WO2013103029A1 - インジウム製スパッタリングターゲット及びその製造方法 - Google Patents
インジウム製スパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2013103029A1 WO2013103029A1 PCT/JP2012/070766 JP2012070766W WO2013103029A1 WO 2013103029 A1 WO2013103029 A1 WO 2013103029A1 JP 2012070766 W JP2012070766 W JP 2012070766W WO 2013103029 A1 WO2013103029 A1 WO 2013103029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indium
- sputtering target
- sputtering
- film formation
- rate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3488—Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
- H01J37/3491—Manufacturing of targets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3423—Shape
Definitions
- the present invention relates to an indium sputtering target and a method for manufacturing the same.
- Indium is used as a sputtering target for forming a light absorption layer of a Cu—In—Ga—Se (CIGS) thin film solar cell.
- CGS Cu—In—Ga—Se
- Patent Document 1 describes a method in which an indium thin film is formed on a backing plate, and then indium is poured onto the thin film and cast so as to be integrated with the backing plate.
- Patent Document 2 describes a predetermined amount of indium raw material is charged into a heated mold and dissolved, indium oxide floating on the surface is removed, and cooled to obtain an ingot.
- Patent Document 2 Japanese Patent Laid-Open No. 2010-24474 (Patent Document 2) also describes that it is manufactured by rolling.
- the conventional indium sputtering target has a problem that the film thickness is difficult to control due to a gradual decrease in the film formation rate at the initial stage of sputtering, and the quality stability of the sputtered film is impaired.
- the deposition rate is very high at the beginning, but the profile gradually decreases as the sputtering time elapses and then gradually stabilizes. This means that the change in the film thickness with time will fluctuate greatly until the film formation rate stabilizes, and even if sputtering is performed for a certain time, the thickness of the resulting sputtered film tends to vary.
- this invention makes it a subject to provide the sputtering target made from an indium with short stable rate arrival time, and its manufacturing method.
- the present inventor examined the cause of the rapid decrease in the initial film formation rate and estimated the following mechanism.
- the surface of an indium sputtering target is processed by a lathe or the like, and further smoothed by a process such as polishing, and the surface roughness Ra is 4 ⁇ m or less and the ten-point average roughness Rzjis is 60 ⁇ m or less.
- the material of indium tends to grow nodules on the surface during sputtering, resulting in a rough surface. Due to the growth of nodules and the like, the progress of ions and particles related to sputtering is hindered, and the sputtering efficiency is remarkably reduced as compared with a smooth surface. As a result, the film formation rate is greatly reduced.
- the surface roughening gradually proceeds, the entire surface is filled with nodules, and it takes a long time to stabilize the sputtering efficiency and the film formation rate.
- the present inventor has repeatedly studied on the basis of the above inference, and found that the surface of the indium sputtering target is appropriately roughened in advance to suppress fluctuations in the film formation rate. Completed.
- the present invention is an indium sputtering target having an arithmetic average roughness Ra of 5 ⁇ m to 70 ⁇ m before sputtering.
- the 10-point average roughness Rzjis of the surface to be sputtered is 100 ⁇ m to 400 ⁇ m before sputtering.
- the reduction rate of the film formation rate after 10 hours has passed is less than 30% with respect to the initial film formation rate.
- the present invention is a method for producing the indium sputtering target, including a step of performing a surface treatment for spraying dry ice particles onto a surface to be sputtered.
- the present invention is a method for producing an indium sputtering target comprising a step of surface-treating a surface to be sputtered with abrasive paper having a particle size of # 60 or more.
- the abrasive paper has a grain size of # 60 to 400.
- the indium sputtering target according to the present invention has a short time to reach a stable rate, it can contribute to stabilizing the quality of the sputtered film.
- the conventional indium sputtering target like other metal targets, has a small surface roughness for the purpose of reducing particles generated at the initial stage of sputtering.
- the time until the deposition rate is stabilized becomes long. Therefore, in the present invention, the surface to be sputtered is appropriately roughened to lower the film formation rate at the initial stage of sputtering, and to approach the film formation rate in the film formation rate stable region, thereby shortening the stable rate arrival time. This is the main problem solving principle.
- the surface roughness Ra or Rzjis can be used as an index.
- the Ra of the target surface to be sputtered is preferably 5 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 7 ⁇ m or more.
