WO2014192860A1 - ポリオレフィン多層微多孔膜およびその製造方法 - Google Patents

ポリオレフィン多層微多孔膜およびその製造方法 Download PDF

Info

Publication number
WO2014192860A1
WO2014192860A1 PCT/JP2014/064246 JP2014064246W WO2014192860A1 WO 2014192860 A1 WO2014192860 A1 WO 2014192860A1 JP 2014064246 W JP2014064246 W JP 2014064246W WO 2014192860 A1 WO2014192860 A1 WO 2014192860A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
weight
less
molecular weight
microporous membrane
Prior art date
Application number
PCT/JP2014/064246
Other languages
English (en)
French (fr)
Inventor
石原毅
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to PL14803343T priority Critical patent/PL3006210T3/pl
Priority to US14/893,021 priority patent/US10411237B2/en
Priority to CN201480030817.1A priority patent/CN105246693B/zh
Priority to KR1020157033884A priority patent/KR102269114B1/ko
Priority to EP14803343.4A priority patent/EP3006210B1/en
Priority to JP2015519927A priority patent/JP6394596B2/ja
Publication of WO2014192860A1 publication Critical patent/WO2014192860A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0675HMWPE, i.e. high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin multilayer microporous membrane and a method for producing the same, and more particularly to a polyolefin multilayer microporous membrane useful as a battery separator and a method for producing the same.
  • Polyolefin multilayer microporous membranes are used in various applications such as battery separators, electrolytic capacitor membranes, various filters, moisture permeable and waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes.
  • a battery separator particularly a lithium ion battery separator
  • its performance is closely related to battery characteristics, battery productivity, and battery safety. Therefore, excellent permeability, mechanical characteristics, heat shrinkage resistance, shutdown characteristics, meltdown characteristics, etc. are required.
  • the voltage of the battery may decrease due to a short circuit of the electrodes.
  • lithium ion batteries are known to deteriorate battery performance if they continue to be used while being charged almost fully charged, and oxidative degradation of the separators contributes to this, so improvements in separators are required. I came.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-269290
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • a polyolefin multilayer microporous film suitable as a separator capable of achieving both oxidation resistance and cycle characteristics 5 to 50% by weight of a polypropylene component and 50 to 50% of a polyethylene component are used. 95% by weight, the polyethylene component includes ultra high molecular weight polyethylene, and the temperature difference between the melting point Tme of the polyethylene component and the melting point Tmp of the polypropylene component is ⁇ 20 ° C. ⁇ Tmp ⁇ Tme ⁇ 23 ° C. And a polyolefin multilayer microporous membrane having a bubble point of 400 to 600 kPa.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-152614
  • a polyolefin such as specific polypropylene
  • the polyolefin is segregated on the surface, and the polyethylene content in the vicinity of the surface may decrease.
  • This microporous membrane is a single layer containing 50% by weight or more of polyethylene, and the polyethylene content in the vicinity of the surface of at least one side of the membrane is less than the average value of the entire membrane, and the viscosity average molecular weight is 200,000 or more.
  • the problem to be solved by the present invention is to provide a polyolefin multilayer microporous membrane having excellent oxidation resistance and electrolyte solution pouring property, and excellent permeability and strength balance.
  • the polyolefin multilayer microporous membrane of the present invention has the following configuration. That is, A first microporous layer containing polypropylene, an electrolyte solution pouring property of 20 seconds or less, at least one surface layer being the first microporous layer, and a polypropylene distribution of the first microporous layer; A polyolefin multilayer microporous membrane having a uniform (hereinafter, PP distribution) in the in-plane direction.
  • the method for producing a polyolefin multilayer microporous membrane of the present invention has the following configuration. That is, (A) a step of melt-kneading a polyolefin resin and a film-forming solvent to prepare a polyolefin solution, (A-1) a first polyolefin resin comprising polyethylene having a weight average molecular weight of less than 1.0 ⁇ 10 6 and polypropylene having a weight average molecular weight of greater than 6.0 ⁇ 10 4 and less than 3.0 ⁇ 10 5 ; A step of preparing a first polyolefin solution by melt-kneading a film-forming solvent; and And (a-2) the weight average molecular weight of the second polyolefin resin and membrane-forming solvent comprising an ultra high molecular weight polyethylene polyethylene and the weight average molecular weight of less than 1.0 ⁇ 10 6 is at 1.0 ⁇ 10 6 or more A step including a step of
  • the polyolefin multilayer microporous membrane of the present invention has an average value of normalized polypropylene / polyethylene ratio (hereinafter referred to as normalized PP / PE ratio) of 0.5 or more, as measured by Raman spectroscopy of the first microporous layer.
  • the standard deviation of the normalized PP / PE ratio is preferably 0.2 or less, and the kurtosis of the normalized PP / PE ratio is preferably ⁇ 1.0 or more and 1.0 or less.
  • the polypropylene has a weight average molecular weight of more than 6.0 ⁇ 10 4 and less than 3.0 ⁇ 10 5
  • the first microporous layer includes the first
  • the total weight of the polyolefin resin of the microporous layer is preferably 0.5% by weight or more and less than 5% by weight based on 100% by weight.
  • the piercing strength (Punc 1 ) of the first microporous layer is 4500 mN / 20 ⁇ m or more and 7000 mN / 20 ⁇ m or less, and the porosity (Po) of the first microporous layer is 1 ) is preferably 40% or more and 50% or less.
  • the puncture strength (Punc 1 ) of the first microporous layer and the porosity (Po 1 ) of the first microporous layer satisfy the relationship of the following formula (A): It is preferable.
  • the first microporous layer is made of a first polyolefin resin
  • the first polyolefin resin is a polyethylene having a weight average molecular weight of less than 1.0 ⁇ 10 6 , a weight average It is preferable to comprise ultrahigh molecular weight polyethylene having a molecular weight of 1.0 ⁇ 10 6 or more and polypropylene having a weight average molecular weight of more than 6.0 ⁇ 10 4 and less than 3.0 ⁇ 10 5 .
  • the first polyolefin resin is a high-density polyethylene having a weight average molecular weight of 5.0 ⁇ 10 4 or more and less than 5.0 ⁇ 10 5 (the total weight of the first polyolefin resin is Ultra-high molecular weight polyethylene having a weight average molecular weight of 1.0 ⁇ 10 6 or more and less than 3.0 ⁇ 10 6 (first polyolefin resin).
  • the polyolefin multilayer microporous membrane of the present invention preferably includes a second microporous layer made of a second polyolefin resin disposed between both surface layers.
  • the second polyolefin resin is a high-density polyethylene having a weight average molecular weight of 5.0 ⁇ 10 4 or more and less than 5.0 ⁇ 10 5 (the total weight of the second polyolefin resin is Ultra-high molecular weight polyethylene having a weight average molecular weight of 1.0 ⁇ 10 6 or more and less than 3.0 ⁇ 10 6 (second polyolefin resin). It is preferable that the total weight is 100% by weight and the amount is 1.0% by weight or more and 50.0% by weight or less, and that polypropylene is not included.
  • the polyolefin multilayer microporous membrane of the present invention preferably has a three-layer structure in which the second microporous layer is disposed between both surface layers composed of the first microporous layer.
  • the polyolefin multilayer microporous membrane of the present invention is a polyolefin multilayer microporous membrane containing polypropylene (PP), and has a first microporous layer containing polypropylene, and at least one surface layer is the first microporous layer.
  • PP polypropylene
  • the PP distribution of the first microporous layer is uniform in the in-plane direction, and the electrolyte solution pouring property is 20 seconds or less, so that it has excellent oxidation resistance and electrolyte solution pouring property, and permeability. ⁇ Excellent strength balance.
  • the polyolefin multilayer microporous membrane When a polyolefin multilayer microporous membrane is used as a battery separator, the polyolefin multilayer microporous membrane may deteriorate during charging / discharging of the battery if there is a part with a high polyethylene concentration in the polyolefin multilayer microporous membrane. There is.
  • the polyolefin multilayer microporous membrane of the present invention is used as a battery separator, it is possible to suppress deterioration that occurs during charging and discharging of the battery, and to extend the life of the battery.
  • the polyolefin multilayer microporous membrane of the present invention is a polyolefin resin of the first microporous layer having a weight average molecular weight of greater than 6.0 ⁇ 10 4 and less than 3.0 ⁇ 10 5 in the first microporous layer.
  • the total weight is preferably 100% by weight and preferably 0.5% by weight or more and less than 5% by weight. This is because it has an excellent balance between air permeability and strength, and has an electrolyte solution pouring property equivalent to that of a polyethylene multilayer microporous membrane.
  • the content of the specific polypropylene is less than 5% by weight, the film thickness distribution becomes uniform, which is preferable.
  • the polyolefin multilayer microporous membrane of the present invention is used as a battery separator, the productivity of the battery is improved, and the battery can be extended in life due to excellent oxidation resistance.
  • the piercing strength (Punc 1 ) of the first microporous layer is 4500 mN / 20 ⁇ m or more and 7000 mN / 20 ⁇ m or less, and the porosity (Po 1 ) of the first microporous layer. Is preferably 40% or more and 50% or less.
  • the polyolefin multilayer microporous membrane of the present invention is used as a battery separator, the deterioration of the separator is suppressed even when full charge is continued, and the battery life can be extended.
  • the puncture strength (Punc 1 ) of the first microporous layer and the porosity (Po 1 ) of the first microporous layer satisfy the relationship of the following formula (A): preferable. It is because it is more excellent in oxidation resistance and can extend the life of the battery. 110 ⁇ Po 1 + 0.01275 ⁇ Punc 1 ⁇ 122 Formula (A) Po 1 : porosity (%) of the first microporous layer, Punc 1 : Puncture strength (mN / 20 ⁇ m) when the thickness of the first microporous layer is converted to 20 ⁇ m
  • the method for producing a polyolefin multilayer microporous membrane of the present invention (A) melt-kneading a polyolefin resin and a film-forming solvent to prepare a polyolefin solution; (However, the polyolefin resin has polyethylene as a main component and 1 to 50% by weight of 100% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1.0 ⁇ 10 6 or more, and a weight average molecular weight of 6.0 ⁇ 10 to 4 and less than 3.0 ⁇ 10 5 polypropylene, including 0.5 wt% or more and less than 5 wt%).
  • the polyolefin multilayer microporous membrane of the present invention has two or more layers, preferably three layers, and has at least one first microporous layer.
  • the first microporous layer is composed of a polyolefin resin (first polyolefin resin) containing polyethylene as a main component and containing polypropylene.
  • the first microporous layer is at least one surface layer of the polyolefin multilayer microporous membrane of the present invention.
  • the layer other than the first microporous layer may be a second microporous layer made of the second polyolefin resin.
  • the polyolefin multilayer microporous membrane of the present invention has a three-layer structure in which both surface layers (skin layers) are first microporous layers and a second microporous layer is disposed between both surface layers (core layers). Is preferred.
  • the first and second polyolefin resins constituting the polyolefin multilayer microporous membrane of the present invention are mainly composed of polyethylene (PE), and the entire polyolefin resin is 100% by weight, and the ratio of polyethylene is preferably 80% by weight or more, More preferably, it contains 90% by weight or more.
  • the first and second polyolefin resins may be compositions containing resins other than polyolefins. Therefore, the term “polyolefin resin” may include not only polyolefin but also resin other than polyolefin.
  • the first microporous layer is composed of a first polyolefin resin.
  • the first polyolefin resin contains polypropylene in addition to polyethylene. Details of each component are shown below.
  • Polyethylene polyethylene has (a) Mw (weight average molecular weight) less than 1.0 ⁇ 10 6 polyethylene (hereinafter “PE (A)”) or (b) PE (A) and Mw is 1.0 ⁇ .
  • PE (A) weight average molecular weight polyethylene
  • PE composition (B) ultrahigh molecular weight polyethylene
  • the ratio Mw / Mn (molecular weight distribution) of Mw and number average molecular weight (Mn) of PE (A) and PE composition (B) is not limited, but is preferably in the range of 5 to 300. Is more preferable, and a range of 5 to 25 is particularly preferable.
  • Mw / Mn is within the above preferred range, the polyethylene solution can be easily extruded, and the resulting polyolefin multilayer microporous membrane is excellent in strength.
  • PE (A) may be any of high density polyethylene (HDPE), medium density polyethylene (MDPE), and low density polyethylene (LDPE), but HDPE is preferred.
  • PE (A) may be not only a homopolymer of ethylene but also a copolymer containing a small amount of other ⁇ -olefin. Examples of ⁇ -olefins other than ethylene include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene, and the like.
  • PE (A) has a weight average molecular weight (Mw) of less than 1.0 ⁇ 10 6 , for example in the range of about 2.0 ⁇ 10 5 to about 0.9 ⁇ 10 6 , about 2.0 to 50.0.
  • Mw weight average molecular weight
  • a molecular weight distribution within the range (MWD, defined as Mw divided by number average molecular weight Mn) and polyethylene having less than 0.20 terminal unsaturated groups per 10,000 carbon atoms may be used.
  • the Mw of PE (A) is preferably 1.0 ⁇ 10 4 or more and less than 5.0 ⁇ 10 5 .
  • the Mw of HDPE is more preferably 5.0 ⁇ 10 4 or more and less than 4.0 ⁇ 10 5 .
  • PE (A) may be made of two or more types having different Mw or densities.
  • PE (A) has a terminal unsaturation of less than or equal to 0.14 per 10,000 carbon atoms, or less than or equal to 0.12, for example in the range of 0.05 to 0.14 (
  • PE composition (B) When polyethylene is the PE composition (B), the upper limit of PE (A) is preferably 98.5% by weight, more preferably 94.0%, based on 100% by weight of the entire first polyolefin resin. % By weight.
  • the lower limit of PE (A) is preferably 45.0% by weight, more preferably 46.5% by weight.
  • the content of UHMwPE is preferably 55.0% by weight or less based on 100% by weight of the entire first polyolefin resin. Especially preferably, it is 45.0 weight% or less. When the content is within the above preferable range, the pressure does not increase during molding, and the productivity is good.
  • the lower limit of the content is not particularly limited, but is more preferably 1.5% by weight and particularly preferably 30.0% by weight from the viewpoint of maintaining mechanical strength and maintaining a high meltdown temperature.
  • the Mw of UHMwPE is preferably in the range of 1.0 ⁇ 10 6 to 3.0 ⁇ 10 6 . By making the Mw of UHMwPE to be 3.0 ⁇ 10 6 or less, melt extrusion can be facilitated.
  • UHMwPE is not limited to a homopolymer of ethylene but may be a copolymer containing a small amount of other ⁇ -olefin. Other ⁇ -olefins other than ethylene may be the same as described above.
  • PE composition (B) polybutene-1 of the Mw as optional ingredients 1.0 ⁇ 10 4 ⁇ 4.0 ⁇ 10 6 , and Mw of 1.0 ⁇ 10 4 ⁇ 4.0 ⁇ 10 6 ethylene / Any of ⁇ -olefin copolymers may be included. These optional components are preferably contained in an amount of 40% by weight or less based on 100% by weight of the entire first polyolefin resin.
  • the content of the polypropylene the polypropylene is preferably a weight of the entire first polyolefin resin is less than 5.0 wt% 100 wt%.
  • the upper limit of the polypropylene content is preferably 3.5% by weight.
  • the lower limit of the polypropylene content is preferably 0.5% by weight, more preferably 1% by weight.
  • the Mw of polypropylene is preferably larger than 6.0 ⁇ 10 4 and smaller than 3.0 ⁇ 10 5, more preferably larger than 6.0 ⁇ 10 4 and smaller than 1.5 ⁇ 10 5 .
  • the molecular weight distribution (Mw / Mn) of polypropylene is preferably 1.01 to 100, and more preferably 1.1 to 50.
  • the polypropylene may be a single material or a composition containing two or more types of polypropylene.
  • the melting point of polypropylene is preferably 150 to 175 ° C., more preferably 150 to 160 ° C.
  • polypropylene not only a homopolymer but also a block copolymer and / or a random copolymer containing other ⁇ -olefin or diolefin may be used.
  • Other olefins are preferably ethylene or ⁇ -olefins having 4 to 8 carbon atoms. Examples of the ⁇ -olefin having 4 to 8 carbon atoms include 1-butene, 1-hexene, 4-methyl-1-pentene and the like.
  • the diolefin preferably has 4 to 14 carbon atoms.
  • diolefin having 4 to 14 carbon atoms examples include butadiene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, and the like.
  • the content of other olefins or diolefins is preferably less than 10 mol% with respect to 100 mol% of the propylene copolymer.
  • the second polyolefin resin includes polyethylene.
  • the polyethylene the polyethylene described in the first polyolefin resin can be used. That is, polyethylene has (a) Mw (weight average molecular weight) less than 1.0 ⁇ 10 6 polyethylene (PE (A)) or (b) PE (A), and Mw is 1.0 ⁇ 10 6 or more. It is preferable that it is a composition (PE composition (B)) consisting of the ultra high molecular weight polyethylene (UHMwPE).
  • the second polyolefin resin preferably does not contain polypropylene.
  • the upper limit of PE (A) is preferably 99.0% by weight, more preferably 95.0%, with the total weight of the second polyolefin resin being 100% by weight. % By weight.
  • the lower limit of PE (A) is preferably 50.0% by weight, more preferably 80.0% by weight.
  • the UHMwPE content is preferably 50.0% by weight or less, with the total weight of the second polyolefin resin being 100% by weight. Especially preferably, it is 20.0 weight% or less. This is because when the content is within the above range, an increase in pressure is suppressed even during molding, and productivity is improved.
  • the lower limit of the content is not particularly limited, but is more preferably 1.0% by weight and particularly preferably 5.0% by weight from the viewpoint of maintaining mechanical strength and maintaining a high meltdown temperature.
  • PE composition (B) polybutene-1 of the Mw as optional ingredients 1.0 ⁇ 10 4 ⁇ 4.0 ⁇ 10 6 , and Mw of 1.0 ⁇ 10 4 ⁇ 4.0 ⁇ 10 6 ethylene / Any of the ⁇ -olefin copolymers may be added. These addition amounts are preferably 40% by weight or less, based on 100% by weight of the entire second polyolefin resin.
  • the first and second polyolefin resins may be polyolefins other than polyethylene and polypropylene, or compositions containing resins other than polyolefins.
  • polyolefins other than polyethylene and polypropylene include homopolymers and copolymers such as polybutene-1, pentene-1, hexene-1, 4-methylpentene-1, and octene.
  • the melt-down temperature is improved when the polyolefin multilayer microporous membrane is used as a battery separator, so that the high temperature storage characteristics of the battery are further improved.
  • the heat resistant resin those described in International Publication WO2006 / 137540 can be used.
  • the addition amount of the heat resistant resin is preferably 3 to 20% by weight, more preferably 3 to 15% by weight, based on 100% by weight of the whole polyolefin resin.
  • mechanical strength such as puncture strength and tensile rupture strength is excellent.
  • the polyolefin multilayer microporous film of the present invention may include a third microporous layer or more microporous layers.
  • the third microporous layer is located on the surface layer opposite to the first microporous layer.
  • the resin constituting the third microporous layer is not particularly limited, but may be composed of the first polyolefin resin or the second polyolefin resin, but preferably does not contain polypropylene.
  • the method for producing a polyolefin multilayer microporous membrane of the present invention includes: (A) a step of melt-kneading a polyolefin resin and a film-forming solvent to prepare a polyolefin solution, (A-1) a first polyolefin resin comprising polyethylene having a weight average molecular weight of less than 1.0 ⁇ 10 6 and polypropylene having a weight average molecular weight of greater than 6.0 ⁇ 10 4 and less than 3.0 ⁇ 10 5 ; A step of preparing a first polyolefin solution by melt-kneading a film-forming solvent; and And (a-2) the weight average molecular weight of the second polyolefin resin and membrane-forming solvent comprising an ultra high molecular weight polyethylene polyethylene and the weight average molecular weight of less than 1.0 ⁇ 10 6 is at 1.0 ⁇ 10 6 or more A step including a step of preparing a second polyolefin solution by melt-kn
  • a first production method for producing a polyolefin multilayer microporous membrane of the present invention comprises: (i) first kneading a first polyolefin resin and a film-forming solvent by first kneading; Preparing a polyolefin solution; (ii) preparing a second polyolefin solution by melt-kneading the second polyolefin resin and a film-forming solvent; and (iii) combining the first and second polyolefin solutions from one die.
  • the obtained extruded product is cooled to form a gel-like sheet.
  • a step of creating a stretched product by stretching the gel-like sheet at least in a uniaxial direction first stretching step
  • a step of removing (washing) the film-forming solvent from the stretched product and
  • cleaning is included.
  • the method may further include (viii) a step of stretching the dried film at least in a uniaxial direction (second stretching step), and (ix) a step of heat treatment.
  • any one of the heat setting treatment step, the heat roll treatment step, and the heat solvent treatment step may be provided before the film forming solvent removal step (vi). Further, after the steps (i) to (ix), a drying step, a heat treatment step, a crosslinking treatment step by ionizing radiation, a hydrophilization treatment step, a surface coating treatment step, and the like may be provided. Further, (v) a step of heat-treating the stretched product may be provided after the first stretching step.
  • first polyolefin solution The first polyolefin resin and a film-forming solvent are melt-kneaded to prepare a first polyolefin solution.
  • a suitable film forming solvent is blended with the first polyolefin resin described above, and then melt-kneaded to prepare a polyolefin resin solution.
  • a melt-kneading method for example, a method using a twin-screw extruder described in the specifications of Japanese Patent Nos. 2132327 and 3347835 can be used. Since the melt-kneading method is well-known, description is abbreviate
  • the polyolefin resin concentration of the polyolefin resin solution is 20 to 50% by weight, preferably 25 to 45% by weight of the polyolefin resin, where the total of the polyolefin resin and the solvent for film formation is 100% by weight.
  • the polyolefin resin concentration of the polyolefin resin solution is within the above range, a decrease in productivity and a decrease in moldability of the gel-like sheet are prevented.
  • first polyolefin resin those described above can be used.
  • Second polyolefin solution A second polyolefin resin and a film-forming solvent are melt-kneaded to prepare a second polyolefin solution.
  • the film forming solvent used for the second polyolefin solution may be the same as or different from the film forming solvent used for the first polyolefin solution, but is preferably the same.
  • the other preparation methods may be the same as in the preparation of the first polyolefin solution.
  • the second polyolefin resin those described above can be used.
  • the first and second polyolefin solutions are each fed from an extruder to a die where they are combined in layers and extruded into sheets.
  • the first polyolefin solution forms at least one surface layer (first microporous layer)
  • the second polyolefin solution is at least between both surface layers. Both solutions are combined in layers and extruded into sheets to form a single layer (second microporous layer) (preferably in contact with one or both of the surface layers).
  • the extrusion method may be either a flat die method or an inflation method. In either method, the solution is supplied to separate manifolds and stacked in layers at the lip inlet of a multilayer die (multiple manifold method), or the solution is supplied to the die in a layered flow in advance (block method) Can be used. Since the multi-manifold method and the block method itself are known, a detailed description thereof will be omitted.
  • the gap of the multilayer flat die is preferably 0.1 to 5 mm.
  • the extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min.
  • the screw length (L) to diameter (D) ratio (L / D) of the twin screw extruder is preferably in the range of 20-100.
  • the inner diameter of the twin screw extruder is preferably 40 to 200 mm.
  • the ratio Q / Ns of the amount Q (kg / h) of the polyolefin resin solution to the screw rotation speed Ns (rpm) is set to 0.1 to 0.55 kg / h / rpm. Is preferred.
  • the screw rotation speed Ns is preferably 180 rpm or more.
  • the upper limit of the screw rotation speed Ns is not particularly limited, but 500 rpm is preferable.
  • a polyolefin containing the first polyolefin resin solution is used.
  • the shear rate of the resin solution from the die is 60 / sec or more.
  • the shear rate from the die is more preferably 150 / sec or more.
  • the extruded product obtained by the formation (iii) of the gel-like sheet is cooled to form a gel-like sheet.
  • a method for forming a gel-like sheet for example, methods disclosed in Japanese Patent Nos. 2132327 and 3347835 can be used. Cooling is preferably performed until the extruded product reaches 40 ° C. or lower. By cooling, the polyolefin microphase separated by the film-forming solvent can be immobilized.
  • a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used.
  • the cooling rate of the extruded product of the polyolefin resin solution containing the first polyolefin resin solution is 30 ° C./sec or more.
  • shear rate from the die and the cooling rate are appropriately controlled, it is easy to make the distribution of polypropylene uniform in the gel sheet, and the oxidation resistance and the electrolyte solution pouring property become good.
  • (V) First stretching step The obtained gel-like sheet is stretched in at least a uniaxial direction.
  • the first stretching causes cleavage between the polyethylene crystal lamella layers, the polyethylene phase is refined, and a large number of fibrils are formed.
  • the obtained fibrils form a three-dimensional network structure (a network structure that is irregularly connected three-dimensionally). Since the gel-like sheet contains a film-forming solvent, it can be stretched uniformly.
  • the first stretching can be performed at a predetermined magnification by heating the gel-like sheet and then using a normal tenter method, roll method, inflation method, rolling method, or a combination of these methods.
  • the first stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be performed.
  • the draw ratio varies depending on the thickness of the gel-like sheet, but it is preferably 2 times or more, more preferably 3 to 30 times in uniaxial stretching.
  • biaxial stretching it is preferable to make at least 3 times or more in any direction, that is, 9 times or more in area magnification. This improves the piercing strength of the obtained polyolefin multilayer microporous film, and increases the elasticity and strength. Is possible.
  • area magnification is in the above preferable range, there are no restrictions in terms of stretching apparatus, stretching operation, and the like.
  • the magnification in both directions is preferably set to the same magnification.
  • the first stretching temperature is preferably not more than about 10 ° C. above the melting point of polyethylene used for preparing the polyolefin solution.
  • the stretching temperature may be in the range of more than Tcd to less than Tme.
  • Tme and Tcd are the melting point and crystal dispersion temperature of all polyethylene used for preparing the polyolefin solution, respectively.
  • Tme + 10 ° C. or lower the orientation of the molecular chains of the polyolefin in the gel sheet tends to be promoted during stretching.
  • the stretching temperature is Tcd or more, film breakage due to stretching is suppressed, and stretching at a high magnification becomes possible.
  • the stretching temperature is from about 90 ° C to about 140 ° C, or from about 100 ° C to about 130 ° C.
  • the stretching temperature is usually in the range of 90 to 130 ° C, preferably in the range of 100 to 125 ° C, more preferably in the range of 105 to 120 ° C.
  • the Tme of PE (A), ultra high molecular weight polyethylene (UHMwPE), or polyethylene composition (PE composition (B)) is generally about 130 ° C. to about 140 ° C., and Tcd is about 90 ° C. to about 100 ° C. It is. Tcd can be determined from the temperature characteristics of dynamic viscoelasticity according to ASTM D 4065.
  • the first stretching may be performed in multiple stages at different temperatures, and the stretching temperature and the final stretching ratio in the former stage and the latter stage are within the above ranges, respectively.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a polyolefin multilayer microporous film having further excellent mechanical strength can be obtained.
  • the method for example, the method disclosed in Japanese Patent No. 3347854 can be used.
  • (Vii) Membrane drying step The polyolefin multilayer microporous membrane obtained by removing the film-forming solvent is dried by a heat drying method, an air drying method or the like.
  • Second stretching step Furthermore, the dried film may be stretched again in at least a uniaxial direction.
  • the second stretching can be performed by a tenter method or the like, similar to the first stretching, while heating the film.
  • the second stretching may be uniaxial stretching or biaxial stretching.
  • the second stretching temperature may be substantially the same or lower than the melting point Tme of all polyethylene used for preparing the polyolefin solution. In one embodiment, the second stretching temperature is from about Tcd to about Tme. When the second stretching temperature is Tme or less, the resulting polyolefin multilayer microporous membrane has appropriate permeability and tends to suppress variations in physical properties such as permeability in the lateral direction (width direction: TD direction). On the other hand, when the second stretching temperature is Tcd or higher, film breakage due to stretching is suppressed, and uniform stretching can be achieved. When the polyolefin resin is made of polyethylene, the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
  • the magnification in the uniaxial direction of the second stretching is preferably 1.1 to 1.8 times.
  • the MD direction referred to as the film production direction, also referred to as the machine direction or the longitudinal direction
  • the TD direction referred to as the same direction as the longitudinal direction and perpendicular to the transverse direction
  • 1 to 1.8 times in the case of biaxial stretching, it is 1.1 to 1.8 times in the MD direction and TD direction, respectively.
  • each stretching ratio in the MD direction and TD direction may be different from each other as long as it is 1.1 to 1.8 times.
  • the resulting polyolefin multilayer microporous membrane had a tendency to improve the permeability, heat shrinkage resistance, electrolyte solution absorbability, and compression resistance.
  • the magnification of the second stretching is more preferably 1.2 to 1.6 times.
  • the second stretching speed is preferably 3% / second or more in the stretching axis direction.
  • the stretching speed (% / second) in the stretching axis direction is the ratio of the length stretched per second with the length in the stretching axis direction before re-stretching being 100% in the region where the film (sheet) is re-stretched. Represents.
  • the stretching speed is 3% / second or more
  • the permeability of the resulting polyolefin multilayer microporous membrane becomes appropriate, and there is a tendency that variations in physical properties such as permeability in the sheet width direction are suppressed.
  • the speed of the second stretching is preferably 5% / second or more, and more preferably 10% / second or more.
  • each stretching speed in the MD direction and the TD direction may be different from each other in the MD direction and the TD direction as long as it is 3% / second or more, but is preferably the same.
  • stretching It is preferable that it is 50% / second or less from a viewpoint of fracture
  • the film after the second stretching may be heat treated.
  • a polyolefin multi-layer microporous membrane that retains a network composed of fibrils formed by the second stretching, has a large pore diameter, and is excellent in strength can be produced.
  • heat setting treatment and / or heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while keeping the dimensions of the film unchanged.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating. In particular, the crystal of the film is stabilized by the heat setting treatment.
  • the heat treatment can be performed by a conventional method such as a tenter method, a roll method, or a rolling method.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given.
  • the heat treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of all polyolefin resins constituting the polyolefin multilayer microporous film.
  • the heat setting treatment temperature is preferably within the range of the second stretching temperature ⁇ 5 ° C., thereby stabilizing the physical properties. This temperature is more preferably within the range of the second stretching temperature ⁇ 3 ° C.
  • an in-line method in which the first stretching, solvent removal for film formation, drying, second stretching and heat treatment are continuously performed on a series of lines.
  • an off-line system in which the dried film is wound once and then unwound to perform second stretching and heat treatment may be adopted.
  • any of a heat setting treatment step, a heat roll treatment step and a heat solvent treatment step may be provided. Moreover, you may provide the process which heat-sets with respect to the film
  • the method for heat-setting the stretched gel-like sheet before and / or after washing and the film during the second stretching step may be the same as described above.
  • the second method for manufacturing a polyolefin multilayer microporous membrane is as follows: (i) preparing a first polyolefin solution by melting and kneading a first polyolefin resin and a film-forming solvent. And (ii) preparing a second polyolefin solution by melting and kneading the second polyolefin resin and a film-forming solvent, and (iii-2) extruding the first and second polyolefin solutions from separate dies. Immediately after lamination, (iv) the obtained extruded product (laminated product) is cooled to form a gel-like sheet.
  • the first manufacturing method forms an extruded body by laminating a polyolefin solution in one die
  • the second manufacturing method is a method in which the solution is laminated immediately after being extruded from a separate die.
  • the following steps can employ the same method as the first manufacturing method.
  • step (iii-2) the first and second polyolefin solutions are extruded into sheets from adjacent dies connected to each of the plurality of extruders, and the temperature of each solution is high (eg, 100 ° C. or higher). Laminate immediately to obtain a laminated extruded product.
  • the other steps may be the same as in the first manufacturing method.
  • a third production method for producing a polyolefin multilayer microporous membrane is as follows: (i) a first polyolefin resin and a film-forming solvent are melt-kneaded to obtain a first polyolefin solution. (Ii) a second polyolefin resin and a film-forming solvent are melt-kneaded to prepare a second polyolefin solution, and (iii-3-1) the first polyolefin solution is extruded from one die.
  • first extrudate Forming a first extrudate, and (iii-3-2) extruding the second polyolefin solution from another die to form a second extrudate, and (iv-3) the resulting first and The second extrudates were cooled to form first and second gel sheets, respectively (v-3) the first and second gel sheets were stretched, and (xi-3) stretched Laminating the first and second stretched materials, (vi )
  • the film-forming solvent is removed from the obtained stretched product. That is, it is performed separately until the gel-like sheet is stretched and then laminated.
  • the following steps can employ the same method as the first manufacturing method. Between the steps (vi-3) and (vii-3), (viii-3) a step of stretching the gel-like laminated sheet may be provided.
  • Steps (iii-3-1) and (iii-3-2) differ from step (iii) in the first production method only in that the first and second polyolefin solutions are not combined in layers.
  • the die used is the same as the die used in step (iii-2) in the second manufacturing method.
  • Step (iv-3) differs from step (iv) in the first production method only in that the first and second extrudates are separately cooled.
  • Step (v-3) differs from step (v) in the first production method only in that the first and second gel sheets are each stretched.
  • the step (xi-3) is a step that is not in the first and second production methods of laminating the first and second stretched products, but a known method may be used for laminating the stretched products. .
  • a fourth production method for producing a polyolefin multilayer microporous membrane is as follows: (i) a first polyolefin resin and a film-forming solvent are melt-kneaded to obtain a first polyolefin solution.
  • the process is performed separately until the porous film is formed, and then laminated to form a multilayer microporous film.
  • a heat treatment step may be performed on each of the first and second polyolefin microporous membranes (ix-4) between steps (vii) and (viii-4).
  • the following processes can take the same method as a 1st manufacturing method.
  • step (v-4) can be performed in the same manner as in the third manufacturing method.
  • Step (vi-4) differs from step (vi) in the first and third production methods only in that the film-forming solvent is removed from the first and second stretched materials, respectively.
  • Step (vii-4) is different from step (vii) in the first and third production methods only in that the first and second films are dried.
  • step (viii-4) is not necessarily required in the first to third production methods, but in the fourth production method, at least the second polyolefin microporous membrane is regenerated in this step (viii-4).
  • the stretching temperature is preferably below the melting point, more preferably from the crystal dispersion temperature to the melting point. If necessary, the first polyolefin microporous membrane may also be stretched.
  • the stretching temperature is preferably below the melting point, more preferably from the crystal dispersion temperature to the melting point. In either case of stretching the first and second polyolefin microporous membranes, the stretch ratio may be the same as in the first production method except that the non-laminated polyolefin microporous membrane is stretched.
  • the step (xi-4) is a step that is not in the first to third manufacturing methods of laminating the first and second films, but the laminating of the film is a known method as in the case of laminating the stretched product. May be used.
  • Step (a) corresponds to steps (i) and (ii) of the first to fourth manufacturing methods.
  • the step (b) includes the step (iii) of the first manufacturing method, the step (iii-2) of the second manufacturing method, the step (iii-3-1) of the third manufacturing method, and the fourth manufacturing. This corresponds to step (iii-4-1) of the method.
  • Step (c) includes steps (iv) of the first manufacturing method, steps (iv-2) of the second manufacturing method, steps (iv-3) of the third manufacturing method, and steps of the fourth manufacturing method. This corresponds to the step (iv-4).
  • Step (d) corresponds to step (v) of the first and second manufacturing methods, step (v-3) of the third manufacturing method, and step (v-4) of the fourth manufacturing method.
  • Step (e) corresponds to step (vi) of the first to third manufacturing methods and step (vi-4) of the fourth manufacturing method.
  • polyolefin multilayer microporous membrane according to a preferred embodiment of the present invention has the following physical properties.
  • the structure, physical properties, and measurement methods thereof will be described.
  • the polyolefin multilayer microporous membrane of the present invention has a structure in which the PP distribution of the first microporous layer is uniform in the in-plane direction.
  • the uniformity of the PP distribution the relative value when the maximum PP / PE ratio on the film surface is 1 with respect to the peak intensity ratio (PP / PE ratio) of PP and PE obtained by microscopic Raman spectroscopy.
  • PP / PE ratio peak intensity ratio
  • the normalized PP / PE ratio has an average value of 0.5 or more, a standard deviation of 0.2 or less, and a kurtosis that is a parameter indicating a distribution shape of 1.0 or less. It preferably has a structure of ⁇ 1.0 or more. Furthermore, the polyolefin multilayer microporous membrane of the present invention may have a structure with an average value of 0.68 or more, a standard deviation of 0.1 or less, and a kurtosis of 0.3 or less in the normalized PP / PE ratio. More preferred.
  • a method for measuring the PP / PE ratio on the film surface by micro-Raman spectroscopy will be described below.
  • area analysis was performed with a 1 micron spot diameter in a depth direction of 1 to 2 microns and a 20 ⁇ 20 micron field using a wavelength of 532 nm laser, and a total of 400 points of frequency 807 cm ⁇ 1 (PP), The peak intensity ratio of 1127 cm ⁇ 1 (PE) is measured.
  • the relative value when the maximum value of the intensity ratio in the 20 ⁇ 20 micron visual field is 1 is defined as “standardized PP / PE ratio”.
  • the polyolefin multilayer microporous membrane of the present invention has excellent oxidation resistance because it has a uniform PP distribution in the in-plane direction as described above in the first microporous layer. Furthermore, when the content of polypropylene is as low as less than 5% by weight, it is preferable because deterioration of physical properties due to polypropylene is suppressed and the permeability, strength, and electrolyte absorption are excellent. Therefore, when used as a separator for a lithium ion battery, excellent battery productivity, safety, and battery cycle characteristics can be realized.
  • the air permeability (Gurley value) of the polyolefin multilayer microporous membrane of the present invention converted to a thickness of 20 ⁇ m is preferably 20 to 600 seconds / 100 cm 3 , more preferably 100 to 500 seconds / 100 cm 3 .
  • the air permeability is in this range, when the polyolefin multilayer microporous membrane is used as a battery separator, the battery capacity is large, the battery cycle characteristics are good, and the shutdown is sufficiently performed when the temperature inside the battery rises, When used in a battery, the resistance value is unlikely to increase during charging and discharging, and the average electrochemical stability is good.
  • the air permeability is a value obtained by measuring according to JIS P 8117 and converting the film thickness to 20 ⁇ m.
  • the porosity of the first microporous layer is determined so that the gel sheet corresponding to the first microporous layer (surface layer) is singly used when the gel sheets of the surface layer and the intermediate layer are prepared to be multilayered.
  • the film is formed under the same molding conditions, and the porosity is measured in the same manner.
  • the porosity is measured in the same manner.
  • the puncture strength is a value obtained by measuring the maximum load value when a polyolefin multilayer microporous membrane is pierced at a speed of 2 mm / sec using a needle having a diameter of 1 mm (0.5 mmR) and converting the film thickness to 20 ⁇ m. It is.
  • the puncture strength when the film thickness of the polyolefin multilayer microporous membrane of the present invention is converted to 20 ⁇ m is preferably 2,000 mN or more, preferably 2,500 mN or more, more preferably 4,000 mN or more. When the puncture strength is 2,000 mN / 20 ⁇ m or more, short-circuiting of electrodes can be effectively suppressed when a polyolefin multilayer microporous membrane is incorporated in a battery as a battery separator.
  • the puncture strength of the first microporous layer is the same as that of the gel sheet corresponding to the first microporous layer (surface layer) when the surface layer and the intermediate layer are each formed into a multilayered sheet.
  • a film is formed under the molding conditions, and the puncture strength is measured in the same manner.
  • the puncture strength of the first microporous layer is preferably 4500 mN / 20 ⁇ m or more and 7000 mN / 20 ⁇ m or less, more preferably 4900 mN / 20 ⁇ m or more and 6400 mN / 20 ⁇ m or less.
  • the porosity of the first microporous layer is preferably 40% or more and 50% or less.
  • the polyolefin multilayer microporous membrane of the present invention having these physical properties is used as a battery separator, the shape of the separator in contact is maintained even when the electrode expands at full charge, and the separator can follow the deformation of the electrode.
  • the electrolyte layer present at the electrode interface is maintained. Therefore, even if the battery is fully charged, deterioration of the separator is suppressed, and the battery can be extended in life.
  • the strength and porosity of the first microporous layer are the resin composition, resin concentration, gel formation conditions (temperature, shear rate during extrusion, cooling rate) of the first microporous layer, and first / second It can be controlled by stretching conditions (temperature, magnification) and the like.
  • the 20 ⁇ m equivalent puncture strength (Punc 1 ) and porosity (Po 1 ) of the first microporous layer satisfy the relationship of the formula (A). 110.8 ⁇ Po 1 + 0.125 ⁇ Punc 1 ⁇ 122 (A) Po 1 : porosity (%) of the first microporous layer, Punc 1 : Puncture strength (mN / 20 ⁇ m) when the thickness of the first microporous layer is converted to 20 ⁇ m
  • the polyolefin multilayer microporous membrane of the present invention can suppress performance deterioration during charging and discharging of the battery when the puncture strength and porosity of the first microporous layer satisfy the relationship of the formula (A). This is because even when the strength is small, it is possible to prevent deterioration of the wettability of the electrolytic solution by adhering to the electrode when a part of the separator is deformed. This is thought to be because the decrease in ion permeability can be prevented.
  • the tensile breaking strength of the polyolefin multilayer microporous membrane of the present invention is 60,000 kPa or more, more preferably 80,000 kPa or more, and further preferably 100,000 kPa or more in both the MD direction and the TD direction.
  • the tensile breaking strength is 60,000 kPa or more, it is easy to prevent film breakage during battery production.
  • the tensile strength at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • the tensile fracture elongation of the polyolefin multilayer microporous membrane of the present invention is preferably 80% or more, more preferably 100% or more in both the MD direction and the TD direction. Thereby, it is easy to prevent film breakage during battery production.
  • the tensile elongation at break is a value measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • Thermal shrinkage (%) The thermal shrinkage after exposure for 8 hours at 105 ° C. of the polyolefin multilayer microporous membrane of the present invention is preferably 10% or less in both the MD and TD directions, more preferably 8% or less, and even more preferably 6%. It is as follows. When the heat shrinkage rate is 10% or less, when the polyolefin multilayer microporous membrane is used as a lithium battery separator, the end of the separator shrinks during heat generation, and the possibility of short-circuiting of the electrode is reduced.
  • the thermal shrinkage is a value obtained by measuring the thermal shrinkage in the MD and TD directions three times each when the polyolefin multilayer microporous membrane is exposed at 105 ° C. for 8 hours, and calculating the average value. .
  • the polyolefin multilayer microporous membrane of the present invention preferably has a shutdown temperature of 137 ° C or lower, more preferably 135 ° C or lower.
  • the shutdown temperature is measured by the method disclosed in International Publication No. 2007/052663. According to this method, the polyolefin multilayer microporous membrane is exposed to an atmosphere of 30 ° C. and heated at 5 ° C./minute, during which the air permeability of the membrane is measured.
  • the shutdown temperature of the polyolefin multilayer microporous membrane was defined as the temperature at which the air permeability (Gurley value) of the polyolefin multilayer microporous membrane initially exceeded 100,000 seconds / 100 cm 3 .
  • the air permeability of the polyolefin multilayer microporous membrane is measured according to JIS P 8117 using an air permeability meter (AGO Seiko Co., Ltd., EGO-1T).
  • Electrolyte injection property of the polyolefin multilayer microporous membrane of the present invention is 20 seconds or less.
  • the electrolyte solution pouring property was evaluated by the penetration time of propylene carbonate.
  • a sample of 50 mm ⁇ 50 mm is placed on a glass plate, 0.5 ml of propylene carbonate is dropped from about 2 cm above the sample, and time measurement is started from the end of dropping.
  • propylene carbonate rises on the film due to surface tension, but the dropped propylene carbonate penetrates with the passage of time.
  • the time measurement is stopped and the permeation time is taken. Penetration time of 20 seconds or less is good, 20 seconds or more and 50 seconds or less are good, and those exceeding 50 seconds are unsuitable.
  • a film having a length of 70 mm (MD) and a width of 60 mm (TD) is placed between a negative electrode and a positive electrode having the same area as the film.
  • the negative electrode is made of natural graphite
  • the positive electrode is made of LiCoO 2 .
  • the electrolyte is prepared by dissolving LiPF 6 as a 1M solution in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (3/7, V / V). An electrolyte is impregnated in the film in the region between the negative electrode and the positive electrode to complete the battery.
  • electrochemical stability is defined as the integrated current (mAh) flowing between the voltage source and the battery over 28 days. Electrochemical stability is measured on three batteries under the same conditions (three batteries of the same condition are made from three film samples of the same condition). The average electrochemical stability (leakage current value) is the average (arithmetic average) of the measured electrochemical stability values of the three batteries.
  • Electrochemical stability is a film property related to the oxidation resistance of the film when the film is used as a separator in a battery that is exposed to relatively high temperatures during storage or use. Electrochemical stability is in mAh, and generally lower values are desirable (representing less total charge loss during storage or overcharge at high temperatures). Batteries for automobiles, such as batteries used for starting or feeding power to electric vehicles and hybrid electric vehicles, and power tool batteries are used for relatively high output and large capacity applications. Therefore, even a slight loss of battery capacity such as a self-discharge loss due to the electrochemical instability of the battery separator is an important problem.
  • the average electrochemical stability of the polyolefin multilayer microporous membrane of the present invention is preferably 45.0 mAh or less, particularly preferably 35.0 mAh or less.
  • the term “high capacity” battery usually refers to a battery that can be supplied for 1 amp hour (1 Ah) or more, for example, 2.0 Ah to 3.6 Ah.
  • Leakage current value increase rate (mA / h)
  • the rate of increase in leakage current value (mA / h) is defined as the increment per hour of the current value from 60 hours to 100 hours from the start of the experiment in the aforementioned electrochemical stability measurement.
  • a graph showing the relationship between the leakage current value and the elapsed time in the multilayer microporous membrane of Example 3 is shown in FIG. 4 as an example.
  • the leakage current value increase rate is obtained by subtracting the leakage current value for 60 hours after the start of the experiment from the leakage current value for 100 hours after the start of the experiment and dividing by 40.
  • the rate of increase in leakage current value represents the degree of battery capacity decrease when charging continues at full charge.
  • the rate of increase in the leakage current value is preferably 22 ⁇ 10 ⁇ 3 mA / h or less, more preferably 7 ⁇ 10 ⁇ 3 mA / h or less.
  • the film thickness of the polyolefin multilayer microporous film of the present invention is preferably 5 to 50 ⁇ m, more preferably 5 to 35 ⁇ m, even more preferably 10 to 25 ⁇ m, for example, when used as a battery separator.
  • the method for measuring the film thickness may be a contact thickness measurement method or a non-contact thickness measurement method. For example, it can be measured with a contact-type thickness meter over a width of 10.0 cm at intervals of 1.0 cm in the vertical direction, and then the average value can be obtained to obtain the film thickness.
  • a thickness gauge such as Mitutoyo Corporation Lightmatic is suitable.
  • the melting point of the resin was measured by the following procedure according to JIS K7122. That is, the resin sample was left in a sample holder of a scanning differential calorimeter (Perkin Elmer, Inc., DSC-System7 type), heat-treated at 230 ° C. for 10 minutes in a nitrogen atmosphere, and heated at 10 ° C./minute for 40 minutes. After cooling to 0 ° C., it was held at 40 ° C. for 2 minutes and then heated to 230 ° C. at a rate of 10 ° C./min. The temperature at which the maximum endotherm was reached (peak temperature) was taken as the melting point.
  • a scanning differential calorimeter Perkin Elmer, Inc., DSC-System7 type
  • the polyolefin multilayer microporous membrane of the present invention is excellent in oxidation resistance and electrolyte solution pouring property, and is not easily blackened even after repeated charge and discharge as a battery, and has permeability. In addition, since it is excellent in strength balance, it is particularly suitable as a battery separator.
  • the separator made of the polyolefin multilayer microporous membrane of the present invention can be used for batteries and electric double layer capacitors. Although there is no restriction
  • a known electrode and electrolyte may be used for the lithium secondary battery / capacitor using the separator composed of the polyolefin multilayer microporous membrane of the present invention.
  • a known electrode and electrolyte may be used for the lithium secondary battery / capacitor using the separator made of the polyolefin multilayer microporous membrane of the present invention.
  • the structure of the lithium secondary battery / capacitor using the separator made of the polyolefin multilayer microporous membrane of the present invention may be a known one.
  • Example 1 (1) Preparation of first polyolefin solution (a) 25% by weight of UHMwPE (Mw / Mn: 8.0) with Mw of 2.0 ⁇ 10 6 based on the total weight of the first polyolefin composition, (b) Mw Is 2.5 ⁇ 10 5 HDPE (Mw / Mn: 8.6) 72% by weight, (c) Mw is 9.7 ⁇ 10 4 polypropylene (Mw / Mn: 2.6, melting point 155 ° C.) 3% A first polyolefin composition containing 1% was prepared by dry blending.
  • Tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane as an antioxidant is dry blended at 0.2 parts by weight per 100 parts by weight of the first polyolefin composition, A polyolefin resin was prepared.
  • first polyolefin resin 20 parts by weight was supplied to the strong kneading twin-screw extruder, and 80 parts by weight of liquid paraffin (50 cSt at 40 ° C.) was supplied from the side feeder to the twin-screw extruder.
  • a first polyolefin solution was prepared by melt-kneading at 210 ° C. and 200 rpm.
  • the second polyolefin solution was prepared in the same manner as the preparation method of the first polyolefin solution except the following points.
  • a second polyolefin composition containing 70% by weight (Mw / Mn: 8.6, terminal vinyl group concentration of 0.1 per 10000 carbon) was prepared by dry blending.
  • Tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane as an antioxidant is dry blended at 0.2 parts by weight per 100 parts by weight of the second polyolefin composition
  • a polyolefin resin was prepared. 28.5 parts by weight of the obtained second polyolefin composition was supplied to a strong kneading twin screw extruder, and 71.5 parts by weight of liquid paraffin (50 cst at 40 ° C.) was supplied from the side feeder to the twin screw extruder.
  • a second polyolefin solution was prepared by melt-kneading at 210 ° C. and 200 rpm.
  • the first and second polyolefin solutions are supplied from the respective twin-screw extruders to the three-layer T-die, and the layer constitution is first polyolefin solution / second polyolefin solution / first.
  • a three-layer extruded product having a layer thickness ratio of 15/70/15 was formed from the polyolefin solution.
  • the extruded product was cooled by passing through a cooling roll controlled at 20 ° C. to form a three-layer gel-like laminated sheet.
  • dye of an extrusion molded object was 190 / sec
  • the cooling rate with a cooling roll was 32 degrees C / sec.
  • the obtained gel-like laminated sheet was subjected to simultaneous biaxial stretching (first stretching) at a stretching ratio of 5 ⁇ 5 at a temperature of 117 ° C. using a tenter stretching machine and wound up. Then, a part was taken from the wound stretched product, fixed to a frame plate [size: 20 cm ⁇ 20 cm, made of aluminum (hereinafter the same)], dipped in a methylene chloride washing tank adjusted to 25 ° C., and 100 rpm And washed with rocking for 3 minutes. The washed membrane was air dried at room temperature. The dried microporous membrane is subjected to a second stretching (restretching) at a stretching ratio of 1.5 times in the TD direction at 128 ° C.
  • a polyolefin multilayer microporous film was prepared by heat-relaxing treatment and then heat-fixing treatment for 10 minutes at the temperature of re-stretching while attached to a batch stretching machine.
  • Examples 2 to 8 and Comparative Examples 1 to 6 A polyolefin multilayer microporous membrane was prepared in the same manner as in Example 1 using the raw materials and conditions shown in Tables 1 and 2. Note that “ ⁇ ” in Example 7 and Comparative Example 2 in Tables 1 and 2 indicates that heat relaxation treatment was not performed. Further, “-” in Comparative Examples 1 to 4 in Table 2 indicates that PP or PE described in the table is not included.
  • Tables 3 and 4 show the physical properties of the polyolefin microporous membranes of Examples 1 to 8 and Comparative Examples 1 to 6.
  • “-” in Comparative Example 1 indicates that measurement was not possible because PP was not included.
  • “-” In Comparative Example 4 indicates that the surface has large irregularities that can be visually judged, and measurement was not possible.
  • FIG. 1 is a graph showing the distribution of the normalized PP / PE ratio of the surface layer of the polyolefin multilayer microporous membrane of Example 3, which is concentrated in a narrow range where the normalized PP / PE ratio is 0.5 or more. You can see that FIG.
  • FIG. 2 shows a two-dimensional distribution diagram of the normalized PP / PE ratio of the surface layer of the polyolefin multilayer microporous membrane of Example 3, in which almost no region where the polypropylene concentration is low (the dark portion) is observed. It turns out that it exists on average.
  • FIG. 3 shows a two-dimensional distribution diagram of the normalized PP / PE ratio of the surface layer of the polyolefin multilayer microporous membrane of Comparative Example 2, where there are many regions where the polypropylene concentration is low (dark portions), It turns out that it does not exist on the surface layer on average.
  • the polyolefin multilayer microporous membranes of Examples 1 to 7 have excellent electrolyte solution pouring properties, excellent permeability and strength balance, and good tensile elongation at break and heat shrinkage resistance. Furthermore, since the film thickness is uniform, the oxidation reaction of the separator generated in the battery is further suppressed.
  • the polyolefin multilayer microporous membranes of Examples 3 to 7 have a surface piercing strength of 4500 mN / 20 ⁇ m and 7000 mN and a porosity of 40% to 50%, making them more permeable and resistant to oxidation. Excellent and suppresses deterioration of battery performance.
  • the surface layer 20 ⁇ m-equivalent puncture strength (Punc 1 ) and porosity (Po 1 ) satisfy the relationship of the formula (A), and more oxidation resistance and Deterioration of battery performance is suppressed.
  • the polyolefin multilayer microporous film of Comparative Example 1 does not contain polypropylene
  • the polyolefin multilayer microporous film of Comparative Example 2 contains polypropylene having a weight average molecular weight of 3.0 ⁇ 105 or more, The balance of physical properties is poor, such as deterioration of battery performance and oxidation resistance and deterioration of the battery.
  • the polyolefin multilayer microporous membrane of Comparative Example 3 contains 8% by weight of the same polypropylene as that used in Examples 1 to 6 and 8. Although the porosity increased and the air permeability decreased, the strength decreased. The appearance of the film was visually indented and confirmed to be inferior in terms of general physical properties as a battery separator.
  • the polyolefin multilayer microporous membrane of Comparative Example 4 contains 0.3% by weight of the same polypropylene as that used in Examples 1 to 6 and 8. Although the dispersibility (standard deviation, kurtosis) of polypropylene is good, it is considered that the polypropylene concentration in the vicinity of the surface became insufficient and the oxidation resistance was not improved.
  • Comparative Example 5 the same resin composition as in Example 8 was used, and the shear rate from the T-die was reduced. As a result, permeability deteriorated and electrolyte solution pouring property and oxidation resistance deteriorated. It was.
  • Comparative Example 6 the same resin composition as in Example 8 was used, and the cooling rate was reduced. As a result, the permeability deteriorated and the electrolyte solution pouring property decreased and the oxidation resistance deteriorated.
  • the present invention provides a polyolefin microporous membrane excellent in oxidation resistance and electrolyte solution pouring property, and further having excellent permeability and strength balance.
  • the polyolefin multilayer microporous membrane of the present invention has suitable performance as an electricity storage device for non-aqueous electrolyte solutions for capacitor use, capacitor use, battery use, etc., and contributes to improvement in safety and reliability. Can do. Among them, it can be suitably used as a battery separator, more specifically as a lithium ion battery separator. As other uses, it is also used as various separation membranes such as one component of a fuel cell, a humidification membrane, and a filtration membrane, and thus has industrial applicability in those fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 耐酸化性および電解液注液性に優れ、さらに透過性および強度バランスに優れたポリオレフィン微多孔膜を提供する。 ポリプロピレンを含む第1の微多孔層を有し、電解液注液性が20秒以下であり、少なくとも一方の表層が前記第1の微多孔層であり、前記第1の微多孔層のPP分布が面内方向で均一であるポリオレフィン多層微多孔膜。

Description

ポリオレフィン多層微多孔膜およびその製造方法
 本発明は、ポリオレフィン多層微多孔膜およびその製造方法に関し、特に電池用セパレータとして有用なポリオレフィン多層微多孔膜およびその製造方法に関する。
 ポリオレフィン多層微多孔膜は、電池用セパレータ、電解コンデンサ用隔膜、各種フィルタ、透湿防水衣料、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に用いられている。ポリオレフィン多層微多孔膜を電池用セパレータ、特にリチウムイオン電池用セパレータとして用いる場合、その性能は電池特性、電池生産性および電池安全性に深く関わっている。そのため優れた透過性、機械的特性、耐熱収縮性、シャットダウン特性、メルトダウン特性等が要求される。例えば機械的強度が低い電池用セパレータを用いた場合、電極の短絡により電池の電圧が低下してしまうことがある。また、リチウムイオン電池は満充電に近い状態で充電しながら使用し続けると電池性能が悪化することが知られており、セパレータの酸化劣化もその一因になることから、セパレータの改良が求められてきた。
 これまでポリオレフィン微多孔膜の物性を改善する方法として、原料組成、延伸条件、熱処理条件等の改良が検討されており、耐熱性を高める手段としてポリプロプレンを混合することが提案されてきた(例えば特開2002-105235号公報、特開2003-183432号公報)。特に最近では、透過性、機械的特性、耐熱収縮性などに加えて、電解液注液性等の電池生産性に関わる特性や耐酸化性等の電池寿命に関わる特性も重視されるようになっている。
 例えば特許文献1(特開平11-269290号公報)では、超高分子量ポリエチレンまたはその組成物に特定量のポリプロピレンを加えることにより、ポリオレフィン微多孔膜の表面に微視的な凹凸を生じさせ、透過性および機械的強度に優れるとともに、成形性を改善し、電解液の浸透性や保持性を改良したポリオレフィン微多孔膜を開示している。さらに、特許文献2(特開2011-111484号公報)では、耐酸化性とサイクル特性を両立し得るセパレータとして好適なポリオレフィン多層微多孔膜として、ポリプロピレン成分5~50重量%と、ポリエチレン成分50~95重量%とを含み、前記ポリエチレン成分が超高分子量ポリエチレンを含むと共に、前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が-20℃<Tmp-Tme<23℃であり、かつバブルポイントが400~600kPaであるポリオレフィン多層微多孔膜を開示している。
 特許文献3(特開2004-152614号公報)では、ポリエチレンに特定のポリプロピレン等のポリオレフィンを加えてブレンドし製膜するとポリオレフィンが表面に偏析して表面近傍のポリエチレンの含有率が減少する場合があることが開示されており、このような表面の微多孔膜は高温保存時のガス発生や放電容量の低下を抑制できることが開示されている。この微多孔膜は、ポリエチレンを50重量%以上含有する単層であって、少なくとも片面の膜の表面近傍のポリエチレンの含有率が膜全体の平均値よりも少なく、粘度平均分子量が20万以上のポリプロピレンと粘度平均分子量が5万以下の低分子量ポリプロピレンをそれぞれ膜構成材料全体の5~20重量%含んでいることを特徴とする。
特開平11-269290号公報 特開2011-111484号公報 特開2004-152614号公報
 ポリプロピレンを添加して耐酸化性を改善するには相当量のポリプロピレンを添加する必要があるが、ポリプロピレンの含有量を増やすとポリエチレン微多孔膜の透過性・強度バランスが損なわれる、特に強度が低下するという欠点が存在する。従って、電池寿命に関わるセパレータの耐酸化性の改良を図りつつ、電池の生産性、安全性および出力特性を担保するために、ポリエチレン微多孔膜の持つ優れた透過性・強度バランスを保持することが求められている。
 従って、本発明が解決しようとする課題は、耐酸化性および電解液注液性に優れ、さらに透過性および強度バランスに優れたポリオレフィン多層微多孔膜を提供することである。
 前述した課題を解決するため本発明のポリオレフィン多層微多孔膜は、次の構成を有する。すなわち、
ポリプロピレンを含む第1の微多孔層を有し、電解液注液性が20秒以下であり、少なくとも一方の表層が前記第1の微多孔層であり、前記第1の微多孔層のポリプロピレン分布(以下、PP分布)が面内方向で均一であるポリオレフィン多層微多孔膜、である。
 前述した課題を解決するため本発明のポリオレフィン多層微多孔膜の製造方法は、次の構成を有する。すなわち、
(a)ポリオレフィン樹脂と成膜用溶剤とを溶融混練してポリオレフィン溶液を調製する工程であって、
 (a-1)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを含む第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製する工程、および、
 (a-2)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が1.0×10以上である超高分子量ポリエチレンを含む第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製する工程を含む工程、
(b)せん断速度60/sec以上で、ポリオレフィン溶液を押し出して成形体を形成する工程、
(c)得られた押出成形体を冷却速度30℃/sec以上で冷却してゲル状シートを形成する工程、
(d)得られたゲル状シートを少なくとも一軸方向に延伸して延伸物を作成する工程、および、
(e)得られた延伸物から前記成膜用溶剤を除去する工程を含むポリオレフィン多層微多孔膜の製造方法、である。
 本発明のポリオレフィン多層微多孔膜は、前記第1の微多孔層のラマン分光法により測定した、規格化ポリプロピレン/ポリエチレン比率(以下、規格化PP/PE比率)の平均値が0.5以上、規格化PP/PE比率の標準偏差が0.2以下、規格化PP/PE比率の尖度が-1.0以上1.0以下であることが好ましい。 
 本発明のポリオレフィン多層微多孔膜は、前記ポリプロピレンは、重量平均分子量が6.0×10より大きく、3.0×10未満であり、前記第1の微多孔層中に前記第1の微多孔層のポリオレフィン樹脂全体の重量を100重量%として0.5重量%以上、5重量%未満含まれることが好ましい。
 本発明のポリオレフィン多層微多孔膜は、前記第1の微多孔層の突刺強度(Punc)が4500mN/20μm以上、7000mN/20μm以下であり、前記第1の微多孔層の空孔率(Po)が40%以上、50%以下であることが好ましい。
 本発明のポリオレフィン多層微多孔膜は、前記第1の微多孔層の突刺強度(Punc)と前記第1の微多孔層の空孔率(Po)が次式(A)の関係を満たすことが好ましい。
   110≦Po+0.01275×Punc≦122  式(A)
 Po:第1の微多孔層の空孔率(%)
 Punc:第1の微多孔層の膜厚20μm換算時の突刺強度(mN/20μm)
 本発明のポリオレフィン多層微多孔膜は、前記第1の微多孔層が第1のポリオレフィン樹脂からなり、前記第1のポリオレフィン樹脂が、重量平均分子量が1.0×10未満のポリエチレン、重量平均分子量が1.0×10以上の超高分子量ポリエチレンおよび重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを含んでなることが好ましい。
 本発明のポリオレフィン多層微多孔膜は、前記第1のポリオレフィン樹脂が、重量平均分子量が5.0×10以上5.0×10未満の高密度ポリエチレン(第1のポリオレフィン樹脂全体の重量を100重量%として45.0重量%以上98.5重量%以下となる量)、重量平均分子量が1.0×10以上3.0×10未満の超高分子量ポリエチレン(第1のポリオレフィン樹脂全体の重量を100重量%として1.0重量%以上55.0重量%以下となる量)、および重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレン(第1のポリオレフィン樹脂全体の重量を100重量%として0.5重量%以上5.0重量%未満となる量)を含んでなることが好ましい。
 本発明のポリオレフィン多層微多孔膜は、両表層間に配置された第2のポリオレフィン樹脂からなる第2の微多孔層を含むことが好ましい。
 本発明のポリオレフィン多層微多孔膜は、前記第2のポリオレフィン樹脂が、重量平均分子量が5.0×10以上5.0×10未満の高密度ポリエチレン(第2のポリオレフィン樹脂全体の重量を100重量%として50.0重量%以上99.0重量%以下となる量)、重量平均分子量が1.0×10以上3.0×10未満の超高分子量ポリエチレン(第2のポリオレフィン樹脂全体の重量を100重量%として1.0重量%以上50.0重量%以下となる量)を含んでなり、ポリプロピレンを含まないことが好ましい。
 本発明のポリオレフィン多層微多孔膜は、前記第1の微多孔層からなる両表層間に前記第2の微多孔層が配置されてなる三層構造を有することが好ましい。
 本発明のポリオレフィン多層微多孔膜は、ポリプロピレン(PP)を含むポリオレフィン多層微多孔膜であって、ポリプロピレンを含む第1の微多孔層を有し、少なくとも一方の表層が前記第1の微多孔層であり、かつ第1の微多孔層のPP分布が面内方向で均一であり、電解液注液性が20秒以下であることにより、耐酸化性および電解液注液性に優れ、透過性・強度バランスに優れる。
 電池用セパレータとしてポリオレフィン多層微多孔膜を用いる場合に、ポリオレフィン多層微多孔膜内に部分的にポリエチレン濃度の高い箇所が存在すると、電池の充放電中にポリオレフィン多層微多孔膜の劣化が発生することがある。本発明のポリオレフィン多層微多孔膜を電池セパレータとして使用すると、電池の充放電中に起こる劣化を抑制することができ、電池を長寿命化することができる。
 本発明のポリオレフィン多層微多孔膜は、重量平均分子量が6.0×10より大きく、3.0×10未満のポリプロピレンを第1の微多孔層中に第1の微多孔層のポリオレフィン樹脂全体の重量を100重量%として0.5重量%以上、5重量%未満含むことが好ましい。透気度と強度のバランスに優れ、ポリエチレン多層微多孔膜と同等の電解液注液性を有するからである。特定のポリプロピレンの含有量が5重量%未満であると、膜厚分布が均一になるので好ましい。本発明のポリオレフィン多層微多孔膜を電池セパレータとして使用すると、電池の生産性が向上し、また、優れた耐酸化性により電池を長寿命化することができる。
 本発明のポリオレフィン多層微多孔膜は前記第1の微多孔層の突刺強度(Punc)が4500mN/20μm以上、7000mN/20μm以下であり、第1の微多孔層の空孔率(Po)が40%以上、50%以下であることが好ましい。本発明のポリオレフィン多層微多孔膜を電池セパレータとして使用すると、満充電を継続してもセパレータの劣化が抑制され電池を長寿命化することができる。
 本発明のポリオレフィン多層微多孔膜は、第1の微多孔層の突刺強度(Punc)と第1の微多孔層の空孔率(Po)が次式(A)の関係を満たすことが好ましい。より耐酸化性に優れるとともに、電池を長寿命化することができるからである。
   110≦Po+0.01275×Punc≦122   式(A)
 Po:第1の微多孔層の空孔率(%)、
 Punc:第1の微多孔層の膜厚20μm換算時の突刺強度(mN/20μm)
 また、本発明のポリオレフィン多層微多孔膜の製造方法は、
(a)ポリオレフィン樹脂と成膜用溶剤とを溶融混練してポリオレフィン溶液を調製する工程と、
(ただし、前記ポリオレフィン樹脂は、ポリエチレンを主成分とし、重量平均分子量が1.0×10以上の超高分子量ポリエチレンを100重量%として1~50重量%と、重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを0.5重量%以上、5重量%未満とを含む。)、
(b)せん断速度60/sec以上で、ポリオレフィン溶液を押し出して成形体を形成する工程、
(c)得られた押出成形体を冷却速度30℃/sec以上で冷却してゲル状シートを形成する工程、
(d)得られたゲル状シートを少なくとも一軸方向に延伸して延伸物を作成する工程、
(e)得られた延伸物から前記成膜用溶剤を除去する工程
を含むことにより、前述の特性を有するポリオレフィン多層微多孔膜を効率よく製造できる。
本発明のポリオレフィン多層微多孔膜(実施例3)の第1の微多孔層の規格化PP/PE比率の分布図を示すグラフである。 本発明のポリオレフィン多層微多孔膜(実施例3)の第1の微多孔層の規格化PP/PE比率の2次元分布図を示すグラフである。 ポリオレフィン多層微多孔膜(比較例2)の第1の微多孔層の規格化PP/PE比率の2次元分布図を示すグラフである。 本発明のポリオレフィン多層微多孔膜(実施例2)の漏れ電流値上昇速度の算定方法を示す概要図である。
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明のポリオレフィン多層微多孔膜は、2層以上であり、好ましくは3層であり、第1の微多孔層を少なくとも一層有する。本発明のポリオレフィン多層微多孔膜において第1の微多孔層は、ポリエチレンを主成分とし、ポリプロピレンを含むポリオレフィン樹脂(第1のポリオレフィン樹脂)から構成される。さらに、第1の微多孔層は、本発明のポリオレフィン多層微多孔膜の少なくとも一方の表層である。第1の微多孔層以外の層は、第2のポリオレフィン樹脂からなる第2の微多孔層であってもよい。本発明のポリオレフィン多層微多孔膜は、両表層(スキン層)が第1の微多孔層であり、両表層間(コア層)に第2の微多孔層が配置された3層構造を有することが好ましい。
 以下に本発明のポリオレフィン多層微多孔膜で使用するポリオレフィン樹脂を説明する。
[1]原料
[ポリオレフィン樹脂]
 本発明のポリオレフィン多層微多孔膜を構成する第1および第2のポリオレフィン樹脂は、ポリエチレン(PE)を主成分とし、ポリオレフィン樹脂全体を100重量%として、ポリエチレンの割合が好ましくは80重量%以上、より好ましくは90重量%以上含む。第1および第2のポリオレフィン樹脂は、ポリオレフィン以外の樹脂を含む組成物であってもよい。従って、「ポリオレフィン樹脂」という言葉は、ポリオレフィンのみならず、ポリオレフィン以外の樹脂を含むものであってもよい。
[第1のポリオレフィン樹脂]
 本発明のポリオレフィン多層微多孔膜において、第1の微多孔層は第1のポリオレフィン樹脂から構成される。第1のポリオレフィン樹脂はポリエチレンの他にポリプロピレンを含む。以下に各成分について詳細を示す。
ポリエチレン
 ポリエチレンは、(a)Mw(重量平均分子量)が1.0×10未満のポリエチレン(以下、「PE(A)」)、又は(b)PE(A)と、Mwが1.0×10以上の超高分子量ポリエチレン(UHMwPE)とからなる組成物(以下、「PE組成物(B)」)であることが好ましい。
 PE(A)およびPE組成物(B)のMwと数平均分子量(Mn)の比Mw/Mn(分子量分布)は限定的でないが、5~300の範囲内であることが好ましく、5~100の範囲内であることがより好ましく、5~25の範囲内であることが特に好ましい。Mw/Mnが上記好ましい範囲であると、ポリエチレン溶液の押出が容易であり、得られるポリオレフィン多層微多孔膜の強度にも優れる。
PE(A)
 PE(A)は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)および低密度ポリエチレン(LDPE)のいずれでもよいが、HDPEが好ましい。PE(A)は、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 PE(A)は、例えば約2.0×10~約0.9×10の範囲といった、1.0×10未満の重量平均分子量(Mw)、約2.0~50.0の範囲内の分子量分布(MWD、Mwを数平均分子量Mnで割った値と定義する。)、および10,000個の炭素原子当たり0.20個未満の末端不飽和基を有するポリエチレンとしてもよい。PE(A)のMwは1.0×10以上~5.0×10未満であることが好ましい。中でもHDPEのMwは5.0×10以上~4.0×10未満がより好ましい。PE(A)は、Mw又は密度の異なるもの二種以上からなるようにしてもよい。任意に、PE(A)は、10,000個の炭素原子当たり0.14以下、又は0.12以下、例えば0.05~0.14個の範囲内(例えば測定限界未満)の末端不飽和基を有する。
PE組成物(B)
 ポリエチレンがPE組成物(B)である場合、PE(A)の上限は、第1のポリオレフィン樹脂全体の重量を100重量%として98.5重量%であることが好ましく、より好ましくは94.0重量%である。PE(A)の下限は、45.0重量%であることが好ましく、より好ましくは46.5重量%である。
 UHMwPEの含有量は、第1のポリオレフィン樹脂全体の重量を100重量%として55.0重量%以下とすることが好ましい。特に好ましくは45.0重量%以下である。この含有量が上記好ましい範囲であると、成形時に圧力上昇をもたらすことはなく、生産性も良好である。また、この含有量の下限は特に制限されないが、機械的強度維持および高メルトダウン温度維持の点から1.5重量%であることがより好ましく、30.0重量%であることが特に好ましい。UHMwPEを1.0重量%以上50.0重量%以下とすることで、強度・透気度バランスの優れたポリオレフィン多層微多孔膜を得ることができる。
 UHMwPEのMwは1.0×10~3.0×10の範囲内であることが好ましい。UHMwPEのMwを3.0×10以下にすることにより、溶融押出を容易にすることができる。UHMwPEはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンは上記と同じでよい。
 PE組成物(B)は、任意成分としてMwが1.0×10~4.0×10のポリブテン-1、およびMwが1.0×10~4.0×10のエチレン/α-オレフィン共重合体のいずれかを含んでもよい。これらの任意成分は第1のポリオレフィン樹脂全体を100重量%として40重量%以下含まれることが好ましい。
ポリプロピレン
 ポリプロピレンの含有量は、第1のポリオレフィン樹脂全体の重量を100重量%として5.0重量%未満であることが好ましい。ポリプロピレンの含有量の上限は好ましくは3.5重量%である。ポリプロピレンの含有量の下限は、好ましくは0.5重量%、より好ましくは1重量%である。ポリプロピレンの含有量が上記範囲内であると耐酸化性、膜厚均一性および強度が向上する。
 ポリプロピレンのMwは6.0×10より大きく3.0×10未満であることが好ましく、6.0×10より大きく1.5×10未満であることがより好ましい。ポリプロピレンの分子量分布(Mw/Mn)は1.01~100であることが好ましく、1.1~50であることがより好ましい。ポリプロピレンは単独物でもよいし、2種以上のポリプロピレンを含む組成物であってもよい。
 限定的ではないが、ポリプロピレンの融点は150~175℃であることが好ましく、より好ましくは、150~160℃である。
 ポリプロピレンとしては単独重合体のみならず、他のα-オレフィン又はジオレフィンを含むブロック共重合体および/又はランダム共重合体でもよい。他のオレフィンとしてはエチレン又は炭素数が4~8のα-オレフィンが好ましい。炭素数4~8のα-オレフィンとして、例えば1-ブテン、1-へキセン、4-メチル-1-ペンテン等が挙げられる。ジオレフィンの炭素数は4~14が好ましい。炭素数4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。他のオレフィン又はジオレフィンの含有率は、プロピレン共重合体を100モル%として10モル%未満であることが好ましい。
[第2のポリオレフィン樹脂]
 第2の微多孔層を構成する第2のポリオレフィン樹脂の態様は以下のとおりである。
 第2のポリオレフィン樹脂はポリエチレンを含む。ポリエチレンは、第1のポリオレフィン樹脂に記載のポリエチレンを用いることができる。すなわち、ポリエチレンは、(a)Mw(重量平均分子量)が1.0×10未満のポリエチレン(PE(A))、又は(b)PE(A)と、Mwが1.0×10以上の超高分子量ポリエチレン(UHMwPE)とからなる組成物(PE組成物(B))であることが好ましい。第2のポリオレフィン樹脂は、ポリプロピレンを含まないことが好ましい。
 ポリエチレンがPE組成物(B)である場合、PE(A)の上限は、第2のポリオレフィン樹脂全体の重量を100重量%として99.0重量%であることが好ましく、より好ましくは95.0重量%である。PE(A)の下限は、50.0重量%であることが好ましく、より好ましくは80.0重量%である。
 UHMwPEの含有量は、第2のポリオレフィン樹脂全体の重量を100重量%として50.0重量%以下とすることが好ましい。特に好ましくは20.0重量%以下である。この含有量が上記範囲内であると、成形時も圧力上昇が抑制され、生産性が向上するからである。また、この含有量の下限は特に制限されないが、機械的強度維持および高メルトダウン温度維持の点から1.0重量%であることがより好ましく、5.0重量%であることが特に好ましい。UHMwPEを1.0重量%以上50.0重量%以下とすることで、強度・透気度バランスの優れたポリオレフィン多層微多孔膜を得ることができる。
 PE組成物(B)は、任意成分としてMwが1.0×10~4.0×10のポリブテン-1、およびMwが1.0×10~4.0×10のエチレン/α-オレフィン共重合体のいずれかを添加してもよい。これらの添加量は第2のポリオレフィン樹脂全体を100重量%として40重量%以下であることが好ましい。
[ポリオレフィン樹脂におけるポリエチレン、ポリプロピレン以外の成分]
 前述のとおり、第1および第2のポリオレフィン樹脂は、ポリエチレン、ポリプロピレン以外のポリオレフィンや、ポリオレフィン以外の樹脂を含む組成物であってもよい。ポリエチレン、ポリプロピレン以外のポリオレフィンとしては、ポリブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン等の単独重合体および共重合体が挙げられる。
 また、ポリオレフィン樹脂が耐熱性樹脂を含むと、ポリオレフィン多層微多孔膜を電池用セパレータとして用いた場合にメルトダウン温度が向上するので、電池の高温保存特性が一層向上する。
 耐熱性樹脂としては国際公開WO2006/137540に記載されたものなどを使用することができる。耐熱性樹脂の添加量は、ポリオレフィン樹脂全体を100重量%として3~20重量%であることが好ましく、3~15重量%であることがより好ましい。この含有率が上記好ましい範囲であると、突刺強度、引張破断強度等の機械的強度に優れる。
 なお、本発明のポリオレフィン多層微多孔膜は三層以上の微多孔層で構成される場合、第3の微多孔層またはそれ以上の微多孔層を含んでもよい。本発明のポリオレフィン多層微多孔膜が三層の微多孔層で構成される場合、前記第3の微多孔層は第1の微多孔層と反対側の表層に位置する。第3の微多孔層を構成する樹脂は特に限定されるものではないが、第1のポリオレフィン樹脂または第2のポリオレフィン樹脂からなってもよいが、ポリプロピレンを含まないことが好ましい。
[2]ポリオレフィン多層微多孔膜の製造方法
 次に、本発明のポリオレフィン多層微多孔膜の製造方法を説明する。なお、本発明のポリオレフィン多層微多孔膜の製造方法は、これに限定されるものではない。
 本発明のポリオレフィン多層微多孔膜の製造方法は、
(a)ポリオレフィン樹脂と成膜用溶剤とを溶融混練してポリオレフィン溶液を調製する工程であって、
(a-1)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを含む第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製する工程、および、
(a-2)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が1.0×10以上である超高分子量ポリエチレンを含む第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製する工程を含む工程、
(b)せん断速度60/sec以上で、ポリオレフィン溶液を押し出して成形体を形成する工程、
(c)得られた押出成形体を冷却速度30℃/sec以上で冷却してゲル状シートを形成する工程、
(d)得られたゲル状シートを少なくとも一軸方向に延伸して延伸物を作成する工程、
(e)得られた延伸物から前記成膜用溶剤を除去する工程
を含む。
 本発明のポリオレフィン多層微多孔膜の製造方法は積層方法により大きく4通りに分類できるので、以下その分類別に説明する。
(2-1)第1の製造方法
 本発明のポリオレフィン多層微多孔膜を製造する第1の製造方法は、(i)第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製し、(ii)第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製し、(iii)第1および第2のポリオレフィン溶液を1つのダイより同時に押し出し、(iv)得られた押出成形体を冷却してゲル状シートを形成する。さらに、(v)ゲル状シートを少なくとも一軸方向に延伸して延伸物を作成する工程(第1の延伸工程)、(vi)延伸物から成膜用溶剤を除去(洗浄)する工程、および(vii)洗浄後の膜を乾燥する工程を含む。(i)~(vii)の工程の後、さらに(viii)乾燥した膜を少なくとも一軸方向に再び延伸する工程(第2の延伸工程)、および(ix)熱処理する工程を含んでもよい。必要に応じて、(vi)の成膜用溶剤除去工程の前に熱固定処理工程、熱ロール処理工程および熱溶剤処理工程のいずれかを設けてもよい。さらに(i)~(ix)の工程の後、乾燥工程、熱処理工程、電離放射による架橋処理工程、親水化処理工程、表面被覆処理工程等を設けてもよい。さらに(v)第1の延伸工程の後に延伸物を熱処理する工程を設けてもよい。
(i)第1のポリオレフィン溶液の調製
 第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練し、第1のポリオレフィン溶液を調製する。前述した第1のポリオレフィン樹脂に適当な成膜用溶剤を配合した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。溶融混練方法として、例えば特許第2132327号および特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。ただしポリオレフィン樹脂溶液のポリオレフィン樹脂濃度は、ポリオレフィン樹脂と成膜用溶剤の合計を100重量%として、ポリオレフィン樹脂が20~50重量%であり、好ましくは25~45重量%である。ポリオレフィン樹脂溶液のポリオレフィン樹脂濃度が上記範囲内であると、生産性の低下や、ゲル状シートの成形性の低下が防止される。
 第1のポリオレフィン樹脂としては、前記したとおりのものが使用可能である。
(ii)第2のポリオレフィン溶液の調製
 第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練し、第2のポリオレフィン溶液を調製する。第2のポリオレフィン溶液に用いる成膜用溶剤は、第1のポリオレフィン溶液に用いる成膜用溶剤と同じでもよいし、異なってもよいが、同じであることが好ましい。それ以外の調製方法は第1のポリオレフィン溶液の調製の場合と同じでよい。
 第2のポリオレフィン樹脂としては、前記したとおりのものが使用可能である。
(iii)押出
 第1および第2のポリオレフィン溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状に組合せ、シート状に押し出す。三層以上の構造を有するポリオレフィン多層微多孔膜を製造する場合、第1のポリオレフィン溶液が少なくとも一方の表層(第1の微多孔層)を形成し、第2のポリオレフィン溶液が両表層間の少なくとも一層(第2の微多孔層)を形成するように(好ましくは、両表層の一方又は両方に接触するように)両溶液を層状に組合せ、シート状に押し出す。
 押出方法はフラットダイ法およびインフレーション法のいずれでもよい。いずれの方法でも、溶液を別々のマニホールドに供給して多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、又は溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法およびブロック法自体は公知であるので、それらの詳細な説明は省略する。多層用フラットダイのギャップは0.1~5mmであることが好ましい。押出温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。第1および第2のポリオレフィン溶液の各押出量を調節することにより、第1および第2の微多孔層の膜厚比を調節することができる。
 二軸押出機のスクリュの長さ(L)と直径(D)の比(L/D)は20~100の範囲が好ましい。二軸押出機のシリンダ内径は40~200mmであることが好ましい。ポリオレフィン樹脂を二軸押出機に入れる際、スクリュ回転数Ns(rpm)に対するポリオレフィン樹脂溶液の投入量Q(kg/h)の比Q/Nsを0.1~0.55kg/h/rpmにするのが好ましい。スクリュ回転数Nsは180rpm以上にするのが好ましい。スクリュ回転数Nsの上限は特に制限されないが、500rpmが好ましい。
 押出方法としては、例えば特許第2132327号および特許第3347835号に開示の方法を利用することができるが、本発明のポリオレフィン多層微多孔膜の製造方法においては、第1のポリオレフィン樹脂溶液を含むポリオレフィン樹脂溶液のダイからのせん断速度が60/sec以上であることを特徴とする。ダイからのせん断速度は150/sec以上であることがより好ましい。
 (iv)ゲル状シートの形成(iii)により得られた押出成形体を冷却してゲル状シートを形成する。ゲル状シートの形成方法として、例えば特許第2132327号および特許第3347835号に開示の方法を利用することができる。冷却は押出成形体が40℃以下になるまで行うことが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができる。
 本発明のポリオレフィン多層微多孔膜の製造方法においては、第1のポリオレフィン樹脂溶液を含むポリオレフィン樹脂溶液の押出成形体の冷却速度は30℃/sec以上であることを特徴とする。
 ダイからのせん断速度および冷却速度を適切に制御すれば、ゲル状シート内でのポリプロピレンの分布を均一にすることが容易であり、耐酸化性および電解液注液性が良好になる。
(v)第1の延伸工程
 得られたゲル状シートを少なくとも一軸方向に延伸する。第1の延伸によりポリエチレン結晶ラメラ層間の開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造(三次元的に不規則に連結したネットワーク構造)を形成する。ゲル状シートは成膜用溶剤を含むので、均一に延伸できる。第1の延伸は、ゲル状シートを加熱後、通常のテンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せにより所定の倍率で行うことができる。第1の延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸又は逐次延伸のいずれを施してもよい。
 延伸倍率はゲル状シートの厚さにより異なるが、一軸延伸では2倍以上にするのが好ましく、3~30倍にするのがより好ましい。二軸延伸ではいずれの方向でも少なくとも3倍以上、すなわち面積倍率で9倍以上にすることが好ましく、これにより、得られるポリオレフィン多層微多孔膜の突刺強度が向上し、高弾性化、高強度化が可能となる。また、面積倍率が上記好ましい範囲であると、延伸装置、延伸操作等の点で制約が生じない。なお、二軸延伸では両方向の倍率を同倍率とすることが好ましい。
 第1の延伸の温度は、ポリオレフィン溶液の調製に用いたポリエチレンの融点を約10℃超えた温度以下とすることが好ましい。延伸温度は、Tcd超~Tme未満の範囲でもよい。Tme及びTcdは、それぞれ、ポリオレフィン溶液の調製に用いた全てのポリエチレンの融点及び結晶分散温度である。延伸温度がTme+10℃以下であると、延伸中にゲル状シート中のポリオレフィンの分子鎖の配向が促進される傾向がある。一方、延伸温度がTcd以上であると、延伸による破膜が抑制され、高倍率の延伸が可能となる。一実施態様において、延伸温度は約90℃~約140℃か、約100℃~約130℃である。ポリオレフィン樹脂が90重量%以上のポリエチレンからなる場合、延伸温度を通常90~130℃の範囲内にし、好ましくは100~125℃の範囲内にし、より好ましくは105~120℃の範囲内にする。
 PE(A)、超高分子量ポリエチレン(UHMwPE)、又はポリエチレン組成物(PE組成物(B))のTmeは一般的に約130℃~約140℃であり、Tcdは約90℃~約100℃である。TcdはASTM D 4065による動的粘弾性の温度特性から求めることができる。
 第1の延伸は、温度の異なる多段階の延伸を施してもよく、前段および後段の延伸温度並びに最終の延伸倍率は各々上記範囲内とする。所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れたポリオレフィン多層微多孔膜が得られる。その方法としては、例えば特許第3347854号に開示の方法を用いることができる。
(vi)成膜用溶剤除去(洗浄)工程
 次に、洗浄溶剤を用いて、延伸したゲル状シート(延伸物)中に残留する成膜用溶剤を除去する。ポリオレフィン相は成膜用溶剤と相分離しているので、成膜用溶剤を除去すると多孔質の膜が得られる。洗浄溶剤およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
(vii)膜の乾燥工程
 成膜用溶剤除去により得られたポリオレフィン多層微多孔膜は、加熱乾燥法、風乾法等により乾燥する。
(viii)第2の延伸工程
 さらに、乾燥後の膜を再び少なくとも一軸方向に延伸してもよい。第2の延伸は、膜を加熱しながら、第1の延伸と同様にテンター法等により行うことができる。第2の延伸は一軸延伸でも二軸延伸でもよい。
 第2の延伸温度は、ポリオレフィン溶液の調製に用いた全てのポリエチレンの融点Tmeとほぼ同じかそれ以下でよい。一実施態様において、第2の延伸温度は約Tcd~約Tmeである。第2の延伸温度がTme以下であると、得られるポリオレフィン多層微多孔膜の透過性が適正となり、横方向(幅方向:TD方向)の透過性等の物性のばらつきが抑制される傾向がある一方、第2の延伸温度がTcd以上であると、延伸による破膜が抑制され、均一に延伸することが可能となる。ポリオレフィン樹脂がポリエチレンからなる場合、延伸温度を通常90~140℃の範囲内にし、好ましくは100~140℃の範囲内にする。
 第2の延伸の一軸方向への倍率は1.1~1.8倍にするのが好ましい。例えば一軸延伸の場合、MD方向(膜の製造方向をいい、機械方向、長手方向ともいう)又はTD方向(長手方向と同平面で、かつ垂直な方向をいい、横方向ともいう)に1.1~1.8倍にする。二軸延伸の場合、MD方向およびTD方向に各々1.1~1.8倍にする。二軸延伸の場合、MD方向およびTD方向の各延伸倍率は1.1~1.8倍である限り、各方向で互いに異なってもよい。延伸倍率を上記範囲内とすると、得られるポリオレフィン多層微多孔膜の透過性、耐熱収縮性、電解液吸収性および耐圧縮性が向上する傾向が認められた。第2の延伸の倍率は1.2~1.6倍にするのがより好ましい。
 第2の延伸の速度は延伸軸方向に3%/秒以上にするのが好ましい。例えば一軸延伸の場合、MD方向又はTD方向に3%/秒以上にする。二軸延伸の場合、MD方向およびTD方向に各々3%/秒以上にする。延伸軸方向における延伸速度(%/秒)とは、膜(シート)が再延伸される領域において再延伸前の延伸軸方向の長さを100%とし、1秒間当りに伸ばされる長さの割合を表す。この延伸速度を3%/秒以上とすると、得られるポリオレフィン多層微多孔膜の透過性が適正になり、シート幅方向における透過性などの物性のばらつきが抑制される傾向がある。第2の延伸の速度は5%/秒以上にするのが好ましく、10%/秒以上にするのがより好ましい。二軸延伸の場合、MD方向およびTD方向の各延伸速度は3%/秒以上である限り、MD方向とTD方向で互いに異なってもよいが、同じであることが好ましい。第2の延伸の速度の上限に特に制限はないが、破断防止の観点から50%/秒以下であることが好ましい。
(ix)熱処理工程
 第2の延伸後の膜を熱処理してもよい。第2の延伸により形成されたフィブリルからなる網状組織が保持され、細孔径が大きく、強度に優れたポリオレフィン多層微多孔膜を作製できる。熱処理は、熱固定処理および/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。特に熱固定処理により膜の結晶が安定化する。熱処理は、テンター方式、ロール方式又は圧延方式といった従来の方法で行うことができる。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。
 熱処理は、ポリオレフィン多層微多孔膜を構成する全てのポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行う。熱固定処理温度は、第2の延伸温度±5℃の範囲内であることが好ましく、これにより物性が安定化する。この温度は第2の延伸温度±3℃の範囲内であることがより好ましい。
 限定的ではないが、第1の延伸、成膜用溶剤除去、乾燥、第2の延伸および熱処理を一連のライン上で連続的に施すインライン方式を採用するのが好ましい。ただし必要に応じて乾燥処理後の膜を一旦巻き、その後これを巻き出して第2の延伸および熱処理を施すオフライン方式を採用してもよい。
(x)その他の工程
 第1の延伸を施したゲル状シートから成膜用溶剤を除去する前に、熱固定処理工程、熱ロール処理工程および熱溶剤処理工程のいずれかを設けてもよい。また洗浄後や第2の延伸工程中の膜に対して熱固定処理する工程を設けてもよい。洗浄前および/又は後の延伸ゲル状シート、並びに第2の延伸工程中の膜を熱固定処理する方法は上記と同じでよい。
(2-2)第2の製造方法
 ポリオレフィン多層微多孔膜を製造する第2の方法は、(i)第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製し、(ii)第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製し、(iii-2)第1および第2のポリオレフィン溶液を別個のダイより押出した直後に積層し、(iv)得られた押出成形体(積層体)を冷却してゲル状シートを形成することを特徴とする。すなわち、第1の製造方法が1つのダイの中でポリオレフィン溶液を積層して押出成形体を形成するのに対し、第2の製造方法は溶液を別個のダイより押出した直後に積層する点でのみ異なり、以下の工程は第1の製造方法と同じ方法を採用することができる。
 第2の方法は工程(iii-2)以外は第1の製造方法における各工程と同じであるので、工程(iii-2)のみ説明する。工程(iii-2)では、複数の押出機の各々に接続した近接するダイから第1および第2のポリオレフィン溶液をそれぞれシート状に押出し、各溶液の温度が高い(例えば100℃以上)うちに直ちに積層し、積層された押出成形体とする。これ以外の工程は第1の製造方法と同じでよい。
(2-3)第3の製造方法
 ポリオレフィン多層微多孔膜を製造する第3の製造方法は、(i)第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製し、(ii)第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製し、(iii-3-1)第1のポリオレフィン溶液を一つのダイより押し出して第1の押出成形体を形成し、(iii-3-2)第2のポリオレフィン溶液を別のダイより押し出して第2の押出成形体を形成し、(iv-3)得られた第1および第2の押出成形体をそれぞれ冷却して第1および第2のゲル状シートを形成し、(v-3)第1および第2のゲル状シートをそれぞれ延伸し、(xi-3)延伸した第1および第2の延伸物を積層し、(vi)得られた延伸物から成膜用溶剤を除去することを特徴とする。すなわち、ゲル状シートを延伸するまでは別々に行い、その後に積層するものであって、以下の工程は第1の製造方法と同じ方法を採用することができる。工程(vi-3)と(vii-3)の間に、(viii-3)ゲル状積層シートの延伸工程等を設けてもよい。工程(iii-3-1)及び(iii-3-2)は、第1及び第2のポリオレフィン溶液を層状に組合せない点でのみ、第1の製造方法における工程(iii)と異なる。使用するダイは第2の製造方法における工程(iii-2)で使用するダイと同じである。工程(iv-3)は、第1および第2の押出成形体をそれぞれ別々に冷却する点でのみ第1の製造方法における工程(iv)と異なる。工程(v-3)は、第1および第2のゲル状シートをそれぞれ延伸する点でのみ第1の製造方法における工程(v)と異なる。一方、工程(xi-3)は、第1および第2の延伸物を積層するという第1及び第2の製造方法にはない工程であるが、延伸物の積層は公知の方法を用いればよい。
(2-4)第4の製造方法
 ポリオレフィン多層微多孔膜を製造する第4の製造方法は、(i)第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製し、(ii)第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製し、(iii-4-1)第1のポリオレフィン溶液を一つのダイより押し出し、(iii-4-2)第2のポリオレフィン溶液を別のダイより押し出し、(iv-4)得られた各押出成形体をそれぞれ冷却して第1および第2のゲル状シートを形成し、(v-4)第1および第2のゲル状シートをそれぞれ延伸し、(vi-4)延伸した各延伸物から成膜用溶剤を除去し、(vii-4)得られた第1および第2のポリオレフィン微多孔膜を乾燥し、(viii-4)少なくとも第2のポリオレフィン微多孔膜を延伸し、(xi-4)第1および第2のポリオレフィン微多孔膜を積層する工程を有する。すなわち、多孔膜とするまでは別々に行い、その後に積層して多層微多孔膜とするものである。必要に応じて、工程(vii)と(viii-4)の間に(ix-4)第1および第2のポリオレフィン微多孔膜のそれぞれに熱処理工程を行ってもよい。また以下の工程は第1の製造方法と同じ方法を採ることができる。
 工程(v-4)までは第3の製造方法と同様に行うことができる。工程(vi-4)は、第1および第2の延伸物からそれぞれ成膜用溶剤を除去する点でのみ第1及び第3の製造方法における工程(vi)と異なる。工程(vii-4)は、第1および第2の膜をそれぞれ乾燥する点でのみ第1及び第3の製造方法における工程(vii)と異なる。
 一方、工程(viii-4)は第1~3の製造方法では必ずしも必要ではない工程であるが、第4の製造方法ではこの工程(viii-4)で少なくとも第2のポリオレフィン微多孔膜を再延伸する。延伸温度は、融点以下が好ましく、結晶分散温度~融点がより好ましい。必要に応じて第1のポリオレフィン微多孔膜も延伸してもよい。延伸温度は、融点以下が好ましく、結晶分散温度~融点がより好ましい。第1および第2のポリオレフィン微多孔膜のいずれを延伸する場合でも、延伸倍率は、積層していないポリオレフィン微多孔膜を延伸する以外は第1の製造方法と同じでよい。
 また、工程(xi-4)は、第1および第2の膜を積層するという第1~3の製造方法にはない工程であるが、膜の積層は延伸物の積層と同様に公知の方法を用いればよい。
 以上、積層方法によって4つの分類で本発明のポリオレフィン多層微多孔膜の製造方法を説明したが、これらをまとめると必要な工程としては工程(a)~(e)となる。
 工程(a)は、第1~4の製造方法の工程(i)及び工程(ii)に該当する。
 工程(b)は、第1の製造方法の工程(iii)、第2の製造方法の工程(iii-2)、第3の製造方法の工程(iii-3-1)、及び第4の製造方法の工程(iii-4-1)に該当する。
 工程(c)は、第1の製造方法の工程(iv)、第2の製造方法の工程(iv-2)、第3の製造方法の工程(iv-3)、及び第4の製造方法の工程(iv-4)に該当する。
 工程(d)は、第1~第2の製造方法の工程(v)、第3の製造方法の工程(v-3)、及び第4の製造方法の工程(v-4)に該当する。
 工程(e)は、第1~第3の製造方法の工程(vi)、及び第4の製造方法の工程(vi-4)に該当する。
[3]ポリオレフィン多層微多孔膜の構造、物性およびその測定方法
 本発明の好ましい実施態様によるポリオレフィン多層微多孔膜は、次の物性を有する。以下に、構造、物性およびその測定方法を説明する。
(1)規格化PP/PE比率
 本発明のポリオレフィン多層微多孔膜は、第1の微多孔層のPP分布が面内方向で均一な構造となっている。PP分布の均一性を表現する一例として、顕微ラマン分光法により求めたPPとPEのピーク強度比(PP/PE比率)について、膜表面の最大のPP/PE比率を1としたときの相対値を規格化PP/PE比率とすれば、規格化PP/PE比率の平均値/標準偏差/尖度が一定の値を示す構造と表現することができる。すなわち、本発明のポリオレフィン多層微多孔膜は規格化PP/PE比率が、平均値で0.5以上、標準偏差で0.2以下、分布の形状を示すパラメーターである尖度で1.0以下-1.0以上である構造を有することが好ましい。さらに、本発明のポリオレフィン多層微多孔膜は、上記規格化PP/PE比率において、平均値が0.68以上、標準偏差が0.1以下、尖度が0.3以下の構造を有することがより好ましい。
 顕微ラマン分光法による膜表面のPP/PE比率の測定方法について以下に説明する。顕微ラマン分光法により、波長532nmレーザーを用いて、深さ方向1~2ミクロン、20×20ミクロン視野を1ミクロンスポット径でエリア分析を行い、計400点における周波数807cm-1(PP)、周波数1127cm-1(PE)のピーク強度比を測定する。20×20ミクロン視野内の強度比の最大値を1としたときの相対値を「規格化PP/PE比率」とする。
 規格化PP/PE比率の平均値が上記好ましい範囲である場合には、ポリプロピレン濃度の低い部分が少なく、ポリエチレンが主となる部分が増えず、電池内での充放電に伴う酸化反応によりポリエチレンが主となる部分が少ないので劣化が進行しにくく、サイクル特性が良好に保たれると考えられる。
 規格化PP/PE比率の標準偏差が上記好ましい範囲であると、ポリプロピレン濃度の変化が小さく、ポリプロピレン濃度の低いところが少ないのでやはり耐酸化性が悪化しにくいと考えられる。
 またポリプロピレン濃度の分布が上記好ましい範囲であると、ポリプロピレン濃度の低いところが少なく、電池内での耐酸化性能が劣る部分が生じにくく、電池性能が良好である。ある程度、ポリプロピレン濃度の高い部分が存在することが耐酸化性を改善しやすい。これらの結果から適切な規格化PP/PEの分布がポリオレフィン多層微多孔膜の耐酸化性改善に必須であることが判明した。
 本発明のポリオレフィン多層微多孔膜は、第1の微多孔層において前述したようなに、面内方向で均一なPP分布を有するので、耐酸化性に優れる。さらに、ポリプロピレンの含有率が5重量%未満と少ない場合には、ポリプロピレンによる物性低下が抑制され、透過性、強度および電解液吸収性に優れるので好ましい。そのためリチウムイオン電池用セパレータとして用いた場合に、各々優れた電池生産性、安全性、電池サイクル特性を実現することができる。
(2)透気度(秒/100cm/20μm)
 本発明のポリオレフィン多層微多孔膜の膜厚を20μmに換算した透気度(ガーレー値)は20~600秒/100cmであることが好ましく、より好ましくは100~500秒/100cmである。透気度がこの範囲であると、ポリオレフィン多層微多孔膜を電池セパレータとして用いた場合に電池容量が大きく、電池のサイクル特性も良好で、電池内部の温度上昇時にシャットダウンが十分に行われる一方、電池に利用した場合に充放電時に抵抗値が上がりにくく、平均電気化学的安定性は良好である。なお、透気度は、JIS P 8117により測定し、膜厚を20μmに換算することにより求めた値である。
(3)空孔率(%)
 本発明のポリオレフィン多層微多孔膜の空孔率は25~80%であることが好ましく、より好ましくは30~50%である。空孔率が上記範囲内であると、ポリオレフィン多層微多孔膜を電池セパレータとして用いた場合の透過性と強度が適正であり、電極の短絡が抑制される。空孔率は質量法により測定した値である。 
   空孔率(%)=100×(w2-w1)/w2
 w1:微多孔膜の実重量
 w2:同じ大きさおよび厚さを有する、(同じポリマーの)同等の非多孔性膜の重量
 なお、第1の微多孔層の空孔率は、表層および中間層それぞれのゲル状シートを作成して多層化する場合には、第1の微多孔層(表層)にあたるゲル状シートを単独で、同じ成形条件にて製膜し、空孔率を同様に測定する。ダイの内部で積層してゲル状シートを作成する場合には、ダイ出口でゲル状積層シートより表層の第1の微多孔層部分のみを採取し、同じ成形条件にて製膜し、単独の空孔率を測定することにより求める。
(4)突刺強度(mN/20μm)
 突刺強度は、直径1mm(0.5mmR)の針を用い、速度2mm/secでポリオレフィン多層微多孔膜を突刺したときの最大荷重値を測定し、膜厚を20μmに換算することにより求めた値である。本発明のポリオレフィン多層微多孔膜の膜厚を20μmに換算した突刺強度は2,000mN以上であることが好ましく、好ましくは2,500mN以上、より好ましくは4,000mN以上である。突刺強度が2,000mN/20μm以上であると、ポリオレフィン多層微多孔膜を電池用セパレータとして電池に組み込んだ場合に、電極の短絡を効果的に抑制できる。
 なお、第1の微多孔層の突刺強度は、表層および中間層それぞれのゲル状シートを作成して多層化する場合には、第1の微多孔層(表層)にあたるゲル状シートを単独で同じ成形条件にて製膜し、突刺強度を同様に測定する。ダイの内部で積層してゲル状シートを作成する場合には、ダイ出口でゲル状積層シートより表層部分のみを採取し、同じ成形条件にて製膜し、単独の突刺強度を測定することにより求める。
 本発明のポリオレフィン多層微多孔膜は、第1の微多孔層の突刺強度が4500mN/20μm以上、7000mN/20μm以下であることが好ましく、4900mN/20μm以上、6400mN/20μm以下であることがより好ましい。さらに本発明のポリオレフィン多層微多孔膜は、第1の微多孔層の空孔率が40%以上、50%以下であることが好ましい。これらの物性を有する本発明のポリオレフィン多層微多孔膜を電池のセパレータとして使用した場合、満充電時に電極が膨張しても接するセパレータの形状が保持され、また電極の変形にもセパレータが追従できるので、電極界面に存在する電解液層が維持される。そのため、たとえ満充電を継続した状態であっても、セパレータの劣化が抑制され、電池を長寿命化することができる。
 第1の微多孔層の強度および空孔率は、第1の微多孔層の樹脂組成、樹脂濃度、ゲル形成条件(温度、押出時のせん断速度、冷却速度)、および第1/第2の延伸条件(温度、倍率)などによって制御することができる。
 さらに、本発明のポリオレフィン多層微多孔膜は、第1の微多孔層の20μm換算突刺強度(Punc)と空孔率(Po)が式(A)の関係を満たすことが好ましい。 
   110.8≦Po+0.125×Punc≦122  (A)
 Po:第1の微多孔層の空孔率(%)、
 Punc:第1の微多孔層の膜厚20μm換算時の突刺強度(mN/20μm)
 さらに、以下の関係を満たすことがより好ましい。
   115≦Po+0.125×Punc≦120
 本発明のポリオレフィン多層微多孔膜は、第1の微多孔層の突刺強度と空孔率が式(A)の関係を満たすと、電池の充放電時の性能劣化を抑制することができる。これは、強度が小さい場合においても、セパレータの一部が変形した場合に電極と密着することで電解液の濡れ性悪化を防ぐことができ、さらに、もともと高空孔率であることにより部分的なイオン透過率の低下を防ぐことができるためと考えられる。強度が大きい場合においても、空孔率が低いことで電池との接触する面積が大きく密着性が担保され、電極-セパレータ間で電解液が枯れる(ドライアウトする)ことが起こりにくく、結果として電池性能の劣化を抑制することができるためと考えられる。
(5)引張破断強度(kPa)
 本発明のポリオレフィン多層微多孔膜の引張破断強度はMD方向およびTD方向のいずれにおいても60,000kPa以上、より好ましくは80,000kPa以上、さらに好ましくは100,000kPa以上である。引張破断強度が60,000kPa以上であることにより、電池製造時の破膜を防止しやすい。引張破断強度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(6)引張破断伸度(%)
 本発明のポリオレフィン多層微多孔膜の引張破断伸度はMD方向およびTD方向のいずれにおいても80%以上であることが好ましく、より好ましくは100%以上である。これにより電池製造時の破膜を防止しやすい。引張破断伸度は、幅10mmの短冊状試験片を用いてASTM D882により測定した値である。
(7)熱収縮率(%)
 本発明のポリオレフィン多層微多孔膜の105℃の温度で8時間暴露後の熱収縮率はMD方向およびTD方向ともに10%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下である。熱収縮率が10%以下であると、ポリオレフィン多層微多孔膜をリチウム電池用セパレータとして用いた場合、発熱時にセパレータ端部が収縮し、電極の短絡が発生する可能性が低くなる。
 熱収縮率は、ポリオレフィン多層微多孔膜を105℃で8時間暴露したときのMD方向およびTD方向の熱収縮率をそれぞれ3回ずつ測定し、それぞれ平均値を算出することにより求めた値である。熱収縮率は次式で表される。
   熱収縮率(%)=100×(加熱前の長さ-加熱後の長さ)/加熱前の長さ
(8)シャットダウン温度
 本発明のポリオレフィン多層微多孔膜のシャットダウン温度は137℃以下であることが好ましく、135℃以下が更に好ましい。なお、シャットダウン温度は、国際公開第2007/052663号に開示されている方法によって測定する。この方法に従い、ポリオレフィン多層微多孔膜を30℃の雰囲気中にさらして、5℃/分で昇温し、その間に膜の透気度を測定する。ポリオレフィン多層微多孔膜のシャットダウン温度は、ポリオレフィン多層微多孔膜の透気度(ガーレー値)が最初に100,000秒/100cmを超える時の温度と定義した。ポリオレフィン多層微多孔膜の透気度は、透気度計(旭精工株式会社製、EGO-1T)を用いてJIS P 8117に従って測定する。
(9)電解液注液性
 本発明のポリオレフィン多層微多孔膜の電解液注液性は20秒以下である。電解液注液性はプロピレンカーボネートの浸透時間にて評価した。50mm×50mmのサンプルをガラス板の上に載せ、サンプルの約2cm上からプロピレンカーボネートを0.5ml滴下し、滴下終了から時間の計測を開始する。滴下終了直後、プロピレンカーボネートは膜上に表面張力で盛り上がるが、滴下したプロピレンカーボネートは時間の経過とともに浸透する。膜上のプロピレンカーボネートが全て透過したところで時間の計測を停止し、浸透時間とする。浸透時間が20秒以下を良好、20秒より大きく50秒以下をやや良好、50秒を超えたものを不適とする。
(10)平均電気化学的安定性(漏れ電流値)(mAh)
 電気化学的安定性を測定するために、70mmの長さ(MD)および60mmの幅(TD)を有する膜を膜と同じ面積を有する負極と正極の間に配置する。負極は天然黒鉛製であり、正極はLiCoO製である。電解質は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)(3/7、V/V)との混合物中にLiPFを1M溶液として溶解させることにより調製する。負極と正極の間の領域にある膜の中に電解質を含浸させ、電池を完成させる。
 次いで、電池を、28日間60℃の温度にさらしながら、4.3Vの印加電圧にさらす。「電気化学的安定性」という用語は、28日間にわたって電圧源と電池との間に流れる積分電流(mAh)と定義される。電気化学的安定性は、同一の条件下で3個の電池について測定する(3つの同条件の膜試料から同条件の電池を3個作製する)。平均電気化学的安定性(漏れ電流値)とは、測定した3個の電池の電気化学的安定性の値の平均(算術平均)である。
 電気化学的安定性は、保管または使用中に比較的高温にさらされる電池内のセパレータとして膜を使用した場合の膜の耐酸化性に関連した膜特性である。電気化学的安定性はmAhを単位とし、一般的にはより低い値が望ましい(高温での保管または過充電中の総合充電ロスがより少ないことを表す)。電気自動車やハイブリッド電気自動車を動かすための動力手段の起動、またはその動力手段への給電に用いる電池等の自動車用電池、および電動工具用電池は、比較的高出力、大容量用途として使用されるため、電池用セパレータの電気化学的不安定性に起因する自己放電ロス等の、電池容量のわずかなロスであっても重要な問題である。本発明のポリオレフィン多層微多孔膜の平均電気化学的安定性は、45.0mAh以下が好ましく、特に35.0mAh以下が好ましい。「大容量」電池という用語は、通常は、例えば2.0Ah~3.6Ahといった、1アンペア時(1Ah)以上供給することが可能な電池を意味する。
(11)漏れ電流値上昇速度(mA/h)
 漏れ電流値上昇速度(mA/h)とは、前述の電気化学的安定性の測定おける実験開始60時間から100時間までの電流値の1時間当たりの増分と定義する。計算方法を説明するために、実施例3の多層微多孔膜における漏れ電流値と経過時間の関係を表したグラフを例として図4に示す。実験開始後100時間の漏れ電流値から実験開始後60時間の漏れ電流値を引いて、40で割った値が漏れ電流値上昇速度である。漏れ電流値上昇速度は満充電時で充電を継続した場合のバッテリー容量低下の程度を表す。これは、電池の劣化による自己放電の増加を意味しており、小さいほど電池性能の劣化が小さいことを示す。漏れ電流値上昇速度は、22×10-3mA/h以下が好ましく、より好ましくは7×10-3mA/h以下である。
(12)膜厚
 本発明のポリオレフィン多層微多孔膜の膜厚は、例えば電池用セパレータとして使用する場合は5~50μmが好ましく、5~35μmがより好ましく、10~25μmがさらに好ましい。膜厚の測定方法は、接触式厚さ測定方法でも非接触式厚さ測定方法でもかまわない。例えば、縦方向に1.0cm間隔で10.0cmの幅にわたって接触式厚さ計により測定することができ、次いで平均値を出して膜厚を得ることができる。接触式厚さ計としては、例えば株式会社ミツトヨ製ライトマチック等の厚さ計が好適である。
(13)外観
 膜の外観は目視/多点膜厚測定にて評価した。目視により厚みの変動が小さいものについて「良好」とした。「良好」は、多点における膜厚測定において、膜厚変動が5ミクロン未満である場合に相当する。
(14)融点
 樹脂の融点はJIS K 7122に準じて以下の手順で測定した。すなわち、樹脂サンプルを走査型示差熱量計(Perkin Elmer, Inc.製、DSC-System7型)のサンプルホルダー内に静置し、窒素雰囲気中、230℃で10分間熱処理し、10℃/分で40℃まで冷却した後、40℃に2分間保持し、その後10℃/分の速度で230℃まで加熱した。最大吸熱量となった温度(ピーク温度)を融点とした。
[4]電池等
 以上のように、本発明のポリオレフィン多層微多孔膜は、耐酸化性および電解液注液性に優れ、電池として充放電を繰り返した後も黒色化等が起こりにくく、透過性および強度バランスに優れるので、特に電池用セパレータとして好適である。
 本発明のポリオレフィン多層微多孔膜からなるセパレータは、電池および電気二重層コンデンサに用いることができる。これを用いる電池/コンデンサの種類に特に制限はないが、特にリチウム二次電池/リチウムイオンキャパシタ用途に好適である。本発明のポリオレフィン多層微多孔膜からなるセパレータを用いたリチウム二次電池/キャパシタには、公知の電極および電解液を使用すればよい。また本発明のポリオレフィン多層微多孔膜からなるセパレータを使用するリチウム二次電池/キャパシタの構造も公知のものでよい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。なお、ポリオレフィン多層微多孔膜の各物性は前述の方法で求めた。
実施例1
(1)第1のポリオレフィン溶液の調製
 第1ポリオレフィン組成物の全重量に対し(a)Mwが2.0×10のUHMwPE(Mw/Mn:8.0)25重量%、(b)Mwが2.5×10のHDPE(Mw/Mn:8.6)72重量%、(c)Mwが9.7×10のポリプロピレン(Mw/Mn:2.6、融点155℃)3重量%含む第1ポリオレフィン組成物をドライブレンドにより調製した。酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを、第1ポリオレフィン組成物100重量部当たり0.2重量部ドライブレンドし、第1ポリオレフィン樹脂を調製した。
 20重量部の第1ポリオレフィン樹脂を強混練二軸押出機に供給し、80重量部の液体パラフィン(40℃で50cSt)をサイドフィーダーから二軸押出機に供給した。210℃、200rpmで溶融混練して第1のポリオレフィン溶液を調製した。
(2)第2のポリオレフィン溶液の調製
 第2のポリオレフィン溶液は、以下の点を除き第1のポリオレフィン溶液の調整方法と同様にして調製した。第2ポリオレフィン組成物の全重量に対し(a)Mwが2.0×10のUHMwPE(Mw/Mn:8.0)30重量%、(b)Mwが2.5×10のHDPE(Mw/Mn:8.6、末端ビニル基濃度0.1個/10000炭素あたり)70重量%含む第2ポリオレフィン組成物をドライブレンドにより調製した。酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを、第2ポリオレフィン組成物100重量部当たり0.2重量部ドライブレンドし、第2ポリオレフィン樹脂を調製した。得られた第2ポリオレフィン組成物28.5重量部を強混練二軸押出機に供給し、71.5重量部の液体パラフィン(40℃で50cst)をサイドフィーダーから二軸押出機に供給した。210℃、200rpmで溶融混練して第2のポリオレフィン溶液を調製した。
(3)微多孔膜の製造
 第1および第2のポリオレフィン溶液をそれぞれの二軸押出機から三層Tダイへ供給して、層構成が第1のポリオレフィン溶液/第2のポリオレフィン溶液/第1のポリオレフィン溶液で、層厚み比が15/70/15の三層の押出成形体を形成した。この押出成形体を20℃に制御された冷却ロールに通して冷却して三層のゲル状積層シートを形成した。なお、押出成形体のダイ中でのせん断速度を190/sec、冷却ロールでの冷却速度を32℃/secとした。得られたゲル状積層シートに対して、テンター延伸機を用いて、117℃の温度で延伸倍率5×5倍の同時二軸延伸(第1の延伸)を施し、巻き取った。次いで巻き取った延伸物から一部を採取し、枠板[サイズ:20cm×20cm、アルミニウム製(以下同じ)]に固定し、25℃に温調した塩化メチレンの洗浄槽中に浸漬し、100rpmで3分間揺動させながら洗浄した。洗浄した膜を室温で風乾した。乾燥した微多孔膜をバッチ延伸機により128℃でTD方向に1.5倍の延伸倍率で第2の延伸(再延伸)をした後、同温度下でTD方向に延伸倍率1.3倍まで熱緩和処理し、その後バッチ延伸機に取り付けたままの状態で、再延伸の温度で10分間熱固定処理してポリオレフィン多層微多孔膜を作製した。
実施例2~実施例8および比較例1~比較例6
 表1および表2に示す原料・条件にて実施例1と同様にポリオレフィン多層微多孔膜を作成した。なお、表1および表2の実施例7および比較例2の「-」は熱緩和処理を行わなかったことを示す。また表2の比較例1~4の「-」は表に記載のPP又はPEを含まないことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表3および表4に、実施例1~8および比較例1~6のポリオレフィン微多孔膜の物性を示す。なお、表4の比較例1の「-」は、PPを含んでいないため測定できなかったことを示す。比較例4の「-」は表面が目視で判断可能である大きな凹凸があり、測定できなかったことを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4をみると、実施例1~8のポリオレフィン微多孔膜は、いずれも電解液注液性に優れ、PP分布が均一である。さらに、漏れ電流値が45mAh以下となり、優れた耐酸化性を示す。図1は、実施例3のポリオレフィン多層微多孔膜の表層の規格化PP/PE比率の分布図を示すグラフであり、規格化PP/PE比率が0.5以上の狭い範囲に集中して存在していることが分かる。図2は、実施例3のポリオレフィン多層微多孔膜の表層の規格化PP/PE比率の2次元分布図を示し、ポリプロピレン濃度が低い領域(色の濃い部分)がほとんど見られず、さらにポリプロピレンが平均的に存在していることがわかる。一方、図3は、比較例2のポリオレフィン多層微多孔膜の表層の規格化PP/PE比率の2次元分布図を示しており、ポリプロピレン濃度が低い領域(色の濃い部分)が多く、ポリプロピレンが表層に平均的に存在していないことがわかる。
 さらに、実施例1~7のポリオレフィン多層微多孔膜は、電解液注液性に優れ、透過性および強度バランスに優れるとともに、引張破断伸度や耐熱収縮性も良好である。さらに膜厚が均一であるため、電池内で発生するセパレータの酸化反応がより抑制されている。特に実施例3~7のポリオレフィン多層微多孔膜は、表層の突刺強度が4500mN以上/20μm、7000mN以下であり、空孔率が40%以上50%以下であり、より透過性および耐酸化性に優れ、電池性能の劣化を抑制している。さらに、実施例3~5のポリオレフィン多層微多孔膜は、表層の20μm換算突刺強度(Punc)と空孔率(Po)が式(A)の関係を満たしており、より耐酸化性および電池性能の劣化を抑制している。
   110≦Po+0.01275×Punc≦ 122  式(A)
 これに対して比較例1のポリオレフィン多層微多孔膜はポリプロピレンを含んでおらず、比較例2のポリオレフィン多層微多孔膜は、重量平均分子量が3.0×105以上のポリプロピレンを含んでおり、透過性および耐酸化性が悪化するとともに電池の劣化が進むなど物性バランスが悪い。
 比較例3のポリオレフィン多層微多孔膜は、実施例1~6および8で用いたポリプロピレンと同じポリプロピレンを8重量%含んでいる。空孔率が上昇して透気度が低下するものの、強度が低下してしまった。膜の外観は目視で凹凸が見られ、電池用セパレータとしての一般物性の面で劣ることが確認できた。
 比較例4のポリオレフィン多層微多孔膜は、実施例1~6および8で用いたポリプロピレンと同じポリプロピレンを0.3重量%含んでいる。ポリプロピレンの分散性(標準偏差、尖度)は良いものの、表面近傍のポリプロピレン濃度が不十分になり、耐酸化性が向上しなかったと考えられる。
 比較例5では、実施例8と同じ樹脂組成を用いて、Tダイからのせん断速度を低下させており、透過性が悪化するとともに電解液注液性の低下および耐酸化性の悪化が見られた。
 比較例6では、実施例8と同じ樹脂組成を用いて、冷却速度を低下させており、透過性が悪化するとともに電解液注液性の低下および耐酸化性の悪化が見られた。
 本発明は、耐酸化性および電解液注液性に優れ、さらに透過性および強度バランスに優れたポリオレフィン微多孔膜を提供する。
 本発明のポリオレフィン多層微多孔膜は、キャパシター用途、コンデンサー用途、電池用途等の非水系電解液の蓄電デバイスとして好適な性能を有しており、安全性、及び、信頼性の向上に貢献することができる。中でも電池用セパレータ、より具体的には、リチウムイオン電池用セパレータとして好適に利用できる。その他の用途として、燃料電池の一構成部品、加湿膜、ろ過膜等の各種分離膜としても用いられるので、それらの分野において産業上の利用可能性がある。

Claims (11)

  1. ポリプロピレンを含む第1の微多孔層を有し、電解液注液性が20秒以下であり、少なくとも一方の表層が前記第1の微多孔層であり、前記第1の微多孔層のポリプロピレン分布が面内方向で均一であるポリオレフィン多層微多孔膜。
  2. 前記第1の微多孔層のラマン分光法により測定した、規格化ポリプロピレン/ポリエチレン比率の平均値が0.5以上、規格化ポリプロピレン/ポリエチレン比率の標準偏差が0.2以下、規格化ポリプロピレン/ポリエチレン比率の尖度が-1.0以上1.0以下である請求項1に記載のポリオレフィン多層微多孔膜。
  3. 前記ポリプロピレンは、重量平均分子量が6.0×10より大きく、3.0×10未満であり、前記第1の微多孔層中に前記第1の微多孔層のポリオレフィン樹脂全体の重量を100重量%として0.5重量%以上、5.0重量%未満含まれる請求項1または2に記載のポリオレフィン多層微多孔膜。
  4. さらに、前記第1の微多孔層の突刺強度(Punc)が4500mN/20μm以上、7000mN/20μm以下であり、前記第1の微多孔層の空孔率(Po1)が40%以上、50%以下である請求項1~3のいずれか1項に記載のポリオレフィン多層微多孔膜。
  5. さらに、前記第1の微多孔層の突刺強度(Punc)と前記第1の微多孔層の空孔率(Po)が以下の式(A)の関係を満たす請求項4に記載のポリオレフィン多層微多孔膜。
       110≦Po+0.01275×Punc≦122  式(A)
     Po:第1の微多孔層の空孔率(%)
     Punc:第1の微多孔層の膜厚20μm換算時の突刺強度(mN/20μm)
  6. 前記第1の微多孔層が第1のポリオレフィン樹脂からなり、前記第1のポリオレフィン樹脂が、重量平均分子量が1.0×10未満のポリエチレン、重量平均分子量が1.0×10以上の超高分子量ポリエチレンおよび重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを含んでなる請求項3~5のいずれか1項に記載のポリオレフィン多層微多孔膜。
  7. 前記第1のポリオレフィン樹脂が、重量平均分子量が5.0×10以上5.0×10未満の高密度ポリエチレン(第1のポリオレフィン樹脂全体の重量を100重量%として45.0重量%以上98.5重量%以下となる量)、重量平均分子量が1.0×10以上3.0×10未満の超高分子量ポリエチレン(第1のポリオレフィン樹脂全体の重量を100重量%として1.0重量%以上55.0重量%以下となる量)、および重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレン(第1のポリオレフィン樹脂全体の重量を100重量%として0.5重量%以上5.0重量%未満となる量)を含んでなる請求項6に記載のポリオレフィン多層微多孔膜。
  8. 両表層間に配置された第2のポリオレフィン樹脂からなる第2の微多孔層を含む請求項1~7のいずれか1項に記載のポリオレフィン多層微多孔膜。
  9. 前記第2のポリオレフィン樹脂が、重量平均分子量が5.0×10以上5.0×10未満の高密度ポリエチレン(第2のポリオレフィン樹脂全体の重量を100重量%として50.0重量%以上99.0重量%以下となる量)、重量平均分子量が1.0×10以上3.0×10未満の超高分子量ポリエチレン(第2のポリオレフィン樹脂全体の重量を100重量%として1.0重量%以上50.0重量%以下となる量)を含んでなり、ポリプロピレンを含まない請求項8に記載のポリオレフィン多層微多孔膜。
  10. 前記第1の微多孔層からなる両表層間に前記第2の微多孔層が配置されてなる三層構造を有する請求項8または請求項9のいずれか1項に記載のポリオレフィン多層微多孔膜。
  11. (a)ポリオレフィン樹脂と成膜用溶剤とを溶融混練してポリオレフィン溶液を調製する工程であって、
    (a-1)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が6.0×10より大きく、3.0×10未満であるポリプロピレンを含む第1のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第1のポリオレフィン溶液を調製する工程、および、
    (a-2)重量平均分子量が1.0×10未満のポリエチレンおよび重量平均分子量が1.0×10以上である超高分子量ポリエチレンを含む第2のポリオレフィン樹脂と成膜用溶剤とを溶融混練して第2のポリオレフィン溶液を調製する工程を含む工程、
    (b)せん断速度60/sec以上で、ポリオレフィン溶液を押し出して成形体を形成する工程、
    (c)得られた押出成形体を冷却速度30℃/sec以上で冷却してゲル状シートを形成する工程、
    (d)得られたゲル状シートを少なくとも一軸方向に延伸して延伸物を作成する工程、および、
    (e)得られた延伸物から前記成膜用溶剤を除去する工程を含むポリオレフィン多層微多孔膜の製造方法。
PCT/JP2014/064246 2013-05-31 2014-05-29 ポリオレフィン多層微多孔膜およびその製造方法 WO2014192860A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL14803343T PL3006210T3 (pl) 2013-05-31 2014-05-29 Wielowarstwowa, mikroporowata membrana poliolefinowa i sposób jej produkcji
US14/893,021 US10411237B2 (en) 2013-05-31 2014-05-29 Multilayer, microporous polyolefin membrane, and production method thereof
CN201480030817.1A CN105246693B (zh) 2013-05-31 2014-05-29 聚烯烃多层微多孔膜及其制造方法
KR1020157033884A KR102269114B1 (ko) 2013-05-31 2014-05-29 폴리올레핀 다층 미다공막 및 이의 제조 방법
EP14803343.4A EP3006210B1 (en) 2013-05-31 2014-05-29 Multilayer, microporous polyolefin membrane, and production method thereof
JP2015519927A JP6394596B2 (ja) 2013-05-31 2014-05-29 ポリオレフィン多層微多孔膜およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013114999 2013-05-31
JP2013-114999 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192860A1 true WO2014192860A1 (ja) 2014-12-04

Family

ID=51988883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064246 WO2014192860A1 (ja) 2013-05-31 2014-05-29 ポリオレフィン多層微多孔膜およびその製造方法

Country Status (9)

Country Link
US (1) US10411237B2 (ja)
EP (1) EP3006210B1 (ja)
JP (1) JP6394596B2 (ja)
KR (1) KR102269114B1 (ja)
CN (1) CN105246693B (ja)
HU (1) HUE037883T2 (ja)
MY (1) MY171677A (ja)
PL (1) PL3006210T3 (ja)
WO (1) WO2014192860A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072901A (ja) * 2017-10-13 2019-05-16 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池
KR20190124199A (ko) * 2017-03-08 2019-11-04 도레이 카부시키가이샤 폴리올레핀 미다공막

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180065289A1 (en) * 2015-02-20 2018-03-08 Toray Industries, Inc. Method of producing microporous plastic film
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20200047451A (ko) * 2017-08-25 2020-05-07 베이징사범대학교 복합 다공성막 및 이의 제조 방법과 용도
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
EP3932529A4 (en) 2019-02-28 2022-11-30 Toyobo Co., Ltd. HOLLOW FIBER MEMBRANE AND METHOD OF MAKING A HOLLOW FIBER MEMBRANE
DE102019112089A1 (de) * 2019-05-09 2020-11-12 Brückner Maschinenbau GmbH & Co. KG Folie mit wenigstens zwei Schichten und Verfahren zu ihrer Herstellung
CN111081947B (zh) * 2019-12-25 2022-07-29 武汉中兴创新材料技术有限公司 一种凝胶聚合物涂层隔膜的制备方法及隔膜

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234578A (ja) * 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd 有機電解液を用いる電池用セパレータ及びその製造方法
JPH06104736B2 (ja) 1989-08-03 1994-12-21 東燃株式会社 ポリオレフィン微多孔膜
JPH11269290A (ja) 1998-03-20 1999-10-05 Tonen Kagaku Kk ポリオレフィン微多孔膜
JP2002105235A (ja) 2000-07-26 2002-04-10 Asahi Kasei Corp ポリオレフィン製微多孔膜及びその製造方法
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP2003183432A (ja) 2001-12-20 2003-07-03 Asahi Kasei Corp ポリオレフィン製微多孔膜
JP2004152614A (ja) 2002-10-30 2004-05-27 Asahi Kasei Chemicals Corp 微多孔膜
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
WO2007037289A1 (ja) * 2005-09-28 2007-04-05 Tonen Chemical Corporation ポリエチレン微多孔膜の製造方法及び電池用セパレータ
WO2007052663A1 (ja) 2005-11-01 2007-05-10 Tonen Chemical Corporation ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2009518497A (ja) * 2006-02-14 2009-05-07 エスケー エナジー シーオー., エルティーディー. 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
JP2010540744A (ja) * 2007-10-05 2010-12-24 東燃化学株式会社 ポリマー微多孔膜
JP2011111484A (ja) 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
WO2012086629A1 (ja) * 2010-12-22 2012-06-28 東レバッテリーセパレータフィルム合同会社 微多孔膜、かかる膜の製造方法、および電池用セパレータフィルムとしてのかかる膜の使用
WO2013054930A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリオレフィンフィルムおよび蓄電デバイス
WO2013099607A1 (ja) * 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
WO2007010878A1 (ja) * 2005-07-15 2007-01-25 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及び電池用セパレータ
JP4902455B2 (ja) * 2006-08-01 2012-03-21 東レ東燃機能膜合同会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US8450232B2 (en) 2009-01-14 2013-05-28 Lummus Technology Inc. Catalysts useful for the alkylation of aromatic hydrocarbons
KR101396655B1 (ko) * 2010-06-30 2014-05-19 에이비비 리써치 리미티드 냉각 채널로서 로터 자속 장벽을 이용하는 동기식 자기저항 기계
KR102229797B1 (ko) * 2013-05-31 2021-03-22 도레이 카부시키가이샤 폴리올레핀 다층 미다공막 및 이의 제조 방법

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104736B2 (ja) 1989-08-03 1994-12-21 東燃株式会社 ポリオレフィン微多孔膜
JPH05234578A (ja) * 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd 有機電解液を用いる電池用セパレータ及びその製造方法
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JPH11269290A (ja) 1998-03-20 1999-10-05 Tonen Kagaku Kk ポリオレフィン微多孔膜
JP2002105235A (ja) 2000-07-26 2002-04-10 Asahi Kasei Corp ポリオレフィン製微多孔膜及びその製造方法
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2003183432A (ja) 2001-12-20 2003-07-03 Asahi Kasei Corp ポリオレフィン製微多孔膜
JP2004152614A (ja) 2002-10-30 2004-05-27 Asahi Kasei Chemicals Corp 微多孔膜
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
WO2007037289A1 (ja) * 2005-09-28 2007-04-05 Tonen Chemical Corporation ポリエチレン微多孔膜の製造方法及び電池用セパレータ
WO2007052663A1 (ja) 2005-11-01 2007-05-10 Tonen Chemical Corporation ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2009518497A (ja) * 2006-02-14 2009-05-07 エスケー エナジー シーオー., エルティーディー. 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
JP2010540744A (ja) * 2007-10-05 2010-12-24 東燃化学株式会社 ポリマー微多孔膜
JP2011111484A (ja) 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
WO2012086629A1 (ja) * 2010-12-22 2012-06-28 東レバッテリーセパレータフィルム合同会社 微多孔膜、かかる膜の製造方法、および電池用セパレータフィルムとしてのかかる膜の使用
WO2013054930A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリオレフィンフィルムおよび蓄電デバイス
WO2013099607A1 (ja) * 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124199A (ko) * 2017-03-08 2019-11-04 도레이 카부시키가이샤 폴리올레핀 미다공막
KR102533841B1 (ko) 2017-03-08 2023-05-18 도레이 카부시키가이샤 폴리올레핀 미세 다공막
JP2019072901A (ja) * 2017-10-13 2019-05-16 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池

Also Published As

Publication number Publication date
US10411237B2 (en) 2019-09-10
US20160118639A1 (en) 2016-04-28
EP3006210B1 (en) 2017-11-15
CN105246693B (zh) 2018-06-29
HUE037883T2 (hu) 2018-09-28
MY171677A (en) 2019-10-23
EP3006210A1 (en) 2016-04-13
JPWO2014192860A1 (ja) 2017-02-23
PL3006210T3 (pl) 2018-06-29
JP6394596B2 (ja) 2018-09-26
EP3006210A4 (en) 2016-11-02
KR102269114B1 (ko) 2021-06-23
CN105246693A (zh) 2016-01-13
KR20160016805A (ko) 2016-02-15

Similar Documents

Publication Publication Date Title
JP6443333B2 (ja) ポリオレフィン微多孔膜およびその製造方法
JP6394596B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
JP5312450B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR101342994B1 (ko) 폴리올레핀 조성물, 그의 제조 방법 및 그로부터 제조된 전지용 세퍼레이터
JP5967589B2 (ja) ポリオレフィン微多孔膜及びその製造方法
JP6394597B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
KR101174986B1 (ko) 미세다공성 막 및 이의 제조 및 사용 방법
KR101406051B1 (ko) 폴리올레핀 다층 미세 다공막, 그 제조 방법, 전지용 세페레이터 및 전지
JP6680206B2 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
JP5450929B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US20090117454A1 (en) Multi-Layer Microporous Membrane, Battery Separator And Battery
JP2011503247A5 (ja)
JP2011500354A5 (ja)
WO2009084720A1 (en) Microporous multilayer membrane, system and process for producing such membrane, and the use of such membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519927

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893021

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157033884

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014803343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014803343

Country of ref document: EP