WO2013099549A1 - エネルギーマネジメントシステム - Google Patents

エネルギーマネジメントシステム Download PDF

Info

Publication number
WO2013099549A1
WO2013099549A1 PCT/JP2012/081621 JP2012081621W WO2013099549A1 WO 2013099549 A1 WO2013099549 A1 WO 2013099549A1 JP 2012081621 W JP2012081621 W JP 2012081621W WO 2013099549 A1 WO2013099549 A1 WO 2013099549A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unit
management system
charge
power
Prior art date
Application number
PCT/JP2012/081621
Other languages
English (en)
French (fr)
Inventor
義人 西田
昌彦 谷本
奈々穂 大澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE201211005488 priority Critical patent/DE112012005488T5/de
Priority to JP2013551562A priority patent/JP5680222B2/ja
Priority to US14/362,755 priority patent/US9358896B2/en
Priority to CN201280064587.1A priority patent/CN104025418B/zh
Publication of WO2013099549A1 publication Critical patent/WO2013099549A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to an energy management system for minimizing facility power costs and leveling power demands associated with charging electric vehicles (hereinafter referred to as EVs) of facilities that hold charging stations. is there.
  • EVs charging electric vehicles
  • a plurality of EVs are calculated by calculating a charge start time and a charge end time from a charge time and a desired end time input when the EV arrives at the charging stand.
  • a charging device for an electric vehicle that suppresses a rapid increase in power demand associated with the charging of the vehicle.
  • Patent Document 2 For example, as described in Patent Document 2, priority is given to each vehicle type and purpose of use, and the amount of power that can be supplied is adjusted by adjusting the amount of power supplied to the vehicle connected to the charging station.
  • An electric power supply control device that controls EV charging so as not to exceed an upper limit has been proposed.
  • the present invention has been made to solve the above-described problems, and an object thereof is to realize leveling of power demand while securing a necessary remaining battery level.
  • FIG. 1 is a configuration diagram of an energy management system according to Embodiment 1 of the present invention.
  • the energy management system in the present invention creates a charging plan, and manages power supply to EVs of consumers who hold a charging station as power supply means.
  • the charging plan is a schedule for charging time, place, charging method, and the like.
  • a charging station for EVs is assumed, but even in an apartment house, office building, factory, hotel, station, hospital, etc. holding a plurality of charging stands Good.
  • Reservation information from the EV a reservation management unit 102 that manages a charge instruction to the EV, a charge instruction acquisition unit 104 that acquires information about the charge instruction (charge instruction information) from the reservation management unit 102, and the EV at the charging station Before arrival, the reservation information acquisition unit 106 that acquires the reservation information from the reservation management unit 102, the connection state of the EV to the charging station, and the disconnection state of the charging station (a solution that separates the power generation equipment from the power system)
  • a connection / disconnection management unit 103 that manages a column state), and a connection / disconnection acquisition unit 105 that acquires information (connection / disconnection information) on an EV connection / disconnection state from the connection / disconnection management unit 103;
  • a charging plan creation unit 107 that creates a charging plan according to the purpose of each consumer based on the connection / disconnection information, the charging instruction information, and the reservation information, and a charging stand based on the charging plan.
  • the scheduled connection time and the remaining battery level upon arrival may be directly input by the user, or may be estimated by a car navigation system installed in the EV.
  • the reservation management unit 102 associates the reservation information and the charge instruction information with the reserved EV, and inputs the reservation information to the reservation information acquisition unit 106 and the charge instruction information to the charge instruction acquisition unit 104, respectively. .
  • the reserved EV may be associated with the scheduled connection time of the reservation information and the charging start time of the charging instruction information closest to each other in time, or may be selected by the user from the reservation information. May be. Then, the reservation information acquisition unit 106 receives the reservation information managed by the reservation management unit 102. In addition, the charging instruction acquisition unit 104 receives charging instruction information managed by the reservation management unit 102. However, the timing of receiving information may be a fixed interval, or may be the time when a reservation or charging instruction is set.
  • the connection / disconnection management unit 103 manages information about the EV (EV information) and information such as the connection / disconnection time of the EV to the charging station.
  • the EV information is information for specifying an EV such as an EV identification ID and a user ID.
  • connection / disconnection acquisition unit 105 receives connection / disconnection information managed by the connection / disconnection management unit 103, that is, information such as EV information and connection / disconnection time.
  • the timing for receiving the information may be a fixed interval, or may be the time when a reservation or charging instruction is set.
  • the charging control unit 108 controls the charging electric energy of the connected EV based on the charging plan created by the charging plan creation unit 107.
  • FIG. 2 is a flowchart showing a charging plan creation process by the charging plan creation unit 107.
  • the charging plan creation unit 107 receives the charging instruction information from the charging instruction acquisition unit 104, the reservation information from the reservation information acquisition unit 106, and the information regarding the connection / disconnection state obtained from the connection / disconnection acquisition unit 105, and the demand
  • An EV charging plan is created according to the purpose of the house (minimization of power costs, leveling of power demand, minimization of charging loss, request for deletion of power consumption from an external organization such as a power company or a local government, etc.).
  • reservation information from time t to the next time t + ⁇ t, charging instruction information at time t, and connection / disconnection information at time t are received (step ST11, step ST12, step ST13).
  • the order in which each information is received is not limited to the order shown in the flowchart of FIG.
  • step ST14 From time t to the next time point t + ⁇ t is divided into periods ⁇ s that are equal to or less than the period ⁇ t, and a charging plan is created by calculating the charging electric energy of the EV of the period ⁇ s (step ST14).
  • the charging power amount from time t + ⁇ s ⁇ (i ⁇ 1) to time t + ⁇ s ⁇ i of EV (k) is P (k, i)
  • the power consumption P (i) of the charging station accompanying the charging of the EV from the time t + ⁇ s ⁇ (i ⁇ 1) to the time t + ⁇ s ⁇ i is calculated by the equation (1).
  • P (k, i) may be a negative value (discharge).
  • n in equation (1) is the number of EVs.
  • C k is the required charge amount of EV (k)
  • C k0 is the remaining battery level when EV (k) is connected
  • C max is the maximum charge amount of EV (k).
  • P min is the minimum power consumption
  • P max is the maximum power consumption
  • S min is the maximum discharge speed of EV
  • S max is the maximum charge speed of EV
  • C ki is the remaining battery level of the EV at time t + ⁇ s ⁇ i
  • C k (i ⁇ 1) is the remaining battery level of EV at time t + ⁇ s ⁇ (i ⁇ 1)
  • C min is the minimum value of the power stored in the EV battery
  • C max is the power stored in the EV battery. It is the maximum value.
  • S min may be a negative value (maximum discharge rate).
  • the charging plan for leveling the power demand is created by solving an optimization problem with the objective function as Equation (4), for example.
  • FIG. 3 is a diagram showing an example of a charging plan created using only charging instruction information and connection / disconnection information.
  • FIG. 4 shows reservation information in addition to charging instruction information and connection / disconnection information. It is a figure which shows an example of the charge plan created using it.
  • shaft has shown the charging electric energy of each EV
  • each horizontal axis has shown time.
  • a white triangle mark indicates the start time of EV connection
  • a black triangle mark indicates the disconnection time of EV connection.
  • the amount of charging power indicates the amount per hour in the vertical direction, and indicates the time for charging in the horizontal direction.
  • FIG. 5 is a graph showing the amount of charging power according to the plans of FIGS. 3 and 4.
  • the EV connection schedule can be grasped, so even if there is an EV (for example, EV3, EV4) that needs to be charged in a short time later, A charging plan that equalizes the amount of power required for charging can be created.
  • EV for example, EV3, EV4
  • a charge plan (solid line graph shown in FIG. 5) is created using advance reservation information, that is, EV reservation information before arriving at the charging station, charging instruction information, connection / solution Compared with the case of creating a charging plan (dotted line graph shown in FIG. 5) using only column information, the amount of power required for charging can be leveled.
  • FIG. 13 is a diagram illustrating an example of a charging plan when the reservation information does not include the scheduled release time
  • FIG. 14 is a diagram illustrating an example of the charging plan when the scheduled information includes the scheduled release time.
  • shaft has shown the charge electric energy and electric power charge of EV
  • the horizontal axis has shown time.
  • the electricity charge is set high in the first half and low in the second half.
  • the scheduled release time is not included in the reservation information
  • the scheduled release time is not known until the EV 2 is connected. Therefore, the EV 2 needs to make a charging plan that starts charging immediately after the connection. is there.
  • the EV1 charging plan (FIG. 13 (a)) that has already been created may be brought forward (FIG. 13 (b)), and charging is performed during a time period when the power rate is high.
  • a plan is created. After EV2 is connected, it can be seen that there is enough time for charging, and even when EV1 can be charged in a time zone where the electricity charge is cheap, EV1 is already charged at the stage where EV2 is connected. Since it has been completed, the phenomenon that EV1 cannot be charged in a time zone with a low power charge occurs (FIG. 13C).
  • the EV2 charging time is sufficient and the EV2 can be charged after the EV1 charging is completed. Can be grasped. Therefore, the EV2 charging plan can be created without changing the previously created EV1 charging plan (FIG. 14 (a)) (FIG. 14 (b)). Both EV1 and EV2 can be charged at a time when the power rate is low. (FIG. 14 (c)).
  • FIG. 15 is a diagram illustrating an example of a charging plan when P (k, i) or S min can take a negative value (discharge).
  • the vertical axis indicates the amount of charging power for each EV, and the horizontal axis indicates time.
  • FIG. 16 is a graph of the power consumption associated with charging in FIG. 15 and the power consumption associated with charging when a negative value (discharge) cannot be obtained.
  • the charging plan created in the above example is when EVs are connected and disconnected according to the reservation information.
  • the reservation information includes uncertainty, and the connection / disconnection state based on the reservation information does not necessarily match the connection / disconnection state based on the connection / disconnection information.
  • a charging plan group may be created by Monte Carlo simulation based on the normal distribution in the section, and the most probable one may be used as the charging plan.
  • the charging plan may be a plan in which the allowable allowable scheduled time c_t + ⁇ u and allowable disbanding scheduled time d_t ⁇ u having the maximum allowable time are created as the worst case.
  • the energy management system 101 By using the energy management system 101 as described above, it is possible to grasp the future EV connection / disconnection times and take into account uncertainty factors such as reservation information. However, it is possible to create a charging plan more in line with the purpose of the customer. As a result, it is possible to prevent power consumption during a period when the power rate is high, and it is possible to prevent a rapid increase in power demand even when a plurality of EVs are connected to the charging station at the same time.
  • the EV in the energy management system, includes the charging station as the power supply means for supplying power to the electric vehicle (EV) and the reservation information for the power reception at the EV charging station.
  • the charging station Based on the reservation information acquisition unit 106 that is acquired before reaching the charging station, the power demand in the charging station based on the reservation information, and the charging plan generation unit 107 that generates a charging plan for the EV, and the charging plan
  • the charging control unit 108 that controls the power supply to the EV at the charging station can be used to predict future power demand in consideration of the EV to be connected. It is possible to realize leveling of electric power demand for charging of EV.
  • the reservation information includes at least the scheduled connection time of the EV to the charging station as the power supply means and the scheduled disconnection time from the charging station.
  • the charging schedule it is possible to consider the scheduled connection time and the scheduled disconnection time of the EV to be connected.
  • the reservation information further includes the minimum amount of charge
  • the EV is charged outside the scope of charge amount control until the charge amount of the electric vehicle reaches the minimum amount of charge. Therefore, it is possible to prevent a situation where the battery is not charged and to improve convenience for EV users.
  • the energy management system by making it possible to specify a negative value for the amount of charging power of EV, in the time when the power supply and demand is tight or the time when the power charge is high, It is possible to suppress the power consumption by discharging from the EV with a sufficient charge amount, and it is possible to minimize the power cost and level the power supply.
  • the charging plan creation unit 107 allows the allowable connection scheduled time shifted by a predetermined time from the connection scheduled time and the allowable shift shifted by a predetermined time from the scheduled disconnection time. By creating a charging plan based on the scheduled disconnection time, even if the EV is connected at a time deviated from the scheduled connection time and the scheduled disconnection time in the reservation information, an effective charging plan Can be created.
  • FIG. 7 is a configuration diagram of an energy management system according to the second embodiment of the present invention.
  • the same reference numerals in FIG. 1 and FIG. 7 indicate the same or corresponding configurations, and thus the description thereof is omitted.
  • the energy management system 101a includes an EV performance management unit 109 that manages connection / disconnection information and data stored in the reservation management unit 102, reservation information, An EV tendency evaluation unit 110 that evaluates an EV tendency from connection / disconnection information.
  • the EV performance management unit 109 may be an external function of the energy management system 101a of the present invention.
  • the EV performance management unit 109 manages the data (reservation information and charging instruction information) stored in the reservation management unit 102 and the connection / disconnection information managed by the connection / disconnection management unit 103.
  • the queue schedule time and the connection / disconnection time are stored in association with each other.
  • the EV information in the connection / disconnection information is stored in a format including the EV identification ID, user identification ID, date and time (day of the week), and the like.
  • the EV trend evaluation unit 110 creates EV trend information (EV trend information) used when creating a charging plan from the data accumulated in the EV performance management unit 109.
  • connection time ⁇ estimated connection time accumulated in the EV performance management unit 109
  • connection time ⁇ estimated connection time accumulated in the EV performance management unit 109
  • Deviations connection time-estimated disposition time
  • the histogram may be in EV units, but may be in user units, date units, day units, or a combination thereof.
  • the EV trend evaluation unit 110 outputs the created EV trend information to the charging plan creation unit 107.
  • FIG. 8 is an example of the generated deviation histogram.
  • FIG. 8A is a histogram of deviations created for each user
  • FIG. 8B is an example of a histogram created by combining users and days of the week.
  • the charging plan creation unit 107 creates a charging plan that takes uncertainty into account using the created histogram.
  • the most probable frequency time difference may be obtained using a Monte Carlo simulation based on the probability distribution obtained from the histogram, or the worst case (for example, in the case of FIG. (Scheduled time + 40 minutes, scheduled release time ⁇ 30 minutes) may be assumed.
  • the trend information of each EV based on the accumulated connection / disconnection scheduled time of the past EV and the actual connection / disconnection time is created, and the EV trend information is used.
  • an error between the connection / disconnection time and the actual connection / disconnection time when creating the charging plan can be suppressed.
  • the connection state of the EV connected to the charging station as the power supply means and the connection / disconnection information indicating the disconnection state are acquired.
  • the disconnection acquisition unit 105, the difference between the estimated connection time and the actual connection time indicated by the connection / disconnection information, and the estimated disconnection time and the actual disconnection time indicated by the connection / disconnection information An EV tendency evaluation unit 110 that evaluates an EV tendency using at least one of the differences, and the charge plan creation unit 107 creates a charge plan based on the evaluation result in the EV trend evaluation unit 110
  • an error between the connection / disconnection time and the actual connection / disconnection time when creating the charging plan can be suppressed.
  • FIG. 9 is a configuration diagram of an energy management system according to the third embodiment of the present invention.
  • the same reference numerals in each of FIG. 1, FIG. 7, and FIG. 9 indicate the same or corresponding components, and thus the description thereof is omitted.
  • the energy management system 101b acquires a road situation management unit 111 that manages the road situation at the current position of the EV and information (road situation information) regarding the road situation. And a road condition acquisition unit 112.
  • the road condition acquisition unit 112 receives EV road condition information stored in the road condition management unit 111. And road condition information is output to EV tendency evaluation part 110a.
  • the EV tendency evaluation unit 110a receives the EV road status information reserved from the road status acquisition unit 112, predicts the EV connection time, and corrects the estimated connection time obtained from the reservation information acquisition unit 106. Specifically, when there is a traffic jam on the route to the charging station, correction is performed assuming that there is a tendency to be delayed by a predetermined time from the scheduled connection time.
  • the EV tendency evaluation unit 110a directly connects the EV from the car navigation system mounted on the EV. You may receive the time.
  • the charging plan creation unit 107 creates a charging plan based on the EV trend information created by the EV trend evaluation unit 110a.
  • the energy management system further includes a road condition acquisition unit 112 that acquires road condition information indicating a road condition around the current position of the EV.
  • a road condition acquisition unit 112 that acquires road condition information indicating a road condition around the current position of the EV.
  • FIG. 10 is a configuration diagram of an energy management system according to the fourth embodiment of the present invention.
  • the same reference numerals in FIG. 1 and FIG. 10 indicate the same or corresponding configurations, and thus the description thereof is omitted.
  • the energy management system 101c includes a charging characteristic management unit 113 that manages charging characteristics for each EV, and charging characteristics of batteries for each EV from the charging characteristic management unit 113. It is comprised from the charge characteristic acquisition part 114 which acquires the information regarding (charge characteristic information).
  • the charge characteristic management unit 113 may be an external function of the energy management system 101b of the present invention.
  • the charge characteristic management unit 113 will be described.
  • the battery capacity of EV decreases as charging is repeated. Further, the charging efficiency (loss) of the battery varies depending on the amount of power supplied from the charging stand. Therefore, the charge characteristic management unit 113 manages the battery characteristics (chargeable capacity) of the battery for each EV and the charge characteristics such as the charge efficiency as the charge characteristic information.
  • the charging characteristic information is acquired from each EV.
  • the charging characteristic acquisition unit 114 acquires the charging characteristic information of the battery for each EV stored in the charging characteristic management unit 113.
  • the charging plan creation unit 107a creates a charging plan that takes into account the charging characteristics of the EV battery obtained by the charging characteristic acquisition unit 114 in addition to the reservation information, charging instruction information, and connection / disconnection information in the first embodiment. To do.
  • the charging loss of each EV with respect to the amount of power supplied from the charging station is set to l (k, i), and the first embodiment Equation (1) is changed to Equation (5), and a charging plan is created by solving the optimization problem.
  • the energy management system further includes a charge characteristic acquisition unit 114 that acquires charge characteristic information regarding the chargeable capacity of EV and the charge efficiency of EV.
  • a charge characteristic acquisition unit 114 that acquires charge characteristic information regarding the chargeable capacity of EV and the charge efficiency of EV.
  • FIG. 11 is a configuration diagram of an energy management system according to the fifth embodiment of the present invention.
  • the energy management system 101d includes a power measurement unit 115 that measures the power consumption of the facility held by the consumer, and a power demand prediction unit that predicts the power demand. 116.
  • the power measurement unit 115 and the power demand prediction unit 116 may be external functions of the energy management system 101d of the present invention.
  • the charging plan creation unit 107b is different from the charging plan creation unit 107 in the second embodiment only in the connection relationship, and the basic operation and the like are the same as those in the second embodiment.
  • the power measuring unit 115 measures the power consumption of the facility provided with the charging station at a period ⁇ t and accumulates data.
  • the power demand prediction unit 116 predicts future power demand based on the past power consumption of the facility stored in the power measurement unit 115.
  • a histogram of the power consumption of the period ⁇ s from x hours ago to the current time t is created. Then, the similarity with the histogram of the power consumption until the same time in the facility is calculated, and data with the similarity equal to or greater than the threshold th is acquired. From the acquired data, the power demand from the current time t to the next time t + ⁇ t is predicted in units of the period ⁇ s.
  • the similarity may be calculated using a residual sum of squares or a correlation coefficient. Further, as the predicted value of power demand, data having the highest similarity may be used, or an average value of data having a certain degree of similarity may be used.
  • the charging plan creation unit 107b creates a charging plan that takes into account the power demand of the facility up to the next time point t + ⁇ t predicted by the power demand prediction unit 116 in addition to the EV trend information created by the EV trend evaluation unit 110.
  • Equation (2) is changed to Equation (6).
  • the charging plan creation unit 107 predicts the power demand of the entire facility holding the charging station as the power supply means, and creates the charging plan. A charging plan considering the power demand of the entire facility holding the charging station can be made.
  • FIG. 12 is a configuration diagram of an energy management system according to the sixth embodiment of the present invention.
  • the energy management system 101e includes a performance management unit 117 that displays the current state to the operator of the energy management system 101e.
  • charging control unit 108a is different in connection relation, and the basic operation and the like are the same as charging control unit 108 in the fifth embodiment.
  • the performance management unit 117 acquires data stored in the connection / disconnection acquisition unit 105, the reservation information acquisition unit 106, and the power measurement unit 115, and the operator of the energy management system 101e determines the past power consumption and EV. Manage so that connection / disconnection time, reservation information, etc. can be confirmed.
  • the operator can change the reservation so that the user of the EV reserved for the reservation management unit 102 will advance or delay the connection time and release time. Request for cooperation.
  • the cooperation request may be issued directly to the EV user by the operator, or it may be set by how much the operator will comply with the request, and a system for automatically requesting the cooperation from the EV user may be used. Good.
  • the reward points may be points such as eco points, but are not necessarily money or money equivalents.
  • the charging control unit 108a Based on the charging plan created by the charging plan creation unit 107, the charging control unit 108a enables the operator to directly perform charging control according to the situation, in addition to performing charging control to the EV.
  • the operator can directly control the charging or request the EV user to change the reservation, thereby reducing the power consumption. You can make adjustments.
  • the power consumption can be adjusted to minimize the power cost and level the power demand, thereby reducing the power consumption. It can respond flexibly to requests.
  • the energy management system further includes at least a reservation information, connection / disconnection information, and a performance management unit 117 that manages the power demand of the entire facility. Since it is possible to adjust the power consumption by changing the charging plan in response to a request from the management unit 117, it is possible to create a charging plan that realizes minimization of power costs and leveling of power demand. it can.
  • the performance management unit 117 can make adjustments to the power consumption by requesting a change in reservation for charging control and EV users, not only minimizing power costs and leveling power demand. Therefore, it is possible to respond flexibly to requests from local governments to reduce power consumption.
  • FIG. 17 is a configuration diagram of an energy management system according to the seventh embodiment of the present invention. 1, 7, 11, and 17, the same reference numerals indicate the same or corresponding parts, and detailed descriptions thereof are omitted.
  • the energy management system 101f includes the power consumption of the entire facility obtained from the power measurement unit 115 and the predicted value of power demand obtained from the power demand prediction unit 116.
  • the charging plan correction unit 118 for correcting the charging plan created from the above is provided.
  • the charging plan correction unit 118 will be described.
  • the charging plan correction unit 118 compares the actual power consumption value of the entire facility with the predicted value of power demand in the cycle ⁇ s (from time t + ⁇ s ⁇ (i ⁇ 1) to time t + ⁇ s ⁇ i). To correct.
  • FIG. 18 is an example of correction of a predicted value of power demand based on power consumption.
  • the vertical axis indicates the power consumption of the entire facility, and the horizontal axis indicates time.
  • the period ⁇ s is further divided into periods ⁇ s ′ (period ⁇ s> period ⁇ s ′), and the actual power consumption value for each period ⁇ s ′ is acquired from the power measurement unit 115.
  • an error between the actual value and the predicted value of power demand divided into periods ⁇ s ′ is calculated. Then, the calculated error is allocated to the predicted value of the power demand for the remaining time, and the predicted value is corrected. However, as to how to allocate the predicted values, the remaining time may be allocated equally (FIG. 18), or the allocated amount may be reduced as time elapses.
  • the EV charging plan is corrected based on the corrected predicted power demand.
  • the period ⁇ s can be obtained by correcting the charging plan by calculating an error from the actual value in a fine cycle. Since the power consumption in the facility can be adjusted, the power cost of the entire facility can be minimized and the power demand can be leveled accurately.
  • the charging plan created from the power consumption prediction of the entire facility obtained from the power measurement unit 115 and the power demand prediction value obtained from the power demand prediction unit 116 is corrected.
  • the charging plan correcting unit 118 further adjusts the power consumption by correcting the predicted value based on the difference in the actual power consumption and correcting the charging plan. Therefore, the power cost of the entire facility can be minimized and the power demand can be leveled accurately.
  • FIG. 19 is a configuration diagram of an energy management system according to the eighth embodiment of the present invention. 1, 7, 11, 12, and 19, the same reference numerals indicate the same or corresponding parts, and detailed description thereof is omitted.
  • the energy management system 101g prioritizes EV charging when creating a charging plan in the charging plan creation unit 107c. Is provided with a priority input unit 119 for inputting whether priority is given to reduction (leveling or peak cut).
  • the priority input unit 119 may be an external function of the energy management system 101g of the present invention.
  • the priority input unit 119 will be described.
  • the priority input unit 119 holds an input screen for specifying the priority by the operator and creates a charging plan that prioritizes EV charging, or reduces the power consumption of the entire facility (leveling or peaking) Specify whether to create a charge plan that prioritizes (Cut). And the information regarding the priority designated by the operator is passed to the charging plan creation unit 107c.
  • the priority setting method may be the same priority for all times, or may be set for each period ⁇ s.
  • the energy management system 101g as described above can set the priority at the time of creating the charging plan, it will surely reach the required charge amount before the creation of the charging plan corresponding to the power consumption reduction request and the EV disconnection.
  • a charge plan can be created, and charge control according to the purpose of use for each facility can be realized.
  • ⁇ Effect> in the energy management system, whether to prioritize EV charging when creating a charging plan, or prioritize deletion of power consumption (leveling or peak cut) of the entire facility It is necessary to create a charging plan corresponding to a request to delete power consumption or to disconnect EVs by creating an EV charging plan based on the priority. A charge plan that reaches the charge amount can be created, and charge control according to the purpose of use for each facility can be realized.

Abstract

 本発明は、必要なバッテリ残量を確保しつつ、電力コストの最小化や電力需要の平準化を実現することを目的とする。本発明にかかるエネルギーマネジメントシステムは、電気自動車(EV)に電力を供給する電力供給手段としての充電スタンドと、EVの充電スタンドにおける電力受給の予約情報を、EVが当該充電スタンドに到達する前に取得する、予約情報取得部106と、予約情報に基づいて、充電スタンドにおける電力需要を予測し、EVに対する充電計画を作成する充電計画作成部107と、充電計画に基づいて、充電スタンドにおけるEVに対する電力供給を制御する充電制御部108とを備える。

Description

エネルギーマネジメントシステム
 本発明は、充電スタンドを保持する施設の電気自動車(Electric Vehicle:以下、EVとする)の充電に伴う施設の電力コストの最小化や電力需要の平準化を図るためのエネルギーマネジメントシステムに関するものである。
 従来から、例えば特許文献1に記載されているように、EVが充電スタンドに到着した時に入力した充電時間および希望終了時刻から、充電開始時間および充電終了時間を算出することで、複数台のEVの充電に伴う電力需要の急増を抑える、電動車両用充電装置が提案されている。
 また、例えば特許文献2に記載されているように、車両の車種や利用目的毎に優先度を付け、充電スタンドに接続されている車両への電力供給量を調整することで、供給可能電力の上限を超えないようにEVの充電を制御する、電力供給制御装置が提案されている。
特開2010-110044号公報 特開2010-110173号公報
 特許文献1に記載されている電動車両充電装置では、EVが充電スタンドに接続されるまで新たな充電予約の情報を取得できないため、EVの充電スタンドへの接続予定が把握できず、これから接続されるEVの充電を考慮した充電計画を作成できないといった課題があった。
 特許文献2に記載されている電力供給制御装置では、優先度の高い車両が多い場合に優先度の低い車両の充電が行われず、利用時に必要なバッテリ残量を確保できないといった課題があった。
 本発明は、上記のような問題を解決するためになされたものであり、必要なバッテリ残量を確保しつつ、電力需要の平準化を実現することを目的とする。
 本発明にかかるエネルギーマネジメントシステムは、電気自動車に電力を供給する電力供給手段と、前記電気自動車の前記電力供給手段における電力受給の予約情報を、前記電気自動車が当該電力供給手段に到達する前に取得する、予約情報取得部と、前記予約情報に基づいて、前記電力供給手段における電力需要を予測し、前記電気自動車に対する充電計画を作成する充電計画作成部と、前記充電計画に基づいて、前記電力供給手段における前記電気自動車に対する電力供給を制御する充電制御部とを備えることを特徴とする。
 本発明にかかるエネルギーマネジメントシステムによれば、電気自動車に電力を供給する電力供給手段と、前記電気自動車の前記電力供給手段における電力受給の予約情報を、前記電気自動車が当該電力供給手段に到達する前に取得する、予約情報取得部と、前記予約情報に基づいて、前記電力供給手段における電力需要を予測し、前記電気自動車に対する充電計画を作成する充電計画作成部と、前記充電計画に基づいて、前記電力供給手段における前記電気自動車に対する電力供給を制御する充電制御部とを備えることにより、必要なバッテリ残量を確保しつつ、電力需要の平準化を実現することができる。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態1によるエネルギーマネジメントシステムの充電計画作成部による充電計画の作成処理を示すフローチャートである。 本発明の実施の形態1による充電指示情報と接続・解列状態を用いて作成した充電計画を示す図である。 本発明の実施の形態1による充電指示情報、接続・解列状態、予約情報を用いて作成した充電計画を示す図である。 本発明の実施の形態1による図3と図4の充電計画で必要とされる時間毎の充電電力量のグラフを示す図である。 本発明の実施の形態1において予約情報の不確実性を考慮した接続・解列予定時刻を示す図である。 本発明の実施の形態2によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態2によるEV傾向評価部によって作成されるEVの傾向を表すヒストグラムを示す図である。 本発明の実施の形態3によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態4によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態5によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態6によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態1において予約情報に解列予定時刻を含まない場合の充電計画を示す図である。 本発明の実施の形態1において予約情報に解列予定時刻を含む場合の充電計画を示す図である。 本発明の実施の形態1において負の値の充電電力量を考慮して作成した充電計画を示す図である。 本発明の実施の形態1による図15の充電計画で必要とされる時間毎の電力量のグラフである。 本発明の実施の形態7によるエネルギーマネジメントシステムの構成図である。 本発明の実施の形態7の充電計画修正部における電力需要の補正方法を示す図である。 本発明の実施の形態8によるエネルギーマネジメントシステムの構成図である。
 <実施の形態1>
 <構成>
 図1は、本発明の実施の形態1によるエネルギーマネジメントシステムの構成図である。本発明におけるエネルギーマネジメントシステムは充電計画を作成し、電力供給手段としての充電スタンドを保持する需要家のEVへの電力供給を管理する。充電計画とは、充電する時間、場所、充電方法等を予定するものである。
 ここで、充電スタンドを保持する需要家としては、EV向けの充電ステーション等が想定されるが、複数の充電スタンドを保持する集合住宅、オフィスビル、工場、ホテル、駅、病院などであってもよい。
 まず、エネルギーマネジメントシステム101について説明する。
 EVからの予約情報や、EVへの充電指示を管理する予約管理部102と、予約管理部102から充電指示に関する情報(充電指示情報)を取得する充電指示取得部104と、EVが充電スタンドに到着する前に、予約管理部102から予約情報を取得する予約情報取得部106と、EVの充電スタンドに対する接続状態、および、充電スタンドとの接続解除状態(電力系統から発電設備等を切り離した解列状態)を管理する接続・解列管理部103と、接続・解列管理部103からEVの接続・解列状態に関する情報(接続・解列情報)を取得する接続・解列取得部105と、接続・解列情報、充電指示情報、予約情報に基づいて、需要家毎の目的に沿った充電計画を作成する充電計画作成部107と、充電計画に基づいて、充電スタンドを介し、EVに供給する電力量を制御する充電制御部108とから構成されている。
 ただし、予約管理部102および接続・解列管理部103は、本発明のエネルギーマネジメントシステム101の外部機能としてもよい。
 予約管理部102は、充電スタンドに到着する前にEVの利用者によって入力される、例えば接続予定時刻、解列予定時刻、到着時バッテリ残量、必要充電量(最低確保充電量)等の予約情報と、充電スタンド到着時にEVの利用者が充電スタンドに対して設定した充電開始時刻、充電終了希望時刻、必要充電量等の充電指示情報を管理する。
 なお、接続予定時刻、および、到着時バッテリ残量は、利用者が直接入力してよいし、EVに搭載されているカーナビゲーションシステムが推定したものでもよい。
 また、予約管理部102では、予約情報および充電指示情報の、予約したEVとの対応付けを行い、予約情報を予約情報取得部106に、充電指示情報を充電指示取得部104に、それぞれ入力する。
 なお、予約したEVの対応付けは、予約情報の接続予定時刻等と、充電指示情報の充電開始時刻等とが最も時間的に近いものとしてもよいし、予約情報の中から利用者に選択させてもよい。そして、予約情報取得部106は、予約管理部102で管理されている予約情報を受け取る。また、充電指示取得部104は、予約管理部102で管理されている充電指示情報を受け取る。ただし、情報を受け取るタイミングは一定間隔でもよいし、予約や充電指示が設定された時点でもよい。
 接続・解列管理部103は、EVが充電スタンドに接続・解列した場合に、EVに関する情報(EV情報)と、そのEVの充電スタンドに対する接続・解列時刻等の情報を管理する。なお、EV情報は、EV識別ID、利用者ID等のEVを特定するための情報である。
 そして、接続・解列取得部105は、接続・解列管理部103で管理されている接続・解列情報、すなわち、EV情報や、接続・解列時刻等の情報を受け取る。ただし、当該情報を受け取るタイミングは一定間隔でもよいし、予約や充電指示が設定された時点でもよい。
 充電制御部108は、充電計画作成部107によって作成した充電計画に基づいて、接続されているEVの充電電力量を制御する。
 <動作>
 図2は、充電計画作成部107による充電計画の作成処理を示すフローチャートである。充電計画作成部107は、充電指示取得部104から充電指示情報を、予約情報取得部106から予約情報を、接続・解列取得部105から得られる接続・解列状態に関する情報をそれぞれ受け取り、需要家の目的(電力コストの最小化、電力需要の平準化、充電ロスの最小化、電力会社や自治体等の外部機関からの電力消費の削除要請等)に応じたEVの充電計画を作成する。
 まず、時刻tから次時点t+Δtまでの予約情報、時刻t時点の充電指示情報、時刻t時点の接続・解列情報をそれぞれ受け取る(ステップST11、ステップST12、ステップST13)。それぞれの情報を受け取る順序は、図2のフローチャートに示す順序に限られるものではない。
 次に、時刻tから次時点t+Δtまでを、周期Δt以下の周期Δsに分割し、周期ΔsのEVの充電電力量を算出することで、充電計画を作成する(ステップST14)。
 例えば、充電スタンドの電力コストを最小化する充電計画を作成する場合、EV(k)の時刻t+Δs×(i-1)から時刻t+Δs×iまでの充電電力量をP(k,i)とし、時刻t+Δs×(i-1)から時刻t+Δs×iまでのEVの充電に伴う充電スタンドの電力消費量P(i)を式(1)によって算出する。なお、P(k,i)は、負の値(放電)であってもよい。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)のnはEV数である。
 そして、時刻t+Δs×(i-1)から時刻t+Δs×iまでの電力料金をm(i)として、目的関数を式(2)、制約条件を式(3)とする最適化問題を解くことで、電力コストが最小となる充電計画を作成する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)のCはEV(k)の必要充電量、Ck0はEV(k)の接続時のバッテリ残量、CmaxはEV(k)の最大充電量である。さらに、Pminは最小電力消費量、Pmaxは最大電力消費量、SminはEVの最大放電速度、SmaxはEVの最大充電速度、Ckiは時刻t+Δs×iのEVのバッテリ残量、Ck(i-1)は時刻t+Δs×(i-1)のEVのバッテリ残量、CminはEVのバッテリに蓄積された電力の最小値、CmaxはEVのバッテリに蓄積された電力の最大値である。なお、Sminは、負の値(最大放電速度)であってもよい。
 また、電力需要を平準化する充電計画は、例えば、目的関数を式(4)とする最適化問題を解くことで作成する。
Figure JPOXMLDOC01-appb-M000004
 図3は、充電指示情報、接続・解列情報のみを使用して作成した充電計画の一例を示す図であり、図4は、充電指示情報、接続・解列情報に加えて、予約情報を使用して作成した充電計画の一例を示す図である。なお、それぞれの縦軸は個々のEVの充電電力量を示し、それぞれの横軸は時刻を示している。白抜きの三角印は、EV接続の開始時刻を示し、黒塗りの三角印は、EV接続の解列時刻を示す。また、充電電力量は、縦方向にその時間当たりの量を示しており、横方向に充電する時刻を示している。
 また、図5は、図3および図4の計画による充電電力量をグラフ化した図である。
 充電指示情報、接続・解列情報のみを使用した場合、図3に示すように、計画作成時に接続されているEV(例えば、現時刻において充電スタンドとの接続がなされているEV1、EV2)の充電に対する充電計画しか立てることができない。
 そのため、後に短時間での充電が必要なEV(例えば、横方向に短く、充電電力量を必要とするEV3、EV4)を把握できず、EVの必要充電量を時間内に満たそうとすると電力量が急増してしまう。
 一方、図4のように、事前の予約情報を使用することで、EVの接続予定が把握できるため、後に短時間での充電が必要なEV(例えば、EV3、EV4)が存在した場合でも、充電に必要な電力量を平準化した充電計画が作成できる。
 上記のように、事前の予約情報、すなわち、充電スタンドに到着する前のEVの予約情報を使用して充電計画(図5に示す実線のグラフ)を作成すれば、充電指示情報、接続・解列情報のみを使用して充電計画(図5に示す点線のグラフ)を作成する場合と比較して、より充電に必要な電力量を平準化することができる。
 また、図13は予約情報に解列予定時刻を含まない場合の充電計画の一例を示す図であり、図14は予約情報に解列予定時刻を含む場合の充電計画の一例を示す図である。なお、それぞれの縦軸はEVの充電電力量および電力料金を示し、横軸は時刻を示している。図13および図14において、電気料金は前半が高く、後半が低く設定されている。
 図13に示すように、予約情報に解列予定時刻を含まない場合、EV2が接続されるまで解列予定時刻がわからないため、EV2は接続後すぐに充電が開始される充電計画を立てる必要がある。
 そのため、電力消費量に制約がある場合、既に作成されていたEV1の充電計画(図13(a))を前倒しする場合が生じ(図13(b))、電力料金の高い時間帯に充電する計画が作成されてしまう。EV2が接続された後、充電時間に十分な時間があることがわかり、EV1の充電を電力料金の安い時間帯で行うことができた場合でも、EV2が接続された段階では既にEV1の充電が完了しているため、EV1の充電を電力料金の安い時間帯で行うことはできないという現象が起こる(図13(c))。
 一方、図14に示される場合では、予約情報に解列予定時刻を含んでいるため、EV2の充電時間が十分にありEV1の充電完了後にEV2を充電できるということが、予約情報を受け取った時点で把握できる。そのため、既に作成されていたEV1の充電計画(図14(a))を変更することなくEV2の充電計画を作成し(図14(b))EV1、EV2ともに電力料金が安い時間帯で充電できる(図14(c))。
 また、図15はP(k,i)、もしくはSminが負の値(放電)をとることができる場合の充電計画の一例を示す図である。なお、縦軸は個々のEVの充電電力量を示し、横軸は時刻を示している。また、図16は、図15の充電に伴う電力消費量と負の値(放電)をとることができない場合の充電に伴う電力消費量をグラフ化した図である。
 図15と図16に示すように、同時に複数のEVの充電が必要になった場合に、充電に余裕がある他のEVから放電によって電力を供給することで、短時間の電力消費量の増加を防ぐことができ、安定した電力供給を行うことができる。
 上記の例で作成した充電計画は、予約情報のとおりにEVの接続・解列がなされた場合である。しかし、予約情報は不確実性を含んでおり、必ずしも予約情報に基づく接続・解列状態と、接続・解列情報に基づく接続・解列状態とが一致するとは限らない。
 そこで、本発明の充電計画作成部107では、予約情報が持つ不確実性要素を考慮した充電計画を作成することができる。
 具体的には、図6に示すように、各EVの接続予定時刻c_t、解列予定時刻d_tに対して±Δuだけ許容した時間(許容接続予定時刻および許容解列予定時刻)を考える。そして、この区間を考慮した充電計画を作成する。縦軸は個々のEVを示し、横軸は時刻を示している。
 なお、充電計画の作成に際しては、区間における正規分布に基づいて、モンテカルロ・シミュレーションによって充電計画群を作成し、その中から最も確からしいものを充電計画としてもよい。また、許容時間最大の許容接続予定時刻c_t+Δu、許容解列予定時刻d_t‐Δuを、最悪ケースとして作成したものを充電計画としてもよい。
 上記のようなエネルギーマネジメントシステム101によって、将来のEVの接続・解列時刻を把握し、なおかつ、予約情報といった不確実性要素を考慮することで、予約情報を使用せずに作成した充電計画よりも、より需要家の目的に沿った充電計画を作成することができる。これによって、電力料金の高い時間の電力消費を防ぐことができ、また、同時刻に複数のEVが充電スタンドに接続した場合でも電力需要の急増を防ぐことができる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、電気自動車(EV)に電力を供給する電力供給手段としての充電スタンドと、EVの充電スタンドにおける電力受給の予約情報を、EVが当該充電スタンドに到達する前に取得する、予約情報取得部106と、予約情報に基づいて、充電スタンドにおける電力需要を予測し、EVに対する充電計画を作成する充電計画作成部107と、充電計画に基づいて、充電スタンドにおけるEVに対する電力供給を制御する充電制御部108とを備えることで、これから接続されるEVを考慮した将来の電力需要が予測できるため、充電スタンドへの接続時刻が異なる複数台のEVの、充電に対する電力需要の平準化を実現することができる。
 また、これから接続されるEVを考慮した将来の電力需要が予測できるため、優先度等を設定して特定のEVの充電を優先したために、優先度の低いEVの必要なバッテリ残量が確保できない等の不都合を解消することができる。
 また、電力需要の平準化により、電力料金の高額な時間を避けることができ、充電施設の電力コストを最小化できる。
 また、本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、予約情報が、EVの、電力供給手段としての充電スタンドへの接続予定時刻と、充電スタンドからの解列予定時刻とを少なくとも含むことで、これから接続されるEVの接続予定時刻および解列予定時刻を考慮して、充電計画を作成することができる。
 また、予約情報に最低確保充電量をさらに含むことで、電気自動車の充電量が最低確保充電量に達するまでは充電量制御の対象外として充電されるため、EVの突然の使用が発生した場合に充電されていないという状況を防ぐことができ、EVの利用者に対する利便性を向上させることができる。
 また、本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、EVの充電電力量に負の値を指定可能にすることで、電力需給が逼迫する時間や、電力料金が高い時間において、充電量に余裕のあるEVから放電することで電力消費量を抑えることができ、電力コストの最小化や電力供給の平準化を実現できる。
 また、その際に、接続されている全てのEVを正の値の充電電力量、もしくは負の値の充電電力量で制御することで、EVのバッテリの充電もしくは放電によるロスを抑えることができるため、EVに対して正確な充電を実現でき、さらに電力コストの最小化や電力供給の平準化を実現できる。
 また、本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、充電計画作成部107が、接続予定時刻から所定時間ずれた許容接続予定時刻、および、解列予定時刻から所定時間ずれた許容解列予定時刻に基づいて、充電計画を作成することで、予約情報における接続予定時刻および解列予定時刻からずれた時刻にEVが接続されるような場合であっても、効果的な充電計画を作成することができる。
 <実施の形態2>
 <構成>
 図7は、本発明の実施の形態2によるエネルギーマネジメントシステムの構成図である。図1および図7において付されている同じ符号は、同一または相当する構成を指すので、説明を省略する。
 本発明におけるエネルギーマネジメントシステム101aは、実施の形態1で述べた構成要素に加えて、接続・解列情報および予約管理部102に蓄積されたデータを管理するEV実績管理部109と、予約情報および接続・解列情報から、EVの傾向を評価するEV傾向評価部110とから構成されている。
 ただし、EV実績管理部109は、本発明のエネルギーマネジメントシステム101aの外部機能としてもよい。
 まず、EV実績管理部109について説明する。EV実績管理部109は、予約管理部102に蓄積されたデータ(予約情報や充電指示情報)と、接続・解列管理部103で管理される接続・解列情報とを管理し、接続・解列予定時刻および接続・解列時刻とを対応付けて蓄積する。なお、データの保存の際に、接続・解列情報におけるEV情報の、EV識別ID、利用者識別ID、日時(曜日)等を含めた形式で保存する。
 次に、EV傾向評価部110について説明する。EV傾向評価部110は、EV実績管理部109に蓄積されたデータから充電計画の作成時に使用するEVの傾向情報(EV傾向情報)を作成する。
 具体的には、EV実績管理部109に蓄積されている、EVの接続予定時刻と実際の接続時刻とのずれ(接続時刻‐接続予定時刻)、解列予定時刻と実際の解列時刻とのずれ(解列時刻-解列予定時刻)をそれぞれ算出し、一定時刻間の頻度を表すヒストグラムを作成する。ここでヒストグラムは、EV単位でもよいが、利用者単位、日時単位、曜日単位、または、これらの組み合わせでもよい。
 さらにEV傾向評価部110は、作成したEV傾向情報を充電計画作成部107に出力する。
 <動作>
 図8は、作成したずれのヒストグラムの一例である。図8(a)は、利用者単位で作成したずれのヒストグラムであり、図8(b)は、利用者と曜日とを組み合わせ、作成したヒストグラムの一例の図である。
 図8(a)では、EVの利用者毎の傾向が把握できるため、利用者毎の傾向を考慮した許容区間やその区間における確率分布を充電計画の作成時に使用できる。
 また、図8の(b)のように曜日を組み合わせて考慮することで、利用者毎の傾向だけでなく、利用者の曜日毎の傾向も把握できる。
 そして、充電計画作成部107において、作成したヒストグラムを使用して不確実性を考慮した充電計画を作成する。なお、充電計画の作成には、ヒストグラムから得られる確率分布に基づくモンテカルロ・シミュレーションを用いて最も確からしい頻度の時間差を求めてもよいし、最悪ケース(例えば、図8(a)の場合、接続予定時刻+40分、解列予定時刻‐30分)を想定してもよい。
 上記のようなエネルギーマネジメントシステム101aによって、蓄積された過去のEVの接続・解列予定時刻と実際の接続・解列時刻とに基づいた各EVの傾向情報を作成し、EV傾向情報を利用した充電計画を作成することで、充電計画を作成する際の接続・解列時刻と実際の接続・解列時刻との誤差を抑えることができる。
 <効果>
 また、本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、EVの、電力供給手段としての充電スタンドとの接続状態、および、解列状態を示す接続・解列情報を取得する接続・解列取得部105と、接続予定時刻と、接続・解列情報より示される実際の接続時刻との差異、および、解列予定時刻と、接続・解列情報より示される実際の解列時刻との差異のうち少なくとも一方を用いて、EVの傾向を評価するEV傾向評価部110とをさらに備え、充電計画作成部107が、EV傾向評価部110における評価結果に基づいて、充電計画を作成することで、予約情報の不確実性を考慮し、充電計画を作成する際の接続・解列時刻と実際の接続・解列時刻との誤差を抑えることができる。
 <実施の形態3>
 図9は、本発明の実施の形態3によるエネルギーマネジメントシステムの構成図である。図1、図7、図9それぞれにおいて付されている同じ符号は、同一または相当する構成を指すので、説明を省略する。
 本発明におけるエネルギーマネジメントシステム101bは、実施の形態2で述べた構成要素に加えて、EVの現在位置の道路状況を管理する道路状況管理部111と、道路状況に関する情報(道路状況情報)を取得する道路状況取得部112とから構成されている。
 ただし、道路状況管理部111は、本発明のエネルギーマネジメントシステム101bの外部機能としてもよい。また、EV傾向評価部110aは、接続関係が異なっているのみで、基本的な動作等は実施の形態2におけるEV傾向評価部110と同様である。
 まず、道路状況管理部111について説明する。道路状況管理部111は、予約管理部102から得られる充電スタンドの予約情報を受け取り、予約されているEVの現在位置、現在位置から充電スタンドまでの経路に対する渋滞などの道路状況を道路状況情報として管理する。
 次に、道路状況取得部112について説明する。道路状況取得部112では、道路状況管理部111に保存されているEVの道路状況情報を受け取る。そして、道路状況情報をEV傾向評価部110aに出力する。
 EV傾向評価部110aは、道路状況取得部112から予約されているEVの道路状況情報を受け取り、EVの接続時刻を予測して予約情報取得部106から得られる接続予定時刻を補正する。具体的には、充電スタンドまでの経路において渋滞が発生している場合に、接続予定時刻から所定時間遅れる傾向があるとして補正を行う。
 ただし、接続時刻の予測は、既存のカーナビゲーションシステムの到着予定時刻の予測手法と同様の手法を用いるため、EV傾向評価部110aは、直接EVに搭載されているカーナビゲーションシステムからEVの接続予定時刻を受け取ってもよい。
 そして、充電計画作成部107において、EV傾向評価部110aで作成したEV傾向情報に基づいて充電計画を作成する。
 上記のようなエネルギーマネジメントシステム101bによって、蓄積された過去のEVの接続・解列予定時刻と実際の接続・解列時刻とに基づいた各EVの傾向情報に加え、現在の道路状況を考慮することで、充電計画を作成する際の接続予定時刻と実際の接続時刻の誤差を抑えることができる。よって、事故や天候の変化による渋滞が発生した場合に、過去のEVの実績値等を用いて作成した充電計画よりも、より精度の高い充電計画を作成することができる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、EVの現在位置周辺の道路状況を示す道路状況情報を取得する、道路状況取得部112をさらに備え、充電計画作成部107が、道路状況情報に基づいて、充電計画を作成することで、事故や天候の変化による渋滞が発生した場合にも、より精度の高い充電計画を作成することができる。
 <実施の形態4>
 図10は、本発明の実施の形態4によるエネルギーマネジメントシステムの構成図である。図1および図10において付されている同じ符号は、同一または相当する構成を指すので、説明を省略する。
 本発明におけるエネルギーマネジメントシステム101cは、実施の形態1で述べた構成要素に加えて、EV毎の充電特性を管理する充電特性管理部113と、充電特性管理部113からEV毎のバッテリの充電特性に関する情報(充電特性情報)を取得する充電特性取得部114とから構成されている。
 ただし、充電特性管理部113は、本発明のエネルギーマネジメントシステム101bの外部機能としてもよい。
 まず、充電特性管理部113について説明する。EVのバッテリ容量は充電を繰り返すにつれて低下する。また、バッテリの充電効率(ロス)は、充電スタンドから供給される電力量に応じて異なる。そのため、充電特性管理部113では、EV毎のバッテリのバッテリ容量(充電可能容量)や、充電効率などの充電特性を充電特性情報として管理する。当該充電特性情報は、各EVから取得する。
 次に、充電特性取得部114について説明する。充電特性取得部114は、充電特性管理部113に蓄積されているEV毎のバッテリの充電特性情報を取得する。そして、充電計画作成部107aでは、実施の形態1に予約情報、充電指示情報、接続・解列情報に加え、充電特性取得部114によって得られるEVのバッテリの充電特性を加味した充電計画を作成する。
 具体的には、充電効率を考慮した電力コストを最小化する充電計画を作成する場合、充電スタンドから供給される電力量に対する各EVの充電ロスをl(k,i)とし、実施の形態1の式(1)を式(5)に変更して、最適化問題を解くことで充電計画を作成する。
Figure JPOXMLDOC01-appb-M000005
 上記のようなエネルギーマネジメントシステム101cによって、EVのバッテリの充電特性を利用した充電計画を作成することで、EVの充電に伴うロスを抑えた充電計画を作成することができる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、EVの充電可能容量、および、EVの充電効率に関する充電特性情報を取得する充電特性取得部114をさらに備え、充電計画作成部107が、充電特性情報に基づいて、充電計画を作成することで、バッテリの充電ロスによる電力消費量を抑えることができ、さらにEVに対して適切な充電計画を作成することができる。
 <実施の形態5>
 図11は、本発明の実施の形態5によるエネルギーマネジメントシステムの構成図である。図1、図7、図11において付されている同じ符号は、同一または相当する構成を指すので、説明を省略する。
 本発明におけるエネルギーマネジメントシステム101dは、実施の形態2で述べた構成要素に加えて、需要家が保持する施設の電力消費量を計測する電力計測部115と、電力需要を予測する電力需要予測部116とから構成されている。
 ただし、電力計測部115および電力需要予測部116は、本発明のエネルギーマネジメントシステム101dの外部機能としてもよい。また、充電計画作成部107bは、接続関係が異なっているのみで、基本的な動作等は実施の形態2における充電計画作成部107と同様である。
 まず、電力計測部115について説明する。電力計測部115は、充電スタンドを備えた施設の電力消費量を周期Δtで計測し、データを蓄積する。
 次に、電力需要予測部116について説明する。電力需要予測部116は、電力計測部115に保存された過去の施設の電力消費量に基づいて、将来の電力需要を予測する。
 具体的には、x時間前から現在時刻tまでの周期Δsの電力消費量のヒストグラムを作成する。そして、施設における過去の同時刻までの電力消費量のヒストグラムとの類似度を算出し、類似度が閾値th以上のデータを取得する。取得したデータから、現在時刻tから次時点t+Δtまでの電力需要を、周期Δs単位で予測する。
 なお、類似度の算出は、残差二乗和でもよいし、相関係数でもよい。また、電力需要の予測値は、最も類似度の高いデータを使用してもよいし、一定以上の類似度を持つデータの平均値を使用してもよい。
 そして、充電計画作成部107bでは、EV傾向評価部110で作成したEV傾向情報に加え、電力需要予測部116で予測した次時点t+Δtまでの施設の電力需要を加味した充電計画を作成する。
 具体的には、施設の電力需要を加味した電力コストを最小化する充電計画を作成する場合、予測した周期Δs単位の電力需要をF(i)とし、式(2)を式(6)に変更して最適化問題を解くことで充電計画を作成する。
Figure JPOXMLDOC01-appb-M000006
 上記のようなエネルギーマネジメントシステム101dによって、施設の電力需要を予測することで、充電スタンドを保持する施設全体の電力需要を考慮した充電計画が立案できる。これによって、充電スタンドを保持する施設全体の電力コストの最小化や電力需要の平準化が可能となる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、充電計画作成部107が、電力供給手段としての充電スタンドを保持する施設全体の電力需要を予測し、充電計画を作成することで、充電スタンドを保持する施設全体の電力需要を考慮した充電計画が立案できる。
 <実施の形態6>
 図12は、本発明の実施の形態6によるエネルギーマネジメントシステムの構成図である。図1、図7、図11、図12において付されている同じ符号は、同一または相当する構成を指すので、説明を省略する。
 本発明におけるエネルギーマネジメントシステム101eは、実施の形態5で述べた構成要素に加えて、エネルギーマネジメントシステム101eの運用者に現在の状態の表示する実績管理部117から構成されている。また、充電制御部108aは、接続関係が異なっているのみで、基本的な動作等は実施の形態5における充電制御部108と同様である。
 まず、実績管理部117について説明する。実績管理部117は、接続・解列取得部105、予約情報取得部106、電力計測部115に保存されているデータを取得し、エネルギーマネジメントシステム101eの運用者が過去の電力消費量、EVの接続・解列時刻、予約情報等を確認できるように管理する。
 また、運用者は、実績管理部117を通じて確認した情報に基づいて、予約管理部102に対して予約されているEVの利用者に接続時刻、解列時刻を早める、もしくは遅らせるように予約変更の協力要請を出すことができる。
 なお、協力要請は、運用者がEVの利用者に直接出してもよいし、運用者側がどのくらい要請に従うのかを設定し、自動的にEVの利用者に協力要請を出すシステムを使用してもよい。
 しかし、利用者は協力要請を受けることによりメリットがなければ、要請は受けないと考えられる。そこで、要請を受けた利用者に対して報酬ポイントを与える。報酬ポイントは、エコポイントのようなポイントでもよいが、必ずしも金銭や金銭の等価物でなくてもよい。
 次に、充電制御部108aについて説明する。充電制御部108aは、充電計画作成部107で作成した充電計画に基づいて、EVへの充電制御を行うことに加え、状況に応じて、運用者が直接充電制御を行うことを可能とする。
 上記のようなエネルギーマネジメントシステム101eによって、作成した充電計画が実際の状況と異なったとしても、運用者が充電制御を直接行うことやEVの利用者に予約変更を要請できることで、電力消費量の調整をすることができる。
 よって、作成した充電計画による電力消費量と実際の電力消費量との差が大きくなった場合でも、電力消費量を調整し、電力コストの最小化や電力需要を平準化でき、電力消費の削減要請にも柔軟に対応できる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、少なくとも予約情報、接続・解列情報、施設全体の電力需要を管理する実績管理部117をさらに備え、充電計画作成部107が、実績管理部117からの要請に応じて、充電計画を変更することで、電力消費量の調整が可能になるため、電力コストの最小化や電力需要の平準化を実現した充電計画を作成することができる。
 また、実績管理部117が、充電制御やEVの利用者に対する予約変更の要請を行うことで、電力消費量の調整が可能になるため、電力コストの最小化や電力需要の平準化のみでなく、自治体から電力消費量の削減要請の柔軟な対応が実現できる。
 <実施の形態7>
 図17は、本発明の実施の形態7によるエネルギーマネジメントシステムの構成図である。図1、図7、図11および図17において、同じ符号は同一または相当部分を指すもので詳細な説明を省略する。
 本発明におけるエネルギーマネジメントシステム101fは実施の形態5で述べた構成要素に加えて、電力計測部115から得られる施設全体の電力消費量と、電力需要予測部116から得られる電力需要の予測値とから作成した充電計画を、修正する充電計画修正部118を備えている。
 充電計画修正部118について説明する。充電計画修正部118は、周期Δs(時刻t+Δs×(i-1)から時刻t+Δs×iまで)内において、施設全体の電力消費量の実績値と電力需要の予測値とを比較しながら充電計画を修正する。
 図18は、電力消費量に基づいた電力需要の予測値の補正の一例である。なお、縦軸は施設全体の電力消費量を示し、横軸は時刻を示している。
 まず、周期Δsをさらに周期Δs‘(周期Δs>周期Δs’)に分割し、周期Δs‘毎の電力消費量の実績値を電力計測部115から取得する。
 次に、当該実績値の、周期Δs’に分割した電力需要の予測値との誤差を算出する。そして、算出した誤差を残り時間の電力需要の予測値に割り振り、予測値を補正する。ただし、予測値の割り振り方については、残り時間で均等に割り振ってもよいし(図18)、時間が経過するにつれて割り振る量が少なくなるようにしてもよい。
 最後に、補正された電力需要の予測値に基づいてEVの充電計画を修正する。
 上記のようなエネルギーマネジメントシステム101fによって、電力需要の予測値が電力消費量の実績値と異なったとしても、細かな周期で実績値との誤差を算出して充電計画を修正することで周期Δs内の電力消費量を調整できるため、施設全体の電力コストの最小化や電力需要の平準化を正確に実現できる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、電力計測部115から得られる施設全体の電力消費量と電力需要予測部116から得られる電力需要の予測値から作成した充電計画を修正する充電計画修正部118をさらに備え、充電計画修正部118が、電力需要の予測値が実際の電力消費量の差から予測値を補正し、充電計画を修正することで、電力消費量を調整できるため、施設全体の電力コストの最小化や電力需要の平準化を正確に実現できる。
 <実施の形態8>
 図19は、本発明の実施の形態8によるエネルギーマネジメントシステムの構成図である。図1、図7、図11、図12および図19において同じ符号は同一または相当部分を指すもので詳細な説明を省略する。
 本発明におけるエネルギーマネジメントシステム101gは、実施の形態5で述べた構成要素に加えて、充電計画作成部107cにおいて充電計画を作成する場合に、EVの充電を優先するのか、施設全体の電力消費量の削減(平準化やピークカット)を優先するのかを入力する優先度入力部119を備えている。ただし、優先度入力部119は、本発明のエネルギーマネジメントシステム101gの外部機能としてもよい。
 優先度入力部119について説明する。優先度入力部119は、運用者によって優先度を指定するための入力画面を保持し、EVの充電を優先とした充電計画を作成するのか、施設全体の電力消費量の削減(平準化やピークカット)を優先とした充電計画を作成するのかを指定させる。そして、運用者によって指定された優先度に関する情報を充電計画作成部107cに渡す。なお、優先度の設定方法は、全時間に同じ優先度に設定してもよいし、周期Δs毎に設定できるようにしてもよい。
 さらに、充電計画作成部107cは設定された優先度に基づいてEVの充電計画を作成する。
 上記のようなエネルギーマネジメントシステム101gによって、充電計画作成時の優先度を設定できるため、電力消費の削減要請に対応した充電計画の作成や、EVが解列するまでに確実に必要充電量に達するように充電計画の作成が可能になり、施設毎の利用目的に応じた充電制御が実現できる。
 <効果>
 本発明にかかる実施の形態によれば、エネルギーマネジメントシステムにおいて、充電計画を作成する場合にEVの充電を優先するのか、施設全体の電力消費量の削除(平準化やピークカット)を優先するのかを入力する優先度入力部をさらに備え、優先度に基づいてEVの充電計画を作成することで、電力消費の削除要請に対応した充電計画の作成や、EVが解列するまでに確実に必要充電量に達するような充電計画の作成が可能になり、施設毎の利用目的に応じた充電制御が実現できる。
 なお本発明は、その発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
 101,101a,101b,101c,101d,101e,101f,101g エネルギーマネジメントシステム、102 予約管理部、103 接続・解列管理部、104 充電指示取得部、105 接続・解列取得部、106 予約情報取得部、107,107a,107b,107c 充電計画作成部、108,108a 充電制御部、109 EV実績管理部、110,110a EV傾向評価部、111 道路状況管理部、112 道路状況取得部、113 充電特性管理部、114 充電特性取得部、115 電力計測部、116 電力需要予測部、117 実績管理部、118 充電計画修正部、119 優先度入力部。

Claims (15)

  1.  電気自動車に電力を供給する電力供給手段と、
     前記電気自動車の前記電力供給手段における電力受給の予約情報を、前記電気自動車が当該電力供給手段に到達する前に取得する、予約情報取得部(106)と、
     前記予約情報に基づいて、前記電力供給手段における電力需要を予測し、前記電気自動車に対する充電計画を作成する充電計画作成部(107)と、
     前記充電計画に基づいて、前記電力供給手段における前記電気自動車に対する電力供給を制御する充電制御部(108)とを備えることを特徴とする、
    エネルギーマネジメントシステム。
  2.  前記予約情報が、前記電気自動車の、前記電力供給手段への接続予定時刻と、前記電力供給手段からの解列予定時刻とを少なくとも含むことを特徴とする、
    請求項1に記載のエネルギーマネジメントシステム。
  3.  前記充電計画作成部(107)が、前記接続予定時刻から所定時間ずれた許容接続予定時刻、および、前記解列予定時刻から所定時間ずれた許容解列予定時刻に基づいて、前記充電計画を作成することを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  4.  前記電気自動車の、前記電力供給手段との接続状態、および、解列状態を示す接続・解列情報を取得する接続・解列取得部(103)と、
     前記接続予定時刻と、前記接続・解列情報より示される実際の前記接続時刻との差異、および、前記解列予定時刻と、前記接続・解列情報より示される実際の前記解列時刻との差異のうち少なくとも一方を用いて、前記電気自動車の傾向を評価する電気自動車傾向評価部(110)とをさらに備え、
     前記充電計画作成部(107)が、前記電気自動車傾向評価部(110)における評価結果に基づいて、前記充電計画を作成することを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  5.  前記電気自動車の現在位置周辺の道路状況を示す道路状況情報を取得する、道路状況取得部(112)をさらに備え、
     前記充電計画作成部(107)が、前記道路状況情報に基づいて、前記充電計画を作成することを特徴とする、
    請求項4に記載のエネルギーマネジメントシステム。
  6.  前記電気自動車の充電可能容量、および、前記電気自動車の充電効率に関する充電特性情報を取得する充電特性取得部(114)をさらに備え、
     前記充電計画作成部(107a)が、前記充電特性情報に基づいて、前記充電計画を作成することを特徴とする、
    請求項1に記載のエネルギーマネジメントシステム。
  7.  前記充電計画作成部(107b)が、前記電力供給手段を保持する施設全体の電力需要を予測し、前記充電計画を作成することを特徴とする、
    請求項4に記載のエネルギーマネジメントシステム。
  8.  少なくとも前記予約情報、前記接続・解列情報、前記施設全体の電力需要を管理する実績管理部(117)をさらに備え、
     前記充電計画作成部(107b)が、前記実績管理部(117)からの要請に応じて、前記充電計画を変更することを特徴とする、
    請求項7に記載のエネルギーマネジメントシステム。
  9.  前記予約情報が、前記電気自動車の最低確保充電量をさらに含み、
     前記充電計画作成部が(107)、前記電気自動車の充電量が前記最低確保充電量に達するまでは制御の対象外として充電されるように、前記充電計画を作成することを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  10.  前記充電計画作成部(107)が、負の充電電力量の制御を含む前記充電計画を作成することを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  11.  前記充電計画作成部(107)が、前記電力供給手段に接続されている全ての前記電気自動車が正の充電電力量、もしくは負の充電電力量に制御される前記充電計画を作成することを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  12.  前記電力供給手段における電力需要の予測値と、前記電力供給手段における電力需要の直近の実績値との差異に基づいて、前記充電計画を修正する充電計画修正部(118)をさらに備えることを特徴とする、
    請求項2に記載のエネルギーマネジメントシステム。
  13.  前記充電計画作成部(107b)が、前記電力供給手段を保持する施設全体の電力需要を予測し、施設全体の電力消費量が制御範囲内に収まるように、前記充電計画を作成することを特徴とする、
    請求項4に記載のエネルギーマネジメントシステム。
  14.  前記充電計画において、前記電気自動車の充電と、前記施設全体の電力消費量の削減とのどちらを優先するかを示す優先度を設定する優先度入力部(119)をさらに備え、
     前記充電計画作成部(107b)が、前記優先度に基づいて前記充電計画を作成することを特徴とする、
    請求項7に記載のエネルギーマネジメントシステム。
  15.  前記優先度が、前記電気自動車の充電と、前記施設全体の電力消費量の削減とのどちらを優先するかを時間毎に設定でき、
     前記充電計画作成部(107b)が、時間毎に設定された前記優先度に基づいて、前記充電計画を作成することを特徴とする、
    請求項14に記載のエネルギーマネジメントシステム。
PCT/JP2012/081621 2011-12-27 2012-12-06 エネルギーマネジメントシステム WO2013099549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE201211005488 DE112012005488T5 (de) 2011-12-27 2012-12-06 Energiemanagementsystem
JP2013551562A JP5680222B2 (ja) 2011-12-27 2012-12-06 エネルギーマネジメントシステム
US14/362,755 US9358896B2 (en) 2011-12-27 2012-12-06 Energy management system
CN201280064587.1A CN104025418B (zh) 2011-12-27 2012-12-06 能量管理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011284695 2011-12-27
JP2011-284695 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099549A1 true WO2013099549A1 (ja) 2013-07-04

Family

ID=48697045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081621 WO2013099549A1 (ja) 2011-12-27 2012-12-06 エネルギーマネジメントシステム

Country Status (5)

Country Link
US (1) US9358896B2 (ja)
JP (1) JP5680222B2 (ja)
CN (1) CN104025418B (ja)
DE (1) DE112012005488T5 (ja)
WO (1) WO2013099549A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985064A (zh) * 2014-05-16 2014-08-13 东南大学 一种基于实时电价的电动汽车换电模式充电控制方法
WO2015008624A1 (ja) * 2013-07-19 2015-01-22 日本電気株式会社 電力制御システム、電力制御方法及び記録媒体
JP2015022469A (ja) * 2013-07-18 2015-02-02 三菱重工業株式会社 電気自動車の電力管理装置及び電気自動車の電力需要予測方法
JP2015104213A (ja) * 2013-11-25 2015-06-04 富士通株式会社 蓄電池の充放電制御装置、蓄電池の充放電制御方法、及び、蓄電池の充放電制御プログラム
CN105034839A (zh) * 2015-06-29 2015-11-11 王国成 具有两个不同的动力电池系统的电动汽车
CN106671804A (zh) * 2015-11-09 2017-05-17 现代自动车株式会社 车辆及其充电控制方法
JP2018049447A (ja) * 2016-09-21 2018-03-29 トヨタ自動車株式会社 充電予約システム
WO2018083781A1 (ja) * 2016-11-04 2018-05-11 株式会社 東芝 水素管理システムおよび水素管理方法
JPWO2017158762A1 (ja) * 2016-03-16 2018-08-09 株式会社東芝 水素管理システムおよび統合水素管理装置
JP2019030136A (ja) * 2017-07-31 2019-02-21 Kddi株式会社 充電制御サーバ、充電制御システム及びプログラム
JP2019032905A (ja) * 2018-11-28 2019-02-28 三菱重工業株式会社 電力管理装置、電力管理システム、電力管理方法及びプログラム
JP2019110745A (ja) * 2017-12-14 2019-07-04 本田技研工業株式会社 ユーティリティイベントを充電スケジュールに入れるための方法及びシステム
WO2021033481A1 (ja) * 2019-08-21 2021-02-25 パナソニックIpマネジメント株式会社 管理システム、管理プログラム、及び電動車両
JP2021114830A (ja) * 2020-01-17 2021-08-05 株式会社ダイヘン 中継装置
WO2022145024A1 (ja) * 2020-12-29 2022-07-07 三菱電機株式会社 充放電制御装置および充放電制御方法
WO2022209241A1 (ja) * 2021-03-29 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電管理方法、プログラム、及び充電管理システム
WO2022209242A1 (ja) * 2021-03-30 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電管理方法、プログラム、及び充電管理システム
WO2023188357A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 充電予約制御装置、充電予約制御方法、及びプログラム

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130262654A1 (en) * 2012-03-28 2013-10-03 Sony Corporation Resource management system with resource optimization mechanism and method of operation thereof
CN105393422B (zh) * 2013-05-30 2019-06-18 东芝三菱电机产业系统株式会社 电力管理装置
US10406937B2 (en) * 2013-10-24 2019-09-10 Ford Global Technologies, Llc Electric vehicle charger and charging method
SG10201406883UA (en) * 2014-10-23 2016-05-30 Sun Electric Pte Ltd "Power Grid System And Method Of Consolidating Power Injection And Consumption In A Power Grid System"
DE102015219202A1 (de) * 2015-10-05 2017-04-06 Bayerische Motoren Werke Aktiengesellschaft Optimierung von Lade-/Entladeplänen für Elektrofahrzeuge
DE102015219201A1 (de) * 2015-10-05 2017-04-06 Bayerische Motoren Werke Aktiengesellschaft Ermittlung einer Betriebsstrategie für einen Lokalspeicher
US10422479B2 (en) * 2015-11-18 2019-09-24 Panasonic Intellectual Property Management Co., Ltd. Control method for energy source supply system that stores an energy source and supplies the energy source to one or more vehicles
DE102015224075A1 (de) * 2015-12-02 2017-06-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren und System zur Versorgung einer Mehrzahl an Fahrzeugen mit elektrischer Energie und System
DE102015226318A1 (de) * 2015-12-21 2017-06-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Ladegerät zum Laden eines Traktionsenergiespeichers eines elektrisch angetriebenen Fahrzeugs
CN105576684B (zh) * 2016-02-01 2018-06-01 浙江工业大学 一种含高渗透率光电微电网中的电动汽车优化调度方法
DE102016202808A1 (de) 2016-02-24 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
DE102016202816A1 (de) * 2016-02-24 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
DE102016202813B4 (de) 2016-02-24 2022-01-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
DE102016212030A1 (de) * 2016-07-01 2018-01-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Simulations-Vorrichtung zur vorausschauenden Steuerung eines Lade- und/oder Entladevorgangs
DE102016212135A1 (de) 2016-07-04 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
AU2017333573B2 (en) * 2016-09-30 2020-08-13 Honda Motor Co., Ltd. Route searching apparatus, battery information managing apparatus, and program
DE102016219726A1 (de) * 2016-10-11 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
CN106410861B (zh) * 2016-11-04 2018-09-18 浙江工业大学 一种基于可调度能力的微电网优化运行实时控制方法
WO2018222758A1 (en) * 2017-05-30 2018-12-06 Wireless Advanced Vehicle Electrification, Inc. Single feed multi-pad wireless charging
DE102017211148A1 (de) 2017-06-30 2019-01-03 Audi Ag Verfahren zum Koordinieren von Ladevorgängen mehrerer elektrisch antreibbarer Kraftfahrzeuge sowie Steuervorrichtung zum Durchführen des Verfahrens
CN107369124B (zh) * 2017-07-05 2021-02-19 深圳市迪比科电子科技有限公司 一种车辆管理方法、服务器、车辆及系统
DE102018104577B4 (de) * 2018-02-28 2019-11-14 Bender Gmbh & Co. Kg Verfahren zur Laststeuerung einer Ladestation für ein Elektrofahrzeug
US10958082B2 (en) * 2018-04-25 2021-03-23 Microsoft Technology Licensing, Llc Intelligent battery cycling for lifetime longevity
EP3560751A1 (en) 2018-04-27 2019-10-30 Panasonic Intellectual Property Corporation of America Control method, server, in-vehicle device, and program
JP6564502B1 (ja) 2018-06-29 2019-08-21 レスク株式会社 バッテリ管理システム
JP7212560B2 (ja) 2019-03-18 2023-01-25 本田技研工業株式会社 制御装置、電力制御システム、制御方法およびプログラム
TWI699729B (zh) * 2019-06-14 2020-07-21 拓連科技股份有限公司 充電設備之充電管理系統及方法
TWI702559B (zh) * 2019-06-14 2020-08-21 拓連科技股份有限公司 充電設備之充電管理系統及方法
JP7355551B2 (ja) * 2019-08-09 2023-10-03 本田技研工業株式会社 制御装置、制御方法、およびプログラム
US11797350B2 (en) 2020-02-25 2023-10-24 Cisco Technology, Inc. Method and apparatus for providing data center functions for support of an electric vehicle based data center
CN112124135B (zh) * 2020-08-19 2021-12-28 国电南瑞科技股份有限公司 一种电动汽车共享充电需求分析方法及装置
JPWO2022172043A1 (ja) * 2021-02-10 2022-08-18
CN113344435B (zh) * 2021-06-29 2023-02-24 南方电网数字电网研究院有限公司 台区供电状态评估、装置、电子设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (ja) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd 電力マネジメントシステム
JP2003269000A (ja) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd 駐車場および駐車場制御方法
WO2005057982A1 (ja) * 2003-12-08 2005-06-23 Hitachi, Ltd. リモート制御システム及び方法
JP2007028036A (ja) * 2005-07-14 2007-02-01 Nec Electronics Corp 制御装置及び制御装置を用いた機器の制御方法
JP2010081722A (ja) * 2008-09-25 2010-04-08 Hitachi Ltd 充放電管理装置
WO2011007573A1 (ja) * 2009-07-15 2011-01-20 パナソニック株式会社 電力制御システム、電力制御方法、電力制御装置及び電力制御プログラム
WO2011024366A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 利用時間変更支援装置およびその方法
JP2011188596A (ja) * 2010-03-05 2011-09-22 Fujitsu Ten Ltd 充電管理装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209707A (ja) 1999-01-07 2000-07-28 Mitsubishi Electric Corp 電気自動車の充電計画装置
JP2004118783A (ja) * 2002-09-30 2004-04-15 Mitsubishi Electric Corp 移動体通信システム及び移動体通信装置及びサービス提供者通信装置
JP2008067418A (ja) 2006-09-04 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 充電制御方法、蓄電装置および充電制御システム
MX2009006239A (es) * 2006-12-11 2010-02-11 V2Green Inc Localizador de conexion en un sistema de agregacion de potencia para recursos electricos distribuidos.
JP4306775B2 (ja) * 2007-08-31 2009-08-05 トヨタ自動車株式会社 電動車両
JP2010110044A (ja) 2008-10-28 2010-05-13 Shikoku Electric Power Co Inc 電動車両用充電装置
JP5077701B2 (ja) 2008-10-31 2012-11-21 本田技研工業株式会社 電力供給制御装置
JP2010239849A (ja) * 2009-03-31 2010-10-21 Fujitsu Ten Ltd 車載装置および車載システム
JP5106508B2 (ja) 2009-10-09 2012-12-26 中国電力株式会社 充電スタンド案内システム、制御サーバ及びスタンドサーバ
JP5680438B2 (ja) 2010-04-12 2015-03-04 パナソニック株式会社 充電制御装置
JPWO2013035481A1 (ja) * 2011-09-06 2015-03-23 株式会社日立製作所 充電計画システム、充電計画装置、充電計画方法、及びプログラム
JP5986749B2 (ja) * 2012-01-18 2016-09-06 クラリオン株式会社 予約システム、ナビゲーション装置、充電器およびサーバ
US9142978B2 (en) * 2012-11-06 2015-09-22 EV Connect, Inc. Queue prioritization for electric vehicle charging stations

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (ja) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd 電力マネジメントシステム
JP2003269000A (ja) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd 駐車場および駐車場制御方法
WO2005057982A1 (ja) * 2003-12-08 2005-06-23 Hitachi, Ltd. リモート制御システム及び方法
JP2007028036A (ja) * 2005-07-14 2007-02-01 Nec Electronics Corp 制御装置及び制御装置を用いた機器の制御方法
JP2010081722A (ja) * 2008-09-25 2010-04-08 Hitachi Ltd 充放電管理装置
WO2011007573A1 (ja) * 2009-07-15 2011-01-20 パナソニック株式会社 電力制御システム、電力制御方法、電力制御装置及び電力制御プログラム
WO2011024366A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 利用時間変更支援装置およびその方法
JP2011188596A (ja) * 2010-03-05 2011-09-22 Fujitsu Ten Ltd 充電管理装置及び方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022469A (ja) * 2013-07-18 2015-02-02 三菱重工業株式会社 電気自動車の電力管理装置及び電気自動車の電力需要予測方法
WO2015008624A1 (ja) * 2013-07-19 2015-01-22 日本電気株式会社 電力制御システム、電力制御方法及び記録媒体
JP2015104213A (ja) * 2013-11-25 2015-06-04 富士通株式会社 蓄電池の充放電制御装置、蓄電池の充放電制御方法、及び、蓄電池の充放電制御プログラム
CN103985064A (zh) * 2014-05-16 2014-08-13 东南大学 一种基于实时电价的电动汽车换电模式充电控制方法
CN105034839A (zh) * 2015-06-29 2015-11-11 王国成 具有两个不同的动力电池系统的电动汽车
CN106671804A (zh) * 2015-11-09 2017-05-17 现代自动车株式会社 车辆及其充电控制方法
JPWO2017158762A1 (ja) * 2016-03-16 2018-08-09 株式会社東芝 水素管理システムおよび統合水素管理装置
JP2018049447A (ja) * 2016-09-21 2018-03-29 トヨタ自動車株式会社 充電予約システム
WO2018083781A1 (ja) * 2016-11-04 2018-05-11 株式会社 東芝 水素管理システムおよび水素管理方法
JPWO2018083781A1 (ja) * 2016-11-04 2018-11-01 株式会社東芝 水素管理システムおよび水素管理方法
JP2019030136A (ja) * 2017-07-31 2019-02-21 Kddi株式会社 充電制御サーバ、充電制御システム及びプログラム
JP2019110745A (ja) * 2017-12-14 2019-07-04 本田技研工業株式会社 ユーティリティイベントを充電スケジュールに入れるための方法及びシステム
JP7264633B2 (ja) 2017-12-14 2023-04-25 本田技研工業株式会社 ユーティリティイベントを充電スケジュールに入れるための方法及びシステム
JP2019032905A (ja) * 2018-11-28 2019-02-28 三菱重工業株式会社 電力管理装置、電力管理システム、電力管理方法及びプログラム
WO2021033481A1 (ja) * 2019-08-21 2021-02-25 パナソニックIpマネジメント株式会社 管理システム、管理プログラム、及び電動車両
JP2021114830A (ja) * 2020-01-17 2021-08-05 株式会社ダイヘン 中継装置
JP7341911B2 (ja) 2020-01-17 2023-09-11 株式会社ダイヘン 中継装置
WO2022145024A1 (ja) * 2020-12-29 2022-07-07 三菱電機株式会社 充放電制御装置および充放電制御方法
JP7459305B2 (ja) 2020-12-29 2024-04-01 三菱電機株式会社 充放電制御装置および充放電制御方法
WO2022209241A1 (ja) * 2021-03-29 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電管理方法、プログラム、及び充電管理システム
WO2022209242A1 (ja) * 2021-03-30 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電管理方法、プログラム、及び充電管理システム
WO2023188357A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 充電予約制御装置、充電予約制御方法、及びプログラム

Also Published As

Publication number Publication date
DE112012005488T5 (de) 2014-10-02
CN104025418A (zh) 2014-09-03
US9358896B2 (en) 2016-06-07
JPWO2013099549A1 (ja) 2015-04-30
US20140361745A1 (en) 2014-12-11
CN104025418B (zh) 2017-03-15
JP5680222B2 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5680222B2 (ja) エネルギーマネジメントシステム
JP5803547B2 (ja) 充電配車計画システム
JP6768080B2 (ja) サーバ装置及び制御方法
US20140143002A1 (en) Charge/discharge scheduling-operation system and a method thereof
JP5214764B2 (ja) 電気自動車充電スケジューリングシステム
JP5776017B2 (ja) 蓄電池充電計画支援システム
JP6596472B2 (ja) 充放電管理装置
EP4354368A1 (en) Electric-quantity-based path planning method for electric vehicle compatible with energy storage charging pile
US20130035812A1 (en) Battery charging system and method
JP5714073B2 (ja) スマートグリッドシステムおよび車載装置
JPWO2012093638A1 (ja) 充電制御装置、充電制御方法、及びプログラム
CN105555587A (zh) 运行计划创建设备以及运行计划创建方法
KR101525566B1 (ko) 전기 자동차의 충전 제어장치 및 그 방법
JP5675523B2 (ja) 充電装置及び充電システム及び充電方法
EP3046199A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
WO2013160940A1 (ja) 移動体に搭載された蓄電池の充電計画システム
US20170221161A1 (en) Control device, apparatus control device, reporting method, and recording medium
JP2017143634A (ja) 充電制御システム
JP2020198737A (ja) 車両充電システム
JP6537935B2 (ja) 需要家通信装置、車両及び通信方法
WO2017037974A1 (ja) 電力制御システム及びサーバー
KR20150067860A (ko) 에너지 저장장치의 전력관리장치 및 전력관리방법
JP6913728B2 (ja) 管理装置、管理方法、およびプログラム
JP6766220B2 (ja) 需要家通信装置、車両及び通信方法
KR102414493B1 (ko) 전기이동체를 위한 충방전 제어 방법 및 이를 수행하는 충방전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551562

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362755

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005488

Country of ref document: DE

Ref document number: 1120120054881

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862752

Country of ref document: EP

Kind code of ref document: A1