- the Rzjis of the target surface to be sputtered is preferably 100 ⁇ m or more, more preferably 120 ⁇ m or more, and even more preferably 150 ⁇ m or more.
- the surface becomes too rough it may cause abnormal discharge. Further, it is inconvenient if the film formation rate becomes smaller than the film formation rate in the stable region.
- Ra of the target surface to be sputtered is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
- the surface roughness of the target surface to be sputtered is preferably Rzjis of 400 ⁇ m or less, more preferably 350 ⁇ m or less, and even more preferably 300 ⁇ m or less. .
- the arithmetic average roughness Ra of the surface to be sputtered is preferably 5 ⁇ m to 70 ⁇ m, more preferably 6 ⁇ m to 60 ⁇ m, and more preferably 7 ⁇ m to 50 ⁇ m. Even more preferably.
- the ten-point average roughness Rzjis of the surface to be sputtered is preferably 100 ⁇ m to 400 ⁇ m, more preferably 120 ⁇ m to 350 ⁇ m, and more preferably 150 ⁇ m. More preferably, it is ⁇ 345 ⁇ m, and even more preferably 200 ⁇ m to 330 ⁇ m.
- the surface roughness Ra and Rzj conform to the definition of JIS B0601: 2001.
- indium is very soft, when measured with a stylus type surface roughness meter, the indium itself is scraped off during the measurement and cannot be measured accurately. Therefore, the roughness is measured with a non-contact surface roughness meter such as a laser microscope.
- the difference between the initial film formation rate and the film formation rate when entering the stable region can be reduced.
- the sputtering power is 1.3 W /
- the rate of decrease of the film formation rate after 10 hours from the initial film formation rate can be made within 30%, preferably within 25%, more preferably within 20%. Typically 10 to 30%.
- the film formation rate is sufficiently stable after 10 hours, so 10 hours was used as a reference.
- indium which is a raw material is dissolved and poured into a mold.
- the raw material indium to be used preferably has a high purity because the conversion efficiency of a solar cell produced from the raw material is reduced when impurities are contained. For example, 99.99 mass A raw material having a purity of at least% can be used.
- it cools to room temperature and forms an indium ingot.
- rolling is performed as necessary to perform shape processing and surface treatment. In general, a higher film formation rate can be obtained by rolling.
- the surface treatment method is not particularly limited as long as the target surface can be roughened within the above-described surface roughness range, but the following methods can be exemplified.
- the first method is a method of performing a surface treatment in which dry ice particles are sprayed onto the surface of the target to be sputtered.
- a method for injecting the dry ice particles is not limited, and includes a shot blast method. If the size of the dry ice particles is too large, the surface roughness in the present invention may be deviated, and arcing may increase. It is preferably about 6 mm. The diameter and length of the dry ice pellets are the values measured with calipers. Further, if the pressure of the compressed air at the time of discharge is too high, it may deviate from the surface roughness in the present invention, and if it is too low, the surface cannot be sufficiently roughened. preferable. If the spray amount of dry ice is too large, the surface roughness in the present invention may be deviated, so 4 to 20 kg / h is preferable.
- the second method is a method of treating the target sputtered surface with abrasive paper. If the grain size of the abrasive paper is too large, it may deviate from the surface roughness in the present invention, whereas if it is too small, the surface cannot be sufficiently roughened. Therefore, in controlling the surface of the target to the above-described surface roughness, the grain size of the abrasive paper is preferably # 60 or more, more preferably # 60 to 400, and more preferably # 60 to 220. preferable. In the present invention, the grain size of the abrasive paper conforms to JIS R6010. As the surface treatment method, a method by hand finishing is preferable, and in the case of a disk-shaped target, it is preferable to rotate the target and press the abrasive paper to roughen it.
- the thickness of the target is not particularly limited and may be appropriately set according to the sputtering apparatus to be used, the film formation use time, etc., but is usually about 3 to 20 mm, and typically about 5 to 10 mm.
- the indium target thus obtained can be suitably used as a sputtering target for preparing a light absorption layer for a CIGS thin film solar cell.
