WO2015008624A1 - 電力制御システム、電力制御方法及び記録媒体 - Google Patents

電力制御システム、電力制御方法及び記録媒体 Download PDF

Info

Publication number
WO2015008624A1
WO2015008624A1 PCT/JP2014/067646 JP2014067646W WO2015008624A1 WO 2015008624 A1 WO2015008624 A1 WO 2015008624A1 JP 2014067646 W JP2014067646 W JP 2014067646W WO 2015008624 A1 WO2015008624 A1 WO 2015008624A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
time
load
control system
Prior art date
Application number
PCT/JP2014/067646
Other languages
English (en)
French (fr)
Inventor
龍 橋本
仁之 矢野
寿人 佐久間
耕治 工藤
永典 實吉
貴裕 戸泉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015527248A priority Critical patent/JPWO2015008624A1/ja
Priority to US14/905,675 priority patent/US20160164329A1/en
Publication of WO2015008624A1 publication Critical patent/WO2015008624A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a power control system, a power control method, and a program for controlling supply of power to a load or a storage battery.
  • renewable power sources such as solar cells and wind power generators, which are being rapidly introduced, are considered to be effective means for reducing carbon and solving energy resource problems.
  • thermal power generators with a fast response speed are mainly used at present. For this reason, the more a renewable power source with a large output fluctuation is introduced into the electric power system, the more dilemma is that a thermal power generator as an adjustment means becomes necessary. Therefore, it is a big problem to secure adjusting means to replace the thermal power generator.
  • EV Electric Vehicle
  • hybrid electric vehicle that includes a power source other than electric power
  • a virtual large-capacity storage battery is configured by a large number of storage batteries in the EV, and the virtual large-capacity storage battery is controlled to stabilize the power system by controlling a charger that charges the storage battery in the EV.
  • V2G Vehicle-to-Grid
  • Proposals related to V2G technology itself have been around since the 1980s, and research reports such as macro estimation of the effect of macro stabilization over the entire power system network have been ongoing.
  • micro control methods for concrete system construction that is, technologies for controlling charging and discharging of a large number of EVs individually and in real time.
  • Patent Document 1 describes an EV charging planning device, and also describes optimal charging scheduling using a genetic algorithm.
  • Patent Document 2 a stationary storage battery is used as a power buffer, and the stationary storage battery is connected in series between the power system network and the EV to expand the infrastructure capacity on the power system network side.
  • Patent Document 2 describes a technique for stably charging EVs.
  • G2V In general, not only charging from the power system to the EV but also assuming discharge from the EV to the distribution network (power system side) is called “V2G”, but only charging to the EV is assumed. Sometimes called “G2V”. G2V is considered to reduce the load on the storage battery in the EV as the number of charge / discharge cycles decreases.
  • the state of each EV for example, the charging state, the connection state with the charger
  • a charge management unit that comprehensively manages the amount of charge and time of charge performed by each EV charger and directly controls the charger is required.
  • each EV is charged individually. In this case, it is assumed that the charging timing of each EV is concentrated.
  • Fig. 1 shows the simulation results of load fluctuations over three days of (holiday)-(weekdays)-(weekdays) with 1,000 EVs as an example of EVs that produce sudden load fluctuations in the related technology DR. It is a figure.
  • the electricity price is assumed to be 50 yen / kwh only from 10:00 to 12:00 on the basis of 150 yen / kwh, and this electricity price is presented every day at 0:00. According to the simulation results under the above conditions, it was confirmed that the power demand temporarily increased at the time when the decrease in power price started.
  • An object of the present invention is to provide a power control system, a power control method, and a program that can solve the above-described problems.
  • the power control system of the present invention is A power control system for controlling power supply to a load or a storage battery, Receiving means for acquiring power supply information including the amount of power to be supplied to other loads or storage batteries, and the time zone for supplying power; Determining means for determining a time zone for supplying power to the load or the storage battery based on the power supply information.
  • the power control method of the present invention includes: A power control method performed by a power control system that controls supply of power to a load or a storage battery, Obtain power supply information including the amount of power to be supplied to other loads or storage batteries and the time period for supplying power, Based on the power supply information, a time zone for supplying power to the load or the storage battery is determined.
  • the recording medium of the present invention is A computer-readable recording medium that records a program for causing a computer to control the supply of power to a load or a storage battery, In the computer, An acceptance procedure for acquiring power supply information including the amount of power to be supplied to another load or storage battery, and the time zone for supplying power; And a determination procedure for determining a time zone for supplying power to a load or a storage battery based on the power supply information.
  • the present invention it is possible to suppress the concentration of the timing at which power is supplied to the load or the storage battery.
  • FIG. 1 is a diagram illustrating a management system 10 including a power control system according to an embodiment of the present invention. It is the figure which showed an example of the charge control system. It is the figure which showed an example of the determined electric energy signal Q (t). It is the figure which showed an example of the price signal P (t).
  • 2 is a diagram illustrating an example of a hardware configuration of a charging control system 101.
  • FIG. 3 is a flowchart for explaining the operation of the charging control system 101. It is the figure which showed an example of time t, priority time function (phi) (t), and a supply time slot
  • FIG. 2 is a diagram showing a management system 10 including a power control system according to an embodiment of the present invention.
  • the management system 10 includes HEMS (Home Energy Management System) devices 1a to 1d installed in a residential area 10-1, and BEMS (Building Energy Management System) devices installed in a building parking lot 10-2. 2a, charging stations 3a to 3c installed in charging station area 10-3, and signal transmission device 4.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stations 3a to 3c are connected to the substation 6 through the power distribution network 5, respectively.
  • the power distribution network 5 and the substation 6 are included in the power system 7.
  • the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c communicate with the signal transmission device 4, respectively.
  • the HEMS devices 1a to 1c control charging / discharging of the storage batteries in the EVs 8a to 8c, respectively.
  • the HEMS devices 1a to 1c control power supply from the power system 7 to the EVs 8a to 8c, respectively.
  • the EV and the storage battery in the EV are examples of a predetermined power supply target or a specific power supply target.
  • “charging / discharging of the storage battery in the EV” is also referred to as “charging / discharging of the EV”.
  • the HEMS device 1d controls power supply from the power system 7 to a stationary energy storage (for example, a stationary storage battery or a heat pump) 9a.
  • the stationary energy storage is an example of a predetermined power supply target or a specific power supply target.
  • the BEMS device 2a controls the charging / discharging of the EVs 8d to 8g and the power supply to the stationary energy storages 9b to 9c.
  • the BEMS device 2a controls the supply of power from the power system 7 to the EVs 8d to 8g and the stationary energy storages 9b to 9c.
  • the charging stations 3a to 3c control power supply from the power system 7 to the EVs 8h to 8i, respectively.
  • the signal transmission device 4 transmits a price signal indicating a power price for each time, a determined power amount signal indicating a supply determined total power amount for each time, a HEMS device 1a to 1d, a BEMS device 2a, and a charging stand. Send to 3a-3c.
  • the price signal is an example of price information and is a time function representing the power price at each time.
  • the price signal represents, for example, the power price of each time for one day determined by a power supply source such as an electric power company, and the signal transmission device 4 on the day before the date when the power price is represented by the price signal.
  • a power supply source such as an electric power company
  • the signal transmission device 4 on the day before the date when the power price is represented by the price signal.
  • the period of the power price represented by the price signal is not limited to one day and can be changed as appropriate.
  • the timing at which the price signal is transmitted may be a timing before the period of the power price represented by the price signal.
  • the determined power amount signal is an example of power supply information, and is a time function representing the total amount of power determined to be supplied to each power supply target at each time.
  • the “total amount of power determined to be supplied to each power supply target at each time” is also simply referred to as “determined power amount”.
  • the signal transmission device 4 updates the determined power amount signal according to the determined power amount update, and transmits the updated determined power amount signal.
  • FIG. 3 is a diagram showing an example of the charging control system 101 mounted on each of the HEMS devices 1a to 1d, the BEMS device 2a, and the charging stands 3a to 3c.
  • the charging control system of the present invention may be mounted on the HEMS device, the BEMS device, or the charging stand in FIG. 3, or may be mounted as a system for managing these as a microgrid.
  • the charging control system is mounted on, for example, a control device connected to a HEMS device, a BEMS device, or a charging stand via a communication line.
  • the charging control system 101 is an example of a power control system.
  • the charging control system 101 determines a charging schedule for the storage battery 111 mounted on the EV 110, and controls charging of the storage battery 111 according to the charging schedule.
  • the EV 110 corresponds to the EV 8a.
  • the storage battery 111 is an example of a predetermined power supply target.
  • the charging schedule of the storage battery 111 represents a supply time zone in which power is supplied from the power system 7 to the storage battery 111, and an amount of power supplied from the power system 7 to the storage battery 111 at each time within the supply time zone.
  • the charging control system 101 includes an information acquisition unit 102, a storage unit 103, an EV data acquisition unit 104, a determination unit 105, and a charging control unit 106.
  • the EV data acquisition unit 104 includes a connection time information acquisition unit 104a and a necessary charge amount acquisition unit 104b.
  • the connection time information acquisition unit 104a includes a connection detection unit 104a1 and a connection end time acquisition unit 104a2.
  • the determination unit 105 includes a priority time function calculation unit 105a and a schedule calculation unit 105b.
  • the information acquisition unit 102 is an example of a power supply information receiving unit.
  • the information acquisition unit 102 receives the price signal and the determined power amount signal from the signal transmission device 4. For example, the information acquisition unit 102 receives the price signal and the determined power amount signal by wired communication or wireless communication.
  • the determined power amount signal is a power supply target such as another storage battery or stationary energy storage that has already been determined by another charge control system before the charging control system 101 determines the charging schedule of the storage battery 111 (hereinafter referred to as “others”). It is created by the signal transmission device 4 on the basis of a charging schedule of “power supply target”. Note that power is also supplied from the power system 7 to other power supply targets.
  • the other power supply target is an example of a specific power supply target.
  • FIG. 4 is a diagram showing an example of the determined electric energy signal Q (t).
  • the horizontal axis indicates time
  • the vertical axis indicates determined electric energy.
  • FIG. 5 is a diagram showing an example of the price signal P (t).
  • the horizontal axis indicates time
  • the vertical axis indicates power price.
  • the information acquisition unit 102 shown in FIG. 3 receives the determined power amount signal Q (t), the information acquisition unit 102 notifies the priority time function calculation unit 105a of the determined power amount signal Q (t). Further, every time the information acquisition unit 102 receives the price signal P (t), the information acquisition unit 102 notifies the priority time function calculation unit 105a of the price signal P (t).
  • the storage unit 103 is an example of a storage unit.
  • the storage unit 103 stores various information.
  • the storage unit 103 stores weighting information for specifying weights for the determined power amount indicated by the determined power amount signal Q (t) and the power price indicated by the price signal P (t).
  • the storage unit 103 uses, as weighting information, a coefficient w1 indicating weighting for the determined power amount indicated by the determined power amount signal Q (t) and the power price indicated by the price signal P (t).
  • a set of a coefficient w2 indicating weighting is stored.
  • the storage unit 103 stores the charging schedule of the storage battery 111 determined by the charging control system 101.
  • the EV data acquisition unit 104 acquires information regarding the storage battery 111.
  • connection time information acquisition unit 104a is an example of a target information receiving unit.
  • connection time information acquisition unit 104a receives target information for specifying an allowable time zone in which power supply to the storage battery 111 is allowed.
  • connection detection unit 104a1 detects the time when the storage battery 111 is connected to the charge control system 101 (for example, the plug-in time of the storage battery 111).
  • connection start time the time when the storage battery 111 is connected to the charge control system 101.
  • connection detection unit 104a1 includes a clock unit (not shown), and a connection signal indicating connection (hereinafter referred to as “EV connection”) from the connection detection switch (not shown) to the charge control system 101 of the storage battery 111. Is received, the time is read from the clock unit, and the time is used as the connection start time.
  • EV connection connection signal indicating connection
  • the connection end time obtaining unit 104a2 obtains a scheduled time for terminating the EV connection (for example, a planned plug-out time for the storage battery 111).
  • a scheduled time for terminating the EV connection for example, a planned plug-out time for the storage battery 111).
  • the scheduled time for terminating the EV connection is referred to as “estimated connection termination time”.
  • connection end time acquisition unit 104a2 has an input device such as a touch panel or an operation button, and acquires the estimated connection end time input by the user of the EV 110 by operating the input device.
  • the target information is composed of the connection signal and the estimated connection end time.
  • the required charge acquisition unit 104b is an example of a specifying unit.
  • the required charge acquisition unit 104b specifies the charge required for the storage battery 111 (hereinafter referred to as “required charge”).
  • the required charge amount obtaining unit 104b detects the SOC (State of geCharge) of the storage battery 111 at the time of EV connection, and calculates the required charge amount based on the difference between the SOC and the target SOC that is the target value for completion of charging. calculate.
  • SOC State of geCharge
  • the SOC of the storage battery 111 at the time of EV connection is an example of the predetermined information.
  • the determination unit 105 is an example of a determination unit.
  • the determination unit 105 determines the determined power amount signal Q (t), the price signal P (t), the weighting information (coefficient w1 and coefficient w2), the connection start time, the connection end scheduled time, the required charge amount, Based on the above, the charging schedule of the storage battery 111 is determined.
  • the priority time function calculation unit 105a is used to determine the charging schedule based on the determined electric energy signal Q (t), the price signal P (t), and the weighting information (coefficient w1 and coefficient w2). Generate a priority time function.
  • the priority time function represents the power supply recommendation level for each time.
  • the power supply recommendation level represents a recommendation level for supplying power to a power supply target at that time.
  • the priority time function calculation unit 105a sequentially receives the determined power amount signal Q (t) and the price signal P (t) from the information acquisition unit 102, respectively.
  • the priority time function calculation unit 105a holds the latest determined power amount signal Q (t) among the determined power amount signals Q (t) sequentially received.
  • the priority time function calculation unit 105a holds the latest price signal P (t) among the sequentially received price signals P (t).
  • the priority time function calculation unit 105a generates a priority time function based on the latest determined electric energy signal Q (t), the latest price signal P (t), and the weighting information.
  • the schedule calculation unit 105b determines a charging schedule for the storage battery 111 based on the priority time function, the connection start time, the connection end scheduled time, and the required charge amount.
  • the charging control unit 106 is an example of a supply unit.
  • the charging control unit 106 supplies power from the power system 7 to the storage battery 111 in accordance with the charging schedule calculated by the schedule calculating unit 105b.
  • the charging control unit 106 supplies power from the power system 7 to the storage battery 111 with power of a predetermined value (for example, maximum value) within the rated power of the storage battery 111.
  • a predetermined value for example, maximum value
  • the predetermined value is not limited to the maximum value within the rated power of the storage battery 111, and can be appropriately changed as long as it is a value within the rated power of the storage battery 111.
  • the predetermined value is referred to as “output power value”.
  • the output power value is also set in the priority time function calculation unit 105a.
  • FIG. 6 is a diagram illustrating an example of a hardware configuration of the charging control system 101.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals.
  • the charge control device 201 is an example of a control system and has the same function as the charge control system 101.
  • the charging control device 201 includes a communication control unit 202, a main storage unit 203A, a data storage unit 203B, memory control interface units 203A-1 and 203B-1, an input unit 204, and an I / O (Input / Output). It includes an interface unit 204-1, a calculation unit 205, and a switch control unit 206.
  • the communication control unit 202 has the same function as the information acquisition unit 102.
  • the main storage unit 203A is a storage unit mainly used by the calculation unit 205.
  • the main storage unit 203A stores a program for defining the operation of the calculation unit 205.
  • the memory control interface 203A-1 is an interface for the main storage unit 203A.
  • the data storage unit 203B has the same function as the storage unit 103.
  • the memory control interface 203B-1 is an interface for the data storage unit 203B.
  • the input unit 204 has the same function as the EV data acquisition unit 104.
  • the I / O interface unit 204-1 is an interface for the input unit 204.
  • the calculation unit 205 has the same function as the determination unit 105.
  • the calculation unit 205 implements the same function as the determination unit 105 by reading and executing a program stored in the main storage unit 203A.
  • the switch control unit 206 has the same function as the charge control unit 106.
  • a relay switch is used as the switch control unit 206.
  • the switch control unit 206 is not limited to a relay switch and can be changed as appropriate.
  • FIG. 7 is a flowchart for explaining the operation of the charging control system 101.
  • a user (for example, an owner) of the EV 110 connects the EV 110 to the charging control system 101 to charge the EV 110 (storage battery 111), operates the connection end time acquisition unit 104a2, and starts using the EV 110 next time. Enter the scheduled time, that is, the scheduled connection end time.
  • the connection end scheduled time is input, for example, every time a user of the EV 110 connects the EV 110 to the charge control system 101.
  • connection detection unit 104a1 detects the connection (EV connection) between the charge control system 101 and the EV 110 (step S601), and the required charge amount acquisition unit 104b specifies the required charge amount. (Step S602). Further, the connection end time acquisition unit 104a2 holds the input connection end scheduled time (step S603).
  • connection detection unit 104a1 When detecting the EV connection, the connection detection unit 104a1 specifies the connection start time and notifies the priority time function calculation unit 105a of the connection start time.
  • the priority time function calculation unit 105a When receiving the connection start time, notifies the connection end time acquisition unit 104a2 and the necessary charge amount acquisition unit 104b of the acquisition request to obtain the connection end scheduled time and the necessary charge amount.
  • the obtaining operation is executed (step S604).
  • connection end time acquisition unit 104a2 When the connection end time acquisition unit 104a2 receives the acquisition request, the connection end time acquisition unit 104a2 notifies the priority time function calculation unit 105a of the scheduled connection end time. In addition, when the required charge amount obtaining unit 104b receives the acquisition request, the necessary charge amount obtaining unit 104b notifies the priority time function calculating unit 105a of the necessary charge amount.
  • the priority time function calculating unit 105a cannot obtain the connection end scheduled time and the necessary charge amount.
  • the priority time function calculating unit 105a determines whether the connection end scheduled time and the necessary charge amount have been acquired (step S605). For example, in step S605, the priority time function calculation unit 105a determines whether the connection end scheduled time and the necessary charge amount have been obtained within a predetermined time after the acquisition request is notified.
  • the predetermined time can be set as appropriate.
  • the priority time function calculation unit 105a calculates the required charge time by dividing the required charge amount by the output power value (the power value supplied to the storage battery 111) when the connection end scheduled time and the required charge amount can be obtained. (Step S606).
  • the required charging time is the shortest time required for the charge control unit 106 to charge the storage battery 111 with the required charge amount.
  • the priority time function calculation unit 105a calculates the scheduled connection time by subtracting the connection start time from the estimated connection end time (step S607).
  • the scheduled connection time is a scheduled time when the EV 110 is continuously connected to the charge control system 101.
  • the priority time function calculation unit 105a determines whether the estimated connection time is equal to or longer than the necessary charging time (step S608).
  • Step S609 If the estimated connection time is equal to or longer than the required charging time, charging of the required charge amount can be completed by the estimated connection end time, and therefore the priority time function calculation unit 105a generates a priority time function used to determine the charging schedule. (Step S609).
  • step S609 will be described.
  • the priority time function calculation unit 105a multiplies the latest determined power amount signal Q (t) by the coefficient w1, multiplies the latest price signal P (t) by the coefficient w2, and adds each multiplication result.
  • a result obtained by extracting a period portion from the connection start time to the connection end scheduled time from the addition result is specified as the priority time function ⁇ (t).
  • the priority time function ⁇ (t) can be expressed as the following equation (1).
  • connection time zone w1 ⁇ Q (t) + w2 ⁇ P (t) (1)
  • time t is assumed to be connection start time ⁇ t ⁇ connection end scheduled time.
  • connection time zone is an example of an allowable time zone in which power supply to the storage battery 111 is allowed.
  • the value of the priority time function ⁇ (t) represents the power supply recommendation level. The smaller the value of the priority time function ⁇ (t), the higher the power supply recommendation level.
  • the coefficient w1 is a conversion coefficient for determining the weight for the latest determined energy signal Q (t) and converting the value (power amount) of the latest determined energy signal Q (t) into the recommended power supply level. Also works.
  • the coefficient w2 determines the weight for the latest price signal P (t), and also functions as a conversion coefficient for converting the value (power price) of the latest price signal P (t) into the recommended power supply level.
  • the coefficient w1 is a positive value
  • the coefficient w2 is a value of 0 or more.
  • the priority time function ⁇ (t) is a function that does not depend on the latest price signal P (t) but depends on the latest determined electric energy signal Q (t).
  • step S609 The above is an example of step S609.
  • the coefficients w1 and w2 can be set for each charging control system 101.
  • the priority time function calculation unit 105a notifies the schedule calculation unit 105b of the priority time function ⁇ (t), the necessary charging time, the connection start time, and the connection end scheduled time.
  • the schedule calculation unit 105b When the schedule calculation unit 105b receives the priority time function ⁇ (t), the necessary charging time, the connection start time, and the connection end scheduled time, the schedule calculation unit 105b supplies the power system to the storage battery 111 based on the priority time function ⁇ (t). 7 determines a time zone for supplying power (hereinafter referred to as “supply time zone”) (step S610).
  • determining the supply time zone means determining the charging schedule of the storage battery 111.
  • step S609 will be described.
  • FIG. 8 is a diagram showing an example of the time t, the priority time function ⁇ (t), and the supply time zone t21.
  • time ts indicates a connection start time
  • time te indicates a connection end scheduled time
  • time zone ts-te indicates a connection time zone, a period before time ts and a period after time te. Indicates a non-connection time zone.
  • the priority time function ⁇ (t) is defined within the connection time zone ts-te.
  • the schedule calculation unit 105b determines the supply time period such that the power supply recommendation level at each time within the supply time period is equal to or greater than the power supply recommendation level at each time within the time period other than the supply time period.
  • the schedule calculation unit 105b selects time in ascending order of the value of the priority time function ⁇ (t) from the connection time zone ts-te in which the priority time function ⁇ (t) is defined.
  • the schedule calculation unit 105b sets a time zone that includes the selected time and does not include a non-selected time as a supply time zone candidate, and when the time of the supply time zone candidate becomes a necessary charging time, The selection is finished, and the supply time zone candidate at that time is determined as the supply time zone.
  • the supply time zone may be one continuous time zone or may be composed of a plurality of dispersed time zones.
  • the schedule calculation unit 105b selects the time closest to the already selected time. In addition, the schedule calculation unit 105b randomly selects one of the plurality of times when there is a plurality of times with the same value of the priority time function ⁇ (t) in a situation where there is no selected time.
  • the schedule calculation unit 105b determines the supply time zone, that is, determines the charging schedule
  • the schedule calculation unit 105b transmits the determined charging schedule from the information acquisition unit 102 to the signal transmission device 4 (step S611).
  • the determined charging schedule transmitted at this time represents a supply time zone and an output power value supplied at each time within the supply time zone.
  • the signal transmission device 4 When the signal transmission device 4 receives the determined charging schedule, the signal transmission device 4 updates the determined power amount signal Q (t) using the determined charging schedule, and updates the determined power amount signal Q (( t) is transmitted to each charging control system 101.
  • FIG. 9 is a diagram showing an example of the determined electric energy signal Q (t) after the update.
  • the schedule calculation unit 105b transmits the determined charging schedule from the information acquisition unit 102 to the signal transmission device 4, the schedule calculation unit 105b notifies the charging control unit 106 of the determined charging schedule.
  • the charging control unit 106 controls charging of the storage battery 111 according to the determined charging schedule (step S612).
  • step S612 the charging control unit 106 supplies power from the power system 7 to the storage battery 111 at the output power value during the supply time period indicated in the determined charging schedule.
  • step S605 the priority time function calculation unit 105a instructs the charge control unit 106 to charge when the estimated connection end time and the required charge amount cannot be obtained within a predetermined time after the acquisition request is notified. Notify the charging instruction to do so.
  • step S608 the priority time function calculation unit 105a notifies the charging control unit 106 of a charging instruction even when the estimated connection time is not equal to or longer than the required charging time.
  • the charging control unit 106 When the charging control unit 106 receives the charging instruction, the charging control unit 106 supplies power from the power system 7 to the storage battery 111 with the output power value (step S613).
  • FIG. 10 is a diagram showing a simulation result when the above-described method is used.
  • the simulation result shown in FIG. 10 shows that (holiday)-(weekday)-(weekday) 3 when the charge control system 101 is installed at the connection destination of 1,000 EVs according to FIG.
  • the simulation result of the load fluctuation for the day is shown.
  • the power price is 50 yen / kwh only from 10:00 to 12:00 based on 150 yen / kwh, and this power price is presented every day at 0:00.
  • the solid line is the power price
  • the filled curve is the load curve for 1,000 EVs.
  • FIG. 10 corresponding to the present embodiment, the charging time zone shifts from 10:00 to 12:00 when the power price is low, and the demand curve is 200 to 300 kW even at a large place, and the peak of the load curve is shown. It can be seen that it is greatly reduced.
  • the information acquisition unit 102 receives the determined power amount signal Q (t).
  • the determination unit 105 determines a supply time zone based on the determined power amount signal Q (t).
  • a period in which the value of Q (t) is not 0 means a supplied time zone in which power is supplied to a power supply target other than the storage battery 111. Therefore, the determination unit 105 can recognize the supplied time zone by referring to the determined electric energy signal Q (t), and can determine a time zone that is not included in the supplied time zone as the supply time zone. It becomes possible. Therefore, even if each power supply target is not managed by a device or system that manages the charging schedule of each of the plurality of power supply targets, the timing at which power is supplied to the plurality of power supply targets is concentrated. It becomes possible to suppress.
  • the charging control system includes the information acquisition unit 102A that receives the determined power amount signal Q (t) and the determination unit 105A that determines the supply time period based on the determined power amount signal Q (t). But play.
  • FIG. 11 is a diagram illustrating a charge control system including the information acquisition unit 102A and the determination unit 105A.
  • the determined power amount signal Q (t) further indicates the supplied power amount supplied to another power supply target at each time in the supplied time zone. For this reason, the determination unit 105 can determine, as a supply time period, a time period in which the amount of supplied power is relatively small by referring to the determined power amount signal Q (t). Therefore, it is possible to suppress the concentration of the timing at which power is supplied from the power system 7 to a plurality of power supply targets.
  • the information acquisition unit 102 receives the price signal P (t) in addition to the determined power amount signal Q (t).
  • the determination unit 105 determines a supply time zone based on the determined power amount signal Q (t) and the price signal P (t). For this reason, it is possible to suppress the concentration of the timing at which power is supplied from the power system 7 to a plurality of power supply targets while considering the power price.
  • the determination part 105 is based on the determined electric energy and electric power price of each time in the connection time slot
  • the determination unit 105 generates a priority time function ⁇ (t) that represents the recommended power supply for each time based on the determined power amount and the power price for each time within the connection time period. To do.
  • the determination unit 105 determines a supply time zone based on the recommended power supply level represented by the priority time function ⁇ (t).
  • Priority time function ⁇ (t) representing power supply recommendation depends on the determined power amount and power price. For this reason, when determining the supply time zone in consideration of the determined power amount and the power price, it becomes possible to determine the supply time zone based on one index called the power supply recommendation level. It becomes possible to facilitate the determination method.
  • the determination unit 105 performs weighting on the determined electric energy signal Q (t) and the price signal P (t) according to the coefficients w1 and w2, and prioritizes based on the weighting execution result.
  • a time function ⁇ (t) is generated. For this reason, it becomes possible to weight the determined electric energy signal Q (t) and the price signal P (t), determine the supply time zone with priority on the determined electric energy signal Q (t), It becomes possible to prioritize the price signal P (t) and determine the supply time zone.
  • the determination unit 105 lowers the power supply recommendation degree as the determined power amount after execution of weighting is larger, and lowers the power supply recommendation degree as the power price after execution of weighting is higher. For this reason, the power supply recommendation level can be increased at a time when the determined power amount is low and the power price is low, so that a time zone including a time when the determined power amount is low and the power price is low can be determined as the supply time zone. become.
  • the charging control unit 106 supplies power to the storage battery 111 during the supply time period. For this reason, it becomes possible to suppress that the timing at which power is supplied to a plurality of power supply targets is concentrated.
  • the charging control unit 106 supplies power to the storage battery 111 from the power system 7 that supplies power to a storage battery (another storage battery) different from the storage battery 111. For this reason, it becomes possible to suppress that the electric power of the electric power grid
  • the determination unit 105 supplies the supply time so that the power supply recommendation level at each time within the supply time zone is equal to or higher than the power supply recommendation level at each time within the time zone other than the supply time zone. Determine the band. For this reason, it becomes possible to determine the time slot
  • the determination unit 105 further determines the supply time zone based on the required charge amount. For this reason, it becomes possible to determine the supply time zone in consideration of the required charge amount.
  • a storage battery such as an in-vehicle storage battery is used as a power supply target. For this reason, it becomes possible to suppress that the charging timing of the large capacity stationary storage battery or the large capacity storage battery in the EV is concentrated, for example.
  • a time period when the stationary storage battery is not discharging to supply power to other devices is used as the scheduled connection time zone.
  • a power load such as a home appliance
  • a device for example, a rice cooker
  • a charge schedule may be created so as to match it.
  • the charging control system 101 since the charging control system 101 notifies only the charging schedule to the upper level, it is not necessary to notify important information related to life such as stopping or starting of EV.
  • the signal transmission device 4 transmits both the determined power amount signal Q (t) and the price signal P (t), but the device that transmits the determined power amount signal Q (t) Devices that transmit the signal P (t) may be separate.
  • connection end time acquisition unit 104a2 receives the connection end scheduled time from the user every time the EV 110 is connected to the charging control system 101. However, when the use of the EV 110 starts at the same time every day, The use start time may be set in advance in the connection end time acquisition unit 104a2, and the connection end time acquisition unit 104a2 may hold the set use start time as the connection end scheduled time.
  • connection detection unit 104a1 also has a function of detecting the end of the connection between the EV 110 and the charging control system 101
  • the priority time function calculation unit 105a uses the detection result of the connection detection unit 104a1 to May be stored in the storage unit 103 for each day of the week, and the estimated connection end time may be predicted for each day of the week using the history.
  • ⁇ (t) w1 ⁇ Q (t) ⁇ w2 ⁇ P (t) May be used.
  • the charging control system 101 may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) readable by the computer, and executes each function of the charge control system.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) readable by the computer, and executes each function of the charge control system.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • this program may be distributed to a computer via a communication line, and the computer that has received this distribution may execute this program.
  • This program may be for realizing a part of the functions described above.
  • this program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本発明は、負荷または蓄電池への電力の供給を制御する電力制御システムにおいて、電力需要が一気に増大して電力系統が不安定になるという課題を解決するために、電力が供給されるタイミングを調整するようにしたものである。本発明の電力制御システム(101)は、他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得する受付手段(102)と、前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する決定手段(105)とを有する。そして、決定手段によって決定された時間帯に、負荷または蓄電池への電力供給を行うことによって、電力を供給するタイミングが集中することを抑制する。

Description

電力制御システム、電力制御方法及び記録媒体
 本発明は、負荷または蓄電池への電力の供給を制御する電力制御システム、電力制御方法及びプログラムに関する。
 近年、環境問題が益々深刻化する中、導入が急速に進められている太陽電池や風力発電機等の再生可能電源は、低炭素化やエネルギー資源問題解決の有効な手段と考えられる。
 しかしながら、このような再生可能電源の出力は大きく変動する。このため、出力変動の大きい再生可能電源が電力系統に接続された場合、電力品質の観点から、その出力変動を相殺するための調整手段が不可欠となる。
 調整手段としては、現状、主に応答速度の速い火力発電機が用いられている。このため、出力変動の大きな再生可能電源を電力系統に導入すればするほど、調整手段としての火力発電機が必要になってしまうというジレンマにも陥り兼ねない。したがって、火力発電機に代わる調整手段を確保することが大きな課題である。
 なお、調整手段として、電力系統に大容量の蓄電池(例えば、NaS(ナトリウム・硫黄)電池)を導入することは、有効な手法ではあるが、導入及び運営コストの観点から、大容量の蓄電池の導入障壁は非常に高いと考えられる。
 そこで、調整手段として、需要家側の機器を利用することが検討されている。一般家庭やビルなどの需要家は、送電・配電事業者に対して、電力の利用に応じた料金を支払うことによって機器を使用している。そこで、需要家に対する電力価格を電力の逼迫状況に応じて変更することで需要制御を行う“料金制デマンドレスポンス”(ここでは、料金制デマンドレスポンスを「DR」と称する)の研究が進められている。現在、RDに関して、電力系統網全体に亘るマクロな安定化効果の大きさ見積もり等の研究報告が継続的に行われている。
 一方で、電気を利用して走行する自動車が、再生可能電源と同じく急速に普及していくと見られている。以下では、電気を利用して走行する自動車を、電力以外の動力源も併せて搭載したハイブリッド型の電気自動車も含めて、「EV」(Electric Vehicle)と称する。
 そして、多数のEV内の蓄電池にて仮想的な大容量蓄電池を構成し、EV内の蓄電池を充電する充電器を制御することによって、仮想的な大容量蓄電池を電力系統の安定化のために利用するV2G(Vehicle-to-Grid)技術に関する研究が進められている。V2G技術に関する提案自体は1980年代からあり、電力系統網全体に亘るマクロな安定化効果の大きさ見積もり等の研究報告が継続的に行われている。さらに、ここ数年、具体的なシステム構築のためのミクロな制御手法、つまり、多数EVの充放電を個々に、かつ、リアルタイムに制御する技術に関しても報告がなされるようになってきた。
   例えば、特許文献1には、EV充電計画装置が記載されており、遺伝的アルゴリズムを用いた最適充電スケジューリングも記載されている。
 また、特許文献2には、電力バッファとして定置型蓄電池を用い、この定置型蓄電池を電力系統網とEVとの間に直列に接続することにより、電力系統網側のインフラ容量の拡張をすることなく、EV充電を安定して行う技術が記載されている。
 なお、一般には、電力系統からEVへの充電のみならず、EVから配電網(電力系統側)への放電も想定したものが「V2G」と呼ばれるが、EVへの充電のみを想定したものが「G2V」と呼ばれることもある。G2Vの方が、充放電サイクル数が減る分、EV内の蓄電池への負荷は減ると考えられる。
特開2000-209707号公報 特開2010-213560号公報
 上述した技術を用いてEV内の蓄電池の充電を制御して電力系統の安定化を図るためには、充電システムにおいて、個々のEVの状態(例えば、充電状態、充電器との接続状態)や個々のEVの充電器が実行する充電量および充電時刻を包括的に管理し充電器を直接制御する充電管理部が必要となる。
 しかしながら、充電管理部が各充電器を直接制御する充電システムに関しては、経済性や個人情報(例えば、需要家のEVの状態の情報)の保護、通信の安定性の観点から、早期の実施が困難である。
 個々のEVの充電を直接的に制御する充電管理部が存在しない状況、あるいは充電管理部での充電の管理から外れているEVが多い状況では、各EVの充電は個別に行われる。この場合、各EVの充電タイミングが集中することも想定される。
 各EVの充電タイミングが集中すると、各EVの充電は、電力系統の安定化よりも、電力系統の不安定化を引き起こす要因となる。
 各EVの充電タイミングが集中する状況の一例としては、各EVの所有者が電力価格の安い時間帯に一斉にEVの充電を開始する状況が考えられる。この状況が発生すると、電力価格の安い時間帯に電力需要が一気に増大して電力系統が不安定になる恐れがある。最悪の場合、電力網の周波数が低下して停電する可能性も出てくる。
 特に、充電器が電力価格の安い時間帯にEVを充電するように自動的に動作する場合、各EVの充電タイミングが集中するという問題は顕著に現れると考えられる。例えば、EVの保有者の利便性のために、“可能な限り安く、可能な限り早く、EVを次回使うまでに必要な電力量の充電を完了させたい”というポリシーに従って開発された自動DR充電器が普及すると、電力価格の安い時間帯になると同時に充電器が充電を開始し、急激な負荷変動を作り出してしまうことが考えられる。
 図1は、関連技術のDRにおいてEVが急激な負荷変動を作り出す例として、1,000台のEVでの(休日)-(平日)-(平日)の3日間の負荷変動のシミュレーション結果を示した図である。ここで、電力価格は仮に、150円/kwhを基本として10:00~12:00の間だけ50円/kwhとなり、この電力価格が毎日0:00に提示されるとした。以上の条件でのシミュレーション結果によると、電力価格の低下が開始した時刻に、一時的に電力需要が増大することが確認できた。
 なお、電力需要が一気に増大して電力系統が不安定になるという課題は、電力が供給される機器がEVである場合にのみ生じるものではなく、電力が供給される機器がEVでなくても、それらの機器に電力が供給されるタイミングが集中する場合にも生じる。
 本発明の目的は、上記課題を解決可能な電力制御システム、電力制御方法およびプログラムを提供することである。
 本発明の電力制御システムは、
 負荷または蓄電池への電力の供給を制御する電力制御システムであって、
 他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得する受付手段と、
 前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する決定手段と、を有する。
 本発明の電力制御方法は、
 負荷または蓄電池への電力の供給を制御する電力制御システムが行う電力制御方法であって、
 他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得し、
 前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する。
 本発明の記録媒体は、
 コンピュータに、負荷または蓄電池への電力の供給の制御を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
 前記コンピュータに、
 他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得する受付手順と、
 前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する決定手順と、を実行させるを記録したコンピュータ読み取り可能な記録媒体である。
 本発明によれば、負荷または蓄電池に電力が供給されるタイミングが集中することを抑制することが可能になる。
関連技術のDRを用いた場合のシミュレーション結果を示した図である。 本発明の一実施形態の電力制御システムを含む管理システム10を示した図である。 充電制御システム101の一例を示した図である。 決定済み電力量信号Q(t)の一例を示した図である。 プライス信号P(t)の一例を示した図である。 充電制御システム101のハードウエア構成の一例を示した図である。 充電制御システム101の動作を説明するためのフローチャートである。 時刻tと優先時間関数φ(t)と供給時間帯との一例を示した図である。 更新後の決定済み電力量信号Q(t)の一例を示した図である。 本実施形態を用いた場合のシミュレーション結果を示した図である。 情報入手部102Aと決定部105Aとからなる充電制御システムを示した図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図2は、本発明の一実施形態の電力制御システムを含む管理システム10を示した図である。
 図2において、管理システム10は、住宅街エリア10-1に設置されたHEMS(Home Energy Management System)機器1a~1dと、ビル駐車場10-2に設置されたBEMS(Building Energy Management System)機器2aと、充電スタンドエリア10-3に設置された充電スタンド3a~3cと、信号送信装置4と、を含む。
 HEMS機器1a~1dとBEMS機器2aと充電スタンド3a~3cは、それぞれ、電力配電線網5を介して変電所6に接続されている。なお、電力配電線網5と変電所6は、電力系統7に含まれる。また、HEMS機器1a~1dとBEMS機器2aと充電スタンド3a~3cは、それぞれ、信号送信装置4と通信する。
 HEMS機器1a~1cは、それぞれ、EV8a~8c内の蓄電池の充放電を制御する。例えば、HEMS機器1a~1cは、それぞれ、電力系統7からEV8a~8cへの電力の供給を制御する。なお、EVやEV内の蓄電池は、所定電力供給対象または特定電力供給対象の一例である。また、以下では、「EV内の蓄電池の充放電」を、「EVの充放電」とも称する。
 HEMS機器1dは、電力系統7から定置型エネルギーストレージ(例えば、定置型蓄電池またはヒートポンプ)9aへの電力の供給を制御する。なお、定置型エネルギーストレージは、所定電力供給対象または特定電力供給対象の一例である。
 BEMS機器2aは、EV8d~8gの充放電と定置型エネルギーストレージ9b~9cへの電力の供給を制御する。例えば、BEMS機器2aは、電力系統7からEV8d~8gと定置型エネルギーストレージ9b~9cへの電力の供給を制御する。
 充電スタンド3a~3cは、それぞれ、電力系統7からEV8h~8iへの電力の供給を制御する。
 信号送信装置4は、時刻ごとの電力価格を表すプライス信号と、時刻ごとの供給決定済み総電力量を表す決定済み電力量信号とを、HEMS機器1a~1dと、BEMS機器2aと、充電スタンド3a~3cに送信する。
 プライス信号は、価格情報の一例であり、時刻ごとの電力価格を表す時間関数である。
 プライス信号は、例えば、電力会社等の電力供給元が決定した1日分の各時刻の電力価格を表し、プライス信号にて電力価格が表された日よりも前の日に、信号送信装置4から送信される。なお、プライス信号が表す電力価格の期間は1日に限らず適宜変更可能である。また、プライス信号が送信されるタイミングは、プライス信号が表す電力価格の期間よりも前のタイミングであればよい。
 決定済み電力量信号は、電力供給情報の一例であり、各時刻に各電力供給対象に供給されることが決定済みの電力量の総和を表す時間関数である。以下、「各時刻に各電力供給対象に供給されることが決定済み電力量の総和」を、単に「決定済み電力量」とも称する。
 信号送信装置4は、決定済みの電力量の更新に応じて、決定済み電力量信号を更新し、更新後の決定済み電力量信号を送信する。
 図3は、HEMS機器1a~1d、BEMS機器2aおよび充電スタンド3a~3cの各々に搭載される充電制御システム101の一例を示した図である。図3において、図2に示したものと同一構成のものには同一符号を付してある。以下では、説明の簡略化を図るために、充電制御システム101がHEMS機器1aに搭載された例を説明する。なお、本発明の充電制御システムは図3のHEMS機器、BEMS機器、充電スタンドに搭載されでも良いし、これらをマイクログリッドとして管理するシステムとして搭載してもよい。その場合には、充電制御システムは、例えばHEMS機器、BEMS機器、充電スタンドと通信回線を介して接続される制御機器に搭載される。
 図3において、充電制御システム101は、電力制御システムの一例である。
 充電制御システム101は、EV110に搭載された蓄電池111の充電スケジュールを決定し、その充電スケジュールに従って蓄電池111の充電を制御する。なお、EV110は、EV8aに対応する。蓄電池111は所定電力供給対象の一例である。
 なお、蓄電池111の充電スケジュールは、蓄電池111に電力系統7から電力を供給する供給時間帯と、その供給時間帯内の各時刻に電力系統7から蓄電池111に供給する電力量と、を表す。
 充電制御システム101は、情報入手部102と、記憶部103と、EVデータ入手部104と、決定部105と、充電制御部106と、を含む。EVデータ入手部104は、接続時間情報入手部104aと、必要充電量入手部104bと、を含む。接続時間情報入手部104aは、接続検出部104a1と、接続終了時刻入手部104a2と、を含む。決定部105は、優先時間関数算出部105aと、スケジュール算出部105bと、を含む。
 情報入手部102は、電力供給情報受付手段の一例である。
 情報入手部102は、信号送信装置4から、プライス信号と決定済み電力量信号とを受け付ける。例えば、情報入手部102は、プライス信号と決定済み電力量信号とを有線通信または無線通信で受信する。
 決定済み電力量信号は、充電制御システム101が蓄電池111の充電スケジュールを決定する前に既に他の充電制御システムで決定済みの他の蓄電池や定置型エネルギーストレージ等の電力供給対象(以下「他の電力供給対象」と称する)の充電スケジュールに基づいて、信号送信装置4にて作成される。なお、他の電力供給対象にも、電力系統7から電力が供給される。他の電力供給対象は、特定電力供給対象の一例である。
 図4は、決定済み電力量信号Q(t)の一例を示した図である。図4において、横軸は時刻を示し、縦軸は決定済み電力量を示す。
 図5は、プライス信号P(t)の一例を示した図である。図5において、横軸は時刻を示し、縦軸は電力価格を示す。
 図3に示した情報入手部102は、決定済み電力量信号Q(t)を受信するごとに、その決定済み電力量信号Q(t)を優先時間関数算出部105aに通知する。また、情報入手部102は、プライス信号P(t)を受信するごとに、そのプライス信号P(t)を優先時間関数算出部105aに通知する。
 記憶部103は、記憶手段の一例である。
 記憶部103は、種々の情報を記憶する。例えば、記憶部103は、決定済み電力量信号Q(t)が示す決定済み電力量と、プライス信号P(t)が示す電力価格と、についての重み付けを特定するための重み付け情報を記憶する。
 本実施形態では、記憶部103は、重み付け情報として、決定済み電力量信号Q(t)が示す決定済み電力量についての重み付けを示す係数w1と、プライス信号P(t)が示す電力価格についての重み付けを示す係数w2と、の組を記憶する。
 また、記憶部103は、充電制御システム101が決定した蓄電池111の充電スケジュールを記憶する。
 EVデータ入手部104は、蓄電池111に関する情報を入手する。
 接続時間情報入手部104aは、対象情報受付手段の一例である。
 接続時間情報入手部104aは、蓄電池111への電力の供給が許容される許容時間帯を特定するための対象情報を受け付ける。
 接続検出部104a1は、蓄電池111が充電制御システム101に接続された時刻(例えば、蓄電池111のプラグイン時刻)を検出する。以下、蓄電池111が充電制御システム101に接続された時刻を「接続開始時刻」と称する。
 例えば、接続検出部104a1は、時計部(不図示)を有しており、不図示の接続検出スイッチから蓄電池111の充電制御システム101への接続(以下「EV接続」と称する)を表す接続信号を受け付けると、時計部から時刻を読み出し、その時刻を接続開始時刻として用いる。
 接続終了時刻入手部104a2は、EV接続を終了する予定時刻(例えば、蓄電池111のプラグアウト予定時刻)を入手する。以下、EV接続を終了する予定時刻を「接続終了予定時刻」と称する。
 例えば、接続終了時刻入手部104a2は、タッチパネルまたは操作ボタン等の入力装置を有し、EV110のユーザが入力装置を操作して入力した接続終了予定時刻を入手する。
 なお、接続信号と接続終了予定時刻にて、対象情報が構成される。
 必要充電量入手部104bは、特定手段の一例である。
 必要充電量入手部104bは、蓄電池111に必要な充電量(以下「必要充電量」と称する)を特定する。
 例えば、必要充電量入手部104bは、EV接続時の蓄電池111のSOC(State of Charge)を検出し、そのSOCと充電完了の目標値となる目標SOCとの差に基づいて、必要充電量を算出する。なお、SOCを用いて必要充電量を算出する手法は公知技術であるため、詳細な説明は省略する。EV接続時の蓄電池111のSOCは、所定情報の一例である。
 決定部105は、決定手段の一例である。
 決定部105は、決定済み電力量信号Q(t)と、プライス信号P(t)と、重み付け情報(係数w1と係数w2)と、接続開始時刻と、接続終了予定時刻と、必要充電量と、に基づいて、蓄電池111の充電スケジュールを決定する。
 優先時間関数算出部105aは、決定済み電力量信号Q(t)と、プライス信号P(t)と、重み付け情報(係数w1と係数w2)と、に基づいて、充電スケジュールを決定するために用いる優先時間関数を生成する。優先時間関数は、時刻ごとの電力供給推奨度を表す。電力供給推奨度は、その時刻に電力供給対象に電力を供給する推奨度合いを表す。
 優先時間関数算出部105aは、情報入手部102から、決定済み電力量信号Q(t)とプライス信号P(t)をそれぞれ順次受け付ける。
 優先時間関数算出部105aは、順次受け付けられた決定済み電力量信号Q(t)のうち、最新の決定済み電力量信号Q(t)を保持する。また、優先時間関数算出部105aは、順次受け付けられたプライス信号P(t)のうち、最新のプライス信号P(t)を保持する。
 優先時間関数算出部105aは、最新の決定済み電力量信号Q(t)と、最新のプライス信号P(t)と、重み付け情報と、に基づいて、優先時間関数を生成する。
 スケジュール算出部105bは、優先時間関数と、接続開始時刻と、接続終了予定時刻と、必要充電量と、に基づいて、蓄電池111についての充電スケジュールを決定する。
 充電制御部106は、供給手段の一例である。
 充電制御部106は、スケジュール算出部105bが算出した充電スケジュールに従って、蓄電池111に電力系統7から電力を供給する。
 本実施形態では、充電制御部106は、蓄電池111の定格電力内の所定値(例えば、最大値)の電力で、蓄電池111に電力系統7からの電力を供給する。所定値は、蓄電池111の定格電力内の最大値に限らず、蓄電池111の定格電力内の値であれば適宜変更可能である。以下、所定値を「出力電力値」と称する。なお、本実施形態では、出力電力値は、優先時間関数算出部105aにも設定されている。
 図6は、充電制御システム101のハードウエア構成の一例を示した図である。なお、図6において、図3に示したものと同一構成のものには同一符号を付してある。
 充電制御装置201は、制御システムの一例であり、充電制御システム101と同様の機能を有する。充電制御装置201は、通信制御部202と、主記憶部203Aと、データ蓄積部203Bと、メモリ制御インタフェース部203A-1および203B-1と、入力部204と、I/O(Input/Output)インタフェース部204-1と、演算部205と、スイッチ制御部206と、を含む。
 通信制御部202は、情報入手部102と同様の機能を有する。
 主記憶部203Aは、演算部205が主に用いる記憶部である。なお、演算部203Aとして、CPU(Central Processing Unit)等のコンピュータが用いられた場合、主記憶部203Aは、演算部205の動作を規定するためのプログラムを記憶する。メモリ制御インタフェース203A-1は、主記憶部203A用のインタフェースである。
 データ蓄積部203Bは、記憶部103と同様の機能を有する。メモリ制御インタフェース203B-1は、データ蓄積部203B用のインタフェースである。
 入力部204は、EVデータ入手部104と同様の機能を有する。I/Oインタフェース部204-1は、入力部204用のインタフェースである。
 演算部205は、決定部105と同様の機能を有する。なお、演算部205としてCPU等のコンピュータが用いられた場合、演算部205は、主記憶部203Aに記憶されたプログラムを読み取り実行することによって決定部105と同様の機能を実現する。
 スイッチ制御部206は、充電制御部106と同様の機能を有する。スイッチ制御部206として、例えば、リレースイッチが用いられる。なお、スイッチ制御部206はリレースイッチに限らず適宜変更可能である。
 次に、動作を説明する。
 以下では、最新の決定済み電力量信号Q(t)と最新のプライス信号P(t)が、優先時間関数算出部105aに保持されているとする。
 図7は、充電制御システム101の動作を説明するためのフローチャートである。
 EV110のユーザ(例えば、保有者)は、EV110(蓄電池111)を充電するために、充電制御システム101にEV110を接続し、接続終了時刻入手部104a2を操作して、次回EV110の利用を開始する予定時刻、つまり、接続終了予定時刻を入力する。接続終了予定時刻の入力は、例えば、EV110のユーザがEV110を充電制御システム101に接続するごとに行われる。
 EV110が充電制御システム101に接続すると、接続検出部104a1は、充電制御システム101とEV110との接続(EV接続)を検出し(ステップS601)、必要充電量入手部104bは、必要充電量を特定する(ステップS602)。また、接続終了時刻入手部104a2は、入力された接続終了予定時刻を保持する(ステップS603)。
 接続検出部104a1は、EV接続を検出すると、接続開始時刻を特定し、その接続開始時刻を優先時間関数算出部105aに通知する。
 優先時間関数算出部105aは、接続開始時刻を受け付けると、接続終了時刻入手部104a2と必要充電量入手部104bの各々に入手要求を通知して、接続終了予定時刻と必要充電量を入手するための入手動作を実行する(ステップS604)。
 接続終了時刻入手部104a2は、入手要求を受け付けると、接続終了予定時刻を優先時間関数算出部105aに通知する。また、必要充電量入手部104bは、入手要求を受け付けると、必要充電量を優先時間関数算出部105aに通知する。
 しかしながら、例えば、接続終了時刻入手部104a2や必要充電量入手部104bで通信エラーが生じると、優先時間関数算出部105aは接続終了予定時刻や必要充電量を入手できなくなる。
 そこで、優先時間関数算出部105aは、入手要求を通知した後に、接続終了予定時刻と必要充電量を入手できたかを判断する(ステップS605)。例えば、ステップS605では、優先時間関数算出部105aは、入手要求を通知してから所定時間以内に、接続終了予定時刻と必要充電量を入手できたかを判断する。なお、所定時間は適宜設定可能である。
 優先時間関数算出部105aは、接続終了予定時刻と必要充電量を入手できた場合、必要充電量を出力電力値(蓄電池111に供給する電力値)で除算することによって、必要充電時間を算出する(ステップS606)。なお、必要充電時間は、充電制御部106が蓄電池111に必要充電量を充電するのに要する最短時間となる。
 続いて、優先時間関数算出部105aは、接続終了予定時刻から接続開始時刻を減算することによって、接続予定時間を算出する(ステップS607)。なお、接続予定時間は、EV110が充電制御システム101に継続的に接続されている予定の時間である。
 続いて、優先時間関数算出部105aは、接続予定時間が必要充電時間以上であるかを判断する(ステップS608)。
 接続予定時間が必要充電時間以上であると、接続終了予定時刻までに必要充電量の充電を完了できるため、優先時間関数算出部105aは、充電スケジュールを決定するために用いる優先時間関数を生成する(ステップS609)。
 ここで、ステップS609の一例を説明する。
 優先時間関数算出部105aは、最新の決定済み電力量信号Q(t)に係数w1を乗算し、最新のプライス信号P(t)に係数w2を乗算し、各々の乗算結果を加算し、その加算結果から、接続開始時刻から接続終了予定時刻までの期間部分を抽出したものを、優先時間関数φ(t)として特定する。
 優先時間関数φ(t)は、以下の(1)式のように表すことができる。
 φ(t)=w1・Q(t)+w2・P(t)   (1)式
 なお、(1)式において、時刻tは、接続開始時刻≦t≦接続終了予定時刻とする。接続開始時刻から接続終了予定時刻までの時間帯(以下「接続時間帯」と称する)は、蓄電池111への電力の供給が許容される許容時間帯の一例である。
 優先時間関数φ(t)の値は、電力供給推奨度を表し、優先時間関数φ(t)の値が小さいほど、電力供給推奨度が高くなる。
 係数w1は、最新の決定済み電力量信号Q(t)についての重み付けを定めると共に、最新の決定済み電力量信号Q(t)の値(電力量)を電力供給推奨度に変換する変換係数としても機能する。
 また、係数w2は、最新のプライス信号P(t)についての重み付けを定めると共に、最新のプライス信号P(t)の値(電力価格)を電力供給推奨度に変換する変換係数としても機能する。
 本実施形態では、係数w1を正の値とし、係数w2を0以上の値とする。例えば、w2が0である場合、優先時間関数φ(t)は、最新のプライス信号P(t)に依存せず、最新の決定済み電力量信号Q(t)に依存する関数となる。
 以上が、ステップS609の一例である。
 なお、係数w1およびw2は、充電制御システム101ごとに設定可能である。
 例えば、係数w2を係数w2の基準値(例えば、デフォルト値)以下に設定した状態で、係数w1を係数w1の基準値(例えば、デフォルト値)よりも大きく設定したEVのユーザへは、電力価格を割り引くことや、電力価格の割引に相当するポイントを付加するような、インセンティブを与えることが考えられる。
 また、係数w1を係数w1の基準値以上に設定した状態で、係数w2を係数w2の基準値よりも小さく設定したEVのユーザにも、電力価格を割り引くことや、電力価格の割引に相当するポイントを付加するような、インセンティブを与えることが考えられる。
 続いて、優先時間関数算出部105aは、優先時間関数φ(t)と、必要充電時間と、接続開始時刻と、接続終了予定時刻とを、スケジュール算出部105bに通知する。
 スケジュール算出部105bは、優先時間関数φ(t)と、必要充電時間と、接続開始時刻と、接続終了予定時刻とを受け付けると、優先時間関数φ(t)に基づいて、蓄電池111に電力系統7から電力を供給する時間帯(以下「供給時間帯」と称する)を決定する(ステップS610)。
 なお、蓄電池111に供給される電力値(出力電力値)は予め決まっているため、供給時間帯を決定することが、蓄電池111の充電スケジュールを決定することを意味する。
 ここで、ステップS609の一例を説明する。
 図8は、時刻tと優先時間関数φ(t)と供給時間帯t21との一例を示した図である。
 図8において、時刻tsは接続開始時刻を示し、時刻teは接続終了予定時刻を示し、時間帯ts-teは接続時間帯を示し、時刻tsよりも前の期間および時刻teよりも後の期間は非接続時間帯を示す。優先時間関数φ(t)は、接続時間帯ts-te内で定義されている。
 スケジュール算出部105bは、例えば、供給時間帯内の各時刻の電力供給推奨度が、供給時間帯以外の時間帯内の各時刻の電力供給推奨度以上になるように、供給時間帯を決定する。
 例えば、スケジュール算出部105bは、優先時間関数φ(t)が規定されている接続時間帯ts-teから、優先時間関数φ(t)の値の小さい順に時刻を選択していく。
 そして、スケジュール算出部105bは、その選択された時刻が含まれかつ選択されていない時刻が含まれない時間帯を供給時間帯候補とし、供給時間帯候補の時間が必要充電時間になると、時刻の選択を終了し、そのときの供給時間帯候補を供給時間帯として決定する。
 供給時間帯は、継続する1つの時間帯でもよいし、分散した複数の時間帯から構成されてもよい。
 なお、スケジュール算出部105bは、優先時間関数φ(t)の値が等しい複数の時刻が存在する場合、既に選択された時刻に最も近い時刻を選択する。また、スケジュール算出部105bは、選択済みの時刻が存在しない状況で、優先時間関数φ(t)の値が等しい複数の時刻が存在する場合、複数の時刻のいずれかをランダムに選択する。
 スケジュール算出部105bは、供給時間帯を決定すると、つまり、充電スケジュールを決定すると、その決定済みの充電スケジュールを情報入手部102から信号送信装置4に送信する(ステップS611)。このときに送信される決定済みの充電スケジュールは、供給時間帯と、供給時間帯内の各時刻に供給される出力電力値と、を表す。
 なお、信号送信装置4は、決定済みの充電スケジュールを受信すると、その決定済みの充電スケジュールを用いて、決定済み電力量信号Q(t)を更新し、更新後の決定済み電力量信号Q(t)を、各充電制御システム101に送信する。
 図9は、更新後の決定済み電力量信号Q(t)の一例を示した図である。
 図9では、Q1の部分とQ2の部分が新たに加えられている。
 スケジュール算出部105bは、決定済みの充電スケジュールを情報入手部102から信号送信装置4に送信すると、決定済みの充電スケジュールを充電制御部106に通知する。
 充電制御部106は、決定済みの充電スケジュールを受け付けると、決定済みの充電スケジュールに従って蓄電池111の充電を制御する(ステップS612)。
 なお、ステップS612では、充電制御部106は、決定済みの充電スケジュールに表された供給時間帯に、電力系統7から蓄電池111に出力電力値で電力を供給する。
 一方、ステップS605で、優先時間関数算出部105aは、入手要求を通知してから所定時間以内に、接続終了予定時刻と必要充電量を入手できなかった場合、充電制御部106に、充電を指示する旨の充電指示を通知する。
 また、ステップS608で、接続予定時間が必要充電時間以上でない場合も、優先時間関数算出部105aは、充電制御部106に充電指示を通知する。
 充電制御部106は、充電指示を受け付けると、電力系統7から蓄電池111に出力電力値で電力を供給する(ステップS613)。
 図10は、上述した方法を用いた場合のシミュレーション結果を示した図である。なお、図10に示したシミュレーション結果は、図1に倣って1,000台分のEVの接続先に充電制御システム101が搭載された場合の(休日)-(平日)-(平日)の3日間ので負荷変動のシミュレーション結果を示す。ここで、電力価格は図1と同様に、150円/kwhを基本として10:00~12:00の間だけ50円/kwhとなり、この電力価格が毎日0:00に提示されるとした。
 図10において、実線が電力価格であり、塗りつぶされた曲線がEV1,000台分の負荷曲線である。
 図1では電力価格の安くなった10:00のタイミングでEVがいっせいに充電を開始し、2,500kWという鋭いピークを作っていた。
 一方、本実施形態に対応する図10では、電力価格の安い10:00~12:00に充電時間帯がシフトし、尚且つ需要曲線は大きなところでも200~300 kWとなり、負荷曲線のピークを大きく軽減していることが分かる。
 次に、本実施形態の効果について説明する。
 本実施形態によれば、情報入手部102は、決定済み電力量信号Q(t)を受け付ける。決定部105は、決定済み電力量信号Q(t)に基づいて供給時間帯を決定する。
 決定済み電力量信号Q(t)において、Q(t)の値が0でない期間は、蓄電池111以外の電力供給対象に電力が供給される被供給時間帯を意味する。このため、決定部105は、決定済み電力量信号Q(t)を参照することによって被供給時間帯を認識でき、供給時間帯として、被供給時間帯に含まれない時間帯を決定することが可能になる。したがって、各電力供給対象が、複数の電力供給対象の各々の充電スケジュールを管理する装置やシステムにて管理されていなくても、複数の電力供給対象に電力が供給されるタイミングが集中することを抑制可能になる。
 なお、上記効果は、決定済み電力量信号Q(t)を受け付ける情報入手部102Aと、決定済み電力量信号Q(t)に基づいて供給時間帯を決定する決定部105Aとからなる充電制御システムでも奏する。
 図11は、情報入手部102Aと決定部105Aとからなる充電制御システムを示した図である。
 また、本実施形態では、決定済み電力量信号Q(t)は、さらに、被供給時間帯における時刻ごとに、その時刻に他の電力供給対象に供給される被供給電力量を示す。このため、決定部105は、決定済み電力量信号Q(t)を参照することによって被供給電力量が相対的に少ない時間帯を、供給時間帯として決定することが可能になる。したがって、複数の電力供給対象に電力系統7から電力が供給されるタイミングが集中することを抑制可能になる。
 また、本実施形態では、情報入手部102は、決定済み電力量信号Q(t)に加えて、プライス信号P(t)を受け付ける。決定部105は、決定済み電力量信号Q(t)とプライス信号P(t)とに基づいて供給時間帯を決定する。このため、電力価格を考慮しながら、複数の電力供給対象に電力系統7から電力が供給されるタイミングが集中することを抑制可能になる。
 また、本実施形態では、決定部105は、蓄電池111の充電制御システム101への接続開始時刻から接続終了予定時刻までの接続時間帯内の各時刻の決定済み電力量および電力価格に基づいて、供給時間帯を決定する。このため、電力価格を考慮しながら、接続時間帯において、複数の電力供給対象に電力系統7から電力が供給されるタイミングが集中することを抑制可能になる。
 また、本実施形態では、決定部105は、接続時間帯内の時刻ごとの決定済み電力量および電力価格に基づいて、その時刻ごとの電力供給推奨度を表す優先時間関数φ(t)を生成する。決定部105は、優先時間関数φ(t)が表す電力供給推奨度に基づいて、供給時間帯を決定する。
 電力供給推奨度を表す優先時間関数φ(t)は、決定済み電力量および電力価格に依存する。このため、決定済み電力量および電力価格を考慮して供給時間帯を決定する際に、電力供給推奨度という1つの指標に基づいて供給時間帯を決定することが可能になり、供給時間帯の決定手法を容易にすることが可能になる。
 また、本実施形態では、決定部105は、係数w1およびw2に従って、決定済み電力量信号Q(t)とプライス信号P(t)に重み付けを実行し、その重み付けの実行結果に基づいて、優先時間関数φ(t)を生成する。このため、決定済み電力量信号Q(t)とプライス信号P(t)に重み付けを行うことが可能になり、決定済み電力量信号Q(t)を優先して供給時間帯を決定したり、プライス信号P(t)を優先して供給時間帯を決定したりすることが可能になる。
 また、本実施形態では、決定部105は、重み付けの実行後の決定済み電力量が多いほど電力供給推奨度を低くし、重み付けの実行後の電力価格が高いほど電力供給推奨度を低くする。このため、決定済み電力量が少なく電力価格が低い時刻ほど電力供給推奨度を高くでき、よって、決定済み電力量が少なく電力価格が低い時刻を含む時間帯を供給時間帯として決定することが可能になる。
 また、本実施形態では、充電制御部106は、供給時間帯に蓄電池111に電力を供給する。このため、複数の電力供給対象に電力が供給されるタイミングが集中することを抑制可能になる。
 また、本実施形態では、充電制御部106は、蓄電池111とは異なる蓄電池(他の蓄電池)に電力を供給する電力系統7から、蓄電池111に電力を供給する。このため、電力系統7の電力が不安定になることを抑制することが可能になる。
 また、本実施形態では、決定部105は、供給時間帯内の各時刻の電力供給推奨度が、供給時間帯以外の時間帯内の各時刻の電力供給推奨度以上になるように、供給時間帯を決定する。このため、電力供給推奨度が相対的に高い時間帯を、供給時間帯として決定することが可能になる。
 また、本実施形態では、決定部105は、さらに、必要充電量に基づいて供給時間帯を決定する。このため、必要充電量を考慮して供給時間帯を決定することが可能になる。
 また、本実施形態では、電力供給対象として、車載蓄電池等の蓄電池が用いられる。このため、例えば、大容量の定置用蓄電池やEV内の大容量の蓄電池の充電タイミングが集中することを抑制することが可能になる。
 なお、定置用蓄電池が電力供給対象として用いられた場合には、接続予定時間帯としては、例えば、定置用蓄電池が他の機器に電力を供給するための放電を行っていない時間帯が用いられる。
 また、電力供給対象としては、家電機器等の電力負荷(負荷)が用いられてもよい。なお、電力の供給が中断することで家電機器の機能を発揮できなくなる機器(例えば、炊飯器)は、電力供給対象として用いられないことが望ましい。その場合には充電制御システムが管理する家電機器をユーザが選択する、または希望する充電パターンを登録しそれに合うように充電スケジュールを作成するようにしてもよい。
 また、本実施形態では、充電制御システム101は、上位に充電スケジュールのみを通知するため、EVの停車や発進などの生活にかかわる重要な情報を知らせる必要はない。
 本実施形態では、信号送信装置4が、決定済み電力量信号Q(t)とプライス信号P(t)の両方を送信したが、決定済み電力量信号Q(t)を送信する機器と、プライス信号P(t)を送信する機器は、別々であってもよい。
 また、接続終了時刻入手部104a2は、EV110が充電制御システム101に接続するごとに、ユーザから接続終了予定時刻を受け付けたが、毎日同じ時刻にEV110の利用が開始される場合には、EV110の利用開始時刻が予め接続終了時刻入手部104a2に設定され、接続終了時刻入手部104a2が、その設定された利用開始時刻を、接続終了予定時刻として保持してもよい。
 また、接続検出部104a1がEV110と充電制御システム101との接続の終了を検出する機能も有している場合、優先時間関数算出部105aが、接続検出部104a1の検出結果を利用して、EV110と充電制御システム101との接続が終了する時刻の履歴を曜日単位で記憶部103に記憶し、その履歴を用いて、曜日ごとに接続終了予定時刻を予測してもよい。
 また、優先時間関数算出部105aは、優先時間関数φ(t)を、φ(t)=w1・Q(t)+w2・P(t)という式を用いて求めたが、優先時間関数φ(t)は、φ(t)=w1・Q(t)+w2・P(t)に限らず適宜変更可能であり、例えば、φ(t)=w1・Q(t)×w2・P(t)が用いられてもよい。
 また、充電制御システム101は、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、充電制御システムが有する各機能を実行する。記録媒体は、CD-ROMに限らず適宜変更可能である。
 また、このプログラムが通信回線によってコンピュータに配信され、この配信を受けたコンピュータがこのプログラムを実行してもよい。また、このプログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、このプログラムは、上述した機能をコンピュータにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上説明した実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2013年7月19日に出願された日本出願特願2013-150784を基礎とする優先権を主張し、その開示の全てをここに取り込む。
   1a~1d HEMS機器
   2a  BEMS機器
   3a~3c 充電スタンド3a~3c
   4   信号送信装置
   5   電力配電線網
   6   変電所
   7   電力系統
   8a~8j EV
   9a~9c 定置型エネルギーストレージ
  10   管理システム
 101   充電制御システム
 102、102A 情報入手部
 103   記憶部
 104   EVデータ入手部
 104a  接続時間情報入手部
 104a1 接続検出部
 104a2 接続終了時刻入手部
 104b  必要充電量入手部
 105、105A 決定部
 105a  優先時間関数算出部
 105b  スケジュール算出部
 106   充電制御部
 110   EV
 111   蓄電池
 201   充電制御装置
 202   通信制御部
 203A  主記憶部
 203A-1、203B-1 メモリ制御インタフェース部
 204   入力部
 204-1 I/Oインタフェース部
 205   演算部
 206   スイッチ制御部

Claims (14)

  1.  負荷または蓄電池への電力の供給を制御する電力制御システムであって、
     他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得する受付手段と、
     前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する決定手段と、を有することを特徴とする電力制御システム。
  2.  前記電力供給情報は、さらに、前記他の負荷または蓄電池に電力を供給する時間帯内の各時刻に前記他の負荷または蓄電池に供給される被供給電力量を特定するための情報でもある、請求項1に記載の電力制御システム。
  3.  前記受付手段は、さらに時刻ごとの電力価格を特定するための価格情報を取得し、
     前記決定手段は、さらに前記価格情報に基づいて、前記負荷または蓄電池に電力を供給する時間帯を決定する、請求項2に記載の電力制御システム。
  4.  前記負荷または蓄電池への電力の供給が許容される許容時間帯を特定するための対象情報を取得する象情報受付手段をさらに含み、
     前記決定手段は、前記許容時間帯内の各時刻の前記被供給電力量および前記電力価格に基づいて、前記負荷または蓄電池に電力を供給する時間帯を決定する、請求項3に記載の電力制御システム。
  5.  前記決定手段は、前記許容時間帯内の各時刻の前記被供給電力量および前記電力価格に基づいて、前記各時刻において前記負荷または蓄電池に電力を供給する推奨度合いを表す電力供給推奨度を生成し、前記電力供給推奨度に基づいて、前記負荷または蓄電池に電力を供給する時間帯を決定する、請求項4に記載の電力制御システム。
  6.  前記被供給電力量および前記電力価格についての重み付けを特定するための重み付け情報を記憶する記憶手段をさらに含み、
     前記決定手段は、前記重み付け情報に従って、前記許容時間帯内の各時刻の前記被供給電力量および前記電力価格に重み付けを実行し、前記重み付けの実行結果に基づいて、前記各時刻の電力供給推奨度を生成する、請求項5に記載の電力制御システム。
  7.  前記決定手段は、前記重み付けの実行後の被供給電力量が多いほど前記電力供給推奨度を低くし、前記重み付けの実行後の電力価格が高いほど前記電力供給推奨度を低くする、請求項6に記載の電力制御システム。
  8.  前記負荷または蓄電池に電力を供給する時間帯に、前記負荷または蓄電池に電力を供給する供給手段を含む、請求項1から7のいずれか1項に記載の電力制御システム。
  9.  前記供給手段は、前記他の負荷または蓄電池に電力を供給する電力系統から、前記負荷または蓄電池に電力を供給する、請求項8に記載の電力制御システム。
  10.  前記決定手段は、前記負荷または蓄電池に電力を供給する時間帯内の各時刻の電力供給推奨度が、前記負荷または蓄電池に電力を供給する時間帯以外の時間帯内の各時刻の電力供給推奨度以上になるように、前記負荷または蓄電池に電力を供給する時間帯を決定する、 請求項5から7のいずれか1項に記載の電力制御システム。
  11.  所定情報に基づいて、前記負荷または蓄電池に供給する供給電力量を特定する特定手段を含み、
     前記決定手段は、さらに前記供給電力量に基づいて、前記負荷または蓄電池に電力を供給する時間帯を決定する、請求項1から10のいずれか1項に記載の電力制御システム。
  12.  前記蓄電池は、移動体に搭載された蓄電池である、請求項1から11のいずれか1項に記載の電力制御システム。
  13.  負荷または蓄電池への電力の供給を制御する電力制御システムが行う電力制御方法であって、
     他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得し、
     前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する、電力制御方法。
  14.  コンピュータに、負荷または蓄電池への電力の供給の制御を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記コンピュータに、
     他の負荷または蓄電池へ供給する電力量、電力を供給する時間帯を含む電力供給情報を取得する受付手順と、
     前記電力供給情報に基づいて、負荷または蓄電池に電力を供給する時間帯を決定する決定手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2014/067646 2013-07-19 2014-07-02 電力制御システム、電力制御方法及び記録媒体 WO2015008624A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015527248A JPWO2015008624A1 (ja) 2013-07-19 2014-07-02 電力制御システム、電力制御方法及び記録媒体
US14/905,675 US20160164329A1 (en) 2013-07-19 2014-07-02 Power control system, power control method and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150784 2013-07-19
JP2013-150784 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008624A1 true WO2015008624A1 (ja) 2015-01-22

Family

ID=52346093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067646 WO2015008624A1 (ja) 2013-07-19 2014-07-02 電力制御システム、電力制御方法及び記録媒体

Country Status (3)

Country Link
US (1) US20160164329A1 (ja)
JP (1) JPWO2015008624A1 (ja)
WO (1) WO2015008624A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019101920A (ja) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 情報処理装置および情報処理方法
CN111628492A (zh) * 2020-04-13 2020-09-04 四川大学 一种高压配电网分区重构与储能协同的电网阻塞管控方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109078A1 (de) * 2018-04-17 2019-10-17 Wobben Properties Gmbh Ladestation zum Laden von Elektrofahrzeugen
DE102018109077A1 (de) 2018-04-17 2019-10-17 Wobben Properties Gmbh Ladestation zum Laden von Elektrofahrzeugen
CN109064660A (zh) * 2018-08-03 2018-12-21 广东电网有限责任公司 获取用户用电量骤增的方法和系统
CN112862372B (zh) * 2021-03-19 2023-04-07 广东电网有限责任公司 一种变电站刀闸的远程控制方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239662A (ja) * 2010-04-12 2011-11-24 Panasonic Electric Works Co Ltd 充電制御装置
JP2012105507A (ja) * 2010-11-12 2012-05-31 Kansai Electric Power Co Inc:The 蓄電池の充電方法
WO2012120977A1 (ja) * 2011-03-04 2012-09-13 日本電気株式会社 充電制御システム、充電制御方法及びプログラム
JP2013085343A (ja) * 2011-10-07 2013-05-09 Nissan Motor Co Ltd 充電装置
WO2013099549A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 エネルギーマネジメントシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239662A (ja) * 2010-04-12 2011-11-24 Panasonic Electric Works Co Ltd 充電制御装置
JP2012105507A (ja) * 2010-11-12 2012-05-31 Kansai Electric Power Co Inc:The 蓄電池の充電方法
WO2012120977A1 (ja) * 2011-03-04 2012-09-13 日本電気株式会社 充電制御システム、充電制御方法及びプログラム
JP2013085343A (ja) * 2011-10-07 2013-05-09 Nissan Motor Co Ltd 充電装置
WO2013099549A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 エネルギーマネジメントシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019101920A (ja) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 情報処理装置および情報処理方法
CN111628492A (zh) * 2020-04-13 2020-09-04 四川大学 一种高压配电网分区重构与储能协同的电网阻塞管控方法

Also Published As

Publication number Publication date
JPWO2015008624A1 (ja) 2017-03-02
US20160164329A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015008624A1 (ja) 電力制御システム、電力制御方法及び記録媒体
JP6471766B2 (ja) 電池制御システム
US9824409B2 (en) Energy management system, server, energy management method, and storage medium
JP5882156B2 (ja) 電力制御装置
US20140214219A1 (en) Energy management system, energy management method, medium, and server
Colson et al. Improving sustainability of hybrid energy systems part II: Managing multiple objectives with a multiagent system
JPWO2017009978A1 (ja) V2gシステム及び充放電制御方法
US20120277926A1 (en) Transformer structure for smart load balancing
JP7299201B2 (ja) 電力システム
JP2015106962A (ja) 充放電制御装置及び充放電システム
JP2012210130A (ja) 蓄電装置、蓄電方法およびプログラム
WO2019211940A1 (ja) 電力変換装置
JP2012191736A (ja) バッテリ充放電システム、エネルギーマネジメントシステムおよび電動車両
JP7251437B2 (ja) 給電システム
JP2017046398A (ja) 充電システム
JP5726223B2 (ja) 車載蓄電池の充電制御システム
JP2022098972A (ja) サーバ、電力管理方法
JP2022139814A (ja) 制御システム、及びエネルギーマネジメント方法
JP7240295B2 (ja) 地域エネルギー管理装置及び地域エネルギー管理方法
JP2022098973A (ja) サーバ、電力管理方法
JP2013162560A (ja) 需給調整システム
JP2017099203A (ja) 車載充電器及びそれを備えた車両
JP2018157647A (ja) 情報処理装置、蓄電装置の制御装置、電力システム、制御方法及びプログラム
Lu et al. Automated scheduling of deferrable PEV/PHEV load by power-profile unevenness
KR101348916B1 (ko) 충전 장치 및 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527248

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825911

Country of ref document: EP

Kind code of ref document: A1