TW201103183A - Multilayerd proton exchange membrane and method for manufacturing the same - Google Patents

Multilayerd proton exchange membrane and method for manufacturing the same Download PDF

Info

Publication number
TW201103183A
TW201103183A TW098123769A TW98123769A TW201103183A TW 201103183 A TW201103183 A TW 201103183A TW 098123769 A TW098123769 A TW 098123769A TW 98123769 A TW98123769 A TW 98123769A TW 201103183 A TW201103183 A TW 201103183A
Authority
TW
Taiwan
Prior art keywords
proton exchange
layer
solvent
membrane
water
Prior art date
Application number
TW098123769A
Other languages
Chinese (zh)
Other versions
TWI387146B (en
Inventor
Hsiu-Li Lin
Leon Tzyy-Lung Yu
Yu-Ting Huang
Han-Lan Teng
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW098123769A priority Critical patent/TWI387146B/en
Publication of TW201103183A publication Critical patent/TW201103183A/en
Application granted granted Critical
Publication of TWI387146B publication Critical patent/TWI387146B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

A multilayered proton exchange membrane and a method for manufacturing the same are provided. The multilayered proton exchange membrane includes a first proton exchange layer and a second proton exchange layer, wherein the water content of the first proton exchange layer is lower than that of the second proton exchange layer.

Description

201103183 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種質子交換膜,且特別是有關於一 種用於直接甲醇燃料電池之質子交換膜。 【先前技術】 燃料電池(Fuel cell)是一種電化學裝置,利用燃料和 氧化劑来進行電化學反應,而產生電能。由於燃料電池的 • 理論功率效率很高,被認為是一種可望取代石化能源的替 代能源。 一般而言,可根據燃料電池中所使用的電解質種類來 分類燃料電池。常用的電解質種類包括高分子薄膜、熔融 碳酸鹽、磷酸鹽、固態氧化物等。在上述電解質種類中, 高分子薄膜具有功率密度高與能量轉換效率高等特性,因 此備受矚目。此外,使用高分子薄膜的燃料電池的操作溫 度為室溫到約100°C之間,且易於進行氣密封與微型化, • 因此這種燃料電池的用途較為廣泛。 又可根據所使用的燃料種類,將使用高分子薄膜作為 電解質的燃料電池區分為質子交換膜燃料電池(photon exchange membrane fuel cell, PEMFC )與直接甲醇燃料電池 (direct methanol fuel cell, DMFC )。質子交換膜燃料電池 利用氫氣作為燃料源;而直接甲醇燃料電池則是直接在陽 極部分利用液態甲醇作為燃料源。 目前常用的高分子薄膜材料為全氟磺酸 (perfluorosulfonic acid,以下簡稱 PFSA)樹脂,例如 Du 201103183201103183 VI. Description of the Invention: [Technical Field] The present invention relates to a proton exchange membrane, and more particularly to a proton exchange membrane for a direct methanol fuel cell. [Prior Art] A fuel cell is an electrochemical device that uses an electric fuel and an oxidant to perform an electrochemical reaction to generate electric energy. Due to the high theoretical power efficiency of the fuel cell, it is considered to be an alternative energy source that is expected to replace petrochemical energy. In general, fuel cells can be classified according to the type of electrolyte used in the fuel cell. Commonly used electrolyte types include polymer films, molten carbonates, phosphates, solid oxides, and the like. Among the above-mentioned types of electrolytes, polymer films have high power density and high energy conversion efficiency, and are therefore attracting attention. Further, a fuel cell using a polymer film has an operating temperature of from room temperature to about 100 ° C and is easy to be hermetically sealed and miniaturized. Therefore, the fuel cell is widely used. Further, a fuel cell using a polymer film as an electrolyte can be classified into a photon exchange membrane fuel cell (PEMFC) and a direct methanol fuel cell (DMFC) depending on the type of fuel used. Proton exchange membrane fuel cells use hydrogen as a fuel source, while direct methanol fuel cells use liquid methanol as a fuel source directly in the anode. The commonly used polymer film material is perfluorosulfonic acid (hereinafter referred to as PFSA) resin, for example Du 201103183

Pont Co.生產之全氟磺酸化樹脂,其商業化產品名稱包括 NAFION®、FLEMION®、ACIPLEX® 等。PFSA 樹脂薄膜 的特性包括了機械強度向、化學安定性高、分解溫度高 (>280°C)與質子傳導能力高等等。 然而,當利用PFSA樹脂薄膜作為直接甲醇燃料電池 的電解質材料時,位在陽極的未反應曱醇液體極易滲透穿 過PFSA樹脂薄膜而到達陰極,這種現象稱為甲醇穿透 (methanol crossover )。甲醇穿透會大幅降低直接甲醇燃料 φ 電池的能量轉換效率,還可能會縮減直接曱醇燃料電池的 使用年限。當利用其他有機極性化合物(如乙醇)作為燃 料源時,亦可能發生類似的問題。 因此,相關領域亟需提出一種具有低甲醇穿透性的 分子薄膜。 ° 【發明内容】 本發明之-態樣提出了一種多層質子交換膜,其係設 籲於°又於燃料電池之一陽極與一陰極之間,且具有低甲醇穿 透性與理想的質子傳導率。 根據本發明一具體實施例,上述多層質子交換膜至少 包含第一質子交換層與第二質子交換層,其中第二質子交 換層覆設於第-質子交換層上,且第一質子交換層的含= 量低於第二質子交換層的含水量。 本發明另一態樣提出一種膜電極組,其可運用於直 甲醇燃料電池中。 根據本發明一具體實施例,上述膜電極組至少包含根 201103183 據本發明上述態樣之多層質子交換膜、陽極與陰極。上述 陽極設於鄰近第一質子交換層處;而陰極設於鄰近第二質 子交換層處。 本發明又一態樣提出一種燃料電池,其使用了根據本 發明上述態樣之多層質子交換膜或膜電極組。 根據本發明一具體實施例,上述燃料電池至少包含根 據本發明上述態樣之多層質子交換膜、陽極、陰極以及集 電器。上述陽極設於鄰近第一質子交換層處;而陰極設於 鄰近第二質子交換層處。此外,集電器與陰極和/或陽極相 接觸。 本發明另一態樣提出一種多層質子交換膜之製備方 法。 根據本發明一具體實施例,上述方法至少包含下述步 驟。首先,提供第一質子交換層,其係由第一全氟磺酸樹 脂溶液所製成,上述第一全氟磺酸樹脂溶液包含第一全氟 磺酸樹脂與第一溶劑。接著,將第二全氟磺酸樹脂溶液施 覆於上述第一質子交換層上以形成第二質子交換層,上述 第二全氟磺酸樹脂溶液包含重量百分濃度為約0.1%至約 50%之第二全氟磺酸樹脂與第二溶劑,且上述第一與第二 溶劑是不同的溶劑。其後,移除上述第二溶劑,而得到多 層質子交換膜;以及將多層質子交換膜進行退火處理。 【實施方式】 已知會影響有機極性化合物燃料(如曱醇)穿透率的 因素包括氣體擴散層材料、膜材厚度、燃料液體濃度與燃 201103183 料電池工作溫度等。 傳統上,會藉由降低甲醇濃度,來緩減燃料滲透的情 形。然而,當燃料濃度降低時,燃料電池的工作效率也會 變差。此外,即便降低了燃料濃度,燃料液體還是有可能 滲透通過薄膜。另一種習知技術是藉著增加膜材的厚度來 降低曱醇穿透率;但這樣往往也會降低燃料電池的質子傳 導率。亦有文獻提出將高分子電解質膜和無機材料結合, 製成複合膜材,以阻擋甲醇分子通過;但也因此提高膜材 内部阻抗值,導致燃料電池效能下降。 有鑑於現有技術無法有效解決曱醇(或其他有機極性 化合物燃料)穿透的問題,且往往為了降低甲醇穿透率而 犧牲了燃料電池的工作效率,本發明提出了 一種多層質子 交換膜與其製備方法,此一多層質子交換膜具有較低的曱 醇穿透率以及理想的燃料電池工作效率。 下文將以多個具體實施例來闡明本發明之多層質子交 換膜的特性、結構與製備方法。首先,製備了多種單層膜 材並分析其含水率、質子傳導率與甲醇穿透率;接著,製 備了多層質子交換膜並進行性質分析;最後,將上述多層 質子交換膜製成膜電極組與單電池,並進行單電池性能測 試。 1.1 製備單層膜材 根據本發明具體實施例,製造單層膜材之方法至少包 含以下步驟:將全氟磺酸樹脂溶於適當溶劑中,以得到全 氟磺酸樹脂溶液;將全氟磺酸樹脂溶液施覆於一底材上, 201103183 以形成一薄膜;移除薄膜中的溶劑;以及進行退火處理 以下將進一步詳細說明上述步驟。 ° 上述全亂續酸树月日可為全氟確酸與聚四氟乙埽之此來 物。在本發明實驗例中,所用的全氟磺酸樹脂是來自於^ Pont公司的NAFION®聚合物分散液。由於上迷商U NAFION®聚合物分散液中含有多種溶劑組成,因此必須= 移除其中的溶劑,以取得全氟磺酸樹脂固體。一般而_^ 可將NAFI0N®聚合物分散液倒入容器中,並放置於通風 中以室溫揮發至溶劑完全揮發;之後將所得到的固體置墙 真空烘箱内,在6(TC的溫度下抽真空並定時秤重,當固於 重量保持恆定時’就代表已經完全移除了原本的溶劑,體 得到所需的全氟磺酸樹脂固體。 而Perfluorosulfonated resins manufactured by Pont Co., whose commercial product names include NAFION®, FLEMION®, ACIPLEX®, etc. The properties of the PFSA resin film include mechanical strength, high chemical stability, high decomposition temperature (>280 °C), and high proton conductivity. However, when a PFSA resin film is used as an electrolyte material for a direct methanol fuel cell, an unreacted sterol liquid at the anode is highly permeable to the PFSA resin film to reach the cathode, a phenomenon known as methanol crossover. . Methanol breakthrough significantly reduces the energy conversion efficiency of direct methanol fuel φ cells and may also reduce the useful life of direct methanol fuel cells. A similar problem may occur when other organic polar compounds such as ethanol are used as the fuel source. Therefore, there is a need in the related art to propose a molecular film having low methanol permeability. [Invention] The present invention proposes a multi-layer proton exchange membrane which is disposed between an anode and a cathode of a fuel cell and has low methanol permeability and ideal proton conduction. rate. According to an embodiment of the present invention, the multi-layer proton exchange membrane comprises at least a first proton exchange layer and a second proton exchange layer, wherein the second proton exchange layer is coated on the first proton exchange layer, and the first proton exchange layer The content of = is lower than the water content of the second proton exchange layer. Another aspect of the invention provides a membrane electrode assembly that can be used in a direct methanol fuel cell. According to a specific embodiment of the present invention, the membrane electrode assembly comprises at least a root multi-layer proton exchange membrane, an anode and a cathode according to the above aspect of the invention. The anode is disposed adjacent to the first proton exchange layer; and the cathode is disposed adjacent to the second proton exchange layer. Still another aspect of the invention provides a fuel cell using a multilayer proton exchange membrane or membrane electrode assembly according to the above aspect of the invention. According to an embodiment of the present invention, the fuel cell comprises at least the multilayer proton exchange membrane, anode, cathode and current collector according to the above aspect of the invention. The anode is disposed adjacent to the first proton exchange layer; and the cathode is disposed adjacent to the second proton exchange layer. In addition, the current collector is in contact with the cathode and/or the anode. Another aspect of the invention provides a method of preparing a multilayer proton exchange membrane. According to a specific embodiment of the invention, the above method comprises at least the following steps. First, a first proton exchange layer is provided which is made of a first perfluorosulfonic acid resin solution, and the first perfluorosulfonic acid resin solution comprises a first perfluorosulfonic acid resin and a first solvent. Next, a second perfluorosulfonic acid resin solution is applied onto the first proton exchange layer to form a second proton exchange layer, and the second perfluorosulfonic acid resin solution comprises a concentration by weight of about 0.1% to about 50. % of the second perfluorosulfonic acid resin and the second solvent, and the first and second solvents are different solvents. Thereafter, the second solvent is removed to obtain a multi-layer proton exchange membrane; and the multilayer proton exchange membrane is annealed. [Embodiment] Factors which affect the penetration rate of an organic polar compound fuel such as decyl alcohol include gas diffusion layer material, film thickness, fuel liquid concentration, and operating temperature of a fuel cell. Traditionally, fuel infiltration has been mitigated by reducing the methanol concentration. However, when the fuel concentration is lowered, the fuel cell operating efficiency is also deteriorated. In addition, even if the fuel concentration is lowered, it is possible for the fuel liquid to permeate through the film. Another conventional technique is to reduce the penetration of sterol by increasing the thickness of the membrane; however, this tends to reduce the proton conductivity of the fuel cell. It has also been proposed in the literature to combine a polymer electrolyte membrane with an inorganic material to form a composite membrane to block the passage of methanol molecules; however, it also increases the internal impedance of the membrane, resulting in a decrease in fuel cell performance. In view of the fact that the prior art cannot effectively solve the problem of penetration of sterol (or other organic polar compound fuel), and often sacrifices the working efficiency of the fuel cell in order to reduce the methanol permeability, the present invention proposes a multilayer proton exchange membrane and its preparation. By this method, the multi-layer proton exchange membrane has a low sterol permeability and an ideal fuel cell operating efficiency. The characteristics, structure and preparation method of the multilayer proton exchange membrane of the present invention will be clarified below in a number of specific examples. Firstly, a variety of single-layer membranes were prepared and their water content, proton conductivity and methanol permeability were analyzed. Next, a multi-layer proton exchange membrane was prepared and analyzed for properties. Finally, the multilayer proton exchange membrane was fabricated into a membrane electrode assembly. With single cells, and perform single cell performance testing. 1.1 Preparation of a single layer film According to a specific embodiment of the present invention, the method for producing a single layer film comprises at least the steps of: dissolving a perfluorosulfonic acid resin in a suitable solvent to obtain a perfluorosulfonic acid resin solution; The acid resin solution is applied to a substrate, 201103183 to form a film; the solvent in the film is removed; and annealing is performed. The above steps will be further described in detail below. ° The above-mentioned full-flooded acid tree may be the perfluorinated acid and polytetrafluoroethylene. In the experimental example of the present invention, the perfluorosulfonic acid resin used was a NAFION® polymer dispersion from Pont Corporation. Since the U NAFION® polymer dispersion contains a variety of solvent compositions, it is necessary to remove the solvent to obtain a perfluorosulfonic acid resin solid. In general, the NAFI0N® polymer dispersion can be poured into a container and placed in aeration to evaporate at room temperature until the solvent is completely evaporated; then the resulting solid is placed in a wall vacuum oven at a temperature of 6 (TC). Vacuuming and timing weighing, when the solid weight is kept constant, means that the original solvent has been completely removed, and the desired perfluorosulfonic acid resin solid is obtained.

之後’將所得到的全氟磺酸樹脂固體溶於多種不 溶劑中,以得到均勻的全氟磺酸樹脂溶液。在本發明夕的 實驗例中,所用的溶劑可以是N,N-二甲其7夕固 办C*酉盘(N,N-dimethylacetamide,DMAc )、N,N-二曱其田 您T醯胺Thereafter, the obtained perfluorosulfonic acid resin solid was dissolved in various non-solvents to obtain a uniform perfluorosulfonic acid resin solution. In the experimental example of the present invention, the solvent used may be N, N-dimethyl, N, N-dimethylacetamide (DMAc), N, N-dioxin, T-amine.

(Ν,Ν-dimethylformamide, DMF N- 曱基曱 酿胺 (N-methylformamide,NMF )、醇類、水或或上述溶劑么 合。舉例來說’上述醇類可以是曱醇、乙醇、丙醇或^組 醇,而醇/水混合物可為甲醇/水(Me0H/H20)、7 、内 )乙醇/水 (EtOH/HzO)或或異丙醇/水(IPA/H2〇),其中醇類|八 的重量比約為1 : 1至4 : 1。 、、水 接著’可利用任何適當的方法’將上述全氟續酸樹月t 溶液施覆於一底材上,並使該全氟續酸樹脂溶液形成 勻的薄膜。根據本發明具體實施例,可利用塗佈、喷灑、 201103183 浸潰、網印、旋轉塗佈、刮刀塗佈或溶液注型(casting) 等方法,在底材上形成全氟績酸樹脂溶液薄層。 其後,可利用加熱法或其他適當手段,來移除上述全 氟磺酸樹脂溶液薄層中的溶劑,而得到全氟磺酸樹脂薄 膜。進行乾燥所需的加熱溫度與時間主要取決於溶劑本身 的性質;一般而言,適當的加熱溫度約為50至80°C ;在 某些具體實施例中,上述加熱溫度約為50-70°C;而加熱 時間約20-30小時,即可實質上移除溶劑。 φ 根據本發明具體實施例,可在通氮氣的烘箱中進行退 火處理。一般而言,退火溫度約為110至150°C,在某些 實施例中,上述退火溫度約為120-130°C ;而退火時間約 為10-300分鐘,在某些實施例中,上述退火時間約為30-90 分鐘。 此外,根據本發明具體實施例,製造單層膜材之方法 更包含在退火處理之後,將所得到之單層膜材放置於蒸餾 水中在室溫下進行膨潤處理,以使膜材充分吸收水分。在 φ 本發明實驗例中,上述膨潤處理進行約24小時。 再者,根據本發明具體實施例,可進一步乾燥上述經 膨潤之單層膜材,以利膜材之保存。舉例來說,上述乾燥 步驟包含在一真空烘箱中,在約50-80°C的溫度下抽真空 處理約24小時。可將單層膜材保存於抽空真空之玻璃乾燥 器(desicator)中。 1.2 單層膜材性質分析 以下實驗例中,係將全氟磺酸樹脂固體溶於不同溶劑 201103183 中’以形成重量百分濃度約l〇wt〇/0的全氟磺酸樹脂固體溶 液’並在不同退火溫度下進行約90分鐘的退火處理,以製 成單層膜材。在利用DMAc、DMF或NMF作為溶劑時移 除溶劑時所用的加熱條件為加熱溫度約7(TC,加熱時間約 30小時;而在利用醇/水(如Me〇H/H20、EtOH/H2〇咬 IPA/H2〇)作為溶劑時移除溶劑時所用的加熱條件為加熱溫 度約50°C,加熱時間約3〇小時;此外,在相關實驗例”中/皿 醇與水的重量比約為4 : 1。 • 針對根據上述方法所製得的單層臈材進行了含皮金 質子傳導率與甲醇穿透率的分析。 Κ革、 1.2.1 早層膜材之含水率 利用熱重分析儀(型號:Q5〇;廠商:ta,usa)來測 量膜=水率。首先,根據上述方法進行膜材的膨潤步驟, 吸收水分。其後,取約〇5mg(w。)的膜材 ίΐ : 的升?速率下量測膜材的重量損失,測量條 =轧流篁為2〇ml/min ;升溫速率約5°C/min ; 、範圍為3(rc至6,c。觀察加熱至2〇〇。。前的 :在此一階段中所損失的重量即為膜材中所含水 /刀的重1 (Ww)°膜材含水率的計算方式如下: 含水率% = 〇\^/1)*100% (方程式1) 祕關實驗例中,在不同溶劑種類與敎溫度 的條件下,所製得之單層膜材的含水率。 表 單層臈材含水率(%) 201103183 編號 溶劑種類 退火溫度125°C 退火溫度135°C 退火溫度150°C 1 DMAc 15.30 ------ 9.54 3.92 2 DMF 15.00 9.55 3.51 3 NMF 14.26 9.53 3.48 4 Me0H/H20 34.10 19.95 -----— 17.18 Et0H/H20 32.30 5 19.38 —--— 14.26 6 ipa/h2o 32.70 19.80 — 17 14 1 / · 1 *+ 由表i可知,在相同退火條件下,利用dmAc、麗 或NMF溶騎製備之單層赌的赌含水率低於利用醇/ 水系列溶劑所製備之單層膜材㈣材含水率。此外,隨著 退火溫度升高’同_溶㈣備的單層㈣的含水率會逐漸 1.2.2 單層膜材之質子傳導率 可利用膜厚(L,單位.cm)、膜材阻抗值㈤,單位: Ω)職與電極的躺_ (A,單位:em2)來計算 膜材的質子傳導率(σ,單位:S/em),其計算絲式如下:(Ν, Ν-dimethylformamide, DMF N-N-methylformamide (NMF), alcohol, water or the above solvents. For example, 'the above alcohols may be decyl alcohol, ethanol, propanol Or a group of alcohols, and the alcohol/water mixture may be methanol/water (Me0H/H20), 7, internal) ethanol/water (EtOH/HzO) or isopropanol/water (IPA/H2〇), wherein the alcohols The weight ratio of eight is about 1: 1 to 4: 1. And, the water may be applied to a substrate by any suitable method to apply a perfluoroacid-reducing resin solution to form a uniform film. According to a specific embodiment of the present invention, a perfluorinated acid resin solution can be formed on the substrate by coating, spraying, 201103183 impregnation, screen printing, spin coating, blade coating or solution casting. Thin layer. Thereafter, the solvent in the thin layer of the above perfluorosulfonic acid resin solution may be removed by a heating method or other appropriate means to obtain a perfluorosulfonic acid resin film. The heating temperature and time required for drying depends primarily on the nature of the solvent itself; in general, a suitable heating temperature is about 50 to 80 ° C; in some embodiments, the heating temperature is about 50-70 °. C; while heating for about 20-30 hours, the solvent can be substantially removed. φ According to a specific embodiment of the present invention, the annealing treatment can be carried out in an oven that is purged with nitrogen. In general, the annealing temperature is about 110 to 150 ° C. In some embodiments, the annealing temperature is about 120-130 ° C; and the annealing time is about 10-300 minutes. In some embodiments, the above The annealing time is approximately 30-90 minutes. In addition, according to a specific embodiment of the present invention, the method for manufacturing a single-layer film further comprises: after the annealing treatment, placing the obtained single-layer film in distilled water and performing swelling treatment at room temperature to sufficiently absorb the moisture of the film. . In the experimental example of the present invention, the swelling treatment was carried out for about 24 hours. Further, according to a specific embodiment of the present invention, the above-mentioned swelled single-layer film can be further dried to facilitate storage of the film. For example, the drying step described above comprises vacuuming at a temperature of about 50-80 ° C for about 24 hours in a vacuum oven. The single layer of film can be stored in a glass desicator with an evacuated vacuum. 1.2 Single layer membrane property analysis In the following experimental examples, the perfluorosulfonic acid resin solid was dissolved in different solvents 201103183 'to form a solid solution of perfluorosulfonic acid resin with a weight concentration of about l〇wt〇 / 0' and Annealing was carried out at different annealing temperatures for about 90 minutes to form a single layer film. The heating conditions used when removing the solvent using DMAc, DMF or NMF as the solvent are heating temperature of about 7 (TC, heating time of about 30 hours; while using alcohol/water (such as Me〇H/H20, EtOH/H2〇) When the solvent is removed as a solvent, the heating conditions are as follows: the heating temperature is about 50 ° C, and the heating time is about 3 hours; further, in the relevant experimental example, the weight ratio of the alcohol to the water is about 4 : 1. • Analysis of the gold-containing proton conductivity and methanol penetration rate for a single-layer coffin prepared according to the above method. Tanning, 1.2.1 Moisture content of early film using thermogravimetric analysis The instrument (model: Q5〇; manufacturer: ta, usa) is used to measure the film = water rate. First, the film is swollen according to the above method to absorb moisture. Thereafter, a film of about 5 mg (w.) is taken. The weight loss of the membrane was measured at the rate of rise, the measurement bar = rolling enthalpy was 2 〇 ml / min; the heating rate was about 5 ° C / min; the range was 3 (rc to 6, c). 2〇〇.. Previous: The weight lost in this stage is the calculation of the moisture content of the water/knife in the membrane (Ww)° The formula is as follows: Moisture content % = 〇\^/1)*100% (Equation 1) In the experimental example, the moisture content of the monolayer film obtained under different solvent types and enthalpy conditions. Single layer coffin moisture content (%) 201103183 No. Solvent type Annealing temperature 125°C Annealing temperature 135°C Annealing temperature 150°C 1 DMAc 15.30 ------ 9.54 3.92 2 DMF 15.00 9.55 3.51 3 NMF 14.26 9.53 3.48 4 Me0H/H20 34.10 19.95 ----- 17.18 Et0H/H20 32.30 5 19.38 —--- 14.26 6 ipa/h2o 32.70 19.80 — 17 14 1 / · 1 *+ As can be seen from Table i, under the same annealing conditions, use The moisture content of the single layer gambling prepared by dmAc, MN or NMF solution is lower than the moisture content of the single layer film (four) prepared by using the alcohol/water series solvent. In addition, as the annealing temperature increases, the same _ dissolved (four) preparation The moisture content of the single layer (4) will gradually increase. 1.2.2 The proton conductivity of the single layer membrane can be determined by the film thickness (L, unit. cm), the membrane resistance value (five), unit: Ω) and the electrode lying _ (A , unit: em2) to calculate the proton conductivity (σ, unit: S / em) of the membrane, the calculated silk pattern is as follows:

L σ ---—Rbx A (方程式2) 本發月係利用頻率應答为析儀(FrequenCyL σ ---—Rbx A (Equation 2) This month uses the frequency response as the analyzer (FrequenCy

ResponseResponse

Analyzer ;型號:SA1255B ;廠商:s〇lanr〇n,此咖⑷以 及悝電位儀(Potentiostat;型號:SI 1287;廠商:s〇iartr〇n, England)來測量膜材的阻抗值。測試過程中,將膜材放置 201103183 於恆溫恆濕箱(溫度約7(TC;相對濕度約95%)中;測試 頻率範圍介於約1 MHz至0.1 Hz ;交流電振幅為1⑻mv。 將測得的膜材阻抗值與已知的臈材厚度、接觸面積代入上 述方程式2,即可求得膜材的質子傳導率。表2列出相關 實驗例中,在不同溶劑種類與退火溫度的條件下,所製得 之單層膜材的質子傳導率。 表2 單層膜材質子傳導率(S/cm) 編號 溶劑種類 退火溫度125°C 退火溫度135°C 退火溫度150°C 1 DMAc 1.22E-02 3.89E-03 4.36E-03 2 DMF 5.64E-03 2.23E-03 1.81E-03 3 NMF 4.84E-03 1.90E-03 1.37E-03 4 Me0H/H20 5.81E-02 4.72E-02 1.76E-02 5 Et0H/H20 2.79E-02 1.08E-02 8.11E-03 6 IPA/H20 1.76E-02 7.95E-03 7.01E-03Analyzer; Model: SA1255B; Manufacturer: s〇lanr〇n, this coffee (4) and the potentiostat (Potentiostat; model: SI 1287; manufacturer: s〇iartr〇n, England) to measure the impedance value of the membrane. During the test, the film was placed in 201103183 in a constant temperature and humidity chamber (temperature about 7 (TC; relative humidity about 95%); the test frequency ranged from about 1 MHz to 0.1 Hz; the AC amplitude was 1 (8) mv. The membrane resistance value and the known coffin thickness and contact area are substituted into Equation 2 above to obtain the proton conductivity of the membrane. Table 2 lists the relevant experimental examples, under different solvent types and annealing temperatures, The proton conductivity of the obtained single-layer film. Table 2 Single-layer film material sub-conductivity (S / cm) No. Solvent type annealing temperature 125 ° C Annealing temperature 135 ° C Annealing temperature 150 ° C 1 DMAc 1.22E- 02 3.89E-03 4.36E-03 2 DMF 5.64E-03 2.23E-03 1.81E-03 3 NMF 4.84E-03 1.90E-03 1.37E-03 4 Me0H/H20 5.81E-02 4.72E-02 1.76 E-02 5 Et0H/H20 2.79E-02 1.08E-02 8.11E-03 6 IPA/H20 1.76E-02 7.95E-03 7.01E-03

由表2可知,在相同退火條件下,利用Me0H/H20溶 劑所製備之單層膜材的質子傳導率最佳;此外,隨著退火 溫度升高,同一溶劑製備的單層膜材的質子傳導率會逐漸 下降。平均來說,利用醇/水系列溶劑所製備之單層膜材的 質子傳導率優於利用DMAc、DMF與NMF所製備之單層 膜材的質子傳導率。 1.2.3單層膜材曱醇穿透率 測量單層膜材之甲醇穿透率的方法如下所述。將單層 201103183 膜材夾設於兩個連通的玻璃槽(A槽、B槽)之間,在A 槽中倒入400 ml濃度約3 Μ的甲醇水溶液,在b槽令倒入 400 ml的水,測試溫度為約70°C。 之後’每隔一小時抽由B槽中抽取三管約2 ml的溶 液,以密度計測量樣本溶液密度,並將數值代入利用已= f醇濃度與密度繪成之檢量線以計算出時間t的甲醇滚^ CB⑴。最後,利用下述方程式3來計算單層膜材的甲It can be seen from Table 2 that under the same annealing conditions, the monolayer film prepared by Me0H/H20 solvent has the best proton conductivity; in addition, the proton conduction of the single-layer film prepared by the same solvent increases with the annealing temperature. The rate will gradually decline. On average, the monolayer film prepared by using the alcohol/water series solvent has a higher proton conductivity than the monolayer film prepared by using DMAc, DMF and NMF. 1.2.3 Single layer membrane sterol permeability The method for measuring the methanol permeability of a single layer membrane is as follows. Place a single layer of 201103183 membrane between two connected glass tanks (A tank, B tank), pour 400 ml of methanol solution with a concentration of about 3 在 in tank A, and pour 400 ml into b tank. Water, test temperature is about 70 ° C. Then, every two hours, draw about 3 ml of the solution from the B tank, measure the density of the sample solution by density meter, and substitute the value into the calibration curve drawn by using the concentration and density of the alcohol to calculate the time. T of methanol rolls ^ CB (1). Finally, calculate the single layer of the film using Equation 3 below.

透率(即甲醇渗透係數p),並將各單層臈材之甲醇穿透 整理表列於表3中: 千 (方程式3) 其中, CA與CB分別為A槽與B槽中甲醇的重 (wt%) ; w刀/辰度 VB為B槽中溶液的體積(cm3); A為單層臈材的截面積(cm2); L為單層膜材的厚度(Cm);以及 P為甲醇穿透率(cm2/s)。 編號 溶劑種類 —---- DMAcThe permeability (ie, the methanol permeability coefficient p) and the methanol penetration of each single layer of tantalum are listed in Table 3: Thousand (Equation 3) where CA and CB are the weights of methanol in the A and B tanks, respectively. (wt%); w knife/length VB is the volume of the solution in the B tank (cm3); A is the cross-sectional area (cm2) of the single-layer coffin; L is the thickness (Cm) of the single-layer film; and P is Methanol penetration rate (cm2/s). No. Solvent type —---- DMAc

退火溫度125°C 退火溫度135°C 退火溫度150°C 2.86E-06 2.13E-06 1.60E-06~^ __ 2.33E-06 2.08E-06 1.20E-06 〜 __2.28E-06 2.00E-06 9.23E-07~^ ----^ 12 [S] 201103183 4 Me〇H/H20 -^48E-〇6 _ 7.56E-〇6 5 Et0H/H20 _^69E-Q6 4.44E-06 6 ipa/h2o 3.40E-06 --4.11E-06 由表3可知,在相Annealing temperature 125 ° C Annealing temperature 135 ° C Annealing temperature 150 ° C 2.86E-06 2.13E-06 1.60E-06~^ __ 2.33E-06 2.08E-06 1.20E-06 ~ __2.28E-06 2.00E -06 9.23E-07~^ ----^ 12 [S] 201103183 4 Me〇H/H20 -^48E-〇6 _ 7.56E-〇6 5 Et0H/H20 _^69E-Q6 4.44E-06 6 Ipa/h2o 3.40E-06 --4.11E-06 As can be seen from Table 3, in the phase

或NMF溶劑所製備之、火條件下,利用DMAc、DMF 水系列溶劑所製備之师的甲醇穿透率低於利用醇/ 退火溫度升高,同—;!=㈣甲醇穿㈣。此外,隨著 逐漸下降。 4冑製備的單層赌的甲醇穿透率會 丨叫矸麥照表i與表3的數 的含水率越低時,其甲醇穿 可以^現,當單層膜材 方面,分析表丄、表反之亦然。另一 材含水率降低時,單層膜材的質的=::也:單層膜 低。也就是說,若是僅降低4: = : =也會跟著降 降低單層膜材的甲醇穿透率S 、 水率,雖然能夠 質子傳導能力。 P可能必須犧牲單層膜材的 本發明一態樣提出了 一種多 交換膜兼具甲醇傳透率低以 2,1製備多層質子交換膜 基於上述實驗例的結果, 層質子交換膜,這種多層質子 及質子傳導率佳兩種性質。 第1圖為概要剖關,♦示了根據本發明具體 之二層f子交_議。子交賴_至少包含第 :;子交換層105與第二質子交換層!H),其中第= 父換層H)5的含水量低於第二f子交換層nG的含水量。 201103183 因此’欲將上述多層質子交換膜100運用於燃料電池 中時,可將第一質子交換層105設於燃料電池的陽極側, 並將第二質子交換層110設於燃料電池的陰極侧。此時, 由於第一質子交換層105的含水量較低,其甲醇穿透率也 較低’因此將其設於燃料電池的陽極侧,可有效阻擋位於 陽極側之燃料曱醇藉由滲透作用而發生曱醇穿透之情形。 另一方面,藉由使用含水量較高的膜材來作為第二質子交 換層110’可提升多層質子交換膜1〇〇的整體質子傳導率。 根據本發明具體實施例’多層質子交換膜之第一質子 父換層與第二質子交換層係利用不同的全氟續酸樹脂溶液 製備而成(製備方式將於後文詳述),其中兩種全氟磺酸樹 脂溶液中的溶質可以是相同或不同的全氟磺酸樹脂,但必 須使用兩種不同的溶劑。 具體而言’第一質子交換層的含水量與第二質子交換 層的含水量之比值為約0.15至0.8。在某些實施例中,上 述比值約為0.4至0.7。 根據本發明具體實施例,上述多層質子交換膜之厚度 為約20 μηι至約250 μηι,舉例來說,膜厚可以是約20、25、 30、40、50、60、70、80、90、100、11〇、120、130、140、 150、160、170、180、190、200、210、220、230、240、 245或250 μηι。在某些實施例中,上述厚度約為17〇μιη至 約 190μιη 本發明的另一態樣提出了上述多層質子交換膜的製備 方法。 根據本發明一具體實施例,上述方法至少包含下述步 201103183Or under the fire condition prepared by NMF solvent, the methanol permeability of the division prepared by using DMAc and DMF water series solvent is lower than that of the alcohol/annealing temperature, and the same; -! = (4) methanol wear (4). In addition, as it gradually declines. The methanol permeability of the single-layer gambling prepared by the 胄 丨 丨 照 照 照 照 照 照 照 照 照 照 照 照 i i i i i i i i i i i i i i i i i i i i i i i i i i i The table is vice versa. When the moisture content of the other material is lowered, the quality of the single-layer film is =:: also: the single-layer film is low. That is to say, if only 4: = : = is lowered, the methanol permeability S and water rate of the single-layer membrane will be lowered, although the proton conductivity can be achieved. P may have to sacrifice a single layer of membrane material in an aspect of the invention to propose a multi-exchange membrane having a low methanol permeability to 2,1 to prepare a multilayer proton exchange membrane based on the results of the above experimental examples, a layer proton exchange membrane, Multilayer protons and proton conductivity are two properties. Fig. 1 is a schematic cross-sectional view showing a specific two-layer f-subject according to the present invention. The child exchange _ at least includes the :; sub-exchange layer 105 and the second proton exchange layer! H), wherein the water content of the first = parent exchange layer H) 5 is lower than the water content of the second f sub-exchange layer nG. 201103183 Therefore, when the multilayer proton exchange membrane 100 is to be used in a fuel cell, the first proton exchange layer 105 may be provided on the anode side of the fuel cell, and the second proton exchange layer 110 may be provided on the cathode side of the fuel cell. At this time, since the water content of the first proton exchange layer 105 is low, the methanol permeability is also low. Therefore, it is disposed on the anode side of the fuel cell, and the fuel sterol on the anode side can be effectively blocked by the osmosis. And the case of sterol penetration. On the other hand, the overall proton conductivity of the multilayer proton exchange membrane 1 可 can be improved by using a film having a higher water content as the second proton exchange layer 110'. According to a specific embodiment of the present invention, the first proton parent exchange layer and the second proton exchange layer of the multi-layer proton exchange membrane are prepared by using different perfluoro acid-reducing resin solutions (preparation methods will be described later), two of which The solute in the perfluorosulfonic acid resin solution may be the same or different perfluorosulfonic acid resin, but two different solvents must be used. Specifically, the ratio of the water content of the first proton exchange layer to the water content of the second proton exchange layer is about 0.15 to 0.8. In certain embodiments, the above ratio is between about 0.4 and 0.7. According to a specific embodiment of the present invention, the multilayer proton exchange membrane has a thickness of about 20 μηι to about 250 μηι, for example, the film thickness may be about 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 11, 、, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 245 or 250 μηι. In certain embodiments, the above thickness is from about 17 μm to about 190 μη. Another aspect of the invention provides a method of making the multilayer proton exchange membrane described above. According to an embodiment of the invention, the method comprises at least the following steps: 201103183

首先’提供第一質子交換層,其係由第一全氟續酸樹 脂溶液所製成’上述第一全氟磺酸樹脂溶液包含第一全氟 續酸樹脂與第一溶劑。 接者’將第一全氣石頁酸樹脂溶液施覆於上述第一質子 交換層上以得到第二質子交換層,上述第二全氟磺酸樹脂 溶液包含重量百分濃度為約0.1%至約50%之第二全氟磺酸 樹脂與第二溶劑。 φ 其後’移除上述第二溶劑’而得到多層質子交換膜; 以及將多層質子交換膜進行退火處理。 根據本發明之原理與精神,上述第一全氟續酸樹脂溶 液與第二全氟磺酸樹脂溶液係利用不同溶劑配製而成;如 此一來’所製得的第一與第二質子交換層將會具備不同的 性質’而使得本發明之多層質子交換膜兼具甲醇滲漏率低 與質子傳導率佳的特性。 實際上’可利用商購的質子交換薄膜作為上述第一質 φ 子交換層,而後於其上形成第二質子交換層。或者是,可 先於一底材上形成第一質子交換層,並移除其中所含的溶 劑,而後再於其上形成第二質子交換層。 根據本發明具體實施例,上述兩種全氟續酸樹脂溶液 所用的溶劑分屬於兩種類型,其中一種類型的溶劑為水、 醇類或醇/水混合物;而另一種類型的溶劑為DMAc、 DMF、NMF或其混合物。更具體而言,上述醇類可以是曱 醇、乙醇、丙醇或異丙醇;且在醇/水混合物中,醇類與水 的重量比可為約1 : 1至4 : 1。 [s] 15 201103183 具體而言,製備第一和/或第二全氟磺酸樹脂溶液時, 可將重量百分濃度約0.1%至約50%之全氟磺酸樹脂固體溶 於適當溶劑中,且第一全氟磺酸樹脂溶液和第二全氟磺酸 樹脂溶液必須使用不同類型的溶劑。舉例來說,上述全說 磺酸樹脂溶液的重量百分比可為約0.1、0.2、〇 3、0.4、0 5 x 1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、 40、45 或 50%。 然而,根據本發明具體實施例,要在底材上先後形成 φ 上述兩種質子交換層時,由於兩種全氟磺酸樹脂溶液中所 用之溶劑的沸點差異較大,因此在製備過程中,上述第一 質子父換層很容易產生萎縮以及裂痕,而使得兩種膜材間 的接面不平整、接合程度差;或者是,上述第二質子交換 膜的上表面會出現氣泡’而無法得到平整的膜材。 另一方面’在施覆第二質子交換層時,第二全氟續酸 樹脂溶液中的溶劑也會滲透到第一質子交換層中,而使得 第一質子交換層隆起。因此,必須調整或控制質子交換層 • 形成的順序、施覆質子交換層的方式、移除溶劑的條件以 及退火條件等,以得到平整的多層質子交換膜。 根據本發明多個實施例,在某些實施例中,多層質子 交換膜的製備方法如下。 首先,利用沸點較高的溶劑(如DMAc、DMF或NMF ) 來製備第一全氟磺酸樹脂溶液,並將其直接施覆於底材 上,而後移除其中所含的溶劑,而得到第一質子交換層。 在此處,可利用上文單層膜材製備方法中所述的技術來施 覆上述全氟%酸树知溶液。移除此類溶劑的較適溫度為約 201103183 70-80〇C。 其後,利用沸點較低的落劑( 來製溶液,並將其二形成底材) 上之胃乂、日之上’以於其上形成第二質子交換層。 明具2施例,可將此-全氣確酸樹脂溶液 分成至少兩次進行施覆,直到達 發:!::體實施例’可先部分揮發此-全氣侧脂溶 液中所含的㈣,以得_騎㈣全__脂溶液,First, a first proton exchange layer is provided which is made of a first perfluoroacid resin solution. The first perfluorosulfonic acid resin solution comprises a first perfluoro acid resin and a first solvent. Receiving a first full gas sulphate solution onto the first proton exchange layer to obtain a second proton exchange layer, wherein the second perfluorosulfonic acid resin solution comprises a concentration by weight of about 0.1% to About 50% of the second perfluorosulfonic acid resin and the second solvent. φ thereafter 'removing the second solvent' to obtain a multilayer proton exchange membrane; and annealing the multilayer proton exchange membrane. According to the principle and spirit of the present invention, the first perfluoro acid-reducing resin solution and the second perfluorosulfonic acid resin solution are prepared by using different solvents; thus, the first and second proton exchange layers are prepared. The multi-layer proton exchange membrane of the present invention combines the characteristics of low methanol leakage rate and good proton conductivity. In fact, a commercially available proton exchange membrane can be used as the first mass φ subexchange layer, and then a second proton exchange layer is formed thereon. Alternatively, the first proton exchange layer may be formed on a substrate, and the solvent contained therein may be removed, and then a second proton exchange layer may be formed thereon. According to a specific embodiment of the present invention, the solvents used in the above two perfluoro acid-reducing resin solutions belong to two types, one of which is water, an alcohol or an alcohol/water mixture; and the other type of solvent is DMAc, DMF, NMF or a mixture thereof. More specifically, the above alcohol may be decyl alcohol, ethanol, propanol or isopropanol; and in the alcohol/water mixture, the weight ratio of alcohol to water may be from about 1:1 to 4:1. [s] 15 201103183 Specifically, when preparing the first and/or second perfluorosulfonic acid resin solution, a solid concentration of about 0.1% to about 50% by weight of the perfluorosulfonic acid resin solid may be dissolved in a suitable solvent. And the first perfluorosulfonic acid resin solution and the second perfluorosulfonic acid resin solution must use different types of solvents. For example, the weight percentage of the above-mentioned all-sulfonic acid resin solution may be about 0.1, 0.2, 〇3, 0.4, 0 5 x 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 , 20, 25, 30, 35, 40, 45 or 50%. However, according to a specific embodiment of the present invention, when the above two proton exchange layers are sequentially formed on the substrate, since the boiling points of the solvents used in the two perfluorosulfonic acid resin solutions are largely different, in the preparation process, The first proton parent layer is prone to shrinkage and cracks, and the junction between the two membranes is uneven and the degree of bonding is poor; or the bubble on the upper surface of the second proton exchange membrane is not obtained. Flat membrane. On the other hand, when the second proton exchange layer is applied, the solvent in the second perfluoro acid recovery resin solution also penetrates into the first proton exchange layer, causing the first proton exchange layer to bulge. Therefore, it is necessary to adjust or control the proton exchange layer • the order of formation, the manner in which the proton exchange layer is applied, the conditions for removing the solvent, and the annealing conditions, etc., to obtain a flat multi-layer proton exchange membrane. In accordance with various embodiments of the present invention, in certain embodiments, a multilayer proton exchange membrane is prepared as follows. First, the first perfluorosulfonic acid resin solution is prepared by using a solvent having a relatively high boiling point (such as DMAc, DMF or NMF), and is directly applied to the substrate, and then the solvent contained therein is removed, thereby obtaining the first A proton exchange layer. Here, the above perfluoro% acid tree solution can be applied by the technique described in the above single layer film preparation method. The optimum temperature for removing such solvents is about 201103183 70-80 〇C. Thereafter, a lower boiling point falling agent (to prepare a solution, and the two are formed into a substrate) is used to form a second proton exchange layer thereon. In the case of Ming 2, this method can be divided into at least two times until it reaches the maximum:! The following: "The body embodiment" may partially volatilize (4) contained in the - total gas side fat solution to obtain a _ riding (four) whole __ lipid solution,

而後再進行施覆。舉例來說,可將全氟魏職溶液放置 於約50 C的環境下,以揮發溶劑。在某歧具體實施例中, 可先行揮發掉約!_〇的溶劑體積,以得到濃縮的全氟磺 酸樹脂溶液。 其後,移除第二全氟磺酸樹脂溶液中所含的溶劑,進 行此一步驟的適當的溫度為約50_6(rc。 最後’將所得到的多層質子交換膜進行退火處理,其 條件與方式大體上和上述單層膜材的退火處理步驟相似, 此處不再 贅述。 需指出’根據上述實施例製得之多層質子交換膜中, 第一質子交換層的含水率會低於第二質子交換層的含水 率。因此’將之運用於燃料電池中時,應將燃料電池的陽 極設於鄰近第一質子交換層處,且將陰極設於鄰近第二質 子交換層處。 2.2多層質子交換膜性質分析 根據上述方法’完成了多層質子交換膜的製備後,分 [S] 17 201103183 別針對這些多層質子交換膜進行了 70°C下甲醇穿透率與 質子傳導率的分析。進行上述分析所用的設備、條件與方 法與上文參照單層膜材所述者相同,此處不再贅述。 下文列出了利用DMF以及重量比約4 : 1的異丙醇/ 水作為製備第一質子交換層與第二質子交換層所用的溶劑 所製備之多層質子交換膜的分析結果,並與商購 NAFION®_117質子交換膜(購自DuPont Co.)、以及分別 利用DMF溶劑與重量比約4: 1的異丙醇/水溶劑製備的兩 種單層質子交換膜進行比較。在本實驗例中,第一質子交 換層與第二質子交換層的厚度約為1 : 1。表4摘要整理了 上述分析的結果。 表4 各種膜材之甲醇穿透率與質子傳導率 膜材種類 膜材厚度 (cm) 甲醇滲透率 (cm2/sec) 質子傳導率 (S/cm) NAFION®-117 1.78E-02 4.36E-06 4.50E-02 DMF單層膜 1.73E-02 2.33E-06 5.64E-03 ΙΡΑ/Η20單層膜 1.78E-02 7.56E-06 4.36E-02 DMF+IPA/H20 多層膜 1.81E-02 4.24E-06 5.30E-02 由表4的數據可以發現,根據本發明實施例製備之多 層質子交換膜與單層膜材或商購膜材相較之下,兼具了抗 甲醇穿透以及高質子傳導率的特性。 3.1 製備膜電極組與單電池 本發明之另一態樣提出了 一種膜電極組(Membrane Electrode Assembly, MEA),其係利用根據本發明上述具體 201103183 實施例之多層質子交換膜所製成。 根據本發明具體實施例,上述膜電極組包含多層質子 交換、陽極與陰極,其中陽極設於鄰近多層質子交換膜的 第一質子交換層(含水量相對較低的質子交換層)處;而 陰極設於鄰近多層質子交換膜的第二質子交換層(含水量 相對較高的質子交換層)處。 根據本發明多個具體實施例,上述陽極與陰極分別至 少包含一碳布以及形成於該碳布上的一觸媒層。舉例來 說,上述觸媒層的材料至少包含鉑。在某些實施例中,觸 媒層材料除了鉑以外,更包含碳。 在此舉出本發明之實驗例,以說明膜電極組的製備方 式。在下述下實驗例中,利用上述dmf+ipa/h2o多層質 子交換膜來製備膜電極組1(實驗組),以及利用市售Nafion 117質子交換膜來製備膜電極組2 (對照組),並分別對上 述膜電極組進行單電池測試。 用於膜電極組的質子交換膜通常會先經過清洗。一般 而言,可依次將膜材放入約5 wt%的H202、蒸餾水、約0.5 MH2S04、以及蒸餾水中,以85°C的溫度分別加熱約1小 時、30分鐘、10分鐘以及10分鐘。 另一方面,需製備觸媒漿料與電極組。根據本發明實 施例,係在二碳布上分別塗佈觸媒漿料,以製成陽極與陰 極。 更詳細地說,製備觸媒漿料時,係將觸媒材料加入水 中,並利用超音波振盪約5分鐘,以使觸媒均勻分散於水 中。接著加入異丙醇,並以超音波振蘯約5分鐘,以使觸 [s] 19 201103183 媒溶液系統均勻分散。其後,Then apply again. For example, a perfluoroproperate solution can be placed in an environment of about 50 C to volatize the solvent. In a specific embodiment, it may be volatilized first! The solvent volume of 〇 is to obtain a concentrated perfluorosulfonic acid resin solution. Thereafter, the solvent contained in the second perfluorosulfonic acid resin solution is removed, and the appropriate temperature for performing this step is about 50-6 (rc. Finally, the obtained multilayer proton exchange membrane is annealed, the conditions are the same as The manner is substantially similar to the annealing treatment step of the above single-layer film, and will not be described herein. It should be noted that in the multilayer proton exchange membrane prepared according to the above embodiment, the moisture content of the first proton exchange layer is lower than that of the second. The moisture content of the proton exchange layer. Therefore, when it is used in a fuel cell, the anode of the fuel cell should be placed adjacent to the first proton exchange layer, and the cathode should be placed adjacent to the second proton exchange layer. 2.2 Multilayer protons Analysis of the properties of the exchange membranes After the preparation of the multilayer proton exchange membrane was completed according to the above method, the methanol permeability and proton conductivity at 70 ° C were analyzed for these multilayer proton exchange membranes [S] 17 201103183. The equipment, conditions and methods used in the analysis are the same as those described above with reference to the single-layer membrane, and are not described here. The following is a list of the use of DMF and a weight ratio of about 4:1. Alcohol/water as a result of analysis of a multilayer proton exchange membrane prepared by preparing a solvent for the first proton exchange layer and the second proton exchange layer, and commercially available NAFION® 117 proton exchange membrane (purchased from DuPont Co.), and respectively The two monolayer proton exchange membranes prepared by using DMF solvent and isopropanol/water solvent in a weight ratio of about 4:1 are compared. In this experimental example, the thickness of the first proton exchange layer and the second proton exchange layer is about 1 : 1. The results of the above analysis are summarized in Table 4. Table 4 Methanol permeability and proton conductivity of various membrane materials Film material thickness (cm) Methanol permeability (cm2/sec) Proton conductivity (S /cm) NAFION®-117 1.78E-02 4.36E-06 4.50E-02 DMF Single Layer Film 1.73E-02 2.33E-06 5.64E-03 ΙΡΑ/Η20 Single Layer Film 1.78E-02 7.56E-06 4.36 E-02 DMF+IPA/H20 Multilayer Film 1.81E-02 4.24E-06 5.30E-02 From the data of Table 4, a multilayer proton exchange membrane and a single layer membrane or a commercially available membrane prepared according to an embodiment of the present invention can be found. Compared with the material, it has the characteristics of resistance to methanol penetration and high proton conductivity. 3.1 Preparation of membrane electrode group and single cell Another aspect of the invention is directed to a Membrane Electrode Assembly (MEA) made using a multilayer proton exchange membrane according to the above specific embodiment of the invention of 201103183. According to a specific embodiment of the invention, the membrane electrode assembly The invention comprises a multilayer proton exchange, an anode and a cathode, wherein the anode is disposed at a first proton exchange layer adjacent to the multilayer proton exchange membrane (a proton exchange layer having a relatively low water content); and the cathode is disposed at a second proton adjacent to the multilayer proton exchange membrane The exchange layer (a proton exchange layer with a relatively high water content). According to various embodiments of the present invention, the anode and the cathode respectively comprise at least one carbon cloth and a catalyst layer formed on the carbon cloth. For example, the material of the above catalyst layer contains at least platinum. In some embodiments, the catalyst layer material comprises carbon in addition to platinum. An experimental example of the present invention will be described here to explain the preparation method of the membrane electrode assembly. In the following experimental example, membrane electrode group 1 (experimental group) was prepared using the above-mentioned dmf+ipa/h2o multilayer proton exchange membrane, and membrane electrode group 2 (control group) was prepared using a commercially available Nafion 117 proton exchange membrane, and A single cell test was performed on each of the above membrane electrode groups. Proton exchange membranes used in membrane electrode sets are typically cleaned first. In general, the film may be sequentially placed in about 5 wt% of H202, distilled water, about 0.5 MH2S04, and distilled water, and heated at a temperature of 85 ° C for about 1 hour, 30 minutes, 10 minutes, and 10 minutes, respectively. On the other hand, it is necessary to prepare a catalyst slurry and an electrode group. According to an embodiment of the present invention, a catalyst slurry is separately coated on a carbon cloth to form an anode and a cathode. More specifically, in the preparation of the catalyst slurry, the catalyst material is added to water and ultrasonically shaken for about 5 minutes to uniformly disperse the catalyst in water. Next, isopropanol was added and ultrasonically shaken for about 5 minutes to evenly disperse the [s] 19 201103183 media solution system. Thereafter,

Nafion溶液,並以超音波_ I百= 八At·认細η* ——丄 刀頌’以使Nafion均句 = = 利用隔水加熱法將觸媒溶心 發而得到具有適當黏稠度之觸媒 ”广後J!製,完成的陽極與陰極觸媒漿料均勻塗佈於 5 5麵的碳1氏(購自MekCo.,型號GDL35BC)上, 可將塗佈的步驟分成多次進行,#碳布上的觸媒塗佈 到預定量時,即可得到製備完成的陽極與陰極。 在一實施例中,陽極與陰極所用之觸媒漿料配方與比 例如下表5所示。 表5 觸媒漿料配方 陽極 陰極 觸媒材料 40 wt% 之 Pt-Ru/C ,其中 Pt:Ru=l:l —-—. 40 wt% 之 Pt/C 碳布上觸媒材料含量 4.00 mg 2.00 mg 碳布上Nafion含量 2.00 mg 1.00 mg H20用量 0.50 ml 0.25 ml 異丙醇用量 0.10 ml —· — 0.05 ml 可利用任何習知的技術方法來完成膜電極組的組裝。 本實驗例係採用熱壓合法,其將陰極與陽極分別放置於清 洗過的膜材上下方正中央位置,利用熱壓機以約135〇c、 20 .[s] 201103183 約50 kg/cm2之壓力壓合約30秒,之後加壓至100 kgf/m2 並壓合1分鐘,以得到膜電極組。 3.2 單電池性能測試 接著,分別進行上述膜電極組1與膜電極組2之單電 池測試。在本實施例中,上述膜電極組之活性面積為約5x5 cm2,並利用單電池測試系統(型號:Scribner 850C )進行 單電池效能測試,測試參數如下表6所示: 表6 單電池效能測試參數 電池溫度 70 °C 進料溫度 70 °C 進料濕度 100 % 陽極曱醇濃度 1 Μ 陰極進料* 空氣 *甲醇及空氣進料量為化學計量3倍。 第2圖闡明在70°C下膜電極組1 (圖中以+表示)及 膜電極組2 (圖中以◊表示)之電位對電流密度曲線(極 化曲線)。由第2圖可以發現,利用本發明實施例之多層質 子交換膜製得之膜電極組1的單電池效能較佳。具體而 言,和膜電極組2相較之下,膜電極組1之極化曲線中段 的斜率較小(下降較慢),故可知膜電極組1中的多層質子 交換膜的歐姆阻抗較低。 [S] 21 201103183 由上述本發明實施方式可知,應用本發明的最主要優 點在於,所提出的多層質子交換膜係由利用不同溶劑製備 所得質子交換層所組成,而這些質子交換層分別具有抗曱 醇穿透以及高質子傳導率的特性,因而使得多層質子交換 膜可兼具上述兩種特性。 雖然在上述說明與圖式中利用了雙層膜材來說明本發 明之多層質子交換膜,但是本發明所屬技術領域中具有通 常知識者當可基於本說明書中所揭示的原理與精神而想見 其他各種適當的變化。舉例來說,多層質子交換膜可以是 由三或更多種的質子交換層所組成,只要這些質子交換層 的配置方式符合本發明說明書中所述的精神。 雖然上文以多個具體實施例來闡釋本發明,然其並非 用以限定本發明,本發明所屬技術領域中具有通常知識者 在不脫離本發明之精神和範圍内,當可作各種之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖為概要剖面圖,繪示了根據本發明一具體實施 例之多層質子交換膜。 第2圖繪示根據本發明具體實施例之膜電極組與習知 膜電極組的極化曲線圖。 [S] 22 201103183 【主要元件符號說明】 100 :多層質子交換膜 105 :第一質子交換層 110 :第二質子交換層Nafion solution, and with ultrasonic _ I hundred = eight At · 细 η * - 丄 颂 以 ' to make Nafion mean = = use the water heating method to dissolve the catalyst to obtain a suitable viscosity The medium is made of Guanghou J!, and the completed anode and cathode catalyst slurry is evenly coated on the surface of the carbon 5 (purchased from MekCo., model GDL35BC), and the coating step can be divided into multiple times. When the catalyst on the carbon cloth is applied to a predetermined amount, the prepared anode and cathode can be obtained. In one embodiment, the catalyst slurry formulation and ratio used for the anode and cathode are as shown in Table 5 below. Catalyst slurry formulation anode cathode catalyst material 40 wt% Pt-Ru/C, where Pt:Ru=l:l —-—. 40 wt% Pt/C carbon cloth on catalyst material content 4.00 mg 2.00 mg Nafion content on carbon cloth 2.00 mg 1.00 mg H20 dosage 0.50 ml 0.25 ml Isopropanol dosage 0.10 ml —· — 0.05 ml The assembly of the membrane electrode assembly can be accomplished by any conventional technical method. The cathode and the anode are respectively placed in the center of the upper and lower sides of the cleaned membrane, and the hot press is used. About 135〇c, 20 .[s] 201103183 A pressure of about 50 kg/cm2 was contracted for 30 seconds, then pressurized to 100 kgf/m2 and pressed for 1 minute to obtain a membrane electrode set. 3.2 Single cell performance test Next, The cell tests of the membrane electrode group 1 and the membrane electrode group 2 described above were carried out separately. In the present embodiment, the membrane electrode group has an active area of about 5 x 5 cm2, and the single cell test system (model: Scribner 850C) was used for the single cell. Performance test, test parameters are shown in Table 6 below: Table 6 Single cell performance test parameters Battery temperature 70 °C Feed temperature 70 °C Feed humidity 100 % Anode sterol concentration 1 阴极 Cathode feed * Air * Methanol and air The amount of material is 3 times stoichiometric. Figure 2 illustrates the potential-to-current density curve (polarization curve) of membrane electrode group 1 (indicated by +) and membrane electrode group 2 (indicated by ◊) at 70 °C. It can be seen from Fig. 2 that the cell electrode performance of the membrane electrode assembly 1 obtained by using the multi-layer proton exchange membrane of the embodiment of the present invention is better. Specifically, compared with the membrane electrode group 2, the membrane electrode assembly The slope of the middle of the polarization curve of 1 is small (below It is known that the multilayered proton exchange membrane in the membrane electrode assembly 1 has a low ohmic impedance. [S] 21 201103183 From the above-described embodiments of the present invention, the most important advantage of applying the present invention is that the proposed multilayer proton exchange The membrane system is composed of proton exchange layers prepared by using different solvents, and these proton exchange layers have the characteristics of anti-sterol penetration and high proton conductivity, respectively, so that the multilayer proton exchange membrane can have both of the above characteristics. Although a two-layer membrane is utilized in the above description and drawings to illustrate the multilayer proton exchange membrane of the present invention, those of ordinary skill in the art to which the present invention pertains may wish to be based on the principles and spirit disclosed in the present specification. Various other appropriate changes. For example, the multilayer proton exchange membrane may be composed of three or more proton exchange layers as long as the proton exchange layers are configured in a manner consistent with the spirit of the present specification. While the invention has been described in terms of various specific embodiments thereof, it is not intended to limit the scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A multilayer proton exchange membrane of a specific embodiment. Fig. 2 is a graph showing polarization curves of a membrane electrode assembly and a conventional membrane electrode assembly according to an embodiment of the present invention. [S] 22 201103183 [Description of main component symbols] 100 : Multilayer proton exchange membrane 105 : First proton exchange layer 110 : Second proton exchange layer

(S] 23(S] 23

Claims (1)

201103183 七 、申請專利範圍 L 種多層質子交換膜,至少包含:一塗m 層’其中該第子交== 於該第二質子交換層的-含換層的—含水量低 其中2該第述之多層質子交換膜, 氟確酸樹脂。第二質子交換層之—材料為全 其4第士利範圍第1項所述之多層質子交換臈, 該含水量之換層㈣含水量與鮮二1子交換層的 茨3水量之比值為約0.15至〇.8。 盆中4兮第如利範圍第3項所述之多層質子交換膜, 該含水量之比值為約〇.4Μ7。^第—貝子父換層的 ^ ^申請專利範圍第丨項所述 其十該多層質子交換膜之-厚度為約2〇师至約2乂5=。 6· 一種臈電極組,至少包含: 子交3如申請專利範圍第1至5項任一者所述之多層質 24 [S] 201103183 一陽極,其係設於鄰近該第一質子交換層處;以及 ' 一陰極,其係設於鄰近該第二質子交換層處。 7. 如申請專利範圍第6項所述之膜電極組,其中該 陽極至少包含一碳布與一觸媒層形成於其上;以及該陰極 至少包含一碳布與一觸媒層形成於其上。 8. 如申請專利範圍第7項所述之膜電極組,其中該 φ 些觸媒層之一材料至少包含鉑。 9. 如申請專利範圍第8項所述之膜電極組,其中該 些觸媒層之該材料至少更包含碳。 10. —種燃料電池,至少包含: 一種如申請專利範圍第1至5項任一者所述之多層質 子交換膜; ® 一陽極,其係設於鄰近該第一質子交換層處; 一陰極,其係設於鄰近該第二質子交換層處;以及 一集電器,與該陰極和/或陽極相接觸。 11. 如申請專利範圍第10項所述之燃料電池,其中該 燃料電池為一直接曱醇燃料電池。 - 12. —種用以製造如申請專利範圍第1項所述之多層 [S] 25 201103183 質子交換祺之製備方法,至少包含: 溶液二第質子交換層’其係* —第—全氟續酸樹脂 酸樹r血结該第一全氣續酸樹脂溶液包含一第一全氟續 酉文树知與一第一溶劑; 將一第二全氟磺酸樹脂溶液施覆於該第一 第二質子交換層,其中該第二全氟續酸樹脂; 樹脂i—ϋ·ι%至約_之1二全氟續酸 一第一洛劑,且該第一溶劑與該第二溶劑不同; •移除該第二溶劑’而得到該多層質子交換膜;以及 退火處理該多層質子交換膜。 ^如申請專利範圍第12項所述之製備 ::洛劑為Ν,Ν·二甲基乙醯胺、Ν,Ν•二甲基甲醯胺、 ^物酿胺或其混合物;且該第二溶劑為水、醇類或醇/水混 第一1Λ如申請專利範圍第12項所述之製備方法,其中續 -甲It:水、醇類或醇/水混合物’且該第二溶劑為ΝΝ-::基乙酿胺、Ν,Ν-二甲基甲_、Ν_甲基甲_或其混 如申請專利範圍第13 其令該醇類為甲醇、乙醇、丙丄丙:㈣借方法’ 26 [S3 201103183 16.如申請專利範圍第i3 至 其中該醇/水混合物中醇類與水的重量比約H製備方法, 覆=請專利範圍第12項所述之製備方法,1中施 覆該第一王_酸樹脂溶液之步驟係 二 脂溶液至少分成兩:欠㈣行施覆。 # 酸樹 如巾請專職㈣12項所述之製備方法, 施覆該第二全氟賴樹脂溶液之前,部分揮發 續酸樹脂溶液中所含之該第二溶劑,';王氣 體積減少10-90%。 ^第一洛劑的一 =如中請專職圍第12項所述之製備方法,並中該 退火處理是在約110至150dC_^一退火 /、 ° 300分鐘。 之迟火^皿度下實施約10至 多層質子交方法’其中該 ^.如申請專利範圍第12項所述之製備方法, 第一質子交換層是以一包含下述步驟之方法製備: 將重量百分濃度為約〇.1%至約5G%之該第 樹脂溶液施覆於一底材上;以及 M 移除該第一溶劑。 [S] 27 201103183 22·如申請專利範圍第12或21項所述之製備方法, ^ ^施覆該第一全氟續酸樹脂溶液或%I該第二全氟續酸 樹脂溶液之步驟係將該第一或第二全氟磺酸樹脂溶液塗 佈、噴灑、浸潰、網印、旋轉塗佈、刮刀塗佈或注型於該 該底材或該第一質子交換層之上,以形成一薄膜。 •如申凊專利範圍第12或21項所述之製備方法, 利用約50-80°C之一加熱溫度來移除該第—溶劑或該 第-〉谷劑。201103183 VII. Patent application scope L multi-layer proton exchange membranes, comprising at least: a coating m layer 'where the first sub-cross == in the second proton exchange layer - containing the layer - the water content is low, 2 of which Multilayer proton exchange membrane, fluorinated acid resin. The material of the second proton exchange layer is a multi-layer proton exchange enthalpy as described in item 1 of the 4th Shishili range, and the ratio of the water content of the water layer to the water content of the fresh 1-2 exchange layer is About 0.15 to 〇.8. In the multi-layer proton exchange membrane of the fourth aspect of the invention, the ratio of the water content is about 〇.4Μ7. ^ The first-part proton exchange membrane has a thickness of about 2 〇 division to about 2 乂 5 = as described in the third paragraph of the patent application. A ruthenium electrode group comprising at least: a sub-intersection 3, as described in any one of claims 1 to 5, wherein the anode is provided adjacent to the first proton exchange layer. And a cathode disposed adjacent to the second proton exchange layer. 7. The membrane electrode assembly of claim 6, wherein the anode comprises at least a carbon cloth and a catalyst layer formed thereon; and the cathode comprises at least a carbon cloth and a catalyst layer formed thereon on. 8. The membrane electrode assembly of claim 7, wherein the material of the φ of the catalyst layers comprises at least platinum. 9. The membrane electrode assembly of claim 8, wherein the material of the catalyst layers further comprises at least carbon. 10. A fuel cell comprising: a multilayer proton exchange membrane as described in any one of claims 1 to 5; an anode disposed adjacent to the first proton exchange layer; a cathode And being disposed adjacent to the second proton exchange layer; and a current collector in contact with the cathode and/or the anode. 11. The fuel cell of claim 10, wherein the fuel cell is a direct sterol fuel cell. - 12. - A method for preparing a multilayer [S] 25 201103183 proton exchange crucible as described in claim 1 of the patent application, comprising at least: a solution of a proton exchange layer of a solution - a system of - a perfluoro Acid resin acid tree r blood knot, the first all-liquid acid resin solution comprises a first perfluorinated sulfonium tree and a first solvent; a second perfluorosulfonic acid resin solution is applied to the first a second proton exchange layer, wherein the second perfluoro acid recovery resin; the resin i—ϋ·ι% to about 1 1/2 perfluoro acid continued a first agent, and the first solvent is different from the second solvent; • removing the second solvent' to obtain the multilayer proton exchange membrane; and annealing the multilayer proton exchange membrane. ^ Preparation as described in claim 12:: the agent is hydrazine, hydrazine dimethyl acetamide, hydrazine, hydrazine dimethyl carbamide, amine amine or a mixture thereof; The second solvent is water, an alcohol or an alcohol/water mixture. The preparation method according to claim 12, wherein the continuous process is a water, an alcohol or an alcohol/water mixture, and the second solvent is ΝΝ-:: base ethyl amine, hydrazine, hydrazine-dimethyl ketone, hydrazine _ methyl methyl _ or its mixture as claimed in the scope of the 13th order, the alcohol is methanol, ethanol, propylene propylene: (four) borrow Method [26] [S3 201103183 16. The method for preparing a weight ratio of alcohol to water in the alcohol/water mixture is about H according to the scope of application of the invention, and the preparation method described in claim 12, 1 The step of applying the first king-acid resin solution is to divide the diester solution into at least two: under (four) lines of application. #酸树如巾Please take full-time (4) The preparation method described in item 12, before the application of the second perfluoro-lysate solution, the second solvent contained in the partially volatilized acid-reducing resin solution, '; 90%. ^ One of the first agent = as requested in the preparation method described in item 12, and the annealing treatment is annealed at about 110 to 150 dC / ^, ° 300 minutes. The method of preparing the method described in claim 12, wherein the first proton exchange layer is prepared by a method comprising the following steps: The first resin solution having a concentration by weight of about 0.1% to about 5G% is applied to a substrate; and M removes the first solvent. [S] 27 201103183 22. The preparation method according to claim 12 or 21, ^ ^ the step of applying the first perfluoro acid-reducing resin solution or %I of the second perfluoro acid-reducing resin solution Coating, spraying, dipping, screen printing, spin coating, knife coating or injection molding the first or second perfluorosulfonic acid resin solution on the substrate or the first proton exchange layer, A film is formed. The preparation method according to claim 12, wherein the first solvent or the first solvent is removed by a heating temperature of about 50 to 80 °C. [S3 28[S3 28
TW098123769A 2009-07-14 2009-07-14 Multilayerd proton exchange membrane and method for manufacturing the same TWI387146B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098123769A TWI387146B (en) 2009-07-14 2009-07-14 Multilayerd proton exchange membrane and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098123769A TWI387146B (en) 2009-07-14 2009-07-14 Multilayerd proton exchange membrane and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201103183A true TW201103183A (en) 2011-01-16
TWI387146B TWI387146B (en) 2013-02-21

Family

ID=44837765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098123769A TWI387146B (en) 2009-07-14 2009-07-14 Multilayerd proton exchange membrane and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI387146B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515630A (en) * 2012-06-29 2014-01-15 财团法人工业技术研究院 Double-layer composite proton exchange membrane and membrane electrode assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426271A (en) * 1980-04-15 1984-01-17 Asahi Kasei Kogyo Kabushiki Kaisha Homogeneous cation exchange membrane having a multi-layer structure
US5795496A (en) * 1995-11-22 1998-08-18 California Institute Of Technology Polymer material for electrolytic membranes in fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515630A (en) * 2012-06-29 2014-01-15 财团法人工业技术研究院 Double-layer composite proton exchange membrane and membrane electrode assembly
CN103515630B (en) * 2012-06-29 2016-08-03 财团法人工业技术研究院 Double-layer composite proton exchange membrane and membrane electrode assembly
TWI577078B (en) * 2012-06-29 2017-04-01 財團法人工業技術研究院 Bilayer complex proton exchange membrane and membrane electrode assembly
US9853317B2 (en) 2012-06-29 2017-12-26 Industrial Technology Research Institute Bilayer complex proton exchange membrane and membrane electrode assembly

Also Published As

Publication number Publication date
TWI387146B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
EP2774203B1 (en) Method for the preparation of catalyst-coated membranes
CN100381487C (en) Cluster ion exchange membrane and electrolyte membrane electrode connection body
Lu et al. Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells
Lin et al. Preparation of Nafion/poly (vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells
Lin et al. Nafion/poly (vinyl alcohol) nano-fiber composite and Nafion/poly (vinyl alcohol) blend membranes for direct methanol fuel cells
Mollá et al. Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
Zhang et al. Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
CN101237056B (en) Fuel battery proton exchange film with anti-penetration layer and its making method
US11276871B2 (en) Electrolyte membrane and method for producing same
JP2008512844A (en) Membrane and membrane electrode assembly having adhesion promoting layer
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
KR102415739B1 (en) Asymmetric electrolyte membrane, membrane electrode assembly comprising the same, water electrolysis apparatus comprising the same and method for manufacturing the same
KR102271430B1 (en) Composite polymer electrolyte membrane for fuel cell coated with nanohole graphene sheet, and method of manufacturing the same
JP2006019294A (en) Polymer electrolyte membrane for fuel cell, and forming method for the same
Bottino et al. Microporous layers based on poly (vinylidene fluoride) and sulfonated poly (vinylidene fluoride)
Park et al. Durability analysis of Nafion/hydrophilic pretreated PTFE membranes for PEMFCs
CN104347884B (en) A kind of preparation method of the electrode being applicable to fuel cell
JP4576784B2 (en) Proton conductor membrane and production method thereof, membrane-electrode assembly and production method thereof, and electrochemical device
JP3791685B2 (en) Composite ion exchange membrane and method for producing the same
TW201103183A (en) Multilayerd proton exchange membrane and method for manufacturing the same
Reichman et al. A novel PTFE-based proton-conductive membrane
JP2006073235A (en) Multilayered electrolyte membrane and production method thereof