- An indium raw material (purity 4N) dissolved at 170 ° C. was poured into a SUS mold having a length of 250 mm, a width of 160 mm, and a depth of 80 mm (inner dimensions) to a mold depth of 25 mm, and then allowed to cool to room temperature (25 ° C.). An ingot was prepared. Subsequently, cold rolling was performed from a thickness of 25 mm to a total rolling reduction of 80%, and a tile serving as a target member having a thickness of 5 mm was produced.
- This tile was cut into a polygonal column shape, bonded to a copper backing plate having a diameter of 250 mm and a thickness of 5 mm, and the side surface was cut by a lathe and processed into a disk shape having a diameter of 204 mm ⁇ thickness of 5 mm to produce an indium target. Moreover, the target was produced by casting without performing cold rolling depending on the sample. In this case, a cylindrical mold having an inner diameter of 210 mm and a height of 20 mm was placed on the backing plate, and the molten metal heated at 170 ° C. was poured and allowed to cool.
- the surface and side surfaces were cut with a lathe and processed into a disk shape having a diameter of 204 mm ⁇ thickness of 5 mm to produce an indium target.
- the indium target was produced, and finally the surface treatment described in Table 1 was performed.
- Use conditions dry ice pellets (diameter 3 mm, length 3 mm), discharge pressure 0.6 MPa, Dry ice spray rate 4kg / h A-4 Equipment used: Eco Prizza 2 manufactured by Nippon Liquid Co., Ltd. Use conditions: dry ice pellets (diameter 3 mm, length 3 mm), discharge pressure 0.2 MPa, Dry ice spray rate 10kg / h A-5 Equipment: Eco Prizza 2 manufactured by Nippon Liquid Co., Ltd. Use conditions: dry ice pellets (diameter 3 mm, length 3 mm), discharge pressure 0.2 MPa, Dry ice spray rate 20kg / h A-6 Equipment used: Eco Prizza 2 manufactured by Nippon Liquid Co., Ltd.
- FIG. 1 shows changes in sputtering time and film formation rate in Examples 1, 2, 3, 8, 9, and 10 and Comparative Examples 1, 2, and 3.
- the indium targets of these inventive examples and comparative examples were sputtered with an ANELVA SPF-313H apparatus with an ultimate vacuum pressure in the chamber before sputtering of 1 ⁇ 10 ⁇ 4 Pa and argon gas flowed at 5 sccm.
- Sputtering was performed at a pressure of 0.5 Pa and a sputtering power of 430 W (1.3 W / cm 2 ).
- Film formation on the substrate was carried out using Corning Eagle 2000 ( ⁇ 4 inch) as the substrate without heating the substrate.
- Sputtering was performed in a total cycle of 10 min from the start of sputtering to pre-sputtering 1 min ⁇ deposition 3 min ⁇ non-deposition sputtering 6 min, and this was repeated.
- the film formation rate was measured every 10 minutes after the start of sputtering for 120 minutes, every 60 minutes after 120 minutes and after 300 minutes, and after 600 minutes after 300 minutes.
- the total of the sputtering time without film formation, the pre-sputter time during film formation, and the film formation time was taken as the sputtering time.
- Table 1 lists the initial film formation rate, the film formation rate after 10 hours, the rate of decrease of the film formation rate, the stable rate arrival time, and the number of abnormal discharges from the start of sputtering to 10 hours.
- the stable rate arrival time was defined as the time at which the error first reached the value within 1% with respect to the film formation rate after 10 hours had elapsed at each measurement point.
- the film formation rate was calculated by calculating the thickness from the amount of indium obtained by measuring the weight difference before and after the glass substrate was formed and the substrate area, and dividing by the film formation time. The number of abnormal discharges was measured by a visual method.
- Example 1 dry ice grains were sprayed by a shot blasting method to roughen the surface. As Ra or Rzjis increases, the film formation rate decrease rate decreases, and the stable rate arrival time also decreases.
- Example 7 to 10 the surface was roughened with abrasive paper, but the same tendency was observed. Since Examples 11-12 were not cold-rolled, the film formation rate was generally lower than in the above-mentioned examples, but the same effect was confirmed, and the surface roughening treatment was performed regardless of the method such as rolling or casting. The effect of was confirmed. In Comparative Example 1, since the surface roughening treatment was not performed after rolling, the surface was smooth and the time for reaching the stable rate was longer than in the Examples.
- Comparative Example 2 the surface was smooth in the lathe finishing state, and the arrival time of the stable rate was longer than in the example.
- Comparative Example 3 the surface was still smooth just by wiping the target surface with the nonwoven fabric, and the stable rate arrival time was longer than that in the Example.
- Comparative Example 4 since Ra or Rzjis was too large, the arrival time of the stable rate was short, but many abnormal discharges occurred during sputtering.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
特公昭63-44820号(特許文献1)にはバッキングプレートにインジウムの薄膜を形成した後、該薄膜の上にインジウムを流し込み鋳造することでバッキングプレートと一体に形成する方法が記載されている。
特開2010-24474号公報(特許文献2)では、加熱された鋳型に所定量のインジウム原料を投入して溶解し、表面に浮遊する酸化インジウムを除去し、冷却してインゴットを得、得たインゴット表面を研削してインジウムターゲットを得るに際し、所定量のインジウム原料を一度に鋳型に投入せずに複数回に分けて投入し、都度生成した溶湯表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削して得る方法が記載されている。
特開2010-24474号公報(特許文献2)には、圧延によって製造されることも記載されている。
また、吐出時の圧縮空気の圧力は高すぎると本発明における表面粗さを逸脱する可能性があり、低すぎると十分に粗面化できないことから、0.2~0.6MPaであることが好ましい。
ドライアイスの噴射量は多すぎると本発明における表面粗さを逸脱する可能性があることから、4~20kg/hが好ましい。
(A)ドライアイス粒の噴射(ショットブラスト法)
A-1 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.2MPa、
ドライアイス噴射量4kg/h
A-2 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.4MPa、
ドライアイス噴射量4kg/h
A-3 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.6MPa、
ドライアイス噴射量4kg/h
A-4 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.2MPa、
ドライアイス噴射量10kg/h
A-5 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.2MPa、
ドライアイス噴射量20kg/h
A-6 使用装置:日本液炭株式会社製 エコプリッツァ2
使用条件:ドライアイスペレット(径3mm、長さ3mm)、吐出圧力0.6MPa、
ドライアイス噴射量20kg/h
(B)研磨紙による粗面化
ターゲットを平面方向に120rpmで回転させ、下記の粒度の研磨紙を手で押し当てることにより研磨痕をつけた。
B-1 研磨紙:#60
B-2 研磨紙:#80
B-3 研磨紙:#220
B-4 研磨紙:#400
(C)仕上げなし
圧延したままの表面であり、仕上げをしていない。
(D)旋盤仕上げ
ターゲット表面を旋盤にて切削し、旋盤跡が残っている状態。
(E)不織布仕上げ
ターゲット表面を不織布で払拭した。
(F)研磨紙:#40
ターゲットを平面方向に120rpmで回転させ、#40の研磨紙を手で押し当てることにより研磨痕をつけた。
異常放電の回数は目視の方法により測定した。
実施例1~6ではドライアイス粒をショットブラスト法により噴射して粗面化した。Ra又はRzjisが大きくなるにつれて成膜レート減少率が小さくなり、安定レート到達時間も短くなっている。
実施例7~10では研磨紙による粗面化を行ったが、同様の傾向が見られた。
実施例11~12は冷間圧延をしなかったので、上記実施例よりも成膜レートが全体的に低くなったが同様の効果が確認され、圧延や鋳造といった方法によらず粗面化処理の効果が確認された。
比較例1では、圧延後に粗面化処理をしていないので、表面が平滑であり、安定レート到達時間が実施例よりも長かった。
比較例2では、旋盤仕上げの状態で表面が平滑であり、安定レート到達時間が実施例よりも長かった。
比較例3では、ターゲット表面を不織布で払拭しただけで依然として表面が平滑であり、安定レート到達時間が実施例よりも長かった。
比較例4では、Ra又はRzjisが大きくなり過ぎたため、安定レート到達時間は短いが、スパッタ中に異常放電が多数生じた。
Claims (6)
- スパッタされる表面の算術平均粗さRaが、スパッタ前において、5μm~70μmであるインジウム製スパッタリングターゲット。
- スパッタされる表面の十点平均粗さRzjisが、スパッタ前において、100μm~400μmであるインジウム製スパッタリングターゲット。
- 初期成膜レートに対する10h経過後の成膜レートの減少率が30%以内である請求項1又は2に記載のインジウム製スパッタリングターゲット。
- ドライアイス粒をスパッタされる表面へ噴射する表面処理を施す工程を含む請求項1~3の何れか一項に記載のインジウム製スパッタリングターゲットの製造方法。
- 粒度が#60以上の研磨紙によりスパッタされる表面を表面処理する工程を含む請求項1~3の何れか一項に記載のインジウム製スパッタリングターゲットの製造方法。
- 研磨紙の粒度が#60~400である請求項5に記載のインジウム製スパッタリングターゲットの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127033267A KR20130088757A (ko) | 2012-01-05 | 2012-08-15 | 인듐제 스퍼터링 타깃 및 그 제조 방법 |
EP12824758.2A EP2772564A4 (en) | 2012-01-05 | 2012-08-15 | INDIUM SPUTTERTARGET AND MANUFACTURING METHOD THEREFOR |
KR1020147026461A KR20140122282A (ko) | 2012-01-05 | 2012-08-15 | 인듐제 스퍼터링 타깃 및 그 제조 방법 |
US13/819,499 US9758860B2 (en) | 2012-01-05 | 2012-08-15 | Indium sputtering target and method for manufacturing same |
KR1020137024990A KR20140029395A (ko) | 2012-01-05 | 2012-08-15 | 인듐제 스퍼터링 타깃 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012000750A JP5074628B1 (ja) | 2012-01-05 | 2012-01-05 | インジウム製スパッタリングターゲット及びその製造方法 |
JP2012-000750 | 2012-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013103029A1 true WO2013103029A1 (ja) | 2013-07-11 |
Family
ID=47277887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070766 WO2013103029A1 (ja) | 2012-01-05 | 2012-08-15 | インジウム製スパッタリングターゲット及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9758860B2 (ja) |
EP (1) | EP2772564A4 (ja) |
JP (1) | JP5074628B1 (ja) |
KR (3) | KR20140122282A (ja) |
TW (1) | TWI443214B (ja) |
WO (1) | WO2013103029A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178003A1 (ja) * | 2014-05-21 | 2015-11-26 | 株式会社Joled | 発光デバイスの製造方法および発光デバイス |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4948634B2 (ja) | 2010-09-01 | 2012-06-06 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5140169B2 (ja) | 2011-03-01 | 2013-02-06 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5026611B1 (ja) | 2011-09-21 | 2012-09-12 | Jx日鉱日石金属株式会社 | 積層構造体及びその製造方法 |
EP2818575B1 (en) | 2012-08-22 | 2018-05-30 | JX Nippon Mining & Metals Corp. | Cylindrical indium sputtering target and process for producing same |
WO2015004958A1 (ja) * | 2013-07-08 | 2015-01-15 | Jx日鉱日石金属株式会社 | スパッタリングターゲット及び、それの製造方法 |
CN110067305B (zh) * | 2018-01-23 | 2021-12-10 | 润弘精密工程事业股份有限公司 | 梁柱接头结构及其施工方法 |
JP7158316B2 (ja) * | 2019-03-05 | 2022-10-21 | Jx金属株式会社 | スパッタリングターゲット及びその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57185973A (en) * | 1981-05-07 | 1982-11-16 | Mitsui Mining & Smelting Co Ltd | Production of target for sputtering |
JPH04301074A (ja) * | 1991-03-29 | 1992-10-23 | Mitsui Mining & Smelting Co Ltd | スパッタリング用ターゲット |
JPH08218165A (ja) * | 1995-02-09 | 1996-08-27 | Hitachi Metals Ltd | インジウム・スズ酸化物膜用ターゲット |
JP2005002364A (ja) * | 2003-06-09 | 2005-01-06 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲット及びその製造方法 |
JP2006322039A (ja) * | 2005-05-18 | 2006-11-30 | Sumitomo Metal Mining Co Ltd | スパッタリングターゲット |
JP2010024474A (ja) | 2008-07-16 | 2010-02-04 | Sumitomo Metal Mining Co Ltd | インジウムターゲットの製造方法 |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3046651A (en) | 1958-03-14 | 1962-07-31 | Honeywell Regulator Co | Soldering technique |
FR2371009A1 (fr) | 1976-11-15 | 1978-06-09 | Commissariat Energie Atomique | Procede de controle du depot de couches par pulverisation reactive et dispositif de mise en oeuvre |
JPS58145310A (ja) | 1982-02-22 | 1983-08-30 | Masanobu Nakamura | 偏肉管の製造方法 |
JPS63111172A (ja) | 1986-10-29 | 1988-05-16 | Hitachi Metals Ltd | タ−ゲツト材の製造方法 |
DE3929534A1 (de) | 1989-09-06 | 1991-03-28 | Daimler Benz Ag | Verfahren zur herstellung eines ventils |
JPH0539566A (ja) | 1991-02-19 | 1993-02-19 | Mitsubishi Materials Corp | スパツタリング用ターゲツト及びその製造方法 |
JP3974945B2 (ja) | 1992-01-30 | 2007-09-12 | 東ソー株式会社 | チタンスパッタリングターゲット |
US5269453A (en) | 1992-04-02 | 1993-12-14 | Motorola, Inc. | Low temperature method for forming solder bump interconnections to a plated circuit trace |
JPH06287661A (ja) | 1993-03-31 | 1994-10-11 | Nikko Kinzoku Kk | 高融点金属溶製材の製造法 |
US5630918A (en) | 1994-06-13 | 1997-05-20 | Tosoh Corporation | ITO sputtering target |
JP3152108B2 (ja) | 1994-06-13 | 2001-04-03 | 東ソー株式会社 | Itoスパッタリングターゲット |
JPH08281208A (ja) | 1995-04-07 | 1996-10-29 | Sumitomo Light Metal Ind Ltd | アルミニウム合金研削部の塗装前処理方法 |
JP3560393B2 (ja) | 1995-07-06 | 2004-09-02 | 株式会社日鉱マテリアルズ | アルミニウム合金スパッタリングターゲットの製造方法 |
JPH10280137A (ja) | 1997-04-04 | 1998-10-20 | Tosoh Corp | スパッタリングターゲットの製造方法 |
US6030514A (en) * | 1997-05-02 | 2000-02-29 | Sony Corporation | Method of reducing sputtering burn-in time, minimizing sputtered particulate, and target assembly therefor |
JPH11236664A (ja) | 1998-02-24 | 1999-08-31 | Mitsui Chem Inc | スパッタリング用ターゲットのバッキングプレート |
US6309556B1 (en) * | 1998-09-03 | 2001-10-30 | Praxair S.T. Technology, Inc. | Method of manufacturing enhanced finish sputtering targets |
US20010047838A1 (en) | 2000-03-28 | 2001-12-06 | Segal Vladimir M. | Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions |
DE10063383C1 (de) | 2000-12-19 | 2002-03-14 | Heraeus Gmbh W C | Verfahren zur Herstellung eines Rohrtargets und Verwendung |
JP2003183820A (ja) | 2001-12-10 | 2003-07-03 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲット |
KR100541329B1 (ko) | 2001-09-18 | 2006-01-10 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 스퍼터링 표적 및 그 제조 방법 |
JP2003089869A (ja) | 2001-09-18 | 2003-03-28 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲットおよびその製造方法 |
JP2003136190A (ja) | 2001-11-07 | 2003-05-14 | Mitsubishi Materials Corp | 微細な結晶粒を有するインゴットを製造するための振動鋳造用鋳型 |
JP2004131747A (ja) | 2002-10-08 | 2004-04-30 | Sumitomo Metal Mining Co Ltd | 表示デバイス用銀合金及びこの銀合金を用いて形成した電極膜または反射膜を使用する表示デバイス |
US20050029675A1 (en) | 2003-03-31 | 2005-02-10 | Fay Hua | Tin/indium lead-free solders for low stress chip attachment |
US20050269385A1 (en) | 2004-06-03 | 2005-12-08 | National Tsing Hua University | Soldering method and solder joints formed therein |
US20050279630A1 (en) | 2004-06-16 | 2005-12-22 | Dynamic Machine Works, Inc. | Tubular sputtering targets and methods of flowforming the same |
JP2006102807A (ja) | 2004-10-08 | 2006-04-20 | Toyota Motor Corp | 金属組織改質方法 |
DE102004060423B4 (de) | 2004-12-14 | 2016-10-27 | Heraeus Deutschland GmbH & Co. KG | Rohrtarget und dessen Verwendung |
DE102006026005A1 (de) * | 2006-06-01 | 2007-12-06 | W.C. Heraeus Gmbh | Kaltgepresste Sputtertargets |
WO2008134516A2 (en) * | 2007-04-27 | 2008-11-06 | Honeywell International Inc. | Novel manufacturing design and processing methods and apparatus for sputtering targets |
US8197894B2 (en) | 2007-05-04 | 2012-06-12 | H.C. Starck Gmbh | Methods of forming sputtering targets |
JP4833942B2 (ja) * | 2007-08-29 | 2011-12-07 | 株式会社コベルコ科研 | Ag基合金スパッタリングターゲット |
US20090065354A1 (en) | 2007-09-12 | 2009-03-12 | Kardokus Janine K | Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof |
JP5208556B2 (ja) | 2008-03-31 | 2013-06-12 | Jx日鉱日石金属株式会社 | 精密プレス加工に適したチタン銅及び該チタン銅の製造方法 |
US8003432B2 (en) | 2008-06-25 | 2011-08-23 | Stion Corporation | Consumable adhesive layer for thin film photovoltaic material |
JP5625907B2 (ja) | 2008-07-15 | 2014-11-19 | 東ソー株式会社 | 複合酸化物焼結体、複合酸化物焼結体の製造方法、スパッタリングターゲット及び薄膜の製造方法 |
JP5335931B2 (ja) | 2008-12-26 | 2013-11-06 | メギカ・コーポレイション | 電力管理集積回路を有するチップ・パッケージおよび関連技術 |
EP2287356A1 (en) | 2009-07-31 | 2011-02-23 | Bekaert Advanced Coatings NV. | Sputter target, method and apparatus for manufacturing sputter targets |
US10347473B2 (en) | 2009-09-24 | 2019-07-09 | The United States Of America, As Represented By The Secretary Of The Navy | Synthesis of high-purity bulk copper indium gallium selenide materials |
US20110089030A1 (en) | 2009-10-20 | 2011-04-21 | Miasole | CIG sputtering target and methods of making and using thereof |
JP2011236445A (ja) | 2010-04-30 | 2011-11-24 | Jx Nippon Mining & Metals Corp | インジウムメタルターゲット及びその製造方法 |
JP4948633B2 (ja) | 2010-08-31 | 2012-06-06 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP4837785B1 (ja) | 2010-09-01 | 2011-12-14 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5254290B2 (ja) | 2010-09-01 | 2013-08-07 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP4948634B2 (ja) | 2010-09-01 | 2012-06-06 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5086452B2 (ja) | 2011-02-09 | 2012-11-28 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
DE102011012034A1 (de) | 2011-02-22 | 2012-08-23 | Heraeus Materials Technology Gmbh & Co. Kg | Rohrförmiges Sputtertarget |
JP5140169B2 (ja) | 2011-03-01 | 2013-02-06 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5291754B2 (ja) | 2011-04-15 | 2013-09-18 | 三井金属鉱業株式会社 | 太陽電池用スパッタリングターゲット |
JP4884561B1 (ja) | 2011-04-19 | 2012-02-29 | Jx日鉱日石金属株式会社 | インジウムターゲット及びその製造方法 |
JP5026611B1 (ja) | 2011-09-21 | 2012-09-12 | Jx日鉱日石金属株式会社 | 積層構造体及びその製造方法 |
JP5654648B2 (ja) | 2012-08-10 | 2015-01-14 | 株式会社半導体エネルギー研究所 | 金属酸化物膜 |
EP2818575B1 (en) | 2012-08-22 | 2018-05-30 | JX Nippon Mining & Metals Corp. | Cylindrical indium sputtering target and process for producing same |
WO2015004958A1 (ja) | 2013-07-08 | 2015-01-15 | Jx日鉱日石金属株式会社 | スパッタリングターゲット及び、それの製造方法 |
-
2012
- 2012-01-05 JP JP2012000750A patent/JP5074628B1/ja active Active
- 2012-08-15 WO PCT/JP2012/070766 patent/WO2013103029A1/ja active Application Filing
- 2012-08-15 US US13/819,499 patent/US9758860B2/en active Active
- 2012-08-15 KR KR1020147026461A patent/KR20140122282A/ko not_active Application Discontinuation
- 2012-08-15 EP EP12824758.2A patent/EP2772564A4/en not_active Withdrawn
- 2012-08-15 KR KR1020127033267A patent/KR20130088757A/ko active Application Filing
- 2012-08-15 KR KR1020137024990A patent/KR20140029395A/ko active Application Filing
- 2012-08-16 TW TW101129645A patent/TWI443214B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57185973A (en) * | 1981-05-07 | 1982-11-16 | Mitsui Mining & Smelting Co Ltd | Production of target for sputtering |
JPS6344820B2 (ja) | 1981-05-07 | 1988-09-07 | Mitsui Mining & Smelting Co | |
JPH04301074A (ja) * | 1991-03-29 | 1992-10-23 | Mitsui Mining & Smelting Co Ltd | スパッタリング用ターゲット |
JPH08218165A (ja) * | 1995-02-09 | 1996-08-27 | Hitachi Metals Ltd | インジウム・スズ酸化物膜用ターゲット |
JP2005002364A (ja) * | 2003-06-09 | 2005-01-06 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲット及びその製造方法 |
JP2006322039A (ja) * | 2005-05-18 | 2006-11-30 | Sumitomo Metal Mining Co Ltd | スパッタリングターゲット |
JP2010024474A (ja) | 2008-07-16 | 2010-02-04 | Sumitomo Metal Mining Co Ltd | インジウムターゲットの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2772564A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178003A1 (ja) * | 2014-05-21 | 2015-11-26 | 株式会社Joled | 発光デバイスの製造方法および発光デバイス |
Also Published As
Publication number | Publication date |
---|---|
KR20130088757A (ko) | 2013-08-08 |
US20130270108A1 (en) | 2013-10-17 |
KR20140029395A (ko) | 2014-03-10 |
US9758860B2 (en) | 2017-09-12 |
JP5074628B1 (ja) | 2012-11-14 |
JP2013139613A (ja) | 2013-07-18 |
EP2772564A4 (en) | 2015-08-19 |
KR20140122282A (ko) | 2014-10-17 |
EP2772564A1 (en) | 2014-09-03 |
TWI443214B (zh) | 2014-07-01 |
TW201329264A (zh) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074628B1 (ja) | インジウム製スパッタリングターゲット及びその製造方法 | |
JP5744958B2 (ja) | イッテルビウムスパッタリングターゲット | |
TWI447248B (zh) | Reduced particle sputtering targets | |
TWI390067B (zh) | Indium target and its manufacturing method | |
JP4948633B2 (ja) | インジウムターゲット及びその製造方法 | |
WO2012029364A1 (ja) | インジウムターゲット及びその製造方法 | |
JP5139409B2 (ja) | 純AlまたはAl合金スパッタリングターゲット | |
TW201329257A (zh) | 導電膜形成用銀合金濺鍍靶及其製造方法 | |
JP3152108B2 (ja) | Itoスパッタリングターゲット | |
CN103958727A (zh) | 导电性膜形成用银合金溅射靶及其制造方法 | |
JP5969493B2 (ja) | スパッタリングターゲットおよびその製造方法 | |
TWI458849B (zh) | Indium target and its manufacturing method | |
CN107109634B (zh) | 钽溅射靶及其制造方法 | |
TWI676691B (zh) | 鉭濺鍍靶及其製造方法 | |
JP7278463B1 (ja) | タングステンターゲットおよびその製造方法 | |
JP7573792B2 (ja) | Auスパッタリングターゲット | |
JP5497479B2 (ja) | スパッタリングターゲット | |
JP6678528B2 (ja) | インジウムターゲット部材及びその製造方法 | |
CN110709532B (zh) | 溅射靶材、溅射靶、溅射靶用铝板及其制造方法 | |
JP2003055049A (ja) | 酸化インジウム焼結体、その製造方法及びそれを用いたスパッタリングターゲット | |
JP2013227632A (ja) | インジウムターゲット及びその製造方法 | |
JP2016166390A (ja) | Cu−Ga合金円筒型鋳塊 | |
TW202140829A (zh) | 釔錠、使用其的釔濺鍍靶及氧化釔膜的製造方法 | |
JP2004244664A (ja) | スパッタリングターゲットとその製造方法 | |
JP5477790B2 (ja) | タンタルスパッタリングターゲット及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20127033267 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012824758 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012824758 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819499 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12824758 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |