WO2013099607A1 - ポリオレフィン微多孔膜及びその製造方法 - Google Patents
ポリオレフィン微多孔膜及びその製造方法 Download PDFInfo
- Publication number
- WO2013099607A1 WO2013099607A1 PCT/JP2012/082199 JP2012082199W WO2013099607A1 WO 2013099607 A1 WO2013099607 A1 WO 2013099607A1 JP 2012082199 W JP2012082199 W JP 2012082199W WO 2013099607 A1 WO2013099607 A1 WO 2013099607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin
- microporous membrane
- mass
- less
- stretching
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/005—Producing membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0658—PE, i.e. polyethylene characterised by its molecular weight
- B29K2023/0683—UHMWPE, i.e. ultra high molecular weight polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0044—Stabilisers, e.g. against oxydation, light or heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/041—Microporous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2823/00—Use of polyalkenes or derivatives thereof as mould material
- B29K2823/04—Polymers of ethylene
- B29K2823/06—PE, i.e. polyethylene
- B29K2823/0658—PE, i.e. polyethylene characterised by its molecular weight
- B29K2823/0683—UHMWPE, i.e. ultra high molecular weight polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3468—Batteries, accumulators or fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/755—Membranes, diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/068—Ultra high molecular weight polyethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a polyolefin microporous membrane and a method for producing the same, and more particularly to a polyolefin microporous membrane that is excellent in oxidation resistance, mechanical properties, and permeability and useful as a battery separator and a method for producing the same.
- Polyolefin microporous membranes are used in various applications such as battery separators, electrolytic capacitor membranes, various filters, moisture permeable and waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes.
- battery separators particularly a lithium ion battery separator
- its performance is deeply related to battery characteristics, battery productivity, and battery safety. Therefore, excellent permeability, mechanical characteristics, heat shrinkage resistance, shutdown characteristics, meltdown characteristics, etc. are required.
- the mechanical strength is low, when used as a battery separator, the voltage of the battery may decrease due to a short circuit of the electrode.
- Patent Document 1 Japanese Patent Laid-Open No. 11-269290
- Polyolefin composition containing 70 to 95% by weight of polyethylene having a weight average molecular weight of 5 ⁇ 10 5 or more or a polyethylene composition thereof and 5 to 30% by weight of polypropylene having a weight average molecular weight of 1 ⁇ 10 4 or more as the microporous membrane
- a polyolefin microporous membrane made of a product wherein the thickness variation within 1 mm on the left and right sides adjacent to the surface direction of the membrane surface is ⁇ 1 ⁇ m or more.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-152614
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-152614
- the microporous membrane contains 5 to 20% by weight of a polypropylene having a viscosity average molecular weight of 200,000 or more and a low molecular weight polypropylene having a viscosity average molecular weight of 50,000 or less, respectively. Has been.
- Patent Document 3 manufactures a mixture comprising polyethylene having a specific molecular weight distribution and polypropylene having a specific range of weight average molecular weight, an inorganic fine powder, and an organic liquid. By using it as a raw material for the membrane, an organic electrolyte with excellent mechanical properties and safety can be obtained, even if the proportion of the ultra-high molecular weight portion in the molecular weight distribution of polyethylene is increased, there is no pressure increase during film molding. A battery separator to be used is proposed.
- This separator is a fine particle comprising a matrix containing a polyethylene having a molecular weight of 10% by weight or more and a molecular weight of 5% by weight or more and a polypropylene having a weight average molecular weight of 10,000 to 1,000,000. It is composed of a porous membrane, and the amount of the polypropylene is 5 to 45% by weight of the total weight of polyethylene and polypropylene, and the microporous membrane has a thickness of 10 to 500 ⁇ m, a porosity of 40 to 85%, and a maximum pore diameter. The difference between the film breaking temperature and the non-porous temperature is 28 to 40 ° C.
- Patent Document 4 Japanese Patent Application Laid-Open No. 2011-111484 includes 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component includes ultrahigh molecular weight polyethylene, A polyolefin microporous membrane having a temperature difference between the melting point Tme and the melting point Tmp of the polypropylene component of ⁇ 20 ° C. ⁇ Tmp ⁇ Tme ⁇ 23 ° C. and a bubble point of 400 to 600 kPa is proposed. It is said that a polyolefin microporous membrane suitable as a separator capable of achieving both oxidation resistance and cycle characteristics is provided.
- Patent Document 5 is a polyolefin microporous film made of polyethylene and polypropylene having a viscosity average molecular weight of 100,000 or more, containing 4 wt% or more of the polypropylene, and by infrared spectroscopy.
- a polyolefin microporous membrane is proposed in which the concentration of terminal vinyl groups per 10,000 carbon atoms in the polyolefin constituting the microporous membrane is 2 or more. It is disclosed that the microporous film has achieved both the resistance to fracturing and low heat shrinkage, and has excellent fuse characteristics and a uniform film thickness.
- Japanese Patent Application Laid-Open No. 2001-183432 Patent Document 6
- Japanese Patent Application Laid-Open No. 2002-105235 Patent Document 7
- International Publication No. 2005/113657 Patent Document 8
- Japanese Patent Laid-Open No. 11-269290 JP 2004-152614 A JP-A-5-234578 JP 2011-111484 A International Publication No. 2007/015416 JP 2001-183432 A JP 2002-105235 A International Publication No. 2005/113657
- the polyethylene microporous membrane introduced with polypropylene described in Patent Documents 6 to 8 had an insufficient permeability-strength balance.
- an object of the present invention is to provide a polyolefin microporous membrane excellent in oxidation resistance, mechanical properties, permeability and electrolyte solution pouring property.
- the polyolefin microporous membrane of the present invention has the following constitution. That is, It is a polyolefin microporous membrane obtained by forming a gel-like molded product using a polyolefin resin containing polypropylene, and stretching and washing it in at least one direction, and has an electrolyte solution injection property of 20 seconds or less, A polyolefin microporous membrane having a uniform polypropylene distribution in at least one plane perpendicular to the thickness direction.
- the manufacturing method of the polyolefin microporous film of this invention has the following structure. That is, A method for producing the above-mentioned polyolefin microporous membrane, wherein (a) the content of ultra high molecular weight polyethylene having a mass average molecular weight of 1 ⁇ 10 6 or more is 1 to 50% by mass with respect to 100% by mass of the whole polyolefin, and the weight average molecular weight is (B) melt-kneading a polyolefin resin mainly composed of polyethylene containing 0.5% or more and less than 5% by mass of polypropylene that is greater than 50,000 and less than 300,000; The obtained melt-kneaded product is extruded from a die so that the shear rate is 60 / sec or more, and is cooled so that the cooling rate is 30 ° C./sec or more to form a gel-like molded product. And (e) a method for producing a polyolefin microporous membrane in which
- the polyolefin resin is preferably a polyolefin resin containing 0.5% by mass or more and less than 5% by mass of polypropylene having a weight average molecular weight of more than 50,000 and less than 300,000. .
- the polyolefin microporous membrane of the present invention has an average value of normalized PP / PE ratio measured by Raman spectroscopy in at least one plane perpendicular to the thickness direction of 0.5 or more, a standard deviation of 0.2 or less, and a kurtosis of It is preferable that it is 1.0 or less.
- the polyolefin microporous membrane of the present invention preferably has a polypropylene weight average molecular weight of more than 50,000 and less than 150,000.
- the polyolefin microporous membrane of the present invention preferably has a polypropylene weight average molecular weight of more than 50,000 and less than 150,000.
- the polyolefin microporous membrane of the present invention preferably contains 1 to 50% by weight of ultrahigh molecular weight polyethylene having a mass average molecular weight of 1 ⁇ 10 6 or more when the total polyolefin resin is 100% by weight.
- the microporous film does not decrease the polyethylene content in the film surface portion compared to the average of the entire film, and the invention disclosed in Patent Document 5
- the oxidation resistance is improved even when the terminal vinyl group concentration per 10,000 carbon atoms in the polyolefin constituting the microporous film by infrared spectroscopy is not 2 or more. Since the amount of polypropylene added is less than 5% by mass, the film thickness variation as seen in Patent Document 1 is not observed and a uniform film thickness distribution is shown.
- PP distribution a microporous film having a uniform polypropylene distribution
- the polypropylene content of the microporous membrane of the present invention is small, but it is considered that the polypropylene present without being unevenly distributed in the plane perpendicular to the thickness direction contributes to the suppression of the oxidation reaction in the battery. If it is 0.5% by mass or more, the contribution of oxidation stability is sufficient, and if it is less than 5% by mass, the film thickness deviation does not increase and the strength does not decrease. Is preferred.
- the polyolefin microporous membrane of the present invention has a structure in which the PP distribution is uniform in at least one plane perpendicular to the thickness direction from the analysis result by microscopic Raman spectroscopy. It exists without being unevenly distributed within. For this reason, the partial deterioration of the separator hardly proceeds in the battery. Moreover, since the amount of polypropylene to be added is small, it has an excellent balance between air permeability and puncture strength, and exhibits an electrolyte injection property equivalent to that of a polyethylene microporous membrane. Therefore, when the polyolefin microporous membrane of the present invention is used as a battery separator, the productivity of the battery is improved, and the battery life is extended due to excellent cycle characteristics.
- a gel-like molded product is formed using a polyolefin composition containing polypropylene having a specific molecular weight and a content of less than 5% by mass, stretched, washed, and again predetermined. Since the heat treatment is performed after the film is stretched at a magnification of 1, a polyolefin microporous film having the above-described properties can be stably and efficiently produced.
- FIG. 2 is a graph showing a normalized PP / PE ratio distribution diagram of Example 1.
- FIG. 2 is a two-dimensional distribution diagram of normalized PP / PE ratios in Example 1.
- 2 is a normalized PP / PE ratio two-dimensional distribution diagram of Comparative Example 1.
- FIG. 6 is a two-dimensional distribution diagram of a normalized PP / PE ratio in Comparative Example 2.
- the polyolefin resin constituting the polyolefin microporous membrane of the present invention preferably contains polyethylene (hereinafter referred to as PE) as a main component.
- the polyolefin resin may contain PE in addition to polypropylene having a specific molecular weight, may be a composition containing PE and other polyolefins, or may contain a resin other than polyolefin. There may be. Therefore, it should be understood that the term “polyolefin resin” may include not only polyolefins but also resins other than polyolefins. However, the polyolefin resin is 100% by mass as a whole, and the proportion of PE is preferably 80% by mass or more, more preferably 90% by mass or more.
- PE As PE, (a) PE with Mw of less than 1 ⁇ 10 6 (hereinafter referred to as “PE (A)” unless otherwise specified), or (b) PE (A) with Mw of 1 ⁇ A composition comprising 10 6 or more ultra high molecular weight PE (UHMwPE) (hereinafter simply referred to as “PE composition (B)” unless otherwise specified) is preferred.
- UHMwPE ultra high molecular weight PE
- PE (A) may be any of high density PE (HDPE), medium density PE (MDPE), and low density PE (LDPE), but HDPE is preferred.
- the Mw of PE (A) is preferably 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 .
- Mw of HDPE is more preferably 5 ⁇ 10 4 or more and less than 4 ⁇ 10 5 .
- Two or more PEs (A) having different Mw or density may be used.
- PE (A) may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other ⁇ -olefin.
- ⁇ -olefins other than ethylene examples include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene, and the like.
- the content rate of UHMwPE is 50 mass% or less by making the whole PE into 100 mass%. When this content rate exceeds 50 mass%, a pressure rise will be caused at the time of molding, and productivity will be reduced.
- the lower limit of the content is not particularly limited, but is preferably 1% by mass or more from the viewpoint of maintaining mechanical strength and maintaining a high meltdown temperature (MD temperature), and particularly preferably 5% by mass or more. preferable.
- the Mw of UHMwPE is preferably in the range of 1 ⁇ 10 6 to 3 ⁇ 10 6 . By making Mw of UHMwPE 3 ⁇ 10 6 or less, melt extrusion can be facilitated.
- UHMwPE is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other ⁇ -olefin. Other ⁇ -olefins other than ethylene may be the same as described above.
- the ratio Mw / Mn (molecular weight distribution) of Mw and number average molecular weight (Mn) of PE (A) and PE composition (B) is not limited, but is preferably in the range of 5 to 300. Is more preferable, and a range of 5 to 25 is particularly preferable.
- Mw / Mn is less than 5, the amount of the high molecular weight component is too large, so that extrusion of the PE solution is difficult.
- Mw / Mn exceeds 300, the strength of the microporous film obtained is too low due to too many low molecular weight components.
- Mw / Mn is used as a measure of molecular weight distribution. The larger this value, the wider the molecular weight distribution.
- Mw / Mn shows the spread of its molecular weight distribution, and the larger the value, the wider the molecular weight distribution.
- the Mw / Mn of a single PE can be adjusted as appropriate by preparing PE by multistage polymerization.
- the multistage polymerization method is preferably a two-stage polymerization in which a high molecular weight component is polymerized in the first stage and a low molecular weight component is polymerized in the second stage.
- the larger the Mw / Mn the larger the difference in Mw of each component to be blended, and the smaller the smaller, the smaller the difference in Mw.
- Mw / Mn of the PE composition (B) can be appropriately adjusted by adjusting the molecular weight and mixing ratio of each component.
- the polyolefin resin may contain a polyolefin imparting a shutdown function.
- LDPE or PE wax can be added as the polyolefin imparting the shutdown function.
- the LDPE is preferably at least one selected from the group consisting of branched LDPE, linear LDPE (LLDPE), and an ethylene / ⁇ -olefin copolymer produced by a single site catalyst.
- the addition amount is preferably 40% by mass or less based on 100% by mass of the entire polyolefin resin. When this addition amount is large, the strength is greatly reduced.
- the polyolefin resin contains the PE composition (B), polybutene-1 having an Mw of 1 ⁇ 10 4 to 4 ⁇ 10 6 and an ethylene / ⁇ -olefin having an Mw of 1 ⁇ 10 4 to 4 ⁇ 10 6 as optional components Any of the copolymers may be added. These addition amounts are preferably 40% by mass or less based on 100% by mass of the entire polyolefin resin.
- Polypropylene (hereinafter referred to as PP) is not limited to a homopolymer, but may be a block copolymer and / or a random copolymer containing other ⁇ -olefin or diolefin.
- Other olefins are preferably ethylene or ⁇ -olefins having 4 to 8 carbon atoms. Examples of the ⁇ -olefin having 4 to 8 carbon atoms include 1-butene, 1-hexene, 4-methyl-1-pentene and the like.
- the diolefin preferably has 4 to 14 carbon atoms.
- diolefin having 4 to 14 carbon atoms examples include butadiene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, and the like.
- the content of other olefins or diolefins is preferably less than 10 mol% with respect to 100 mol% of the propylene copolymer.
- the Mw of PP is preferably greater than 5 ⁇ 10 4 and less than 3 ⁇ 10 5, more preferably greater than 5 ⁇ 10 4 and less than 1.5 ⁇ 10 5 .
- the molecular weight distribution (Mw / Mn) of PP is preferably 1.01 to 100, more preferably 1.1 to 50.
- the PP may be a single product or a composition containing two or more types of PP.
- the melting point of PP is preferably 150 to 175 ° C.
- the polyolefin resin may be a composition containing polyolefin other than PE or PP, or a resin other than polyolefin.
- polyolefins other than PE and PP include homopolymers and copolymers such as pentene-1, hexene-1, 4-methylpentene-1, and octene, in addition to polybutene-1.
- resins other than polyolefin include homopolymers and copolymers such as vinyl acetate, methyl methacrylate, and styrene, as well as polyester, fluororesin, polyamide (PA), polyarylene sulfide (PAS), and polyvinyl alcohol (PVA).
- polyimide PI
- PAI polyamideimide
- PES polyethersulfone
- PEEK polyetheretherketone
- PC polycarbonate
- cellulose acetate cellulose triacetate
- polysulfone polyetherimide and the like.
- polyolefin other than PE and the resin other than polyolefin those having heat resistance are preferable.
- the heat resistant resin preferably has a melting point or glass transition temperature (Tg) of 150 ° C. or higher.
- Tg melting point or glass transition temperature
- the melting point or Tg is 150 ° C. or higher” means that when the heat-resistant resin is a crystalline resin (including a resin that is partially crystalline), the melting point is 150 ° C. or higher. In the case of a crystalline resin, it means that Tg is 150 ° C. or higher.
- the melting point and Tg can be measured according to JIS K 7121.
- the melting point or Tg of the heat resistant resin is more preferably 170 to 260 ° C.
- the membrane breaking temperature (MD temperature) is improved when the polyolefin microporous membrane is used as a battery separator, so that the high temperature storage characteristics of the battery are further improved.
- polyesters such as polybutylene terephthalate and polyethylene terephthalate, polymethylpentene [PMP or TPX ( Transpanret polymer X)], fluororesins such as polyvinylidene polytetrafluoroethylene, polyamides such as polyamide 6 and polyamide 66 (PA, melting point: 215 to 265 ° C.), polyarylene sulfides such as polyphenylene sulfide (PAS) ), Polystyrene (PS, melting point: 230 ° C.), polyvinyl alcohol (PVA, melting point: 220-240 ° C.), polyimide (PI, Tg: 280 ° C.
- polyesters such as polybutylene terephthalate and polyethylene terephthalate
- PMP or TPX Transpanret polymer X
- fluororesins such as polyvinylidene polytetrafluoroethylene
- polyamides such as polyamide 6 and polyamide 66
- the heat resistant resin is preferably at least one selected from the group consisting of polyester and polymethylpentene.
- the heat resistant resin is not limited to a single resin component, and may be a plurality of resin components.
- the addition amount of the heat-resistant resin is preferably 3 to 20% by mass, more preferably 3 to 15% by mass, based on 100% by mass of the entire polyolefin resin. When this content exceeds 20% by mass, mechanical strength such as puncture strength and tensile rupture strength is greatly reduced.
- the microporous membrane of the present invention may be used for the surface layer of a multilayer film.
- the improvement of the air permeability-strength balance that cannot be obtained by a single membrane, or the combination with a heat-resistant resin in the center layer The battery characteristics are further improved by improving the meltdown temperature (MD temperature).
- the heat-resistant resin is preferably at least one selected from the group consisting of polypropylene, polybutylene terephthalate, and polymethylpentene.
- the method for producing a polyolefin microporous membrane according to the present invention includes (1) a step of adding a film-forming solvent to the polyolefin resin and then melt-kneading to prepare a polyolefin resin solution.
- a drying step, a heat treatment step, a crosslinking treatment step by ionizing radiation, a hydrophilization treatment step, a surface coating treatment step, and the like can be provided.
- a suitable film-forming solvent to the polyolefin resin, it is melt-kneaded to prepare a polyolefin resin solution.
- the solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin. By using a liquid film-forming solvent, stretching at a relatively high magnification becomes possible.
- liquid solvent examples include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, and mineral oil fractions having boiling points corresponding to these, and dibutyl.
- phthalate and dioctyl phthalate include liquid phthalates at room temperature. It is also possible to use a mixture of these.
- one or more solvents that are miscible with the polyolefin composition in the melt-kneaded state but are solid at room temperature may be mixed with the liquid solvent.
- a solid solvent include stearyl alcohol, seryl alcohol, and paraffin wax.
- the viscosity of the liquid solvent is about 30 cSt to about 500 cSt, or about 30 cSt to about 200 cSt when measured at 25 ° C.
- the viscosity is not particularly limited, but if the viscosity at 25 ° C. is less than about 30 cSt, foaming tends to occur and kneading is difficult. On the other hand, if it exceeds about 500 cSt, it may be difficult to remove the liquid solvent in the step (5).
- polyethylene-based resins, polypropylene-based resins and film-forming solvents are used to prepare polyolefin solutions containing relatively high concentrations of polyethylene and polypropylene. It is carried out by a method of stirring at a melting temperature or uniformly mixing in an extruder.
- the temperature varies depending on the polymer and solvent to be used when it is dissolved in an extruder or in a solvent while stirring, but it is preferably in the range of 140 to 250 ° C., for example.
