WO2019200725A1 - 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法 - Google Patents

一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法 Download PDF

Info

Publication number
WO2019200725A1
WO2019200725A1 PCT/CN2018/094534 CN2018094534W WO2019200725A1 WO 2019200725 A1 WO2019200725 A1 WO 2019200725A1 CN 2018094534 W CN2018094534 W CN 2018094534W WO 2019200725 A1 WO2019200725 A1 WO 2019200725A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
composite oxide
manganese
catalyst
manganese composite
Prior art date
Application number
PCT/CN2018/094534
Other languages
English (en)
French (fr)
Inventor
李俊华
宋华
王驰中
彭悦
陈建军
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019200725A1 publication Critical patent/WO2019200725A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Definitions

  • the disclosure belongs to the technical field of environmental protection, relates to low temperature plasma and catalytic coupling applied to organic pollutant gas emission control, and particularly relates to a cobalt manganese composite oxide catalyst and a method for preparing and coupling plasma to purify organic waste gas.
  • VOCs Volatile Organic Compounds
  • Low-temperature plasma technology has the characteristics of mild reaction conditions, fast response, wide adaptability, etc. It is widely used in the control of pollutants, especially for the control of low-concentration VOCs ( ⁇ 1000ppm) pollutants.
  • the coupling of low temperature plasma and catalyst can improve energy utilization efficiency, removal efficiency and mineralization rate of pollutants, and reduce the generation of by-products (such as patents 200710009641.3, CN105478136B, etc.).
  • Most of the inventions use a noble metal catalyst to couple with the plasma, but the noble metal catalyst has the disadvantages of high cost and easy poisoning.
  • patent CN106693955A invents a bimetallic monolithic plasma catalyst, but in our previous studies it was found that the monolithic catalyst is suitable for two-stage coupling with plasma, which affects the uniformity of discharge in one-stage coupling. At present, low temperature plasma and catalyst coupling still need to further improve energy efficiency and control by-products, and improve coupling effects.
  • One of the important means is to invent a catalyst suitable for the atmosphere in the plasma discharge region, using a one-stage coupling method to improve the discharge state of the plasma, and at the same time improve the utilization of short-lived active particles generated by the plasma, thereby improving energy efficiency. And reduce by-products.
  • the purpose of the present disclosure is to provide a cobalt-manganese composite oxide catalyst and a method for preparing and coupling plasma-purified organic waste gas, and the preparation process of the supported manganese-cobalt composite oxide catalyst is simple and the price is
  • the invention has the advantages of low cost, long service life and good coupling effect; the catalyst material not only has good catalytic oxidation performance, but also has certain tantalum capacitance characteristics, and can improve the discharge state and enhance the coupling effect when coupled with the low temperature plasma one-stage coupling;
  • the plasma-coupling cobalt-manganese composite oxide catalyst described above can efficiently purify organic waste gas, can improve the discharge state of low-temperature plasma, can remove industrial VOCs exhaust gas with high efficiency, and reduce by-product formation.
  • a cobalt-manganese composite oxide catalyst comprising a carrier and a catalytically active component, the carrier being a commercial anatase type TiO 2 having photocatalytic properties; the catalytically active component being manganese oxide and cobalt oxide double metal oxide
  • the mass content of manganese and cobalt is 5 to 15% of the total mass of the catalyst; and the molar ratio of manganese to cobalt in the active component of the catalyst is 1:5 to 5:1.
  • the present disclosure also provides a preparation method of the cobalt-manganese composite oxide catalyst, comprising the following steps:
  • the anatase type TiO 2 powder is placed in a muffle furnace at 200 ⁇ 400 ° C for 2 ⁇ 4h;
  • precursor slurry a certain amount of transition metal manganese and cobalt precursor salt is dissolved in deionized water, stirred, and a certain molar ratio of precursor salt solution is prepared, and a certain amount of step (1) is added.
  • the pretreated anatase TiO 2 powder is stirred and immersed for 1 to 3 hours to obtain a precursor slurry; wherein the total mass of the transition metal is 5 to 15% of the mass of the anatase TiO 2 powder, and the molar of the two transition metals The ratio is 1:5 to 5:1;
  • the double precipitant solution obtained in the step (3) is added to the precursor slurry obtained in the step (2), stirred for 1-3 h, and filtered, and the oven is 50 to 100 ° C. After drying for 4-6 hours, the plasma-coupling cobalt-manganese composite oxide catalyst is obtained by calcining at 300-500 ° C for 3 to 5 hours in a muffle furnace.
  • the transition metal precursor salt in the step (2) is manganese nitrate and cobalt nitrate.
  • the double precipitant solution is calculated by using CO 3 2- ions, and the molar amount thereof is 4 to 12 times the molar amount of the transition metal in the precursor solution in the step (2).
  • the cobalt-manganese composite oxide catalyst of the present disclosure can be used for purifying organic waste gas by the following steps:
  • the coupled cobalt-manganese composite oxide catalyst is filled into the discharge region of the plasma reactor to form a one-stage plasma catalytic coupling reactor, and the polluted air containing the organic exhaust gas is introduced to adjust the discharge power, and the organic medium is subjected to normal temperature and pressure. Contaminants are degraded.
  • the organic waste gas concentration is ⁇ 2000 ppm
  • the space velocity is 20,000 to 60000 h -1
  • the discharge voltage is 9 to 15 kV
  • the discharge frequency is 8 to 12 kHz.
  • the plasma reactor blocking medium is quartz, the discharge gap is 1 to 5 mm, and the particle diameter of the catalyst-filled catalyst is 20 to 40 mesh.
  • the anatase-type TiO 2 -supported double transition metal catalyst prepared by the present disclosure can be directly placed in a dielectric barrier discharge low-temperature plasma region after being sieved, and used for discharging industrial VOCs under normal temperature and pressure, for example, toluene and chlorine.
  • Benzene experiments have shown that the catalyst prepared by the present disclosure has a good low temperature plasma coupling effect and has good stability.
  • the catalyst of the present disclosure has certain electrical properties, can improve the discharge state of the plasma, improve the effect of low temperature plasma and catalytic coupling, improve energy utilization rate, and has better catalytic performance, can improve degradation efficiency and Mineralization rate reduces the formation of O 3 .
  • the catalyst component of the present disclosure is simple, the raw materials used are cheap and easy to obtain, the preparation process is simple, the environmental pollution is small, and the industrial application is favorable;
  • the catalyst prepared by the present disclosure and the low temperature plasma coupling can be used not only for degrading hydrocarbon-based organic substances, but also for degrading organic substances containing chlorine organic substances or other elements, and having good resistance to chlorine poisoning, Long-term stable operation.
  • Figure 1 shows the degradation efficiency of low temperature plasma in combination with 10% Co 2 MnOx / TiO 2 discharge on toluene.
  • Figure 2 shows the degradation efficiency of chlorobenzene by low temperature plasma in combination with 10% CoMnOx/TiO 2 discharge.
  • Figure 4 shows the effect of the catalyst on the discharge state.
  • the precursor transition metal salt solution was prepared by using 50% aqueous solution of manganese nitrate and cobalt nitrate as raw materials.
  • the molar ratio of manganese to cobalt was 1:2, and the anatase type TiO 2 powder was obtained according to the total mass content of manganese and cobalt.
  • the precursor salt of the corresponding mass is dissolved in deionized water and stirred to prepare a precursor salt solution; then the anatase-type TiO 2 powder pretreated in the step (1) of the corresponding mass is added. , stirring and immersing for 1 h;
  • step (3) taking 4 times the manganese (or cobalt) molar amount of NH 4 HCO 3 and (NH 4 ) 2 CO 3 , dissolved in the same volume of deionized water as in step (2) to prepare a double precipitant solution;
  • the molar ratio of NH 4 HCO 3 and (NH 4 ) 2 CO 3 is 1:1;
  • the double precipitant solution prepared in the step (3) is quickly added to the precursor slurry obtained in the step (2), stirred for 2 hours, filtered, dried in an oven at 80 ° C for 6 h, and calcined at 350 ° C for 4 h in a muffle furnace. .
  • the catalyst powder prepared above was tableted, crushed, sieved into particles of 20-40 mesh, and filled into a discharge region of the dielectric barrier reactor for the experiment of degrading toluene.
  • the plasma reactor is a coaxial cylindrical reactor
  • the blocking medium is quartz
  • the inner diameter of the quartz tube is 10 mm
  • the discharge gap is 2 mm
  • the discharge voltage is 9 to 13 kV
  • the discharge frequency is 10 kHz
  • the concentration of toluene is 300 ppm.
  • the space velocity is 45000h -1
  • the degradation efficiency is shown in Figure 1, and the degradation efficiency of toluene is up to 98%.
  • the precursor transition metal salt solution is prepared by using 50% aqueous solution of manganese nitrate and cobalt nitrate as raw materials.
  • the molar ratio of manganese to cobalt is 1:1, and the anatase type TiO 2 powder is used according to the total mass content of manganese and cobalt.
  • the precursor salt of the corresponding mass is dissolved in deionized water and stirred to prepare a precursor salt solution; then the anatase-type TiO 2 powder pretreated in the step (1) of the corresponding mass is added. , stirring and immersing for 1 h;
  • step (3) taking 3 times the manganese (or cobalt) molar amount of NH 4 HCO 3 and (NH 4 ) 2 CO 3 , dissolved in the same volume of deionized water as in step (2) to prepare a double precipitant solution;
  • the molar ratio of NH 4 HCO 3 and (NH 4 ) 2 CO 3 is 1:1;
  • the double precipitant solution prepared in the step (3) is quickly added to the precursor slurry obtained in the step (2), stirred for 2 hours, filtered, dried in an oven at 60 ° C for 12 h, and calcined at 350 ° C for 4 h in a muffle furnace. .
  • the catalyst powder prepared above was tableted, crushed, sieved into 20-40 mesh particles, and filled into a discharge region of the dielectric barrier reactor for the experiment of degrading chlorobenzene.
  • the plasma reactor and the plasma power source in this example are the same as in the first embodiment; the concentration of chlorobenzene is 300 ppm, the space velocity is 45000 h -1 , the degradation efficiency is shown in Fig. 2, and the stability of coupling of the catalyst with the low temperature plasma is shown in Fig. 3.
  • the one-stage coupling of the catalyst of the present disclosure with the low temperature plasma can better improve the discharge state of the plasma and improve the coupling effect. As shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种钴锰复合氧化物催化剂、制备方法及在净化有机废气中的用途,催化剂包括载体和催化活性组分,载体为具有光催化性能的锐钛矿型TiO 2,催化活性组分为氧化锰和氧化钴双金属氧化物;催化活性组分中,锰和钴的质量含量为催化剂总质量的5~15%;催化剂活性组分中,锰和钴的摩尔比为1:5~5:1。

Description

一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法
交叉引用
本申请主张2018年4月18日提交的中国专利申请号为201810350053.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于环保技术领域,涉及低温等离子体与催化耦合应用于有机污染气体排放治理,特别涉及一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法。
背景技术
目前,大气污染问题受到社会的极大关注,对造成大气污染的气体排放要求更是日趋严格。挥发性有机物(Volatile Organic Compounds,简称VOCs)的排放,除了产生对人身健康的直接危害外,还是大气中PM2.5的重要前驱体物质,经过复杂的光化学反应,可以形成二次有机气溶胶,二次有机气溶胶正是可吸入颗粒物的重要组成部分,是环境大气气溶胶的重要贡献者。因此,减少大气雾霾,降低PM2.5浓度,提高空气质量,对VOCs的控制就势在必行。近年来,我国对VOCs的控制制定了严格的排放标准,社会企业面临严重的治理、减排任务。但是VOCs作为重要的工业原料,其应用十分广泛,包括石油化工行业、制造业、医药生产、喷涂、印刷、运输,等等。因此,对开发相应的减排和治理技术的需求十分迫切。
低温等离子体技术具有反应条件温和、响应速度快、适应范围广等特点,被广泛应用于污染物的控制,特别是对低浓度的VOCs(<1000PPm)污染物的控制更具有技术优势。低温等离子体与催化剂耦合可以提高能量利用效率、污染物的除去效率和矿化率,减少副产物的产生(如专利200710009641.3,CN105478136B,等)。多数的发明是采用贵金属催化剂与等离子体耦合,但贵金属催化剂存在成本高,易中毒等缺点。另外,专利CN106693955A发明了一 种双金属整体式等离子体催化剂,但是在我们的前期研究中发现,整体型催化剂适合与等离子体两段式耦合形式,在一段式耦合中会影响放电的均匀性。目前,低温等离子体和催化剂耦合仍然需要进一步提高能量效率和控制副产物,提高耦合效应。其中一个重要的手段就是发明一种适合于等离子体放电区内氛围的催化剂,采用一段式耦合方式,改善等离子体的放电状态,同时提高等离子体产生的短寿命活性粒子的利用,从而提高能量效率并减少副产物。
发明内容
为了克服上述现有技术的缺点,本公开的目的在于提供一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法,负载型的锰钴复合氧化物催化剂制备过程简单、价格低廉、寿命长、耦合效果好;该催化剂材料不仅具有较好的催化氧化性能,还具有一定的赝电容特性,与低温等离子体一段式耦合时,可以改善放电状态,增强耦合作用;本公开所述的一种等离子体耦合钴锰复合氧化物催化剂高效净化有机废气的技术可以改善低温等离子体的放电状态,能够高效率、长时间去除工业VOCs废气,并且降低副产物的生成。
为了实现上述目的,本公开采用的技术方案是:
一种钴锰复合氧化物催化剂,包括载体和催化活性组分,所述载体为具有光催化性能的商业锐钛矿型TiO 2;所述催化活性组分为氧化锰和氧化钴双金属氧化物;所述催化活性组分中,锰和钴的质量含量为催化剂总质量的5~15%;且所述催化剂活性组分中,锰和钴的摩尔比为1∶5~5∶1。
本公开还提供了所述钴锰复合氧化物催化剂制备方法,包括如下步骤:
(1)载体的预处理:将锐钛矿型TiO 2粉末放入马弗炉中200~400℃焙烧2~4h;
(2)前驱体浆液的制备:将一定量的过渡金属锰和钴的前驱体盐溶于去离子水中,搅拌,制得一定摩尔比的前驱体盐溶液,加入一定量的步骤(1)中预处理后的锐钛矿型TiO 2粉末,搅拌浸渍1~3h得到前驱体浆液;其中,过渡金 属的总质量为锐钛矿型TiO 2粉末质量的5~15%,两种过渡金属的摩尔比为1∶5~5∶1;
(3)双沉淀剂共沉淀的制备:将一定量的NH 4HCO 3和(NH 4) 2CO 3按照摩尔比1∶4~4∶1溶于去离子水中,制备一定摩尔浓度的双沉淀剂溶液;
(4)双沉淀剂共沉淀制备催化剂:将步骤(3)所得的双沉淀剂溶液加入到步骤(2)中所得到的前驱体浆液中,搅拌1-3h,过滤,烘箱中50~100℃干燥4~6h,马弗炉中300~500℃焙烧3~5h,即得所述等离子体耦合钴锰复合氧化物催化剂。
所述步骤(2)中过渡金属前驱体盐为硝酸锰和硝酸钴。
所述步骤(3)双沉淀剂溶液中,以CO 3 2-离子计算,其摩尔量为步骤(2)中前驱体溶液中过渡金属摩尔量的4~12倍。
本公开所述钴锰复合氧化物催化剂可用于净化有机废气,步骤如下:
将所述耦合钴锰复合氧化物催化剂填充到等离子体反应器的放电区域内,形成一段式等离子体催化耦合反应器,通入含有有机废气的污染空气,调节放电功率,常温常压下对有机污染物进行降解。
所述有机废气浓度<2000ppm,空速20000~60000h -1,放电电压9~15kV,放电频率8~12kHz。
所述等离子体反应器阻挡介质为石英,放电间隙为1~5mm,填充催化剂的颗粒粒径为20~40目。
本公开制备的锐钛矿型TiO 2负载的双过渡金属催化剂,成型筛分后可直接放置于介质阻挡放电低温等离子体区域中,常温常压下用于工业VOCs的排放治理,例如甲苯、氯苯,实验表明本公开制备的催化剂具有很好的低温等离子体耦合作用,并且具有良好的稳定性。
与现有技术相比,本公开的有益效果是:
(1)本公开所述催化剂具有一定的电学性能,可以改善等离子体的放电状 态,提高低温等离子体与催化耦合的效果,提高能量利用率;同时具有较好的催化性能,可以提高降解效率和矿化率,减少O 3的生成。
(2)本公开所述催化剂组分简单,所用原料廉价易得,制备过程简易,环境污染小,有利于工业化应用;
(3)本公开制备的催化剂与低温等离子体耦合不仅可用于降解碳氢类有机物,而且还可应用于降解含氯有机物或含有其它元素的有机物,并且具有很好的抗氯中毒的性能,可以长期稳定运行。
附图说明
图1低温等离子体协同10%Co 2MnOx/TiO 2放电对甲苯的降解效率。
图2低温等离子体协同10%CoMnOx/TiO 2放电对氯苯的降解效率。
图3低温等离子体协同10%CoMnOx/TiO 2放电对氯苯的稳定性。
图4催化剂对放电状态的影响。
具体实施方式
下面结合具体实施例对本公开进行进一步描述,但本公开的保护范围并不仅限于此。
实施例1:
(1)取商业的锐钛矿型TiO 2粉末放入马弗炉中200℃焙烧4h,降至室温后放入干燥皿备用;
(2)以50%的硝酸锰水溶液和硝酸钴为原料,配置前驱体过渡金属盐溶液,锰和钴的摩尔比为1∶2,按照锰和钴总质量含量为锐钛矿型TiO 2粉末为载体的10%计算,将相应质量的前驱体盐溶于去离子水中,搅拌,制得前驱体盐溶液;然后加入相应质量的步骤(1)中预处理后的锐钛矿型TiO 2粉末,搅拌浸渍1h;
(3)分别取4倍于锰(或钴)摩尔量的NH 4HCO 3和(NH 4) 2CO 3,溶于与步骤(2)相同体积的去离子水中,制备双沉淀剂溶液;此时,NH 4HCO 3和(NH 4) 2CO 3摩尔比为1∶1;
(4)将步骤(3)制备的双沉淀剂溶液快速加入到步骤(2)中所得到的前驱体浆液中,搅拌2h,过滤,烘箱中80℃干燥6h,马弗炉中350℃焙烧4h。
将上述制备的催化剂粉末压片,破碎,筛分为20~40目的颗粒,填装到介质阻挡反应器放电区域内,用于降解甲苯的实验。本实例中等离子体反应器为同轴圆筒式反应器,阻挡介质为石英,石英管内径为10mm,放电间隙为2mm;放电电压为9~13kV,放电频率为10kHz;甲苯的浓度为300ppm,空速为45000h -1,降解效率如图1,甲苯的降解效率最高可达98%以上。
实施例2:
(1)取商业的锐钛矿型TiO 2粉末放入马弗炉中200℃焙烧4h,降至室温后放入干燥皿备用;
(2)以50%的硝酸锰水溶液和硝酸钴为原料,配置前驱体过渡金属盐溶液,锰和钴的摩尔比为1∶1,按照锰和钴总质量含量为锐钛矿型TiO 2粉末为载体的10%计算,将相应质量的前驱体盐溶于去离子水中,搅拌,制得前驱体盐溶液;然后加入相应质量的步骤(1)中预处理后的锐钛矿型TiO 2粉末,搅拌浸渍1h;
(3)分别取3倍于锰(或钴)摩尔量的NH 4HCO 3和(NH 4) 2CO 3,溶于与步骤(2)相同体积的去离子水中,制备双沉淀剂溶液;此时,NH 4HCO 3和(NH 4) 2CO 3摩尔比为1∶1;
(4)将步骤(3)制备的双沉淀剂溶液快速加入到步骤(2)中所得到的前驱体浆液中,搅拌2h,过滤,烘箱中60℃干燥12h,马弗炉中350℃焙烧4h。
将上述制备的催化剂粉末压片,破碎,筛分为20~40目颗粒,填装到介质阻挡反应器放电区域内,用于降解氯苯的实验。本实例中等离子体反应器和等离子体电源与实施例1中相同;氯苯的浓度300ppm,空速45000h -1,降解效率如图2,催化剂与低温等离子体耦合的稳定性如图3。另外,本公开所涉及的催化剂与低温等离子体进行一段式耦合可以较好的改善等离子体的放电状态,提高耦合效果。如图4所示,填充本公开的催化剂对放电电流的影响,可以看出 本公开的催化剂明显提高了介质阻挡放电过程中微放电的连续性,改变了放电状态,从而提高了耦合效果和污染物的降解效率。

Claims (8)

  1. 一种钴锰复合氧化物催化剂,其特征在于,包括载体和催化活性组分,所述载体为具有光催化性能的商业锐钛矿型TiO 2;所述催化活性组分为氧化锰和氧化钴双金属氧化物;所述催化活性组分中,锰和钴的质量含量为催化剂总质量的5~15%;且所述催化剂活性组分中,锰和钴的摩尔比为1∶5~5∶1。
  2. 权利要求1所述钴锰复合氧化物催化剂制备方法,其特征在于,包括如下步骤:
    (1)载体的预处理:将锐钛矿型TiO 2粉末放入马弗炉中200~400℃焙烧2~4h;
    (2)前驱体浆液的制备:将一定量的过渡金属锰和钴的前驱体盐溶于去离子水中,搅拌,制得一定摩尔比的前驱体盐溶液,加入一定量的步骤(1)中预处理后的锐钛矿型TiO 2粉末,搅拌浸渍1~3h得到前驱体浆液;其中,过渡金属的总质量为锐钛矿型TiO 2粉末质量的5~15%,两种过渡金属的摩尔比为1∶5~5∶1;
    (3)双沉淀剂共沉淀的制备:将一定量的NH 4HCO 3和(NH 4) 2CO 3按照摩尔比1∶4~4∶1溶于去离子水中,制备一定摩尔浓度的双沉淀剂溶液;
    (4)双沉淀剂共沉淀制备催化剂:将步骤(3)所得的双沉淀剂溶液加入到步骤(2)中所得到的前驱体浆液中,搅拌1-3h,过滤,烘箱中50~100℃干燥4~6h,马弗炉中300~500℃焙烧3~5h,即得所述等离子体耦合钴锰复合氧化物催化剂。
  3. 根据权利要求2所述钴锰复合氧化物催化剂制备方法,其特征在于,所述步骤(2)中过渡金属前驱体盐为硝酸锰和硝酸钴。
  4. 根据权利要求2所述钴锰复合氧化物催化剂制备方法,其特征在于,所述步骤(3)双沉淀剂溶液中,以CO 3 2-离子计算,其摩尔量为步骤(2)中前驱体盐溶液中过渡金属摩尔量的4~12倍。
  5. 权利要求1所述钴锰复合氧化物催化剂用于净化有机废气。
  6. 根据权利要求5所述应用,其特征在于,步骤如下:
    将所述耦合钴锰复合氧化物催化剂填充到等离子体反应器的放电区域内,形成一段式等离子体催化耦合反应器,通入含有有机废气的污染空气,调节放电功率,常温常压下对有机污染物进行降解。
  7. 根据权利要求6所述应用,其特征在于,所述有机废气浓度<2000ppm,空速20000~60000h -1,放电电压9~15kV,放电频率8~12kHz。
  8. 根据权利要求6所述应用,其特征在于,所述等离子体反应器为介质阻挡反应器,阻挡介质为石英,放电间隙为1~5mm,填充催化剂的颗粒粒径为20~40目。
PCT/CN2018/094534 2018-04-18 2018-07-04 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法 WO2019200725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810350053.4 2018-04-18
CN201810350053.4A CN108543537A (zh) 2018-04-18 2018-04-18 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法

Publications (1)

Publication Number Publication Date
WO2019200725A1 true WO2019200725A1 (zh) 2019-10-24

Family

ID=63515409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094534 WO2019200725A1 (zh) 2018-04-18 2018-07-04 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法

Country Status (2)

Country Link
CN (1) CN108543537A (zh)
WO (1) WO2019200725A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887660A (zh) * 2022-06-01 2022-08-12 浙江科技学院 一种等离子体法光催化材料的制备及在染料废水中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158111B (zh) * 2018-10-03 2022-04-26 佛山霖诺环保科技有限公司 一种纳米碳基负载锰钴双金属甲醛催化剂的制备方法
CN111921374A (zh) * 2020-08-13 2020-11-13 浙江工业大学 一种双段放电等离子体催化降解氯苯的方法及所用催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553573A (zh) * 2011-12-29 2012-07-11 中国科学院过程工程研究所 一种氧化氮氧化物催化剂及其制备方法
CN205598920U (zh) * 2016-05-06 2016-09-28 张家港市艾尔环保设备有限公司 有机废气净化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381363B (zh) * 2013-07-29 2016-02-10 上海交通大学 同时除臭氧和有害有机物的催化剂及其制备方法、用途
CN106422699A (zh) * 2016-08-29 2017-02-22 浙江工业大学 光/热双驱动催化耦合生物净化VOCs的方法及其装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553573A (zh) * 2011-12-29 2012-07-11 中国科学院过程工程研究所 一种氧化氮氧化物催化剂及其制备方法
CN205598920U (zh) * 2016-05-06 2016-09-28 张家港市艾尔环保设备有限公司 有机废气净化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887660A (zh) * 2022-06-01 2022-08-12 浙江科技学院 一种等离子体法光催化材料的制备及在染料废水中的应用
CN114887660B (zh) * 2022-06-01 2023-10-24 浙江科技学院 一种等离子体法光催化材料的制备及在染料废水中的应用

Also Published As

Publication number Publication date
CN108543537A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
CN109126773B (zh) 一种垃圾焚烧烟气净化用催化剂及其制备方法
WO2019200725A1 (zh) 一种钴锰复合氧化物催化剂及其制备和耦合等离子体净化有机废气的方法
CN107754865B (zh) 一种负离子型光触媒及其制备方法
WO2019144572A1 (zh) 一种锰基催化剂及其制备方法与应用
CN109603820A (zh) 一种氧气条件下常温降解甲醛的单原子催化剂制备方法
CN103381363A (zh) 同时除臭氧和有害有机物的催化剂及其制备方法、用途
CN104785234A (zh) 一种蜂窝式活性炭负载催化剂板
CN108816233A (zh) 一种用于苯催化氧化的铜钴复合氧化物催化剂的制备方法
CN108855199A (zh) 一种用于臭氧催化氧化处理工业废水的复合催化剂及其制备方法
JP2018527168A (ja) 窒素酸化物除去用scr触媒及びその製造方法
CN113000046A (zh) 一种用于氮氧化物和挥发性有机物协同净化的改性锰基莫来石型催化剂、其制备方法和应用
Feng et al. Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system
Tai et al. Nano-photocatalyst in photocatalytic oxidation processes
CN113385184B (zh) 协同放电等离子体催化降解VOCs的Mn-Co-La复合催化剂及其制备方法和应用
CN112934219A (zh) 一种耐杂原子燃烧催化剂、其制备方法和应用
Nie et al. Non-thermal plasma-enhanced catalytic activation of Mn–Zr–La/Al2O3 catalyst for meta-xylene degradation: Synergetic effects and degradation mechanism
Xu et al. Pr-modified vanadia-based catalyst for simultaneous elimination of NOx and chlorobenzene
CN112316941A (zh) 一种用于氮氧化物和挥发性有机化合物协同净化的双功能催化剂及其制备方法
CN112473657B (zh) 一种协同脱除烟气中二噁英和汞的低钒催化剂及其制备方法和应用
KR101059885B1 (ko) 휘발성 유기화합물의 산화반응용 촉매 복합체
JP3911355B2 (ja) 光触媒体の作製方法
JP2004290754A (ja) ディーゼルエンジン排ガスの脱硝方法
CN115888694B (zh) 一种低温等离子体功能催化剂及其制备方法
JP2004290753A (ja) 耐熱性脱硝触媒
CN114950403B (zh) 一种复合金属改性纳米催化材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915725

Country of ref document: EP

Kind code of ref document: A1