WO2018020825A1 - 複合膜用基材 - Google Patents

複合膜用基材 Download PDF

Info

Publication number
WO2018020825A1
WO2018020825A1 PCT/JP2017/020367 JP2017020367W WO2018020825A1 WO 2018020825 A1 WO2018020825 A1 WO 2018020825A1 JP 2017020367 W JP2017020367 W JP 2017020367W WO 2018020825 A1 WO2018020825 A1 WO 2018020825A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
microporous membrane
polyolefin
polyethylene
molecular weight
Prior art date
Application number
PCT/JP2017/020367
Other languages
English (en)
French (fr)
Inventor
山口 猛央
雄平 大柴
秀伯 大橋
仁 戸松
古谷 幸治
大野 隆央
真実 南部
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020217014965A priority Critical patent/KR102391826B1/ko
Priority to CA3031727A priority patent/CA3031727A1/en
Priority to DK17833835.6T priority patent/DK3489290T3/da
Priority to CN201780046047.3A priority patent/CN109476870B/zh
Priority to JP2017557474A priority patent/JP6305665B1/ja
Priority to EP17833835.6A priority patent/EP3489290B1/en
Priority to KR1020197001758A priority patent/KR102255813B1/ko
Priority to US16/319,661 priority patent/US20210288341A1/en
Priority to EP22162145.1A priority patent/EP4032946A1/en
Publication of WO2018020825A1 publication Critical patent/WO2018020825A1/ja
Priority to US17/695,225 priority patent/US11929531B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • B01D2325/341At least two polymers of same structure but different molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a composite membrane substrate.
  • the composite membrane base material is a support material for providing a function by a method such as coating, bonding, laminating, impregnation, and filling a specific substance to add a function not provided in the base material itself (for example, there are non-porous resin films typified by nonwoven fabrics and polyester films made of polyester and polyolefin, and porous films typified by polyolefin porous resin films.
  • moisture permeation and waterproofing is used as a material that prevents moisture from passing through water vapor (moisture) that is used in clothing, special protective clothing, sanitary goods (for example, disposable diapers), etc.
  • the membrane a composite membrane in which a waterproof functional layer is formed on a porous base material made of paper, a non-woven fabric made of a polymer material, or a porous polymer film made of natural pulp as a main component has been devised.
  • Patent Document 1 discloses a material obtained by laminating a polyolefin-based synthetic resin film on a material having good air permeability and moisture permeability such as a nonwoven fabric made of polypropylene.
  • a moisture-permeable waterproof membrane having gas barrier properties, moisture permeability, and thinness is achieved by providing a hydrophilic resin coating layer on a polyolefin porous membrane.
  • Patent Document 3 proposes a porous substrate suitable for holding a polymer electrolyte in a polyethylene porous membrane.
  • Patent Document 5 discloses an electrolyte thin film having excellent mechanical strength obtained by incorporating an ion exchange resin into the network structure of a porous thin film of ultrahigh molecular weight polyolefin.
  • Patent Document 6 discloses a thin-film electrolyte with excellent mechanical strength obtained by incorporating an ionic conductor into a solid polymer porous membrane by utilizing a capillary condensation action.
  • Patent Document 7 discloses a water-insoluble porous material provided with a water-insoluble hydrophilic moisture-permeable resin having gas shielding properties on a porous substrate (non-woven fabric) such as a nonwoven fabric.
  • a partition plate provided by forming a film achieves a resin-made total heat exchange element having gas barrier properties and moisture permeability.
  • Examples of the method for applying hydrophilic treatment to the porous membrane include chemical surface treatment (for example, applying a surfactant to the porous membrane (for example, Patent Document 9)) and physical surface treatment (plasma treatment or corona treatment). Etc.), prior wet treatment with alcohols, and the like.
  • chemical surface treatment for example, applying a surfactant to the porous membrane (for example, Patent Document 9)
  • physical surface treatment plasma treatment or corona treatment). Etc.
  • Etc. prior wet treatment with alcohols, and the like.
  • the physical surface treatment involves degradation of the polyolefin porous membrane (breaking of polymer chains) due to the treatment, so that the porous membrane itself becomes brittle and the mechanical strength is lowered. Indeed, the decrease in mechanical strength becomes a serious problem.
  • a method for reducing the surface free energy of the hydrophilic resin compound aqueous solution for example, there is a method of adding alcohol or the like to the hydrophilic resin compound aqueous solution.
  • the polyolefin porous membrane can be easily impregnated.
  • the solubility of the hydrophilic resin compound decreases, and there is a problem that the resin compound cannot be maintained at a sufficient concentration, or an environmental load in the production.
  • a substrate that can be impregnated with a solvent having a low alcohol concentration is required.
  • the polyolefin porous membrane base material In order to make the polyolefin porous membrane base material have a large pore diameter and a high porosity, for example, in the production of a polyolefin porous membrane, a foaming agent or the like is added to actively increase the pores or enlarge the pores. There are methods such as increasing the amount of nucleating agent that becomes a method and a void. However, when the above-described production method is employed, the mechanical strength of the polyolefin porous membrane itself is significantly reduced, and there is a problem that productivity is deteriorated due to membrane breakage during production.
  • the same membrane breakage is a problem in the step of impregnating the aqueous hydrophilic resin compound solution.
  • the hydrophilic property is obtained after impregnating the aqueous solution and removing the solvent.
  • the resin is peeled off or dropped off from the polyolefin porous membrane.
  • the contact area between the hydrophilic resin and the polyolefin, which is the material of the porous membrane is increased, and furthermore, the hydrophilic resin can be dispersed as finely as possible in the polyolefin porous membrane. It is necessary to have a base material (more porous even if the porosity is equal) that can improve the homogeneity.
  • the present invention provides a polyolefin fine particle which can satisfactorily fill the pores with a hydrophilic resin compound, which has good water permeability and high surface free energy, even without prior hydrophilization treatment. It aims at providing the base material for composite films which consists of a porous film.
  • a composite membrane substrate comprising a polyolefin microporous membrane for supporting a hydrophilic resin compound in the pores of the microporous membrane, having an average pore diameter of 1 nm to 50 nm and a porosity of 50% It is 78% or less, the film thickness is 1 ⁇ m or more and 12 ⁇ m or less, and a mixed solution (volume ratio 1/2) of ethanol and water is dropped on the surface of the polyolefin microporous membrane without hydrophilization treatment.
  • the contact angle ⁇ 1 between the droplet and the surface 1 second after dropping is 0 to 90 degrees
  • the contact angle ⁇ 2 between the droplet and the surface 10 minutes after dropping is 0 to 70 degrees.
  • a rate of change of the contact angle (( ⁇ 1- ⁇ 2) / ⁇ 1 ⁇ 100) is 17 to 41%. 3.
  • a high molecular weight polyethylene having a mass average molecular weight of 900,000 or more and a low molecular weight polyethylene having a mass average molecular weight of 200,000 to 800,000 are mixed at a mass ratio of 20:80 to 80:20.
  • the composite membrane substrate according to 4 above which can be impregnated with a mixed solution of ethanol and water having a water concentration of more than 65.8% by volume and not more than 70.6% by volume. 6). 6.
  • 7. The composite membrane substrate according to any one of 1 to 6 above, wherein the tensile breaking strength (MD or TD) converted per unit cross-sectional area of the polyolefin solid content is 50 MPa or more.
  • a polyolefin that can satisfactorily fill the pores with a hydrophilic resin compound with good water permeability and high surface free energy and good permeability even without prior hydrophilization treatment.
  • a composite membrane substrate comprising a microporous membrane can be provided.
  • each numerical range includes an upper limit value and a lower limit value.
  • the “longitudinal direction” means the longitudinal direction of the polyolefin microporous membrane produced in a long shape
  • the “width direction” is orthogonal to the longitudinal direction of the polyolefin microporous membrane. It means the direction to do.
  • the “width direction” is also referred to as “TD”
  • the “longitudinal direction” is also referred to as “MD”.
  • the composite membrane substrate of the present invention comprises a polyolefin microporous membrane, and is a composite membrane substrate for supporting a hydrophilic resin compound in the pores of the microporous membrane, and has an average pore diameter of 1 nm to 50 nm.
  • the film thickness is 1 ⁇ m or more and 12 ⁇ m or less, and the polyolefin microporous film is not hydrophilized, the surface thereof is mixed with ethanol and water.
  • the contact angle ⁇ 1 of the liquid drop 1 second after the drop and the surface is 0 to 90 degrees, and the liquid drop 10 minutes after the drop and the surface
  • the contact angle ⁇ 2 is 0 to 70 degrees, and the contact angle change rate (( ⁇ 1 ⁇ 2) / ⁇ 1 ⁇ 100) is 10 to 50%. Details of each component will be described below.
  • the polyolefin microporous membrane which is the composite membrane substrate of the present invention, has an average pore size of 1 nm to 50 nm.
  • the average pore diameter of the polyolefin microporous membrane is 50 nm or less, even if it is a microporous membrane having a porosity, it is preferable in that the mechanical strength of the polyolefin microporous membrane is good and handling properties are improved.
  • the smaller the average pore diameter the higher the frequency of pores present in the microporous membrane, so that the entire hydrophilic polyolefin compound can be uniformly filled into the polyolefin microporous membrane.
  • the average pore diameter of the polyolefin microporous membrane is preferably 45 nm or less, and more preferably 40 nm or less.
  • the average pore diameter is 1 nm or more, the permeation rate of the solvent having high surface free energy is improved.
  • the average pore size of the polyolefin microporous membrane is preferably 5 nm or more, and more preferably 10 nm or more.
  • the average pore diameter of the polyolefin microporous membrane can be measured by the measurement methods described in the following examples.
  • the porosity of the polyolefin microporous membrane which is the composite membrane substrate of the present invention is 50 to 78%.
  • the porosity of the polyolefin microporous membrane is 50% or more, the filling rate of the hydrophilic resin compound is increased, and the performance possessed by the resin compound itself can be sufficiently expressed.
  • the solution in which the hydrophilic resin compound is dissolved is preferable in that it easily penetrates into the microporous membrane and the impregnation rate is increased. From such a viewpoint, the porosity of the polyolefin microporous membrane is preferably 55% or more, and more preferably 60% or more.
  • the porosity of the polyolefin microporous membrane is preferably 75% or less, and more preferably 66% or less.
  • the porosity ( ⁇ ) of the polyolefin microporous membrane can be measured by the measurement method described in the following examples, and is calculated by the following formula.
  • ⁇ (%) ⁇ 1 ⁇ Ws / (ds ⁇ t) ⁇ ⁇ 100 Ws: basis weight of polyolefin microporous membrane (g / m 2 ) ds: true density of polyolefin (g / cm 3 ) t: Film thickness of microporous polyolefin membrane ( ⁇ m)
  • the polyolefin microporous membrane which is the composite membrane substrate of the present invention, has a thickness of 1 ⁇ m or more and 12 ⁇ m or less.
  • the thickness of the polyolefin microporous membrane is 1 ⁇ m or more, sufficient mechanical strength can be easily obtained, and it is stable in processing that impregnates a solution in which the polyolefin microporous membrane is handled and a hydrophilic resin compound is dissolved. It is preferable because it can be conveyed.
  • the film thickness of the polyolefin microporous membrane is preferably 3 ⁇ m or more, and more preferably 4 ⁇ m or more.
  • the film thickness of the polyolefin microporous membrane is preferably 10 ⁇ m or less, and more preferably 9 ⁇ m or less.
  • Polyolefin microporous membrane generally exhibits white opacity due to light scattering due to the presence of pores, but light scattering is reduced by substantially filling the pores with a hydrophilic resin compound solution, and the resulting composite
  • the film, combined with its thin film thickness, can be substantially transparent as a whole.
  • the contact angle after 1 second is preferably 88 degrees or less, and more preferably 85 degrees or less.
  • the polyolefin microporous membrane which is a composite membrane substrate of the present invention, is a case where a mixed solution of ethanol and water (volume ratio 1/2) is dropped onto the surface of the polyolefin microporous membrane without hydrophilizing the polyolefin microporous membrane.
  • a contact angle between the surface of the droplet 10 minutes after the dropping and the surface is 0 to 70 degrees.
  • the contact angle of the polyolefin microporous membrane is 70 degrees or less, the solution in which the hydrophilic resin compound is dissolved is more likely to penetrate into the microporous membrane, and the compound can be sufficiently filled in the microporous membrane.
  • the contact angle after 10 minutes is preferably 65 degrees or less, and more preferably 60 degrees or less.
  • the contact angle can be measured by the measurement methods described in the following examples.
  • the droplet does not spread outward in the radial direction but shows a behavior in which the droplet penetrates so as to shrink to the same diameter or radially inward. .
  • the polyolefin microporous membrane according to the present invention can also be defined from the viewpoint of the change with time of the contact angle. That is, when the polyolefin microporous membrane according to the present invention is not hydrophilized and a mixed solution of ethanol and water (volume ratio 1/2) is dropped on the surface thereof, The contact angle ⁇ 1 of the surface is 0 to 90 degrees, the contact angle ⁇ 2 of the liquid droplet and the surface 10 minutes after dropping is 0 to 70 degrees, and the contact angle change rate (( ⁇ 1 ⁇ 2) / ( ⁇ 1 ⁇ 100) is preferably 10 to 50%.
  • the change rate of the contact angle is 10% or more, it is considered that the impregnation rate of the electrolyte solution into the polyolefin microporous membrane is sufficient from the viewpoint of practical production efficiency.
  • the change rate of the contact angle is particularly preferably 15% or more, and more preferably 17% or more.
  • the change rate of the contact angle is preferably 45% or less, more preferably 41% or less.
  • the present invention has an extremely small average pore diameter of 1 nm to 50 nm, a relatively high porosity of 50% to 78%, and a very thin film thickness of 1 ⁇ m to 12 ⁇ m. is doing.
  • Such a polyolefin microporous membrane itself has not been obtained in the past.
  • the surface physical properties of the contact angle between the droplet and the surface after 1 second are 0 to 90 degrees
  • the contact angle between the droplet and the surface after 10 minutes is 0 to 70 degrees
  • the rate of change of the contact angle is 10 to 50%.
  • the average pore diameter, porosity, and contact angle of the polyolefin microporous membrane substrate described above it is necessary to adjust the average pore diameter, porosity, and contact angle of the polyolefin microporous membrane substrate described above to an appropriate range.
  • the method for controlling these physical properties is not particularly limited.
  • the average molecular weight of the polyethylene resin, when a mixture of a plurality of polyethylene resins is used the mixing ratio thereof, the concentration of the polyethylene resin in the raw material
  • the production conditions such as the mixing ratio, the draw ratio, the heat treatment (heat setting) temperature after drawing, the immersion time in the extraction solvent, etc. may be mentioned.
  • the high molecular weight polyethylene is 20 to 80% by mass in the mass ratio in the total polyethylene composition, and the polyethylene resin in the raw material has a mass average molecular weight of 900,000 or more.
  • Use 5 wt% or more of molecular weight polyethylene use a mixture of volatile solvent and non-volatile solvent as the solvent for the polyolefin solution (content of non-volatile solvent in the total solvent is 80 to 98 wt%), It can be suitably obtained by setting the draw ratio to 45 to 100 times, or setting the heat setting temperature to 120 to 135 ° C.
  • the polyolefin microporous membrane which is a composite membrane substrate of the present invention, is a solvent for a hydrophilic resin compound and can be impregnated with a liquid having a surface free energy of 35 to 36.5 mJ / m 2 .
  • the surface free energy of the liquid means a measured value at 20 ° C.
  • the obtained solution is preferable in that it easily penetrates into the microporous membrane. Further, when the surface free energy is 35 mJ / m 2 or more, it is preferable in that the concentration of the hydrophilic resin compound in the solvent can be increased, and the filling efficiency of the hydrophilic resin into the microporous membrane can be increased. .
  • a mixture of alcohols methanol, ethanol, isopropanol, t-butyl alcohol, etc.
  • water ethylene glycol, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, triethylamine, etc.
  • a mixed solvent obtained by mixing water in a necessary range a mixture of alcohols (methanol, ethanol, isopropanol, t-butyl alcohol, etc.) and water, ethylene glycol, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, triethylamine,
  • ethanol is mixed with water at a volume fraction of 29.5% by volume or more and less than 34.2% by volume (that is, the water concentration exceeds 65.8% by volume). 70.5% by volume or less).
  • hydrophilic resin compound examples of the hydrophilic resin compound suitably supported by the polyolefin microporous membrane that is the substrate for composite membrane of the present invention include a resin compound soluble in a liquid having a surface free energy of 35 to 36.5 mJ / m 2.
  • the hydrophilic resin compound is preferably a polymer having a hydrophilic group such as a sulfonic acid group, a carboxyl group, or a hydroxyl group.
  • perfluorosulfonic acid resins polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, celluloses and the like can be mentioned.
  • the resin compound modification compound and the resin compound microaggregate dispersion may be given as long as they are in a range that does not become poorly soluble when prepared as a hydrophilic resin compound aqueous solution using the above liquid as a solvent. it can.
  • hydrophilic resin compounds are preferable because of their high solubility in water-containing solvents, the resin compound can be efficiently impregnated into the polyolefin microporous membrane, and the resin compound after impregnation can be treated with polyolefin. It can be satisfactorily supported without peeling or dropping from the microporous membrane.
  • the polyolefin microporous membrane which is the composite membrane substrate of the present invention, preferably has a Gurley value measured according to JIS P8117 of 90 seconds / 100 cc or less, more preferably 85 seconds / 100 cc or less, and even more preferably 75 seconds / 100cc or less.
  • the Gurley value is 90 seconds / 100 cc or less, it is preferable in that the solution in which the hydrophilic resin compound is dissolved easily penetrates into the microporous membrane and the impregnation rate is increased.
  • the polyolefin microporous membrane which is the composite membrane substrate of the present invention, preferably has a tensile breaking strength in at least one direction of the longitudinal direction (MD) and the width direction (TD) of 50 MPa or more, and preferably 60 MPa or more. Further preferred.
  • MD longitudinal direction
  • TD width direction
  • the strength of the polyolefin microporous membrane is 50 MPa or more, the mechanical strength as a composite membrane is improved, and the handling property in the step of impregnating the polyolefin microporous membrane with the hydrophilic resin compound aqueous solution is improved. preferable.
  • the polyolefin microporous membrane that is the composite membrane substrate of the present invention is a microporous membrane comprising a polyolefin.
  • the microporous membrane has a structure in which a large number of micropores are connected and these micropores are connected, and gas or liquid can pass from one surface to the other.
  • the polyolefin microporous membrane the polyolefin is preferably contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and the remainder is an organic or inorganic filler or surfactant within a range that does not affect the effects of the present invention. Such additives may be included.
  • polystyrene resin examples include homopolymers or copolymers such as polyethylene, polypropylene, polybutylene, and polymethylpentene, or a mixture of one or more of these.
  • polyethylene is preferable.
  • polyethylene low molecular weight polyethylene, a mixture of low molecular weight polyethylene and high molecular weight polyethylene, and the like are suitable.
  • polyethylene and other components may be used in combination. Examples of components other than polyethylene include polypropylene, polybutylene, polymethylpentene, and a copolymer of polypropylene and polyethylene.
  • polyolefin a plurality of polyolefins having poor compatibility and different degree of polymerization and different branching properties, in other words, a plurality of polyolefins having different crystallinity, stretchability and molecular orientation may be used in combination.
  • a polyethylene composition containing 5% by mass or more of high molecular weight polyethylene having a mass average molecular weight of 900,000 or more is preferably used, and a composition containing 7% by mass or more of high molecular weight polyethylene. More preferred is a composition containing 15 to 90% by mass of high molecular weight polyethylene.
  • the mass average molecular weight after blending two or more types of polyethylene is preferably 500,000 to 4.5 million, and more preferably 500,000 to 4,000,000.
  • a polyethylene composition obtained by mixing the above-described high molecular weight polyethylene having a weight average molecular weight of 900,000 or more and a low molecular weight polyethylene having a weight average molecular weight of 200,000 to 800,000 is preferable.
  • the proportion in the polyethylene composition is particularly preferably 20 to 80% by mass.
  • the density of the low molecular weight polyethylene is preferably 0.92 to 0.96 g / cm 3 .
  • the upper limit of the mass average molecular weight of the high molecular weight polyethylene is preferably 6 million or less, and particularly preferably 5 million or less.
  • the lower limit of the mass average molecular weight of the high molecular weight polyethylene is preferably 1 million or more, more preferably 2 million or more, and particularly preferably 3 million or more.
  • the mass average molecular weight was determined by dissolving a sample of a polyolefin microporous membrane in o-dichlorobenzene by heating and using GPC (Waters Alliance GPC 2000 type, column; GMH6-HT and GMH6-HTL), column temperature of 135 ° C. It can be obtained by measuring under the condition of a flow rate of 1.0 mL / min. Molecular weight monodisperse polystyrene (manufactured by Tosoh Corporation) can be used for the calibration of the mole
  • the polyolefin microporous membrane which is the composite membrane substrate of the present invention, can be preferably produced by the method described below. That is, (I) a step of preparing a solution containing a volatile solvent having a boiling point of less than 210 ° C.
  • step (I) melt-kneading this solution, extruding the resulting melt-kneaded product from a die, cooling and solidifying to obtain a gel-shaped product, (III) a step of stretching the gel-like molded article in at least one direction; (IV) a step of extracting and cleaning the solvent from the inside of the stretched intermediate molded product, Can be preferably manufactured by sequentially carrying out the above.
  • step (I) a solution containing a polyolefin composition and a solvent is prepared. At least a solution containing a volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure is prepared.
  • the solution is preferably a thermoreversible sol-gel solution, that is, the polyolefin is dissolved in the solvent by heating to prepare a thermoreversible sol-gel solution.
  • the volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure in step (I) is not particularly limited as long as it can sufficiently swell or dissolve polyolefin, but tetralin, ethylene glycol, decalin, toluene, xylene Liquid solvents such as diethyltriamine, ethylenediamine, dimethylsulfoxide, hexane and the like are preferable, and these may be used alone or in combination of two or more. Of these, decalin and xylene are preferred.
  • the preparation of this solution includes a non-volatile solvent having a boiling point of 210 ° C. or higher, such as liquid paraffin, paraffin oil, mineral oil, castor oil. It is preferable that the average pore diameter and the porosity are easily adjusted within the range of the present invention. In that case, the content of the non-volatile solvent in the total solvent is preferably 80 to 98% by mass.
  • the concentration of the polyolefin composition is preferably 10 to 35% by mass, and more preferably 15 to 30% from the viewpoint of controlling the filling rate of the resin compound into the polyolefin microporous membrane substrate.
  • step (II) the solution prepared in step (I) is melt-kneaded, and the obtained melt-kneaded product is extruded from a die and cooled and solidified to obtain a gel-like molded product.
  • an extrudate is obtained by extrusion from a die in a temperature range of the melting point of the polyolefin composition to the melting point + 65 ° C., and then the extrudate is cooled to obtain a gel-like molded product.
  • the molded product is preferably shaped into a sheet.
  • Cooling may be quenching to an aqueous solution or an organic solvent, or casting to a cooled metal roll, but generally a method by quenching to a volatile solvent used during water or sol-gel solution is used. Is done.
  • the cooling temperature is preferably 10 to 40 ° C.
  • one or more stages of preheating may be performed after cooling the gel-like molded product to remove a part of the volatile solvent from the sheet.
  • Step (III) is a step of stretching the gel-like molded product in at least one direction.
  • the stretching in step (III) is preferably biaxial stretching, and sequential biaxial stretching in which longitudinal stretching and transverse stretching are separately performed, and simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are simultaneously performed are suitable.
  • a method of stretching in the longitudinal direction and then stretching in the transverse direction a method of stretching in the longitudinal direction and stretching in the transverse direction multiple times, a sequential biaxial stretching and then one or more times in the longitudinal and / or transverse direction A method of stretching is also preferred.
  • the area stretch ratio (product of the longitudinal stretch ratio and the lateral stretch ratio) is preferably from the viewpoint of controlling the permeability of the mixed solution of ethanol and water (volume ratio 1/2) to the polyolefin microporous membrane. Is 45 to 100 times, more preferably 50 to 91 times.
  • the stretching temperature is preferably 90 to 110 ° C.
  • a heat setting treatment may be performed as necessary. In this case, the heat setting temperature is preferably 120 to 135 ° C. from the viewpoint of controlling the filling rate of the resin compound into the polyolefin microporous membrane substrate.
  • Step (IV) is a step of extracting and washing the solvent from the inside of the stretched intermediate molded product.
  • the step (IV) is preferably washed with a halogenated hydrocarbon such as methylene chloride or a hydrocarbon solvent such as hexane.
  • a halogenated hydrocarbon such as methylene chloride or a hydrocarbon solvent such as hexane.
  • the tank is divided into several stages, the washing solvent is poured from the downstream side of the polyolefin microporous film conveyance process, and the washing solvent is flowed toward the upstream side of the process conveyance, It is preferable that the purity of the cleaning solvent in the downstream tank is higher than that in the upstream layer.
  • heat setting may be performed by annealing.
  • the annealing treatment is preferably performed at 60 to 130 ° C., more preferably 70 to 125 ° C. from the viewpoint of transportability in the process.
  • the polyolefin microporous membrane of the present invention is produced through the above-described steps and is subjected to chemical treatment (for example, application of a surfactant, graft polymerization using a hydrophilic functional group, wet treatment with a liquid having low surface free energy, etc.)
  • chemical treatment for example, application of a surfactant, graft polymerization using a hydrophilic functional group, wet treatment with a liquid having low surface free energy, etc.
  • a hydrophilization treatment involving physical treatment for example, plasma treatment or corona treatment.
  • the composite membrane substrate comprising the polyolefin microporous membrane of the present invention can constitute a composite membrane by supporting a hydrophilic resin compound in the pores of the microporous membrane.
  • the composite membrane is suitable for clothing, special protective clothing, hygiene products (for example, disposable diapers), moisture permeable waterproof membranes such as total heat exchange elements, polymer electrolyte fuel cells, electrolyte membranes for water electrolysis, soda decomposition, etc. Available to:
  • the mass average molecular weight was determined by dissolving a sample of a polyolefin microporous membrane in o-dichlorobenzene with heating and using GPC (Waters Alliance GPC 2000, column; GMH6-HT and GMH6-HTL), column temperature of 135 ° C., flow rate It was obtained by measuring under conditions of 1.0 mL / min. Molecular weight monodisperse polystyrene (manufactured by Tosoh Corporation) was used for the calibration of the molecular weight.
  • the film thickness of the polyolefin microporous film was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Corporation, Lightmatic VL-50A) and averaging the results.
  • the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter. During the measurement, adjustment was made so that a load of 0.01 N was applied.
  • the average pore size of the microporous polyolefin membrane was obtained by using GALWICK (perfluoropolyether; surface tension of 15.9 dyne / cm) manufactured by Porous Material as the impregnating solution using a palm porometer (model: CFP-1500AEX) manufactured by Porous Material. Based on the half-dry method specified in ASTM E1294-89, the average flow pore size (nm) was calculated. The measurement temperature was 25 ° C., and the measurement pressure was 200 kPa to 3500 kPa.
  • Gurley value (second / 100 cc) of a polyolefin microporous membrane having an area of 642 mm 2 was measured.
  • the rate of change of the contact angle was calculated from the contact angle ⁇ 1 after 1 second of dropping the liquid obtained by the measurement of the contact angle and the contact angle ⁇ 2 after 10 minutes of dropping the liquid by the following formula, and used as an index of the penetration rate. For example, when there are two samples having the same contact angle after 1 second, the larger the change rate of the contact angle after 10 minutes, the higher the penetration rate.
  • Change rate of contact angle ( ⁇ 1 ⁇ 2) / ⁇ 1 ⁇ 100 (%) (Penetration of ethanol / water mixture)
  • the maximum water concentration means the highest water concentration among the water concentrations of the ethanol aqueous solution into which the droplets permeate (the ethanol concentration is calculated after conversion to 100% purity).
  • Table 2 below also shows the surface free energy of the aqueous ethanol solution at the maximum water concentration.
  • Example 1 A polyethylene composition obtained by mixing 12 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 3 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
  • a polyethylene solution was prepared by mixing 72 parts by mass of liquid paraffin and 13 parts by mass of decalin (decahydronaphthalene) prepared in advance so that the concentration of the total amount of polyethylene resin was 15% by mass.
  • This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C., and a water flow was provided on the surface layer of the water bath.
  • a gel-like sheet (base tape) was prepared while preventing the mixed solvent floating on the water surface from adhering to the sheet again.
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape.
  • the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5.5 times, subsequently stretched in the width direction at a temperature of 110 ° C. at a magnification of 13 times, and then immediately heat treated at 135 ° C. (heat setting). Went.
  • liquid paraffin was extracted while the polyethylene microporous membrane was immersed in a methylene chloride bath divided into two tanks for 30 seconds each.
  • the purity of the cleaning solvent in the case where the side that starts the immersion is the first tank and the side that ends the immersion is the second tank is (low) first tank ⁇ second tank (high).
  • methylene chloride was removed by drying at 45 ° C., and a polyethylene microporous film was obtained by annealing while being conveyed on a roller heated to 120 ° C.
  • Table 1 below shows the manufacturing conditions of the polyethylene microporous membrane
  • Table 2 shows the physical property values and evaluation results of the polyethylene microporous membrane. The other examples and comparative examples are also shown in Tables 1 and 2 in the same manner.
  • Example 2 In Example 1, a polyethylene composition obtained by mixing 6 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 24 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 6 parts by mass of decalin (decahydronaphthalene) and 64 parts by mass of paraffin prepared in advance so that the concentration of the total amount of polyethylene resin was 30% by mass. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
  • PE1 high molecular weight polyethylene
  • PE2 low molecular weight polyethylene
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5.5 times, subsequently stretched in the width direction at a temperature of 110 ° C. at a magnification of 13 times, and then immediately heat treated at 125 ° C. (heat setting).
  • Example 3 a polyethylene composition obtained by mixing 16 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 4 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
  • a polyethylene solution was prepared by mixing 2 parts by mass of decalin (decahydronaphthalene) and 78 parts by mass of paraffin prepared in advance so that the concentration of the total amount of the polyethylene resin was 20% by mass.
  • This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 3.9 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 13 times, and then immediately heat treated at 135 ° C. (heat setting).
  • Example 4 In Example 1, a polyethylene composition obtained by mixing 16 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 4 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 2 parts by mass of decalin (decahydronaphthalene) and 78 parts by mass of paraffin prepared in advance so that the concentration of the total amount of the polyethylene resin was 20% by mass. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
  • PE1 high molecular weight polyethylene
  • PE2 low molecular weight polyethylene
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5 times, subsequently stretched in the width direction at a temperature of 105 ° C. at a magnification of 9 times, and immediately subjected to heat treatment (heat setting) at 135 ° C.
  • Example 5 A polyethylene solution was prepared in the same manner as in Example 1. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet. The base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 7 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 13 times, and then immediately subjected to heat treatment (heat setting) at 135 ° C.
  • heat treatment heat setting
  • Example 6 a polyethylene composition obtained by mixing 6 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 6 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
  • a polyethylene solution was prepared by mixing with a previously prepared mixed solvent of 30 parts by mass of decalin (decahydronaphthalene) and 58 parts by mass of paraffin so that the total concentration of the polyethylene resin was 12% by mass.
  • This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 110 ° C. at a magnification of 6.5 times, subsequently stretched in the width direction at a temperature of 115 ° C. at a magnification of 15 times, and then immediately heat treated at 138 ° C. (heat setting).
  • Example 1 a polyethylene composition obtained by mixing 3 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 14 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used.
  • a polyethylene solution was prepared by mixing with a previously prepared mixed solvent of 32 parts by mass of decalin (decahydronaphthalene) and 51 parts by mass of paraffin so that the total concentration of the polyethylene resin was 17% by mass.
  • This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 20 ° C. to prepare a gel sheet.
  • the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape. Thereafter, the base tape was stretched in the longitudinal direction at a temperature of 90 ° C. at a magnification of 5.5 times, subsequently stretched in the width direction at a temperature of 105 ° C. at a magnification of 11 times, and then immediately heat treated at 139 ° C. (heat setting).
  • Comparative Example 2 A polyethylene composition obtained by mixing 3 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 4.6 million and 27 parts by mass of low molecular weight polyethylene (PE2) having a mass average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing with 70 parts by mass of decalin (decahydronaphthalene) so that the concentration of the total amount of polyethylene resin was 30% by mass. This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 20 ° C. to prepare a gel sheet.
  • PE1 high molecular weight polyethylene
  • PE2 low molecular weight polyethylene
  • the gel-like sheet is subjected to preliminary (first) drying in a temperature atmosphere at 70 ° C. for 20 minutes, and then subjected to primary (preliminary) stretching by 1.5 times in the longitudinal direction at room temperature (25 ° C.).
  • the main drying was performed in a temperature atmosphere of 60 ° C. for 5 minutes.
  • the solvent remaining in the base tape after the main drying was 20% by mass.
  • the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5.5 times, followed by stretching in the width direction at a temperature of 125 ° C. at a magnification of 13 times.
  • a heat treatment heat setting
  • a polyethylene composition obtained by mixing 1.7 parts by mass of high molecular weight polyethylene having a mass average molecular weight of 4.6 million and 19.3 parts by mass of low molecular weight polyethylene having a mass average molecular weight of 560,000 was used.
  • This polyethylene solution was extruded into a sheet form from a die at a temperature of 170 ° C., and then the extrudate was cooled in a water bath at 25 ° C. to prepare a gel sheet.
  • the gel-like sheet is subjected to preliminary (first) drying for 10 minutes in a temperature atmosphere of 55 ° C., and then subjected to primary (preliminary) stretching at 30 ° C. by 1.6 times in the longitudinal direction.
  • the test was performed for 5 minutes in a temperature atmosphere of 50 ° C. (residual amount of solvent less than 1%).
  • the base tape is stretched in the longitudinal direction at a temperature of 95 ° C. at a magnification of 3.5 times as the secondary stretching, and subsequently stretched in the width direction at a temperature of 115 ° C. at a magnification of 10 times.
  • a biaxially stretched polyethylene microporous membrane was obtained.
  • Example 4 a polyethylene microporous membrane was obtained in the same manner as in Example 2 except that 40 parts by mass of decalin (decahydronaphthalene) and 30 parts by mass of paraffin were used.
  • the obtained polyethylene microporous membrane had a thickness of 6 ⁇ m, a porosity of 43%, an average pore diameter of 40 nm, a mixed solution of ethanol and water (volume ratio 1/2) was dropped, and the contact angle ⁇ 1 of the surface 1 second after the dropping.
  • a composite film substrate having a contact angle ⁇ 2 of the surface of 65 degrees and a contact angle change rate of 8% after 71 degrees and 10 minutes was used.
  • the obtained polyethylene microporous membrane had a maximum water concentration lower than that of Examples and was not suitable for a composite membrane substrate.
  • Comparative Example 5 In Example 1, 92 parts by mass of paraffin prepared in advance using 8 parts by mass of high molecular weight polyethylene (PE1) having a mass average molecular weight of 2 million so that the concentration of the total amount of polyethylene resin is 8% by mass. And a polyethylene solution was prepared. This polyethylene solution was extruded into a sheet form from a die at a temperature of 200 ° C., and then the extrudate was cooled in a hot water bath at 50 ° C. to prepare a gel sheet. The base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C.
  • a polyethylene microporous membrane was obtained in the same manner as in Example 1 except that. Next, liquid paraffin was extracted while the polyethylene microporous membrane was immersed in a methylene chloride bath divided into two tanks for 30 seconds each.
  • the purity of the cleaning solvent is (low) first layer ⁇ second tank (high) when the side that starts immersion is the first tank and the side that ends immersion is the second tank. Thereafter, methylene chloride was removed by drying at 45 ° C., and a polyethylene microporous film was obtained by annealing while being conveyed on a roller heated to 90 ° C.
  • the electrode catalyst layer was prepared by applying the catalyst paste prepared as described above onto a polytetrafluoroethylene (PTFE) sheet with an applicator PI-1210 (Tester Sangyo) and drying it in an air atmosphere. The amount of platinum supported was adjusted to around 0.3 mg / cm 2 .
  • the MEA was produced by sandwiching an electrolyte membrane between the two electrode catalyst layers cut out to 5 cm 2 , hot pressing at 135 ° C. and a pressure of 2.0 kN for 1 minute, and then peeling off the PTFE sheet.
  • One is a current interrupt method, in which hydrogen gas is circulated at the anode side and oxygen gas is circulated at a flow rate of 100 mL / min and 500 mL / min, respectively, and the relative humidity of both electrodes is simultaneously 60% RH, 30% RH, 20 percent RH, is changed from 10% RH, blocked using an electrochemical measurement system HZ-3000 (Hokuto Denko Corporation), electric current is passed through one minute cell initial state as 1 a / cm 2, the current instantaneously The ohmic resistance was calculated by measuring the voltage change at the time. The second is an IV characteristic test.
  • Hydrogen gas is supplied to the anode side as fuel and oxygen gas or air is supplied to the cathode side as oxidant at flow rates of 100 mL / min and 500 mL / min, respectively.
  • the cell voltage was measured when the current was run from 0 to 10 A with a battery charging / discharging device HJ1010SM8A (Hokuto Denko Co., Ltd.) while changing to RH, 20% RH, and 10% RH.
  • FIG. 1 shows the results of calculating the MEA proton conductivity by calculating the ohmic resistance from the current interrupt for the MEA obtained as described above.
  • Nafion® NR211 film thickness: 25 ⁇ m
  • FIG. 1 with respect to proton conductivity, there is an effect of filling a low EW perfluorosulfonic acid polymer with high proton conductivity and a thin film thickness of about 1/4.
  • the MEA produced using the substrate of the present invention showed higher performance than when NR211 was used.
  • FIG. 2 shows the relationship between the cell voltage and the current density under the humidity of 20% (oxidant: O 2 or air) for the MEA obtained as described above.
  • O 2 or air oxygen
  • Nafion NR211 thinness 25 ⁇ m
  • the conventional NR211 could hardly generate power, but the MEA produced using the substrate of the present invention generates power up to 2 A / cm 2. It can be seen that a novel electrolyte membrane is obtained.
  • the electrolyte membrane was produced by filling the polyolefin microporous membrane with the electrolyte of EW560, and It can be considered that the result is that the humidity in the electrolyte membrane can be maintained because the water generated at the cathode can sufficiently permeate the anode side of the electrolyte membrane due to the thinning of the electrolyte membrane.
  • the composite membrane substrate of the present invention can be suitably filled with perfluorosulfonic acid resin in the pores of the substrate, and a very thin composite membrane can be obtained.
  • the present invention has industrial applicability in terms of providing a novel electrolyte membrane that can generate power even in a low humidity environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

予め親水化処理をしなくても、水分濃度が高く表面自由エネルギーが比較的大きな水溶液の浸透性が良好であり、親水性樹脂化合物を空孔内に良好に充填できるポリオレフィン微多孔膜からなる複合膜用基材を提供すること。 ポリオレフィン微多孔膜からなり、当該微多孔膜の空孔内に親水性樹脂化合物を担持するための複合膜用基材であって、平均孔径が1nm以上50nm以下であり、空孔率が50%以上78%以下であり、膜厚が1μm以上12μm以下であり、かつ、前記ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%である、複合膜用基材。

Description

複合膜用基材
 本発明は、複合膜用基材に関する。
 複合膜用基材とは、該基材そのものには備わっていない機能を付加するために特定の物質を塗布、貼り合せ、積層、含浸、充填などの方法により該機能を備える際の支持材料(支持体)であり、例えば、ポリエステルやポリオレフィンからなる不織布やポリエステルフィルム等に代表される無孔樹脂フィルムやポリオレフィン多孔樹脂フィルムに代表される多孔質フィルムがある。
 例えば、衣類や特殊な防護衣、衛生用品(例えば紙おむつ)等で用いられる水蒸気(湿気)を透過する一方で、液体である水を通さず、蒸れを防止する素材として利用されている透湿防水膜では、天然パルプを主成分とした紙や高分子素材からなる不織布、高分子多孔質フィルムからなる多孔質基材に、防水機能層を形成した複合膜が考案されている。衛生用品の材料として、例えば、特許文献1では、ポリプロピレンからなる不織布等の良好な通気性能および透湿性能を有する材料にポリオレフィン系合成樹脂フィルムをラミネートした材料が開示されている。さらに、例えば、特許文献2では、ポリオレフィン多孔質膜に親水性樹脂の被覆層を設けることで気体遮断性と透湿性と薄さを備えた透湿防水膜を達成している。
 また、例えば、燃料電池の高分子電解質では、特許文献3で提案されているように、高分子多孔質膜の空隙(孔部分)に高分子電解質を含有させることで、電解質自体ではなし得なかった機械的強度の向上を達成している。さらに、例えば、特許文献4では、ポリエチレン多孔質膜中に高分子電解質を保持させるために好適な多孔質基材が提案されている。特許文献5では、超高分子量ポリオレフィンの多孔性薄膜の網目構造がイオン交換樹脂を取り込み包含することにより得られた力学的強度に優れた電解質薄膜が開示されている。特許文献6では、固体高分子多孔膜中に毛管凝縮作用を利用してイオン導電体を取り込み包含することにより得られた力学的強度に優れた薄膜電解質が開示されている。
 また、例えば、全熱交換素子では、給気流路と排気流路とが、仕切板や仕切膜を挟んで互いに独立した流路として形成される。このような熱交換素子に関して、特許文献7では、不織布等の多孔質基材(不織布)の上に、気体遮蔽性を有する非水溶性の親水性透湿樹脂を備えた非水溶性の多孔質膜を形成して設けた仕切板により、気体遮断性と透湿性を備えた樹脂製の全熱交換素子を達成している。
 最近では、ポリオレフィン多孔膜の細孔内に親水性の樹脂化合物等を含浸(充填)させた複合膜が提案されており、上述の透湿防水膜や燃料電池の高分子電解質など様々な用途で使われている。これらのポリオレフィン多孔膜に親水性の樹脂を含浸(充填)するには、親水性の樹脂化合物を水に溶解させた水溶液をポリオレフィン多孔膜に含浸させる方法が一般的である。例えば、空孔を有する多孔質膜に電解質溶液を含浸して、プロトン伝導性膜を得る方法が種々提案されており、特許文献8には、リン酸と有機溶媒を含む電解質溶液を高分子多孔質膜に含浸して、常温型燃料電池用薄膜電解質を得ることが提案されている。
 しかしながら、ポリオレフィンに代表される疎水性の樹脂からなる多孔質膜では、該多孔質膜に親水化処理が施されていない場合、上述の方法では、該多孔質膜の撥水性が大きく、親水性樹脂化合物(例えば電解質)水溶液をはじくため、該多孔質膜中に親水性樹脂化合物水溶液が浸透せず、親水性樹脂化合物を多孔質膜中に充填させることができない。
 親水性樹脂化合物水溶液をポリオレフィン多孔質膜に充填させるためには、予め該多孔質膜に親水化処理を施す方法、親水性樹脂化合物水溶液の表面自由エネルギーを低下させる方法、ポリオレフィン多孔質膜基材を大孔径かつ高空隙率にする方法、親水性樹脂化合物水溶液を高圧雰囲気下または減圧雰囲気下で充填する方法などがある。
 該多孔質膜に親水化処理を施す方法には、例えば、化学的表面処理(多孔質膜に界面活性剤を塗布する等(例えば特許文献9))や物理的表面処理(プラズマ処理やコロナ処理等)、アルコール類等による事前の湿潤処理等を挙げることができる。しかしながら、化学的表面処理においては、ポリオレフィン多孔質膜内に界面活性剤などの不要な物質が親水性樹脂化合物内に混入する、さらには、処理により製造コストが高くなる等の課題がある。物理的表面処理においては、処理によりポリオレフィン多孔質膜の劣化(高分子鎖の切断)を伴うため、多孔質膜自体が脆くなり力学強度が低下する課題があり、特にポリオレフィン多孔質膜が薄膜になるほど、その力学強度の低下が深刻な問題になる。さらに、ポリオレフィン多孔質膜の孔径が小さくなるほど、多孔膜内部全体まで親水化の処理効果が届き難くなる課題がある。アルコール類等による事前の湿潤処理においては、ポリオレフィン多孔質膜内にアルコール類が満たされているため、親水性樹脂化合物内に不要なアルコール類が混入する、または親水性樹脂化合物水溶液の浸透を妨げる等の課題がある。これらの課題を解決するためには、上述の親水化処理を施さずに、親水性樹脂化合物水溶液を含浸できる基材が必要である。
 親水性樹脂化合物水溶液の表面自由エネルギーを低下させる方法には、例えば、親水性樹脂化合物水溶液にアルコールなどを加える方法があり、該水溶液の表面自由エネルギーを下げることでポリオレフィン多孔質膜に含浸し易くなる。しかしながら、該水溶液中のアルコール濃度が高まると、親水性樹脂化合物の溶解度が低下して、該樹脂化合物を十分な濃度に保てない、または製造における環境への負荷などの課題がある。これらの課題を解決するには、アルコール濃度が低い溶媒でも含浸できる基材が必要である。
 ポリオレフィン多孔質膜基材を大孔径かつ高空隙率にする方法には、例えば、ポリオレフィン多孔質膜の製造において、発泡剤などを添加して積極的に空孔を増加させるまたは空孔を大きくする方法や空孔となる核剤の配合を増やすなどの方法がある。しかしながら、上述の製造方法を採用すると、ポリオレフィン多孔質膜自体の力学強度が著しい低下を伴うことになり、製造時の膜破れによる生産性が悪化する課題がある。また、ポリオレフィン多孔質膜が製造出来たとしても、親水性樹脂化合物水溶液を含浸させる工程においても、同様な膜破れが課題であり、さらには、該水溶液を含浸させて溶媒を除去した後に親水性樹脂がポリオレフィン多孔質膜から剥がれるまたは脱落する課題がある。これらの課題を解決するには、親水性樹脂と多孔質膜の素材であるポリオレフィンの接触面積を増加させ、さらには、該親水性樹脂をポリオレフィン多孔質膜内に可能な限り微分散でき、局所的な均質性を高められる基材(空隙率同等でもより微多孔)が必要である。
 親水性樹脂化合物水溶液を高圧雰囲気下または減圧雰囲気下で充填する方法においては、製造プロセスが複雑化して高コストになる、または、製造時の膜破れや親水性樹脂化合物水溶液の充填不良の課題がある。これらの課題を解決するには、常圧下で親水性樹脂化合物水溶液が浸透する基材が必要である。
特開平08-141013号公報 特開2014-61505号公報 特開2005-166557号公報 特開2011-241361号公報 特開昭64-22932号公報 特開平1-158051号公報 特開2008-032390号公報 特開平08-88013号公報 特開平01-186752号公報
 そこで本発明は、予め親水化処理をしなくても、水分濃度が高く表面自由エネルギーが比較的大きな水溶液の浸透性が良好であり、親水性樹脂化合物を空孔内に良好に充填できるポリオレフィン微多孔膜からなる複合膜用基材を提供することを目的とする。
 本発明は、上記課題を解決するために、以下の構成を採用する。
 1.ポリオレフィン微多孔膜からなり、当該微多孔膜の空孔内に親水性樹脂化合物を担持するための複合膜用基材であって、平均孔径が1nm以上50nm以下であり、空孔率が50%以上78%以下であり、膜厚が1μm以上12μm以下であり、かつ、前記ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%である、複合膜用基材。
 2.前記接触角の変化率((θ1-θ2)/θ1×100)が17~41%である、上記1に記載の複合膜用基材。
 3.前記ポリオレフィンが、質量平均分子量が90万以上である高分子量ポリエチレンと、質量平均分子量が20万~80万である低分子量ポリエチレンとを、質量比で20:80~80:20の割合で混合させたポリエチレン組成物である、上記1または2に記載の複合膜用基材。
 4.前記親水性樹脂化合物の溶媒であって、表面自由エネルギーが35~36.5mJ/m2である液体が含浸可能である、上記1~3のいずれか1項に記載の複合膜用基材。
 5.水濃度が65.8体積%超70.6体積%以下である、エタノールと水の混合液が含浸可能である、上記4に記載の複合膜用基材。
 6.JIS P8117に従って測定したガーレ値が90秒/100cc以下である、上記1~5のいずれか1項に記載の複合膜用基材。
 7.ポリオレフィン固形分の単位断面積当たりに換算した引張破断強度(MDまたはTD)が50MPa以上である、上記1~6のいずれか1項に記載の複合膜用基材。
 本発明によれば、予め親水化処理をしなくても、水分濃度が高く表面自由エネルギーが比較的大きな水溶液の浸透性が良好であり、親水性樹脂化合物を空孔内に良好に充填できるポリオレフィン微多孔膜からなる複合膜用基材を提供することができる。
本発明による複合膜用基材を用いた膜/電極接合体(Membrane Electrode Assembly, MEA)と、従来の電解質膜とについて、プロトン伝導度の相対湿度依存性を対比したグラフである。 本発明による複合膜用基材を用いた膜/電極接合体(MEA)と、従来の電解質膜とについて、セル電圧の電流密度依存性を対比したグラフである。
 以下に、本発明の実施の形態について順次説明するが、これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。なお、本明細書全体において、数値範囲で「~」を用いた場合、各数値範囲にはその上限値と下限値を含むものとする。また、ポリオレフィン微多孔膜に関し、「長手方向」とは、長尺状に製造されるポリオレフィン微多孔膜の長尺方向を意味し、「幅方向」とは、ポリオレフィン微多孔膜の長手方向に直交する方向を意味する。以下、「幅方向」を「TD」とも称し、「長手方向」を「MD」とも称する。
[複合膜用基材]
 本発明の複合膜用基材は、ポリオレフィン微多孔膜からなり、当該微多孔膜の空孔内に親水性樹脂化合物を担持するための複合膜用基材であって、平均孔径が1nm以上50nm以下であり、空孔率が50%以上78%以下であり、膜厚が1μm以上12μm以下であり、かつ、前記ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%である。以下、各構成の詳細について説明する。
(平均孔径)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は平均孔径が1nm以上50nm以下である。該ポリオレフィン微多孔膜の平均孔径が50nm以下である場合、空孔率の微多孔膜であったとしても、ポリオレフィン微多孔膜の力学強度が良好なものとなりハンドリング性も向上する点で好ましい。また、一定の空孔率において、平均孔径が小さいほど、微多孔膜中に存在する空孔の頻度が高まるため、該ポリオレフィン微多孔膜全体への親水性樹脂化合物の均一な充填が可能になる、さらには微多孔膜の表面に存在する空孔の頻度が高まるため、より表面自由エネルギーの高い溶媒を用いた親水性樹脂化合物溶液の浸透が良好なものになる。このような観点では、ポリオレフィン微多孔膜の平均孔径は45nm以下が好ましく、さらには40nm以下が好ましい。一方、平均孔径が1nm以上である場合、上記、表面自由エネルギーの高い溶媒の浸透速度が向上する。このような観点では、ポリオレフィン微多孔膜の平均孔径は5nm以上が好ましく、さらには10nm以上が好ましい。
 ここで、ポリオレフィン微多孔膜の平均孔径は、以下の実施例に記した測定方法により測定することができる。
(空孔率)
 本発明の複合膜用基材であるポリオレフィン微多孔膜の空孔率は50~78%である。該ポリオレフィン微多孔膜の空孔率が50%以上である場合、親水性樹脂化合物の充填率が高くなり、樹脂化合物その物の有する性能を充分に発現できるものとなる点で好ましい。また、親水性樹脂化合物を溶解した溶液が微多孔膜に浸透し易くなり、含浸速度が速くなる点で好ましい。このような観点では、ポリオレフィン微多孔膜の空孔率は55%以上が好ましく、さらには60%以上が好ましい。一方、空孔率が78%以下である場合、ポリオレフィン微多孔膜の力学強度が良好なものとなりハンドリング性も向上する点で好ましい。このような観点では、ポリオレフィン微多孔膜の空孔率は75%以下が好ましく、さらには66%以下が好ましい。
 ここで、ポリオレフィン微多孔膜の空孔率(ε)は、以下の実施例に記した測定方法により測定することができ、下記式により算出する。
 ε(%)={1-Ws/(ds・t)}×100
 Ws:ポリオレフィン微多孔膜の目付け(g/m
 ds:ポリオレフィンの真密度(g/cm
 t:ポリオレフィン微多孔膜の膜厚(μm)
(膜厚)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、その厚みが1μm以上12μm以下である。ポリオレフィン微多孔膜の膜厚が1μm以上である場合、十分な力学強度が得られやすく、ポリオレフィン微多孔膜の加工時等におけるハンドリング性や親水性樹脂化合物を溶解した溶液を含浸する加工において、安定した搬送が可能になるため好ましい。このような観点では、ポリオレフィン微多孔膜の膜厚は、3μm以上が好ましく、さらには4μm以上が好ましい。一方、厚みが12μm以下である場合、該微多孔膜に親水性樹脂化合物を溶解した溶液の含浸に要する時間が短くでき、微多孔膜全体に斑無く均一に親水性樹脂化合物を充填できる。また、親水性樹脂化合物を含浸した基材をモジュール化した場合に体積当たりの効率が向上するため好ましい。このような観点では、ポリオレフィン微多孔膜の膜厚は、10μm以下が好ましく、さらには9μm以下が好ましい。
 ポリオレフィン微多孔膜は、一般に空孔の存在による光散乱のため白色不透明を呈するが、該空孔が親水性樹脂化合物溶液で実質的に充填されることにより光散乱が減少し、得られた複合膜は、その薄い膜厚と相俟って、全体として実質透明になることがある。
(接触角)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角が0~90度である。該1秒後の接触角が90度以下である場合、上記の空孔率と平均孔径を有する多孔質構造との相乗効果もあり、親水性樹脂化合物を溶解した溶液の微多孔膜中へのしみ込みが容易になる。このような観点では、当該1秒後の接触角は88度以下が好ましく、さらには85度以下が好ましい。
 また、本発明の複合膜用基材であるポリオレフィン微多孔膜は、ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後10分後の当該液滴と該表面の接触角が0~70度であることが好ましい。該ポリオレフィン微多孔膜の接触角が70度以下である場合、親水性樹脂化合物を溶解した溶液が微多孔膜中にさらにしみ込み易くなり、該化合物を微多孔膜中に充分に満たせるようになる点で好ましい。このような観点では、当該10分後の接触角は65度以下が好ましく、さらには60度以下が好ましい。
 ここで、接触角は以下の実施例に記した測定方法により、測定することができる。
 なお、本発明のポリオレフィン微多孔膜上に上記エタノール水溶液を滴下した場合、液滴が径方向外側に広がらず、同径ないし径方向内側に縮小するように液滴が浸透していく挙動を示す。
(接触角の変化率)
 本発明によるポリオレフィン微多孔膜は、上記接触角の経時変化の観点で規定することもできる。すなわち、本発明によるポリオレフィン微多孔膜は、親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%であることが好ましい。接触角の変化率が10%以上である場合、電解質溶液のポリオレフィン微多孔膜中への含浸速度が実用的生産効率の観点から十分であると考えられる。このような観点では、接触角の変化率は15%以上、さらには17%以上であることが特に好ましい。一方、ポリオレフィン微多孔膜の力学強度を十分保持する観点では、接触角の変化率は45%以下、さらには41%以下であることが好ましい。
 本発明は、1nm以上50nm以下という極めて小さな平均孔径を有し、その上で50%以上78%以下という比較的高い空孔率を有し、かつ、1μm以上12μm以下という極めて薄い膜厚を達成している。このようなポリオレフィン微多孔膜自体、従来得ることが出来ていない。さらに、上記1秒後の液滴と表面の接触角が0~90度、10分後の液滴と表面の接触角が0~70度、接触角の変化率が10~50%という表面物性を兼ね備えたことで、従来達成できなかったレベルの高い水分濃度かつ表面自由エネルギーの水溶液の浸透性が良好なものとなり、それにより親水性樹脂化合物を高濃度で空孔内に充填できるようになる。
 なお、本発明においては、上述したポリオレフィン微多孔膜基材の平均孔径、空孔率および接触角を適正な範囲に調整することが必要である。これらの物性を制御する手法としては特に限定されるものではないが、例えばポリエチレン樹脂の平均分子量、複数のポリエチレン樹脂を混合して使用する場合はその混合比率、原料中のポリエチレン樹脂濃度、原料中に複数の溶剤を混合して使用する場合はその混合比率、延伸倍率や延伸後の熱処理(熱固定)温度、抽出溶媒への浸漬時間等の製造条件を調整すること等が挙げられる。特に、以下の製造方法の説明でも示すが、高分子量ポリエチレンが全ポリエチレン組成物中の質量割合で20~80質量%であること、原料中のポリエチレン樹脂が質量平均分子量が90万以上である高分子量ポリエチレンを5質量%以上含むこと、ポリオレフィン溶液の溶媒として揮発性溶媒と不揮発性溶媒を混合したものを用いること(全溶媒中の不揮発性溶剤の含有量は80~98質量%)、全体の延伸倍率を45~100倍にすること、あるいは、熱固定温度を120~135℃にすること等により好適に得られる。
(含浸可能な液体の表面自由エネルギー)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、親水性樹脂化合物の溶媒であって、表面自由エネルギーが35~36.5mJ/m2である液体が含浸可能である。本願明細書中、液体の表面自由エネルギーは20℃での測定値をさす。
 この液体の表面自由エネルギーが36.5mJ/m2以下である場合、親水性樹脂化合物を溶解する溶媒と該微多孔膜を形成するポリオレフィン樹脂との親和性が高くなり、親水性樹脂化合物を溶解した溶液が微多孔膜に浸透し易くなる点で好ましい。また、表面自由エネルギーが35mJ/m2以上である場合、該溶媒への親水性樹脂化合物の濃度を高めることができ、該微多孔膜中への親水性樹脂の充填効率を高められる点で好ましい。なお、表面自由エネルギーを上記の範囲にするためには、アルコール類(メタノール、エタノール、イソプロパノール、t-ブチルアルコール等)と水の混合液、エチレングリコール、テトラヒドロフラン、アセトン、メチルエチルケトン、ジメチルホルムアミド、トリエチルアミン等の有機溶媒と必要な範囲で水を混合した混合溶媒、等を使用することが挙げられる。
 なお、上述した液体の表面自由エネルギーに調整する方法として、例えば、水にエタノールを体積分率で29.5体積%以上34.2体積%未満で混ぜる(すなわち水濃度が65.8体積%超70.5体積%以下)ことにより達成できる。
(親水性樹脂化合物)
 本発明の複合膜用基材であるポリオレフィン微多孔膜が好適に担持する親水性樹脂化合物には、表面自由エネルギーが35~36.5mJ/m2である液体に可溶な樹脂化合物が挙げられる。例えば、親水性樹脂化合物としてはスルホン酸基、カルボキシル基、ヒドロキシル基等の親水性基を有するポリマーが好ましい。より具体的には、パーフルオロスルホン酸系樹脂、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、セルロース類等が挙げられる。上記液体を溶媒とする親水性樹脂化合物水溶液として調製した際に、難溶性とならない範囲であれば、該樹脂化合物の改質化合物や、樹脂化合物の微小凝集体の分散液等も例示することができる。これらの親水性樹脂化合物が好ましいのは、水を含む溶媒への溶解性が高いため、該樹脂化合物のポリオレフィン微多孔膜への含浸加工が効率良くできるとともに、含浸した後の該樹脂化合物のポリオレフィン微多孔膜からの剥離や脱落がなく良好に担持できる。
(ガーレ値)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、JIS P8117に従って測定したガーレ値が90秒/100cc以下であることが好ましく、より好ましくは85秒/100cc以下、さらに好ましくは75秒/100cc以下である。このガーレ値が90秒/100cc以下である場合、親水性樹脂化合物を溶解した溶液が微多孔膜に浸透し易くなり、含浸速度が速くなる点で好ましい。
(引張破断強度)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、長手方向(MD)と幅方向(TD)の少なくとも一方向の引張破断強度が50MPa以上であることが好ましく、60MPa以上であることがさらに好ましい。ポリオレフィン微多孔膜の強度が50MPa以上である場合、複合膜としての力学強度が良好になり、また、親水性樹脂化合物水溶液をポリオレフィン微多孔膜中に含浸させる工程でのハンドリング性が向上する点で好ましい。
(ポリオレフィン)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、ポリオレフィンを含んで構成された微多孔膜である。ここで、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。ポリオレフィン微多孔膜において、ポリオレフィンは90質量%以上、より好ましくは95質量%以上含まれていることが好ましく、残部として本発明の効果に影響を与えない範囲で有機または無機のフィラーや界面活性剤等の添加剤を含ませてもよい。
 ポリオレフィンとしては、例えばポリエチレンやポリプロピレン、ポリブチレン、ポリメチルペンテン等の単独重合体あるいは共重合体、またはこれらの1種以上の混合体が挙げられる。この中でも、ポリエチレンが好ましい。ポリエチレンとしては、低分子量ポリエチレンや、低分子量ポリエチレンと高分子量ポリエチレンの混合物等が好適である。また、ポリエチレンとそれ以外の成分を組み合わせて用いてもよい。ポリエチレン以外の成分としては、例えばポリプロピレン、ポリブチレン、ポリメチルペンテン、ポリプロピレンとポリエチレンとの共重合体などが挙げられる。また、ポリオレフィンとして、相互に相溶性の乏しい重合度や分岐性の異なる複数のポリオレフィン、換言すれば結晶性や延伸性・分子配向性を異にする複数のポリオレフィンを組み合わせて用いてもよい。
 本発明に用いるポリオレフィンとしては、質量平均分子量が90万以上である高分子量ポリエチレンを5質量%以上含むポリエチレン組成物を用いることが好ましく、高分子量ポリエチレンを7質量%以上含む組成物であることがさらに好ましく、特に高分子量ポリエチレンを15~90質量%含む組成物であることが好ましい。また、2種以上のポリエチレンを適量配合することによって、延伸時のフィブリル化に伴うネットワーク網状構造を形成させ、空孔発生率を増加させる効用がある。2種以上のポリエチレンを配合した後の質量平均分子量は50万~450万であることが好ましく、50万~400万であることがより好ましい。特に、上述した質量平均分子量が90万以上である高分子量ポリエチレンと、質量平均分子量が20万~80万である低分子量ポリエチレンとを混合させたポリエチレン組成物が好ましく、その場合、該高分子量ポリエチレンのポリエチレン組成物中の割合は20~80質量%が特に好ましい。低分子量ポリエチレンの密度は0.92~0.96g/cmが好ましい。高分子量ポリエチレンの質量平均分子量の上限値としては600万以下が好ましく、500万以下が特に好ましい。高分子量ポリエチレンの質量平均分子量の下限値としては100万以上が好ましく、200万以上がさらに好ましく、300万以上が特に好ましい。
 なお、質量平均分子量は、ポリオレフィン微多孔膜の試料をo-ジクロロベンゼン中に加熱溶解し、GPC(Waters社製 Alliance GPC 2000型、カラム;GMH6-HTおよびGMH6-HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定を行うことで得られる。分子量の校正には分子量単分散ポリスチレン(東ソー社製)を用いることができる。
(ポリオレフィン微多孔膜の製造方法)
 本発明の複合膜用基材であるポリオレフィン微多孔膜は、下記に示す方法で好ましく製造することができる。即ち、
(I)ポリオレフィン組成物と溶剤とを含む溶液において、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調製する工程、
(II)この溶液を溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る工程、
(III)ゲル状成形物を少なくとも一方向に延伸する工程、
(IV)延伸した中間成形物の内部から溶剤を抽出洗浄する工程、
を順次実施することにより、好ましく製造することができる。
 工程(I)ではポリオレフィン組成物と溶剤とを含む溶液を調製するが、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調製する。ここで溶液は好ましくは熱可逆的ゾル・ゲル溶液であり、すなわち該ポリオレフィンを該溶剤に加熱溶解させることによりゾル化させ、熱可逆的ゾル・ゲル溶液を調製する。工程(I)における大気圧における沸点が210℃未満の揮発性の溶剤としてはポリオレフィンを十分に膨潤できるもの、もしくは溶解できるものであれば特に限定されないが、テトラリン、エチレングリコール、デカリン、トルエン、キシレン、ジエチルトリアミン、エチレンジアミン、ジメチルスルホキシド、ヘキサン等の液体溶剤が好ましく挙げられ、これらは単独でも2種以上を組み合わせて用いても良い。なかでもデカリン、キシレンが好ましい。
 また、本溶液の調製においては、上記の大気圧における沸点が210℃未満の揮発性の溶剤以外に、流動パラフィン、パラフィン油、鉱油、ひまし油などの沸点が210℃以上の不揮発性の溶剤を含ませることが、平均孔径および空孔率を本発明の範囲に調整しやすい点で好ましい。その場合、全溶媒中の不揮発性溶剤の含有量は80~98質量%が好ましい。
 工程(I)の溶液においては、ポリオレフィン微多孔膜基材への樹脂化合物の充填率を制御する観点から、ポリオレフィン組成物の濃度を10~35質量%とすることが好ましく、さらには15~30質量%とすることが好ましい。
 工程(II)は、工程(I)で調製した溶液を溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る。好ましくはポリオレフィン組成物の融点乃至融点+65℃の温度範囲においてダイより押出して押出物を得、ついで前記押出物を冷却してゲル状成形物を得る。
 成形物としてはシート状に賦形することが好ましい。冷却は水溶液または有機溶媒へのクエンチでもよいし、冷却された金属ロールへのキャスティングでもどちらでもよいが、一般的には水またはゾル・ゲル溶液時に使用した揮発性溶媒へのクエンチによる方法が使用される。冷却温度は10~40℃が好ましい。なお、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながらゲル状シートを作製することが好ましい。
 工程(II)では、必要に応じて、ゲル状成形物の冷却後に一段または複数段の予備加熱を行い、一部の揮発性溶媒をシート内から除去してもよい。その場合、予備加熱温度は50~100℃が好ましい。
 工程(III)は、ゲル状成形物を少なくとも一方向に延伸する工程である。ここで工程(III)の延伸は、二軸延伸が好ましく、縦延伸、横延伸を別々に実施する逐次二軸延伸、縦延伸、横延伸を同時に実施する同時二軸延伸、いずれの方法も好適に用いることが可能である。また縦方向に複数回延伸した後に横方向に延伸する方法、縦方向に延伸し横方向に複数回延伸する方法、逐次二軸延伸した後にさらに縦方向および/または横方向に1回もしくは複数回延伸する方法も好ましい。
 工程(III)における面積延伸倍率(縦延伸倍率と横延伸倍率の積)は、ポリオレフィン微多孔膜へのエタノールと水の混合液(体積比1/2)の浸透性を制御する観点から、好ましくは45~100倍であり、より好ましくは50~91倍である。延伸温度は90~110℃が好ましい。
 また(III)の延伸工程に次いで、必要に応じて熱固定処理を行っても良い。その場合の熱固定温度は、ポリオレフィン微多孔膜基材への樹脂化合物の充填率を制御する観点から、120~135℃であることが好ましい。
 工程(IV)は延伸した中間成形物の内部から溶媒を抽出洗浄する工程である。ここで、工程(IV)は、延伸した中間成形物(延伸フィルム)の内部から溶媒を抽出するために、塩化メチレン等のハロゲン化炭化水素やヘキサン等の炭化水素の溶媒で洗浄することが好ましい。溶媒を溜めた槽内に浸漬して洗浄する場合は、20~180秒の時間を掛けることが、残留溶媒の溶出分が少ないポリオレフィン微多孔膜を得るために好ましい。さらに、より洗浄の効果を高めるためには、槽を数段に分け、ポリオレフィン微多孔膜の搬送工程の下流側から、洗浄溶媒を注ぎ入れ、工程搬送の上流側に向けて洗浄溶媒を流し、下流槽における洗浄溶媒の純度を上流層のものよりも高くすることが好ましい。また、ポリオレフィン微多孔膜への要求性能によっては、アニール処理により熱セットを行っても良い。なお、アニール処理は、工程での搬送性等の観点から60~130℃で実施することが好ましく、70~125℃がさらに好ましい。
 本発明のポリオレフィン微多孔膜は、以上の工程を経て製造され、化学的処理(例えば、界面活性剤の塗布や親水性官能基を用いたグラフト重合、表面自由エネルギーが低い液体による湿潤処理など)や物理的処理(例えば、プラズマ処理やコロナ処理など)を伴う親水化処理を施さなくても、表面自由エネルギーの高い水溶液を良好に含浸させることができるのが特徴である。
 上記の化学的処理を施さないことにより、不要な物質の混入を防ぐことができ、製造コストの低減にも繋がる。また、物理的処理を施さないことにより、樹脂の劣化および力学強度の低下を防止できる。
(用途)
 本発明のポリオレフィン微多孔膜からなる複合膜用基材は、当該微多孔膜の空孔内に親水性樹脂化合物を担持させて複合膜を構成し得る。当該複合膜は、衣類や特殊な防護衣、衛生用品(例えば紙おむつ)、全熱交換素子等の透湿防水膜、固体高分子形燃料電池、水電気分解、ソーダ分解等の電解質膜などに好適に利用できる。
 以下、本発明の実施例、比較例および各種測定方法について説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(測定方法)
(ポリオレフィンの質量平均分子量)
 質量平均分子量は、ポリオレフィン微多孔膜の試料をo-ジクロロベンゼン中に加熱溶解し、GPC(Waters社製 Alliance GPC 2000型、カラム;GMH6-HTおよびGMH6-HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定することで得た。分子量の校正には分子量単分散ポリスチレン(東ソー社製)を用いた。
(膜厚)
 ポリオレフィン微多孔膜の膜厚は、接触式の膜厚計(ミツトヨ社製、ライトマチックVL-50A)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。測定中には0.01Nの荷重が印加されるように調整した。
(平均孔径)
 ポリオレフィン微多孔膜の平均細孔径は、ポーラスマテリアル社製パームポロメーター(型式:CFP-1500AEX)を用い含浸液にGALWICK(パーフルオロポリエーテル;ポーラスマテリアル社製 表面張力15.9dyne/cm)を用いて、ASTM E1294-89に規定するハーフドライ法に基づき、平均流量孔径(nm)を計算した。測定温度は25℃、測定圧力は200kPa~3500kPaとした。
(空孔率)
 ポリオレフィン微多孔膜の空孔率(ε)は、下記式により算出した。
 ε(%)={1-Ws/(ds・t)}×100
 Ws:ポリオレフィン微多孔膜の目付け(g/m
 ds:ポリオレフィンの真密度(g/cm
 t:ポリオレフィン微多孔膜の膜厚(μm)
 なお、ポリオレフィン微多孔膜の目付けは、サンプルを10cm×10cmに切り出し、その質量を測定し、質量を面積で割ることで目付を求めた。
(接触角)
 測定装置として、協和界面科学株式会社製 全自動接触角計 DMo-701FEおよびInterface Measurement and Analysis System FAMASを使い、静的接触角を測定した。親水化処理していない状態のポリオレフィン微多孔膜に対して、4μLのエタノール水溶液(工業用エタノール(純度95%)/純水 混合体積比1/2)を試料上に滴下し、大気中常圧下、24℃、相対湿度60%における滴下1秒後の接触角θ1および10分後の接触角θ2を測定した。
(ガーレ値)
 JIS P8117に従って、面積642mmのポリオレフィン微多孔膜のガーレ値(秒/100cc)を測定した。
(引張破断強度)
 引張試験機(オリエンテック社製 RTE-1210)にて、短冊状の試験片(幅15mm、長さ50mm)を200mm/分の速度で引っ張り、試験片が破断した時の引張強度を求めた。
(接触角の変化率)
 上記、接触角の測定により得られた液体滴下1秒後の接触角θ1と液体滴下10分後の接触角θ2から接触角の変化率を下式により算出し、浸透速度の指標とした。例えば、1秒後の接触角が同等の2つのサンプルがあった場合、10分後の接触角の変化率が大きいほど浸透速度が高いことを意味する。
 接触角の変化率=(θ1-θ2)/θ1×100(%)
(エタノールと水の混合液の浸透性)
 純水に対して工業用エタノール(純度95%)の体積比を変えて混合したエタノール水溶液を各種準備して、水の吸湿の視認性が良好な紙片の上に試料を密着して設置し、該試料上に準備したエタノール水溶液を10uL滴下し、大気中常圧下、24℃、相対湿度60%における滴下後の液体の浸透の有無を観察した。滴下1分後での紙片の濡れの有無を目視で確認し、浸透の有無を判定した。なお、裏面の紙片が変色した場合は完全に浸透した(○)と判断し、変色していない場合は裏面まで液滴が抜けていないために浸透していない(×)と判断した。最高水濃度は、液滴が浸透するエタノール水溶液の水濃度のうち、最も水濃度の高いものを意味する(なお、エタノール濃度は純度100%に換算した上で水濃度を算出している)。また、以下の表2では最高水濃度におけるエタノール水溶液の表面自由エネルギーも合わせて示している。
(実施例1)
 質量平均分子量が460万の高分子量ポリエチレン(PE1)12質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)3質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が15質量%となるようにして、予め準備しておいた流動パラフィン72質量部とデカリン(デカヒドロナフタレン)13質量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中で25℃で冷却するとともに、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながら、ゲル状シート(ベーステープ)を作製した。該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度110℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った。
 次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続してポリエチレン微多孔膜を浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1槽<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、120℃に加熱したローラー上を搬送させながらアニール処理をすることでポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。なお、以下の表1に、ポリエチレン微多孔膜の製造条件を示し、表2にポリエチレン微多孔膜の物性値および評価結果を示した。また、他の実施例および比較例についても同様に表1、2にまとめて示した。
(実施例2)
 実施例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)6質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)24質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が30質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)6質量部とパラフィン64質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度110℃にて倍率13倍で延伸し、その後直ちに125℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(実施例3)
 実施例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)16質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)4質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が20質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)2質量部とパラフィン78質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率3.9倍で延伸し、引き続いて幅方向に温度100℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(実施例4)
 実施例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)16質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)4質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が20質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)2質量部とパラフィン78質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5倍で延伸し、引き続いて幅方向に温度105℃にて倍率9倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(実施例5)
 実施例1と同様にポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度100℃にて倍率7倍で延伸し、引き続いて幅方向に温度100℃にて倍率13倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(実施例6)
 実施例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)6質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)6質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が12質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)30質量部とパラフィン58質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中25℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度110℃にて倍率6.5倍で延伸し、引き続いて幅方向に温度115℃にて倍率15倍で延伸し、その後直ちに138℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の浸透性に優れ、複合膜用基材として好適であった。
(比較例1)
 実施例1において、質量平均分子量が460万の高分子量ポリエチレン(PE1)3質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)14質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が17質量%となるようにして、予め準備しておいたデカリン(デカヒドロナフタレン)32質量部とパラフィン51質量部との混合溶剤と混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中20℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した。その後、該ベーステープを長手方向に温度90℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度105℃にて倍率11倍で延伸し、その後直ちに139℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、孔径が大きく、エタノール/水=1/2溶液の浸透性が悪く、複合膜用基材に適さなかった。
(比較例2)
 質量平均分子量が460万の高分子量ポリエチレン(PE1)3質量部と、質量平均分子量が56万の低分子量ポリエチレン(PE2)27質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が30質量%となるようにデカリン(デカヒドロナフタレン)70質量部と混合し、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中20℃で冷却し、ゲル状シートを作製した。
 該ゲル状シートを70℃の温度雰囲気下にて20分間、予備(第1)乾燥を行い、その後、室温下(25℃)で長手方向に1.5倍で一次(予備)延伸をした後に、本乾燥を60℃の温度雰囲気下にて5分間行った。本乾燥後のベーステープ中に残存する溶剤は20質量%であった。本乾燥を完了した後、二次延伸として該ベーステープを長手方向に温度100℃にて倍率5.5倍で延伸し、引き続いて幅方向に温度125℃にて倍率13倍で延伸し、その後直ちに120℃で熱処理(熱固定)を行って、二軸延伸ポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の接触角が大きく、親水性樹脂化合物水溶液の含浸が悪く、複合膜用基材に適さなかった。
(比較例3)
 ポリオレフィン樹脂として、質量平均分子量が460万の高分子量ポリエチレン1.7質量部と、質量平均分子量が56万の低分子量ポリエチレン19.3質量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が21質量%となるようにデカリン(デカヒドロナフタレン)79質量部と混合し、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度170℃でダイよりシート状に押出し、ついで前記押出物を水浴中で25℃で冷却し、ゲル状シートを作製した。
 該ゲル状シートを55℃の温度雰囲気下にて10分間、予備(第1)乾燥を行い、その後、30℃で長手方向に1.6倍で一次(予備)延伸をした後に、本乾燥を50℃の温度雰囲気下にて5分間行った(溶剤残留量1%未満)。本乾燥を完了した後、二次延伸として該ベーステープを長手方向に温度95℃にて倍率3.5倍で延伸し、引き続いて幅方向に温度115℃にて倍率10倍で延伸し、その後直ちに135℃で熱処理(熱固定)を行って、二軸延伸ポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、エタノール/水=1/2溶液の接触角が大きく、親水性樹脂化合物水溶液の含浸が悪く、複合膜用基材に適さなかった。
(比較例4)
 実施例2において、デカリン(デカヒドロナフタレン)40質量部とパラフィン30質量部とした以外は、実施例2と同様にポリエチレン微多孔膜を得た。
 得られたポリエチレン微多孔膜は、厚み6μm、空孔率43%、平均孔径40nm、エタノールと水の混合液(体積比1/2)を滴下して滴下後1秒後の表面の接触角θ1が71度、10分後の表面の接触角θ2が65度、接触角の変化率が8%である、複合膜用基材を用いた。得られたポリエチレン微多孔膜は、最高水濃度が実施例対比で低く、複合膜用基材に適さなかった。
(比較例5)
 実施例1において、質量平均分子量が200万の高分子量ポリエチレン(PE1)8質量部を用いて、ポリエチレン樹脂総量の濃度が8質量%となるようにして、予め準備しておいたパラフィン92質量部とを混ぜ、ポリエチレン溶液を調製した。
 このポリエチレン溶液を温度200℃でダイよりシート状に押出し、ついで前記押出物を温水浴中50℃で冷却し、ゲル状シートを作製した。
 該ベーステープを55℃で10分、さらに、95℃で10分乾燥してベーステープに付着した水を除去した。その後、該ベーステープを長手方向に温度120℃にて倍率4倍で延伸し、引き続いて幅方向に温度120℃にて倍率10倍で延伸し、その後直ちに130℃で熱処理(熱固定)を行った以外は、実施例1と同様にポリエチレン微多孔膜を得た。
次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続してポリエチレン微多孔膜を浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1層<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、90℃に加熱したローラー上を搬送させながらアニール処理をすることでポリエチレン微多孔膜を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(固体高分子形燃料電池用途での検証)
 実施例1のポリエチレン微多孔膜からなる複合膜用基材を使って、パーフルオロスルホン酸系樹脂を空孔内に担持させた固体高分子形燃料電池の電解質膜を作製し、効果を検証した。
(1)溶媒比率の検討
 ガラス板上に実施例1のポリエチレン微多孔膜からなる複合膜用基材(白色不透明の膜)を置き、上から静かに水/エタノール混合溶液を滴下し、基材の色の変化を確認した。用いた混合溶液は、A:水/エタノール=4/1(質量比)、B:水/エタノール=3/1(質量比)、C:水/エタノール=2/1(質量比)の3種類とした。その結果、Cの混合溶液(水/エタノール=2/1(質量比))だけが基材の色を透明に変化させたため、基材の空孔内が混合溶液で充填されたことが確認された。なお、A,Bの混合溶液については基材の色は白色不透明のまま変化がなく、基材の空孔内に混合溶液は充填されなかった。以下の検討では、Cの混合溶液(水/エタノール=2/1(質量比))を用いて、電解質膜を作製した。
(2)固体高分子形燃料電池の電解質膜およびMEAの作製
 基材として実施例1のポリエチレン微多孔膜からなる複合膜用基材を用い、親水性樹脂化合物としてパーフルオロスルホン酸系樹脂(当量質量EW=560)を用いた。パーフルオロスルホン酸系樹脂を水/エタノール=2/1(質量比)の混合溶液にポリマー濃度3.3質量%で溶解させてポリマー溶液を作製した。基材にポリマー溶液を含浸させた後、常温で乾燥させ、溶媒を除去した。さらに、100°Cで13.5時間アニーリング処理した後、これを洗浄・乾燥させ、複合膜からなる電解質膜(膜厚約7μm)を得た。
(燃料電池運転評価)
 触媒ペーストは、上記パーフルオロスルホン酸系樹脂(EW=560)の分散組成物10.84g、触媒としてTKK Pt/C (田中貴金属社製 TEC10E50E 白金担持量45.9%)2.0g、RO水8.67g、1-プロパノール8.67g、2-プロパノール8.67gをジルコニアボール(φ5)200gと共にジルコニア容器に入れ、遊星型ボールミル (独国フリッチュ社製) を用いて回転速度200rpmで1時間ボールミル混合することで作製した。
 電極触媒層は、上記により作製した触媒ペーストをポリテトラフルオロエチレン(PTFE)シート上にアプリケーターPI-1210(テスター産業)で塗布し、大気雰囲気中で乾燥することで作製した。白金担持量は0.3 mg/cm2前後に調整した。
 MEAは、5cm2に切り出した2枚の上記電極触媒層の間に電解質膜を挟み込み、135℃、圧力2.0kNで1分間ホットプレスした後、PTFEシートをはがすことで作製した。
 上記MEAの両側をガス拡散層(SGL GROUP社製のSIGRACET GDL 24BC)で挟み込み、ガスケットと共にElectroChem社製単セル(触媒層面積:5cm2)に組み込み、セル温度を80℃にし、水バブリング方式を用いることで両極に流通するガスの相対湿度を制御して2種類の電気化学特性測定を行った。1つはカレントインタラプト法であり、アノード側に水素ガス、カソード側に酸素ガスをそれぞれ流量100mL/min及び500mL/minで流通させ、両極の相対湿度をそれぞれ同時に60%RH, 30%RH, 20%RH, 10%RHと変化させて、電気化学測定システムHZ-3000 (北斗電工株式会社)を用いて、初期状態を1 A/cm2として電流を1分セルに流し、瞬時に電流を遮断した際の電圧変化を測定することでオーム抵抗を算出した。2つめはI-V 特性試験であり、燃料としてアノード側に水素ガス、酸化剤としてカソード側に酸素ガスまたは空気をそれぞれ流量100mL/min及び500mL/minで流通させ、両極の相対湿度をそれぞれ同時に30%RH, 20%RH, 10%RHと変化させて、電池充放電装置HJ1010SM8A (北斗電工株式会社)で電流を0~10 Aまで走引した際のセル電圧を測定した。
 図1は、上記のようにして得られたMEAについて、カレントインタラプトからオーム抵抗を算出し、MEAのプロトン伝導度を算出した結果である。参考例として、デュポン社の電解質膜であるNafion NR211(膜厚25μm)を用いた。図1に示したように、プロトン伝導度に関しては、プロトン伝導性の高い低EWのパーフルオロスルホン酸ポリマーを充填したこと、及び膜厚が約4分の1である薄膜化の効果もあり、本発明の基材を用いて作製したMEAはNR211を用いた場合よりも高い性能を示した。
 図2は、上記のようにして得られたMEAについて、湿度20%下(酸化剤:Oまたは空気)におけるセル電圧と電流密度の関係を示したものである。参考例として、デュポン社の電解質膜であるNafion NR211(膜厚25μm)を用いた。図2に示したように、湿度20%という低湿度環境においては、従来のNR211ではほとんど発電できなかったところ、本発明の基材を用いて作製したMEAは2 A/cm2まで発電することができ、新規の電解質膜が得られていることが分かる。これは、プロトン伝導性の高い低EWパーフルオロスルホン酸ポリマー(EW560)を触媒層中のアイオノマーに使用したこと、EW560の電解質をポリオレフィン微多孔膜に充填することで電解質膜を作製したこと、およびその電解質膜の薄膜化によって、カソードで発生した水が電解質膜のアノード側にまで十分浸透できるようになったため、電解質膜内の湿度を保つことが出来るようになった結果であると考えられる。
 本発明の複合膜用基材は、基材の空孔内にパーフルオロスルホン酸系樹脂を好適に充填でき、しかも非常に薄い複合膜が得られるため、従来よりもプロトン伝導に優れ、かつ、低湿度環境でも発電可能な新規な電解質膜を提供する点で、産業上利用可能性を有する。

Claims (7)

  1.  ポリオレフィン微多孔膜からなり、当該微多孔膜の空孔内に親水性樹脂化合物を担持するための複合膜用基材であって、
     平均孔径が1nm以上50nm以下であり、
     空孔率が50%以上78%以下であり、
     膜厚が1μm以上12μm以下であり、かつ、
     前記ポリオレフィン微多孔膜を親水化処理しない状態で、その表面にエタノールと水の混合液(体積比1/2)を滴下した場合に、滴下後1秒後の当該液滴と該表面の接触角θ1が0~90度であり、滴下後10分後の当該液滴と該表面の接触角θ2が0~70度であり、接触角の変化率((θ1-θ2)/θ1×100)が10~50%である、複合膜用基材。
  2.  前記接触角の変化率((θ1-θ2)/θ1×100)が17~41%である、請求項1に記載の複合膜用基材。
  3.  前記ポリオレフィンが、質量平均分子量が90万以上である高分子量ポリエチレンと、質量平均分子量が20万~80万である低分子量ポリエチレンとを、質量比で20:80~80:20の割合で混合させたポリエチレン組成物である、請求項1または2に記載の複合膜用基材。
  4.  前記親水性樹脂化合物の溶媒であって、表面自由エネルギーが35~36.5mJ/m2である液体が含浸可能である、請求項1~3のいずれか1項に記載の複合膜用基材。
  5.  水濃度が65.8体積%超70.6体積%以下である、エタノールと水の混合液が含浸可能である、請求項4に記載の複合膜用基材。
  6.  JIS P8117に従って測定したガーレ値が90秒/100cc以下である、請求項1~5のいずれか1項に記載の複合膜用基材。
  7.  ポリオレフィン固形分の単位断面積当たりに換算した引張破断強度(MDまたはTD)が50MPa以上である、請求項1~6のいずれか1項に記載の複合膜用基材。
PCT/JP2017/020367 2016-07-25 2017-05-31 複合膜用基材 WO2018020825A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020217014965A KR102391826B1 (ko) 2016-07-25 2017-05-31 복합막용 기재
CA3031727A CA3031727A1 (en) 2016-07-25 2017-05-31 Substrate for composite membrane
DK17833835.6T DK3489290T3 (da) 2016-07-25 2017-05-31 Kompositmembran
CN201780046047.3A CN109476870B (zh) 2016-07-25 2017-05-31 复合膜用基材
JP2017557474A JP6305665B1 (ja) 2016-07-25 2017-05-31 複合膜用基材
EP17833835.6A EP3489290B1 (en) 2016-07-25 2017-05-31 Composite membrane
KR1020197001758A KR102255813B1 (ko) 2016-07-25 2017-05-31 복합막
US16/319,661 US20210288341A1 (en) 2016-07-25 2017-05-31 Substrate for composite membrane
EP22162145.1A EP4032946A1 (en) 2016-07-25 2017-05-31 Substrate for composite membrane
US17/695,225 US11929531B2 (en) 2016-07-25 2022-03-15 Composite membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016145738 2016-07-25
JP2016-145738 2016-07-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/319,661 A-371-Of-International US20210288341A1 (en) 2016-07-25 2017-05-31 Substrate for composite membrane
US17/695,225 Division US11929531B2 (en) 2016-07-25 2022-03-15 Composite membrane

Publications (1)

Publication Number Publication Date
WO2018020825A1 true WO2018020825A1 (ja) 2018-02-01

Family

ID=61016688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020367 WO2018020825A1 (ja) 2016-07-25 2017-05-31 複合膜用基材

Country Status (9)

Country Link
US (2) US20210288341A1 (ja)
EP (2) EP4032946A1 (ja)
JP (2) JP6305665B1 (ja)
KR (2) KR102255813B1 (ja)
CN (1) CN109476870B (ja)
CA (1) CA3031727A1 (ja)
DK (1) DK3489290T3 (ja)
TW (2) TW202139508A (ja)
WO (1) WO2018020825A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476870B (zh) 2016-07-25 2021-11-23 帝人株式会社 复合膜用基材
JP6940363B2 (ja) 2017-10-10 2021-09-29 富士紡ホールディングス株式会社 保持パッド及びその製造方法
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
JP7255945B2 (ja) * 2019-03-14 2023-04-11 帝人株式会社 親水性複合多孔質膜
JP6967039B2 (ja) * 2019-06-28 2021-11-17 帝人株式会社 めっき隔膜、めっき方法及びめっき装置
CN112143004A (zh) * 2020-09-21 2020-12-29 江苏厚生新能源科技有限公司 高亲水性聚烯烃多孔膜及原料配方、制备方法、电池
US20220134292A1 (en) * 2020-11-04 2022-05-05 Uop Llc Ionically conductive thin film composite membranes for energy storage applications
JPWO2022186095A1 (ja) 2021-03-02 2022-09-09
CN113217313B (zh) * 2021-04-22 2022-05-17 北京航空航天大学杭州创新研究院 响应致动器件、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053245A (ja) * 2008-08-28 2010-03-11 Teijin Ltd ポリオレフィン微多孔膜
WO2011118735A1 (ja) * 2010-03-24 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜及びその製造方法、非水系二次電池用セパレータ、並びに非水系二次電池
WO2014181761A1 (ja) * 2013-05-07 2014-11-13 帝人株式会社 液体フィルター用基材
JP2014217800A (ja) * 2013-05-07 2014-11-20 帝人株式会社 液体フィルター用基材
JP2014218563A (ja) * 2013-05-07 2014-11-20 帝人株式会社 液体フィルター用基材

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849311A (en) * 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
JPH0768377B2 (ja) * 1987-07-20 1995-07-26 東燃株式会社 電解質薄膜
JP2569680B2 (ja) 1988-01-18 1997-01-08 東レ株式会社 親水化されたポリオレフィン微孔性膜及び電池用セパレータ
JPH0888013A (ja) 1994-09-16 1996-04-02 Tonen Corp 常温型燃料電池用薄膜電解質とこれを用いた常温型燃料電池
JPH08141013A (ja) 1994-11-18 1996-06-04 New Oji Paper Co Ltd 衛生材料の防水材
JP3699562B2 (ja) * 1997-04-23 2005-09-28 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法
JP4555328B2 (ja) 2001-06-01 2010-09-29 三菱製紙株式会社 全熱交換素子用紙
KR100520722B1 (ko) 2001-06-01 2005-10-11 미쓰비시 세이시 가부시키가이샤 전(全)열교환 소자용지
JP2005166557A (ja) 2003-12-04 2005-06-23 Jsr Corp 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池
CN101209609B (zh) * 2006-12-30 2011-06-15 比亚迪股份有限公司 一种聚烯烃复合薄膜及其制备方法和用途
CN102341944B (zh) * 2009-03-04 2014-10-29 旭化成电子材料株式会社 氟系高分子电解质膜
JP2011241361A (ja) 2010-05-21 2011-12-01 Teijin Ltd ポリエチレン微多孔膜
US11127964B2 (en) * 2010-07-28 2021-09-21 Nanyang Technological University Method for preparing a porous polyimide film and a composite membrane comprising the same
JP5147976B2 (ja) * 2010-11-01 2013-02-20 帝人株式会社 連結多孔質シート及びその製造方法、非水系二次電池用セパレータ、及び非水系二次電池及びその製造方法
MY161697A (en) * 2011-12-28 2017-05-15 Toray Battery Separator Film Polyolefin microporous film and method for producing same
TWI452755B (zh) * 2011-12-29 2014-09-11 Ind Tech Res Inst 隔離膜及其製造方法
JP6117503B2 (ja) 2012-09-24 2017-04-19 帝人株式会社 透湿防水膜
CN108579461A (zh) * 2013-10-11 2018-09-28 三菱化学株式会社 中空多孔膜
CN109476870B (zh) 2016-07-25 2021-11-23 帝人株式会社 复合膜用基材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053245A (ja) * 2008-08-28 2010-03-11 Teijin Ltd ポリオレフィン微多孔膜
WO2011118735A1 (ja) * 2010-03-24 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜及びその製造方法、非水系二次電池用セパレータ、並びに非水系二次電池
WO2014181761A1 (ja) * 2013-05-07 2014-11-13 帝人株式会社 液体フィルター用基材
JP2014217800A (ja) * 2013-05-07 2014-11-20 帝人株式会社 液体フィルター用基材
JP2014218563A (ja) * 2013-05-07 2014-11-20 帝人株式会社 液体フィルター用基材

Also Published As

Publication number Publication date
US11929531B2 (en) 2024-03-12
TW202139508A (zh) 2021-10-16
CN109476870B (zh) 2021-11-23
JP6305665B1 (ja) 2018-04-04
KR20210060655A (ko) 2021-05-26
EP3489290A4 (en) 2019-08-28
CA3031727A1 (en) 2018-02-01
DK3489290T3 (da) 2022-10-31
JPWO2018020825A1 (ja) 2018-07-26
KR102255813B1 (ko) 2021-05-24
JP2018090821A (ja) 2018-06-14
CN109476870A (zh) 2019-03-15
EP3489290B1 (en) 2022-10-05
KR20190022658A (ko) 2019-03-06
EP3489290A1 (en) 2019-05-29
EP4032946A1 (en) 2022-07-27
US20210288341A1 (en) 2021-09-16
KR102391826B1 (ko) 2022-04-27
TW201825277A (zh) 2018-07-16
US20220209272A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6305665B1 (ja) 複合膜用基材
EP3490044B1 (en) Electrolyte membrane and method for producing same
Qiao et al. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability
JP4824561B2 (ja) 微孔性pvdfフィルムおよび製造方法
JP5182908B2 (ja) 膜電極接合体および燃料電池
Abu‐Saied et al. Preparation and characterization of novel grafted cellophane‐phosphoric acid‐doped membranes for proton exchange membrane fuel‐cell applications
Saleem et al. Development and characterization of novel composite membranes for fuel cell applications
JP2011241361A (ja) ポリエチレン微多孔膜
JP2020161343A (ja) 電解質膜及びその製造方法
Martínez-Rodriguez et al. Characterization of microporous layer in carbon paper GDL for PEM fuel cell
KR101237821B1 (ko) 이온전도성 복합막, 이의 제조방법, 막-전극 접합체 및 연료전지
JP2020514965A (ja) 膜電極接合体の製造方法
Yu et al. Nafion/PBI nanofiber composite membranes for fuel cells applications
KR20110017750A (ko) 친수성이 향상된 다공성막을 이용한 수소이온전도성 복합막의 제조방법 및 그 방법에 의해 제조된 수소이온전도성 복합막
TW201103183A (en) Multilayerd proton exchange membrane and method for manufacturing the same
WO2014112497A1 (ja) 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017557474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001758

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3031727

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833835

Country of ref document: EP

Effective date: 20190225