- it is preferably dissolved in an extruder.
- melt-kneading method for example, a method using a twin-screw extruder described in the specifications of Japanese Patent Nos. 2132327 and 3347835 can be used.
- the film-forming solvent may be added before the start of kneading or during kneading.
- the solvent can be added from the middle of the twin screw extruder during kneading.
- the resin may be dry mixed before melt kneading, and the solvent can be added before, during or after dry mixing.
- the polyolefin resin concentration of the polyolefin resin solution is 20 to 50% by mass, preferably 25 to 45% by mass with respect to 100% by mass of the total of the polyolefin resin and the solvent for film formation.
- productivity is not preferable.
- the proportion of the polyolefin resin is more than 50% by mass, the moldability of the gel-like molded product is lowered.
- the screw length (L) to diameter (D) ratio (L / D) of the twin-screw extruder is preferably in the range of 20 to 100, more preferably in the range of 35 to 70.
- L / D is less than 20, melt kneading becomes insufficient.
- L / D exceeds 100, the residence time of the polyolefin resin solution increases too much.
- the shape of the screw is not particularly limited and may be a known one.
- the inner diameter of the twin screw extruder is preferably 40 to 100 mm.
- the ratio Q / Ns of the amount Q (kg / h) of the polyolefin resin solution to the screw rotation speed Ns (rpm) is set to 0.1 to 0.55 kg / h / rpm. Is preferred.
- Q / Ns is less than 0.1 kg / h / rpm, the polyolefin resin is excessively sheared, leading to a decrease in strength and meltdown temperature.
- Q / Ns exceeds 0.55 kg / h / rpm, it cannot be uniformly kneaded.
- the ratio Q / Ns is more preferably 0.2 to 0.5 kg / h / rpm.
- the screw rotation speed Ns is preferably 180 rpm or more.
- the upper limit of the screw rotation speed Ns is not particularly limited, but 500 rpm is preferable.
- (2) Step of forming a gel-like molded product A polyolefin resin solution is extruded from a die through an extruder and cooled to form a gel-like molded product. Since the extrusion method and the formation method of the gel-like molded product are known, the description thereof is omitted. As these methods, for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
- the shear rate and cooling rate from the T die are not properly controlled, the PP distribution in the gel-like molded product tends to be difficult to be uniform, so the shear rate from the T die is 60 / sec.
- the cooling rate is preferably 30 ° C. or higher.
- a method for cooling the gel-like sheet a method of directly contacting cold air, cooling water, or other cooling medium, a method of contacting a roll cooled with a refrigerant, or the like can be used.
- (3) First stretching step The obtained sheet-like gel-like molded product is stretched in at least a uniaxial direction. The first stretching causes cleavage between the PE crystal lamella layers, the PE phase is refined, and a large number of fibrils are formed.
- the obtained fibrils form a three-dimensional network structure (a network structure that is irregularly connected three-dimensionally). Since the gel-like molded product contains a film-forming solvent, it can be stretched uniformly.
- the first stretching can be carried out at a predetermined magnification by heating the gel-like molded product and then using a normal tenter method, roll method, inflation method, rolling method, or a combination of these methods.
- the first stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be performed.
- the draw ratio varies depending on the thickness of the gel-like molded product, it is preferably 2 times or more, more preferably 3 to 30 times in uniaxial stretching.
- biaxial stretching it is preferable to increase at least 3 times in any direction, that is, 9 times or more in area magnification because the puncture strength is improved. If the area magnification is less than 9 times, the stretching is insufficient, and a highly elastic and high strength polyolefin microporous membrane cannot be obtained. On the other hand, when the area magnification exceeds 400 times, there are restrictions in terms of stretching devices, stretching operations, and the like.
- the first stretching temperature is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin to the crystal dispersion temperature + 30 ° C., more preferably in the range of the crystal dispersion temperature + 10 ° C. to the crystal dispersion temperature + 25 ° C., It is particularly preferable to set the temperature within the range of crystal dispersion temperature + 15 ° C. to crystal dispersion temperature + 20 ° C.
- the stretching temperature is higher than the crystal dispersion temperature + 30 ° C., the orientation of molecular chains after stretching deteriorates.
- the temperature is lower than the crystal dispersion temperature, the resin is not sufficiently softened, the film is easily broken by stretching, and high-stretching cannot be performed.
- the crystal dispersion temperature refers to a value obtained by measuring the temperature characteristic of dynamic viscoelasticity based on ASTM D4065.
- the crystal dispersion temperature is generally 90 to 100 ° C. Therefore, when the polyolefin resin is composed of 90% by mass or more and PE, the stretching temperature is usually in the range of 90 to 130 ° C, preferably in the range of 100 to 125 ° C, more preferably in the range of 105 to 120 ° C. .
- ⁇ Multi-stage stretching at different temperatures may be performed during the first stretching.
- the stretching is preferably performed at two different temperatures, the temperature of the subsequent stage being higher than the temperature of the previous stage.
- the difference in the stretching temperature between the former stage and the latter stage is 5 ° C. or more.
- the former (a) is preferred. In any case, it is preferable to rapidly heat at the time of temperature rise. Specifically, heating is preferably performed at a temperature rising rate of 0.1 ° C./sec or more, and heating is preferably performed at a temperature rising rate of 1 to 5 ° C./sec. Needless to say, the stretching temperature and the total stretching ratio of the former stage and the latter stage are within the above ranges, respectively.
- the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a polyolefin microporous film having further excellent mechanical strength can be obtained.
- the method for example, the method disclosed in Japanese Patent No. 3347854 can be used.
- Film forming solvent removal step A cleaning solvent is used to remove (wash) the film forming solvent. Since the polyolefin phase is phase-separated from the film-forming solvent, a porous film can be obtained by removing the film-forming solvent. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Laid-Open No.
- Second stretching step of the membrane The polyolefin microporous membrane obtained by removing the film-forming solvent is dried by a heat drying method, an air drying method or the like.
- Second stretching step The dried film may be stretched again in at least a uniaxial direction.
- the second stretching can be performed by a tenter method or the like, similar to the first stretching, while heating the film.
- the second stretching may be uniaxial stretching or biaxial stretching.
- the temperature of the second stretching is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin constituting the microporous membrane to the crystal dispersion temperature + 40 ° C. or less, and the crystal dispersion temperature + 10 ° C. or more to the crystal dispersion temperature + 40 ° C. or less. It is more preferable to be within the range.
- the temperature of the second stretching is higher than the crystal dispersion temperature + 40 ° C., the permeability is lowered, and the variation in physical properties in the sheet width direction when stretched in the lateral direction (width direction: TD direction) is increased. In particular, variation in the air permeability in the width direction of the stretched sheet increases.
- the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
- the magnification in the uniaxial direction of the second stretching is preferably 1.1 to 1.8 times.
- the length is 1.1 to 1.8 times in the longitudinal direction (machine direction: MD direction) or TD direction.
- MD direction machine direction
- biaxial stretching it is 1.1 to 1.8 times in the MD direction and TD direction, respectively.
- each stretching ratio in the MD direction and TD direction may be different from each other as long as it is 1.1 to 1.8 times.
- this magnification is less than 1.1 times, the effect of improving permeability, electrolyte solution pouring property and compression resistance is not observed.
- this magnification exceeds 1.8 times, the fibrils become too thin, and the heat shrinkage resistance and the electrolyte solution pouring property are not improved.
- the magnification of the second stretching is more preferably 1.2 to 1.6 times.
- the speed of the second stretching is preferably 3% / sec or more in the stretching axis direction.
- the stretching speed (% / sec) in the stretching axis direction is the ratio of the length stretched per second with the length in the stretching axis direction before re-stretching being 100% in the region where the film (sheet) is re-stretched. Represents.
- the stretching speed is less than 3% / sec, the permeability is lowered, and when the stretching is performed in the TD direction, the variation in physical properties in the sheet width direction is increased. In particular, the variation in the air permeability in the stretched sheet width direction becomes large.
- the second stretching speed is preferably 5% / sec or more, more preferably 10% / sec or more.
- each stretching speed in the MD direction and the TD direction may be different from each other in the MD direction and the TD direction as long as it is 3% / sec or more, but is preferably the same.
- stretching is heat-processed.
- heat treatment method heat setting treatment and / or heat relaxation treatment may be used.
- the crystal of the film is stabilized by the heat setting treatment. Therefore, a microporous film having a large pore diameter and excellent strength can be produced while maintaining a network composed of fibrils formed by the second stretching.
- the heat setting treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of the polyolefin resin constituting the microporous membrane.
- the heat setting treatment is performed by a tenter method, a roll method or a rolling method.
- the heat setting treatment temperature is preferably within the range of the second stretching temperature ⁇ 5 ° C., which stabilizes the physical properties. This temperature is more preferably within the range of the temperature of the second stretching ⁇ 3 ° C.
- the thermal relaxation treatment method for example, the method disclosed in Japanese Patent Laid-Open No. 2002-256099 can be used.
- Hot roll treatment process You may perform the process (hot roll process) which makes a hot roll contact at least one surface of the stretched gel-like molded object before washing
- a method described in JP-A-2007-106992 can be used.
- the stretched gel-like molded product is brought into contact with a heated roll adjusted to a temperature at which the polyolefin resin crystal dispersion temperature + 10 ° C. or higher and below the melting point of the polyolefin resin.
- the contact time between the heating roll and the stretched gel-like molded product is preferably 0.5 seconds to 1 minute. You may make it contact in the state which hold
- the heating roll may be either a smooth roll or an uneven roll that may have a suction function.
- (Iii) Thermal solvent treatment process You may perform the process which makes the extending
- a thermal solvent treatment method for example, the method disclosed in International Publication No. 2000/20493 can be used.
- (B) Film cross-linking treatment step The heat-treated polyolefin microporous film may be subjected to cross-linking treatment by ionizing radiation using ⁇ -ray, ⁇ -ray, ⁇ -ray, electron beam, etc. Can be improved. This treatment can be performed with an electron dose of 0.1 to 100 Mrad and an acceleration voltage of 100 to 300 kV.
- (C) Hydrophilization treatment step The polyolefin microporous membrane after the heat treatment may be hydrophilized by monomer graft treatment, surfactant treatment, corona discharge treatment, plasma treatment or the like.
- (D) Surface coating treatment step The polyolefin microporous film after heat treatment covers the surface with a porous resin porous material such as polyvinylidene fluoride and polytetrafluoroethylene, or a porous material such as PA, PAI, PI and PPS. By doing so, the meltdown characteristic when used as a battery separator is improved.
- a coating layer containing PP may be formed on at least one surface of the polyolefin microporous membrane after the second stretching.
- the polyolefin microporous membrane of the present invention has a structure in which PP distribution is uniform in at least one plane perpendicular to the thickness direction.
- the average value / standard deviation / kurtosis is constant when the relative value to the maximum PP / PE ratio of the film surface obtained by microscopic Raman spectroscopy is defined as the normalized PP / PE ratio. It can be expressed as a structure indicating the value of.
- the polyolefin microporous membrane of the present invention has a normalized PP / PE ratio of 0.5 or more in average value, 0.2 or less in standard deviation, and 1.0 or less in kurtosis, which is a parameter indicating the shape of distribution. It has a certain structure. Furthermore, the polyolefin microporous membrane of the present invention preferably has a structure having an average value of 0.6 or more, a standard deviation of 0.15 or less, and a kurtosis of 0.5 or less in the normalized PP / PE ratio. .
- the polyolefin microporous membrane of the present invention has a uniform PP distribution in at least one plane perpendicular to the thickness direction as described above, it has excellent oxidation resistance and the amount ratio of PP to be added is less than 5% by mass. Therefore, physical properties are not lowered by the addition of PP, and the permeability, strength, and electrolyte solution pouring property are excellent. Therefore, when used as a separator for a lithium ion battery, excellent battery productivity, safety, and battery cycle characteristics can be realized.
- the polyolefin microporous membrane according to a preferred embodiment of the present invention has the following physical properties.
- the air permeability (Gurley value) when the film thickness is converted to 20 ⁇ m is 20 to 500 sec / 100 cm 3 .
- the air permeability is in this range, when the microporous membrane is used as a battery separator, the battery capacity is large and the cycle characteristics of the battery are good.
- Air permeability is not sufficiently shut when the temperature is elevated in the batteries is less than 20sec / 100cm 3 / 20 ⁇ m.
- the air permeability is a value obtained by measuring the Gurley value according to JIS P 8117 and converting the film thickness to 20 ⁇ m.
- the porosity is 25 to 80%.
- the puncture strength is preferably 2,500 mN / 20 ⁇ m or more.
- the puncture strength is a value obtained by measuring the maximum load value when a polyolefin microporous membrane is pierced at a speed of 2 mm / sec using a needle having a diameter of 1 mm (0.5 mmR), and converting the film thickness to 20 ⁇ m. is there.
- the tensile strength at break is 60,000 kPa or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
- the tensile strength at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
- the tensile elongation at break is 80% or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
- the tensile elongation at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
- the thermal shrinkage after exposure for 8 hours at a temperature of 105 ° C. is 10% or less in both the MD direction and the TD direction.
- the thermal shrinkage rate exceeds 10%, when the microporous membrane is used as a lithium battery separator, the end of the separator shrinks during heat generation, and there is a high possibility that a short circuit of the electrode occurs.
- the thermal shrinkage rate is preferably 8% or less in both the MD direction and the TD direction.
- the thermal shrinkage rate is a value obtained by measuring the shrinkage rate in the MD direction and the TD direction three times each when the microporous membrane is exposed at 105 ° C. for 8 hours, and calculating an average value. (7)
- Electrolytic solution pouring property was good for 20 seconds or less, and this case was evaluated as “good”. When the electrolyte solution pouring property exceeded 20 seconds, it was evaluated as “poor”.
- electrolyte solution pouring property was evaluated by the penetration time of propylene carbonate.
- 0.5 ml of propylene carbonate is dropped from about 2 cm above the sample film, and time measurement is started from the end of dropping.
- Propylene carbonate rises on the film due to surface tension.
- the time measurement is stopped and the permeation time is taken.
- the electrochemical stability of the microporous membrane obtained by the battery test is in mAh, with lower values generally representing less total charge loss during storage at high temperature or overcharge. desirable. Specifically, 45.0 mAh or less is preferable.
- Electrochemical stability is a film characteristic related to the oxidation resistance of a film when the film is used as a separator (hereinafter referred to as BSF) in a battery that is exposed to a relatively high temperature during storage or use.
- BSF separator
- Electrochemical stability of 45.0 mAh or less is desirable because it is particularly sensitive to small loss of battery capacity, such as self-discharge loss due to electrochemical instability of BSF.
- the term “high capacity” battery usually refers to a battery that can be supplied for 1 amp hour (1 Ah) or more, for example, 2.0 Ah to 3.6 Ah.
- a battery is fabricated in which a film having a length (MD) of 70 mm and a width (TD) of 60 mm is located between a negative electrode and a positive electrode having the same area as the film.
- the negative electrode is made of natural graphite
- the positive electrode is made of LiCoO 2 .
- the electrolyte is prepared by dissolving LiPF 6 as a 1M solution in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (3/7, V / V). An electrolyte is impregnated in the film in the region between the negative electrode and the positive electrode to complete the battery.
- the battery is then exposed to an applied voltage of 4.3 V while being exposed to a temperature of 60 ° C. for 28 days.
- electrochemical stability is defined as the integrated current (mAh) flowing between the voltage source and the battery over 28 days. Electrochemical stability is usually measured three times under nearly identical conditions (approximately the same three cells made from approximately the same three BSF samples). The average (arithmetic average) of the three measured electrochemical stability values is the “average electrochemical stability”.
- the film thickness is preferably 5 to 50 ⁇ m, more preferably 5 to 35 ⁇ m.
- the method for measuring the film thickness may be a contact thickness measurement method or a non-contact thickness measurement method.
- the film appearance is preferably one with small thickness unevenness.
- the film appearance is evaluated by visual observation / multipoint film thickness measurement. The film appearance when the thickness is judged to be large by visual observation is defined as “poor”, which corresponds to the case where the film thickness variation of 5 microns or more is observed in the film thickness measurement at multiple points. In film thickness measurement at multiple points, the film appearance when the film thickness variation was less than 5 microns was defined as “good”.
- the microporous membrane of the present invention is less susceptible to blackening after repeated charge and discharge as a battery, and is excellent in permeability, mechanical properties, and heat shrinkage, so that it is particularly a battery separator. It is suitable as.
- Battery The separator comprising the polyolefin microporous membrane of the present invention can be used for batteries and electric double layer capacitors. Although there is no restriction
- a well-known electrode and electrolyte may be used for the lithium secondary battery / capacitor using the separator comprising the microporous membrane of the present invention.
- the structure of the lithium secondary battery / capacitor using the separator made of the microporous membrane of the present invention may also be a known one.
- each physical property of the polyolefin microporous film was calculated
- Example 1 18% by mass of UHMwPE (Mw / Mn: 8) with an Mw of 2.0 ⁇ 10 6 and 77.1% by mass of HDPE (Mw / Mn: 8.6) with an Mw of 2.5 ⁇ 10 5 and an Mw of 9 7 ⁇ 10 4 PP (Mw / Mn: 2.6) 4.9% by mass of polyolefin resin and tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) as an antioxidant -Propionate] Methane was 0.2 parts by mass dry blended per 100 parts by mass of PE to prepare a polyolefin composition.
- 25 parts by mass of the obtained polyolefin composition was put into a twin-screw extruder (cylinder inner diameter: 58 mm, screw length (L) to diameter (D) ratio L / D: 42, strong kneading type).
- 75 parts by mass of liquid paraffin [50 cSt (40 ° C.)] was supplied from the side feeder of the screw extruder, melted and kneaded under conditions of 210 ° C. and 200 rpm, and a PE solution was prepared in the twin screw extruder.
- the obtained PE solution was extruded from a T-die installed at the tip of the twin-screw extruder, and a gel-like molded product was formed while it was taken up by a cooling roll adjusted to 20 ° C.
- the obtained gel-like molded product was subjected to simultaneous biaxial stretching (first stretching) 5 ⁇ 5 times at a temperature of 115 ° C. using a tenter stretching machine.
- first stretching first stretching
- it was fixed to a frame plate [size: 20 cm ⁇ 20 cm, made of aluminum (hereinafter the same)]
- immersed in a methylene chloride washing bath adjusted to 25 ° C. and washed while rocking at 100 rpm for 3 minutes.
- the washed membrane was air dried at room temperature.
- the dried stretched membrane was heat-fixed at 125 ° C. for 30 seconds to produce a polyolefin microporous membrane.
- the Mw and Mw / Mn of the resin were obtained from an integral curve obtained by gel permeation chromatography (GPC) measurement [measuring instrument: GPC-150C manufactured by Waters Corporation, temperature: 135 ° C., solvent: o-dichlorobenzene, concentration : 0.1% by mass (injection amount: 500 ⁇ l), column: Shodex UT806M manufactured by Showa Denko KK, solvent flow rate: 1.0 ml / min, dissolution condition: 135 ° C./1 hr.
- GPC gel permeation chromatography
- the electrolyte solution pouring property was good when the permeation time was 20 seconds or less, and poor when it exceeded 20 seconds.
- Example 2 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and 79% by mass of HDPE (Mw / Mn: 8.6) having an Mw of 2.5 ⁇ 10 5 %, Mw was 9.7 ⁇ 10 4 PP (Mw / Mn: 2.6)
- a polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 3% by mass of polyolefin resin was used.
- Example 3 As shown in Table 1, Mw is 2.0 ⁇ 10 6 UHMwPE (Mw / Mn: 8) 18% by mass, and Mw is 2.5 ⁇ 10 5 HDPE (Mw / Mn: 8.6) 81 mass. %, Mw was 9.7 ⁇ 10 4 PP (Mw / Mn: 2.6)
- a polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 1% by mass of polyolefin resin was used.
- Example 4 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) with Mw of 2.0 ⁇ 10 6 and HDPE (Mw / Mn: 8.6) with Mw of 2.5 ⁇ 10 5 A polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 0.5% by mass of PP resin (Mw / Mn: 2.6) 0.5% by mass of 5% by mass and Mw of 9.7 ⁇ 10 4 was used. did.
- Example 5 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and HDPE (Mw / Mn: 8.6) having an Mw of 2.5 ⁇ 10 5 77.
- a polyolefin microporous membrane was produced in the same manner as in Example 1 except that 1% by mass and Mw was 2.7 ⁇ 10 5 PP (Mw / Mn: 4.4) 4.9% by mass of polyolefin resin. did.
- Example 1 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 77.1% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8.6), similar to Example 1 except that a polyolefin resin composed of 5% by mass of PP (Mw / Mn: 10.6) with Mw of 4.9 ⁇ 10 5 is used and the resin concentration is 25% by mass. Thus, a microporous polyolefin membrane was produced.
- Example 2 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 77% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8. 6) A polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 5% by mass of PP (Mw / Mn: 2.1) having a Mw of 5.8 ⁇ 10 6 was used. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1.
- Example 3 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 81.7% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8.6), a polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 0.3% by mass of PP (Mw / Mn: 2.6) having a Mw of 9.7 ⁇ 10 4 was used. did. Using the obtained polyolefin solution, a polyolefin microporous membrane was prepared in the same manner as in Example 1.
- Example 4 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 72% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8. 6) A polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 10% by mass of PP (Mw / Mn: 2.6) having an Mw of 9.7 ⁇ 10 4 was used. Using the resulting polyolefin solution, a polyolefin microporous membrane was produced in the same manner as in Example 1. (Comparative Example 5) A gel-like molded product was formed with the same resin composition as in Example 1.
- Example 6 As shown in Table 1, the shear rate during molding was adjusted to 55 / sec. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1. (Comparative Example 6) A gel-like molded product was formed with the same resin composition as in Example 1. As shown in Table 1, the cooling rate was adjusted to 23 ° C./sec. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1.
- Examples 1 to 5 show the results of forming a microporous film using a polyolefin having a PP content of 100 to 5% by mass and polyolefin of less than 0.5 to 5% by mass. All are excellent in electrolyte solution pouring property, and the surface PP concentration (average value, standard deviation, kurtosis) obtained by a micro Raman spectroscope satisfies the standard. At this time, it can be seen that the electrochemical stability after 120 hours in the trickle charge test with a small battery is 30 mAh or less, and exhibits excellent oxidation resistance.
- FIG. 1 shows a distribution diagram of the normalized PP / PE ratio obtained by measuring the film shown in Example 1 with a micro Raman spectroscope.
- FIG. 2 shows a two-dimensional distribution chart of the normalized PP / PE ratio of Example 1.
- a region with a low PP concentration (a darkly colored portion) is not so much seen, and PP is present on average.
- the balance of air permeability, puncture strength, tensile rupture strength, tensile rupture elongation, and heat shrinkage resistance is excellent, the electrolyte solution pouring property is excellent, and the oxidation reaction of the separator generated in the battery is suppressed. It can be seen that a microporous membrane is obtained.
- Comparative Example 1 has the same PP amount as Examples 1 and 5 and shows the same surface PP concentration, but there is a region where the PP concentration is partially low as shown in FIG. (There are more dark parts than in FIG. 2). The air permeability deteriorated, and a result of poor electrolyte solution pouring property was obtained. Probably, unlike in Examples 1 and 5, the dispersed state of PP is present in the form of blocking the pores.
- Comparative Example 2 the same amount of PP as in Examples 1 and 5 and Comparative Example 1 was added, but as can be seen from the low normalized PP / PE ratio, as shown in FIG. It can be seen that the PP concentration near the surface is low. For this reason, it is considered that the oxidation resistance was not improved.
- Comparative Example 3 uses 0.3% by mass of the same PP used in Examples 1 to 4. Although the dispersibility (standard deviation and kurtosis) of PP is good, it is considered that the PP concentration in the vicinity of the surface became insufficient and the oxidation resistance was not improved because the amount added was small.
- Comparative Example 4 uses 10% by mass of the same PP as in Examples 1 to 4 and Comparative Example 4.
- Comparative Example 5 the same resin composition as in Example 1 is used. A decrease in liquid injection property was observed due to a decrease in the shear rate from the T die. It is considered that the oxidation resistance was not improved because the dispersion state of PP near the surface changed.
- Comparative Example 6 the same resin composition as in Example 1 is used. A decrease in liquid injection property was observed due to a decrease in the cooling rate. It is considered that the oxidation resistance was not improved because the dispersed state of PP in the vicinity of the surface was deteriorated.
- the microporous film obtained by the method for producing a microporous film of the present invention has a performance suitable as an electricity storage device for non-aqueous electrolyte solution for capacitor use, capacitor use, battery use, etc., safety, And it can contribute to the improvement of reliability.
- it can be suitably used as a battery separator, more specifically as a lithium ion battery separator.
- it is also used as various separation membranes such as one component of a fuel cell, a humidification membrane, and a filtration membrane, and thus has industrial applicability in those fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
ポリプロピレンを含むポリオレフィン樹脂を用いてゲル状成形物を形成し、これを少なくとも1方向に延伸、洗浄することにより得られるポリオレフィン微多孔膜であって、電解液注液性が20秒以下であり、厚み方向に垂直な少なくとも一面内においてポリプロピレン分布が均一であるポリオレフィン微多孔膜、である。
上記ポリオレフィン微多孔膜の製造方法であって、(a)質量平均分子量が1×106以上の超高分子量ポリエチレンの含有率がポリオレフィン全体を100質量%として1~50質量%、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5%以上、5質量%未満含有するポリエチレンを主成分とするポリオレフィン樹脂と、(b)成膜用溶剤とを溶融混練し、(c)得られた溶融混練物をせん断速度が60/sec以上となるようにダイより押出し、冷却速度が30℃/sec以上となるように冷却することによりゲル状成形物を形成し、(d)得られたゲル状成形物を少なくとも一軸方向に延伸し、(e)得られた延伸物から前記成膜用溶剤を除去するポリオレフィン微多孔膜の製造方法、である。
本発明のポリオレフィン微多孔膜を構成するポリオレフィン樹脂は、ポリエチレン(以下、PE)を主成分とするのが好ましい。ポリオレフィン樹脂は、特定の分子量を持つポリプロピレンの他に、PEを含むものであってもよいし、PE及びその他のポリオレフィンを含む組成物であってもよいし、ポリオレフィン以外の樹脂も含む組成物であってもよい。したがって、用語「ポリオレフィン樹脂」は、ポリオレフィンのみならず、ポリオレフィン以外の樹脂を含むものであってもよいと理解すべきである。ただしポリオレフィン樹脂は、これ全体を100質量%として、PEの割合が80質量%以上であるのが好ましく、90質量%以上であるのがより好ましい。
[2]ポリオレフィン微多孔膜の製造方法
本発明のポリオレフィン微多孔膜の製造方法は、(1)上記ポリオレフィン樹脂に成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する工程、(2)ポリオレフィン樹脂溶液をダイリップより押し出した後、冷却してゲル状成形物を形成する工程、(3)ゲル状成形物を少なくとも一軸方向に延伸する工程(第一の延伸工程)、(4)成膜用溶剤を除去(洗浄)する工程、(5)得られた膜を乾燥する工程、(6)乾燥した膜を少なくとも一軸方向に再び延伸する工程(第二の延伸工程)、及び(7)熱処理する工程を含む。必要に応じて、(4)の成膜用溶剤除去工程の前に熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。更に(1)~(7)の工程の後、乾燥工程、熱処理工程、電離放射による架橋処理工程、親水化処理工程、表面被覆処理工程等を設けることができる。
(1)ポリオレフィン樹脂溶液の調製工程
ポリオレフィン樹脂に適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。この溶剤としては、ポリオレフィンを十分に溶解できるものであれば特に限定されない。液体の成膜用溶剤を用いることにより比較的高倍率の延伸が可能となる。液体溶剤としては、例えばノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、及び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。これらの混合物を用いることも可能である。流動パラフィンのような不揮発性の液体溶剤を用いることにより、液体溶剤の含有量が安定なゲル状成形体(ゲル状シート)を得るのが容易となるが、これに限定するものではない。
一実施態様において、溶融混練状態ではポリオレフィン組成物と混和するが室温では固体の一種以上の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、例えばステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。固体溶剤を液体溶剤なしで使用することができるが、この場合、工程(4)においてゲル状シートを均一に延伸するのが困難になることがある。
(2)ゲル状成形物の形成工程
ポリオレフィン樹脂溶液を押出機を介してダイから押し出し、冷却してゲル状成形物を形成する。押出方法及びゲル状成形物の形成方法は公知であるので説明を省略する。これらの方法として、例えば特許第2132327号及び特許第3347835号に開示の方法を利用することができる。なお、Tダイからのせん断速度及び冷却速度を適切に制御しない場合には、ゲル状成形物内でのPPの分布が均一になりにくい傾向があるため、Tダイからのせん断速度は60/sec以上、冷却速度は30℃以上が好ましい。ゲル状シートの冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法などを用いることができる。
(3)第一の延伸工程
得られたシート状のゲル状成形物を少なくとも一軸方向に延伸する。第一の延伸によりPE結晶ラメラ層間の開裂が起こり、PE相が微細化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造(三次元的に不規則に連結したネットワーク構造)を形成する。ゲル状成形物は成膜用溶剤を含むので、均一に延伸できる。第一の延伸は、ゲル状成形物を加熱後、通常のテンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せにより所定の倍率で行うことができる。第一の延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸又は逐次延伸のいずれを施してもよい。
(4)成膜用溶剤除去工程
成膜用溶剤の除去(洗浄)には洗浄溶媒を用いる。ポリオレフィン相は成膜用溶剤と相分離しているので、成膜用溶剤を除去すると多孔質の膜が得られる。洗浄溶媒及びこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
(5)膜の乾燥工程
成膜用溶剤除去により得られたポリオレフィン微多孔膜は、加熱乾燥法、風乾法等により乾燥する。
(6)第二の延伸工程
乾燥後の膜を再び少なくとも一軸方向に延伸してもよい。第二の延伸は、膜を加熱しながら、第一の延伸と同様にテンター法等により行うことができる。第二の延伸は一軸延伸でも二軸延伸でもよい。
(7)熱処理工程
第二の延伸後の膜を熱処理する。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いればよい。特に熱固定処理により膜の結晶が安定化する。そのため第二の延伸により形成されたフィブリルからなる網状組織が保持され、細孔径が大きく、強度に優れた微多孔膜を作製できる。熱固定処理は、微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行う。熱固定処理は、テンター方式、ロール方式又は圧延方式により行う。
(8)その他の工程
(a)洗浄前、洗浄後及び第二の延伸工程中の熱固定処理工程、熱ロール処理工程並びに熱溶剤処理工程
第一の延伸を施したゲル状成形物から成膜用溶剤を除去する前に、熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。また洗浄後や第二の延伸工程中の膜に対して熱固定処理する工程を設けてもよい。
洗浄前及び/又は後の延伸ゲル状成形物、並びに第二の延伸工程中の膜を熱固定処理する方法は上記と同じでよい。
洗浄前の延伸ゲル状成形物の少なくとも一面に熱ロールを接触させる処理(熱ロール処理)を施してもよい。熱ロール処理として、例えば特開2007-106992号公報に記載の方法を利用できる。特開2007-106992号公報に記載の方法を利用すると、ポリオレフィン樹脂の結晶分散温度+10℃以上~ポリオレフィン樹脂の融点未満に温調した加熱ロールに、延伸ゲル状成形物を接触させる。加熱ロールと延伸ゲル状成形物との接触時間は0.5秒~1分間が好ましい。ロール表面に加熱オイルを保持した状態で接触させてもよい。加熱ロールとしては、平滑ロール又は吸引機能を有してもよい凹凸ロールのいずれでもよい。
洗浄前の延伸ゲル状成形物を熱溶剤に接触させる処理を施してもよい。熱溶剤処理方法としては、例えば国際公開第2000/20493号公報に開示の方法を利用できる。
(b)膜の架橋処理工程
熱処理後のポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等を用いた電離放射による架橋処理を施してもよく、これによりメルトダウン温度を向上させることができる。この処理は、0.1~100Mradの電子線量及び100~300kVの加速電圧により行うことができる。
(c)親水化処理工程
熱処理後のポリオレフィン微多孔膜を、モノマーグラフト処理、界面活性剤処理、コロナ放電処理、プラズマ処理等により親水化してもよい。
(d)表面被覆処理工程
熱処理後のポリオレフィン微多孔膜は、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素樹脂多孔質体、又はPA、PAI、PI、PPS等の多孔質体を表面に被覆することにより、電池用セパレータとして用いた場合のメルトダウン特性が向上する。第二の延伸後のポリオレフィン微多孔膜の少なくとも一面にPPを含む被覆層を形成してもよい。被覆用PPとして、例えば国際公開第2005/054350号公報に開示のものが挙げられる。
[3]ポリオレフィン微多孔膜の構造及び物性
本発明のポリオレフィン微多孔膜は、厚み方向に垂直な少なくとも一面内においてPP分布が均一な構造となっている。PP分布の均一さを表現する一例として、顕微ラマン分光法により求めた膜表面の最大PP/PE比率に対する相対値を規格化PP/PE比率とした時に、平均値/標準偏差/尖度が一定の値を示す構造と表現することができる。すなわち、本発明のポリオレフィン微多孔膜は規格化PP/PE比率が、平均値で0.5以上、標準偏差で0.2以下、分布の形状を示すパラメーターである尖度で1.0以下である構造を有する。さらに、本発明のポリオレフィン微多孔膜は、上記規格化PP/PE比率において、平均値が0.6以上、標準偏差が0.15以下、尖度が0.5以下の構造を有するのが好ましい。
(1)膜厚を20μmに換算した透気度(ガーレー値)は20~500sec/100cm3である。透気度がこの範囲であると、微多孔膜を電池用セパレータとして用いた場合に電池容量が大きく、電池のサイクル特性も良好である。透気度が20sec/100cm3/20μm未満では電池内部の温度上昇時にシャットダウンが十分に行われない。透気度は、JIS P 8117によりガーレー値を測定し、膜厚を20μmに換算することにより求めた値である。
(2)空孔率は25~80%である。空孔率が25%未満では良好な透気度が得られない。一方80%を超えていると、微多孔膜を電池用セパレータとして用いた場合の強度が不十分であり、電極が短絡する危険性が大きい。空孔率は質量法により測定した値である。すなわち、空孔率%=100×(w2-w1)/w2。式中、「w1」は膜の実重量であり、「w2」は、同じ大きさおよび厚さを有する、(同じポリマーの)同等の非多孔性膜の重量である。
(3)膜厚を20μmに換算した突刺強度は2,000mN以上である。突刺強度が2,000mN/20μm未満では、微多孔膜を電池用セパレータとして電池に組み込んだ場合に、電極の短絡が発生する恐れがある。突刺強度は2,500mN/20μm以上であるのが好ましい。突刺強度は、直径1mm(0.5mmR)の針を用い、速度2mm/secでポリオレフィン微多孔膜を突刺したときの最大荷重値を測定し、膜厚を20μmに換算することにより求めた値である。
(4)引張破断強度はMD方向及びTD方向のいずれにおいても60,000kPa以上である。これにより破膜の心配がない。引張破断強度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(5)引張破断伸度はMD方向及びTD方向のいずれにおいても80%以上である。これにより破膜の心配がない。引張破断伸度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(6)105℃の温度で8時間暴露後の熱収縮率はMD方向及びTD方向ともに10%以下である。熱収縮率が10%を超えると、微多孔膜をリチウム電池用セパレータとして用いた場合、発熱時にセパレータ端部が収縮し、電極の短絡が発生する可能性が高くなる。熱収縮率はMD方向及びTD方向ともに8%以下であるのが好ましい。熱収縮率は、微多孔膜を105℃で8時間暴露したときのMD方向及びTD方向の収縮率をそれぞれ3回ずつ測定し、平均値を算出することにより求めた値である。
(7)電解液注液性は20秒以下の場合が良好であり、この場合を「good」と評価した。電解液注液性が20秒を越える場合には、「poor」と評価した。なお、電解液注液性はプロピレンカーボネートの浸透時間にて評価した。サンプルフィルムの約2cm上からプロピレンカーボネートを0.5ml滴下し、滴下終了から時間の計測を開始する。プロピレンカーボネートは膜上に表面張力で盛り上がる。滴下したプロピレンカーボネートが浸透し、膜上のプロピレンカーボネートが全て透過したところで時間の計測を停止し、浸透時間とする。
(8)電池試験により得られた微多孔膜の電気化学的安定性はmAhを単位とし、高温での保管または過充電中の総合充電ロスがより少ないことを表すより低い値が一般的には望ましい。具体的には45.0mAh以下が好ましい。
(9)膜厚は、例えば電池用セパレータとして使用する場合は5~50μmが好ましく、5~35μmがより好ましい。膜厚の測定方法は、接触式厚さ測定方法でも非接触式厚さ測定方法でもかまわない。例えば、縦方向に1.0cm間隔で10.0cmの幅にわたって接触式厚さ計により測定することができ、次いで平均値を出して膜厚を得ることができる。接触式厚さ計としては、例えば(株)ミツトヨ製“ライトマチック”(登録商標)等の厚さ計が好適である。
(10)フィルム外観は、厚みムラの小さいものが好ましい。フィルム外観は目視/多点膜厚測定にて評価する。目視により厚みに変動が大きいと判断した場合のフィルム外観を「poor」とするが、これは多点における膜厚測定において5ミクロン以上の膜厚変動があった場合に相当する。多点における膜厚測定において膜厚変動が5ミクロン未満の場合のフィルム外観を「good」とした。
[4]電池
本発明のポリオレフィン微多孔膜からなるセパレータは、電池及び電気二重層コンデンサーに用いることができる。これを用いる電池/コンデンサーの種類に特に制限はないが、特にリチウム二次電池/リチウムイオンキャパシター用途に好適である。本発明の微多孔膜からなるセパレータを用いたリチウム二次電池/キャパシターには、公知の電極及び電解液を使用すればよい。また本発明の微多孔膜からなるセパレータを使用するリチウム二次電池/キャパシターの構造も公知のものでよい。
(実施例1)
Mwが2.0×106のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×105のHDPE(Mw/Mn:8.6)77.1質量%、Mwが9.7×104のPP(Mw/Mn:2.6)4.9質量%のポリオレフィン樹脂に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを、PE100質量部当たり0.2質量部ドライブレンドし、ポリオレフィン組成物を調製した。
(実施例2)
表1に示すように、Mwが2.0×106のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×105のHDPE(Mw/Mn:8.6)79質量%、Mwが9.7×104のPP(Mw/Mn:2.6)3質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例3)
表1に示すように、Mwが2.0×106のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×105のHDPE(Mw/Mn:8.6)81質量%、Mwが9.7×104のPP(Mw/Mn:2.6)1質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例4)
表1に示すように、Mwが2.0×106のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×105のHDPE(Mw/Mn:8.6)81.5質量%、Mwが9.7×104のPP(Mw/Mn:2.6)0.5質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例5)
表1に示すように、Mwが2.0×106のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×105のHDPE(Mw/Mn:8.6)77.1質量%、Mwが2.7×105のPP(Mw/Mn:4.4)4.9質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例1)
表1に示すように、18質量%のUHMwPE(Mw:2.0×106、Mw/Mn:8)及び77.1質量%のHDPE(Mw:3.5×105、Mw/Mn:8.6)、Mwが4.9×105のPP(Mw/Mn:10.6)5質量%のからなるポリオレフィン樹脂を用い、樹脂濃度を25質量%とした以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例2)
表1に示すように、18質量%のUHMwPE(Mw:2.0×106、Mw/Mn:8)及び77質量%のHDPE(Mw:3.5×105、Mw/Mn:8.6)、Mwが5.8×106のPP(Mw/Mn:2.1)5質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様にして、ポリオレフィン溶液を調製した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例3)
表1に示すように、18質量%のUHMwPE(Mw:2.0×106、Mw/Mn:8)及び81.7質量%のHDPE(Mw:3.5×105、Mw/Mn:8.6)、Mwが9.7×104のPP(Mw/Mn:2.6)0.3質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様にしてポリオレフィン溶液を調製した。得られたポリオレフィン溶液を用いて、実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例4)
表1に示すように、18質量%のUHMwPE(Mw:2.0×106、Mw/Mn:8)及び72質量%のHDPE(Mw:3.5×105、Mw/Mn:8.6)、Mwが9.7×104のPP(Mw/Mn:2.6)10質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様に、ポリオレフィン溶液を調製した。得られたポリオレフィン溶液を用い、実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例5)
実施例1と同じ樹脂組成で、ゲル状成形物を形成した。表1に示すように成形時のせん断速度を55/secとなるように調整した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例6)
実施例1と同じ樹脂組成で、ゲル状成形物を形成した。表1に示すように冷却速度を23℃/secとなるように調整した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
Claims (6)
- ポリプロピレンを含むポリオレフィン樹脂を用いてゲル状成形物を形成し、これを少なくとも1方向に延伸、洗浄することにより得られるポリオレフィン微多孔膜であって、電解液注液性が20秒以下であり、厚み方向に垂直な少なくとも一面内においてポリプロピレン分布が均一であるポリオレフィン微多孔膜。
- 請求項1に記載のポリオレフィン微多孔膜において、前記ポリオレフィン樹脂が、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5質量%以上、5質量%未満含むポリオレフィン樹脂であるポリオレフィン微多孔膜。
- 請求項1又は2に記載のポリオレフィン微多孔膜において、厚み方向に垂直な少なくとも一面内においてラマン分光法により測定した規格化PP/PE比率の平均値が0.5以上、標準偏差が0.2以下、尖度が1.0以下であるポリオレフィン微多孔膜。
- 請求項1~3のいずれかに記載のポリオレフィン微多孔膜において、ポリプロピレンの重量平均分子量が5万より大きく、15万未満であるポリオレフィン微多孔膜。
- 請求項1~4のいずれかに記載のポリオレフィン微多孔膜において、質量平均分子量が1×106以上の超高分子量ポリエチレンを、全ポリオレフィン樹脂を100質量%とした時に、1~50重量%含むポリオレフィン微多孔膜。
- 請求項1~5のいずれかに記載のポリオレフィン微多孔膜の製造方法であって、(a)質量平均分子量が1×106以上の超高分子量ポリエチレンの含有率がポリオレフィン全体を100質量%として1~50質量%、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5%以上、5質量%未満含有するポリエチレンを主成分とするポリオレフィン樹脂と、(b)成膜用溶剤とを溶融混練し、(c)得られた溶融混練物をせん断速度が60/sec以上となるようにダイより押出し、冷却速度が30℃/sec以上となるように冷却することによりゲル状成形物を形成し、(d)得られたゲル状成形物を少なくとも一軸方向に延伸し、(e)得られた延伸物から前記成膜用溶剤を除去するポリオレフィン微多孔膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280065082.7A CN104024316B (zh) | 2011-12-28 | 2012-12-12 | 聚烯烃微多孔膜及其制造方法 |
KR1020147016032A KR102009237B1 (ko) | 2011-12-28 | 2012-12-12 | 폴리올레핀 미다공막 및 그 제조 방법 |
US14/367,342 US9624349B2 (en) | 2011-12-28 | 2012-12-12 | Polyolefin microporous film and method for producing same |
EP12862936.7A EP2799475B1 (en) | 2011-12-28 | 2012-12-12 | Polyolefin microporous film and method for producing same |
JP2013551592A JP5967589B2 (ja) | 2011-12-28 | 2012-12-12 | ポリオレフィン微多孔膜及びその製造方法 |
US15/447,223 US9911956B2 (en) | 2011-12-28 | 2017-03-02 | Polyolefin microporous film and method of producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-287664 | 2011-12-28 | ||
JP2011287664 | 2011-12-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/367,342 A-371-Of-International US9624349B2 (en) | 2011-12-28 | 2012-12-12 | Polyolefin microporous film and method for producing same |
US15/447,223 Division US9911956B2 (en) | 2011-12-28 | 2017-03-02 | Polyolefin microporous film and method of producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099607A1 true WO2013099607A1 (ja) | 2013-07-04 |
Family
ID=48697099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082199 WO2013099607A1 (ja) | 2011-12-28 | 2012-12-12 | ポリオレフィン微多孔膜及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9624349B2 (ja) |
EP (1) | EP2799475B1 (ja) |
JP (1) | JP5967589B2 (ja) |
KR (1) | KR102009237B1 (ja) |
CN (1) | CN104024316B (ja) |
MY (1) | MY161697A (ja) |
WO (1) | WO2013099607A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014192860A1 (ja) * | 2013-05-31 | 2014-12-04 | 東レバッテリーセパレータフィルム株式会社 | ポリオレフィン多層微多孔膜およびその製造方法 |
WO2018009000A1 (ko) * | 2016-07-07 | 2018-01-11 | 에스케이이노베이션 주식회사 | 역삼투막 |
JP2020092068A (ja) * | 2018-12-07 | 2020-06-11 | 旭化成株式会社 | 微多孔膜の製造方法 |
JPWO2020138318A1 (ja) * | 2018-12-28 | 2021-11-18 | 株式会社村田製作所 | 電池、電池パック、電子機器、電動車両および電力システム |
WO2022137430A1 (ja) * | 2020-12-24 | 2022-06-30 | 三菱電機株式会社 | 全熱交換素子用流路板、全熱交換素子および全熱交換換気装置並びに全熱交換素子用流路板の製造方法 |
CN116808851A (zh) * | 2023-03-08 | 2023-09-29 | 杭州师范大学 | 一种基于体积排斥效应的聚偏氟乙烯阶层式多孔薄膜及其制备方法和应用 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6653649B2 (ja) | 2013-11-14 | 2020-02-26 | インテグリス・インコーポレーテッド | 微孔性ポリアミドイミド膜 |
US10427345B2 (en) * | 2014-05-07 | 2019-10-01 | Massachusetts Institute Of Technology | Continuous fabrication system and method for highly aligned polymer films |
CN106574071B (zh) | 2014-08-21 | 2020-05-29 | W·W·严 | 微孔片材产品及其制备和使用方法 |
US10829600B2 (en) | 2014-11-05 | 2020-11-10 | William Winchin Yen | Microporous sheet product and methods for making and using the same |
JP2017535642A (ja) * | 2014-11-05 | 2017-11-30 | イエン,ウイリアム・ウインチン | 微孔性シート製品、ならびに、その製造方法及び使用方法 |
GB2533589A (en) * | 2014-12-22 | 2016-06-29 | Ndc Infrared Eng Ltd | Measurement of porous film |
WO2016132806A1 (ja) * | 2015-02-20 | 2016-08-25 | 東レバッテリーセパレータフィルム株式会社 | 微多孔プラスチックフィルムの製造方法 |
CN104733676B (zh) * | 2015-03-20 | 2016-10-19 | 常州大学 | 一种锂离子电池聚烯烃微孔隔膜的制备方法 |
KR101711849B1 (ko) | 2015-07-21 | 2017-03-06 | 주식회사 에프에스티 | 내면 영상 획득을 위한 광학 장치 |
WO2018020825A1 (ja) * | 2016-07-25 | 2018-02-01 | 帝人株式会社 | 複合膜用基材 |
WO2018174871A1 (en) * | 2017-03-22 | 2018-09-27 | Daramic, Llc | Improved separators, lead acid batteries, and methods and systems associated therewith |
JP6962320B2 (ja) * | 2017-03-22 | 2021-11-05 | 東レ株式会社 | ポリオレフィン微多孔膜、及びそれを用いた電池 |
JP6858618B2 (ja) * | 2017-03-30 | 2021-04-14 | 帝人株式会社 | 液体フィルター用基材 |
KR102107794B1 (ko) * | 2018-08-17 | 2020-05-07 | 더블유스코프코리아 주식회사 | 복합막 및 그 제조방법 |
CN109742295B (zh) * | 2018-12-28 | 2022-09-09 | 界首市天鸿新材料股份有限公司 | 一种干法锂电池隔膜及其制备方法 |
EP3950823A4 (en) * | 2019-03-27 | 2022-12-07 | Furukawa Electric Co., Ltd. | RESIN MOLD REINFORCED WITH ORGANIC FIBER AND METHOD FOR PRODUCTION THEREOF |
CN112542653B (zh) * | 2019-09-05 | 2023-03-14 | 深圳市拓邦锂电池有限公司 | 锂电池的抗褶皱隔膜及其制备方法 |
CN115380430A (zh) * | 2020-03-27 | 2022-11-22 | 宁德新能源科技有限公司 | 电化学装置 |
CN116457398A (zh) * | 2020-08-24 | 2023-07-18 | 国际人造丝公司 | 由窄分子量分布的高密度聚乙烯制成的凝胶挤出制品 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02132327A (ja) | 1988-11-14 | 1990-05-21 | Toshiba Corp | 高温用超音波センサー |
JPH05234578A (ja) | 1991-07-05 | 1993-09-10 | Asahi Chem Ind Co Ltd | 有機電解液を用いる電池用セパレータ及びその製造方法 |
JPH11269290A (ja) | 1998-03-20 | 1999-10-05 | Tonen Kagaku Kk | ポリオレフィン微多孔膜 |
WO2000020493A1 (en) | 1998-10-01 | 2000-04-13 | Tonen Chemical Corporation | Microporous polyolefin film and process for producing the same |
JP2001183432A (ja) | 1999-12-28 | 2001-07-06 | Advantest Corp | タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法 |
JP2002105235A (ja) | 2000-07-26 | 2002-04-10 | Asahi Kasei Corp | ポリオレフィン製微多孔膜及びその製造方法 |
JP2002256099A (ja) | 2001-03-02 | 2002-09-11 | Tonen Chem Corp | 熱可塑性樹脂微多孔膜の製造方法 |
JP3347835B2 (ja) | 1993-08-13 | 2002-11-20 | 東燃化学株式会社 | ポリオレフィン微多孔膜の製造方法 |
JP3347854B2 (ja) | 1993-12-27 | 2002-11-20 | 東燃化学株式会社 | ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター |
JP2004152614A (ja) | 2002-10-30 | 2004-05-27 | Asahi Kasei Chemicals Corp | 微多孔膜 |
WO2005054350A1 (ja) | 2003-12-03 | 2005-06-16 | Tonen Chemical Corporation | 複合微多孔膜及びその製造方法並びに用途 |
WO2005113657A1 (ja) | 2004-05-20 | 2005-12-01 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
WO2006137540A1 (ja) | 2005-06-24 | 2006-12-28 | Tonen Chemical Corporation | ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池 |
WO2007015416A1 (ja) | 2005-08-03 | 2007-02-08 | Asahi Kasei Chemicals Corporation | ポリオレフィン微多孔膜 |
JP2007106992A (ja) | 2005-09-16 | 2007-04-26 | Tonen Chem Corp | ポリエチレン微多孔膜及びその製造方法、並びに電池用セパレータ |
JP2009518497A (ja) * | 2006-02-14 | 2009-05-07 | エスケー エナジー シーオー., エルティーディー. | 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
JP2011111484A (ja) | 2009-11-25 | 2011-06-09 | Asahi Kasei E-Materials Corp | ポリオレフィン製微多孔膜 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100943235B1 (ko) * | 2005-05-16 | 2010-02-18 | 에스케이에너지 주식회사 | 압출혼련성과 물성이 우수한 고밀도폴리에틸렌 미세다공막및 그 제조방법 |
US7981536B2 (en) * | 2006-08-31 | 2011-07-19 | Toray Tonen Specialty Separator Godo Kaisha | Microporous membrane, battery separator and battery |
US8304113B2 (en) * | 2007-03-05 | 2012-11-06 | Advanced Membrane Systems, Inc. | Polyolefin and ceramic battery separator for non-aqueous battery applications |
US8021789B2 (en) * | 2007-09-28 | 2011-09-20 | Toray Tonen Specialty Separator Godo Kaisha | Microporous membrane and manufacturing method |
TWI367229B (en) * | 2007-10-05 | 2012-07-01 | Toray Tonen Specialty Separato | Microporous polymer membrane |
WO2009069534A2 (en) * | 2007-11-30 | 2009-06-04 | Tonen Chemical Corporation | Microporous polymeric membrane, battery separator, and battery |
JP5235484B2 (ja) * | 2008-04-30 | 2013-07-10 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜 |
-
2012
- 2012-12-12 MY MYPI2014701791A patent/MY161697A/en unknown
- 2012-12-12 US US14/367,342 patent/US9624349B2/en active Active
- 2012-12-12 CN CN201280065082.7A patent/CN104024316B/zh active Active
- 2012-12-12 EP EP12862936.7A patent/EP2799475B1/en active Active
- 2012-12-12 JP JP2013551592A patent/JP5967589B2/ja active Active
- 2012-12-12 KR KR1020147016032A patent/KR102009237B1/ko active IP Right Grant
- 2012-12-12 WO PCT/JP2012/082199 patent/WO2013099607A1/ja active Application Filing
-
2017
- 2017-03-02 US US15/447,223 patent/US9911956B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02132327A (ja) | 1988-11-14 | 1990-05-21 | Toshiba Corp | 高温用超音波センサー |
JPH05234578A (ja) | 1991-07-05 | 1993-09-10 | Asahi Chem Ind Co Ltd | 有機電解液を用いる電池用セパレータ及びその製造方法 |
JP3347835B2 (ja) | 1993-08-13 | 2002-11-20 | 東燃化学株式会社 | ポリオレフィン微多孔膜の製造方法 |
JP3347854B2 (ja) | 1993-12-27 | 2002-11-20 | 東燃化学株式会社 | ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター |
JPH11269290A (ja) | 1998-03-20 | 1999-10-05 | Tonen Kagaku Kk | ポリオレフィン微多孔膜 |
WO2000020493A1 (en) | 1998-10-01 | 2000-04-13 | Tonen Chemical Corporation | Microporous polyolefin film and process for producing the same |
JP2001183432A (ja) | 1999-12-28 | 2001-07-06 | Advantest Corp | タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法 |
JP2002105235A (ja) | 2000-07-26 | 2002-04-10 | Asahi Kasei Corp | ポリオレフィン製微多孔膜及びその製造方法 |
JP2002256099A (ja) | 2001-03-02 | 2002-09-11 | Tonen Chem Corp | 熱可塑性樹脂微多孔膜の製造方法 |
JP2004152614A (ja) | 2002-10-30 | 2004-05-27 | Asahi Kasei Chemicals Corp | 微多孔膜 |
WO2005054350A1 (ja) | 2003-12-03 | 2005-06-16 | Tonen Chemical Corporation | 複合微多孔膜及びその製造方法並びに用途 |
WO2005113657A1 (ja) | 2004-05-20 | 2005-12-01 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
WO2006137540A1 (ja) | 2005-06-24 | 2006-12-28 | Tonen Chemical Corporation | ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池 |
WO2007015416A1 (ja) | 2005-08-03 | 2007-02-08 | Asahi Kasei Chemicals Corporation | ポリオレフィン微多孔膜 |
JP2007106992A (ja) | 2005-09-16 | 2007-04-26 | Tonen Chem Corp | ポリエチレン微多孔膜及びその製造方法、並びに電池用セパレータ |
JP2009518497A (ja) * | 2006-02-14 | 2009-05-07 | エスケー エナジー シーオー., エルティーディー. | 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
JP2011111484A (ja) | 2009-11-25 | 2011-06-09 | Asahi Kasei E-Materials Corp | ポリオレフィン製微多孔膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2799475A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014192860A1 (ja) * | 2013-05-31 | 2014-12-04 | 東レバッテリーセパレータフィルム株式会社 | ポリオレフィン多層微多孔膜およびその製造方法 |
US10411237B2 (en) * | 2013-05-31 | 2019-09-10 | Toray Industries, Inc. | Multilayer, microporous polyolefin membrane, and production method thereof |
WO2018009000A1 (ko) * | 2016-07-07 | 2018-01-11 | 에스케이이노베이션 주식회사 | 역삼투막 |
JP2020092068A (ja) * | 2018-12-07 | 2020-06-11 | 旭化成株式会社 | 微多孔膜の製造方法 |
JP7265349B2 (ja) | 2018-12-07 | 2023-04-26 | 旭化成株式会社 | 微多孔膜の製造方法 |
JPWO2020138318A1 (ja) * | 2018-12-28 | 2021-11-18 | 株式会社村田製作所 | 電池、電池パック、電子機器、電動車両および電力システム |
JP7251554B2 (ja) | 2018-12-28 | 2023-04-04 | 株式会社村田製作所 | 電池、電池パック、電子機器、電動車両および電力システム |
US12062758B2 (en) | 2018-12-28 | 2024-08-13 | Murata Manufacturing Co., Ltd. | Battery, battery pack, electronic device, electric vehicle, and electric power system |
WO2022137430A1 (ja) * | 2020-12-24 | 2022-06-30 | 三菱電機株式会社 | 全熱交換素子用流路板、全熱交換素子および全熱交換換気装置並びに全熱交換素子用流路板の製造方法 |
CN116808851A (zh) * | 2023-03-08 | 2023-09-29 | 杭州师范大学 | 一种基于体积排斥效应的聚偏氟乙烯阶层式多孔薄膜及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
US20150005405A1 (en) | 2015-01-01 |
EP2799475B1 (en) | 2017-03-08 |
US20170179457A1 (en) | 2017-06-22 |
KR102009237B1 (ko) | 2019-08-09 |
JP5967589B2 (ja) | 2016-08-10 |
US9624349B2 (en) | 2017-04-18 |
JPWO2013099607A1 (ja) | 2015-04-30 |
CN104024316B (zh) | 2016-01-20 |
MY161697A (en) | 2017-05-15 |
EP2799475A1 (en) | 2014-11-05 |
EP2799475A4 (en) | 2015-08-26 |
US9911956B2 (en) | 2018-03-06 |
CN104024316A (zh) | 2014-09-03 |
KR20140105750A (ko) | 2014-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967589B2 (ja) | ポリオレフィン微多孔膜及びその製造方法 | |
KR101231748B1 (ko) | 폴리올레핀 미세 다공막 및 그 제조 방법 | |
JP5497635B2 (ja) | ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池 | |
JP6443333B2 (ja) | ポリオレフィン微多孔膜およびその製造方法 | |
EP2750216B1 (en) | Battery separator | |
KR101319912B1 (ko) | 폴리에틸렌 미세 다공막 및 그 제조 방법과 전지용세퍼레이터 | |
JP5576609B2 (ja) | ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池 | |
JP5202949B2 (ja) | ポリオレフィン多層微多孔膜及び電池用セパレータ | |
TWI402172B (zh) | 微多孔聚烯烴薄膜、其製法、電池隔離材及電池 | |
JP5250262B2 (ja) | ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池 | |
US20160126520A1 (en) | Battery separator and method of producing the same | |
WO2017170289A1 (ja) | ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池 | |
WO2014192860A1 (ja) | ポリオレフィン多層微多孔膜およびその製造方法 | |
JP6394597B2 (ja) | ポリオレフィン多層微多孔膜およびその製造方法 | |
HUE032267T2 (en) | Microporous membranes and methods for producing and using such membranes | |
KR20070114282A (ko) | 폴리올레핀 미세 다공막의 제조 방법 및 그 미세 다공막 | |
KR102518673B1 (ko) | 폴리올레핀 미다공막 | |
KR20190124207A (ko) | 폴리올레핀 미다공막, 다층 폴리올레핀 미다공막, 적층 폴리올레핀 미다공막, 및 세퍼레이터 | |
JP6988880B2 (ja) | ポリオレフィン微多孔膜 | |
JP2019157060A (ja) | ポリオレフィン微多孔膜 | |
KR20220069831A (ko) | 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013551592 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012862936 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862936 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147016032 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14367342 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |