WO2013099607A1 - ポリオレフィン微多孔膜及びその製造方法 - Google Patents

ポリオレフィン微多孔膜及びその製造方法 Download PDF

Info

Publication number
WO2013099607A1
WO2013099607A1 PCT/JP2012/082199 JP2012082199W WO2013099607A1 WO 2013099607 A1 WO2013099607 A1 WO 2013099607A1 JP 2012082199 W JP2012082199 W JP 2012082199W WO 2013099607 A1 WO2013099607 A1 WO 2013099607A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
microporous membrane
mass
less
stretching
Prior art date
Application number
PCT/JP2012/082199
Other languages
English (en)
French (fr)
Inventor
石原毅
河野公一
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to CN201280065082.7A priority Critical patent/CN104024316B/zh
Priority to KR1020147016032A priority patent/KR102009237B1/ko
Priority to US14/367,342 priority patent/US9624349B2/en
Priority to EP12862936.7A priority patent/EP2799475B1/en
Priority to JP2013551592A priority patent/JP5967589B2/ja
Publication of WO2013099607A1 publication Critical patent/WO2013099607A1/ja
Priority to US15/447,223 priority patent/US9911956B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/005Producing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0044Stabilisers, e.g. against oxydation, light or heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2823/00Use of polyalkenes or derivatives thereof as mould material
    • B29K2823/04Polymers of ethylene
    • B29K2823/06PE, i.e. polyethylene
    • B29K2823/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2823/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane and a method for producing the same, and more particularly to a polyolefin microporous membrane that is excellent in oxidation resistance, mechanical properties, and permeability and useful as a battery separator and a method for producing the same.
  • Polyolefin microporous membranes are used in various applications such as battery separators, electrolytic capacitor membranes, various filters, moisture permeable and waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes.
  • battery separators particularly a lithium ion battery separator
  • its performance is deeply related to battery characteristics, battery productivity, and battery safety. Therefore, excellent permeability, mechanical characteristics, heat shrinkage resistance, shutdown characteristics, meltdown characteristics, etc. are required.
  • the mechanical strength is low, when used as a battery separator, the voltage of the battery may decrease due to a short circuit of the electrode.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-269290
  • Polyolefin composition containing 70 to 95% by weight of polyethylene having a weight average molecular weight of 5 ⁇ 10 5 or more or a polyethylene composition thereof and 5 to 30% by weight of polypropylene having a weight average molecular weight of 1 ⁇ 10 4 or more as the microporous membrane
  • a polyolefin microporous membrane made of a product wherein the thickness variation within 1 mm on the left and right sides adjacent to the surface direction of the membrane surface is ⁇ 1 ⁇ m or more.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-152614
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-152614
  • the microporous membrane contains 5 to 20% by weight of a polypropylene having a viscosity average molecular weight of 200,000 or more and a low molecular weight polypropylene having a viscosity average molecular weight of 50,000 or less, respectively. Has been.
  • Patent Document 3 manufactures a mixture comprising polyethylene having a specific molecular weight distribution and polypropylene having a specific range of weight average molecular weight, an inorganic fine powder, and an organic liquid. By using it as a raw material for the membrane, an organic electrolyte with excellent mechanical properties and safety can be obtained, even if the proportion of the ultra-high molecular weight portion in the molecular weight distribution of polyethylene is increased, there is no pressure increase during film molding. A battery separator to be used is proposed.
  • This separator is a fine particle comprising a matrix containing a polyethylene having a molecular weight of 10% by weight or more and a molecular weight of 5% by weight or more and a polypropylene having a weight average molecular weight of 10,000 to 1,000,000. It is composed of a porous membrane, and the amount of the polypropylene is 5 to 45% by weight of the total weight of polyethylene and polypropylene, and the microporous membrane has a thickness of 10 to 500 ⁇ m, a porosity of 40 to 85%, and a maximum pore diameter. The difference between the film breaking temperature and the non-porous temperature is 28 to 40 ° C.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2011-111484 includes 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component includes ultrahigh molecular weight polyethylene, A polyolefin microporous membrane having a temperature difference between the melting point Tme and the melting point Tmp of the polypropylene component of ⁇ 20 ° C. ⁇ Tmp ⁇ Tme ⁇ 23 ° C. and a bubble point of 400 to 600 kPa is proposed. It is said that a polyolefin microporous membrane suitable as a separator capable of achieving both oxidation resistance and cycle characteristics is provided.
  • Patent Document 5 is a polyolefin microporous film made of polyethylene and polypropylene having a viscosity average molecular weight of 100,000 or more, containing 4 wt% or more of the polypropylene, and by infrared spectroscopy.
  • a polyolefin microporous membrane is proposed in which the concentration of terminal vinyl groups per 10,000 carbon atoms in the polyolefin constituting the microporous membrane is 2 or more. It is disclosed that the microporous film has achieved both the resistance to fracturing and low heat shrinkage, and has excellent fuse characteristics and a uniform film thickness.
  • Japanese Patent Application Laid-Open No. 2001-183432 Patent Document 6
  • Japanese Patent Application Laid-Open No. 2002-105235 Patent Document 7
  • International Publication No. 2005/113657 Patent Document 8
  • Japanese Patent Laid-Open No. 11-269290 JP 2004-152614 A JP-A-5-234578 JP 2011-111484 A International Publication No. 2007/015416 JP 2001-183432 A JP 2002-105235 A International Publication No. 2005/113657
  • the polyethylene microporous membrane introduced with polypropylene described in Patent Documents 6 to 8 had an insufficient permeability-strength balance.
  • an object of the present invention is to provide a polyolefin microporous membrane excellent in oxidation resistance, mechanical properties, permeability and electrolyte solution pouring property.
  • the polyolefin microporous membrane of the present invention has the following constitution. That is, It is a polyolefin microporous membrane obtained by forming a gel-like molded product using a polyolefin resin containing polypropylene, and stretching and washing it in at least one direction, and has an electrolyte solution injection property of 20 seconds or less, A polyolefin microporous membrane having a uniform polypropylene distribution in at least one plane perpendicular to the thickness direction.
  • the manufacturing method of the polyolefin microporous film of this invention has the following structure. That is, A method for producing the above-mentioned polyolefin microporous membrane, wherein (a) the content of ultra high molecular weight polyethylene having a mass average molecular weight of 1 ⁇ 10 6 or more is 1 to 50% by mass with respect to 100% by mass of the whole polyolefin, and the weight average molecular weight is (B) melt-kneading a polyolefin resin mainly composed of polyethylene containing 0.5% or more and less than 5% by mass of polypropylene that is greater than 50,000 and less than 300,000; The obtained melt-kneaded product is extruded from a die so that the shear rate is 60 / sec or more, and is cooled so that the cooling rate is 30 ° C./sec or more to form a gel-like molded product. And (e) a method for producing a polyolefin microporous membrane in which
  • the polyolefin resin is preferably a polyolefin resin containing 0.5% by mass or more and less than 5% by mass of polypropylene having a weight average molecular weight of more than 50,000 and less than 300,000. .
  • the polyolefin microporous membrane of the present invention has an average value of normalized PP / PE ratio measured by Raman spectroscopy in at least one plane perpendicular to the thickness direction of 0.5 or more, a standard deviation of 0.2 or less, and a kurtosis of It is preferable that it is 1.0 or less.
  • the polyolefin microporous membrane of the present invention preferably has a polypropylene weight average molecular weight of more than 50,000 and less than 150,000.
  • the polyolefin microporous membrane of the present invention preferably has a polypropylene weight average molecular weight of more than 50,000 and less than 150,000.
  • the polyolefin microporous membrane of the present invention preferably contains 1 to 50% by weight of ultrahigh molecular weight polyethylene having a mass average molecular weight of 1 ⁇ 10 6 or more when the total polyolefin resin is 100% by weight.
  • the microporous film does not decrease the polyethylene content in the film surface portion compared to the average of the entire film, and the invention disclosed in Patent Document 5
  • the oxidation resistance is improved even when the terminal vinyl group concentration per 10,000 carbon atoms in the polyolefin constituting the microporous film by infrared spectroscopy is not 2 or more. Since the amount of polypropylene added is less than 5% by mass, the film thickness variation as seen in Patent Document 1 is not observed and a uniform film thickness distribution is shown.
  • PP distribution a microporous film having a uniform polypropylene distribution
  • the polypropylene content of the microporous membrane of the present invention is small, but it is considered that the polypropylene present without being unevenly distributed in the plane perpendicular to the thickness direction contributes to the suppression of the oxidation reaction in the battery. If it is 0.5% by mass or more, the contribution of oxidation stability is sufficient, and if it is less than 5% by mass, the film thickness deviation does not increase and the strength does not decrease. Is preferred.
  • the polyolefin microporous membrane of the present invention has a structure in which the PP distribution is uniform in at least one plane perpendicular to the thickness direction from the analysis result by microscopic Raman spectroscopy. It exists without being unevenly distributed within. For this reason, the partial deterioration of the separator hardly proceeds in the battery. Moreover, since the amount of polypropylene to be added is small, it has an excellent balance between air permeability and puncture strength, and exhibits an electrolyte injection property equivalent to that of a polyethylene microporous membrane. Therefore, when the polyolefin microporous membrane of the present invention is used as a battery separator, the productivity of the battery is improved, and the battery life is extended due to excellent cycle characteristics.
  • a gel-like molded product is formed using a polyolefin composition containing polypropylene having a specific molecular weight and a content of less than 5% by mass, stretched, washed, and again predetermined. Since the heat treatment is performed after the film is stretched at a magnification of 1, a polyolefin microporous film having the above-described properties can be stably and efficiently produced.
  • FIG. 2 is a graph showing a normalized PP / PE ratio distribution diagram of Example 1.
  • FIG. 2 is a two-dimensional distribution diagram of normalized PP / PE ratios in Example 1.
  • 2 is a normalized PP / PE ratio two-dimensional distribution diagram of Comparative Example 1.
  • FIG. 6 is a two-dimensional distribution diagram of a normalized PP / PE ratio in Comparative Example 2.
  • the polyolefin resin constituting the polyolefin microporous membrane of the present invention preferably contains polyethylene (hereinafter referred to as PE) as a main component.
  • the polyolefin resin may contain PE in addition to polypropylene having a specific molecular weight, may be a composition containing PE and other polyolefins, or may contain a resin other than polyolefin. There may be. Therefore, it should be understood that the term “polyolefin resin” may include not only polyolefins but also resins other than polyolefins. However, the polyolefin resin is 100% by mass as a whole, and the proportion of PE is preferably 80% by mass or more, more preferably 90% by mass or more.
  • PE As PE, (a) PE with Mw of less than 1 ⁇ 10 6 (hereinafter referred to as “PE (A)” unless otherwise specified), or (b) PE (A) with Mw of 1 ⁇ A composition comprising 10 6 or more ultra high molecular weight PE (UHMwPE) (hereinafter simply referred to as “PE composition (B)” unless otherwise specified) is preferred.
  • UHMwPE ultra high molecular weight PE
  • PE (A) may be any of high density PE (HDPE), medium density PE (MDPE), and low density PE (LDPE), but HDPE is preferred.
  • the Mw of PE (A) is preferably 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 .
  • Mw of HDPE is more preferably 5 ⁇ 10 4 or more and less than 4 ⁇ 10 5 .
  • Two or more PEs (A) having different Mw or density may be used.
  • PE (A) may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other ⁇ -olefin.
  • ⁇ -olefins other than ethylene examples include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene, and the like.
  • the content rate of UHMwPE is 50 mass% or less by making the whole PE into 100 mass%. When this content rate exceeds 50 mass%, a pressure rise will be caused at the time of molding, and productivity will be reduced.
  • the lower limit of the content is not particularly limited, but is preferably 1% by mass or more from the viewpoint of maintaining mechanical strength and maintaining a high meltdown temperature (MD temperature), and particularly preferably 5% by mass or more. preferable.
  • the Mw of UHMwPE is preferably in the range of 1 ⁇ 10 6 to 3 ⁇ 10 6 . By making Mw of UHMwPE 3 ⁇ 10 6 or less, melt extrusion can be facilitated.
  • UHMwPE is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other ⁇ -olefin. Other ⁇ -olefins other than ethylene may be the same as described above.
  • the ratio Mw / Mn (molecular weight distribution) of Mw and number average molecular weight (Mn) of PE (A) and PE composition (B) is not limited, but is preferably in the range of 5 to 300. Is more preferable, and a range of 5 to 25 is particularly preferable.
  • Mw / Mn is less than 5, the amount of the high molecular weight component is too large, so that extrusion of the PE solution is difficult.
  • Mw / Mn exceeds 300, the strength of the microporous film obtained is too low due to too many low molecular weight components.
  • Mw / Mn is used as a measure of molecular weight distribution. The larger this value, the wider the molecular weight distribution.
  • Mw / Mn shows the spread of its molecular weight distribution, and the larger the value, the wider the molecular weight distribution.
  • the Mw / Mn of a single PE can be adjusted as appropriate by preparing PE by multistage polymerization.
  • the multistage polymerization method is preferably a two-stage polymerization in which a high molecular weight component is polymerized in the first stage and a low molecular weight component is polymerized in the second stage.
  • the larger the Mw / Mn the larger the difference in Mw of each component to be blended, and the smaller the smaller, the smaller the difference in Mw.
  • Mw / Mn of the PE composition (B) can be appropriately adjusted by adjusting the molecular weight and mixing ratio of each component.
  • the polyolefin resin may contain a polyolefin imparting a shutdown function.
  • LDPE or PE wax can be added as the polyolefin imparting the shutdown function.
  • the LDPE is preferably at least one selected from the group consisting of branched LDPE, linear LDPE (LLDPE), and an ethylene / ⁇ -olefin copolymer produced by a single site catalyst.
  • the addition amount is preferably 40% by mass or less based on 100% by mass of the entire polyolefin resin. When this addition amount is large, the strength is greatly reduced.
  • the polyolefin resin contains the PE composition (B), polybutene-1 having an Mw of 1 ⁇ 10 4 to 4 ⁇ 10 6 and an ethylene / ⁇ -olefin having an Mw of 1 ⁇ 10 4 to 4 ⁇ 10 6 as optional components Any of the copolymers may be added. These addition amounts are preferably 40% by mass or less based on 100% by mass of the entire polyolefin resin.
  • Polypropylene (hereinafter referred to as PP) is not limited to a homopolymer, but may be a block copolymer and / or a random copolymer containing other ⁇ -olefin or diolefin.
  • Other olefins are preferably ethylene or ⁇ -olefins having 4 to 8 carbon atoms. Examples of the ⁇ -olefin having 4 to 8 carbon atoms include 1-butene, 1-hexene, 4-methyl-1-pentene and the like.
  • the diolefin preferably has 4 to 14 carbon atoms.
  • diolefin having 4 to 14 carbon atoms examples include butadiene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, and the like.
  • the content of other olefins or diolefins is preferably less than 10 mol% with respect to 100 mol% of the propylene copolymer.
  • the Mw of PP is preferably greater than 5 ⁇ 10 4 and less than 3 ⁇ 10 5, more preferably greater than 5 ⁇ 10 4 and less than 1.5 ⁇ 10 5 .
  • the molecular weight distribution (Mw / Mn) of PP is preferably 1.01 to 100, more preferably 1.1 to 50.
  • the PP may be a single product or a composition containing two or more types of PP.
  • the melting point of PP is preferably 150 to 175 ° C.
  • the polyolefin resin may be a composition containing polyolefin other than PE or PP, or a resin other than polyolefin.
  • polyolefins other than PE and PP include homopolymers and copolymers such as pentene-1, hexene-1, 4-methylpentene-1, and octene, in addition to polybutene-1.
  • resins other than polyolefin include homopolymers and copolymers such as vinyl acetate, methyl methacrylate, and styrene, as well as polyester, fluororesin, polyamide (PA), polyarylene sulfide (PAS), and polyvinyl alcohol (PVA).
  • polyimide PI
  • PAI polyamideimide
  • PES polyethersulfone
  • PEEK polyetheretherketone
  • PC polycarbonate
  • cellulose acetate cellulose triacetate
  • polysulfone polyetherimide and the like.
  • polyolefin other than PE and the resin other than polyolefin those having heat resistance are preferable.
  • the heat resistant resin preferably has a melting point or glass transition temperature (Tg) of 150 ° C. or higher.
  • Tg melting point or glass transition temperature
  • the melting point or Tg is 150 ° C. or higher” means that when the heat-resistant resin is a crystalline resin (including a resin that is partially crystalline), the melting point is 150 ° C. or higher. In the case of a crystalline resin, it means that Tg is 150 ° C. or higher.
  • the melting point and Tg can be measured according to JIS K 7121.
  • the melting point or Tg of the heat resistant resin is more preferably 170 to 260 ° C.
  • the membrane breaking temperature (MD temperature) is improved when the polyolefin microporous membrane is used as a battery separator, so that the high temperature storage characteristics of the battery are further improved.
  • polyesters such as polybutylene terephthalate and polyethylene terephthalate, polymethylpentene [PMP or TPX ( Transpanret polymer X)], fluororesins such as polyvinylidene polytetrafluoroethylene, polyamides such as polyamide 6 and polyamide 66 (PA, melting point: 215 to 265 ° C.), polyarylene sulfides such as polyphenylene sulfide (PAS) ), Polystyrene (PS, melting point: 230 ° C.), polyvinyl alcohol (PVA, melting point: 220-240 ° C.), polyimide (PI, Tg: 280 ° C.
  • polyesters such as polybutylene terephthalate and polyethylene terephthalate
  • PMP or TPX Transpanret polymer X
  • fluororesins such as polyvinylidene polytetrafluoroethylene
  • polyamides such as polyamide 6 and polyamide 66
  • the heat resistant resin is preferably at least one selected from the group consisting of polyester and polymethylpentene.
  • the heat resistant resin is not limited to a single resin component, and may be a plurality of resin components.
  • the addition amount of the heat-resistant resin is preferably 3 to 20% by mass, more preferably 3 to 15% by mass, based on 100% by mass of the entire polyolefin resin. When this content exceeds 20% by mass, mechanical strength such as puncture strength and tensile rupture strength is greatly reduced.
  • the microporous membrane of the present invention may be used for the surface layer of a multilayer film.
  • the improvement of the air permeability-strength balance that cannot be obtained by a single membrane, or the combination with a heat-resistant resin in the center layer The battery characteristics are further improved by improving the meltdown temperature (MD temperature).
  • the heat-resistant resin is preferably at least one selected from the group consisting of polypropylene, polybutylene terephthalate, and polymethylpentene.
  • the method for producing a polyolefin microporous membrane according to the present invention includes (1) a step of adding a film-forming solvent to the polyolefin resin and then melt-kneading to prepare a polyolefin resin solution.
  • a drying step, a heat treatment step, a crosslinking treatment step by ionizing radiation, a hydrophilization treatment step, a surface coating treatment step, and the like can be provided.
  • a suitable film-forming solvent to the polyolefin resin, it is melt-kneaded to prepare a polyolefin resin solution.
  • the solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin. By using a liquid film-forming solvent, stretching at a relatively high magnification becomes possible.
  • liquid solvent examples include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, and mineral oil fractions having boiling points corresponding to these, and dibutyl.
  • phthalate and dioctyl phthalate include liquid phthalates at room temperature. It is also possible to use a mixture of these.
  • one or more solvents that are miscible with the polyolefin composition in the melt-kneaded state but are solid at room temperature may be mixed with the liquid solvent.
  • a solid solvent include stearyl alcohol, seryl alcohol, and paraffin wax.
  • the viscosity of the liquid solvent is about 30 cSt to about 500 cSt, or about 30 cSt to about 200 cSt when measured at 25 ° C.
  • the viscosity is not particularly limited, but if the viscosity at 25 ° C. is less than about 30 cSt, foaming tends to occur and kneading is difficult. On the other hand, if it exceeds about 500 cSt, it may be difficult to remove the liquid solvent in the step (5).
  • polyethylene-based resins, polypropylene-based resins and film-forming solvents are used to prepare polyolefin solutions containing relatively high concentrations of polyethylene and polypropylene. It is carried out by a method of stirring at a melting temperature or uniformly mixing in an extruder.
  • the temperature varies depending on the polymer and solvent to be used when it is dissolved in an extruder or in a solvent while stirring, but it is preferably in the range of 140 to 250 ° C., for example.
  • it is preferably dissolved in an extruder.
  • melt-kneading method for example, a method using a twin-screw extruder described in the specifications of Japanese Patent Nos. 2132327 and 3347835 can be used.
  • the film-forming solvent may be added before the start of kneading or during kneading.
  • the solvent can be added from the middle of the twin screw extruder during kneading.
  • the resin may be dry mixed before melt kneading, and the solvent can be added before, during or after dry mixing.
  • the polyolefin resin concentration of the polyolefin resin solution is 20 to 50% by mass, preferably 25 to 45% by mass with respect to 100% by mass of the total of the polyolefin resin and the solvent for film formation.
  • productivity is not preferable.
  • the proportion of the polyolefin resin is more than 50% by mass, the moldability of the gel-like molded product is lowered.
  • the screw length (L) to diameter (D) ratio (L / D) of the twin-screw extruder is preferably in the range of 20 to 100, more preferably in the range of 35 to 70.
  • L / D is less than 20, melt kneading becomes insufficient.
  • L / D exceeds 100, the residence time of the polyolefin resin solution increases too much.
  • the shape of the screw is not particularly limited and may be a known one.
  • the inner diameter of the twin screw extruder is preferably 40 to 100 mm.
  • the ratio Q / Ns of the amount Q (kg / h) of the polyolefin resin solution to the screw rotation speed Ns (rpm) is set to 0.1 to 0.55 kg / h / rpm. Is preferred.
  • Q / Ns is less than 0.1 kg / h / rpm, the polyolefin resin is excessively sheared, leading to a decrease in strength and meltdown temperature.
  • Q / Ns exceeds 0.55 kg / h / rpm, it cannot be uniformly kneaded.
  • the ratio Q / Ns is more preferably 0.2 to 0.5 kg / h / rpm.
  • the screw rotation speed Ns is preferably 180 rpm or more.
  • the upper limit of the screw rotation speed Ns is not particularly limited, but 500 rpm is preferable.
  • (2) Step of forming a gel-like molded product A polyolefin resin solution is extruded from a die through an extruder and cooled to form a gel-like molded product. Since the extrusion method and the formation method of the gel-like molded product are known, the description thereof is omitted. As these methods, for example, methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
  • the shear rate and cooling rate from the T die are not properly controlled, the PP distribution in the gel-like molded product tends to be difficult to be uniform, so the shear rate from the T die is 60 / sec.
  • the cooling rate is preferably 30 ° C. or higher.
  • a method for cooling the gel-like sheet a method of directly contacting cold air, cooling water, or other cooling medium, a method of contacting a roll cooled with a refrigerant, or the like can be used.
  • (3) First stretching step The obtained sheet-like gel-like molded product is stretched in at least a uniaxial direction. The first stretching causes cleavage between the PE crystal lamella layers, the PE phase is refined, and a large number of fibrils are formed.
  • the obtained fibrils form a three-dimensional network structure (a network structure that is irregularly connected three-dimensionally). Since the gel-like molded product contains a film-forming solvent, it can be stretched uniformly.
  • the first stretching can be carried out at a predetermined magnification by heating the gel-like molded product and then using a normal tenter method, roll method, inflation method, rolling method, or a combination of these methods.
  • the first stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be performed.
  • the draw ratio varies depending on the thickness of the gel-like molded product, it is preferably 2 times or more, more preferably 3 to 30 times in uniaxial stretching.
  • biaxial stretching it is preferable to increase at least 3 times in any direction, that is, 9 times or more in area magnification because the puncture strength is improved. If the area magnification is less than 9 times, the stretching is insufficient, and a highly elastic and high strength polyolefin microporous membrane cannot be obtained. On the other hand, when the area magnification exceeds 400 times, there are restrictions in terms of stretching devices, stretching operations, and the like.
  • the first stretching temperature is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin to the crystal dispersion temperature + 30 ° C., more preferably in the range of the crystal dispersion temperature + 10 ° C. to the crystal dispersion temperature + 25 ° C., It is particularly preferable to set the temperature within the range of crystal dispersion temperature + 15 ° C. to crystal dispersion temperature + 20 ° C.
  • the stretching temperature is higher than the crystal dispersion temperature + 30 ° C., the orientation of molecular chains after stretching deteriorates.
  • the temperature is lower than the crystal dispersion temperature, the resin is not sufficiently softened, the film is easily broken by stretching, and high-stretching cannot be performed.
  • the crystal dispersion temperature refers to a value obtained by measuring the temperature characteristic of dynamic viscoelasticity based on ASTM D4065.
  • the crystal dispersion temperature is generally 90 to 100 ° C. Therefore, when the polyolefin resin is composed of 90% by mass or more and PE, the stretching temperature is usually in the range of 90 to 130 ° C, preferably in the range of 100 to 125 ° C, more preferably in the range of 105 to 120 ° C. .
  • ⁇ Multi-stage stretching at different temperatures may be performed during the first stretching.
  • the stretching is preferably performed at two different temperatures, the temperature of the subsequent stage being higher than the temperature of the previous stage.
  • the difference in the stretching temperature between the former stage and the latter stage is 5 ° C. or more.
  • the former (a) is preferred. In any case, it is preferable to rapidly heat at the time of temperature rise. Specifically, heating is preferably performed at a temperature rising rate of 0.1 ° C./sec or more, and heating is preferably performed at a temperature rising rate of 1 to 5 ° C./sec. Needless to say, the stretching temperature and the total stretching ratio of the former stage and the latter stage are within the above ranges, respectively.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a polyolefin microporous film having further excellent mechanical strength can be obtained.
  • the method for example, the method disclosed in Japanese Patent No. 3347854 can be used.
  • Film forming solvent removal step A cleaning solvent is used to remove (wash) the film forming solvent. Since the polyolefin phase is phase-separated from the film-forming solvent, a porous film can be obtained by removing the film-forming solvent. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Laid-Open No.
  • Second stretching step of the membrane The polyolefin microporous membrane obtained by removing the film-forming solvent is dried by a heat drying method, an air drying method or the like.
  • Second stretching step The dried film may be stretched again in at least a uniaxial direction.
  • the second stretching can be performed by a tenter method or the like, similar to the first stretching, while heating the film.
  • the second stretching may be uniaxial stretching or biaxial stretching.
  • the temperature of the second stretching is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin constituting the microporous membrane to the crystal dispersion temperature + 40 ° C. or less, and the crystal dispersion temperature + 10 ° C. or more to the crystal dispersion temperature + 40 ° C. or less. It is more preferable to be within the range.
  • the temperature of the second stretching is higher than the crystal dispersion temperature + 40 ° C., the permeability is lowered, and the variation in physical properties in the sheet width direction when stretched in the lateral direction (width direction: TD direction) is increased. In particular, variation in the air permeability in the width direction of the stretched sheet increases.
  • the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
  • the magnification in the uniaxial direction of the second stretching is preferably 1.1 to 1.8 times.
  • the length is 1.1 to 1.8 times in the longitudinal direction (machine direction: MD direction) or TD direction.
  • MD direction machine direction
  • biaxial stretching it is 1.1 to 1.8 times in the MD direction and TD direction, respectively.
  • each stretching ratio in the MD direction and TD direction may be different from each other as long as it is 1.1 to 1.8 times.
  • this magnification is less than 1.1 times, the effect of improving permeability, electrolyte solution pouring property and compression resistance is not observed.
  • this magnification exceeds 1.8 times, the fibrils become too thin, and the heat shrinkage resistance and the electrolyte solution pouring property are not improved.
  • the magnification of the second stretching is more preferably 1.2 to 1.6 times.
  • the speed of the second stretching is preferably 3% / sec or more in the stretching axis direction.
  • the stretching speed (% / sec) in the stretching axis direction is the ratio of the length stretched per second with the length in the stretching axis direction before re-stretching being 100% in the region where the film (sheet) is re-stretched. Represents.
  • the stretching speed is less than 3% / sec, the permeability is lowered, and when the stretching is performed in the TD direction, the variation in physical properties in the sheet width direction is increased. In particular, the variation in the air permeability in the stretched sheet width direction becomes large.
  • the second stretching speed is preferably 5% / sec or more, more preferably 10% / sec or more.
  • each stretching speed in the MD direction and the TD direction may be different from each other in the MD direction and the TD direction as long as it is 3% / sec or more, but is preferably the same.
  • stretching is heat-processed.
  • heat treatment method heat setting treatment and / or heat relaxation treatment may be used.
  • the crystal of the film is stabilized by the heat setting treatment. Therefore, a microporous film having a large pore diameter and excellent strength can be produced while maintaining a network composed of fibrils formed by the second stretching.
  • the heat setting treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of the polyolefin resin constituting the microporous membrane.
  • the heat setting treatment is performed by a tenter method, a roll method or a rolling method.
  • the heat setting treatment temperature is preferably within the range of the second stretching temperature ⁇ 5 ° C., which stabilizes the physical properties. This temperature is more preferably within the range of the temperature of the second stretching ⁇ 3 ° C.
  • the thermal relaxation treatment method for example, the method disclosed in Japanese Patent Laid-Open No. 2002-256099 can be used.
  • Hot roll treatment process You may perform the process (hot roll process) which makes a hot roll contact at least one surface of the stretched gel-like molded object before washing
  • a method described in JP-A-2007-106992 can be used.
  • the stretched gel-like molded product is brought into contact with a heated roll adjusted to a temperature at which the polyolefin resin crystal dispersion temperature + 10 ° C. or higher and below the melting point of the polyolefin resin.
  • the contact time between the heating roll and the stretched gel-like molded product is preferably 0.5 seconds to 1 minute. You may make it contact in the state which hold
  • the heating roll may be either a smooth roll or an uneven roll that may have a suction function.
  • (Iii) Thermal solvent treatment process You may perform the process which makes the extending
  • a thermal solvent treatment method for example, the method disclosed in International Publication No. 2000/20493 can be used.
  • (B) Film cross-linking treatment step The heat-treated polyolefin microporous film may be subjected to cross-linking treatment by ionizing radiation using ⁇ -ray, ⁇ -ray, ⁇ -ray, electron beam, etc. Can be improved. This treatment can be performed with an electron dose of 0.1 to 100 Mrad and an acceleration voltage of 100 to 300 kV.
  • (C) Hydrophilization treatment step The polyolefin microporous membrane after the heat treatment may be hydrophilized by monomer graft treatment, surfactant treatment, corona discharge treatment, plasma treatment or the like.
  • (D) Surface coating treatment step The polyolefin microporous film after heat treatment covers the surface with a porous resin porous material such as polyvinylidene fluoride and polytetrafluoroethylene, or a porous material such as PA, PAI, PI and PPS. By doing so, the meltdown characteristic when used as a battery separator is improved.
  • a coating layer containing PP may be formed on at least one surface of the polyolefin microporous membrane after the second stretching.
  • the polyolefin microporous membrane of the present invention has a structure in which PP distribution is uniform in at least one plane perpendicular to the thickness direction.
  • the average value / standard deviation / kurtosis is constant when the relative value to the maximum PP / PE ratio of the film surface obtained by microscopic Raman spectroscopy is defined as the normalized PP / PE ratio. It can be expressed as a structure indicating the value of.
  • the polyolefin microporous membrane of the present invention has a normalized PP / PE ratio of 0.5 or more in average value, 0.2 or less in standard deviation, and 1.0 or less in kurtosis, which is a parameter indicating the shape of distribution. It has a certain structure. Furthermore, the polyolefin microporous membrane of the present invention preferably has a structure having an average value of 0.6 or more, a standard deviation of 0.15 or less, and a kurtosis of 0.5 or less in the normalized PP / PE ratio. .
  • the polyolefin microporous membrane of the present invention has a uniform PP distribution in at least one plane perpendicular to the thickness direction as described above, it has excellent oxidation resistance and the amount ratio of PP to be added is less than 5% by mass. Therefore, physical properties are not lowered by the addition of PP, and the permeability, strength, and electrolyte solution pouring property are excellent. Therefore, when used as a separator for a lithium ion battery, excellent battery productivity, safety, and battery cycle characteristics can be realized.
  • the polyolefin microporous membrane according to a preferred embodiment of the present invention has the following physical properties.
  • the air permeability (Gurley value) when the film thickness is converted to 20 ⁇ m is 20 to 500 sec / 100 cm 3 .
  • the air permeability is in this range, when the microporous membrane is used as a battery separator, the battery capacity is large and the cycle characteristics of the battery are good.
  • Air permeability is not sufficiently shut when the temperature is elevated in the batteries is less than 20sec / 100cm 3 / 20 ⁇ m.
  • the air permeability is a value obtained by measuring the Gurley value according to JIS P 8117 and converting the film thickness to 20 ⁇ m.
  • the porosity is 25 to 80%.
  • the puncture strength is preferably 2,500 mN / 20 ⁇ m or more.
  • the puncture strength is a value obtained by measuring the maximum load value when a polyolefin microporous membrane is pierced at a speed of 2 mm / sec using a needle having a diameter of 1 mm (0.5 mmR), and converting the film thickness to 20 ⁇ m. is there.
  • the tensile strength at break is 60,000 kPa or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
  • the tensile strength at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • the tensile elongation at break is 80% or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
  • the tensile elongation at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • the thermal shrinkage after exposure for 8 hours at a temperature of 105 ° C. is 10% or less in both the MD direction and the TD direction.
  • the thermal shrinkage rate exceeds 10%, when the microporous membrane is used as a lithium battery separator, the end of the separator shrinks during heat generation, and there is a high possibility that a short circuit of the electrode occurs.
  • the thermal shrinkage rate is preferably 8% or less in both the MD direction and the TD direction.
  • the thermal shrinkage rate is a value obtained by measuring the shrinkage rate in the MD direction and the TD direction three times each when the microporous membrane is exposed at 105 ° C. for 8 hours, and calculating an average value. (7)
  • Electrolytic solution pouring property was good for 20 seconds or less, and this case was evaluated as “good”. When the electrolyte solution pouring property exceeded 20 seconds, it was evaluated as “poor”.
  • electrolyte solution pouring property was evaluated by the penetration time of propylene carbonate.
  • 0.5 ml of propylene carbonate is dropped from about 2 cm above the sample film, and time measurement is started from the end of dropping.
  • Propylene carbonate rises on the film due to surface tension.
  • the time measurement is stopped and the permeation time is taken.
  • the electrochemical stability of the microporous membrane obtained by the battery test is in mAh, with lower values generally representing less total charge loss during storage at high temperature or overcharge. desirable. Specifically, 45.0 mAh or less is preferable.
  • Electrochemical stability is a film characteristic related to the oxidation resistance of a film when the film is used as a separator (hereinafter referred to as BSF) in a battery that is exposed to a relatively high temperature during storage or use.
  • BSF separator
  • Electrochemical stability of 45.0 mAh or less is desirable because it is particularly sensitive to small loss of battery capacity, such as self-discharge loss due to electrochemical instability of BSF.
  • the term “high capacity” battery usually refers to a battery that can be supplied for 1 amp hour (1 Ah) or more, for example, 2.0 Ah to 3.6 Ah.
  • a battery is fabricated in which a film having a length (MD) of 70 mm and a width (TD) of 60 mm is located between a negative electrode and a positive electrode having the same area as the film.
  • the negative electrode is made of natural graphite
  • the positive electrode is made of LiCoO 2 .
  • the electrolyte is prepared by dissolving LiPF 6 as a 1M solution in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (3/7, V / V). An electrolyte is impregnated in the film in the region between the negative electrode and the positive electrode to complete the battery.
  • the battery is then exposed to an applied voltage of 4.3 V while being exposed to a temperature of 60 ° C. for 28 days.
  • electrochemical stability is defined as the integrated current (mAh) flowing between the voltage source and the battery over 28 days. Electrochemical stability is usually measured three times under nearly identical conditions (approximately the same three cells made from approximately the same three BSF samples). The average (arithmetic average) of the three measured electrochemical stability values is the “average electrochemical stability”.
  • the film thickness is preferably 5 to 50 ⁇ m, more preferably 5 to 35 ⁇ m.
  • the method for measuring the film thickness may be a contact thickness measurement method or a non-contact thickness measurement method.
  • the film appearance is preferably one with small thickness unevenness.
  • the film appearance is evaluated by visual observation / multipoint film thickness measurement. The film appearance when the thickness is judged to be large by visual observation is defined as “poor”, which corresponds to the case where the film thickness variation of 5 microns or more is observed in the film thickness measurement at multiple points. In film thickness measurement at multiple points, the film appearance when the film thickness variation was less than 5 microns was defined as “good”.
  • the microporous membrane of the present invention is less susceptible to blackening after repeated charge and discharge as a battery, and is excellent in permeability, mechanical properties, and heat shrinkage, so that it is particularly a battery separator. It is suitable as.
  • Battery The separator comprising the polyolefin microporous membrane of the present invention can be used for batteries and electric double layer capacitors. Although there is no restriction
  • a well-known electrode and electrolyte may be used for the lithium secondary battery / capacitor using the separator comprising the microporous membrane of the present invention.
  • the structure of the lithium secondary battery / capacitor using the separator made of the microporous membrane of the present invention may also be a known one.
  • each physical property of the polyolefin microporous film was calculated
  • Example 1 18% by mass of UHMwPE (Mw / Mn: 8) with an Mw of 2.0 ⁇ 10 6 and 77.1% by mass of HDPE (Mw / Mn: 8.6) with an Mw of 2.5 ⁇ 10 5 and an Mw of 9 7 ⁇ 10 4 PP (Mw / Mn: 2.6) 4.9% by mass of polyolefin resin and tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) as an antioxidant -Propionate] Methane was 0.2 parts by mass dry blended per 100 parts by mass of PE to prepare a polyolefin composition.
  • 25 parts by mass of the obtained polyolefin composition was put into a twin-screw extruder (cylinder inner diameter: 58 mm, screw length (L) to diameter (D) ratio L / D: 42, strong kneading type).
  • 75 parts by mass of liquid paraffin [50 cSt (40 ° C.)] was supplied from the side feeder of the screw extruder, melted and kneaded under conditions of 210 ° C. and 200 rpm, and a PE solution was prepared in the twin screw extruder.
  • the obtained PE solution was extruded from a T-die installed at the tip of the twin-screw extruder, and a gel-like molded product was formed while it was taken up by a cooling roll adjusted to 20 ° C.
  • the obtained gel-like molded product was subjected to simultaneous biaxial stretching (first stretching) 5 ⁇ 5 times at a temperature of 115 ° C. using a tenter stretching machine.
  • first stretching first stretching
  • it was fixed to a frame plate [size: 20 cm ⁇ 20 cm, made of aluminum (hereinafter the same)]
  • immersed in a methylene chloride washing bath adjusted to 25 ° C. and washed while rocking at 100 rpm for 3 minutes.
  • the washed membrane was air dried at room temperature.
  • the dried stretched membrane was heat-fixed at 125 ° C. for 30 seconds to produce a polyolefin microporous membrane.
  • the Mw and Mw / Mn of the resin were obtained from an integral curve obtained by gel permeation chromatography (GPC) measurement [measuring instrument: GPC-150C manufactured by Waters Corporation, temperature: 135 ° C., solvent: o-dichlorobenzene, concentration : 0.1% by mass (injection amount: 500 ⁇ l), column: Shodex UT806M manufactured by Showa Denko KK, solvent flow rate: 1.0 ml / min, dissolution condition: 135 ° C./1 hr.
  • GPC gel permeation chromatography
  • the electrolyte solution pouring property was good when the permeation time was 20 seconds or less, and poor when it exceeded 20 seconds.
  • Example 2 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and 79% by mass of HDPE (Mw / Mn: 8.6) having an Mw of 2.5 ⁇ 10 5 %, Mw was 9.7 ⁇ 10 4 PP (Mw / Mn: 2.6)
  • a polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 3% by mass of polyolefin resin was used.
  • Example 3 As shown in Table 1, Mw is 2.0 ⁇ 10 6 UHMwPE (Mw / Mn: 8) 18% by mass, and Mw is 2.5 ⁇ 10 5 HDPE (Mw / Mn: 8.6) 81 mass. %, Mw was 9.7 ⁇ 10 4 PP (Mw / Mn: 2.6)
  • a polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 1% by mass of polyolefin resin was used.
  • Example 4 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) with Mw of 2.0 ⁇ 10 6 and HDPE (Mw / Mn: 8.6) with Mw of 2.5 ⁇ 10 5 A polyolefin microporous membrane was prepared in the same manner as in Example 1 except that 0.5% by mass of PP resin (Mw / Mn: 2.6) 0.5% by mass of 5% by mass and Mw of 9.7 ⁇ 10 4 was used. did.
  • Example 5 As shown in Table 1, 18% by mass of UHMwPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and HDPE (Mw / Mn: 8.6) having an Mw of 2.5 ⁇ 10 5 77.
  • a polyolefin microporous membrane was produced in the same manner as in Example 1 except that 1% by mass and Mw was 2.7 ⁇ 10 5 PP (Mw / Mn: 4.4) 4.9% by mass of polyolefin resin. did.
  • Example 1 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 77.1% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8.6), similar to Example 1 except that a polyolefin resin composed of 5% by mass of PP (Mw / Mn: 10.6) with Mw of 4.9 ⁇ 10 5 is used and the resin concentration is 25% by mass. Thus, a microporous polyolefin membrane was produced.
  • Example 2 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 77% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8. 6) A polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 5% by mass of PP (Mw / Mn: 2.1) having a Mw of 5.8 ⁇ 10 6 was used. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1.
  • Example 3 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 81.7% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8.6), a polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 0.3% by mass of PP (Mw / Mn: 2.6) having a Mw of 9.7 ⁇ 10 4 was used. did. Using the obtained polyolefin solution, a polyolefin microporous membrane was prepared in the same manner as in Example 1.
  • Example 4 As shown in Table 1, 18% by mass of UHMwPE (Mw: 2.0 ⁇ 10 6 , Mw / Mn: 8) and 72% by mass of HDPE (Mw: 3.5 ⁇ 10 5 , Mw / Mn: 8. 6) A polyolefin solution was prepared in the same manner as in Example 1 except that a polyolefin resin composed of 10% by mass of PP (Mw / Mn: 2.6) having an Mw of 9.7 ⁇ 10 4 was used. Using the resulting polyolefin solution, a polyolefin microporous membrane was produced in the same manner as in Example 1. (Comparative Example 5) A gel-like molded product was formed with the same resin composition as in Example 1.
  • Example 6 As shown in Table 1, the shear rate during molding was adjusted to 55 / sec. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1. (Comparative Example 6) A gel-like molded product was formed with the same resin composition as in Example 1. As shown in Table 1, the cooling rate was adjusted to 23 ° C./sec. Thereafter, a polyolefin microporous membrane was produced in the same manner as in Example 1.
  • Examples 1 to 5 show the results of forming a microporous film using a polyolefin having a PP content of 100 to 5% by mass and polyolefin of less than 0.5 to 5% by mass. All are excellent in electrolyte solution pouring property, and the surface PP concentration (average value, standard deviation, kurtosis) obtained by a micro Raman spectroscope satisfies the standard. At this time, it can be seen that the electrochemical stability after 120 hours in the trickle charge test with a small battery is 30 mAh or less, and exhibits excellent oxidation resistance.
  • FIG. 1 shows a distribution diagram of the normalized PP / PE ratio obtained by measuring the film shown in Example 1 with a micro Raman spectroscope.
  • FIG. 2 shows a two-dimensional distribution chart of the normalized PP / PE ratio of Example 1.
  • a region with a low PP concentration (a darkly colored portion) is not so much seen, and PP is present on average.
  • the balance of air permeability, puncture strength, tensile rupture strength, tensile rupture elongation, and heat shrinkage resistance is excellent, the electrolyte solution pouring property is excellent, and the oxidation reaction of the separator generated in the battery is suppressed. It can be seen that a microporous membrane is obtained.
  • Comparative Example 1 has the same PP amount as Examples 1 and 5 and shows the same surface PP concentration, but there is a region where the PP concentration is partially low as shown in FIG. (There are more dark parts than in FIG. 2). The air permeability deteriorated, and a result of poor electrolyte solution pouring property was obtained. Probably, unlike in Examples 1 and 5, the dispersed state of PP is present in the form of blocking the pores.
  • Comparative Example 2 the same amount of PP as in Examples 1 and 5 and Comparative Example 1 was added, but as can be seen from the low normalized PP / PE ratio, as shown in FIG. It can be seen that the PP concentration near the surface is low. For this reason, it is considered that the oxidation resistance was not improved.
  • Comparative Example 3 uses 0.3% by mass of the same PP used in Examples 1 to 4. Although the dispersibility (standard deviation and kurtosis) of PP is good, it is considered that the PP concentration in the vicinity of the surface became insufficient and the oxidation resistance was not improved because the amount added was small.
  • Comparative Example 4 uses 10% by mass of the same PP as in Examples 1 to 4 and Comparative Example 4.
  • Comparative Example 5 the same resin composition as in Example 1 is used. A decrease in liquid injection property was observed due to a decrease in the shear rate from the T die. It is considered that the oxidation resistance was not improved because the dispersion state of PP near the surface changed.
  • Comparative Example 6 the same resin composition as in Example 1 is used. A decrease in liquid injection property was observed due to a decrease in the cooling rate. It is considered that the oxidation resistance was not improved because the dispersed state of PP in the vicinity of the surface was deteriorated.
  • the microporous film obtained by the method for producing a microporous film of the present invention has a performance suitable as an electricity storage device for non-aqueous electrolyte solution for capacitor use, capacitor use, battery use, etc., safety, And it can contribute to the improvement of reliability.
  • it can be suitably used as a battery separator, more specifically as a lithium ion battery separator.
  • it is also used as various separation membranes such as one component of a fuel cell, a humidification membrane, and a filtration membrane, and thus has industrial applicability in those fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 ポリプロピレンを含むポリオレフィン樹脂を用いてゲル状成形物を形成し、これを少なくとも1方向に延伸、洗浄することにより得られるポリオレフィン微多孔膜であって、電解液注液性が20秒以下であり、厚み方向に垂直な少なくとも一面内においてポリプロピレン分布が均一であることを特徴とするポリオレフィン微多孔膜およびその製造方法。 耐酸化性、機械的特性、透過性に優れたポリオレフィン微多孔膜を提供する。

Description

ポリオレフィン微多孔膜及びその製造方法
 本発明は、ポリオレフィン微多孔膜及びその製造方法に関し、特に耐酸化性、機械的特性、透過性に優れ、電池用セパレータとして有用なポリオレフィン微多孔膜及びその製造方法に関する。
 ポリオレフィン微多孔膜は、電池用セパレータ、電解コンデンサー用隔膜、各種フィルタ、透湿防水衣料、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に用いられている。ポリオレフィン微多孔膜を電池用セパレータ、特にリチウムイオン電池用セパレータとして用いる場合、その性能は電池特性、電池生産性及び電池安全性に深く関わっている。そのため優れた透過性、機械的特性、耐熱収縮性、シャットダウン特性、メルトダウン特性等が要求される。例えば機械的強度が低いと、電池用セパレータとして用いた場合に、電極の短絡により電池の電圧が低下してしまうことがある。
 ポリオレフィン微多孔膜の物性を改善する方法として、原料組成、延伸条件、熱処理条件等の改良が検討されてきた。
 例えば、超高分子量ポリエチレンまたはその組成物に特定量のポリプロピレンを加えることにより、ポリオレフィン微多孔膜の表面に微視的な凹凸を生じさせ、透過性能及び機械的強度に優れるとともに、成形性を改善し、電解液の浸透性、保持性を改良したポリオレフィン微多孔膜が提案されている[特開平11-269290号公報(特許文献1)]。その微多孔膜として、重量平均分子量が5×10以上のポリエチレンまたはそのポリエチレン組成物70~95重量%と、重量平均分子量が1×10以上のポリプロピレン5~30重量%を含有するポリオレフィン組成物からなるポリオレフィン微多孔膜であって、膜表面の面方向に隣り合う左右四方1mm以内の厚み変動が±1μm以上であるポリオレフィン微多孔膜が記載されている。
 ポリエチレンに特定のポリプロピレン等のポリオレフィンを加えてブレンドして製膜するとポリオレフィンが表面に偏析して表面近傍のポリエチレンの含有率が減少する場合があり、このような表面の微多孔膜では高温保存時のガス発生や放電容量の低下を抑制できる微多孔膜として、特開2004-152614号公報(特許文献2)は、ポリエチレンを50重量%以上含有する単層の微多孔膜であって、少なくとも片面の膜の表面近傍のポリエチレンの含有率が膜全体の平均値よりも少ないことを特徴とする微多孔膜を提案している。この微多孔膜は、粘度平均分子量が20万以上のポリプロピレンと粘度平均分子量が5万以下の低分子量ポリプロピレンをそれぞれ膜構成材料全体の5~20重量%含んでいることを特徴とすることが記載されている。
 特開平5-234578号公報(特許文献3)は、特定の分子量分布を有するポリエチレンと特定の範囲の重量平均分子量を有するポリプロピレンとをポリマー成分とし、それと無機微粉体、有機液体よりなる混合物を製膜原料として用いることで、ポリエチレンの分子量分布において超高分子量部分の割合を増大しても、膜成形時の圧力上昇もなく、機械的特性に優れ、安全性についても優れた、有機電解液を用いる電池用セパレータを提案している。このセパレータは、分子量が100万以上の部分を10重量%以上かつ分子量が10万以下の部分を5重量%以上含むポリエチレン及び重量平均分子量が1万~100万のポリプロピレンを包含するマトリックスよりなる微多孔膜で構成され、該ポリプロピレンの量はポリエチレン及びポリプロピレンの全重量の5~45重量%であり、該微多孔膜は、厚さが10~500μm、気孔率が40~85%、最大孔径が0.05~5μmであり、膜破れ温度と無孔化温度との差が28~40℃である。
 特開2011-111484号公報(特許文献4)は、ポリプロピレン成分5~50質量%と、ポリエチレン成分50~95質量%とを含み、前記ポリエチレン成分が超高分子量ポリエチレンを含むと共に、前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が-20℃<Tmp-Tme<23℃であり、かつバブルポイントが400~600kPaであるポリオレフィン製微多孔膜を提案している。耐酸化性とサイクル特性を両立し得るセパレータとして好適な、ポリオレフィン製微多孔膜が提供されるとしている。
 国際公開第2007/015416号公報(特許文献5)はポリエチレンと粘度平均分子量10万以上のポリプロピレンからなるポリオレフィン微多孔膜であって、該ポリプロピレンを4wt%以上含有すること、かつ赤外分光法による微多孔膜を構成するポリオレフィン中の炭素原子10,000個あたりの末端ビニル基濃度が2個以上であることを特徴とするポリオレフィン微多孔膜を提案している。当該微多孔膜は耐破膜性と低熱収縮性の双方が達成されており、さらにヒューズ特性に優れ膜厚も均一であることを開示している。
 上記の特許文献の他に、特開2001-183432号公報(特許文献6)、特開2002-105235号公報(特許文献7)、国際公開第2005/113657号公報(特許文献8)にもポリプロピレンを導入したポリエチレン製微多孔膜が提案されている。
特開平11-269290号公報 特開2004-152614号公報 特開平5-234578号公報 特開2011-111484号公報 国際公開第2007/015416号公報 特開2001-183432号公報 特開2002-105235号公報 国際公開第2005/113657号公報
 特許文献1~5に記載されているように、ポリエチレン製の微多孔膜にポリプロピレンを導入することで、微多孔膜の物性を改良する試みがなされてきた。しかし、耐熱性や耐酸化性を改善するには、ポリプロピレンを相当量導入する必要があるが、ポリプロピレン導入量を増やすと共にポリエチレン製微多孔膜の透過性-強度バランスが損なわれる、具体的には強度が低下するという欠点が存在した。
 特許文献6~8に記載されたポリプロピレンを導入したポリエチレン製微多孔膜は、いずれも透過性-強度バランスが不充分であった。
 したがって、電池の生産性及び安全性を担保するために、耐酸化性の改良を図りつつ、ポリエチレン微多孔膜の持つ優れた透過性-強度バランスを保持することが求められる。
 したがって、本発明の課題は、耐酸化性、機械的特性、透過性及び電解液注液性に優れたポリオレフィン微多孔膜を提供することである。
 上記課題を解決するため本発明のポリオレフィン微多孔膜は、次の構成を有する。すなわち、
 ポリプロピレンを含むポリオレフィン樹脂を用いてゲル状成形物を形成し、これを少なくとも1方向に延伸、洗浄することにより得られるポリオレフィン微多孔膜であって、電解液注液性が20秒以下であり、厚み方向に垂直な少なくとも一面内においてポリプロピレン分布が均一であるポリオレフィン微多孔膜、である。
 また、本発明のポリオレフィン微多孔膜の製造方法は、次の構成を有する。すなわち、
 上記ポリオレフィン微多孔膜の製造方法であって、(a)質量平均分子量が1×10以上の超高分子量ポリエチレンの含有率がポリオレフィン全体を100質量%として1~50質量%、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5%以上、5質量%未満含有するポリエチレンを主成分とするポリオレフィン樹脂と、(b)成膜用溶剤とを溶融混練し、(c)得られた溶融混練物をせん断速度が60/sec以上となるようにダイより押出し、冷却速度が30℃/sec以上となるように冷却することによりゲル状成形物を形成し、(d)得られたゲル状成形物を少なくとも一軸方向に延伸し、(e)得られた延伸物から前記成膜用溶剤を除去するポリオレフィン微多孔膜の製造方法、である。
 なお、本発明のポリオレフィン微多孔膜は、ポリオレフィン樹脂が、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5質量%以上、5質量%未満含むポリオレフィン樹脂であることが好ましい。
 本発明のポリオレフィン微多孔膜は、厚み方向に垂直な少なくとも一面内においてラマン分光法により測定した規格化PP/PE比率の平均値が0.5以上、標準偏差が0.2以下、尖度が1.0以下であることが好ましい。
 本発明のポリオレフィン微多孔膜は、ポリプロピレンの重量平均分子量が5万より大きく、15万未満であることが好ましい。
 本発明のポリオレフィン微多孔膜は、ポリプロピレンの重量平均分子量が5万より大きく、15万未満であることが好ましい。
 本発明のポリオレフィン微多孔膜は、質量平均分子量が1×10以上の超高分子量ポリエチレンを、全ポリオレフィン樹脂を100質量%とした時に、1~50重量%含むことが好ましい。
 上記微多孔膜は、特許文献2に開示された発明のように、膜表面部分のポリエチレン含有量が膜全体の平均に比べて低下することがなく、また、特許文献5に開示された発明のように、赤外分光法による微多孔膜を構成するポリオレフィン中の炭素原子10,000個あたりの末端ビニル基濃度を2個以上としなくても耐酸化性が改善されていることを見出した。ポリプロピレン添加量が5質量%未満であるため、特許文献1に見られるような膜厚変動は見られず、均一な膜厚分布を示す。また特定の分子量のポリプロピレンを用いることで、顕微ラマン分光法による解析結果から、厚み方向に垂直な少なくとも一面内において、ポリプロピレン分布(以下、PP分布)が均一な微多孔膜が得られ、少量で耐酸化性能の改善を図れることを見出した。
 本発明の微多孔膜のポリプロピレン含有量は少量であるが、厚み方向に垂直な面内で偏在することなく存在するポリプロピレンが電池内での酸化反応抑制に寄与していると考えられる。0.5質量%以上とすると酸化安定性の寄与が十分であり、5質量%未満であると膜厚偏差が上昇することはなく、強度が低下することもないため、この範囲内であることが好ましい。
 本発明のポリオレフィン微多孔膜は、顕微ラマン分光法による解析結果から、厚み方向に垂直な少なくとも一面内において、PP分布が均一な構造を有するので、耐酸化性に寄与するポリプロピレンが電極に接する面内に偏在することなく存在する。このため電池内でセパレータの部分的な劣化が進行しにくい。また添加するポリプロピレン量が少量で済むため、透気度、突刺強度のバランスに優れ、ポリエチレン製微多孔膜と同等の電解液注入性を示す。そのため本発明のポリオレフィン微多孔膜を電池用セパレータとして使用すると、電池の生産性が向上し、かつ優れたサイクル特性により電池が長寿命化する。
 本発明の製造方法によれば、特定の分子量を持つ、含有率が5質量%未満のポリプロピレンを含むポリオレフィン組成物を用いてゲル状成形物を形成し、これを延伸し、洗浄し、再び所定の倍率で延伸した後、熱処理するので、上記のような特性を有するポリオレフィン微多孔膜を安定的かつ効率的に製造できる。
実施例1の規格化PP/PE比率分布図を示すグラフである。 実施例1の規格化PP/PE比率2次元分布図である。 比較例1の規格化PP/PE比率2次元分布図である。 比較例2の規格化PP/PE比率2次元分布図である。
[1]ポリオレフィン樹脂
 本発明のポリオレフィン微多孔膜を構成するポリオレフィン樹脂は、ポリエチレン(以下、PE)を主成分とするのが好ましい。ポリオレフィン樹脂は、特定の分子量を持つポリプロピレンの他に、PEを含むものであってもよいし、PE及びその他のポリオレフィンを含む組成物であってもよいし、ポリオレフィン以外の樹脂も含む組成物であってもよい。したがって、用語「ポリオレフィン樹脂」は、ポリオレフィンのみならず、ポリオレフィン以外の樹脂を含むものであってもよいと理解すべきである。ただしポリオレフィン樹脂は、これ全体を100質量%として、PEの割合が80質量%以上であるのが好ましく、90質量%以上であるのがより好ましい。
 PEとしては、(a)Mwが1×10未満のPE(以下、特段の断りがない限り、「PE(A)」という。)、又は(b)PE(A)と、Mwが1×10以上の超高分子量PE(UHMwPE)とからなる組成物(以下、特段の断りがない限り、単に「PE組成物(B)」という。)が好ましい。
 PE(A)としては、高密度PE(HDPE)、中密度PE(MDPE)及び低密度PE(LDPE)のいずれでもよいが、HDPEが好ましい。PE(A)のMwは1×10以上~5×10未満であるのが好ましい。中でもHDPEのMwは5×10以上~4×10未満がより好ましい。PE(A)としてMw又は密度の異なるものを二種以上用いてもよい。PE(A)は、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 PEがPE組成物(B)である場合、UHMwPEの含有率は、PE全体を100質量%として50質量%以下であるのが好ましい。この含有率を50質量%超とすると、成形時に圧力上昇をもたらし、生産性を低下させる。また、この含有率の下限は特に制限されないが、機械的強度維持及び高メルトダウン温度(MD温度)維持の点から1質量%以上であるのがより好ましく、5質量%以上であるのが特に好ましい。UHMwPEのMwは1×10~3×10の範囲内であるのが好ましい。UHMwPEのMwを3×10以下にすることにより、溶融押出を容易にすることができる。UHMwPEはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンは上記と同じでよい。
 PE(A)及びPE組成物(B)のMwと数平均分子量(Mn)の比Mw/Mn(分子量分布)は限定的でないが、5~300の範囲内であるのが好ましく、5~100の範囲内であるのがより好ましく、5~25の範囲内であるのが特に好ましい。Mw/Mnが5未満では高分子量成分が多過ぎるためにPE溶液の押出が困難であり、Mw/Mnが300超では低分子量成分が多過ぎるために得られる微多孔膜の強度が低い。Mw/Mnは分子量分布の尺度として用いられるものであり、この値が大きいほど分子量分布の幅が大きい。すなわち単一物からなるPEの場合、Mw/Mnはその分子量分布の広がりを示し、その値が大きいほど分子量分布は広がっている。単一物からなるPEのMw/MnはPEを多段重合により調製することにより適宜調整することができる。多段重合法としては、一段目で高分子量成分を重合し、二段目で低分子量成分を重合する二段重合が好ましい。PEが組成物である場合、Mw/Mnが大きいほど、配合する各成分のMwの差が大きく、また小さいほどMwの差が小さい。PE組成物(B)のMw/Mnは各成分の分子量や混合割合を調整することにより適宜調整することができる。
 電池用セパレータ用途としての特性を向上させるため、ポリオレフィン樹脂はシャットダウン機能を付与するポリオレフィンを含んでもよい。シャットダウン機能を付与するポリオレフィンとして、例えばLDPEやPEワックスを添加することができる。LDPEとしては、分岐状のLDPE、線状LDPE(LLDPE)、及びシングルサイト触媒により製造されたエチレン/α-オレフィン共重合体からなる群から選ばれた少なくとも一種が好ましい。但しその添加量はポリオレフィン樹脂全体を100質量%として40質量%以下であるのが好ましい。この添加量が多いと強度低下が大きい。
 ポリオレフィン樹脂がPE組成物(B)を含む場合、任意成分としてMwが1×10~4×10のポリブテン-1、及びMwが1×10~4×10のエチレン/α-オレフィン共重合体のいずれかを添加してもよい。これらの添加量はポリオレフィン樹脂全体を100質量%として40質量%以下であるのが好ましい。
 ポリプロピレン(以下、PP)としては単独重合体のみならず、他のα-オレフィン又はジオレフィンを含むブロック共重合体及び/又はランダム共重合体でもよい。他のオレフィンとしてはエチレン又は炭素数が4~8のα-オレフィンが好ましい。炭素数4~8のα-オレフィンとして、例えば1-ブテン、1-へキセン、4-メチル-1-ペンテン等が挙げられる。ジオレフィンの炭素数は4~14が好ましい。炭素数4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。他のオレフィン又はジオレフィンの含有量は、プロピレン共重合体を100モル%として10モル%未満であるのが好ましい。
 PPのMwは5×10より大きく3×10未満であるのが好ましく、5×10より大きく1.5×10未満であるのがより好ましい。PPの分子量分布(Mw/Mn)は1.01~100であるのが好ましく、1.1~50であるのがより好ましい。PPは単独物でもよいし、2種以上のPPを含む組成物であってもよい。限定的ではないが、PPの融点は150~175℃であるのが好ましい。
 上記のようにポリオレフィン樹脂は、PE、PP以外のポリオレフィンや、ポリオレフィン以外の樹脂を含む組成物であってもよい。PE、PP以外のポリオレフィンとしては、ポリブテン-1以外に、例えばペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン等の単独重合体及び共重合体が挙げられる。ポリオレフィン以外の樹脂としては、例えば酢酸ビニル、メタクリル酸メチル、スチレン等の単独重合体及び共重合体、その他にポリエステル、フッ素樹脂、ポリアミド(PA)、ポリアリレンスルフィド(PAS)、ポリビニルアルコール(PVA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、セルロースアセテート、セルローストリアセテート、ポリスルホン、ポリエーテルイミド等が挙げられる。これらのようなPE以外のポリオレフィン及びポリオレフィン以外の樹脂としては耐熱性を有するものが好ましい。
 耐熱性樹脂は融点又はガラス転移温度(Tg)が150℃以上であるのが好ましい。「融点又はTgが150℃以上である」とは、耐熱性樹脂が結晶性樹脂(部分的に結晶性である樹脂を含む)の場合には融点が150℃以上であり、耐熱性樹脂が非晶性樹脂の場合にはTgが150℃以上であることを意味する。ここで融点及びTgはJIS K 7121により測定することができる。耐熱性樹脂の融点又はTgは170~260℃であるのがより好ましい。
 ポリオレフィン樹脂が耐熱性樹脂を含むと、ポリオレフィン微多孔膜を電池用セパレータとして用いた場合に破膜温度(MD温度)が向上するので、電池の高温保存特性が一層向上する。
 耐熱性樹脂としては国際公開第2006/137540号公報に記載されたものを使用することができるが、その具体例としては、ポリブチレンテレフタレートやポリエチレンテレフタレートなどのポリエステル、ポリメチルペンテン[PMP又はTPX(トランスパンレトポリマーX)]、ポリフッ化ビニリデポリテトラフルオロエチレンなどのフッ素樹脂、ポリアミド6やポリアミド66などのポリアミド(PA、融点:215~265℃)、ポリフェニレンスルフィドなどのポリアリレンスルフィド(PAS)、ポリスチレン(PS、融点:230℃)、ポリビニルアルコール(PVA、融点:220~240℃)、ポリイミド(PI、Tg:280℃以上)、ポリアミドイミド(PAI、Tg:280℃)、ポリエーテルサルフォン(PES、Tg:223℃)、ポリエーテルエーテルケトン(PEEK、融点:334℃)、ポリカーボネート(PC、融点:220~240℃)、セルロースアセテート(融点:220℃)、セルローストリアセテート(融点:300℃)、ポリスルホン(Tg:190℃)、ポリエーテルイミド(融点:216℃)等が挙げられる。中でも耐熱性樹脂としては、ポリエステル及びポリメチルペンテンからなる群から選ばれた少なくとも一種が好ましい。耐熱性樹脂は、単一樹脂成分からなるものに限定されず、複数の樹脂成分からなるものでもよい。
 耐熱性樹脂の添加量は、ポリオレフィン樹脂全体を100質量%として3~20質量%であるのが好ましく、3~15質量%であるのがより好ましい。この含有量を20質量%超とすると、突刺強度、引張破断強度等の機械的強度が大きく低下する。
 本発明の微多孔膜は、多層膜の表面層に使用してもよく、多層化により、単膜では得られない透気度-強度バランスの改善や、中心層の耐熱性樹脂との組み合わせによるメルトダウン温度(MD温度)の向上により、電池特性が一層向上する。前記耐熱性樹脂は、ポリプロピレン、ポリブチレンテレフタレート及びポリメチルペンテンからなる群から選ばれた少なくとも一種が好ましい。
[2]ポリオレフィン微多孔膜の製造方法
 本発明のポリオレフィン微多孔膜の製造方法は、(1)上記ポリオレフィン樹脂に成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する工程、(2)ポリオレフィン樹脂溶液をダイリップより押し出した後、冷却してゲル状成形物を形成する工程、(3)ゲル状成形物を少なくとも一軸方向に延伸する工程(第一の延伸工程)、(4)成膜用溶剤を除去(洗浄)する工程、(5)得られた膜を乾燥する工程、(6)乾燥した膜を少なくとも一軸方向に再び延伸する工程(第二の延伸工程)、及び(7)熱処理する工程を含む。必要に応じて、(4)の成膜用溶剤除去工程の前に熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。更に(1)~(7)の工程の後、乾燥工程、熱処理工程、電離放射による架橋処理工程、親水化処理工程、表面被覆処理工程等を設けることができる。
(1)ポリオレフィン樹脂溶液の調製工程
 ポリオレフィン樹脂に適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。この溶剤としては、ポリオレフィンを十分に溶解できるものであれば特に限定されない。液体の成膜用溶剤を用いることにより比較的高倍率の延伸が可能となる。液体溶剤としては、例えばノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、及び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。これらの混合物を用いることも可能である。流動パラフィンのような不揮発性の液体溶剤を用いることにより、液体溶剤の含有量が安定なゲル状成形体(ゲル状シート)を得るのが容易となるが、これに限定するものではない。
一実施態様において、溶融混練状態ではポリオレフィン組成物と混和するが室温では固体の一種以上の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、例えばステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。固体溶剤を液体溶剤なしで使用することができるが、この場合、工程(4)においてゲル状シートを均一に延伸するのが困難になることがある。
 一実施態様において、液体溶剤の粘度は25℃で測定したときに約30cSt~約500cStか、約30cSt~約200cStである。粘度は特に制限されないが、25℃における粘度が約30cSt未満では発泡し易く、混練が困難である。一方、約500cSt超では、工程(5)において液体溶剤の除去が困難なことがある。
 限定的ではないが、ポリエチレン系樹脂、ポリプロピレン系樹脂及び成膜用溶剤は、比較的高濃度のポリエチレン及びポリプロピレンを含むポリオレフィン溶液を調製するために、加熱溶解は、ポリオレフィン又はポリオレフィン組成物が完全に溶解する温度で攪拌または押出機中で均一混合して溶解する方法で行う。その温度は、押出機中又は溶媒中で攪拌しながら溶解する場合は使用する重合体及び溶媒により異なるが、例えば140~250℃の範囲が好ましい。ポリオレフィン又はポリオレフィン組成物の高濃度溶液から微多孔膜を製造する場合は、押出機中で溶解するのが好ましい。溶融混練方法は公知であるので説明を省略する。溶融混練方法として、例えば特許第2132327号及び特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。成膜用溶剤は混練開始前に添加しても、混練中に添加してもよい。例えば、溶剤は、混練中に二軸押出機の途中から添加することができる。樹脂は溶融混練前にドライ混合してもよく、溶剤はドライ混合の前、途中又は後に添加することができる。ただしポリオレフィン樹脂溶液のポリオレフィン樹脂濃度は、ポリオレフィン樹脂と成膜用溶剤の合計を100質量%として、ポリオレフィン樹脂が20~50質量%であり、好ましくは25~45質量%である。ポリオレフィン樹脂の割合を20質量%未満とすると、生産性が低下するので好ましくない。一方ポリオレフィン樹脂の割合を50質量%超とすると、ゲル状成形物の成形性が低下する。
 また二軸押出機のスクリュの長さ(L)と直径(D)の比(L/D)は20~100の範囲が好ましく、35~70の範囲がより好ましい。L/Dを20未満にすると、溶融混練が不十分となる。L/Dを100超にすると、ポリオレフィン樹脂溶液の滞留時間が増大し過ぎる。スクリュの形状は特に制限されず、公知のものでよい。二軸押出機のシリンダ内径は40~100mmであるのが好ましい。ポリオレフィン樹脂を二軸押出機に入れる際、スクリュ回転数Ns(rpm)に対するポリオレフィン樹脂溶液の投入量Q(kg/h)の比Q/Nsを0.1~0.55kg/h/rpmにするのが好ましい。Q/Nsを0.1kg/h/rpm未満にすると、ポリオレフィン樹脂が過度にせん断破壊されてしまい、強度やメルトダウン温度の低下につながる。一方Q/Nsを0.55kg/h/rpm超にすると、均一に混練できない。比Q/Nsは0.2~0.5kg/h/rpmであるのがより好ましい。スクリュ回転数Nsは180rpm以上にするのが好ましい。スクリュ回転数Nsの上限は特に制限されないが、500rpmが好ましい。
(2)ゲル状成形物の形成工程
 ポリオレフィン樹脂溶液を押出機を介してダイから押し出し、冷却してゲル状成形物を形成する。押出方法及びゲル状成形物の形成方法は公知であるので説明を省略する。これらの方法として、例えば特許第2132327号及び特許第3347835号に開示の方法を利用することができる。なお、Tダイからのせん断速度及び冷却速度を適切に制御しない場合には、ゲル状成形物内でのPPの分布が均一になりにくい傾向があるため、Tダイからのせん断速度は60/sec以上、冷却速度は30℃以上が好ましい。ゲル状シートの冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法などを用いることができる。
(3)第一の延伸工程
 得られたシート状のゲル状成形物を少なくとも一軸方向に延伸する。第一の延伸によりPE結晶ラメラ層間の開裂が起こり、PE相が微細化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造(三次元的に不規則に連結したネットワーク構造)を形成する。ゲル状成形物は成膜用溶剤を含むので、均一に延伸できる。第一の延伸は、ゲル状成形物を加熱後、通常のテンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せにより所定の倍率で行うことができる。第一の延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸又は逐次延伸のいずれを施してもよい。
 延伸倍率はゲル状成形物の厚さにより異なるが、一軸延伸では2倍以上にするのが好ましく、3~30倍にするのがより好ましい。二軸延伸ではいずれの方向でも少なくとも3倍以上、すなわち面積倍率で9倍以上にすることにより、突刺強度が向上するため好ましい。面積倍率が9倍未満では延伸が不十分であり、高弾性及び高強度のポリオレフィン微多孔膜が得られない。一方面積倍率が400倍を超えると、延伸装置、延伸操作等の点で制約が生じる。
 第一の延伸の温度はポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+30℃の範囲内にするのが好ましく、結晶分散温度+10℃~結晶分散温度+25℃の範囲内にするのがより好ましく、結晶分散温度+15℃~結晶分散温度+20℃の範囲内にするのが特に好ましい。この延伸温度を結晶分散温度+30℃超にすると、延伸後の分子鎖の配向性が悪化する。一方結晶分散温度未満では樹脂の軟化が不十分で、延伸により破膜しやすく、高倍率の延伸ができない。ここで結晶分散温度とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値を言う。ポリオレフィン樹脂としてPEを主成分として用いる場合、その結晶分散温度は、一般的に90~100℃である。よってポリオレフィン樹脂が90質量%以上、PEからなる場合、延伸温度を通常90~130℃の範囲内にし、好ましくは100~125℃の範囲内にし、より好ましくは105~120℃の範囲内にする。
 第一の延伸時に、温度の異なる多段階の延伸を施してもよい。この場合、前段の温度より後段の温度が高い二段階の異なる温度で延伸するのが好ましい。その結果、強度低下や幅方向の物性低下を伴わずに、細孔径が大きく、高透過性を示す高次構造の微多孔膜が得られる。限定的ではないが、前段と後段の延伸温度の差は5℃以上にするのが好ましい。前段から後段にかけて膜の温度を上げる際、(a)延伸を継続しながら昇温してもよいし、(b)昇温する間は延伸を止めて所定の温度に到達したのち後段の延伸を開始してもよいが、前者(a)が好ましい。いずれの場合でも、昇温の際に急熱するのが好ましい。具体的には0.1℃/sec以上の昇温速度で加熱するのが好ましく、1~5℃/secの昇温速度で加熱するのがより好ましい。言うまでもないが、前段及び後段の延伸温度並びにトータル延伸倍率は各々上記範囲内とする。
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れたポリオレフィン微多孔膜が得られる。その方法としては、例えば特許第3347854号に開示の方法を用いることができる。
(4)成膜用溶剤除去工程
 成膜用溶剤の除去(洗浄)には洗浄溶媒を用いる。ポリオレフィン相は成膜用溶剤と相分離しているので、成膜用溶剤を除去すると多孔質の膜が得られる。洗浄溶媒及びこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
(5)膜の乾燥工程
 成膜用溶剤除去により得られたポリオレフィン微多孔膜は、加熱乾燥法、風乾法等により乾燥する。
(6)第二の延伸工程
 乾燥後の膜を再び少なくとも一軸方向に延伸してもよい。第二の延伸は、膜を加熱しながら、第一の延伸と同様にテンター法等により行うことができる。第二の延伸は一軸延伸でも二軸延伸でもよい。
 第二の延伸の温度は、微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+40℃以下の範囲内にするのが好ましく、結晶分散温度+10℃以上~結晶分散温度+40℃以下の範囲内にするのがより好ましい。第二の延伸の温度を結晶分散温度+40℃超にすると、透過性が低下したり、横方向(幅方向:TD方向)に延伸した場合のシート幅方向の物性のばらつきが大きくなったりする。特に透気度の延伸シート幅方向のばらつきが大きくなる。一方第二の延伸の温度が結晶分散温度未満ではポリオレフィン樹脂の軟化が不十分で、延伸において破膜しやすく、均一に延伸できない。ポリオレフィン樹脂がPEからなる場合、延伸温度を通常90~140℃の範囲内にし、好ましくは100~140℃の範囲内にする。
 第二の延伸の一軸方向への倍率は1.1~1.8倍にするのが好ましい。例えば一軸延伸の場合、長手方向(機械方向:MD方向)又はTD方向に1.1~1.8倍にする。二軸延伸の場合、MD方向及びTD方向に各々1.1~1.8倍にする。二軸延伸の場合、MD方向及びTD方向の各延伸倍率は1.1~1.8倍である限り、各方向で互いに異なってもよい。この倍率を1.1倍未満とすると、透過性、電解液注液性及び耐圧縮性の改善効果が見られない。一方この倍率を1.8倍超とすると、フィブリルが細くなり過ぎ、しかも耐熱収縮性及び電解液注液性が改善されない。第二の延伸の倍率は1.2~1.6倍にするのがより好ましい。
 第二の延伸の速度は延伸軸方向に3%/sec以上にするのが好ましい。例えば一軸延伸の場合、MD方向又はTD方向に3%/sec以上にする。二軸延伸の場合、MD方向及びTD方向に各々3%/sec以上にする。延伸軸方向における延伸速度(%/sec)とは、膜(シート)が再延伸される領域において再延伸前の延伸軸方向の長さを100%とし、1秒間当りに伸ばされる長さの割合を表す。この延伸速度を3%/sec未満にすると、透過性が低下したり、TD方向に延伸した場合にシート幅方向における物性のばらつきが大きくなったりする。特に延伸シート幅方向における透気度のばらつきが大きくなる。第二の延伸の速度は5%/sec以上にするのが好ましく、10%/sec以上にするのがより好ましい。二軸延伸の場合、MD方向及びTD方向の各延伸速度は3%/sec以上である限り、MD方向とTD方向で互いに異なってもよいが、同じであるのが好ましい。第二の延伸の速度の上限に特に制限はないが、破断防止の観点から50%/sec以下であるのが好ましい。
(7)熱処理工程
 第二の延伸後の膜を熱処理する。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いればよい。特に熱固定処理により膜の結晶が安定化する。そのため第二の延伸により形成されたフィブリルからなる網状組織が保持され、細孔径が大きく、強度に優れた微多孔膜を作製できる。熱固定処理は、微多孔膜を構成するポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行う。熱固定処理は、テンター方式、ロール方式又は圧延方式により行う。
 熱固定処理温度は、第二の延伸の温度±5℃の範囲内であるのが好ましく、これにより物性が安定化する。この温度は第二の延伸の温度±3℃の範囲内であるのがより好ましい。熱緩和処理方法としては、例えば特開2002-256099号公報に開示の方法を利用できる。
 限定的ではないが、第一の延伸、成膜用溶剤除去、乾燥処理、第二の延伸及び熱処理を一連のライン上で連続的に施すインライン方式を採用するのが好ましい。ただし必要に応じて乾燥処理後の膜を一旦巻きフィルムとし、これを巻き戻しながら第二の延伸及び熱処理を施すオフライン方式を採用してもよい。
(8)その他の工程
(a)洗浄前、洗浄後及び第二の延伸工程中の熱固定処理工程、熱ロール処理工程並びに熱溶剤処理工程
 第一の延伸を施したゲル状成形物から成膜用溶剤を除去する前に、熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。また洗浄後や第二の延伸工程中の膜に対して熱固定処理する工程を設けてもよい。
 (i)熱固定処理
 洗浄前及び/又は後の延伸ゲル状成形物、並びに第二の延伸工程中の膜を熱固定処理する方法は上記と同じでよい。
 (ii)熱ロール処理工程
 洗浄前の延伸ゲル状成形物の少なくとも一面に熱ロールを接触させる処理(熱ロール処理)を施してもよい。熱ロール処理として、例えば特開2007-106992号公報に記載の方法を利用できる。特開2007-106992号公報に記載の方法を利用すると、ポリオレフィン樹脂の結晶分散温度+10℃以上~ポリオレフィン樹脂の融点未満に温調した加熱ロールに、延伸ゲル状成形物を接触させる。加熱ロールと延伸ゲル状成形物との接触時間は0.5秒~1分間が好ましい。ロール表面に加熱オイルを保持した状態で接触させてもよい。加熱ロールとしては、平滑ロール又は吸引機能を有してもよい凹凸ロールのいずれでもよい。
 (iii)熱溶剤処理工程
 洗浄前の延伸ゲル状成形物を熱溶剤に接触させる処理を施してもよい。熱溶剤処理方法としては、例えば国際公開第2000/20493号公報に開示の方法を利用できる。
(b)膜の架橋処理工程
 熱処理後のポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等を用いた電離放射による架橋処理を施してもよく、これによりメルトダウン温度を向上させることができる。この処理は、0.1~100Mradの電子線量及び100~300kVの加速電圧により行うことができる。
(c)親水化処理工程
 熱処理後のポリオレフィン微多孔膜を、モノマーグラフト処理、界面活性剤処理、コロナ放電処理、プラズマ処理等により親水化してもよい。
(d)表面被覆処理工程
 熱処理後のポリオレフィン微多孔膜は、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素樹脂多孔質体、又はPA、PAI、PI、PPS等の多孔質体を表面に被覆することにより、電池用セパレータとして用いた場合のメルトダウン特性が向上する。第二の延伸後のポリオレフィン微多孔膜の少なくとも一面にPPを含む被覆層を形成してもよい。被覆用PPとして、例えば国際公開第2005/054350号公報に開示のものが挙げられる。
[3]ポリオレフィン微多孔膜の構造及び物性
 本発明のポリオレフィン微多孔膜は、厚み方向に垂直な少なくとも一面内においてPP分布が均一な構造となっている。PP分布の均一さを表現する一例として、顕微ラマン分光法により求めた膜表面の最大PP/PE比率に対する相対値を規格化PP/PE比率とした時に、平均値/標準偏差/尖度が一定の値を示す構造と表現することができる。すなわち、本発明のポリオレフィン微多孔膜は規格化PP/PE比率が、平均値で0.5以上、標準偏差で0.2以下、分布の形状を示すパラメーターである尖度で1.0以下である構造を有する。さらに、本発明のポリオレフィン微多孔膜は、上記規格化PP/PE比率において、平均値が0.6以上、標準偏差が0.15以下、尖度が0.5以下の構造を有するのが好ましい。
 顕微ラマン分光法による膜表面のPP/PE比率の測定方法について以下に記す。
 顕微ラマン分光法により、532nmレーザーを用いて、20×20ミクロン視野を1ミクロンスポット径でエリア分析を行い、計400点における807cm-1(PP)、1,127cm-1(PE)のピーク強度比を測定する。20×20ミクロン視野内の強度比の最大値に対する相対値を「規格化PP/PE比率」とする。規格化PP/PE比率の平均値が0.5より小さい場合には、PP濃度の低い部分が多く存在し、PEが主となる部分が増え、電池内での充放電に伴う酸化反応によりPEが主となる部分で劣化が進行し、サイクル特性が悪化すると考えられる。標準偏差が0.2を超えると、PP濃度の分布が広がり、PP濃度の低いところでやはり耐酸化性が悪化し、耐酸化性の改善が乏しいと考えられる。またPP濃度の分布が正規分布よりも分布が広い(尖度<-1)場合においても、PP濃度の低いところが存在し、電池内での耐酸化性能が劣る部分が生じ、電池性能が悪化する。またPP濃度の分布が正規分布よりも狭くなる(尖度>1)と、理由は不明だが、耐酸化性能が劣る結果が得られている。ある程度、PP濃度の高い部分が存在することが耐酸化性改善に必須の可能性がある。これらの結果から適切な規格化PP/PE比分布が微多孔膜の耐酸化性改善に必須であることが判明した。
 本発明のポリオレフィン微多孔膜は、上記のような厚み方向に垂直な少なくとも一面内において均一なPP分布を有するので、耐酸化性に優れ、添加するPPの量比が5質量%未満と少ないことから、PP添加による物性低下が見られず、透過性、強度及び電解液注液性に優れている。そのためリチウムイオン電池用セパレータとして用いた場合に、各々優れた電池生産性、安全性、電池サイクル特性を実現することができる。
 本発明の好ましい実施態様によるポリオレフィン微多孔膜は、次の物性を有する。
(1)膜厚を20μmに換算した透気度(ガーレー値)は20~500sec/100cmである。透気度がこの範囲であると、微多孔膜を電池用セパレータとして用いた場合に電池容量が大きく、電池のサイクル特性も良好である。透気度が20sec/100cm/20μm未満では電池内部の温度上昇時にシャットダウンが十分に行われない。透気度は、JIS P 8117によりガーレー値を測定し、膜厚を20μmに換算することにより求めた値である。
(2)空孔率は25~80%である。空孔率が25%未満では良好な透気度が得られない。一方80%を超えていると、微多孔膜を電池用セパレータとして用いた場合の強度が不十分であり、電極が短絡する危険性が大きい。空孔率は質量法により測定した値である。すなわち、空孔率%=100×(w-w)/w。式中、「w」は膜の実重量であり、「w」は、同じ大きさおよび厚さを有する、(同じポリマーの)同等の非多孔性膜の重量である。
(3)膜厚を20μmに換算した突刺強度は2,000mN以上である。突刺強度が2,000mN/20μm未満では、微多孔膜を電池用セパレータとして電池に組み込んだ場合に、電極の短絡が発生する恐れがある。突刺強度は2,500mN/20μm以上であるのが好ましい。突刺強度は、直径1mm(0.5mmR)の針を用い、速度2mm/secでポリオレフィン微多孔膜を突刺したときの最大荷重値を測定し、膜厚を20μmに換算することにより求めた値である。
(4)引張破断強度はMD方向及びTD方向のいずれにおいても60,000kPa以上である。これにより破膜の心配がない。引張破断強度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(5)引張破断伸度はMD方向及びTD方向のいずれにおいても80%以上である。これにより破膜の心配がない。引張破断伸度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(6)105℃の温度で8時間暴露後の熱収縮率はMD方向及びTD方向ともに10%以下である。熱収縮率が10%を超えると、微多孔膜をリチウム電池用セパレータとして用いた場合、発熱時にセパレータ端部が収縮し、電極の短絡が発生する可能性が高くなる。熱収縮率はMD方向及びTD方向ともに8%以下であるのが好ましい。熱収縮率は、微多孔膜を105℃で8時間暴露したときのMD方向及びTD方向の収縮率をそれぞれ3回ずつ測定し、平均値を算出することにより求めた値である。
(7)電解液注液性は20秒以下の場合が良好であり、この場合を「good」と評価した。電解液注液性が20秒を越える場合には、「poor」と評価した。なお、電解液注液性はプロピレンカーボネートの浸透時間にて評価した。サンプルフィルムの約2cm上からプロピレンカーボネートを0.5ml滴下し、滴下終了から時間の計測を開始する。プロピレンカーボネートは膜上に表面張力で盛り上がる。滴下したプロピレンカーボネートが浸透し、膜上のプロピレンカーボネートが全て透過したところで時間の計測を停止し、浸透時間とする。
(8)電池試験により得られた微多孔膜の電気化学的安定性はmAhを単位とし、高温での保管または過充電中の総合充電ロスがより少ないことを表すより低い値が一般的には望ましい。具体的には45.0mAh以下が好ましい。
 電気化学的安定性は、保管または使用中に比較的高温にさらされる電池内のセパレータ(以下、BSF)として膜を使用した場合の膜の耐酸化性に関連した膜特性である。電気自動車やハイブリッド電気自動車を動かすための動力手段の起動、またはその動力手段への給電に用いる電池等の自動車用電池、および電動工具用電池に関しては、これらの比較的高出力、大容量用途は、BSFの電気化学的不安定性に起因する自己放電ロス等の、電池容量のわずかなロスにも特に敏感であるため、45.0mAh以下の電気化学的安定性が望ましい。「大容量」電池という用語は、通常は、例えば2.0Ah~3.6Ahといった、1アンペア時(1Ah)以上供給することが可能な電池を意味する。
 電気化学的安定性を測定するためには、70mmの長さ(MD)および60mmの幅(TD)を有する膜が、膜と同じ面積を有する負極と正極の間に位置する電池を作製する。負極は天然黒鉛製であり、正極はLiCoO製である。電解質は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)(3/7、V/V)との混合物中にLiPFを1M溶液として溶解させることにより調製する。負極と正極の間の領域にある膜の中に電解質を含浸させ、電池を完成させる。
 次いで、電池を、28日間60℃の温度にさらしながら、4.3Vの印加電圧にさらす。「電気化学的安定性」という用語は、28日間にわたって電圧源と電池との間に流れる積分電流(mAh)と定義される。電気化学的安定性は、通常は、ほぼ同一の条件下で3回測定する(ほぼ同一の3つのBSF試料から製造されるほぼ同一の3つの電池)。測定した3つの電気化学的安定性の値の数の平均(算術平均)が「平均電気化学的安定性」である。
(9)膜厚は、例えば電池用セパレータとして使用する場合は5~50μmが好ましく、5~35μmがより好ましい。膜厚の測定方法は、接触式厚さ測定方法でも非接触式厚さ測定方法でもかまわない。例えば、縦方向に1.0cm間隔で10.0cmの幅にわたって接触式厚さ計により測定することができ、次いで平均値を出して膜厚を得ることができる。接触式厚さ計としては、例えば(株)ミツトヨ製“ライトマチック”(登録商標)等の厚さ計が好適である。
(10)フィルム外観は、厚みムラの小さいものが好ましい。フィルム外観は目視/多点膜厚測定にて評価する。目視により厚みに変動が大きいと判断した場合のフィルム外観を「poor」とするが、これは多点における膜厚測定において5ミクロン以上の膜厚変動があった場合に相当する。多点における膜厚測定において膜厚変動が5ミクロン未満の場合のフィルム外観を「good」とした。
 以上のように、本発明の微多孔膜は、電池として充放電を繰り返した後も黒色化等が起こりにくく、透過性、機械的特性及び耐熱収縮性にも優れているので、特に電池用セパレータとして好適である。
[4]電池
 本発明のポリオレフィン微多孔膜からなるセパレータは、電池及び電気二重層コンデンサーに用いることができる。これを用いる電池/コンデンサーの種類に特に制限はないが、特にリチウム二次電池/リチウムイオンキャパシター用途に好適である。本発明の微多孔膜からなるセパレータを用いたリチウム二次電池/キャパシターには、公知の電極及び電解液を使用すればよい。また本発明の微多孔膜からなるセパレータを使用するリチウム二次電池/キャパシターの構造も公知のものでよい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。なお、ポリオレフィン微多孔膜の各物性は前述の方法で求めた。
(実施例1)
 Mwが2.0×10のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×10のHDPE(Mw/Mn:8.6)77.1質量%、Mwが9.7×10のPP(Mw/Mn:2.6)4.9質量%のポリオレフィン樹脂に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを、PE100質量部当たり0.2質量部ドライブレンドし、ポリオレフィン組成物を調製した。
 得られたポリオレフィン組成物25質量部を二軸押出機(シリンダ内径:58mm、スクリュの長さ(L)と直径(D)の比L/D:42、強混練タイプ)に投入し、この二軸押出機のサイドフィーダーから75質量部の流動パラフィン[50cSt(40℃)]を供給し、210℃及び200rpmの条件で溶融混練して、二軸押出機中でPE溶液を調製した。得られたPE溶液を二軸押出機の先端に設置されたTダイから押し出し、20℃に温調した冷却ロールで引き取りながら、ゲル状成形物を形成した。得られたゲル状成形物に対して、テンター延伸機を用いて、115℃の温度で5×5倍の同時二軸延伸(第一の延伸)を施した。次いで枠板[サイズ:20cm×20cm、アルミニウム製(以下同じ)]に固定し、25℃に温調した塩化メチレンの洗浄槽中に浸漬し、100rpmで3分間揺動させながら洗浄した。洗浄した膜を室温で風乾した。乾燥した延伸膜を125℃で30秒間熱固定処理してポリオレフィン微多孔膜を作製した。
 なお、樹脂のMw及びMw/Mnはゲルパーミエーションクロマトグラフィー(GPC)測定による積分曲線から求めた[測定機器:Waters Corporation製GPC-150C、温度:135℃、溶媒:o-ジクロルベンゼン、濃度:0.1質量%(インジェクション量:500μl)、カラム:昭和電工(株)製Shodex UT806M、溶媒流速:1.0ml/min、溶解条件:135℃/1hr。検量線は、単分散ポリスチレンの標準試料の測定により求めたポリスチレンの検量線を用いて作成した。以下同じ。]。
 また、電解液注液性は、浸透時間が20秒以下をgood、20秒を超えたものをpoorとした。
(実施例2)
 表1に示すように、Mwが2.0×10のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×10のHDPE(Mw/Mn:8.6)79質量%、Mwが9.7×10のPP(Mw/Mn:2.6)3質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例3)
 表1に示すように、Mwが2.0×10のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×10のHDPE(Mw/Mn:8.6)81質量%、Mwが9.7×10のPP(Mw/Mn:2.6)1質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例4)
 表1に示すように、Mwが2.0×10のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×10のHDPE(Mw/Mn:8.6)81.5質量%、Mwが9.7×10のPP(Mw/Mn:2.6)0.5質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(実施例5)
 表1に示すように、Mwが2.0×10のUHMwPE(Mw/Mn:8)18質量%、及びMwが2.5×10のHDPE(Mw/Mn:8.6)77.1質量%、Mwが2.7×10のPP(Mw/Mn:4.4)4.9質量%のポリオレフィン樹脂を用いた以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例1)
 表1に示すように、18質量%のUHMwPE(Mw:2.0×10、Mw/Mn:8)及び77.1質量%のHDPE(Mw:3.5×10、Mw/Mn:8.6)、Mwが4.9×10のPP(Mw/Mn:10.6)5質量%のからなるポリオレフィン樹脂を用い、樹脂濃度を25質量%とした以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例2)
 表1に示すように、18質量%のUHMwPE(Mw:2.0×10、Mw/Mn:8)及び77質量%のHDPE(Mw:3.5×10、Mw/Mn:8.6)、Mwが5.8×10のPP(Mw/Mn:2.1)5質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様にして、ポリオレフィン溶液を調製した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例3)
 表1に示すように、18質量%のUHMwPE(Mw:2.0×10、Mw/Mn:8)及び81.7質量%のHDPE(Mw:3.5×10、Mw/Mn:8.6)、Mwが9.7×10のPP(Mw/Mn:2.6)0.3質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様にしてポリオレフィン溶液を調製した。得られたポリオレフィン溶液を用いて、実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例4)
 表1に示すように、18質量%のUHMwPE(Mw:2.0×10、Mw/Mn:8)及び72質量%のHDPE(Mw:3.5×10、Mw/Mn:8.6)、Mwが9.7×10のPP(Mw/Mn:2.6)10質量%からなるポリオレフィン樹脂を用いた以外は、実施例1と同様に、ポリオレフィン溶液を調製した。得られたポリオレフィン溶液を用い、実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例5)
 実施例1と同じ樹脂組成で、ゲル状成形物を形成した。表1に示すように成形時のせん断速度を55/secとなるように調整した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(比較例6)
 実施例1と同じ樹脂組成で、ゲル状成形物を形成した。表1に示すように冷却速度を23℃/secとなるように調整した。その後は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
 実施例1~5及び比較例1~4で得られた各ポリオレフィン微多孔膜の透気度、空孔率、突刺強度、引張破断強度、引張破断伸度、熱収縮率、電解液注液性、規格化PP/PE比率、その標準偏差、規格化PP/PE比率分布尖度、小型電池を用いたトリクル充電試験における試験開始後、120時間までの電気化学的安定性、フィルム外観を各々上記(1)~(10)の方法により測定、記録した。結果を表1~2に示す。また実施例1の微多孔膜について、規格化PP/PE比率分布図及び2次元マップ図を図1~2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から、実施例1~5では、PPの含有率がポリオレフィン全体を100質量%として0.5~5質量%未満のポリオレフィンを用い、微多孔膜を製膜した結果を示した。いずれも電解液注液性に優れ、顕微ラマン分光装置により求めた表面PP濃度(平均値、標準偏差、尖度)は基準を満たしている。このとき、小型電池によるトリクル充電試験における120時間後の電気化学的安定性が30mAh以下となり、優れた耐酸化性を示すことがわかる。図1に実施例1に示した膜を顕微ラマン分光装置にて測定した規格化PP/PE比率の分布図を示した。また図2には、実施例1の規格化PP/PE比率の2次元分布図を示した。図2ではPP濃度が低い領域(色の濃い部分)がさほど見られず、PPが平均的に存在していることがわかる。実施例1~4では、透気度、突刺強度、引張破断強度、引張破断伸度及び耐熱収縮性のバランスに優れ、電解液注液性に優れ、電池内で発生するセパレータの酸化反応が抑制された微多孔膜が得られることが分かる。
 これに対して比較例1は、実施例1、5と同じPP量であり、同じような表面PP濃度を示すが、図3に示すように、部分的にPP濃度の低い領域が存在することがわかる(色の濃い部分が図2よりも多い。)。透気度は悪化し、電解液注液性の悪い結果が得られた。おそらくPPの分散状態が実施例1、5とは異なり、細孔を閉塞する形で存在していると考えられる。
 比較例2では実施例1、5及び比較例1と同量のPPを添加しているが、規格化PP/PE比が低いことからわかるように、図4に示すとおり添加したPPに対して表面近傍のPP濃度が低いことがわかる。このため、耐酸化性が改善されなかったと考えられる。
 比較例3では実施例1~4で用いたのと同じPPを0.3質量%用いている。PPの分散性(標準偏差、尖度)は良いものの、添加量が少なくなったため、表面近傍のPP濃度が不十分になり、耐酸化性が向上しなかったと考えられる。
 比較例4では実施例1~4、比較例4と同じPPを10質量%用いている。透気度が向上し、空孔率が上昇するものの、強度は低下した。膜の外観は目視ででこぼこしており、セパレータの一般物性の面で劣ることが確認できた。
 比較例5では、実施例1と同じ樹脂組成を用いている。Tダイからのせん断速度を低下させたことにより、注液性の低下が見られた。表面近傍のPPの分散状態が変化したため、耐酸化性が向上しなかったと考えられる。
 比較例6では、実施例1と同じ樹脂組成を用いている。冷却速度を低下させたことにより、注液性の低下が見られた。表面近傍のPPの分散状態が悪化したため、耐酸化性が向上しなかったと考えられる。
 本発明の微多孔性フィルムの製造方法により得られた微多孔性フィルムは、キャパシター用途、コンデンサー用途、電池用途等の非水系電解液の蓄電デバイスとして好適な性能を有しており、安全性、及び、信頼性の向上に貢献することができる。中でも電池用セパレータ、より具体的には、リチウムイオン電池用セパレータとして好適に利用できる。その他の用途として、燃料電池の一構成部品、加湿膜、ろ過膜等の各種分離膜としても用いられるので、それらの分野において産業上の利用可能性がある。

Claims (6)

  1. ポリプロピレンを含むポリオレフィン樹脂を用いてゲル状成形物を形成し、これを少なくとも1方向に延伸、洗浄することにより得られるポリオレフィン微多孔膜であって、電解液注液性が20秒以下であり、厚み方向に垂直な少なくとも一面内においてポリプロピレン分布が均一であるポリオレフィン微多孔膜。
  2. 請求項1に記載のポリオレフィン微多孔膜において、前記ポリオレフィン樹脂が、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5質量%以上、5質量%未満含むポリオレフィン樹脂であるポリオレフィン微多孔膜。
  3. 請求項1又は2に記載のポリオレフィン微多孔膜において、厚み方向に垂直な少なくとも一面内においてラマン分光法により測定した規格化PP/PE比率の平均値が0.5以上、標準偏差が0.2以下、尖度が1.0以下であるポリオレフィン微多孔膜。
  4. 請求項1~3のいずれかに記載のポリオレフィン微多孔膜において、ポリプロピレンの重量平均分子量が5万より大きく、15万未満であるポリオレフィン微多孔膜。
  5. 請求項1~4のいずれかに記載のポリオレフィン微多孔膜において、質量平均分子量が1×10以上の超高分子量ポリエチレンを、全ポリオレフィン樹脂を100質量%とした時に、1~50重量%含むポリオレフィン微多孔膜。
  6. 請求項1~5のいずれかに記載のポリオレフィン微多孔膜の製造方法であって、(a)質量平均分子量が1×10以上の超高分子量ポリエチレンの含有率がポリオレフィン全体を100質量%として1~50質量%、重量平均分子量が5万より大きく、30万未満であるポリプロピレンを0.5%以上、5質量%未満含有するポリエチレンを主成分とするポリオレフィン樹脂と、(b)成膜用溶剤とを溶融混練し、(c)得られた溶融混練物をせん断速度が60/sec以上となるようにダイより押出し、冷却速度が30℃/sec以上となるように冷却することによりゲル状成形物を形成し、(d)得られたゲル状成形物を少なくとも一軸方向に延伸し、(e)得られた延伸物から前記成膜用溶剤を除去するポリオレフィン微多孔膜の製造方法。
PCT/JP2012/082199 2011-12-28 2012-12-12 ポリオレフィン微多孔膜及びその製造方法 WO2013099607A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280065082.7A CN104024316B (zh) 2011-12-28 2012-12-12 聚烯烃微多孔膜及其制造方法
KR1020147016032A KR102009237B1 (ko) 2011-12-28 2012-12-12 폴리올레핀 미다공막 및 그 제조 방법
US14/367,342 US9624349B2 (en) 2011-12-28 2012-12-12 Polyolefin microporous film and method for producing same
EP12862936.7A EP2799475B1 (en) 2011-12-28 2012-12-12 Polyolefin microporous film and method for producing same
JP2013551592A JP5967589B2 (ja) 2011-12-28 2012-12-12 ポリオレフィン微多孔膜及びその製造方法
US15/447,223 US9911956B2 (en) 2011-12-28 2017-03-02 Polyolefin microporous film and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-287664 2011-12-28
JP2011287664 2011-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/367,342 A-371-Of-International US9624349B2 (en) 2011-12-28 2012-12-12 Polyolefin microporous film and method for producing same
US15/447,223 Division US9911956B2 (en) 2011-12-28 2017-03-02 Polyolefin microporous film and method of producing same

Publications (1)

Publication Number Publication Date
WO2013099607A1 true WO2013099607A1 (ja) 2013-07-04

Family

ID=48697099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082199 WO2013099607A1 (ja) 2011-12-28 2012-12-12 ポリオレフィン微多孔膜及びその製造方法

Country Status (7)

Country Link
US (2) US9624349B2 (ja)
EP (1) EP2799475B1 (ja)
JP (1) JP5967589B2 (ja)
KR (1) KR102009237B1 (ja)
CN (1) CN104024316B (ja)
MY (1) MY161697A (ja)
WO (1) WO2013099607A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192860A1 (ja) * 2013-05-31 2014-12-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜およびその製造方法
WO2018009000A1 (ko) * 2016-07-07 2018-01-11 에스케이이노베이션 주식회사 역삼투막
JP2020092068A (ja) * 2018-12-07 2020-06-11 旭化成株式会社 微多孔膜の製造方法
JPWO2020138318A1 (ja) * 2018-12-28 2021-11-18 株式会社村田製作所 電池、電池パック、電子機器、電動車両および電力システム
WO2022137430A1 (ja) * 2020-12-24 2022-06-30 三菱電機株式会社 全熱交換素子用流路板、全熱交換素子および全熱交換換気装置並びに全熱交換素子用流路板の製造方法
CN116808851A (zh) * 2023-03-08 2023-09-29 杭州师范大学 一种基于体积排斥效应的聚偏氟乙烯阶层式多孔薄膜及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653649B2 (ja) 2013-11-14 2020-02-26 インテグリス・インコーポレーテッド 微孔性ポリアミドイミド膜
US10427345B2 (en) * 2014-05-07 2019-10-01 Massachusetts Institute Of Technology Continuous fabrication system and method for highly aligned polymer films
CN106574071B (zh) 2014-08-21 2020-05-29 W·W·严 微孔片材产品及其制备和使用方法
US10829600B2 (en) 2014-11-05 2020-11-10 William Winchin Yen Microporous sheet product and methods for making and using the same
JP2017535642A (ja) * 2014-11-05 2017-11-30 イエン,ウイリアム・ウインチン 微孔性シート製品、ならびに、その製造方法及び使用方法
GB2533589A (en) * 2014-12-22 2016-06-29 Ndc Infrared Eng Ltd Measurement of porous film
WO2016132806A1 (ja) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 微多孔プラスチックフィルムの製造方法
CN104733676B (zh) * 2015-03-20 2016-10-19 常州大学 一种锂离子电池聚烯烃微孔隔膜的制备方法
KR101711849B1 (ko) 2015-07-21 2017-03-06 주식회사 에프에스티 내면 영상 획득을 위한 광학 장치
WO2018020825A1 (ja) * 2016-07-25 2018-02-01 帝人株式会社 複合膜用基材
WO2018174871A1 (en) * 2017-03-22 2018-09-27 Daramic, Llc Improved separators, lead acid batteries, and methods and systems associated therewith
JP6962320B2 (ja) * 2017-03-22 2021-11-05 東レ株式会社 ポリオレフィン微多孔膜、及びそれを用いた電池
JP6858618B2 (ja) * 2017-03-30 2021-04-14 帝人株式会社 液体フィルター用基材
KR102107794B1 (ko) * 2018-08-17 2020-05-07 더블유스코프코리아 주식회사 복합막 및 그 제조방법
CN109742295B (zh) * 2018-12-28 2022-09-09 界首市天鸿新材料股份有限公司 一种干法锂电池隔膜及其制备方法
EP3950823A4 (en) * 2019-03-27 2022-12-07 Furukawa Electric Co., Ltd. RESIN MOLD REINFORCED WITH ORGANIC FIBER AND METHOD FOR PRODUCTION THEREOF
CN112542653B (zh) * 2019-09-05 2023-03-14 深圳市拓邦锂电池有限公司 锂电池的抗褶皱隔膜及其制备方法
CN115380430A (zh) * 2020-03-27 2022-11-22 宁德新能源科技有限公司 电化学装置
CN116457398A (zh) * 2020-08-24 2023-07-18 国际人造丝公司 由窄分子量分布的高密度聚乙烯制成的凝胶挤出制品

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
JPH05234578A (ja) 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd 有機電解液を用いる電池用セパレータ及びその製造方法
JPH11269290A (ja) 1998-03-20 1999-10-05 Tonen Kagaku Kk ポリオレフィン微多孔膜
WO2000020493A1 (en) 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001183432A (ja) 1999-12-28 2001-07-06 Advantest Corp タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法
JP2002105235A (ja) 2000-07-26 2002-04-10 Asahi Kasei Corp ポリオレフィン製微多孔膜及びその製造方法
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP2004152614A (ja) 2002-10-30 2004-05-27 Asahi Kasei Chemicals Corp 微多孔膜
WO2005054350A1 (ja) 2003-12-03 2005-06-16 Tonen Chemical Corporation 複合微多孔膜及びその製造方法並びに用途
WO2005113657A1 (ja) 2004-05-20 2005-12-01 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
WO2007015416A1 (ja) 2005-08-03 2007-02-08 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜
JP2007106992A (ja) 2005-09-16 2007-04-26 Tonen Chem Corp ポリエチレン微多孔膜及びその製造方法、並びに電池用セパレータ
JP2009518497A (ja) * 2006-02-14 2009-05-07 エスケー エナジー シーオー., エルティーディー. 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
WO2009123015A1 (ja) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜、及び捲回物
JP2011111484A (ja) 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943235B1 (ko) * 2005-05-16 2010-02-18 에스케이에너지 주식회사 압출혼련성과 물성이 우수한 고밀도폴리에틸렌 미세다공막및 그 제조방법
US7981536B2 (en) * 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
US8304113B2 (en) * 2007-03-05 2012-11-06 Advanced Membrane Systems, Inc. Polyolefin and ceramic battery separator for non-aqueous battery applications
US8021789B2 (en) * 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
TWI367229B (en) * 2007-10-05 2012-07-01 Toray Tonen Specialty Separato Microporous polymer membrane
WO2009069534A2 (en) * 2007-11-30 2009-06-04 Tonen Chemical Corporation Microporous polymeric membrane, battery separator, and battery
JP5235484B2 (ja) * 2008-04-30 2013-07-10 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
JPH05234578A (ja) 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd 有機電解液を用いる電池用セパレータ及びその製造方法
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JPH11269290A (ja) 1998-03-20 1999-10-05 Tonen Kagaku Kk ポリオレフィン微多孔膜
WO2000020493A1 (en) 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001183432A (ja) 1999-12-28 2001-07-06 Advantest Corp タイミング調整方法、半導体試験装置におけるタイミングキャリブレーション方法
JP2002105235A (ja) 2000-07-26 2002-04-10 Asahi Kasei Corp ポリオレフィン製微多孔膜及びその製造方法
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2004152614A (ja) 2002-10-30 2004-05-27 Asahi Kasei Chemicals Corp 微多孔膜
WO2005054350A1 (ja) 2003-12-03 2005-06-16 Tonen Chemical Corporation 複合微多孔膜及びその製造方法並びに用途
WO2005113657A1 (ja) 2004-05-20 2005-12-01 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
WO2007015416A1 (ja) 2005-08-03 2007-02-08 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜
JP2007106992A (ja) 2005-09-16 2007-04-26 Tonen Chem Corp ポリエチレン微多孔膜及びその製造方法、並びに電池用セパレータ
JP2009518497A (ja) * 2006-02-14 2009-05-07 エスケー エナジー シーオー., エルティーディー. 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
WO2009123015A1 (ja) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜、及び捲回物
JP2011111484A (ja) 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799475A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192860A1 (ja) * 2013-05-31 2014-12-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜およびその製造方法
US10411237B2 (en) * 2013-05-31 2019-09-10 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
WO2018009000A1 (ko) * 2016-07-07 2018-01-11 에스케이이노베이션 주식회사 역삼투막
JP2020092068A (ja) * 2018-12-07 2020-06-11 旭化成株式会社 微多孔膜の製造方法
JP7265349B2 (ja) 2018-12-07 2023-04-26 旭化成株式会社 微多孔膜の製造方法
JPWO2020138318A1 (ja) * 2018-12-28 2021-11-18 株式会社村田製作所 電池、電池パック、電子機器、電動車両および電力システム
JP7251554B2 (ja) 2018-12-28 2023-04-04 株式会社村田製作所 電池、電池パック、電子機器、電動車両および電力システム
US12062758B2 (en) 2018-12-28 2024-08-13 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, and electric power system
WO2022137430A1 (ja) * 2020-12-24 2022-06-30 三菱電機株式会社 全熱交換素子用流路板、全熱交換素子および全熱交換換気装置並びに全熱交換素子用流路板の製造方法
CN116808851A (zh) * 2023-03-08 2023-09-29 杭州师范大学 一种基于体积排斥效应的聚偏氟乙烯阶层式多孔薄膜及其制备方法和应用

Also Published As

Publication number Publication date
US20150005405A1 (en) 2015-01-01
EP2799475B1 (en) 2017-03-08
US20170179457A1 (en) 2017-06-22
KR102009237B1 (ko) 2019-08-09
JP5967589B2 (ja) 2016-08-10
US9624349B2 (en) 2017-04-18
JPWO2013099607A1 (ja) 2015-04-30
CN104024316B (zh) 2016-01-20
MY161697A (en) 2017-05-15
EP2799475A1 (en) 2014-11-05
EP2799475A4 (en) 2015-08-26
US9911956B2 (en) 2018-03-06
CN104024316A (zh) 2014-09-03
KR20140105750A (ko) 2014-09-02

Similar Documents

Publication Publication Date Title
JP5967589B2 (ja) ポリオレフィン微多孔膜及びその製造方法
KR101231748B1 (ko) 폴리올레핀 미세 다공막 및 그 제조 방법
JP5497635B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP6443333B2 (ja) ポリオレフィン微多孔膜およびその製造方法
EP2750216B1 (en) Battery separator
KR101319912B1 (ko) 폴리에틸렌 미세 다공막 및 그 제조 방법과 전지용세퍼레이터
JP5576609B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP5202949B2 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
TWI402172B (zh) 微多孔聚烯烴薄膜、其製法、電池隔離材及電池
JP5250262B2 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
US20160126520A1 (en) Battery separator and method of producing the same
WO2017170289A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
WO2014192860A1 (ja) ポリオレフィン多層微多孔膜およびその製造方法
JP6394597B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
HUE032267T2 (en) Microporous membranes and methods for producing and using such membranes
KR20070114282A (ko) 폴리올레핀 미세 다공막의 제조 방법 및 그 미세 다공막
KR102518673B1 (ko) 폴리올레핀 미다공막
KR20190124207A (ko) 폴리올레핀 미다공막, 다층 폴리올레핀 미다공막, 적층 폴리올레핀 미다공막, 및 세퍼레이터
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP2019157060A (ja) ポリオレフィン微多孔膜
KR20220069831A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551592

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012862936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862936

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147016032

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14367342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE