A,光照60min后,CO2增量为24737mg/m3,CO2的生成速率为9.37μmol/min·m3
对比实例1
将实施例2所得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1热催化降解100μl苯产生的CO2浓度变化与时间的关系见图6中的曲线B,光照60min后CO2浓度增量为4634mg/m3,CO2的生成速率为1.76μmol/min·m3
由图6可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的5.32倍。
本发明的实施方式
实施例3
具有高效光热协同催化净化VOCs 的CeO2-MnO2复合催化剂(Ce/Mn摩尔比为1:3)的制备方法如下:
(1)称取0.01molCe(NO3)3·6H2O和0.03molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在90℃下反应15小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2催化剂。
应用实例1
将实施例3所得到的CeO2-MnO2催化剂光热协同催化降解100μl苯,催化温度为200℃。
应用实例1光热协同催化降解100μl苯产生的CO2浓度变化与时间关系见图7中的曲线A。光热协同催化20min后,CO2增量为49514mg/m3,CO2的生成速率为56.3μmol/min·m3
对比实例1
将实施例3所得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1中热催化降解100μl苯产生的CO2浓度变化与时间的关系见图7中的曲线B,热催化15min后,CO2浓度增量为36841mg/m3,CO2的生成速率为41.9μmol/min·m3
由图7可知,200℃下CeO2-MnO2催化剂光热协同催化降解2μl苯的CO2生成速率是热催化(曲线B)的1.34倍。
本发明的实施方式
实施例4
具有高效光热协同催化净化VOCs 的CeO2-MnO2复合催化剂(Ce/Mn摩尔比为3:1)的制备方法如下:
(1)称取0.03mol的Ce(NO3)3·6H2O和0.01mol的KMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在90℃下反应15小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2催化剂。
应用实例1
将本发明实施例4所得到的CeO2-MnO2催化剂光热协同催化降解100μl苯,催化温度为200℃。
应用实例1光热协同催化降解100μl苯产生的CO2浓度变化与时间的关系见图8中的曲线A。光热协同催化30min后,CO2增量为46999mg/m3,CO2的生成速率为35.6μmol/min·m3
对比实例1
将本发明实施例4所得到的CeO2-MnO2复合氧化物催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1热催化降解100μl苯产生的CO2浓度变化与时间的关系见图8中的曲线B。热催化30min后,CO2增量为33866mg/m3,CO2的生成速率为25.7μmol/min·m3
由图8可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的1.39倍。
本发明的实施方式
实施例5
具有高效光热协同催化活性CeO2-MnO2催化剂(Ce/Mn摩尔比为1:1)的制备方法如下:
(1)称取0.02molCe(NO3)3·6H2O和0.02molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在90℃下反应15小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2催化剂。
应用实例1
将本发明实施例5所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,催化温度为200℃。
应用实例1光热协同催化降解100μl苯产生的CO2浓度变化与时间关系见图9中的曲线A。光热协同催化40min后,CO2增量为40110mg/m3,CO2的生成速率为22.8μmol/min·m3
对比实例1
将实施例4所得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1中热催化降解100μl苯产生的CO2浓度变化与时间关系见图9中的曲线B,热催化40min后,CO2浓度增量为31050mg/m3,CO2的生成速率为17.6μmol/min·m3
由图9可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的1.3倍。
本发明的实施方式
实施例6
具有高效光热协同催化活性CeO2-MnO2催化剂(Ce/Mn摩尔比为1:3)的制备方法如下:
(1)称取0.01molCeCl3·7H2O和0.03molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce(NO3)3·6H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在120℃下反应24小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2催化剂。
应用实例1
将本发明实施例6所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,催化温度为200℃。
应用实例1光热协同催化降解100μl苯产生的CO2浓度变化与时间关系见图10中的曲线A。光热协同催化30min后,CO2增量为13553mg/m3,CO2的生成速率为10.27μmol/min·m3
对比实例1
将实施例6所得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1中热催化降解100μl苯产生的CO2浓度变化与时间关系见图10中的曲线B,热催化30min后,CO2增量为4667mg/m3,CO2的生成速率为3.54μmol/min·m3
由图10可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的2.9倍。
本发明的实施方式
实施例7
具有高效光热协同催化活性CeO2-MnO2催化剂(Ce/Mn摩尔比为2:3)的制备方法如下:
(1)称取0.005molCe2(SO4)3·8H2O和0.015molKMnO4,加入到装有60ml水的烧杯中,磁力搅拌,得到Ce2(SO4)3·8H2O与KMnO4混合溶液;
(2)将混合溶液转至100 ml带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,在120℃下反应24小时;
(3)反应完成后,待反应釜冷却到室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到CeO2-MnO2催化剂。
应用实例1
将本发明实施例7所得到的CeO2-MnO2复合催化剂光热协同催化降解100μl苯,催化温度为200℃。
应用实例1光热协同催化降解100μl苯产生的CO2浓度变化与时间关系见图11中的曲线A。光热协同催化40min后,CO2增量为4582mg/m3,CO2的生成速率为2.60μmol/min·m3
对比实例1
将实施例7所得到的CeO2-MnO2复合催化剂热催化降解100μl苯,催化温度为200℃。
对比实例1中热催化降解100μl苯产生的CO2浓度变化与时间关系见图11中的曲线B,热催化40min后,CO2浓度增量为1284mg/m3,CO2的生成速率为0.73μmol/min·m3
由图11可知,200℃下CeO2-MnO2催化剂光热协同催化降解100μl苯的CO2生成速率是热催化的3.57倍。

Claims (3)

1、具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,其特征在于包括有以下步骤:
1)称取0.04mol~0.01molCe(Ⅲ)盐和0.01mol~0.03molKMnO4,先后加入到装有水的烧杯中,磁力搅拌,得到Ce(Ⅲ)盐与KMnO4的混合溶液;
2)将混合溶液转至带聚四氟乙烯内胆的不锈钢反应釜中,密封好后,进行水热氧化还原反应;
3)反应完成后,待反应釜冷却至室温,取出聚四氟乙烯内胆中的沉淀,过滤、洗涤、烘干,得到具有光热协同作用的CeO2-MnO2复合催化剂。
2、按权利要求1所述的具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,其特征在于所述的Ce(Ⅲ) 盐为硝酸铈、氯化铈或硫酸亚铈。
3、按权利要求1或2所述的具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法,其特征在于所述的水热氧化还原反应的反应温度为90℃~180℃,反应时间为12~72小时。
PCT/CN2012/071301 2012-02-10 2012-02-20 具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法 WO2013117017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210029241.XA CN102553575B (zh) 2012-02-10 2012-02-10 具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法
CN201210029241.X 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013117017A1 true WO2013117017A1 (zh) 2013-08-15

Family

ID=46400976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071301 WO2013117017A1 (zh) 2012-02-10 2012-02-20 具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN102553575B (zh)
WO (1) WO2013117017A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112427041A (zh) * 2019-08-26 2021-03-02 中国科学院理化技术研究所 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
CN112619607A (zh) * 2021-01-07 2021-04-09 深圳市奇信集团股份有限公司 甲醛吸附剂
CN112774664A (zh) * 2020-12-30 2021-05-11 中国人民解放军军事科学院国防工程研究院 一种具有光热协同作用纳米TiO2@MnO2复合材料及其制备方法和应用
CN112844372A (zh) * 2021-02-20 2021-05-28 辽宁大学 一种含氧空位的钼酸铋热催化剂及其制备方法和应用
CN113769757A (zh) * 2021-09-09 2021-12-10 武汉理工大学 原位光致热制备尖晶石结构Cu1.5Mn1.5O4催化剂的方法及其应用
CN114558566A (zh) * 2022-03-12 2022-05-31 福州大学 一种硫化氢选择性氧化催化剂及其制备方法和应用
CN115337931A (zh) * 2022-08-20 2022-11-15 山东亮剑环保新材料有限公司 一种降解有机污染物的稀土复合催化剂的制备方法
CN115569647A (zh) * 2022-09-07 2023-01-06 浙江大学杭州国际科创中心 一种复合氧化物催化剂及其制备方法和应用
CN115608368A (zh) * 2022-10-19 2023-01-17 华南理工大学 一种具有高活性和低成本的整体式催化剂及其制备方法与应用
CN115624969A (zh) * 2022-10-27 2023-01-20 南京工业大学 光热协同催化剂、太阳能净化通风冷却复合墙体结构

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331156A (zh) * 2013-07-08 2013-10-02 武汉理工大学 全光谱太阳光驱动隐钾锰矿纳米棒催化剂及其制备方法和应用
CN104056530A (zh) * 2014-07-01 2014-09-24 北京建筑材料科学研究总院有限公司 一种污染土壤热解析尾气处理方法
CN104338529A (zh) * 2014-10-20 2015-02-11 中国科学院上海硅酸盐研究所 一种MnOx-CeO2复合半导体催化剂的制备方法
CN107008336B (zh) * 2017-03-31 2020-01-31 山东师范大学 一种光催化材料SnO2@Fe2O3的制备及应用
CN106944092B (zh) * 2017-04-22 2019-10-25 武汉理工大学 一种具有高效光热协同催化净化VOCs的Fe-MnO2催化剂的制备方法
CN106975481B (zh) * 2017-04-22 2019-10-25 武汉理工大学 具有高效光热协同催化净化VOCs的碱土金属掺杂MnO2催化剂的制备方法
CN108659908B (zh) * 2018-05-15 2021-06-04 嘉兴亭源农林开发有限公司 节能环保型生物质燃料
CN108772056B (zh) * 2018-06-14 2021-03-09 南京信息工程大学 一种负载型堇青石催化剂的制备及光热协同氧化VOCs
CN109806884A (zh) * 2019-02-22 2019-05-28 上海应用技术大学 一种石墨烯-锰铈低温scr脱硝催化剂及其制备方法
CN111068514B (zh) * 2019-12-28 2022-08-12 西安建筑科技大学 一种VOCs分离催化降解装置及催化降解系统
CN111282565A (zh) * 2020-03-24 2020-06-16 清华大学盐城环境工程技术研发中心 一种MnCeOx催化剂的制备方法及应用
CN111569859A (zh) * 2020-06-24 2020-08-25 辽宁大学 二氧化铈复合二氧化铬含氧缺陷的光热催化剂及其制备方法与应用
CN112023918A (zh) * 2020-09-22 2020-12-04 华中科技大学 一种过渡金属原位掺杂的锰基催化剂及其制备方法和应用
CN112516997B (zh) * 2020-11-30 2023-04-18 南京邮电大学 CeO2/MnO2纳米棒的制备方法
CN113648997B (zh) * 2021-08-11 2023-11-24 北京工业大学 δ-MnO2负载氧化石墨烯Bi-Pd复合型催化剂的方法和应用
CN113680343B (zh) * 2021-08-24 2023-12-22 武汉理工大学深圳研究院 一种三维立方CeO2/Mn2O3复合光热催化剂制备方法及其应用
CN115957745B (zh) * 2021-10-09 2024-04-30 中国科学院理化技术研究所 TiO2-MnO2光热协同高级氧化催化剂复合溶胶制备方法
CN113769735B (zh) * 2021-10-21 2023-01-06 南京大学 CeO2/MnO2复合光催化剂及其制备方法和应用
CN116060015B (zh) * 2021-10-29 2024-05-03 中国科学院理化技术研究所 一种光热协同吸附催化剂的合成方法
CN114768794B (zh) * 2022-04-27 2024-03-15 华南理工大学 用于中低温烟气中VOCs和NOx同步脱除的复合锰氧化物催化剂及其制备方法与应用
CN115007125A (zh) * 2022-07-08 2022-09-06 湘潭大学 海泡石负载锰-铈复合型催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631522A (zh) * 2004-11-19 2005-06-29 清华大学 一种以铈为基二元复合介孔氧化物材料及其制备方法
CN1919455A (zh) * 2005-08-25 2007-02-28 中国科学院生态环境研究中心 催化氧化消除挥发性有机污染物的方法
CN102172523A (zh) * 2011-03-04 2011-09-07 湖南大学 一种中低温选择性催化还原脱硝催化剂制备方法
CN102344339A (zh) * 2011-07-15 2012-02-08 厦门大学 铈基催化剂在甲烷卤氧化制卤代甲烷中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028595A (zh) * 2006-03-01 2007-09-05 中国科学院大连化学物理研究所 一种锰铈复合氧化物催化剂及制备方法和应用
CN101462049B (zh) * 2007-12-20 2011-04-20 苏州工业园区安泽汶环保技术有限公司 一种高分散锰铈复合氧化物的制备方法
CN101722057A (zh) * 2009-11-24 2010-06-09 武汉理工大学 具有光热协同作用的半导体氧化物催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631522A (zh) * 2004-11-19 2005-06-29 清华大学 一种以铈为基二元复合介孔氧化物材料及其制备方法
CN1919455A (zh) * 2005-08-25 2007-02-28 中国科学院生态环境研究中心 催化氧化消除挥发性有机污染物的方法
CN102172523A (zh) * 2011-03-04 2011-09-07 湖南大学 一种中低温选择性催化还原脱硝催化剂制备方法
CN102344339A (zh) * 2011-07-15 2012-02-08 厦门大学 铈基催化剂在甲烷卤氧化制卤代甲烷中的应用

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112427041B (zh) * 2019-08-26 2023-05-12 中国科学院理化技术研究所 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
CN112427041A (zh) * 2019-08-26 2021-03-02 中国科学院理化技术研究所 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
CN112774664A (zh) * 2020-12-30 2021-05-11 中国人民解放军军事科学院国防工程研究院 一种具有光热协同作用纳米TiO2@MnO2复合材料及其制备方法和应用
CN112774664B (zh) * 2020-12-30 2023-10-24 中国人民解放军军事科学院国防工程研究院 一种具有光热协同作用纳米TiO2@MnO2复合材料及其制备方法和应用
CN112619607A (zh) * 2021-01-07 2021-04-09 深圳市奇信集团股份有限公司 甲醛吸附剂
CN112844372A (zh) * 2021-02-20 2021-05-28 辽宁大学 一种含氧空位的钼酸铋热催化剂及其制备方法和应用
CN112844372B (zh) * 2021-02-20 2023-12-08 辽宁大学 一种含氧空位的钼酸铋热催化剂及其制备方法和应用
CN113769757A (zh) * 2021-09-09 2021-12-10 武汉理工大学 原位光致热制备尖晶石结构Cu1.5Mn1.5O4催化剂的方法及其应用
CN114558566A (zh) * 2022-03-12 2022-05-31 福州大学 一种硫化氢选择性氧化催化剂及其制备方法和应用
CN114558566B (zh) * 2022-03-12 2023-08-25 福州大学 一种硫化氢选择性氧化催化剂及其制备方法和应用
CN115337931A (zh) * 2022-08-20 2022-11-15 山东亮剑环保新材料有限公司 一种降解有机污染物的稀土复合催化剂的制备方法
CN115569647A (zh) * 2022-09-07 2023-01-06 浙江大学杭州国际科创中心 一种复合氧化物催化剂及其制备方法和应用
CN115608368A (zh) * 2022-10-19 2023-01-17 华南理工大学 一种具有高活性和低成本的整体式催化剂及其制备方法与应用
CN115608368B (zh) * 2022-10-19 2024-05-07 华南理工大学 一种具有高活性和低成本的整体式催化剂及其制备方法与应用
CN115624969A (zh) * 2022-10-27 2023-01-20 南京工业大学 光热协同催化剂、太阳能净化通风冷却复合墙体结构

Also Published As

Publication number Publication date
CN102553575A (zh) 2012-07-11
CN102553575B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2013117017A1 (zh) 具有高效光热协同催化净化VOCs的CeO2-MnO2复合催化剂的制备方法
WO2022055225A1 (ko) 암모니아 분해 반응용 촉매 및 이를 이용한 수소 생산방법
CN111167492B (zh) 铜修饰氮化碳及其制备方法和光催化甲烷转化的应用
Hamada et al. Effect of catalyst composition and reactor configuration on benzene oxidation with a nonthermal plasma-catalyst combined reactor
CN111229209B (zh) 一种荷叶源生物炭负载锰氧化物的低温scr烟气脱硝催化剂及其制备方法与应用
CN111185242B (zh) 一种Co3O4-mMOx/ZIFs复合材料及其制备与应用
CN102489286A (zh) 一种光催化活性碳掺杂氧化钛薄膜的制备方法
CN114471540A (zh) 一种亚纳米Pt选择性加氢催化剂、制备方法及其应用
US20200122127A1 (en) Catalyst for chemical looping combustion
CN103007950B (zh) 一种镍离子掺杂三氧化钨催化剂及其制备方法及其应用
WO2019200725A1 (zh) 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法
CN107803196B (zh) 一种合成具有可见光响应的光催化剂Zn2SnO4/Bi2WO6纳米片的制备方法
CN111774067A (zh) 一种Z型CoO/WO3纳米片的合成方法及其在环境污染物降解中的应用
CN111167434A (zh) 一种降解气态污染物的光催化复合材料Cr2O3-SnO2及其制备方法和应用
CN115779890A (zh) 一种用于甲苯净化的锰基电热催化剂制备方法
CN107597098B (zh) 一种一锅法合成具有可见光响应的光催化剂LaVO4/WO3纳米片的制备方法
JPS62261803A (ja) 接触燃焼方法
CN113663723A (zh) 氮化碳复合材料及其制备方法与人工光合作用中的应用
CN110756189B (zh) 一种全太阳光谱响应的Co3O4/rGO复合催化剂及其制备方法与光热催化应用
CN107662906A (zh) 一种二硒化钨薄膜的制备方法和光催化还原二氧化碳的应用
CN112958101A (zh) 一种降解气态污染物的光催化复合材料Cr2O3-Fe2O3及其制备方法和应用
WO2013108979A1 (ko) 노르말-부탄의 산화적 탈수소화 반응 촉매용 마그네시아-지르코니아 복합담체의 제조방법, 그에 의해 제조된 마그네시아-지르코니아 복합담체에 담지된 마그네슘 오르소바나데이트 촉매의 제조방법 및 상기 촉매를 이용한 노르말-부텐과 1,3-부타디엔의 제조방법
KR100973242B1 (ko) 탈수소화 촉매의 재생방법
Wang et al. The complete oxidation of ethanol at low temperature over a novel Pd-Ce/γ-Al2O3-TiO2 catalyst
CN112371108A (zh) 一种环保型甲醛净化催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867933

Country of ref document: EP

Kind code of ref document: A1